Application

04751-2016 Roadway Expansion
05372 - TH 101 Expansion
Regional Solicitation - Roadways Including Multimodal Elements

Status:
Submitted Date:

Submitted
07/14/2016 9:55 AM

Primary Contact

Name:*		Paul	Robert	
	Salutation	First Name	Middle Name	Last Name
Title:	City Engineer			
Department:	Engineering			
Email:	poehme@ci.chanhassen.mn.us			
Address:	7700 Market Blvd			
	P.O.Box 147			
*	Chanhassen	Minnesota		55317
	City	State		Postal Code/Zip
Phone:*	952-227-1169			
	Phone		Ext.	
Fax:				
What Grant Programs are you most interested in?	Regional Solicitation - Roadways Including Multimodal Elements			

Organization Information

Name:

Jurisdictional Agency (if different):
Organization Type: City
Organization Website:

Address: | | 7700 MARKET BLVD |
| :--- | :--- |
| | PO BOX 147 |

*	CHANHASSEN	Minnesota	55317
County:	City	State/Province	

Phone:*
952-227-1100

Fax:
PeopleSoft Vendor Number
0000020930A2

Project Information

Project Name	TH 101 Expansion
Primary County where the Project is Located	Carver
Jurisdictional Agency (If Different than the Applicant):	

Brief Project Description (Limit 2,800 characters; approximately 400 words)

The proposed TH 101 Expansion project involves 1.2 miles of safety and capacity improvements between Pioneer Trail (CSAH 14) and Flying Cloud Drive (CSAH 61) in the City of Chanhassen (see Figure 1). The project includes reconstruction and realignment of TH 101 from a two-lane undivided A Minor Arterial to a four-lane divided roadway with turn lanes at key intersections. A paved multi-use trail is proposed along both sides of TH 101 from Pioneer Trail to Creekwood Street and along the east side of TH 101 from Creekwood Street to Flying Cloud Drive. On the south end, the project will tie into the newly constructed TH 101/Flying Cloud Drive roundabout. The trail will also connect to the Minnesota Bluffs Regional Trail. See Figure 2 for a layout and Figure 3 for existing conditions. The project will leverage and tie into existing investments to TH 101 south of Flying Cloud Drive and will provide the following benefits:

Safety: The corridor has several major safety concerns based on its current design. Steep grades (up to 13%) and numerous curves along the roadway necessitate warning signs with 15 mph advisory speeds, and difficult travel conditions are caused by slick pavement during inclement weather. Inadequate sight distances create blind intersections with roadways, driveways, and a trail crossing (see Figure 1). A crash analysis was performed as part of the 2014 preliminary engineering and environmental review, which identified crash and severity rates more than twice the average for two-lane rural highways. The predominant crash type was run-off-the road, a symptom of poor sight conditions, tight curves, and undulating terrain through the project area. These issues are still present under today's existing conditions.
The corridor will also provide safer pedestrian/bicycle connections by constructing a grade separated crossing at the TH 41/Flying Cloud

Include location, road name/functional class, type of improvement, etc.

TIP Description Guidance (will be used in TIP if the project is
selected for funding)
Project Length (Miles)

Drive roundabout, and expanding the trail network (see Figure 2).

Regional Connectivity: TH 101 (between the MN River and TH 212) is a logical and direct link that serves travel demands to and from the Twin Cities area. TH 101, between the communities of Shakopee and Chanhassen, serves as one of only a few options available for travelers seeking to cross the MN River in the area. With severe congestion on the TH 169 bridge and the fact that the TH 41 bridge often closes during flooding, the regional importance of this connection cannot be understated for both automobiles and freight traffic.

With the proposed improvements, TH 101 has the potential to serve as an alternative roadway connection for all vehicles, particularly freight traffic, seeking an alternative to these congested river crossings.

TH 101 Expansion from CSAH 14 to CSAH 61
1.2

Project Funding

Are you applying for funds from another source(s) to implement this project?

If yes, please identify the source(s)
Federal Amount
Match Amount
Minimum of 20% of project total
Project Total
Match Percentage

No

TH 101 Expansion from CSAH 14 to CSAH 61
\$7,000,000.00
$\$ 6,421,000.00$
\$13,421,000.00
47.84\%

Minimum of 20%
Compute the match percentage by dividing the match amount by the project total

A minimum of 20% of the total project cost must come from non-federal sources; additional match funds over the 20% minimum can come from other federal sources

Preferred Program Year
Select one:
2020
For TDM projects, select 2018 or 2019. For Roadway, Transit, or Trail/Pedestrian projects, select 2020 or 2021.
Additional Program Years:
2019
Select all years that are feasible if funding in an earlier year becomes available.

Project Information: Roadway Projects

County, City, or Lead Agency
Functional Class of Road

Road System
TH, CSAH, MSAS, CO. RD., TWP. RD., CITY STREET
Road/Route No.
i.e., 53 for CSAH 53

Name of Road
Example; 1st ST., MAIN AVE
Zip Code where Majority of Work is Being Performed
(Approximate) Begin Construction Date
(Approximate) End Construction Date
TERMINI:(Termini listed must be within 0.3 miles of any work)
From:
(Intersection or Address)
To:
(Intersection or Address)
DO NOT INCLUDE LEGAL DESCRIPTION
Or At

Primary Types of Work

Examples: GRADE, AGG BASE, BIT BASE, BIT SURF,
SIDEWALK, CURB AND GUTTER,STORM SEWER,
SIGNALS, LIGHTING, GUARDRAIL, BIKE PATH, PED RAMPS,
BRIDGE, PARK AND RIDE, ETC.
BRIDGE/CULVERT PROJECTS (IF APPLICABLE)
Old Bridge/Culvert No.:
New Bridge/Culvert No.:
Structure is Over/Under
(Bridge or culvert name):

City of Chanhassen
A Minor Arterial Expander
TH

101

TH 101

55317
03/01/2019
11/01/2020

Pioneer Trail (CSAH 14)

Flying Cloud Drive (CSAH 61)

GRADE, AGG BASE, BIT SURF, SIDEWALK, CURB AND GUTTER, STORM SEWER, SIGNALS, BIKE PATH

Specific Roadway Elements	
CONSTRUCTION PROJECT ELEMENTS/COST	Cost
ESTIMATES	$\$ 600,000.00$
Mobilization (approx. 5\% of total cost)	$\$ 300,000.00$
Removals (approx. 5\% of total cost)	$\$ 4,630,000.00$
Roadway (grading, borrow, etc.)	$\$ 2,560,000.00$
Roadway (aggregates and paving)	$\$ 400,000.00$
Subgrade Correction (muck)	$\$ 1,050,000.00$
Storm Sewer	$\$ 420,000.00$
Ponds	$\$ 497,000.00$
Concrete Items (curb \& gutter, sidewalks, median barriers)	$\$ 100,000.00$
Traffic Control	$\$ 100,000.00$
Striping	$\$ 50,000.00$
Signing	$\$ 150,000.00$
Lighting	$\$ 1,150,000.00$
Turf - Erosion \& Landscaping	$\$ 0.00$
Bridge	$\$ 300,000.00$
Retaining Walls	$\$ 0.00$
Noise Wall (do not include in cost effectiveness measure)	$\$ 0.00$
Traffic Signals	$\$ 0.00$
Wetland Mitigation	$\$ 0.00$
Other Natural and Cultural Resource Protection	$\$ 0.00$
RR Crossing	$\$ 90,000.00$
Roadway Contingencies	$\$ 0.00$
Other Roadway Elements	$\$ 129000$

Totals \$12,946,000.00
Specific Bicycle and Pedestrian Elements CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES

Cost

$\$ 475,000.00$
Path/Trail Construction
Sidewalk Construction \$0.00
On-Street Bicycle Facility Construction \$0.00
Right-of-Way
Pedestrian Curb Ramps (ADA) $\$ 0.00$
Crossing Aids (e.g., Audible Pedestrian Signals, HAWK) $\$ 0.00$
Pedestrian-scale Lighting $\$ 0.00$
Streetscaping $\$ 0.00$
Wayfinding $\$ 0.00$
Bicycle and Pedestrian Contingencies $\$ 0.00$
Other Bicycle and Pedestrian Elements $\$ 0.00$
Totals \$475,000.00
Specific Transit and TDM Elements
CONSTRUCTION PROJECT ELEMENTS/COST
ESTIMATES Cost
Fixed Guideway Elements $\$ 0.00$
Stations, Stops, and Terminals $\$ 0.00$
Support Facilities $\$ 0.00$
Transit Systems (e.g. communications, signals, controls, fare collection, etc.) $\$ 0.00$
Vehicles $\$ 0.00$
Contingencies $\$ 0.00$
Right-of-Way $\$ 0.00$
Other Transit and TDM Elements $\$ 0.00$
Totals $\$ 0.00$
Transit Operating Costs

Number of Platform hours	0
Cost Per Platform hour (full loaded Cost)	$\$ 0.00$
Substotal	$\$ 0.00$
Other Costs - Administration, Overhead,etc.	$\$ 0.00$

Totals

Total Cost	$\$ 13,421,000.00$
Construction Cost Total	$\$ 13,421,000.00$
Transit Operating Cost Total	$\$ 0.00$

Requirements - All Projects

All Projects

1.The project must be consistent with the goals and policies in these adopted regional plans: Thrive MSP 2040 (2014), the 2040 Transportation Policy Plan, the 2040 Regional Parks Policy Plan (2015), and the 2040 Water Resources Policy Plan (2015).

Check the box to indicate that the project meets this requirement. Yes
2.The project must be consistent with the 2040 Transportation Policy Plan. Reference the 2040 Transportation Plan objectives and strategies that relate to the project.

Goal B: Safety and Security (2040 TPP, pg. 2.7) The regional transportation system is safe and secure for all users.

Objectives: Reduce crash rates and improve safety and security for all modes of passenger travel and freight transport.

Strategies:

B1 - Regional transportation partners will incorporate safety and security considerations for all modes and users throughout the processes of planning, funding, construction, operation.

B3 - Regional transportation partners should monitor and routinely analyze safety and security data by mode and severity to identify priorities and progress.

B6 - Regional transportation partners will use best practices to provide and improve facilities for safe walking and bicycling, since pedestrians and bicyclists are the most vulnerable users of the transportation system.

Goal D: Competitive Economy (2040 TPP, pg. 2.11) - The regional transportation system supports the economic competitiveness, vitality, and prosperity of the regions and state.

Objectives: Support the region's economic competitiveness through the efficient movement of freight.

Strategies:

> D5 - The Council and MnDOT will work with transportation partners to identify the impacts of highway congestion on freight and identify costeffective mitigation.

Goal F: Leveraging Transportation Investment to Guide Land Use (2040 TPP, pg. 2.14) The region leverages transportation investments to guide land use and development patterns that advance the regional vision of stewardship, prosperity, livability, equity, and sustainability.
3.The project or the transportation problem/need that the project addresses must be in a local planning or programming document. Reference the name of the appropriate comprehensive plan, regional/statewide plan, capital improvement program, corridor study document [studies on trunk highway must be approved by the Minnesota Department of Transportation and the Metropolitan Council], or other official plan or program of the applicant agency [includes Safe Routes to School Plans] that the project is included in and/or a transportation problem/need that the project addresses.

City of Chanhassen 2030 Comprehensive Plan, Transportation Chapter, Page 7-12

List the applicable documents and pages:
Carver County Roadway Systems Plan (20102030), Page 23

Carver County Comprehensive Plan (2030), Transportation Amendment, Page 5
4. The project must exclude costs for studies, preliminary engineering, design, or construction engineering. Right-of-way costs are only eligible as part of bicycle/pedestrian projects, transit stations/stops, transit terminals, park-and-ride facilities, or pool-and-ride lots. Noise barriers, drainage projects, fences, landscaping, etc., are not eligible for funding as a standalone project, but can be included as part of the larger submitted project, which is otherwise eligible.

Check the box to indicate that the project meets this requirement. Yes
5.Applicants that are not cities or counties in the seven-county metro area with populations over 5,000 must contact the MnDOT Metro State Aid Office prior to submitting their application to determine if a public agency sponsor is required.

Check the box to indicate that the project meets this requirement. Yes
6.Applicants must not submit an application for the same project elements in more than one funding application category.

Check the box to indicate that the project meets this requirement. Yes
7.The requested funding amount must be more than or equal to the minimum award and less than or equal to the maximum award. The cost of preparing a project for funding authorization can be substantial. For that reason, minimum federal amounts apply. Other federal funds may be combined with the requested funds for projects exceeding the maximum award, but the source(s) must be identified in the application. Funding amounts by application category are listed below.
Roadway Expansion: \$1,000,000 to \$7,000,000
Roadway Reconstruction/ Modernization: \$1,000,000 to \$7,000,000
Roadway System Management \$250,000 to \$7,000,000
Bridges Rehabilitation/ Replacement: \$1,000,000 to \$7,000,000
Check the box to indicate that the project meets this requirement. Yes
8. The project must comply with the Americans with Disabilities Act.

Check the box to indicate that the project meets this requirement. Yes
9.The project must be accessible and open to the general public.

Check the box to indicate that the project meets this requirement. Yes
10. The owner/operator of the facility must operate and maintain the project for the useful life of the improvement.

Check the box to indicate that the project meets this requirement. Yes
11.The project must represent a permanent improvement with independent utility. The term independent utility means the project provides benefits described in the application by itself and does not depend on any construction elements of the project being funded from other sources outside the regional solicitation, excluding the required non-federal match. Projects that include traffic management or transit operating funds as part of a construction project are exempt from this policy.

Check the box to indicate that the project meets this requirement. Yes
12. The project must not be a temporary construction project. A temporary construction project is defined as work that must be replaced within five years and is ineligible for funding. The project must also not be staged construction where the project will be replaced as part of future stages. Staged construction is eligible for funding as long as future stages build on, rather than replace, previous work.

Check the box to indicate that the project meets this requirement. Yes
13. The project applicant must send written notification regarding the proposed project to all affected state and local units of government prior to submitting the application.

Check the box to indicate that the project meets this requirement. Yes

Roadways Including Multimodal Elements

1.All roadway and bridge projects must be identified as a Principal Arterial (Non-Freeway facilities only) or A-Minor Arterial as shown on the latest TAB approved roadway functional classification map.

Check the box to indicate that the project meets this requirement. Yes

Roadway Expansion and Reconstruction/Modernization projects only:
2.The project must be designed to meet 10 -ton load limit standards.

Check the box to indicate that the project meets this requirement. Yes
Bridge Rehabilitation/Replacement projects only:
3.Projects requiring a grade-separated crossing of a Principal Arterial freeway must be limited to the federal share of those project costs identified as local (non-MnDOT) cost responsibility using MnDOTs Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities manual. In the case of a federally funded trunk highway project, the policy guidelines should be read as if the funded trunk highway route is under local jurisdiction.

Check the box to indicate that the project meets this requirement.
4.The bridge must carry vehicular traffic. Bridges can carry traffic from multiple modes. However, bridges that are exclusively for bicycle or pedestrian traffic must apply under one of the Bicycle and Pedestrian Facilities application categories. Rail-only bridges are ineligible for funding.

Check the box to indicate that the project meets this requirement.
5. The length of the bridge must equal or exceed 20 feet.

Check the box to indicate that the project meets this requirement.
6. The bridge must have a sufficiency rating less than 80 for rehabilitation projects and less than 50 for replacement projects. Additionally, the bridge must also be classified as structurally deficient or functionally obsolete.

Check the box to indicate that the project meets this requirement.

Requirements - Roadways Including Multimodal Elements

Expander/Augmentor/Non-Freeway Principal Arterial

Select one:

Area

Project Length
Average Distance
Upload Map

Expander
3.665
1.193
3.0721

1474403724718_RAD101CarvREX.pdf

Reliever: Relieves a Principle Arterial that is a Freeway Facility

Facility being relieved
Number of hours per day volume exceeds capacity (based on the Congestion Report)

Reliever: Relives a Principle Arterial that is a Non-Freeway Facility

Facility being relieved
Number of hours per day volume exceeds capacity (based on the table below)

Non-Freeway Facility Volume/Capacity Table

Hour	NB/EB Volume	SB/WB Volume	Capacity	Volume exceeds capacity
12:00am - 1:00am			0	
1:00am-2:00am			0	
2:00am-3:00am			0	
3:00am-4:00am			0	
4:00am-5:00am			0	
5:00am-6:00am			0	
6:00am-7:00am			0	
7:00am-8:00am			0	
8:00am-9:00am			0	
9:00am-10:00am			0	
10:00am - 11:00am			0	
11:00am-12:00pm			0	
12:00pm-1:00pm			0	
1:00pm-2:00pm			0	
2:00pm-3:00pm			0	
3:00pm - 4:00pm			0	
4:00pm - 5:00pm			0	
5:00pm-6:00pm			0	
6:00pm-7:00pm			0	
7:00pm - 8:00pm			0	
8:00pm-9:00pm			0	
9:00pm - 10:00pm			0	
10:00pm - 11:00pm			0	
11:00pm - 12:00am			0	

Measure B: Project Location Relative to Jobs, Manufacturing, and Education

Existing Employment within 1 Mile:
2630
Existing Manufacturing/Distribution-Related Employment within 1
Mile:
Existing Students:
0

Measure C: Current Heavy Commercial Traffic

Location:
Current daily heavy commercial traffic volume:
Date heavy commercial count taken:

TH101 south of Creekwood Drive
149
2014

Measure D: Freight Elements

Response (Limit 1,400 characters; approximately 200 words)
TH 101 provides the only direct link between Chanhassen and Shakopee, both are focused on increasing downtown livability. Currently, this link is a dangerous corridor for trucks because of steep grades, numerous curves, inadequate sight distances, and lack of shoulders. TH 101 is often closed to trucks during winter events (snow and ice) given the steep grades. Add in the geographical constraints of the river, trucks are also forced to use a more circuitous route to serve the downtowns. While this means increased costs for freight users, it impacts the size of trucks serving the communities. Many carriers use large trucks to service other areas along the way to justify the cost of avoiding the TH 101 direct connection.

The project includes reconstruction and realignment of TH 101 from a two-lane to a fourlane divided roadway with turn lanes at key intersections. It builds up on recently completed TH 101 MN River Crossing project, and would provide the missing four-lane link between the MN River and the freeway system. With severe congestion on the TH 169 and the TH 41 often closes during flooding, this project will provide needed resiliency to the regional freight system.

Measure A: Current Daily Person Throughput

Current AADT Volume 5000
Existing Transit Routes on the Project N/A
For New Roadways only, list transit routes that will be moved to the new roadway
Upload Transit Map 1468339129598_Transit.pdf
Response: Current Daily Person Throughput
Average Annual Daily Transit Ridership 0
Current Daily Person Throughput 6500.0
Measure B: 2040 Forecast ADT
Use Metropolitan Council model to determine forecast (2040) ADT volume No
If checked, METC Staff will provide Forecast (2040) ADT volume
OR
Identify the approved county or city travel demand model todetermine forecast (2040) ADT volume

Measure A: Project Location and Impact to Disadvantaged Populations

Select one:
Project located in Area of Concentrated Poverty with 50\% or more of residents are people of color (ACP50):

Project located in Area of Concentrated Poverty:
Projects census tracts are above the regional average for population in poverty or population of color:

Project located in a census tract that is below the regional average for population in poverty or populations of color or Yes includes children, people with disabilities, or the elderly:

Response (Limit 2,800 characters; approximately 400 words)

TH 101 is an important regional connection, because it serves as a MN River crossing and a link to TH 212 that provides surrounding cities with better access to jobs. Many of these cities, including Chaska \& Shakopee, contain areas that are above the regional average for populations of race/poverty. Shakopee's commercial and industrial sectors have experienced tremendous growth in recent years, adding many blue collar jobs. The proposed improvements will provide a better link for all users accessing this area from the north. Also, 40 rental units located at the existing intersection of TH 101 and Flying Cloud Drive are low income housing.

The project area is also defined as a Transit Market Area IV by the Met Council (i.e. an area that only supports dial-a-ride and peak period express/commuter service). Therefore, this project will improve multimodal connectivity between transit facilities (e.g., SouthWest Village Park and Ride, and the Chanhassen Transit Station) and low income populations that depend on the transit services to access job centers in the Twin Cities. This connection is criterial given the lack of transit services provided in the area, which in some respect is a result of the geographical barriers (e.g., Minnesota River) and the rural nature of the County.

The proposed trails will also improve safety and travel experience for bikes/pedestrians traveling along TH 101, including local users connecting to existing trails on the north at Pioneer Trail and on the south at Flying Cloud Drive. Furthermore, a grade separated crossing will be constructed as part of this project and a future pedestrian/bicycle bridge at the Minnesota River Bluffs LRT Trail is being considered (see Figure 2). The proposed
crossing and trails along TH 101 will offer benefits to all trail users, including children and the disabled, and will be compliant with the Americans with Disabilities Act (ADA). Nearly 36 percent of residents in the projects census tract are children, as compared to only 27 percent within the seven county regional area. Families with children would be common users of the new trail along TH 101 and its connection to the MN River Bluffs Regional Trail. Additionally, people without automobiles are not currently able to safely use the project segment of TH 101 because of its steep grades and lack of shoulders. Bikes and pedestrians must divert 0.7 mile to the east to access the MN River Bluffs Regional Trail at Pioneer Trail and continue south.

The response should address the benefits, impacts, and mitigation for the populations affected by the project.
Upload Map
1468339063162_SEC.pdf

Measure B: Affordable Housing

City/Township Segment Length in Miles (Population)
Chanhassen 1.2
1

Total Project Length

Total Project Length (Total Population)

Affordable Housing Scoring - To Be Completed By Metropolitan Council Staff

City/Township	Segment	Total Length	Score	Segment Length/Total	Housing Score Multiplied by
	Length (Miles)	(Miles)		Length	Segment percent

0	0	0	0

Affordable Housing Scoring - To Be Completed By Metropolitan Council Staff

Measure A: Infrastructure Age

Year of Original

Roadway Construction or Most Recent Reconstruction	Segment Length	Calculation	Calculation 2
1949.0	1.2	2338.8	1949.0
	1	2339	1949

Average Construction Year

Weighted Year
1949.0

Total Segment Length (Miles)

Total Segment Length
1.2

Measure A: Vehicle Delay Reduction

					EXPLANATIO	
					N of	
Total Peak	Total Peak	Total Peak		Total Peak	methodology	
Hour Delay	Hour Delay	Hour Delay	Volume	Hour Delay	used to	
Per Vehicle	Per Vehicle	Per Vehicle	(Vehicles Per	Reduced by	calculate	Synchro or
Without The	With The	Reduced by	Hour)	the Project	railroad	HCM Reports
Project	Project	Project		(Seconds)	crossing	
					delay, if	
					applicable:	
					See	
					attachment for	14684371296
62.0	9.1	52.9	2497.0	132091.3	more	19_TH
					informa	101_HCM.pdf

Total Delay

Measure B:Roadway projects that do not include new roadway segments or railroad grade-separation elements

Total (CO, NOX,	Total (CO, NOX,
and VOC) Peak	and VOC) Peak
Hour Emissions	Hour Emissions
Per Vehicle	Per Vehicle with
without the Project	the Project
(Kilograms):	(Kilograms):

Total (CO, NOX, and VOC) Peak
Hour Emissions
Reduced Per Vehicle by the Project (Kilograms):

	Total (CO, NOX, and VOC) Peak
Volume (Vehicles	Hour Emissions Per Hour):
	Reduced by the (Kilograms):
2496.0	6464.64
2496	6465

Hour Emissions Reduced by the Project (Kilograms):
6464.64

6465

Total

Total Emissions Reduced:
Upload Synchro Report

Measure B: Roadway projects that are constructing new roadway segments, but do not include railroad grade-separation elements (for Roadway Expansion applications only):

Total (CO, NOX,	Total (CO, NOX,
and VOC) Peak	and VOC) Peak
Hour Emissions	Hour Emissions
Per Vehicle	Per Vehicle with
without the Project	the Project
(Kilograms):	(Kilograms):

0

Total (CO, NOX, and VOC) Peak Hour Emissions
Reduced Per
Vehicle by the Project
(Kilograms):
\(\left.\begin{array}{cc} \& Total (CO, NOX,

and VOC) Peak\end{array}\right\}\)| Hour Emissions | |
| :---: | :---: |
| Volume (Vehicles | Reduced by the |
| Project | |
| (Kilograms): | |

0

Total Parallel Roadways

Emissions Reduced on Parallel Roadways
Upload Synchro Report

0
\square

New Roadway Portion:

Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons: 0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced or
Produced on New Roadway (Kilograms):

```
EXPLANATION of methodology and assumptions used:(Limit
1,400 characters; approximately 200 words)
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the
Project (Kilograms):0.0

\section*{Measure B:Roadway projects that include railroad grade-separation elements}

Cruise speed in miles per hour without the project: 0
Vehicle miles traveled without the project: 0
Total delay in hours without the project: 0
Total stops in vehicles per hour without the project: 0
Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons (F1) 0
Fuel consumption in gallons (F2) 0
Fuel consumption in gallons (F3) 0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):

EXPLANATION of methodology and assumptions used:(Limit
1,400 characters; approximately 200 words)

\section*{Measure A: Benefit of Crash Reduction}

TH 101 from Pioneer Tail to North of TH 101/Flying Cloud Drive Intersection:

CR 1 - Increase Number of Lanes

CR 2 - Flatten Horizontal Curvature
Crash Modification Factor Used:
CR 3 - Improve Pavement Friction

CR 4 - Concert from a Signal to Roundabout

See crash analysis attachment for more information.

Rationale for Crash Modification Selected:
(Limit 1400 Characters; approximately 200 words)
Project Benefit (\$) from B/C Ratio:
Worksheet Attachment

The crash reduction factors are consistent with the proposed improvements. For more information, please see the attachment.

1468252473057_Hwy 101 Complete Crash Analysis.pdf

Roadway projects that include railroad grade-separation elements:

Current AADT volume:
Average daily trains:
Crash Risk Exposure eliminated:

0
0
0

Measure A: Multimodal Elements and Existing Connections

Currently, there are no bicycle or pedestrian facilities along TH 101 in the project area. This section of TH 101 is a dangerous corridor for these users because of steep grades, numerous curves, inadequate sight distances, and lack of shoulders. The project will complete the missing bicycle/ped. links between the walkable Chanhassen and Shakopee downtowns. Both downtowns are village centers identified in their comprehensive plans as mixed-use developments (supported by higher densities) with high pedestrian traffic.

The proposed trail on the east side of TH 101 will connect to the MN River Bluffs Regional Trail, which crosses TH 101 at an at-grade intersection approximately 0.2 miles north of Flying Cloud Dr. The existing trail crossing has safety deficiencies that make it difficult for TH 101 drivers to see trail users as they approach the intersection. In the future, the City of Chanhassen is planning to construct a trail bridge crossing from the MN River Bluffs Regional Trail over TH 101, as identified in the 2030 Comprehensive Plan (see Figure 2). This project will include a grade separated crossing at the TH 41/Flying Cloud Drive roundabout (see Figure 2). The proposed crossings and trails will improve safety and travel experience for bikes/peds traveling along TH 101, including local users connecting to trails on the north at Pioneer Trail and on the south at Flying Cloud Dr.

The area is designated as a "Transit Market Area IV" by the Met Council (i.e. an area that only supports dial-a-ride and peak period express/commuter service). However, the proposed project will achieve much more than supporting this designation. The proposed project will improve various multi-modal connections to nearby transit facilities and community amenities, as well as improving safety for all users along the corridor. For example, the proposed project will introduce trails,
improve the access for all modes, and expand the opportunities for new north-south transit service (between TH 212 and downtown Chanhassen \& Shakopee). These connections will help link pedestrians, bicyclists and commuters to a cohesive network for multimodal and recreational amenities, which include the following:

\section*{SouthWest Village Park and Ride}

Chanhassen Transit Station

Express Routes in downtown Chanhassen
The planned SW Light Rail Transit Mitchell Station, which will be located along TH 212 in Eden Prairie (see Green Line on Transit Map)

MN River Bluffs Regional Trails

Seminary Fen Scientific and Natural Area

Badimere Park and Riley Lake Park

MN River, including the MN Valley Wild Refuge

MN Valley State Trail in Shakopee

More importantly, these connections will provide greater opportunities to access jobs, housing, schools, and public services without having to depend on a vehicle.

\section*{Transit Projects Not Requiring Construction}

If the applicant is completing a transit or TDM application that is operations only, check the box and do not complete the remainder of the form. These projects will receive full points for the Risk Assessment.
Park-and-Ride and other transit construction projects require completion of the Risk Assessment below.
Check Here if Your Transit Project Does Not Require Construction

\section*{Measure A: Risk Assessment}
```

1)Project Scope (5 Percent of Points)
Meetings or contacts with stakeholders have occurred Yes
100%
Stakeholders have been identified
40%
Stakeholders have not been identified or contacted
0%
2)Layout or Preliminary Plan (5 Percent of Points)
Layout or Preliminary Plan completed Yes
100%
Layout or Preliminary Plan started
50%
Layout or Preliminary Plan has not been started
0%
Anticipated date or date of completion
3)Environmental Documentation (5 Percent of Points)
EIS
EA Yes
PM
Document Status:
Document approved (include copy of signed cover sheet)
Yes
100%
Document submitted to State Aid for review
Document in progress; environmental impacts identified; review request letters sent
50\%
Document not started
0\%
Anticipated date or date of completion/approval
4)Review of Section 106 Historic Resources (10 Percent of Points)
No known historic properties eligible for or listed in the National
Register of Historic Places are located in the project area, and Yes project is not located on an identified historic bridge
100%

```

Historic/archeological review under way; determination of no historic properties affected or no adverse effect anticipated 80\%

Historic/archaeological review under way; determination of adverse effect anticipated

40\%
Unsure if there are any historic/archaeological resources in the project area

0\%
Anticipated date or date of completion of historic/archeological review:

Project is located on an identified historic bridge
5)Review of Section 4f/6f Resources (10 Percent of Points)

4(f) Does the project impacts any public parks, public wildlife refuges, public golf courses, wild \& scenic rivers or public private historic properties? 6(f) Does the project impact any public parks, public wildlife refuges, public golf courses, wild \& scenic rivers or historic property that was purchased or improved with federal funds?

No Section 4f/6f resources located in the project area
100\%
No impact to \(4 f\) property. The project is an independent bikeway/walkway project covered by the bikeway/walkway
Negative Declaration statement; letter of support received
100\%
Section 4 f resources present within the project area, but no known adverse effects

80\%
Project impacts to Section 4f/6f resources likely coordination/documentation has begun

50\%
Project impacts to Section 4f/6f resources likely
coordination/documentation has not begun
30\%
Unsure if there are any impacts to Section 4f/6f resources in the project area

0\%
6)Right-of-Way (15 Percent of Points)

Right-of-way, permanent or temporary easements not required
100\%
Right-of-way, permanent or temporary easements has/have been acquired

100\%
Right-of-way, permanent or temporary easements required, offers made

Right-of-way, permanent or temporary easements required, appraisals made

50\%
Right-of-way, permanent or temporary easements required, parcels identified

25\%
Right-of-way, permanent or temporary easements required, parcels not identified

0\%
Right-of-way, permanent or temporary easements identification has not been completed

0\%
Anticipated date or date of acquisition
7)Railroad Involvement (25 Percent of Points)

No railroad involvement on project
100\%

Railroad Right-of-Way Agreement is executed (include signature page)

Railroad Right-of-Way Agreement required; Agreement has been initiated

60\%
Railroad Right-of-Way Agreement required; negotiations have begun

40\%
Railroad Right-of-Way Agreement required; negotiations not begun

0\%

Anticipated date or date of executed Agreement
8)Interchange Approval (15 Percent of Points)*
*Please contact Karen Scheffing at MnDOT (Karen.Scheffing@state.mn.us or 651-234-7784)
to determine if your project needs to go through the Metropolitan Council/MnDOT Highway Interchange Request Committee.

Project does not involve construction of a new/expanded interchange or new interchange ramps

100\%
Interchange project has been approved by the Metropolitan Council/MnDOT Highway Interchange Request Committee
\(100 \%\)
Interchange project has not been approved by the Metropolitan
Council/MnDOT Highway Interchange Request Committee
0\%
```

9)Construction Documents/Plan (10 Percent of Points)
Construction plans completed/approved (include signed title
sheet)
100%
Construction plans submitted to State Aid for review
75%
Construction plans in progress; at least 30% completion
Yes
50%
Construction plans have not been started
0%
Anticipated date or date of completion
01/01/2019
10)Letting
Anticipated Letting Date
03/07/2019

```

\section*{Measure A: Cost Effectiveness}
```

Total Project Cost (entered in Project Cost Form):	$\$ 13,421,000.00$
Enter Amount of the Noise Walls:	$\$ 300,000.00$
Total Project Cost subtract the amount of the noise walls:	$\$ 13,121,000.00$
Points Awarded in Previous Criteria	
Cost Effectiveness	$\$ 0.00$

```

\section*{Other Attachments}
\begin{tabular}{lll} 
File Name & Description & File Size \\
Canterbury LOS.pdf & Letter of Support (Canterbury Park) & 48 KB \\
Figure 1 - Existing Conditions.pdf & Figure 1 - Existing Conditions & 3.1 MB \\
Figure 2 - Layout.pdf & Figure 2 - Layout & 6.8 MB \\
Figure 3 - Street View.pdf & Figure 3 - Street View & 1.1 MB \\
LOS 1.pdf & Letter of Support (Level 7 Development) & 107 KB \\
Shakopee LOS.pdf & City of Shakopee Resolution & 170 KB \\
\begin{tabular}{l} 
TH 101_2014 Regional Solicitation \\
application_FINAL.pdf \\
TH101 Reconstruction Project MnDOT \\
letter of support.pdf
\end{tabular} & City of Chanhassen Resolution & 156 KB \\
TH101ChanhassenResolution.pdf & Carver County Resolution & 105 KB \\
\hline
\end{tabular}

\section*{Roadway Area Definition}

\section*{Results}

Project Length: 1.193 miles
Project Area: 3.665 sq mi

- Project Points \(\square\) Project Area
Project
For complete disclaimer of accuracy, please visit http://giswebsite.metc.state.mn.us/gissitenew/notice.aspx


Transit Connections Roadway Expansion Project: TH 101 Expansion | Map ID: 1468338624617

Results
Transit with a Direct Connection to project: -- NONE --
*indicates Planned Alignments

( Project Points \(\square\) Project Area Planned Alignments
Light Rail, Green Line Extension
\begin{tabular}{llllll} 
& Project & & & & Arterial BRT \\
0 & 1.25 & 2.5 & 5 & 7.5 & 10 \\
& & & & \\
\hline
\end{tabular}

For complete disclaimer of accuracy, please visit
For complete disclaimer of accuracy, please visit
htp://giswebsite.metc.state.mn.us/gissitenew/notice.aspx



\section*{3: TH 101 \& Flying Cloud Dr}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 2497 \\
Total Delay / Veh (s/v) & 62 \\
CO Emissions \((\mathrm{kg})\) & 3.50 \\
NOx Emissions \((\mathrm{kg})\) & 0.68 \\
VOC Emissions \((\mathrm{kg})\) & 0.81
\end{tabular}

\section*{3: TH 101 \& Flying Cloud Dr}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume \((\mathrm{vph})\) & 2496 \\
Total Delay / Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 1.68 \\
NOx Emissions \((\mathrm{kg})\) & 0.33 \\
VOC Emissions \((\mathrm{kg})\) & 0.39
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & \multicolumn{10}{|l|}{23.4} \\
\hline Intersection LOS & \multicolumn{10}{|l|}{C} \\
\hline \multicolumn{2}{|l|}{Approach} & EB & \multicolumn{2}{|r|}{WB} & \multicolumn{3}{|c|}{NB} & \multicolumn{3}{|c|}{SB} \\
\hline Entry Lanes & & 2 & & 2 & \multicolumn{3}{|c|}{2} & \multicolumn{3}{|c|}{2} \\
\hline Conflicting Circle Lanes & & 2 & \multicolumn{2}{|r|}{2} & \multicolumn{3}{|c|}{2} & \multicolumn{3}{|c|}{2} \\
\hline Adj Approach Flow, veh/h & \multicolumn{2}{|r|}{612} & \multicolumn{2}{|r|}{897} & \multicolumn{3}{|c|}{821} & \multicolumn{3}{|c|}{384} \\
\hline Demand Flow Rate, veh/h & \multicolumn{2}{|r|}{625} & \multicolumn{2}{|r|}{915} & \multicolumn{3}{|c|}{837} & \multicolumn{3}{|c|}{392} \\
\hline Vehicles Circulating, veh/h & \multicolumn{2}{|r|}{1011} & \multicolumn{2}{|r|}{589} & \multicolumn{3}{|c|}{157} & \multicolumn{3}{|c|}{1277} \\
\hline Vehicles Exiting, veh/h & \multicolumn{2}{|r|}{612} & \multicolumn{2}{|r|}{128} & \multicolumn{3}{|c|}{1479} & \multicolumn{3}{|c|}{227} \\
\hline Follow-Up Headway, s & \multicolumn{2}{|r|}{3.186} & \multicolumn{2}{|r|}{3.186} & \multicolumn{3}{|c|}{3.186} & \multicolumn{3}{|c|}{3.186} \\
\hline Ped Vol Crossing Leg, \#/h & \multicolumn{2}{|r|}{0} & \multicolumn{2}{|r|}{0} & \multicolumn{3}{|c|}{0} & \multicolumn{3}{|c|}{0} \\
\hline Ped Cap Adj & \multicolumn{2}{|r|}{1.000} & \multicolumn{2}{|r|}{1.000} & \multicolumn{3}{|c|}{1.000} & \multicolumn{3}{|c|}{1.000} \\
\hline Approach Delay, s/veh & \multicolumn{2}{|r|}{42.4} & \multicolumn{2}{|r|}{31.6} & \multicolumn{3}{|c|}{5.0} & \multicolumn{3}{|c|}{13.4} \\
\hline Approach LOS & \multicolumn{2}{|r|}{E} & \multicolumn{2}{|r|}{D} & \multicolumn{3}{|c|}{A} & \multicolumn{3}{|c|}{B} \\
\hline Lane & Left & Right & Left & Right & Left & \multicolumn{2}{|l|}{Right Bypass} & Left & \multicolumn{2}{|l|}{Right Bypass} \\
\hline Designated Moves & LT & R & L & TR & LT & TR & R & LT & TR & R \\
\hline Assumed Moves & LT & R & L & TR & L & TR & R & LT & TR & R \\
\hline RT Channelized & & & & & & & Free & & & Free \\
\hline Lane Util & 0.176 & 0.824 & 0.727 & 0.273 & 0.755 & 0.245 & & 0.471 & 0.529 & \\
\hline Critical Headway, s & 4.293 & 4.113 & 4.293 & 4.113 & 4.293 & 4.113 & & 4.293 & 4.113 & \\
\hline Entry Flow, veh/h & 110 & 515 & 665 & 250 & 423 & 137 & 277 & 163 & 183 & 46 \\
\hline Cap Entry Lane, veh/h & 529 & 557 & 726 & 748 & 1004 & 1012 & 1938 & 434 & 462 & 1938 \\
\hline Entry HV Adj Factor & 0.976 & 0.981 & 0.980 & 0.981 & 0.981 & 0.980 & 0.980 & 0.978 & 0.982 & 0.980 \\
\hline Flow Entry, veh/h & 107 & 505 & 652 & 245 & 415 & 134 & 272 & 159 & 180 & 45 \\
\hline Cap Entry, veh/h & 517 & 546 & 712 & 734 & 985 & 992 & 1900 & 424 & 454 & 1900 \\
\hline V/C Ratio & 0.208 & 0.925 & 0.915 & 0.334 & 0.421 & 0.135 & 0.143 & 0.376 & 0.396 & 0.024 \\
\hline Control Delay, s/veh & 9.8 & 49.4 & 40.0 & 9.0 & 8.4 & 4.9 & 0.0 & 15.4 & 15.0 & 0.0 \\
\hline LOS & A & E & E & A & A & A & A & C & C & A \\
\hline 95th \%tile Queue, veh & 1 & 11 & 12 & 1 & 2 & 0 & 0 & 2 & 2 & 0 \\
\hline
\end{tabular}

\footnotetext{
K:ITrafficlTomIRegional Solicitation|2016|SynchrolChanhassenITH 101 and FCD Improved PM.syn Synchro 8 Report
}


Splits and Phases: 3: TH 101 \& Flying Cloud Dr


\footnotetext{
K:ITrafficlTomIRegional Solicitation|2016|SynchrolChanhassenlTH 101 and FCD Existing PM - Signal.syn Synchro 8 Report
}

The Flying Cloud Drive/TH 101 intersection does not have a before and after configuration that can be accurately analyzed as the Flying Cloud Drive/TH 101 intersection is currently split between four Tintersections. In order to analyze an "existing" model, all of the intersections were combined into one signalized intersection (removing the free EBR and WBT movements) that realigns TH 101. This best represents how the future "build" intersection will identify as, however, the build will be a multilane roundabout. Under the reconfigured existing intersection, delay and emissions can be identified and compared to those of build conditions.

\section*{3: TH 101 \& Flying Cloud Dr}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 2497 \\
Total Delay / Veh (s/v) & 62 \\
CO Emissions \((\mathrm{kg})\) & 3.50 \\
NOx Emissions \((\mathrm{kg})\) & 0.68 \\
VOC Emissions \((\mathrm{kg})\) & 0.81
\end{tabular}

\section*{3: TH 101 \& Flying Cloud Dr}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume \((\mathrm{vph})\) & 2496 \\
Total Delay / Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 1.68 \\
NOx Emissions \((\mathrm{kg})\) & 0.33 \\
VOC Emissions \((\mathrm{kg})\) & 0.39
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & \multicolumn{10}{|l|}{23.4} \\
\hline Intersection LOS & \multicolumn{10}{|l|}{C} \\
\hline \multicolumn{2}{|l|}{Approach} & EB & \multicolumn{2}{|r|}{WB} & \multicolumn{3}{|c|}{NB} & \multicolumn{3}{|c|}{SB} \\
\hline Entry Lanes & & 2 & & 2 & \multicolumn{3}{|c|}{2} & \multicolumn{3}{|c|}{2} \\
\hline Conflicting Circle Lanes & & 2 & \multicolumn{2}{|r|}{2} & \multicolumn{3}{|c|}{2} & \multicolumn{3}{|c|}{2} \\
\hline Adj Approach Flow, veh/h & \multicolumn{2}{|r|}{612} & \multicolumn{2}{|r|}{897} & \multicolumn{3}{|c|}{821} & \multicolumn{3}{|c|}{384} \\
\hline Demand Flow Rate, veh/h & \multicolumn{2}{|r|}{625} & \multicolumn{2}{|r|}{915} & \multicolumn{3}{|c|}{837} & \multicolumn{3}{|c|}{392} \\
\hline Vehicles Circulating, veh/h & \multicolumn{2}{|r|}{1011} & \multicolumn{2}{|r|}{589} & \multicolumn{3}{|c|}{157} & \multicolumn{3}{|c|}{1277} \\
\hline Vehicles Exiting, veh/h & \multicolumn{2}{|r|}{612} & \multicolumn{2}{|r|}{128} & \multicolumn{3}{|c|}{1479} & \multicolumn{3}{|c|}{227} \\
\hline Follow-Up Headway, s & \multicolumn{2}{|r|}{3.186} & \multicolumn{2}{|r|}{3.186} & \multicolumn{3}{|c|}{3.186} & \multicolumn{3}{|c|}{3.186} \\
\hline Ped Vol Crossing Leg, \#/h & \multicolumn{2}{|r|}{0} & \multicolumn{2}{|r|}{0} & \multicolumn{3}{|c|}{0} & \multicolumn{3}{|c|}{0} \\
\hline Ped Cap Adj & \multicolumn{2}{|r|}{1.000} & \multicolumn{2}{|r|}{1.000} & \multicolumn{3}{|c|}{1.000} & \multicolumn{3}{|c|}{1.000} \\
\hline Approach Delay, s/veh & \multicolumn{2}{|r|}{42.4} & \multicolumn{2}{|r|}{31.6} & \multicolumn{3}{|c|}{5.0} & \multicolumn{3}{|c|}{13.4} \\
\hline Approach LOS & \multicolumn{2}{|r|}{E} & \multicolumn{2}{|r|}{D} & \multicolumn{3}{|c|}{A} & \multicolumn{3}{|c|}{B} \\
\hline Lane & Left & Right & Left & Right & Left & \multicolumn{2}{|l|}{Right Bypass} & Left & \multicolumn{2}{|l|}{Right Bypass} \\
\hline Designated Moves & LT & R & L & TR & LT & TR & R & LT & TR & R \\
\hline Assumed Moves & LT & R & L & TR & L & TR & R & LT & TR & R \\
\hline RT Channelized & & & & & & & Free & & & Free \\
\hline Lane Util & 0.176 & 0.824 & 0.727 & 0.273 & 0.755 & 0.245 & & 0.471 & 0.529 & \\
\hline Critical Headway, s & 4.293 & 4.113 & 4.293 & 4.113 & 4.293 & 4.113 & & 4.293 & 4.113 & \\
\hline Entry Flow, veh/h & 110 & 515 & 665 & 250 & 423 & 137 & 277 & 163 & 183 & 46 \\
\hline Cap Entry Lane, veh/h & 529 & 557 & 726 & 748 & 1004 & 1012 & 1938 & 434 & 462 & 1938 \\
\hline Entry HV Adj Factor & 0.976 & 0.981 & 0.980 & 0.981 & 0.981 & 0.980 & 0.980 & 0.978 & 0.982 & 0.980 \\
\hline Flow Entry, veh/h & 107 & 505 & 652 & 245 & 415 & 134 & 272 & 159 & 180 & 45 \\
\hline Cap Entry, veh/h & 517 & 546 & 712 & 734 & 985 & 992 & 1900 & 424 & 454 & 1900 \\
\hline V/C Ratio & 0.208 & 0.925 & 0.915 & 0.334 & 0.421 & 0.135 & 0.143 & 0.376 & 0.396 & 0.024 \\
\hline Control Delay, s/veh & 9.8 & 49.4 & 40.0 & 9.0 & 8.4 & 4.9 & 0.0 & 15.4 & 15.0 & 0.0 \\
\hline LOS & A & E & E & A & A & A & A & C & C & A \\
\hline 95th \%tile Queue, veh & 1 & 11 & 12 & 1 & 2 & 0 & 0 & 2 & 2 & 0 \\
\hline
\end{tabular}

\footnotetext{
K:ITrafficlTomIRegional Solicitation|2016|SynchrolChanhassenITH 101 and FCD Improved PM.syn Synchro 8 Report
}


Splits and Phases: 3: TH 101 \& Flying Cloud Dr


\footnotetext{
K:ITrafficlTomIRegional Solicitation|2016|SynchrolChanhassenlTH 101 and FCD Existing PM - Signal.syn Synchro 8 Report
}

The Flying Cloud Drive/TH 101 intersection does not have a before and after configuration that can be accurately analyzed as the Flying Cloud Drive/TH 101 intersection is currently split between four Tintersections. In order to analyze an "existing" model, all of the intersections were combined into one signalized intersection (removing the free EBR and WBT movements) that realigns TH 101. This best represents how the future "build" intersection will identify as, however, the build will be a multilane roundabout. Under the reconfigured existing intersection, delay and emissions can be identified and compared to those of build conditions.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\underset{\text { worskseet }}{\mathbf{H S S}}
\]} & \multicolumn{4}{|l|}{} &  &  & come &  & & \\
\hline & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{An}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{Namanimmemex} \\
\hline \(\rightarrow\) & \(\Rightarrow\) & 5 & & & \(\checkmark\) & ? & vatamim & & & \({ }_{\text {reat }}\) \\
\hline & & & & & & & & & & \\
\hline semmemmed & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \% & & & & & & & & & & \\
\hline \%omm & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & \({ }_{5}^{5950}\) & & & & & & \\
\hline \(\left.]_{1}\right]_{0}\) & & & & & & & & & & \\
\hline 1 . & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & .0.5 & & & & & & \\
\hline \(={ }^{2}\) & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & & & & & & & \\
\hline & & & & & & & & B/C= & c= & \\
\hline 年为 & 5 manema & & & & & beat & & & & \\
\hline mamember & \(3{ }^{3 *}\) & \(\stackrel{\text { i }}{ }\) & & & \(\frac{5}{5}\) & & & & & \\
\hline Eprilumam & & & & & s rowe & & & & &  \\
\hline 1. Dinammare & cs\% & & & & 5 smme & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

- Countermeasure: Improve pavement friction (increase skid resistance)
\begin{tabular}{ccccccccc} 
CMF & CRF(\%) Quality & \begin{tabular}{c} 
Crash \\
Type
\end{tabular} & \begin{tabular}{c} 
Crash \\
Severity
\end{tabular} & \begin{tabular}{c} 
Area \\
Type
\end{tabular} & Reference & All & All & \begin{tabular}{c} 
Lyon and \\
Persaud, \\
2008
\end{tabular} \\
0.799 & 20.1 & All & All & & \\
\hline
\end{tabular}
0.667 All All Allan \begin{tabular}{c} 
Lyon \\
and \\
Persaud, \\
2008
\end{tabular}
0.81918 .1 All All All \begin{tabular}{c} 
Lyon \\
and \\
Persaud, \\
2008
\end{tabular}
-

All
Lyon
and
Persaud, 2008
-
\begin{tabular}{cccccc}
1.271 & - \\
27.1 & All & All & \begin{tabular}{c} 
Lyon \\
and
\end{tabular} \\
Persaud, \\
2008
\end{tabular}
-
0.426 Wet road All All \begin{tabular}{c} 
Lyon \\
and \\
Persaud, \\
2008
\end{tabular}
0.37262 .8 Wet road All All \begin{tabular}{c} 
Lyon \\
and \\
Persaud,
\end{tabular}
0.575

Rear end,Wet road
All
Lyon
and
Persaud,
2008
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0.59 & 41 &  & All & All & All & Lyon and Persaud, 2008 \\
\hline
\end{tabular}

0.36163 .9 Wet road All All \begin{tabular}{c} 
Lyon \\
and \\
Persaud, \\
2008
\end{tabular}

0.943 Rear end All All \begin{tabular}{c} 
Lyon \\
and \\
Persaud, \\
2008
\end{tabular}
0.50449 .6 Rear end All Allation \begin{tabular}{c} 
Lyon \\
and \\
Persaud, \\
2008
\end{tabular}


\begin{tabular}{ccccc} 
\\
0.898 & Angle & All \begin{tabular}{c} 
Lyon \\
and \\
Persaud, \\
2008
\end{tabular}
\end{tabular}
-

0.4753 Angle,Wet road All All \begin{tabular}{c} 
Lyon \\
and \\
Persaud, \\
2008
\end{tabular}
\begin{tabular}{cccc} 
\\
0.828 & Angle,Wet road All Allan \begin{tabular}{c} 
Lyon \\
and \\
Persaud, \\
2008
\end{tabular}
\end{tabular}
- Countermeasure: Convert signalized intersection to modern roundabout
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CMF & CRF(\%) & Quality & Crash Type & Crash Severity & \begin{tabular}{l}
Area \\
Type
\end{tabular} & Reference & Comments \\
\hline 0.68 & 32 &  & All & Serious injury, Minor injury & Not specified & \begin{tabular}{l}
De \\
Brabander and Vereeck, 2007
\end{tabular} & Countermeasure name has been slightly ... [read more] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\underset{[B]}{0.4}
\] & 60 & k & All & Serious Injury,Minor Injury & Urban & Rodegerdts et al., 2007 & Countermeasure name changed to match ... [read more] \\
\hline
\end{tabular}
0.33
\([B]\) 67 All Suburban \begin{tabular}{c} 
Rodegerdts \\
et al., \\
2007
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name changed to \\
match ...[read \\
more]
\end{tabular}
-
\begin{tabular}{ccccccc}
0.52 & 48 & All & All & \begin{tabular}{c} 
Rodegerdts \\
et al.,
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name changed to \\
match \(\ldots\) [read \\
more]
\end{tabular}
\end{tabular}
-
0.22
\([8]\) 78 All \begin{tabular}{c} 
Serious \\
Injury, Minor \\
Injury
\end{tabular}\(\quad\) All \begin{tabular}{c} 
Rodegerdts \\
et al.,
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name changed to \\
match ...[read \\
more]
\end{tabular}
-
\begin{tabular}{cccccc} 
All 21 & All & \begin{tabular}{c} 
Urban \\
and \\
suburban
\end{tabular} & \begin{tabular}{c} 
Gross \\
et al., \\
2012
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly \(\ldots[\) read \\
more]
\end{tabular}
\end{tabular}
0.3466 All Serious Urban Gross Countermeasure

\begin{tabular}{cccccc} 
All & \begin{tabular}{c} 
Serious \\
injury, Minor \\
injury
\end{tabular} & Suburban & \begin{tabular}{c} 
Gross \\
et al.,
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly \(\ldots[\) read \\
more]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ccccccc}
\(1.15-15\) & All \(\quad\) All & \begin{tabular}{c} 
Gross \\
et al.,
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ...[read \\
more]
\end{tabular}
\end{tabular}
0.4555 All \begin{tabular}{c} 
Serious \\
injury, Minor \\
injury
\end{tabular} Urban \begin{tabular}{ccc} 
Gross \\
et al., \\
2012
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly \(\ldots\) read \\
more]
\end{tabular}
-
\begin{tabular}{lll}
0.76 & 24 & All
\end{tabular} \begin{tabular}{c} 
Urban \\
and \\
suburban
\end{tabular}\(\quad\)\begin{tabular}{c} 
Gross \\
et al., \\
2012
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly \(\ldots\) [read \\
more]
\end{tabular}
0.3466 All \begin{tabular}{ccccc} 
Serious \\
injury,Minor \\
injury
\end{tabular}\(\quad\)\begin{tabular}{c} 
Urban \\
and \\
suburban
\end{tabular}\(\quad\)\begin{tabular}{c} 
Gross \\
et al., \\
2012
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly \(\ldots\) [read \\
more]
\end{tabular}

\footnotetext{
-
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.792 & 20.8 &  & All & All & Urban and suburban & Srinivasan, et al., 2011 & Countermeasure name has been slightly ... [read more] \\
\hline
\end{tabular}
0.34265 .8 All \begin{tabular}{ccccc} 
Fatal,Serious \\
injury, Minor \\
injury
\end{tabular} \begin{tabular}{c} 
Urban \\
and \\
suburban
\end{tabular} \begin{tabular}{c} 
Srinivasan, \\
et al., \\
2011
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly \(\ldots\) [read \\
more]
\end{tabular}
\begin{tabular}{cccccc} 
All 19.1 & All & \begin{tabular}{c} 
Urban \\
and
\end{tabular} & \begin{tabular}{c} 
Srinivasan, \\
et al.,
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly \(\ldots\). [read \\
suburban
\end{tabular} \\
& & 2011 & more]
\end{tabular}
\begin{tabular}{ccccccc} 
\\
0.288 & 71.2 & All \begin{tabular}{c} 
Fatal,Serious \\
injury,Minor \\
injury
\end{tabular} & \begin{tabular}{c} 
Urban \\
and \\
suburban
\end{tabular} & \begin{tabular}{c} 
Srinivasan, \\
et al.,
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ... [read \\
more]
\end{tabular}
\end{tabular}
\(\begin{array}{llllll}0.576 & 42.4 & \text { All } & \text { All } & \text { Suburban } & \begin{array}{c}\text { Srinivasan, } \\ \text { et al., }\end{array} \\ \begin{array}{c}\text { Countermeasure } \\ \text { name has been } \\ \text { slightly } \ldots[\text { read } \\ \text { more] }\end{array}\end{array}\)
-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.259 & 74.1 &  & All & Fatal,Serious injury,Minor injury & Suburban & Srinivasan, et al., 2011 & Countermeasure name has been slightly ... [read more] \\
\hline
\end{tabular}
0.445 \begin{tabular}{ccccc} 
Fatal, Serious \\
injury, Minor \\
injury
\end{tabular}\(\quad\) All Urban \begin{tabular}{c} 
Srinivasan, \\
et al.,
\end{tabular}\(\quad\)\begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ...[read \\
more]
\end{tabular}
\begin{tabular}{ccccccc} 
All 24.1 & All & \begin{tabular}{c} 
Urban \\
and \\
and
\end{tabular} & \begin{tabular}{c} 
Srinivasan, \\
et al.,
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ...[read \\
more]
\end{tabular}
\end{tabular}

-
\begin{tabular}{cccccc} 
\\
0.69 & All & \begin{tabular}{c} 
Minor \\
injury
\end{tabular} & \begin{tabular}{c} 
Det \\
specified
\end{tabular} & \begin{tabular}{c} 
Brabander \\
and
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name has been \\
vereeck,
\end{tabular} \\
slightly \(\ldots\) [read \\
more]
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
0.99
\] & 1 & & All & All & Urban & Rodegerdts et al., 2007 & Countermeasure name changed to match ... [read more] \\
\hline
\end{tabular}
\begin{tabular}{ccccccc}
-7 All \\
1.07 & All & \begin{tabular}{c} 
Urban \\
and
\end{tabular} & \begin{tabular}{c} 
Gross \\
et al.,
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ...[read \\
more]
\end{tabular} \\
2012 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.37 & 63 & & All & Serious injury,Minor injury & Urban and suburban & Gross et al., 2012 & Countermeasure name has been slightly ... [read more] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.625 & 37.5 &  & All & All & Rural & Uddin, Headrick, and Sullivan, 2012 & Countermeasure name has been slightly ... [read more] \\
\hline
\end{tabular}
\begin{tabular}{ccccc} 
All & Serious \\
injury，Minor \\
injury
\end{tabular}\(\quad\) Rural \begin{tabular}{c} 
Uddin， \\
Headrick， \\
and \\
Sullivan，
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ．．．［read \\
more］
\end{tabular}
\begin{tabular}{lllll}
0.735 & 26.5 & All & All & \begin{tabular}{c} 
Urban \\
and \\
suburban
\end{tabular} \\
Stinivasan， \\
et al．， \\
2011
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ．．．［read \\
more］
\end{tabular}
\begin{tabular}{lllcccc} 
All & Altal，Serious
\end{tabular} \begin{tabular}{c} 
Urban \\
injury，Minor \\
injury
\end{tabular}\(\quad\)\begin{tabular}{c} 
Srinivasan， \\
and \\
suburban
\end{tabular} \begin{tabular}{c} 
et al．， \\
2011
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ．．．［read \\
more］
\end{tabular}
－
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1.15 & －15 &  & All & All & Urban & \[
\begin{aligned}
& \text { Srinivasan, } \\
& \text { et al., } \\
& 2011
\end{aligned}
\] & Countermeasure name has been slightly ．．．［read more］ \\
\hline
\end{tabular}
\begin{tabular}{ccccccc}
1.066 & - & All & All & \begin{tabular}{c} 
Urban \\
and \\
suburban
\end{tabular} & \begin{tabular}{c} 
Srinivasan， \\
et al．， \\
2011
\end{tabular} & \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ．．．［read \\
more］
\end{tabular} \\
\hline
\end{tabular}
0.3763 All \begin{tabular}{c} 
Fatal，Serious \\
injury，Minor \\
injury
\end{tabular} \begin{tabular}{c} 
Urban \\
and \\
suburban
\end{tabular} \begin{tabular}{c} 
Srinivasan， \\
et al．， \\
2011
\end{tabular} \begin{tabular}{c} 
Countermeasure \\
name has been \\
slightly ．．．［read \\
more］
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.338 & 66.2 & 成的大 & All & Fatal，Serious injury，Minor injury & Urban and suburban & \[
\begin{aligned}
& \text { Srinivasan, } \\
& \text { et al., } \\
& 2011
\end{aligned}
\] & Countermeasure name has been slightly ．．．［read more］ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & Crash R & uction F & ctors & & & & \multicolumn{5}{|l|}{Roadway Departure Crashes} \\
\hline & \multirow[t]{3}{*}{Crash Type} & \multirow[t]{3}{*}{Crash Severity} & \multirow[t]{3}{*}{Area Type} & \multirow[t]{3}{*}{Road Type} & \multirow[t]{3}{*}{Daily Traffic Volume (veh/day)} & \multirow[t]{3}{*}{Ref} & \multicolumn{4}{|l|}{Effectiveness} & \multirow[t]{3}{*}{Study Type} \\
\hline & & & & & & & Crash Reduction Factor & Std & & ge & \\
\hline & & & & & & & & ror & Low & High & \\
\hline \multirow[t]{32}{*}{Increase number of lanes} & All & All & & & <5,000/lane & 15 & 20 & & & & \\
\hline & All & All & & & >5,000/lane & 15 & 31 & & & & \\
\hline & All & All & & & & 15 & 10 & & & & \\
\hline & All & All & & & & 15 & 20 & & & & \\
\hline & All & All & & & & 15 & 22 & & & & \\
\hline & All & All & & & & 15 & 25 & & & & \\
\hline & All & All & & & & 15 & 25 & & & & \\
\hline & All & All & & & & 15 & 25 & & & & \\
\hline & All & Fatal & & & & 15 & 39 & & & & \\
\hline & All & Injury & & & & 15 & 23 & & & & \\
\hline & All & PDO & & & & 15 & 27 & & & & \\
\hline & Head-on & All & & & <5,000/lane & 15 & 38 & & & & \\
\hline & Head-on & All & & & >5,000/lane & 15 & 44 ) & & & & \\
\hline & Head-on & All & & & & 15 & 53 & & & & \\
\hline & Head-on & All & & & & 15 & 53 & & & & \\
\hline & Head-on & PDO & & & & 15 & 50 & & & & \\
\hline & Left-turn & All & & & & 15 & 71 & & & & \\
\hline & Left-turn & PDO & & & & 15 & 67 & & & & \\
\hline & ROR & All & & & & 15 & 44 & & & & \\
\hline & ROR & All & & & & 15 & 26 & & & & \\
\hline & ROR & All & & & & 15 & 44 & & & & \\
\hline & ROR & All & & & & 15 & 44 & & & & \\
\hline & ROR & PDO & & & & 15 & 50 & & & & \\
\hline & Overturn & All & & & <5,000/lane & 15 & 42 & & & & \\
\hline & Overturn & All & & & >5,000/lane & 15 & 52 & & & & \\
\hline & Rear-end & All & & & <5,000/lane & 15 & 42 & & & & \\
\hline & Rear-end & All & & & >5,000/lane & 15 & 52 & & & & \\
\hline & Rear-end & All & & & & 15 & 32 & & & & \\
\hline & Rear-end & All & & & & 15 & 32 & & & & \\
\hline & Rear-end & All & & & & 15 & 40 & & & & \\
\hline & Rear-end & All & & & & 15 & 53 & & & & \\
\hline & Rear-end & PDO & & & & 15 & 53 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Desktop Reference for Crash Reduction Factors} & \multicolumn{4}{|l|}{Roadway Departure Crashes} \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
Crash \\
Type
\end{tabular}} & \multirow[t]{3}{*}{Crash Severity} & \multirow[t]{3}{*}{Area Type} & \multirow[t]{3}{*}{Road Type} & \multirow[t]{3}{*}{Daily Traffic Volume (veh/day)} & \multirow[t]{3}{*}{Ref} & \multicolumn{4}{|l|}{Effectiveness} & \multirow[t]{3}{*}{Study Type} \\
\hline Countermeasure(s) & & & & & & & Crash Reduction Factor & Std & & nge & \\
\hline & & & & & & &  & & Low & High & \\
\hline \multirow[t]{10}{*}{Increase number of lanes (cont'd)} & Rightangle & All & & & <5,000/lane & 15 & 35 & & & & \\
\hline & Rightangle & All & & & >5,000/lane & 15 &  & & & & \\
\hline & Rightangle & All & & & & 15 & 15 & & & & \\
\hline & Rightangle & PDO & & & & 15 & 46 & & & & \\
\hline & Sideswipe & All & & & <5,000/lane & 15 & 38 & & & & \\
\hline & Sideswipe & All & & & >5,000/lane & 15 & 44 & & & & \\
\hline & Sideswipe & All & & & & 15 & 30 & & & & \\
\hline & Sideswipe & All & & & & 15 & 30 & & & & \\
\hline & Sideswipe & All & & & & 15 & 35 & & & & \\
\hline & Sideswipe & PDO & & & & 15 & 64 & & & & \\
\hline Increase vertical grade by \(1 \%\) & All & All & Rural & 2-lane & & 23 & -1.6P; P=percent grade & solu & valu & & \\
\hline \multirow[t]{9}{*}{Install acceleration/ deceleration lanes} & All & All & & & & 15 & 26 & & & & \\
\hline & All & All & All & All & & 1 & 10 & & & & \\
\hline & All & All & & & & 15 & 10 & & & & \\
\hline & All & All & & & & 15 & 10 & & & & \\
\hline & All & All & & & & 15 & 10 & & & & \\
\hline & All & All & & & & 15 & 25 & & & & \\
\hline & All & All & & & & 15 & 75 & & & & \\
\hline & Rear-end & All & & & & 15 & 75 & & & & \\
\hline & Sideswipe & All & & & & 15 & 75 & & & & \\
\hline \multirow[t]{3}{*}{Install channelized lane} & All & All & & & & 15 & 67 & & & & \\
\hline & All & PDO & & & & 15 & 62 & & & & \\
\hline & Rear-end & All & & & & 15 & 93 & & & & \\
\hline Install climbing lane (where large difference between car and truck speed) & All & Fatal/ Injury & Rural & 2-lane & & 38 & 33 & & & & \\
\hline
\end{tabular}
Desktop Reference for Crash Reduction Factors

Intersection Crashes


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Desktop Reference f & ash & uction & tors & & & & \multicolumn{5}{|l|}{Roadway Departure Crashes} \\
\hline \multirow[t]{3}{*}{Countermeasure(s)} & \multirow[t]{3}{*}{Crash Type} & \multirow[t]{3}{*}{Crash Severity} & \multirow[t]{3}{*}{Area Type} & \multirow[t]{3}{*}{Road Type} & \multirow[t]{3}{*}{Daily Traffic Volume (veh/day)} & \multirow[t]{3}{*}{Ref} & \multicolumn{4}{|l|}{Effectiveness} & \multirow[t]{3}{*}{Study Type} \\
\hline & & & & & & & \multirow[t]{2}{*}{Crash Reduction Factor / Function} & \multirow[t]{2}{*}{Std Error} & \multicolumn{2}{|l|}{Range} & \\
\hline & & & & & & & & & Low & High & \\
\hline \multicolumn{12}{|l|}{GEOMETRIC COUNTERMEASURES} \\
\hline Change shoulder type and/or width & All & All & Rural & & & 21 & 100(1-((AMFWRA x AMF 1.0)PRA+1.0)), AMFWR modification factor for rel based on shoulder width AMfWRA, refer to source AMFTRA=accident modif related accidents based (for values of AMFTRA, r PRA=proportion of total by related crashes. & TRA=accid ted ac for val cation n shou fer to ashes & \begin{tabular}{l}
nt \\
ident es of \\
actor der ty ource consti
\end{tabular} & \begin{tabular}{l}
for \\
pe tuted
\end{tabular} & Expert Panel \\
\hline \multirow[t]{3}{*}{Flatten crest vertical curve} & All & All & All & All & & 27 & 20 & 19 & & & EB Before-
After \\
\hline & All & Fatal/ Injury & All & All & & 27 & 51 & 19 & & & EB BeforeAfter \\
\hline & All & Fatal/ Injury & Rural & 2-lane & & 38 & 50 & & & & \\
\hline \multirow[t]{8}{*}{Flatten horizontal curve} & All & All & & & & 15 & 39 & & & & \\
\hline & All & All & All & All & & 1 & 40 & & & & \\
\hline & All & All & & & & 15 & 35 & & & & \\
\hline & All & All & Rural & & & 21 & \multicolumn{4}{|l|}{100(1-((1.55Lc+80.2/R-0.012Is)/1.55Lc)); Lc=length of horizontal curve (mi) without spirial curve length, \(\mathrm{R}=\) curve radius ( ft ), Is=presence of a spiral transition curve (1 if a spiral transition is present, 0 otherwise).} & Expert Panel \\
\hline & All & Fatal & & & & 15 & 87 & & & & \\
\hline & All & Injury & & & & 15 & 87 & & & & \\
\hline & All & PDO & & & & 15 & 87 & & & & \\
\hline & Fixed object & All & & & <5,000/lane & 15 & 68 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Desktop Reference fo & rash Re & uction F & ctors & & & & & Road & vay D & epart & Crashes \\
\hline & & & & & & & Effectiven & ess & & & \\
\hline Countermeasure(s) & \begin{tabular}{l}
Crash \\
Type
\end{tabular} & Crash Severity & Area Type & Road Type & Volume & Ref & Crash Reduction Factor & Std & & nge & Study Type \\
\hline & & & & & & & & Error & Low & High & \\
\hline & Fixed object & All & & & >5,000/lane & 15 & 87 & & & & \\
\hline & Head-on & All & & & <5,000/lane & 15 & 67 & & & & \\
\hline & Head-on & All & & & >5,000/lane & 15 & 64 & & & & \\
\hline & ROR & All & & & <5,000/lane & 15 & 90 & & & & \\
\hline Flatten horizontal curve & ROR & All & & & >5,000/lane & 15 & 79 & & & & \\
\hline & Overturn & All & & & <5,000/lane & 15 & 73 & & & & \\
\hline & Overturn & All & & & >5,000/lane & 15 & 24 & & & & \\
\hline & Rear-end & All & & & <5,000/lane & 15 & 73 & & & & \\
\hline & Rear-end & All & & & >5,000/lane & 15 & 24 & & & & \\
\hline & Rear-end & All & & & & 15 & 49 & & & & \\
\hline Flatten horizontal curves (10 to 5 degrees) & All & All & & & & 15 & 45 & & & & \\
\hline Flatten horizontal curves (15 to 5 degrees) & All & All & & & & 15 & 63 & & & & \\
\hline Flatten horizontal curves (20 to 10 degrees) & All & All & & & & 15 & 48 & & & & \\
\hline & All & All & & & <5,000/lane & 15 & 43 & & & & \\
\hline & All & All & & & >5,000/lane & 15 & 45 & & & & \\
\hline & All & All & All & All & & 1 & 30 & & & & \\
\hline & All & All & & & & 15 & 25 & & & & \\
\hline atten side slopes & All & All & & & & 15 & 30 & & & & \\
\hline atten side slopes & All & All & & & & 15 & 32 & & & & \\
\hline & All & All & & & & 15 & 35 & & & & \\
\hline & Fixed object & All & & & & 15 & 62 & & & & \\
\hline & ROR & All & & & & 15 & 10 & & & & \\
\hline
\end{tabular}

Dual CRF for Hwy 101 from Pioneer Trail to North of the Hwy 101/Flying Cloud Drive intersection
Improvements include a 2 lane to 4 lane conversion and realigning the roadway (reducing curvature). It should be noted that each lane of the roadway is expected to have less than 5,000 vehicles per day.

CR1=Increase Number of Lanes
CR2=Flatten Horizontal Curvature
\(C R=1-(1-C R 1) *(1-C R 2)\)
Other Crashes: CR=1 - (1-.31)*(1-.87) \(=.91\)
Run off Road/Head On/Sideswipe: CR=1 - (1-.44)*(1-.90) =. 94
Right Angle: CR=1 - (1-.45)*(1-.87) = . 93
Left-Turn: CR=1-(1-.71)*(1-.87) =. 96
Rear End: CR=1 \(-(1-.52)^{*}(1-.73)=.87\)

Dual CRF for Hwy 101/Pioneer Trail

Improvements include a 2 lane to 4 lane conversion and reconstructing the roadway (improving pavement friction)

CR1=Increase Number of Lanes
CR2=Improve Pavement Friction
\(C R=1-(1-C R 1) *(1-C R 2)\)
Right Angle: CR=1 - (1-.45)* \((1-.21)=.57\)
Read End: CR=1 - (1-.42)*(1-.70) \(=.83\)
All: : CR=1 - (1-.31)*(1-.41) = . 59

Dual CRF for Hwy 101/Flying Cloud Drive intersections

Improvements include a 2 lane to 4 lane conversion and converting from signal control to multilane roundabout control.

CR1=Increase Number of Lanes
CR2=Convert from signal to roundabout
\(C R=1-(1-C R 1) *(1-C R 2)\)
Other Crashes (PDO): CR=1 - (1-.31)* \((1-.48)=.64\)
Other Crashes (Fatal/Injury): CR=1 - (1-.31)*(1-.78) \(=.85\)
Run off Road/Head On/Sideswipe: CR=1 - (1-.44)*(1-.48) = . 71
Right Angle: CR=1 - (1-.45)*(1-.48) \(=.71\)
Left-Turn: CR=1 - (1-.71)*(1-.48) \(=.85\)
Rear End: CR=1 - (1-.52)* \((1-.48)=.75\)

Flying Cloud Drive From R.P. 05+00.889 to R.P. 06+00.474 (2013-2015) - created on 06-20-201
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYS & NUM & REF_POINT & GIS_ROUTE & GIS_TM & RD_DIR & ELEM & RELY & INV & R_U \\
\hline 04 & 10000061 & 005+00.961 & 0410000061 & 5.961 & Z & & 1 & 2 & U \\
\hline 04 & 10000061 & 005+00.961 & 0410000061 & 5.961 & Z & & 1 & 2 & U \\
\hline 04 & 10000061 & 005+00.964 & 0410000061 & 5.964 & z & & 1 & 2 & U \\
\hline 04 & 10000061 & 006+00.055 & 0410000061 & 6.055 & z & & 1 & 2 & U \\
\hline 04 & 10000061 & 006+00.315 & 0410000061 & 6.315 & Z & & 1 & 2 & U \\
\hline 04 & 10000061 & 006+00.388 & 0410000061 & 6.388 & z & & 1 & 2 & U \\
\hline 04 & 10000061 & 006+00.388 & 0410000061 & 6.388 & z & & 1 & 2 & U \\
\hline 04 & 10000061 & 006+00.414 & 0410000061 & 6.414 & w & & 2 & 2 & U \\
\hline 04 & 10000061 & 006+00.461 & 0410000061 & 6.461 & z & & 3 & 2 & U \\
\hline
\end{tabular}

\footnotetext{
ATP
AND He did not see him when he pulled back into the travel lane from the shoulder. There was moder UNIT 2 STOPPED AT RED LIGHT AT THE INTERSECTION OF HWY 61 AND HWY 101. UNIT 1 SOUTHBOUND ON HWY 61. BERTUCCI WAS TRAVELING EASTBOUND ON CO RD 61, DEER RAN OUT FROM SOUTH SIDE OF ROAD, MADE CONTACT WI UNIT 1 AND UNIT 2 WERE BOTH TRAVELING EASTBOUND ON COUNTY ROAD 61 EAST OF HWY 101 IN THE CITY OF CH D1 TRANSPORTED BY RIDGEVIEW TO 212 ER FOR POSSIBLE INJURY. PRIVATE TOW FOR MOTORCYCLE.
VEHICLE 1 SAID SHE WAS TRAVELING WEST CO RD 61 TO GO SOUTH HWY 101. VEHICLE 1 SAID SHE WAS TRAVELIN ON 01/01/2014 AT 1251 HOURS, DEPUTIES WERE DISPATCHED TO A SINGLE VEHICLE ACCIDENT AT THE INTERSECT V1 WAS TRAVELING WEST IN THE INSIDE LANE ON CO RD 61. V2 WAS IN THE OUTSIDE LANE TRAVELING WEST ON ON 04/1/2014 AT 1527 HOURS, THERE WAS A TWO VEHICLE PROPERTY DAMAGE CRASH APPROXIMATELY ONE HALF MI
}

\section*{CO} 10
\begin{tabular}{cccccc} 
CITY & DOW & MONTH & DAY & YEAR & TIME \\
0640 & 2-Mon & 10 & 6 & 2014 & 1638 \\
0640 & 2-Mon & 11 & 17 & 2014 & 2258 \\
0640 & 3-Tue & 10 & 14 & 2014 & 1919 \\
0640 & 1-Sun & 12 & 29 & 2013 & 0921 \\
0640 & 2-Mon & 3 & 16 & 2015 & 1610 \\
0640 & 6-Fri & 2 & 8 & 2013 & 0200 \\
0640 & 4-Wed & 1 & 1 & 2014 & 1251 \\
0640 & 4-Wed & 9 & 11 & 2013 & 1715 \\
0640 & 3-Tue & 4 & 1 & 2014 & 1530
\end{tabular}

3-Tue

N
N
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & PERSON1 & & \\
\hline NUM_KILLED & NUM_VEH & JUNC & SL & TYPE & DIAG & LOC1 & TCD & LIT & WTHR1 & WTHR2 & SURF & CHAR & DESGN & ACC_NUM & VTYPE & DIR & ACT \\
\hline 0 & 2 & 2 & 50 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 1 & 5 & 8 & 142820175 & 2 & 6 & 1 \\
\hline 0 & 2 & 2 & 30 & 1 & 1 & 1 & 1 & 4 & 1 & 0 & 1 & 5 & 8 & 143220009 & 3 & 4 & 1 \\
\hline 0 & 1 & 1 & 55 & 8 & 90 & 1 & 98 & 7 & 1 & 0 & 1 & 1 & 8 & 142880015 & 3 & 3 & 1 \\
\hline 0 & 2 & 1 & 55 & 1 & 1 & 1 & 98 & 1 & 1 & 0 & 1 & 1 & 8 & 133640020 & 1 & 3 & 1 \\
\hline 0 & 1 & 1 & 55 & 90 & 7 & 1 & 98 & 1 & 1 & 0 & 1 & 5 & 3 & 150750131 & 11 & 7 & 1 \\
\hline 0 & 1 & 3 & 55 & 34 & 7 & 2 & 98 & 4 & 1 & 0 & 1 & 5 & 8 & 130390022 & 1 & 5 & 1 \\
\hline 0 & 1 & 3 & 55 & 30 & 7 & 4 & 1 & 1 & 2 & 0 & 1 & 5 & 8 & 140020025 & 3 & 7 & 1 \\
\hline 0 & 2 & 1 & 55 & 1 & 1 & 1 & 98 & 1 & 1 & 0 & 1 & 1 & 3 & 132540170 & 3 & 7 & 14 \\
\hline 0 & 2 & 1 & 55 & 1 & 1 & 1 & 98 & 1 & 1 & 0 & 1 & 1 & 8 & 140910195 & 1 & 3 & 1 \\
\hline
\end{tabular}


TH 101 From Pionner Trail to Flying Cloud Drive (2013-2015) - created on 06-20-2016 by rile1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYS & NUM & REF_POINT & GIS_ROUTE & GIS_TM & RD_DIR & ELEM & ReLy & INV & R_U \\
\hline 03 & 00000101 & 009+00.037 & 0300000101 & 9.037 & Z & & A & 2 & U \\
\hline 03 & 00000101 & 009+00.037 & 0300000101 & 9.037 & z & & 1 & 1 & U \\
\hline 03 & 00000101 & 009+00.037 & 0300000101 & 9.037 & Z & & 1 & 1 & U \\
\hline 03 & 00000101 & 009+00.147 & 0300000101 & 9.147 & Z & & B & 1 & U \\
\hline 03 & 00000101 & 009+00.173 & 0300000101 & 9.173 & z & & A & 2 & U \\
\hline 03 & 00000101 & 009+00.280 & 0300000101 & 9.280 & Z & & 1 & 2 & U \\
\hline 03 & 00000101 & 009+00.392 & 0300000101 & 9.392 & Z & & 1 & 2 & U \\
\hline 03 & 00000101 & 009+00.393 & 0300000101 & 9.393 & Z & & 2 & 2 & U \\
\hline 03 & 00000101 & 009+00.478 & 0300000101 & 9.478 & N & & 1 & 2 & U \\
\hline 03 & 00000101 & 009+00.483 & 0300000101 & 9.483 & Z & & 1 & 2 & U \\
\hline 03 & 00000101 & 009+00.493 & 0300000101 & 9.493 & Z & & , & 2 & U \\
\hline 03 & 00000101 & 009+00.493 & 0300000101 & 9.493 & z & & 1 & 2 & U \\
\hline 03 & 00000101 & 009+00.580 & 0300000101 & 9.580 & z & & B & 1 & U \\
\hline 03 & 00000101 & 009+00.762 & 0300000101 & 9.762 & Z & & 3 & 2 & U \\
\hline 03 & 00000101 & 010+00.021 & 0300000101 & 10.021 & Z & & 1 & 2 & U \\
\hline 03 & 00000101 & 010+00.037 & 0300000101 & 10.037 & z & & 1 & 0 & U \\
\hline 03 & 00000101 & 010+00.124 & 0300000101 & 10.124 & Z & & 1 & 2 & U \\
\hline 03 & 00000101 & 010+00.262 & 0300000101 & 10.262 & z & & 1 & 2 & U \\
\hline 03 & 00000101 & 010+00.262 & 0300000101 & 10.262 & z & & 1 & 2 & U \\
\hline
\end{tabular}

\section*{ATP}

UNIT 1 WAS W/B ON CTY RD 61 AND THOUGHT SHE HAD A -BOTH VEHICLES NB HWY 101 SOUTH OF CR 61 -DV2 SAID SHE STOPPED SUDDENLY IN TRAFFIC -DV1 SAID HE COU V/1 DRIVER WAS SOUTH ON 101, WHEN SHE REALIZED SHE MADE THE WRONG TURN. SHE WENT ON TO TELL ME THA V1 WAS ON 101 SB AND LOST CONTROL OF VEHICLE. D1 W
AN UNKNOWN SOUTHBOUND HWY 101 VEHICLE RAN OFF THE
UNIT ONE WAS EAST BOUD COUNTY ROAD 61 APPROXIMATELY 0.25 MI EAST OF MN HWY 101 NORTH. UNIT ONE WAS VEHICLE \#1 WAS S/B MN HWY. 101 SOUTH OF THE INTERSECTION WITH LAKOTA LN. DRIVER SAID HE LOST CONTRO VEH 1 WAS SB ON HWY 101. DRIVER \#1 STATED SHE WAS GOING SLOW AND WAS NOT ABLE TO KEEP CONTROL OF HE VEHICLE 1 WAS TRAVELING NORTH ON HWY 101 WHEN LOST CONTROL ON WET SNOW/ICY SPOTS AND HIT GUARDRAIL ON 01/27/2014 AT 0550 HOURS, THERE WAS A ONE VEHICLE PROPERTY DAMAGE CRASH ON MNTH 101 SOUTH OF LAK ON 12/04/2013 AT 0930 HOURS, THERE WAS A ONE VEHICLE PROPERTY DAMAGE CRASH AT THE INTERESECTION OF THE DRIVER WAS TRAVELLING N/B ON HWY 101 WHEN A DEER RAN INFRONT OF HER. DRIVER SAID SHE TURNED TO -DV1 N/B 101 -DV1 LOST CONTROL, LEFT THE ROADWAY
D1 WAS SB ON CO. RD. 101 IN A GROUP OF MOTORCYLCES. D1 WENT OF ROAD RIGHT, HIT GRAVEL, OVERCORRECTE VEHICLE 1 TRAVELING SB HWY 101/GREAT PLAINS BLVD AT 30+MPH. DRIVER 1 STATED HE ATTEMPTED TO SLOW A

ON 11/22/2013 AT 1222 HOURS THERE WAS A TWO VEHICLE PROPERTY DAMAGE CRASH NEAR THE INTERSECTION OF UNIT ONE NB MN HWY 101 APPROACHING CO RD 14 PULLING CAR TRAILER (MN 1762CPT) LOADED WITH THREE VEHC ON 02/25/2015 AT 1120 HOURS, THERE WAS A TWO VEHICLE PERSONAL INJURY CRASH AT THE INTERSECTION OF M
\begin{tabular}{cccccccc} 
CO & CITY & DOW & MONTH & DAY & YEAR & TIME & SEV \\
10 & 0640 & 4-Wed & 1 & 30 & 2013 & 1050 & N \\
10 & 0640 & 2-Mon & 1 & 12 & 2015 & 1659 & N \\
10 & 0640 & 7-Sat & 10 & 17 & 2015 & 2015 & C \\
10 & 0640 & 4-Wed & 6 & 5 & 2013 & 0721 & C \\
10 & 0640 & 3-Tue & 1 & 8 & 2013 & 0735 & N \\
10 & 0640 & 5-Thu & 1 & 8 & 2015 & 1158 & N \\
10 & 0640 & 1-Sun & 1 & 11 & 2015 & 0052 & C \\
10 & 0640 & 1-Sun & 1 & 25 & 2015 & 1044 & N \\
10 & 0640 & 7-Sat & 2 & 1 & 2014 & 0358 & C \\
10 & 0640 & 2-Mon & 1 & 27 & 2014 & 0550 & N \\
10 & 0640 & 4-Wed & 12 & 4 & 2013 & 0930 & N \\
10 & 0640 & 3-Tue & 2 & 24 & 2015 & 0546 & N \\
10 & 0640 & 2-Mon & 2 & 11 & 2013 & 1249 & C \\
10 & 0640 & 3-Tue & 9 & 2 & 2014 & 1843 & B \\
10 & 0640 & 5-Thu & 1 & 8 & 2015 & 1124 & N \\
10 & 0640 & 6-Fri & 10 & 10 & 2014 & 1805 & C \\
10 & 0640 & 6-Fri & 11 & 22 & 2013 & 1222 & N \\
10 & 0640 & 7-Sat & 11 & 15 & 2014 & 1429 & N \\
10 & 0640 & 4-Wed & 2 & 25 & 2015 & 1123 & B
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & PERSON1 & & \\
\hline NUM_KILLED & NUM_VEH & JUNC & SL & TYPE & DIAG & LOC1 & TCD & LIT & WTHR1 & WTHR2 & SURF & CHAR & DESGN & ACC_NUM & VTYPE & DIR & ACT \\
\hline 0 & 2 & 4 & 50 & 1 & 5 & 1 & 1 & 1 & 2 & 0 & 1 & 1 & 6 & 130300119 & 1 & 7 & 1 \\
\hline 0 & 2 & 1 & 40 & 1 & 1 & 1 & 98 & 6 & 2 & 0 & 2 & 1 & 8 & 150180128 & 3 & 1 & 11 \\
\hline 0 & 2 & 4 & 45 & 1 & 1 & 1 & 1 & 4 & 1 & 0 & 1 & 1 & 8 & 152910157 & 3 & 7 & 7 \\
\hline 0 & 1 & 1 & 50 & 32 & 7 & 2 & 98 & 1 & 2 & 0 & 2 & 1 & 3 & 131880125 & 1 & 5 & 90 \\
\hline 0 & 1 & 1 & 30 & 34 & 4 & 2 & 98 & 1 & 2 & 0 & 2 & 2 & 8 & 130080129 & 99 & 5 & 0 \\
\hline 0 & 1 & 1 & 50 & 30 & 7 & 4 & 98 & 1 & 4 & 7 & 3 & 6 & 8 & 150080263 & 1 & 3 & 1 \\
\hline 0 & 1 & 1 & 40 & 30 & 4 & 4 & 98 & 6 & 2 & 0 & 4 & 6 & 8 & 150110023 & 1 & 5 & 1 \\
\hline 0 & 2 & 1 & 30 & 1 & 90 & 1 & 98 & 1 & 1 & 0 & 5 & 6 & 8 & 150250047 & 1 & 4 & 1 \\
\hline 0 & 1 & 1 & 40 & 34 & 90 & 1 & 98 & 6 & 2 & 0 & 2 & 6 & 8 & 140320022 & 2 & 1 & 1 \\
\hline 0 & 1 & 1 & 40 & 34 & 4 & 1 & 98 & 6 & 2 & 0 & 5 & 6 & 8 & 140270029 & 1 & 1 & 1 \\
\hline 0 & 1 & 2 & 45 & 30 & 4 & 4 & 98 & 1 & 4 & 0 & 3 & 3 & 8 & 133380121 & 1 & 5 & 1 \\
\hline 0 & 1 & 1 & 40 & 51 & 7 & 1 & 98 & 6 & 2 & 0 & 1 & 7 & 8 & 150550021 & 2 & 1 & 1 \\
\hline 0 & 1 & 1 & 40 & 30 & 7 & 3 & 98 & 1 & 2 & 0 & 2 & 6 & 8 & 130430253 & 1 & 1 & 1 \\
\hline 0 & 1 & 1 & 30 & 51 & 7 & 1 & 98 & 3 & 1 & 0 & 1 & 5 & 8 & 142450155 & 11 & 5 & 1 \\
\hline 0 & 1 & 1 & 45 & 26 & 98 & 2 & 98 & 1 & 2 & 4 & 3 & 5 & 1 & 150080204 & 1 & 5 & 1 \\
\hline 0 & 2 & 0 & 55 & 1 & 1 & 0 & 98 & 1 & 1 & 0 & 1 & 0 & 0 & 143170034 & 1 & 6 & 11 \\
\hline 0 & 2 & 2 & 45 & 1 & 1 & 1 & 98 & 1 & 1 & 0 & 1 & 3 & 8 & 133260091 & 1 & 5 & 1 \\
\hline 0 & 2 & 4 & 45 & 1 & 90 & 1 & 1 & 1 & 4 & 2 & 3 & 2 & 8 & 143190150 & 2 & 1 & 1 \\
\hline 0 & 2 & 4 & 50 & 1 & 5 & 1 & 1 & 1 & 1 & 0 & 4 & 2 & 8 & 150560139 & 2 & 3 & 1 \\
\hline
\end{tabular}


November 10, 2014

\author{
Mr. Todd Gerhardt \\ Cíty Manager \\ City of Chanhassen \\ 7700 Market Blvd. \\ P.O. Box 147 \\ Chanhassen, MN 55317
}

Re: Support for Highway 101 Improvements from Pioneer Trail to Flying Cloud Drive

Dear Mr. Gerhardt:
I understand the City of Chanhassen is actively pursuing federal funding to make improvements to Highway 101 from Pioneer Trail to Flying Cloud Drive. Canterbury Park strongly supports the effort to obtain federal funding and upgrade Highway 101.

Highway 101 is a key connection from the southwest metro to the RiverSouth entertainment destinations (Canterbury Park, Valley Fair, Mystic Lake Casino, Minnesota Renaissance, etc.). Collectively, over 10 million people visit these attractions every year. A good transportation system is critical to continued economic growth in the southwest metro area.

Highway 101 is also a vital regional link between Hennepin, Scott and Carver counties. Residents that travel this stretch of road on a daily basis know that these highway improvements are necessary to improve safety, add additional capacity and create roadway continuity.

Thank you for your efforts and for taking the lead to make improvements to Highway 101.

Sipeergly,

Randall D. Sampsoñ
President \& CEO
Canterbury Park


\section*{Project Limits}

\section*{TH 101 Expansion}

Figure 1
Chanhassen Regional Solicitation Roadway Expansion Application


Figure 3 - Existing Conditions (Street View)

TH 101 (southbound) at Flying Cloud Drive


TH 101 (northbound) at Flying Cloud Drive


TH 101 (northbound) south of Mustard Seed at Halla Nursery


TH 101 (northbound) south of Pioneer Trail


TH 101 (northbound) at Bluff Creek Bridge


TH 101 (southbound) at Lakota Lane


TH 101 (northbound) north of Vogelsberg Trail


TH 101 (southbound) north of Vogelsberg Trail


TH 101 (northbound) north of Creekwood


April 5, 2016

Mayor Denny Laufenburger
City of Chanhassen
PO Box 147
Chanhassen, MN 55317

\section*{Dear Mayor Laufenburger:}

I understand the City of Chanhassen is actively pursuing state bonding for improvements to Highway 101 from Pioneer Trail to Flying Cloud Drive. Level 7 Development is in the early stages of a major mixed-use project in Chanhassen. The project would bring retail shops, restaurants, offices, apartments, and a hotel. For this project to be successful, it is "vital" that Highway 101 be upgraded to a four-lane divided highway. Successful corridors like State Highway 101 provide access to a range of housing choices and retail stores that serve the local community, as well as offices and accessibility to parks and open space.

We understand that driving is not the only option. In Chanhassen, people can walk or bike, and between neighboring towns, they can also use transit. People enjoy an opportunity to choose from a variety of routes and modes, thanks to the vision of the City of Chanhassen. Our site has a network of streets, trails, and transit facilities. Our biggest issue and concern for the site is a good north and south highway connection across the Minnesota River.

Highway 101 is a key connection for our project and the southwest region, but it would also improve safety, enhance connectivity and provide better multi-modal access.

I cannot thank you enough for your passion in taking the lead to make improvements to Highway 101. If there is anything else I can do, please do not hesitate to reach out to me for assistance to make this a reality.

Sincerely,


Bahram Akradi
Chief Manager
Level 7 Development LLC

\section*{RESOLUTION NO. 7487}

\section*{A Resolution in Support for Improvements to Highway 101 between Pioneer Trail (CSAH 14) and Flying Cloud Drive (CSAH 16) in the City of Chanhassen, Carver County}

WHEREAS, the City of Shakopee has been contacted by the City of Chanhassen regarding support of the City's application for federal funding to make improvements to Highway 01 ; and,

WHEREAS, Highway 101 is a critical regional transportation link between Shakopee, eastern Carver County and Hennepin County; and,

WHEREAS, Highway 101 from Flying Cloud Drive to Pioneer Trail has safety issues, geometric problems and capacity constraints that need to be addressed to realize Highway 101 as a regional corridor; and,

WHEREAS, the City of Shakopee is a partner on the Highway 101 Minnesota River Flood Mitigation Project; and,

WHEREAS, Carver County, in conjunction with the City of Chanhassen and the Minnesota Department of Transportation (Mn/DOT), completed a corridor and environmental screening study for Highway 101 in May, 2007, from Lyman Boulevard to the Carver/Scott County line and are currently working on environmental documentation and preliminary design for the section of Highway 101 from Pioneer Trail to Flying Cloud Drive.

\section*{NOW, THEREFORE, BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF SHAKOPEE, MINNESOTA:}
1. Federal funding is necessary for advancement of this project which will provide needed safety and capacity improvements.
2. The City of Shakopee supports the City of Chanhassen federal funding application and making improvements to Highway 101.

Adopted in Reg. session of the City Council of the City of Shakopee, Minnesota, held this \(\qquad\) day of November. 2014. Mayor of the City of Shakopee
ATTEST:


\title{
CITY OF CHANHASSEN CARVER AND HENNEPIN COUNTIES, MINNESOTA
}

DATE: \(\qquad\)
October 27, 2014
RESOLUTION NO: \(\qquad\)
MOTION BY: \(\qquad\) SECONDED BY: \(\qquad\)

\section*{RESOLUTION IN SUPPORT OF FEDERAL FUNDING FOR PEDESTRIAN TRAIL IMPROVEMENTS AT TH 101 FROM FLYING CLOUD DRIVE TO PIONEER TRAIL PROJECT NO. 14-08}

WHEREAS, a corridor scoping study was completed in 2007 and identified safety and mobility needs for TH 101 from Flying Cloud Drive to Pioneer Trail; and

WHEREAS, the City of Chanhassen, Carver County and MnDOT are currently working on environmental documentation and preliminary design for TH 101 from Flying Cloud Drive to Pioneer Trail; and

WHEREAS, it is determined a grade separated crossing of the Three Rivers Park District, Minnesota River Bluffs LRT Regional Trail at TH 101 is needed; and

WHEREAS, paving the Minnesota River Bluffs LRT Regional Trail from Bluff Creek Drive to TH 101 is recommended.

NOW, THEREFORE, BE IT RESOLVED, that the City Council is in support of federal funding application for the pedestrian trail improvements to the Three Rivers Park District, Minnesota River Bluffs LRT Regional Trail in conjunction with TH 101 improvements (Flying Cloud Drive to Pioneer Trail).

Passed and adopted by the Chanhassen City Council this 27th day of October, 2014.


YES
Furlong
Ernst
Laufenburger
McDonald
Tjornhom


NO
None

ABSENT
None

Minnesota Department of Transportation
Metro District
1500 West County Road B-2
Roseville, MN 5511

July 8, 2016
Paul Oehme
Director of Public Works/City Engineer
City of Chanhassen
7700 Market Blvd
Chanhassen, MN 55317
RE: Regional Solicitation Application for TH101 Reconstruction Project - Pioneer Trail (CSAH 14) to Flying Cloud Drive CSAH 61

Dear Mr. Oehme:
Thank you for requesting a letter of support from MnDOT for the Metropolitan Council/Transportation Advisory Board (TAB) 2016 Regional Solicitation. Your application for the TH101 Reconstruction Project impacts MnDOT right of way on TH 101.

MnDOT, as the agency with jurisdiction over TH 101, would allow the improvements included in the application for TH101 Reconstruction Project. Details of a future maintenance agreement with the City would be determined during project development to define how the improvements will be maintained for the project's useful life.

This project has no funding from MnDOT. In addition, the Metro District currently has no discretionary funding in year 2020 of the State Transportation Improvement Program (STIP) or year 2021 of the Capital Highway Investment Plan (CHIP) to assist with construction or assist with MnDOT services such as the design or construction engineering of the project. Please continue to work with MnDOT Area staff to assist in identifying additional project funding if needed.

Sincerely,


Scott McBride, P.E.
Metro District Engineer
Cc: Elaine Koustsoukos, Metropolitan Council Jon Solberg, MnDOT Metro District - South Area Manager

Co

\title{
BOARD OF COUNTY COMMISSIONERS CARVER COUNTY, MINNESOTA
}

Date: July 5, 2016
Motion by Commissioner: Workman

Resolution No: 38-16
Seconded by Commissioner: Maluchnik

\section*{RESOLUTION APPROVING APPLICATION FOR FEDERAL FUNDING FOR TRUNK HIGHWAY (TH) 101 FROM FLYING CLOUD DRIVE (CSAH 61) TO PIONEER TRAIL (CSAH 14)}

WHEREAS, Highway 101 is an A Minor Expander from Scott County to Hennepin County in the City of Chanhassen; and

WHEREAS, the 2030 Carver County Road System Plan recognizes the need to improve transportation connections and operations in order to provide a safe and efficient transportation system that meets anticipated future needs and demands; and

WHEREAS, said transportation plan demonstrates the need to expand TH 101 from 2 lanes to 4 lanes from Scott County to TH 5; and

WHEREAS, Carver County, in conjunction with the City of Chanhassen and the Minnesota Department of Transportation (MnDOT) completed an Environmental Assessment Worksheet (EAW) and officially mapped TH 101 in November, 2015 from Pioneer Trail (CSAH 14) to Flying Cloud Drive (CSAH 61); and

WHEREAS, the expansion of TH 101 will improve safety along the corridor, improve pedestrian mobility, improve regional connectivity, build on the TH 101 MN River crossing improvements recently completed and enhance the economic vitality of the County.

NOW, THEREFORE, BE IT RESOLVED, by the Carver County Board of Commissioners:
1. That the County Board endorses City of Chanhassen's regional solicitation application submitted to the Metropolitan Council for Federal funding for the Trunk Highway 101 expansion from 2 lanes to 4 lanes from CSAH 14 (Pioneer Trail) to Flying Cloud Drive (CSAH 61).
2. That Carver County agrees to financially participate with the Minnesota Department of Transportation and the City of Chanhassen in providing the matching funds at such time that the project is awarded Federal funding subject to agreement on the project details.
\begin{tabular}{l} 
Degler \\
\hline Ische \\
Lynch \\
\hline Maluchnik \\
Workman
\end{tabular}
\(\qquad\)

\section*{STATE OF MINNESOTA}

\section*{COUNTY OF CARVER}

I, Dave Hemze, duly appointed and qualified County Administrator of the County of Carver, State of Minnesota, do hereby certify that I have compared the foregoing copy of this resolution with the original minutes of the proceedings of the Board of County Commissioners, Carver County, Minnesota, at its session held on the \(5^{\text {th }}\) day of July, 2016, now on file in the Administration office, and have found the same to be a true and correct copy thereof.

Dated this \(5^{\text {th }}\) day of July, 2016.


Dave Hemze
County Administrator```

