Application

17063-2022 Roadway Modernization
17665 - TH-47 Corridor Improvements
Regional Solicitation - Roadways Including Multimodal Elements
Status: Submitted
Submitted Date:
04/14/2022 8:10 AM

Primary Contact

Name:*	Mr.	Ben		
	Pronouns	First Name	Middle Name	Last Name
Title:	Engineering Technician			
Department:	Engineering			
Email:	BNelson@ci.anoka.mn.us			
Address:	2015 FIRST AVENUE			
	2015 FIRST AVENUE			
*	ANOKA	Minnesota		55303
	City	State/Province		Postal Code/Zip
Phone:*	763-576			
	Phone	Ext.		
Fax:	763-576-2788			
What Grant Programs are you most interested in?	Regional Elements	ation - Roadway	s Including	Multimodal

Organization Information

Name:
ANOKA, CITY OF

Jurisdictional Agency (if different):

Organization Type:	City
Organization Website:	www.ci.anoka.mn.us
Address:	2015 1ST AVE N

*	ANOKA	Minnesota	55303
	City	State/Province	Postal Code/Zip
County:	Anoka		
Phone:*	763-576-2700		
		Ext.	
Fax:			
PeopleSoft Vendor Number	0000020920A2		

Project Information

Project Name
Primary County where the Project is Located
Cities or Townships where the Project is Located:
Jurisdictional Agency (If Different than the Applicant):

TH 47 (St Francis Blvd) Corridor Improvements
Anoka
Anoka
MnDOT

Brief Project Description (Include location, road name/functional class, type of improvement, etc.)

Trunk Highway 47 (St. Francis Blvd) is an A-minor connector road located in the City of Anoka. It is a heavily traveled (19,000+ ADT) two-lane road, and the segment between the Anoka County Fairgrounds and Bunker Lake Blvd (CSAH 116) historically experiences a crash rate three times higher than the statewide average. This segment of road includes no turn lanes and 10 public and 31 private access points. The lack of turn lanes coupled with high traffic volumes causes congestion, crashes and unsafe driver behavior (weaving around turning vehicles). At McKinley St, traffic backups behind left-turning vehicles movement during peak hours are common. Wait times to enter TH 47 from side streets are on average two minutes long. The neighborhood to the east of TH 47 is geographically limited by the Rum River, and TH 47 is the only outlet to move north or south. No pedestrian facilities are present within the project area.

This project focuses on improving intersection operations and safety, completing an existing trail segment for bicyclists and pedestrians, and providing accommodations for left turning movements to adjacent neighborhoods. The project consists of a new traffic signal at McKinley St which will provide a reliable access point for residents and motorizes to safety access onto or cross TH 47. Proposed access closures of two public streets will encourage use of the new traffic signal. The project includes a center turn lane for TH 47 to provide a safer access to private driveways where access control is impossible. A new trail for pedestrians and bicyclists alongside TH 47, a new sidewalk on the west side of TH 47 between East Mineral Pond Blvd and Bunker Lake Blvd, and marked crossings at the McKinley St, Wilson St and East Mineral Pond Blvd/Coolidge St intersections provide new non-motorized access. This project would convert
the existing rural roadway to an urban section and storm sewer will be constructed to provide adequate drainage conditions. Best management practices for stormwater will be used, as the nearby wild \& scenic Rum River and the critical corridor of the Mississippi River are both listed as impaired.

The project ties into an Anoka County intersection improvement project at Bunker Lake Blvd (CSAH 116) and TH 47 completed in 2021 to the north, and a MnDOT-led realignment project immediately south of the project area which would remove the bottleneck imposed on the highway by a busy atgrade rail crossing which is one of the most dangerous crossing in the state. The project will add nearly 0.8 miles of new trail connection providing residents with bicycle and pedestrian access to parks along both sides of the Rum River, the Rum River Regional Trail, County Fair Grounds, and other area destinations.

TRANSPORTATION IMPROVEMENT PROGRAM (TIP) DESCRIPTION - will be used in TIP if the project is selected for funding. See MnDOT's TIP description guidance.

TH 47, CITY OF ANOKA, FROM 0.1 MI S OF XKIMO ST TO JCT TH 47 / CSAH 116, 0.8 MI - SIGNAL, RECONSTRUCT, ADD CTR TRN LANE, MULTI-USE TRAIL, SIDEWALK, ADA, CLOSE SIDE ST ACCESS

Include both the CSAH/MSAS/TH references and their corresponding street names in the TIP Description (see Resources link on Regional Solicitation webpage for examples).

Project Length (Miles)
to the nearest one-tenth of a mile

Project Funding

Are you applying for competitive funds from another source(s) to implement this project?

If yes, please identify the source(s)
Federal Amount
\$4,951,600.00
Match Amount
\$1,305,400.00
Minimum of 20% of project total
Project Total

For transit projects, the total cost for the application is total cost minus fare revenues.
Match Percentage 20.86\%
Minimum of 20%
Compute the match percentage by dividing the match amount by the project total
Source of Match Funds
City of Anoka
A minimum of 20% of the total project cost must come from non-federal sources; additional match funds over the 20% minimum can come from other federal sources

Preferred Program Year
Select one:
2026, 2027
Select 2024 or 2025 for TDM and Unique projects only. For all other applications, select 2026 or 2027.
Additional Program Years:
Select all years that are feasible if funding in an earlier year becomes available.

Project Information-Roadways

County, City, or Lead Agency
Functional Class of Road

Road System
TH, CSAH, MSAS, CO. RD., TWP. RD., CITY STREET
Road/Route No.
i.e., 53 for CSAH 53

Name of Road
Example; 1st ST., MAIN AVE
Zip Code where Majority of Work is Being Performed
(Approximate) Begin Construction Date 04/01/2026
(Approximate) End Construction Date
TERMINI:(Termini listed must be within 0.3 miles of any work)
From:
(Intersection or Address)
To:
(Intersection or Address)
DO NOT INCLUDE LEGAL DESCRIPTION
Or At
Miles of Sidewalk (nearest 0.1 miles)
Miles of Trail (nearest 0.1 miles)
Miles of Trail on the Regional Bicycle Transportation Network (nearest 0.1 miles)

Primary Types of Work

11/30/2026
0.1
0.5

City of Anoka
A-Minor Connector
TH

47

St. Francis Blvd.

55303
0.1 Mile S of Xkimo Street
0.1 Mile north of Coolidge Street

0

GRADE, AGG BASE, BIT BASE, BIT SURF, SIDEWALK, SIGNALS, LIGHTING, BIKE PATH, PED RAMPS, STORM SEWER

Examples: GRADE, AGG BASE, BIT BASE, BIT SURF,
SIDEWALK, CURB AND GUTTER,STORM SEWER,
SIGNALS, LIGHTING, GUARDRAIL, BIKE PATH, PED RAMPS,
BRIDGE, PARK AND RIDE, ETC.
BRIDGE/CULVERT PROJECTS (IF APPLICABLE)
Old Bridge/Culvert No.:
New Bridge/Culvert No.:
Structure is Over/Under
(Bridge or culvert name):

Requirements - All Projects

All Projects

1.The project must be consistent with the goals and policies in these adopted regional plans: Thrive MSP 2040 (2014), the 2040 Transportation Policy Plan (2018), the 2040 Regional Parks Policy Plan (2018), and the 2040 Water Resources Policy Plan (2015).

Check the box to indicate that the project meets this requirement. Yes
2.The project must be consistent with the 2040 Transportation Policy Plan. Reference the 2040 Transportation Plan goals, objectives, and strategies that relate to the project.

Goal A: Transportation System Stewardship. Objective B: Strategically operate the regional transportation system efficiently and costeffectively. Strategy A1. (p. 2.2-2.4)

Goal B: Safety \& Security. Objective A: Reduce fatal and serious injury crashes and improve safety. Strategies B1, B2, B3, B4, B6. (p. 2.5-2.8).

Goal C: Access to Destinations. Objective A: Increase multimodal travel options. Objective B: Increase travel reliability and predictability. Objective D: Increase number/share of trips using transit, carpools, bicycling and walking. Objective E : Improve availability/quality of multimodal options for all ages and abilities. Strategies C1, C2, C3, C8, C9, C10, C15, C16, C17. (p. 2.9-2.24)

Briefly list the goals, objectives, strategies, and associated pages:

Goal D: Competitive Economy. Objective B: Invest in multimodal transportation system. Objective C: Support economic competitiveness through efficient freight movement. Strategies D1, D3, D5. (p. 2.262.29).

Goal E: Healthy \& Equitable Communities. Objective A: Reduce transportation-related emissions. Objective C: Increase availability of transit/bicycling/walking. Objective D: Community cohesion for people of all ages and abilities. Strategies E1, E2, E3. (p. 2.30-2.34)

Goal F: Leveraging Transportation Investments to Guide Land Use. Objective C: Encourage land use design that integrates highways, streets, transit, walking and bicycling. Strategies F1, F5, F6. (p. 2.35-2.38)
3. The project or the transportation problem/need that the project addresses must be in a local planning or programming document. Reference the name of the appropriate comprehensive plan, regional/statewide plan, capital improvement program, corridor study document [studies on trunk highway must be approved by the Minnesota Department of Transportation and the Metropolitan Council], or other official plan or program of the applicant agency [includes Safe Routes to School Plans] that the project is included in and/or a transportation problem/need that the project addresses.

List the applicable documents and pages: Unique projects are exempt from this qualifying requirement because of their innovative nature.

Anoka 2040 Comprehensive Plan

Figure T-2: Existing Traffic Volumes (p. 197) shows that TH 47 is at/over capacity (operating at level of service E and F).

Identifies a problem and issue location for TH 47 between W Garfield Street and the intersection with Bunker Lake Blvd (CSAH 116). This encompasses the project area. (p. 204)

References a 2017-2018 study of TH 47 examining safety, mobility, and access concerns along the project corridor. This identified access issues, pedestrian and non-motorized traffic access, and the overall configuration of TH 47 and local street intersections. (p. 206)

The plan indicates that recommendations for this segment of TH 47 are anticipated to be implemented by 2040. (p. 208)

The plans transportation safety analysis references the TH 47 project segment, again indicating that the city will advance improvements on TH 47 to from the BNSF rail line to the northern city border. (p. 218)

Limit 2,800 characters, approximately 400 words
4. The project must exclude costs for studies, preliminary engineering, design, or construction engineering. Right-of-way costs are only eligible as part of transit stations/stops, transit terminals, park-and-ride facilities, or pool-and-ride lots. Noise barriers, drainage projects, fences, landscaping, etc., are not eligible for funding as a standalone project, but can be included as part of the larger submitted project, which is otherwise eligible. Unique project costs are limited to those that are federally eligible.

Check the box to indicate that the project meets this requirement. Yes
5.Applicant is a public agency (e.g., county, city, tribal government, transit provider, etc.) or non-profit organization (TDM and Unique Projects applicants only). Applicants that are not State Aid cities or counties in the seven-county metro area with populations over 5,000 must contact the MnDOT Metro State Aid Office prior to submitting their application to determine if a public agency sponsor is required.

Check the box to indicate that the project meets this requirement. Yes
6.Applicants must not submit an application for the same project elements in more than one funding application category.

Check the box to indicate that the project meets this requirement. Yes
7.The requested funding amount must be more than or equal to the minimum award and less than or equal to the maximum award. The cost of preparing a project for funding authorization can be substantial. For that reason, minimum federal amounts apply. Other federal funds may be combined with the requested funds for projects exceeding the maximum award, but the source(s) must be identified in the application. Funding amounts by application category are listed below in Table 1. For unique projects, the minimum award is $\$ 500,000$ and the maximum award is the total amount available each funding cycle (approximately \$4,000,000 for the 2022 funding cycle).
Strategic Capacity (Roadway Expansion): \$1,000,000 to \$10,000,000
Roadway Reconstruction/Modernization: \$1,000,000 to \$7,000,000
Traffic Management Technologies (Roadway System Management): \$500,000 to \$3,500,000
Spot Mobility and Safety: \$1,000,000 to \$3,500,000
Bridges Rehabilitation/Replacement: \$1,000,000 to \$7,000,000
Check the box to indicate that the project meets this requirement. Yes
8.The project must comply with the Americans with Disabilities Act (ADA),

Check the box to indicate that the project meets this requirement. Yes
9.In order for a selected project to be included in the Transportation Improvement Program (TIP) and approved by USDOT, the public agency sponsor must either have a current Americans with Disabilities Act (ADA) self-evaluation or transition plan that covers the public right of way/transportation, as required under Title II of the ADA. The plan must be completed by the local agency before the Regional Solicitation application deadline. For the 2022 Regional Solicitation funding cycle, this requirement may include that the plan is updated within the past five years.

The applicant is a public agency that employs 50 or more people and has a completed ADA transition plan that covers the public Yes right of way/transportation.
(TDM and Unique Project Applicants Only) The applicant is not a public agency subject to the self-evaluation requirements in Title II of the ADA.

Date plan completed:

12/31/2019
https://www.anokaminnesota.com/DocumentCenter /View/1189/ADA-Transition-Plan-PDF

The applicant is a public agency that employs fewer than $\mathbf{5 0}$ people and has a completed ADA self-evaluation that covers the public right of way/transportation.

Date self-evaluation completed:
Link to plan:
Upload plan or self-evaluation if there is no link
Upload as PDF
10.The project must be accessible and open to the general public.

Check the box to indicate that the project meets this requirement. Yes
11.The owner/operator of the facility must operate and maintain the project year-round for the useful life of the improvement, per FHWA direction established 8/27/2008 and updated 6/27/2017. Unique projects are exempt from this qualifying requirement.

Check the box to indicate that the project meets this requirement. Yes
12. The project must represent a permanent improvement with independent utility. The term independent utility means the project provides benefits described in the application by itself and does not depend on any construction elements of the project being funded from other sources outside the regional solicitation, excluding the required non-federal match. Projects that include traffic management or transit operating funds as part of a construction project are exempt from this policy.

Check the box to indicate that the project meets this requirement. Yes
13. The project must not be a temporary construction project. A temporary construction project is defined as work that must be replaced within five years and is ineligible for funding. The project must also not be staged construction where the project will be replaced as part of future stages. Staged construction is eligible for funding as long as future stages build on, rather than replace, previous work.

Check the box to indicate that the project meets this requirement. Yes
14.The project applicant must send written notification regarding the proposed project to all affected state and local units of government prior to submitting the application.

Check the box to indicate that the project meets this requirement. Yes

Roadways Including Multimodal Elements

1.All roadway and bridge projects must be identified as a principal arterial (non-freeway facilities only) or A-minor arterial as shown on the latest TAB approved roadway functional classification map.

Check the box to indicate that the project meets this requirement. Yes
Roadway Strategic Capacity and Reconstruction/Modernization and Spot Mobility projects only:
2. The project must be designed to meet 10-ton load limit standards.

Check the box to indicate that the project meets this requirement. Yes
Bridge Rehabilitation/Replacement and Strategic Capacity projects only:
3.Projects requiring a grade-separated crossing of a principal arterial freeway must be limited to the federal share of those project costs identified as local (non-MnDOT) cost responsibility using MnDOTs Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities manual. In the case of a federally funded trunk highway project, the policy guidelines should be read as if the funded trunk highway route is under local jurisdiction.

Check the box to indicate that the project meets this requirement.
4.The bridge must carry vehicular traffic. Bridges can carry traffic from multiple modes. However, bridges that are exclusively for bicycle or pedestrian traffic must apply under one of the Bicycle and Pedestrian Facilities application categories. Rail-only bridges are ineligible for funding.

Check the box to indicate that the project meets this requirement.
Bridge Rehabilitation/Replacement projects only:
5. The length of the bridge clear span must exceed 20 feet.

Check the box to indicate that the project meets this requirement.
6. The bridge must have a National Bridge Inventory Rating of 6 or less for rehabilitation projects and 4 or less for replacement projects.

Check the box to indicate that the project meets this requirement.
Roadway Expansion, Reconstruction/Modernization, and Bridge Rehabilitation/Replacement projects only:
7. All roadway projects that involve the construction of a new/expanded interchange or new interchange ramps must have approval by the Metropolitan Council/MnDOT Interchange Planning Review Committee prior to application submittal. Please contact Michael Corbett at MnDOT (Michael.J.Corbett@state.mn.us or 651-234-7793) to determine whether your project needs to go through this process as described in Appendix F of the 2040 Transportation Policy Plan.

Check the box to indicate that the project meets this requirement.
Specific Roadway Elements
CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES

Cost

Mobilization (approx. 5\% of total cost) \$221,000.00
Removals (approx. 5\% of total cost) \$526,000.00
Roadway (grading, borrow, etc.) \$335,000.00
Roadway (aggregates and paving) \$1,308,000.00
Subgrade Correction (muck) $\$ 0.00$
Storm Sewer $\$ 800,000.00$
Ponds \$500,000.00
Concrete Items (curb \& gutter, sidewalks, median barriers) $\$ 377,000.00$
Traffic Control \$221,000.00
Striping \$66,000.00
Signing \$66,000.00
Lighting \$50,000.00
Turf - Erosion \& Landscaping \$332,000.00
Bridge $\$ 0.00$
Retaining Walls $\$ 0.00$
Noise Wall (not calculated in cost effectiveness measure) $\$ 0.00$
Traffic Signals \$300,000.00
Wetland Mitigation $\$ 0.00$
Other Natural and Cultural Resource Protection $\$ 0.00$
RR Crossing $\$ 0.00$
Roadway Contingencies \$835,000.00
Other Roadway Elements \$100,000.00
Totals \$6,037,000.00
Specific Bicycle and Pedestrian Elements CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES Cost
Path/Trail Construction \$354,000.00
Sidewalk Construction \$31,000.00
On-Street Bicycle Facility Construction $\$ 0.00$
Right-of-Way $\$ 0.00$
Pedestrian Curb Ramps (ADA) \$55,000.00
Crossing Aids (e.g., Audible Pedestrian Signals, HAWK) $\$ 0.00$
Pedestrian-scale Lighting $\$ 0.00$
Streetscaping $\$ 0.00$
Wayfinding $\$ 0.00$
Bicycle and Pedestrian Contingencies \$50,000.00
Other Bicycle and Pedestrian Elements $\$ 0.00$
Totals \$490,000.00
Specific Transit and TDM Elements
CONSTRUCTION PROJECT ELEMENTS/COST
ESTIMATES Cost
Fixed Guideway Elements $\$ 0.00$
Stations, Stops, and Terminals $\$ 0.00$
Support Facilities $\$ 0.00$
Transit Systems (e.g. communications, signals, controls, fare collection, etc.) $\$ 0.00$
Vehicles $\$ 0.00$
Contingencies $\$ 0.00$
Right-of-Way $\$ 0.00$
Other Transit and TDM Elements $\$ 0.00$
Totals $\$ 0.00$
Transit Operating Costs

Number of Platform hours	0
Cost Per Platform hour (full loaded Cost)	$\$ 0.00$
Subtotal	$\$ 0.00$
Other Costs - Administration, Overhead,etc.	$\$ 0.00$

Totals

Total Cost	$\$ 6,527,000.00$
Construction Cost Total	$\$ 6,527,000.00$
Transit Operating Cost Total	$\$ 0.00$

Measure B: Project Location Relative to Jobs, Manufacturing, and EducationExisting Employment within 1 Mile:Existing Manufacturing/Distribution-Related Employment within 111006
Mile:1842
Existing Post-Secondary Students within 1 Mile: 0Upload MapPlease upload attachment in PDF form.
Measure C: Current Heavy Commercial Traffic
RESPONSE: Select one for your project, based on the updated 2021 Regional Truck Corridor Study:
Along Tier 1
Miles: 0(to the nearest 0.1 miles)
Along Tier 2
Miles:0(to the nearest 0.1 miles)Along Tier 3: Yes
Miles: 0.8(to the nearest 0.1 miles)The project provides a direct and immediate connection (i.e.,intersects) with either a Tier 1, Tier 2, or Tier 3 corridor:
None of the tiers:
Measure A: Current Daily Person Throughput

Location	TH 47 between West Garfield St and CSAH 116
Current AADT Volume	185000
Existing Transit Routes on the Project	N/A
For New Roadways only, list transit routes that will likely be diverted to the new proposed roadway (if applicable).	
Upload Transit Connections Map	$1649639287351 _2 A _$TH47_Transit.pdf
Please upload attachment in PDF form.	

Please upload attachment in PDF form.

Response: Current Daily Person Throughput

Average Annual Daily Transit Ridership 0
Current Daily Person Throughput

Measure B: 2040 Forecast ADT

Use Metropolitan Council model to determine forecast (2040) ADT volume

If checked, METC Staff will provide Forecast (2040) ADT volume
OR
Identify the approved county or city travel demand model to determine forecast (2040) ADT volume

Forecast (2040) ADT volume 21300

Measure A: Engagement

i.Describe any Black, Indigenous, and People of Color populations, low-income populations, disabled populations, youth, or older adults within a $1 / 2$ mile of the proposed project. Describe how these populations relate to regional context. Location of affordable housing will be addressed in Measure C.
ii.Describe how Black, Indigenous, and People of Color populations, low-income populations, persons with disabilities, youth, older adults, and residents in affordable housing were engaged, whether through community planning efforts, project needs identification, or during the project development process.
iii. Describe the progression of engagement activities in this project. A full response should answer these questions:

Response:
The City of Anoka advanced the TH 47 Corridor Project from a corridor study of the trunk highway which concluded in 2017 to a preliminary design effort. The original study identified the notable safety and operations issues seen on the trunk highway, the need for better access control, as well as planning for the completing of the pedestrian gap and inaccessibility in the area. Various typical sections, improvement footprints, and intersection/access configurations were considered and evaluated. The corridor study held two public open houses, one in 2016 and one in 2017, to gain public feedback and eventual support. The City, Anoka County, and MnDOT all sat on PMT meetings throughout the study. The preliminary design project included one public open house in February 2020, which invited over 680 households and stakeholders adjacent to and in the area surround the study corridor, with over 60 attendees. Comments received helped guide trail and sidewalk needs, prioritize tree preservation, among others, and most feedback was positive. A project website was established and maintained throughout the project, including information on project location, important issues, relationship to nearby projects, draft project layout, and a flyover animation of the reconfigured corridor.

Once funding is secured, further engagement with affected property owners and corridor users will be conducted to communicate design details and construction impacts. Engagement processes will be completed in a manner consistent with the requirements for completing the NEPA environmental documentation.

In 2016, MnDOT published the Railroad Separation at Highway 47 Feasibility Study, recommending grade separation for TH 47 over the BNSF railway tracks south of the Anoka County Fairgrounds. A

> public open house was held in June 2016 , attracting approximately 124 people, many of whom shared concerns about this section of TH 47 , ultimately leading to the TH 47 Corridor Improvements Project.

Measure B: Equity Population Benefits and Impacts

Describe the projects benefits to Black, Indigenous, and People of Color populations, low-income populations, children, people with disabilities, youth, and older adults. Benefits could relate to:
This is not an exhaustive list. A full response will support the benefits claimed, identify benefits specific to Equity populations residing or engaged in activities near the project area, identify benefits addressing a transportation issue affecting Equity populations specifically identified through engagement, and substantiate benefits with data.
Acknowledge and describe any negative project impacts to Black, Indigenous, and People of Color populations, Iow-income populations, children, people with disabilities, youth, and older adults. Describe measures to mitigate these impacts. Unidentified or unmitigated negative impacts may result in a reduction in points.
Below is a list of potential negative impacts. This is not an exhaustive list.

Response:
This project includes a new, ADA-compliant multiuse trail along TH 47 from Coolidge St to the Anoka County Fairgrounds. It would link to recently completed intersection improvements at TH 47 and Bunker Lake Blvd (CSAH 116) which included a new shared use path from Bunker Lake Blvd south to Coolidge St. This connection in turn links to existing paths within Rivers Bend Park in Ramsey, MN, and would connect to the CSAH 116 bridge over the Rum River to join the Anoka Rum River Regional Trail and to provide a direct, nonmotorized linkage to the Anoka Nature Reserve, Anoka High School, community baseball stadium and Rum River Public Library. The project also includes a new sidewalk segment on the western side of TH 47 between E Mineral Pond Blvd and CSAH 116. Completing this pedestrian facility gap removes a barrier to north-south non-motorized mobility through this area of Anoka. Trips which required a vehicle will now be able to be made by walking or biking making movement through the area more equitable. These facilities also allow for recreational activity enhancing public health.

> The neighborhoods adjacent to TH 47 in Anoka have not up to this point had sidewalks or a trail facility to access CSAH 116 and the park and trail resources adjacent to the Rum River. The entire project area is located in a regional environmental justice area; a higher-than-average number of residents live below the poverty line. Providing safe spaces for non-motorized travel allows for improved access to area attractions and services, improving quality of life.

In addition to the beneficial connections from the CSAH 116 linkage and crossing of the Rum River, this project would allow a connection to Rum River South County Park and paths through the Anoka

County Fairgrounds site. The multi-use trail along TH 47 will link to an existing sidewalk and bikeway at McKinley St (new traffic signal), allowing neighborhoods east of TH 47 non-motorized access to George Enloe Park, the Anoka Enterprise Park, a major business/industrial park and employment center home to over 70 businesses and several thousand employees, and to Anoka Technical College, the largest technical vocation school in the NW metro that serves a student population of over 2,800 and is made up of over 20% minority groups and the majority of which are first generation college students.

The establishment of a new trail, sidewalk and new linkages will improve bicycle and pedestrian safety by provided dedicated pedestrian spaces, public health (both through active recreation opportunities \& access to parks or other public services), direct access to a large, regional high school; and provision of modal alternatives to access parks, a school, a public baseball stadium and library.

Measure C: Affordable Housing Access

Describe any affordable housing developmentsexisting, under construction, or plannedwithin $1 / 2$ mile of the proposed project. The applicant should note the number of existing subsidized units, which will be provided on the Socio-Economic Conditions map. Applicants can also describe other types of affordable housing (e.g., naturally-occurring affordable housing, manufactured housing) and under construction or planned affordable housing that is within a half mile of the project. If applicable, the applicant can provide self-generated PDF maps to support these additions. Applicants are encouraged to provide a self-generated PDF map describing how a project connects affordable housing residents to destinations (e.g., childcare, grocery stores, schools, places of worship).
Describe the projects benefits to current and future affordable housing residents within $1 / 2$ mile of the project. Benefits must relate to affordable housing residents. Examples may include:
This is not an exhaustive list. Since residents of affordable housing are more likely not to own a private vehicle, higher points will be provided to roadway projects that include other multimodal access improvements. A full response will support the benefits claimed, identify benefits specific to residents of affordable housing, identify benefits addressing a transportation issue affecting residents of affordable housing specifically identified through engagement, and substantiate benefits with data.

There are no affordable existing affordable housing units within $1 / 2$ mile of the proposed project. The City of Anoka Comprehensive Plan notes that Anoka's housing stock is affordable, more affordable than Anoka County and the 7-county metropolitan area. The Comp Plan demonstrates that, as of 2015, 6,968 housing units in Anoka were affordable at 80\% Area Median Income (AMI) or below. This is almost 93% of available housing in Anoka as of 2015.

The Met Council's 2015 System Statement requires that the City of Anoka plan for an additional 113 affordable housing units over the next 20 years (58 at 30% AMI, 55 at 51 to 80% AMI). Anoka's land use designation for High Density Residential and the available acreage in that land use category would fulfill the Met Council's affordable housing allocation requirements.

Response:
There is a prevalence of housing on the lower end of the homesteaded market value spectrum along TH 47 in the Project Area. The American Community Survey estimated median home value in Anoka in 2015 was $\$ 164,700$, and many properties along TH 47 ranged from \$100,001 to $\$ 175,000$ based on 2017 MetroGIS data. Houses tend to be small in terms of finished square feet, mostly 751 to 1,100 square feet which lends itself to affordability.

This project will improve access for vehicles, pedestrians and bicyclists. Pedestrians will be able to use the traffic signal and designated pedestrian crossing at McKinley St, as well as a new crosswalk with pedestrian refuge islands at E Mineral Pond Blvd/Coolidge St NW and Wilson Street. Easier crossing of Highway 47 improves mobility to regional job and education centers via

Anoka Enterprise Business Park and Anoka Technical College. Both bicyclists and pedestrians will enjoy enhanced access with the completion of a shared use path alongside TH 47 from the Anoka County Fairgrounds to Bunker Lake Blvd. This new path will facilitate access to public parks and trails, Anoka High School and Rum River Public Library. For vehicles, the introduction of a new traffic signal at McKinley St will facilitate turning onto TH 47.

Measure D: BONUS POINTS

Project is located in an Area of Concentrated Poverty:
Projects census tracts are above the regional average for population in poverty or population of color (Regional Yes

Environmental Justice Area):
Project located in a census tract that is below the regional average for population in poverty or populations of color (Regional Environmental Justice Area):

Upload the Socio-Economic Conditions map used for this measure.

Measure A: Year of Roadway Construction

Year of Original
Roadway Construction
or Most Recent
Reconstruction

Segment Length
Calculation

1547.2

1547

Calculation 2

Total Project Length

Total Project Length (as entered in "Project Information" form) 0.8

Average Construction Year

Weighted Year

Total Segment Length (Miles)

Total Segment Length

Measure B: Geometric, Structural, or Infrastructure Improvements

Improved roadway to better accommodate freight movements:

Response:
(Limit 700 characters; approximately 100 words)
Improved clear zones or sight lines:

Response:

Yes
McKinley St provides a primary east-west connection to Anoka Enterprise Park, an industrial park located just west of the TH 47 corridor. The traffic signal installed at McKinley St, along with the left turn lane access at this location, will provide enhanced access to the industrial park area for freight vehicles. Freight haulers will benefit from improved fuel economy with reduced delay as well as decreased and more reliable travel times.

Yes

There are numerous existing trees currently within the clear zone for TH 47 (17 feet for a flat section with a 45 MPH design speed and more than 6,000 vehicles per day). This project will provide new curb and additional space between the lane line and trees, resulting in improved sight lines and safety benefits. Public engagement performed helped guide tree preservation to the greatest possible extent and in improving sightlines at key locations by trimming trees and other foliage.

Yes

Response:
(Limit 700 characters; approximately 100 words)
Access management enhancements:

Response:
(Limit 700 characters; approximately 100 words)
Vertical/horizontal alignment improvements:

Response:

The project will include a center turning lane, an FHWA Proven Safety Countermeasure addressing rear end crashes. More than 50\% of crashes in the area have historically been rear end crashes.

The proposed typical section is context sensitive to control traffic speeds and limit impacts to adjacent properties and trees. Maintaining the nature of the surrounding environment while promoting safety are guiding principals identified during public engagement.

Center islands are proposed at Wilson St and Coolidge St to provide traffic calming and pedestrian refuge areas, as well as better channelization of left turn lanes.

Yes
Side streets will be closed at McCann Ave and Dunham Dr. Traffic will be routed to a traffic signal at McKinley St, which will improve turning onto TH 47.

A center median at E Mineral Pond Blvd/Coolidge St will prevent left turning and side street traffic from traveling through the intersection. The median will include a pedestrian refuge and new marked crosswalks and FHWA STEP guidance will be followed in determining appropriate treatment level during the next design phase.

Yes

Current roadway alignments appear to be appropriate for the posted speed of 45 MPH . The project will utilize a lower design speed and adjustments to profile and horizontal alignment will be made accordingly to manage speeds by design.

Improved stormwater mitigation:

Response:
(Limit 700 characters; approximately 100 words)
Signals/lighting upgrades:

Response:

Yes

The TH 47 improvements will convert the existing rural roadway to an urban section requiring storm sewer to provide adequate drainage conditions. The limited available right of way will require innovative stormwater best management practices to ensure compliance. A pond option is shown on the project layout to improve mitigation, however additional or alternative measures will be considered in design. The project is in close proximity to the wild \& scenic Rum River and Mississippi River which are both listed as impaired per the MPCA's 2018 list of impaired waterways.

Yes

The project includes the installation of a new, actuated traffic signal at McKinley St. Paired with the access management, this intersection will provide reliable access to Hwy 47 for residents along the corridor. McKinley St also provides a connection to the industrial park to the west and can serve as an additional access for those businesses connecting to the trunk highway system. The signal will include pedestrian APS push buttons, flashing yellow arrow capabilities, LED overhead lighting, and countdown timers.

The project will install improved intersection lighting at key intersections to provide illumination of conflict zones and pedestrian crossings along the corridor.
(Limit 700 characters; approximately 100 words)
Other Improvements

Yes

This project features a new multi-use trail along the east side of TH 47 from the Anoka County
Fairgrounds north to Coolidge St, where it will match into the recently completed Anoka County intersection improvement project at TH 47/CSAH 116. This new trail will provide dedicated bicycle and pedestrian access through the neighborhood, while also linking up to the larger regional trail system, a crossing of the Rum River, and to local public destinations. Median refuge islands are provided at several crossing locations and FHWA STEP countermeasures such as RRFB and PHB systems will be evaluated during the next phase of project design.

Measure A: Congestion Reduction/Air Quality

Total Peak	Total Peak	Total Peak				EXPLANA			
Hour	Hour	Hour				Volume	Volume	Total Peak	Total Peak methodolo

	Since the
	project
	eliminates
two public	
street	
	accesses
	to Highway
	47 routing
	more traffic
to the	

hour traffic, an arterial
report
shown
notable
improveme
nts in
northbound
performanc
e in terms
of both
average
delay and
average
travel
speed. The
Synchro
and
SimTraffic
delays
were
summed to
capture all
delay under
both
scenarios.

Vehicle Delay Reduced

Total Peak Hour Delay Reduced
42609.0

Total Peak Hour Delay Reduced
42609.0

Measure B:Roadway projects that do not include new roadway segments or railroad grade-separation elements

Total (CO, NOX, and VOC) Peak Hour Emissions without the Project (Kilograms):	Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms):	Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):
6.72	5.36	1.36
7	5	$\mathbf{1}$

Total

```
Total Emissions Reduced:

\title{
Measure B: Roadway projects that are constructing new roadway segments, but do not include railroad grade-separation elements (for Roadway Expansion applications only):
}

Total (CO, NOX, and VOC)
Peak Hour Emissions without the Project (Kilograms):

Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms):

Total (CO, NOX, and VOC)
Peak Hour Emissions
Reduced by the Project (Kilograms):

0

\section*{Total Parallel Roadway}

Emissions Reduced on Parallel Roadways
0

Upload Synchro Report
Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

\section*{New Roadway Portion:}

Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons: 0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced or Produced on New Roadway (Kilograms):

EXPLANATION of methodology and assumptions used:(Limit
1,400 characters; approximately 200 words)
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):

\section*{Measure B:Roadway projects that include railroad grade-separation elements}

Cruise speed in miles per hour without the project:
Vehicle miles traveled without the project: 0

Total delay in hours without the project:
0
Total stops in vehicles per hour without the project:
Cruise speed in miles per hour with the project: ..... 0
Vehicle miles traveled with the project: ..... 0
Total delay in hours with the project: ..... 0
Total stops in vehicles per hour with the project: ..... 0
Fuel consumption in gallons (F1) ..... 0
Fuel consumption in gallons (F2) ..... 0
Fuel consumption in gallons (F3) ..... 0Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by theProject (Kilograms):

\section*{Measure A: Roadway Projects that do not Include Railroad Grade-Separation Elements}
oCMF ID: 2351; Install TWLTL (two-way left turn lane) on two lane road
oCrash modification factor: 0.613 (38.7\% reduction)
oCMF ID: 325; Install a traffic signal
oCrash modification factor: 0.56 (44\% reduction)
oCMF ID: 9821; Install right-in/right-out (RIRO) operations at stop-controlled intersections
oCrash modification factor: 0.55 (45\% reduction)
oCMF ID: 2338; Install TWLTL (two-way left turn lane) on two lane road
oCrash modification factor: 0.686 (31.4\% reduction)
oCMF ID: 9240; Install sidewalk
oCrash modification factor: 0.41 (59\% reduction)

Rationale for Crash Modification Selected:
(Limit 1400 Characters; approximately 200 words)
Project Benefit (\$) from B/C Ratio

Total Fatal (K) Crashes:
Total Serious Injury (A) Crashes:
Total Non-Motorized Fatal and Serious Injury Crashes: 0
Total Crashes: 23
Total Fatal (K) Crashes Reduced by Project: 0
Total Serious Injury (A) Crashes Reduced by Project: 0
Total Non-Motorized Fatal and Serious Injury Crashes Reduced by Project:

0

0

0

\title{
Roadway projects that include railroad grade-separation elements:
}
\begin{tabular}{ll} 
Current AADT volume: & 0 \\
Average daily trains: & 0 \\
Crash Risk Exposure eliminated: & 0
\end{tabular}

\section*{Measure A: Pedestrian Safety}

Determine if these measures do not apply to your project. Does the project match either of the following descriptions? If either of the items are checked yes, then score for entire pedestrian safety measure is zero. Applicant does not need to respond to the sub-measures and can proceed to the next section.

Project is primarily a freeway (or transitioning to a freeway) and does not provide safe and comfortable pedestrian facilities and No crossings.

Existing location lacks any pedestrian facilities (e.g., sidewalks, marked crossings, wide shoulders in rural contexts) and project does not add pedestrian elements (e.g., reconstruction of a No roadway without sidewalks, that doesnt also add pedestrian crossings and sidewalk or sidepath on one or both sides).

\section*{SUB-MEASURE 1: Project-Based Pedestrian Safety Enhancements and Risk Elements}

To receive maximum points in this category, pedestrian safety countermeasures selected for implementation in projects should be, to the greatest extent feasible, consistent with the countermeasure recommendations in the Regional Pedestrian Safety Action Plan and state and national best practices. Links to resources are provided on the Regional Solicitation Resources web page.
Please answer the following two questions with as much detail as possible based on the known attributes of the proposed design. If any aspect referenced in this section is not yet determined, describe the range of options being considered, to the greatest extent available. If there are project elements that may increase pedestrian risk, describe how these risks are being mitigated.
1. Describe how this project will address the safety needs of people crossing the street at signalized intersections, unsignalized intersections, midblock locations, and roundabouts.
Treatments and countermeasures should be well-matched to the roadways context (e.g., appropriate for the speed, volume, crossing distance, and other location attributes). Refer to the Regional Solicitation Resources web page for guidance links.

Response:
The project adds a signalized intersection at McKinley Street to facilitate better access to the highway for vehicles and a protected crossing for pedestrians. The signal will feature marked crossings on all four legs and ADA/APS compliant facilities. While the highway is to be widened by between 2 and 8 feet to accommodate the threelane section, raised center islands are proposed at key crossing locations to provide pedestrian refuge and increase comfort in crossing the highway. Design of the typical section is context sensitive to reduce impacts due to widening and added pedestrian exposure to traffic. The only existing crossing within the project area is nearly 60 feet long and crosses two directions of traffic. The proposed crossings are all either signal controlled or two-stage crossings, limiting crossing distances to 24 feet or less crossing only one direction of traffic at a time. Warning signage, high visibility pavement markings and other best practices will be used at these locations. RRFB or PHB systems will also be vetted during final design following FHWA STEP and MnDOT TEM guidance.
(Limit 2,800 characters; approximately 400 words)
Is the distance in between signalized intersections increasing (e.g., removing a signal)?
Select one: No
If yes, describe what measures are being used to fill the gap between protected crossing opportunities for pedestrians (e.g., adding HighIntensity Activated Crosswalk beacons to help motorists yield and help pedestrians find a suitable gap for crossing, turning signal into a roundabout to slow motorist speed, etc.).

Response:
(Limit 1,400 characters; approximately 200 words)
Will your design increase the crossing distance or crossing time across any leg of an intersection? (e.g., by adding turn or through lanes, widening lanes, using a multi-phase crossing, prohibiting crossing on any leg of an intersection, pedestrian bridge requiring length detour, etc.). This does not include any increases to crossing distances solely due to the addition of bike lanes (i.e., no other through or turn lanes being added or widened).

Select one: Yes
If yes,
How many intersections will likely be affected?
Response:
3
Describe what measures are being used to reduce exposure and delay for pedestrians (e.g., median crossing islands, curb bulb-outs, etc.)

Response:
While lanes are added at the tree impacted intersections, pedestrian exposure to traffic is reduced and a higher degree of pedestrian protection is provided at all three intersections. The McKinley Street intersection will feature a new signal to provide an improved level of service and safety to pedestrians crossing the highway. Median crossing islands able to provide pedestrian refuge are provided at the Wilson Street and Coolidge Street intersections with Highway 47. These crossings allow pedestrians to cross one direction of traffic at a time and limit exposure by reducing crossing distances to 24 feet or less. Enhanced, pedestrian activated systems will be further evaluated at these locations during the next phase of design to provide better visibility and operations for pedestrians attempting to cross the busy highway. Any proposed systems will be follow MnDOT and FHWA STEP guidance for the character of these crossing locations. The need for these improvements will become even more important as the bottle neck at-grade rail crossing south of the project area is removed in 2025. Gaps in traffic created by frequent train crossings allow pedestrians to cross safely, removing this bottleneck will likely remove these gaps and further isolate pedestrians.
(Limit 1,400 characters; approximately 200 words)
If grade separated pedestrian crossings are being added and increasing crossing time, describe any features that are included that will reduce the detour required of pedestrians and make the separated crossing a more appealing option (e.g., shallow tunnel that doesnt require much elevation change instead of pedestrian bridge with numerous switchbacks).

Response:
(Limit 1,400 characters; approximately 200 words)
If mid-block crossings are restricted or blocked, explain why this is necessary and how pedestrian crossing needs and safety are supported in other ways (e.g., nearest protected or enhanced crossing opportunity).

Response:
No pedestrian facilities are provided along this section of Highway 47 today, and no marked or signed crossings are present. The lack of facilities for pedestrians and the heavily traveled trunk highway create a barrier to pedestrian mobility, isolating residents in the area from access. The added 0.8 miles of multi-use trail will be on the east side of the highway and no mid-clock crossings will be provided. Crossing locations are spaced appropriately to minimize driver distraction by busying the roadway but still providing crossings no greater than 600 feet from any given location along the project area. Completing this important trail gap will provide improved mobility and reduce the need for pedestrians to leave the designated pedestrian areas. Improved mobility allows the neighborhood bordered by the highway and Rum River to access the greater area pedestrian network and destinations throughout the area. The completed gap also allows better access to the Anoka County Fairgrounds where parking and vehicle access are notable issues when events are taking place.

The existing two-lane rural highway is not fitting of the residential environment through which it travels. The proposed three-lane urban section is more fitting of the area and will promote traffic speeds that are more acceptable to local stakeholders. Raised center islands at key locations as well as curb and gutter and multi-use trail throughout the project area will give the corridor a more urbanized feel and provide a calming effect on traffic. Roadway geometry will be to trunk highway standards but be more reflective of the residential environment via tighter turning radii, raised center islands, and center left turn lane. Further evaluation of the design of these elements will be performed during the next design phase using MnDOT's Performance-Based Practical Design guide.
(Limit 2,800 characters; approximately 400 words)
If known, what are the existing and proposed design, operation, and posted speeds? Is this an increase or decrease from existing conditions?
The existing two-lane rural facility features a posted speed limit of 45 mph and operates with an average speed of 30 mph throughout the day due to congestion. Nighttime hours operate at closer to 35 mph on average when congestion is minimal, and 85th percentile speeds near 43 mph during these periods. The urbanization of the corridor, including curb and gutter, center left turn lane and raised center median are anticipated to reduce the operating speeds of the corridor; a speed study will be requested upon project completion in hopes of reducing the posted speed limit to 35 mph to better fit the residential environment of this section of the corridor.
(Limit 1,400 characters; approximately 200 words)
SUB-MEASURE 2: Existing Location-Based Pedestrian Safety Risk Factors
These factors are based on based on trends and patterns observed in pedestrian crash analysis done for the Regional Pedestrian Safety Action Plan. Check off how many of the following factors are present. Applicants receive more points if more risk factors are present.

Existing road configuration is a One-way, \(3+\) through lanes
or
Existing road configuration is a Two-way, 4+ through lanes
Existing road has a design speed, posted speed limit, or speed study/data showing 85th percentile travel speeds in excess of 30 Yes MPH or more

SUB-MEASURE 3: Existing Location-Based Pedestrian Safety Exposure Factors
These factors are based on based on trends and patterns observed in pedestrian crash analysis done for the Regional Pedestrian Safety Action Plan. Check off how many of the following existing location exposure factors are present. Applicants receive more points if more risk factors are present.

Existing road has transit running on or across it with 1+ transit stops in the project area (lf flag-stop route with no fixed stops, then \(1+\) locations in the project area where roadside stops are allowed. Do not count portions of transit routes with no stops, such as non-stop freeway sections of express or limited-stop routes. If service was temporarily reduced for the pandemic but is expected to return to 2019 levels, consider 2019 service for this item.)

Existing road has high-frequency transit running on or across it and 1+ high-frequency stops in the project area (high-frequency defined as service at least every 15 minutes from 6am to 7pm weekdays and 9am to 6pm Saturdays. If service frequency was temporarily reduced for the pandemic but is expected to return to 2019 levels, consider 2019 frequency for this item.)

Existing road is within 500 of \(1+\) shopping, dining, or entertainment destinations (e.g., grocery store, restaurant)

If checked, please describe:

Yes

The northern project limits are within 500 feet of several mixed-use commercial developments on all four quadrants of the Highway 47 and Bunker Lake Blvd (CSAH 116). intersection, where restaurants, convenience stores, a gas station, bank and other shopping destinations are located, attracting vehicle and pedestrian trips of all types. The Anoka County Fairgrounds border the project south of McKinley Street.
(Limit 1,400 characters; approximately 200 words)
Existing road is within 500 of other known pedestrian generators (e.g., school, civic/community center, senior housing, multifamily Yes housing, regulatorily-designated affordable housing)

If checked, please describe:
River Bend apartments are located near the northern project limits. Just outside of the project limits are other medium and high-density housing developments along Bunker Lake Blvd (CSAH 116).
(Limit 1,400 characters; approximately 200 words)

This project includes a new traffic signal at TH 47 and McKinley St (ADA-compliant curb ramps, APS features and enhanced lighting). It includes a new marked pedestrian crossings with median refuge areas at TH 47 and E Mineral Pond Blvd/Coolidge St and Wilson St. The project includes a new multiuse trail along TH 47 extending from the Anoka County Fairgrounds north to Coolidge St, where it matches into a new trail at Bunker Lake Boulevard. The project includes a new section of sidewalk on the west side of TH 47 from E Mineral Pond Blvd to CSAH 116, providing access to the commercial node at the TH 47/CSAH 116 intersection.

These crosswalks and trails will greatly improve safety for bicyclists and pedestrians traveling along and across TH 47, which is characterized by heavy traffic and no designated crossings or pedestrian facilities of any kind. No nearby parallel trails or sidewalks presently exist. New crossings will greatly improve visibility and overall pedestrian and bicycle safety. Likewise, the trail along TH 47 provides a space for bicyclists and pedestrians to travel along the road. Today, people walking and biking must do so in the road or on a narrow shoulder (2'-3') or in grassy areas.

The new bike/ped features become part of a larger network. The trail links to the Anoka County Fairgrounds, and thereby to Rum River South County Park. It links to a north to CSAH 116, and then across the Rum River, connecting to Rivers' Bend Park, Anoka County High School, Anoka Nature Reserve, Rum River Public Library and to the Anoka Rum River Regional Trail (RBTN Tier 2 Alignment). Designated TH 47 crossings provide access via existing sidewalks to neighborhoods west of TH 47, to George Enloe Park and to Anoka Enterprise Park, a major area employment center.

McKinley St is a designated bike route. To the west, McKinley St has wide painted shoulders and prohibiting parking, functioning as bike lanes. To the east, it is a neighborhood road, with direct connections to Rum River South County Park.

The Main Street and US-10 corridor south of the Project Area is designated an RBTN Tier 1 corridor. The TH 47 Corridor Improvements Project would extend a trail to the Anoka County Fairgrounds. The advancement of MnDOT's BNSF railroad grade separation project south of the fairgrounds would likely include additional bike/ped accommodation and could potentially link to the TH 47 trail.

The Met Council's defines Regional Bicycle Barriers as freeways/expressways, railroads and streams. Nearby, these would include US-10, the BNSF railway corridor and the Rum and Mississippi Rivers. The TH 47 Project would not directly overcome any Regional Bicycle Barriers, however it completes an existing trail gap of over 0.8 miles in a largely residential area.

\section*{Transit Projects Not Requiring Construction}

If the applicant is completing a transit application that is operations only, check the box and do not complete the remainder of the form. These projects will receive full points for the Risk Assessment.
Park-and-Ride and other transit construction projects require completion of the Risk Assessment below.
Check Here if Your Transit Project Does Not Require Construction

\section*{Measure A: Risk Assessment - Construction Projects}
1.Public Involvement (20 Percent of Points)

Projects that have been through a public process with residents and other interested public entities are more likely than others to be successful. The project applicant must indicate that events and/or targeted outreach (e.g., surveys and other web-based input) were held to help identify the transportation problem, how the potential solution was selected instead of other options, and the public involvement completed to date on the project. The focus of this section is on the opportunity for public input as opposed to the quality of input. NOTE: A written response is required and failure to respond will result in zero points.

Multiple types of targeted outreach efforts (such as meetings or online/mail outreach) specific to this project with the general public and partner agencies have been used to help identify the project need.

100\%
At least one meeting specific to this project with the general public has been used to help identify the project need.

50\%
At least online/mail outreach effort specific to this project with the general public has been used to help identify the project need.
50\%
No meeting or outreach specific to this project was conducted, but the project was identified through meetings and/or outreach related to a larger planning effort.

25\%
No outreach has led to the selection of this project.
\(0 \%\)
Describe the type(s) of outreach selected for this project (i.e., online or in-person meetings, surveys, demonstration projects), the method(s) used to announce outreach opportunities, and how many people participated. Include any public website links to outreach opportunities.

The genesis for this project came from public engagement for the Railroad Separation at Highway 47 Feasibility Study. This study investigated the feasibility of a grade separation for the busy BNSF rail tracks just south of the Anoka County Fairgrounds, where TH 47 (Ferry St) crosses at grade. In addition to commentary about the railroad crossing, many people commented at public open houses in June 2016 and February 2017 about safety and traffic conditions on TH 47 further north. The City of Anoka heeded this information and the TH 47 (St. Francis Blvd) Corridor Improvements Project was created.

Response:
This project has included meetings with MnDOT staff, with Anoka City Council, and many project management team meetings with City of Anoka staff. Multiple meetings were held with MnDOT regarding this project \((3 / 17,8 / 17,10 / 17,8 / 19\), 10/19, 12/19). Workshops were held with Anoka City Council on January 27, 2020 and February 24, 2020.

A public meeting with the general public was held February 20, 2020 from 5 to 7 pm at the Greenhaven Golf Course and Event Center. A Save the Date letter was mailed to project area residents and property owners in September 2019 with background information on the TH 47 study and inviting them to attend the February 2020 public meeting. A subsequent postcard mailing was also sent in early February 2020 with specific time and location details. Approximately 60 people attended according to sign-in sheets (several more did not sign in). The meeting included a series of 8 informational boards, which included a project overview and timeline, description of key issues, and graphics showing neighborhood access, a new McKinley St signal, and nearby transportation projects. A video visualization of revised three-lane
corridor and shared use path was also available. All printed materials and the video visualization are posted on a project website, which is regularly updated with pertinent project information.

> Public meeting attendees were invited to provide feedback on the proposed project concept, rating safety, vehicle access and pedestrian/bicycle accommodations. Written and verbal feedback was also recorded. Feedback indicated that between 70 and 80 percent of responding attendees had an overall positive impression of the project concept when rating for safety, access and bicycle/pedestrian aspects; conversely, between 13 and 20 percent held negative views (the balance held neutral opinions).
(Limit 2,800 characters; approximately 400 words)
2.Layout ( 25 Percent of Points)

Layout includes proposed geometrics and existing and proposed right-of-way boundaries. A basic layout should include a base map (north arrow; scale; legend;* city and/or county limits; existing ROW, labeled; existing signals;* and bridge numbers*) and design data (proposed alignments; bike and/or roadway lane widths; shoulder width;* proposed signals;* and proposed ROW). An aerial photograph with a line showing the projects termini does not suffice and will be awarded zero points. *lf applicable

Layout approved by the applicant and all impacted jurisdictions (i.e., cities/counties/MnDOT. If a MnDOT trunk highway is impacted, approval by MnDOT must have occurred to receive full points. A PDF of the layout must be attached along with letters from each jurisdiction to receive points.
\(100 \%\)
A layout does not apply (signal replacement/signal timing, standalone streetscaping, minor intersection improvements). Applicants that are not certain whether a layout is required should contact Colleen Brown at MnDOT Metro State Aid colleen.brown@state.mn.us.

100\%
For projects where MnDOT trunk highways are impacted and a MnDOT Staff Approved layout is required. Layout approved by the applicant and all impacted local jurisdictions (i.e., cities/counties), and layout review and approval by MnDOT is pending. A PDF of the layout must be attached along with letters from each jurisdiction to receive points.

Layout completed but not approved by all jurisdictions. A PDF of the layout must be attached to receive points.

Layout has been started but is not complete. A PDF of the layout must be attached to receive points.

25\%
Layout has not been started
0\%

Attach Layout
1649640790565_TH 47_Regional Solicitation
Exhibit_2022.pdf
Please upload attachment in PDF form.
Additional Attachments
Please upload attachment in PDF form.
3.Review of Section 106 Historic Resources (15 Percent of Points)

No known historic properties eligible for or listed in the National
Register of Historic Places are located in the project area, and Yes
project is not located on an identified historic bridge
100\%
There are historical/archeological properties present but determination of no historic properties affected is anticipated.

100\%
Historic/archeological property impacted; determination of no adverse effect anticipated

80\%
Historic/archeological property impacted; determination of adverse effect anticipated

40\%
Unsure if there are any historic/archaeological properties in the project area.

0\%
Project is located on an identified historic bridge
4.Right-of-Way (25 Percent of Points)

Right-of-way, permanent or temporary easements, and MnDOT agreement/limited-use permit either not required or all have been acquired

100\%
Right-of-way, permanent or temporary easements, and/or MnDOT agreement/limited-use permit required - plat, legal descriptions, or official map complete
50\%
Right-of-way, permanent or temporary easements, and/or MnDOT agreement/limited-use permit required - parcels identified

25\%
Right-of-way, permanent or temporary easements, and/or MnDOT agreement/limited-use permit required - parcels not all identified
```

0%
5.Railroad Involvement (15 Percent of Points)
No railroad involvement on project or railroad Right-of-Way
agreement is executed (include signature page, if applicable)
Yes
100%
Signature Page
Please upload attachment in PDF form.
Railroad Right-of-Way Agreement required; negotiations have begun
50%
Railroad Right-of-Way Agreement required; negotiations have not
begun.
0%

```

\section*{Measure A: Cost Effectiveness}
\begin{tabular}{ll} 
Total Project Cost (entered in Project Cost Form): & \(\$ 6,527,000.00\) \\
Enter Amount of the Noise Walls: & \(\$ 0.00\) \\
Total Project Cost subtract the amount of the noise walls: & \(\$ 6,527,000.00\) \\
Enter amount of any outside, competitive funding: & \(\$ 0.00\) \\
Attach documentation of award: & \\
Points Awarded in Previous Criteria & \(\$ 0.00\)
\end{tabular}

\section*{Other Attachments}

File Name
Existing TH 47_Regional
Solicitation_2022.pdf
RS MnDOT City of Anoka Hwy 47
project.pdf
Summary_Hwy 47 StFrancis One Page
Description.pdf
TH 47 Corridor Improvements 3-lane
LOS (City of Anoka).pdf
TH 47_Existing Photos.pdf

Description
File Size

555 KB

262 KB

323 KB

Anoka County Letter of Support
724 KB

778 KB



\section*{Socio-Economic Conditions}

Roadway Reconstruction/Modernization Project: TH 47 Corridor Improvements | Map ID: 1646797395244

Results

Total of publicly subsidized rental housing units in census
tracts within \(1 / 2\) mile: 183
Project located in census tract(s) that are ABOVE the regional average for population in poverty or population of color.


For complete disclaimer of accuracy, please visit hor complete disclaimer of accuracy, please visiswebsite.metc.state.mn.us/gissite/notice.aspx


Property Search Summary
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Properties & \begin{tabular}{l}
Total \\
Units
\end{tabular} & 30\% AM* & 50\% AMI* & 60\% AM* & 80\% AMI* & Total Aff Units* \\
\hline 4 & 186 & 8 & 93 & 76 & 0 & 177 \\
\hline
\end{tabular}
* AMI level and units are estimated if not provided, set to least restrictive AMI for largest number of units.
** Obligation expiration dates are estimated based on program definition if not provided.
*** There may be other funders. This funder provided for reference.

The following developments provide affordable housing within 3.5 miles of the project:
1) The Seasons
2) Sunwood Townhomes
3) Sunwood Village
4) Ramsey Apartments

\section*{HousingLink}

\section*{Streams}

Return to main site

\section*{Property Detail}

\section*{About Streams}

Ramsey Apts
7562 146th Ave NW
Ramsey, MN 55303

Funding Categories
Project-Based Subsidy
Subsidized-Other
Tax Credit (LIHTC 9\%)
Property Information
Year Built: 2017
Building Type: Apartment Groups Served: Family Total Units: 54
Affordable Units: 54
Affordable Units by Bedroom
1 BR: 6
2 BR: 21
3 BR: 21
4 BR: 6
Units by Area Median Income 30\%: 4
50\%: 50


Known Property Addresses
17562 146th Ave NW
Ramsey
Funding Dates \& Programs
First known closing: 1/1/2017
Most recent closing: 10/1/2018
Earliest expiration: 9/30/2038
Last Activity: New Construction

MHFA: HOME

MHFA: LHIA

HUDPBV: HUDPBV








\section*{HousingLink}

\section*{Streams}

Return to main site

\section*{Property Detail}

\section*{About Streams}

Sunwood Village
7750 Sunwood Dr NW
Ramsey, MN 55303

Funding Categories
Subsidized-Other
Tax Credit (LIHTC 4\%)
Property Information
Year Built: 2016
Building Type:
Groups Served: Family
Total Units: 47
Affordable Units: 47
Affordable Units by Bedroom
1 BR: 9
2 BR: 26
3 BR: 12
Units by Area Median Income 30\%: 4
50\%: 43

\begin{tabular}{|c|c|c|c|c|c|}
\hline BR Size & 1st Listing & Last Listing & Low Rent & High Rent & Last Rent \\
\hline 1 & \(07 / 15 / 2016\) & \(07 / 15 / 2016\) & \(\$ 674\) & \(\$ 674\) & \(\$ 674\) \\
\hline 2 & \(07 / 15 / 2016\) & \(09 / 15 / 2016\) & \(\$ 783\) & \(\$ 783\) & \(\$ 783\) \\
\hline 3 & \(07 / 15 / 2016\) & \(07 / 15 / 2016\) & \(\$ 901\) & \(\$ 901\) & \(\$ 901\) \\
\hline
\end{tabular}

Known Property Addresses
1 7750 Sunwood Dr NW \(\quad\) Ramsey
Funding Dates \& Programs
First known closing: 1/1/2015
Most recent closing: 12/21/2016
Earliest expiration: 1/1/2045
Last Activity: New Construction

County: County

\section*{MHFA: LHIA}

MHFA: Housing Tax Credits 4\%
Close Date: 1/1/2015
Estimated Expiration: 1/1/2045
 MHFA: LMIR
Close Date: \(12 / 21 / 2016\)
Expiration: 3/1/2047
MHFA: Bonds
Close Date: \(9 / 24 / 2015\)
Expiration: 4/30/2047
Known Property Identifiers
HousingLink: 10924
MHFA: D7721
HUDLIHTC4: MNA20162034



H \(2 / 4 / 20\)


MHFA: LMIR
Close Date: \(12 / 21 / 2016\)
Expiration: 3/1/2047
MHFA: Bonds
Close Date: 9/24/2015
Expiration: 4/30/2047
Known Property Identifiers
HousingLink: 10924
MHFA: D7721 2
HUDLIHTC4: MNA20162034 MHFA: LMIR
Close Date: 12/21/2016
Expiration: 3/1/2047
MHFA: Bonds
Close Date: 9/24/2015
Expiration: 4/30/2047
Known Property Identifiers
HousingLink: 10924
MHFA: D7721
HUDLIHTC4: MNA20162034

\section*{HousingLink}

\section*{Streams}

Return to main site

\section*{Property Detail}

\section*{About Streams}

\begin{tabular}{|c|c|c|c|c|c|}
\hline BR Size & 1st Listing & Last Listing & Low Rent & High Rent & Last Rent \\
\hline 2 & \(09 / 06 / 2012\) & \(11 / 01 / 2014\) & \(\$ 895\) & None & \(\$ 926\) \\
\hline 3 & \(09 / 06 / 2012\) & \(03 / 12 / 2014\) & \(\$ 1,025\) & None & \(\$ 1,066\) \\
\hline 5 & \(12 / 14 / 2006\) & \(12 / 14 / 2006\) & \(\$ 1,400\) & None & \(\$ 1,400\) \\
\hline
\end{tabular}

Sunwood (ramsey) Townhomes (fka Ramsey Th)
Multiple addresses listed at bottom of page

Funding Categories
Subsidized-Other
Tax Credit (LIHTC 9\%)
Property Information
Year Built: 2003
Building Type: Townhome
Groups Served: Family
Total Units: 35
Affordable Units: 27
Affordable Units by Bedroom
1 BR: 2
2 BR: 12
3 BR: 12
4 BR: 1
Units by Area Median Income * 60\%: 27
* AMI units are estimated because they were not provided, and have been set to the least restrictive AMI for the largest number of units

Known Property Addresses
\begin{tabular}{|r|l|l|}
\hline 1 & 5350 Sunwood Dr NW & Ramsey \\
\hline 2 & 5360 Sunwood Dr NW & Ramsey \\
\hline 3 & 5370 Sunwood Dr NW & Ramsey \\
\hline 4 & 5380 Sunwood Dr NW & Ramsey \\
\hline 5 & 5390 Sunwood Dr NW & Ramsey \\
\hline 6 & 5400 Sunwood Dr NW & Ramsey \\
\hline 7 & 5410 Sunwood Dr NW & Ramsey \\
\hline 8 & 5420 Sunwood Dr NW & Ramsey \\
\hline 9 & 5430 Sunwood Dr NW & Ramsey \\
\hline 10 & 5444 Sunwood Dr NW & Ramsey \\
\hline
\end{tabular}

Funding Dates \& Programs
First known closing: 1/1/2002
Most recent closing: 5/16/2003
Earliest expiration: 1/1/2032
Last Activity: New Construction

MHFA: LHIA
Close Date: 5/16/2003
Estimated Expiration: 5/
MHFA: ARIF
Close Date: 5/16/2003
Expiration: 5/16/2033
Known Property Identif
HousingLink: 4521
MHFA: D2743
HUDLIHTC9: MNA2002
MHFA: LHIA
Close Date: 5/16/2003
Estimated Expiration: 5/
MHFA: ARIF
Close Date: 5/16/2003
Expiration: 5/16/2033
Known Property Identif
HousingLink: 4521
MHFA: D2743
HUDLIHTC9: MNA2002



\author{
Close Date: \(1 / 1 / 2002\)
Expiration: \(1 / 1 / 2032\) \\ Known Property Identifiers \\ HUDLIHTC9: MNA2002095 \\  \\ 教 \\  \\  \\ MHFA: LHIA
Close Date: \(5 / 16 / 2003\)
Estimated Expiration: \(5 / 16 / 2\) \\  \\ MHFA: LHIA
Close Date: \(5 / 16 / 200\)
Estimated Expiration: \\ MHFA: LHIA
Close Date: \(5 / 16 / 2003\)
Estimated Expiration: \(5 / 16 / 2033\) \\ MHFA: LHIA
Close Date: \(5 / 16 / 2003\)
Estimated Expiration: \(5 / 16\)
}








 ers




\section*{\(\sim\) \\ -}

\begin{abstract}

\end{abstract}

MHFA: LHIA
Close Date: 5/16/2003
Estimated Expiration: \(5 /\)
MHFA: ARIF
Close Date: 5/16/2003
Expiration: 5/16/2033
Known Property Iden
HousingLink: 4521
MHFA: D2743
HUDLIHTC9: MNA200
\(\qquad\)

\section*{HousingLink}

\section*{Streams}

Return to main site

\section*{Property Detail}

\section*{About Streams}

\section*{The Seasons}

Multiple addresses listed at bottom of page

Funding Categories
Tax Credit (LIHTC 9\%)
Property Information
Year Built:
Building Type: Townhome
Groups Served: Family
Total Units: 50
Affordable Units: 49
Affordable Units by Bedroom
2 BR: 22
3 BR: 27
Units by Area Median Income * 60\%: 49
* AMI units are estimated because they were not provided, and have been set to the least restrictive AMI for the largest number of units

Housing+Transit Cost Walk Score \({ }^{\circledR}: 23\) Send us feedback

\section*{Listing Summary}
\begin{tabular}{|c|c|l|c|c|c|}
\hline BR Size & 1 st Listing & Last Listing & Low Rent & High Rent & Last Rent \\
\hline 2 & \(10 / 24 / 2013\) & \(08 / 01 / 2015\) & \(\$ 788\) & \(\$ 845\) & \(\$ 835\) \\
\hline 3 & \(10 / 24 / 2013\) & \(06 / 15 / 2015\) & \(\$ 906\) & \(\$ 955\) & \(\$ 955\) \\
\hline
\end{tabular}

Known Property Addresses
\begin{tabular}{|r|l|l|}
\hline 1 & 7436147 Ln NW & Ramsey \\
\hline 2 & 7451 147th Cir NW & Ramsey \\
\hline 3 & 7452 147 Ln NW & Ramsey \\
\hline 4 & 7461 147th Cir NW & Ramsey \\
\hline 5 & 7492 147th Cir NW & Ramsey \\
\hline 6 & 7495 147th Cir NW & Ramsey \\
\hline 7 & 7518 147th Cir NW & Ramsey \\
\hline 8 & 7523 147th Cir NW & Ramsey \\
\hline 9 & 7541 147th Cir NW & Ramsey \\
\hline 10 & 7544 147th Cir NW & Anoka \\
\hline 11 & 7550 147th Terrace NW & Ramsey \\
\hline 12 & 7572 147th Terrace NW & Anoka \\
\hline 13 & 7573 147th Terrace NW & Ramsey \\
\hline 14 & 7579 147th Terrace NW & Ramsey \\
\hline 15 & 7580 147th Terrace NW & Ramsey \\
\hline 16 & 7581 147th Terrace NW & Ramsey \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
17 & 7586 147th Terrace NW & Ramsey \\
\hline 18 & 7590 147th Terrace NW & Ramsey \\
\hline 19 & 7591 147th Terrace NW & Ramsey \\
\hline 20 & 7598 147th Terrace NW & Ramsey \\
\hline
\end{tabular}

Funding Dates \& Programs
First known closing: 1/1/2013
Most recent closing: 1/1/2013
Earliest expiration: 1/1/2043
Last Activity: New Construction

MHFA: Housing Tax Credits 9\%
Close Date: 1/1/2013
Estimated Expiration: 1/1/2043
Known Property Identifiers
HousingLink: 10893
MHFATC9: D7574
HUDLIHTC9: MNA2013019

\section*{6: TH 47 \& E Mineral Pond Blvd/Coolidge St NW}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1705 \\
Total Delay / Veh (s/v) & 1 \\
CO Emissions \((\mathrm{kg})\) & 0.83 \\
NOx Emissions (kg) & 0.16 \\
VOC Emissions (kg) & 0.19 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

9: TH 47 \& Wilson St
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1719 \\
Total Delay / Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 0.51 \\
NOx Emissions \((\mathrm{kg})\) & 0.10 \\
VOC Emissions \((\mathrm{kg})\) & 0.12 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

\section*{13: TH 47 \& Dunham Dr}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1715 \\
Total Delay /Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 0.28 \\
NOx Emissions \((\mathrm{kg})\) & 0.05 \\
VOC Emissions (kg) & 0.07 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

\section*{15: TH 47 \& McCann Ave}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1729 \\
Total Delay /Veh (s/v) & 0 \\
CO Emissions (kg) & 0.40 \\
NOx Emissions (kg) & 0.08 \\
VOC Emissions (kg) & 0.09 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

\section*{16: TH 47 \& McKinley St}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 2046 \\
Total Delay / Veh (s/v) & 6 \\
CO Emissions kg ) & 2.69 \\
NOx Emissions (kg) & 0.52 \\
VOC Emissions (kg) & 0.62 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

Network Totals
\begin{tabular}{lr}
\hline Number of Intersections & 5 \\
\hline Total Delay / Veh (s/v) & 2 \\
CO Emissions \((\mathrm{kg})\) & 4.71 \\
NOx Emissions \((\mathrm{kg})\) & 0.92 \\
VOC Emissions kg ) & 1.09 \\
Vehicles in dilemma zone (\#) & 0 \\
Performance Index & 9.8
\end{tabular}


Splits and Phases: 16: TH 47 \& McKinley St


\section*{6: TH 47 \& E Mineral Pond Blvd/Coolidge St NW}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1698 \\
Total Delay / Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 0.75 \\
NOx Emissions (kg) & 0.15 \\
VOC Emissions (kg) & 0.17 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

9: TH 47 \& Wilson St
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1738 \\
Total Delay / Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 0.99 \\
NOx Emissions (kg) & 0.19 \\
VOC Emissions (kg) & 0.23 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

\section*{16: TH 47 \& McKinley St}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 2048 \\
Total Delay / Veh (s/v) & 7 \\
\hline CO Emissions (kg) & 2.03 \\
NOx Emissions (kg) & 0.40 \\
VOC Emissions (kg) & 0.47 \\
Vehicles in dilemma zone (\#) & 119 \\
Network Totals & \\
\hline Number of Intersections & 3 \\
\hline Total Delay / Veh (s/v) & 3 \\
CO Emissions (kg) & 3.77 \\
NOx Emissions (kg) & 0.73 \\
VOC Emissions (kg) & 0.87 \\
Vehicles in dilemma zone (\#) & 119 \\
Performance Index & 6.9
\end{tabular}

\section*{Arterial Level of Service: NB TH 47}
\begin{tabular}{lrrrrr} 
Cross Street & Node & \begin{tabular}{r} 
Delay \\
\((\mathrm{s} / \mathrm{veh})\)
\end{tabular} & \begin{tabular}{r} 
Travel \\
time \((\mathrm{s})\)
\end{tabular} & \begin{tabular}{r} 
Dist \\
\((\mathrm{mi})\)
\end{tabular} & \begin{tabular}{r} 
Arterial \\
Speed
\end{tabular} \\
\hline McKinley St & 16 & 27.8 & 49.9 & 0.2 & 18 \\
McCann Ave & 15 & 4.3 & 12.8 & 0.1 & 30 \\
Dunham Dr & 13 & 0.8 & 6.4 & 0.1 & 39 \\
Wilson St & 9 & 0.6 & 6.0 & 0.1 & 40 \\
Coolidge St NW & 6 & 1.8 & 17.6 & 0.2 & 40 \\
\hline Total & & 35.4 & 92.8 & 0.7 & 27
\end{tabular}

\section*{Arterial Level of Service: SB TH 47}
\begin{tabular}{lrrrrr} 
Cross Street & Node & \begin{tabular}{r} 
Delay \\
\((\mathrm{s} / \mathrm{veh})\)
\end{tabular} & \begin{tabular}{r} 
Travel \\
time \((\mathrm{s})\)
\end{tabular} & \begin{tabular}{r} 
Dist \\
\((\mathrm{mi})\)
\end{tabular} & \begin{tabular}{r} 
Arterial \\
Speed
\end{tabular} \\
\hline E Mineral Pond Blvd & 6 & 1.6 & 14.0 & 0.2 & 41 \\
Wilson St & 9 & 1.2 & 16.6 & 0.2 & 43 \\
Dunham Dr & 13 & 0.5 & 5.9 & 0.1 & 41 \\
McCann Ave & 15 & 1.1 & 6.7 & 0.1 & 37 \\
McKinley St & 16 & 1.8 & 10.3 & 0.1 & 37 \\
\hline Total & & 6.2 & 53.4 & 0.6 & 40
\end{tabular}

\section*{Arterial Level of Service: NB TH 47}
\begin{tabular}{lrrrrr} 
Cross Street & Node & \begin{tabular}{r} 
Delay \\
\((\mathrm{s} / \mathrm{veh})\)
\end{tabular} & \begin{tabular}{r} 
Travel \\
time \((\mathrm{s})\)
\end{tabular} & \begin{tabular}{r} 
Dist \\
\((\mathrm{mi})\)
\end{tabular} & \begin{tabular}{r} 
Arterial \\
Speed
\end{tabular} \\
\hline McKinley St & 16 & 7.6 & 27.0 & 0.2 & 32 \\
Wilson St & 9 & 4.3 & 23.6 & 0.2 & 37 \\
Coolidge St NW & 6 & 1.8 & 17.5 & 0.2 & 40 \\
\hline Total & & 13.7 & 68.1 & 0.7 & 36
\end{tabular}

Arterial Level of Service: SB TH 47
\begin{tabular}{lrrrrr} 
Cross Street & Node & \begin{tabular}{r} 
Delay \\
\((\mathrm{s} / \mathrm{veh})\)
\end{tabular} & \begin{tabular}{r} 
Travel \\
time \((\mathrm{s})\)
\end{tabular} & \begin{tabular}{r} 
Dist \\
\((\mathrm{mi})\)
\end{tabular} & \begin{tabular}{r} 
Arterial \\
Speed
\end{tabular} \\
\hline E Mineral Pond Blvd & 6 & 0.6 & 13.2 & 0.2 & 44 \\
Wilson St & 9 & 0.9 & 16.3 & 0.2 & 43 \\
McKinley St & 16 & 4.7 & 24.0 & 0.2 & 36 \\
\hline Total & & 6.2 & 53.5 & 0.6 & 40
\end{tabular}


Splits and Phases: 16: TH 47 \& McKinley St


\section*{6: TH 47 \& E Mineral Pond Blvd/Coolidge St NW}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1698 \\
Total Delay / Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 0.75 \\
NOx Emissions (kg) & 0.15 \\
VOC Emissions (kg) & 0.17 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

9: TH 47 \& Wilson St
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1738 \\
Total Delay / Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 0.99 \\
NOx Emissions (kg) & 0.19 \\
VOC Emissions (kg) & 0.23 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

\section*{16: TH 47 \& McKinley St}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 2048 \\
Total Delay / Veh (s/v) & 7 \\
\hline CO Emissions (kg) & 2.03 \\
NOx Emissions (kg) & 0.40 \\
VOC Emissions (kg) & 0.47 \\
Vehicles in dilemma zone (\#) & 119 \\
Network Totals & \\
\hline Number of Intersections & 3 \\
\hline Total Delay / Veh (s/v) & 3 \\
CO Emissions (kg) & 3.77 \\
NOx Emissions (kg) & 0.73 \\
VOC Emissions (kg) & 0.87 \\
Vehicles in dilemma zone (\#) & 119 \\
Performance Index & 6.9
\end{tabular}

\section*{6: TH 47 \& E Mineral Pond Blvd/Coolidge St NW}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1705 \\
Total Delay / Veh (s/v) & 1 \\
CO Emissions \((\mathrm{kg})\) & 0.83 \\
NOx Emissions (kg) & 0.16 \\
VOC Emissions (kg) & 0.19 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

9: TH 47 \& Wilson St
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1719 \\
Total Delay / Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 0.51 \\
NOx Emissions \((\mathrm{kg})\) & 0.10 \\
VOC Emissions \((\mathrm{kg})\) & 0.12 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

\section*{13: TH 47 \& Dunham Dr}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1715 \\
Total Delay /Veh (s/v) & 0 \\
CO Emissions \((\mathrm{kg})\) & 0.28 \\
NOx Emissions \((\mathrm{kg})\) & 0.05 \\
VOC Emissions (kg) & 0.07 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

\section*{15: TH 47 \& McCann Ave}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 1729 \\
Total Delay /Veh (s/v) & 0 \\
CO Emissions (kg) & 0.40 \\
NOx Emissions (kg) & 0.08 \\
VOC Emissions (kg) & 0.09 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

\section*{16: TH 47 \& McKinley St}
\begin{tabular}{lr} 
Direction & All \\
\hline Future Volume (vph) & 2046 \\
Total Delay / Veh (s/v) & 6 \\
CO Emissions kg ) & 2.69 \\
NOx Emissions (kg) & 0.52 \\
VOC Emissions (kg) & 0.62 \\
Vehicles in dilemma zone (\#) & 0
\end{tabular}

Network Totals
\begin{tabular}{lr}
\hline Number of Intersections & 5 \\
\hline Total Delay / Veh (s/v) & 2 \\
CO Emissions \((\mathrm{kg})\) & 4.71 \\
NOx Emissions \((\mathrm{kg})\) & 0.92 \\
VOC Emissions kg ) & 1.09 \\
Vehicles in dilemma zone (\#) & 0 \\
Performance Index & 9.8
\end{tabular}

\section*{Traffic Safety Benefit-Cost Calculation}

Highway Safety Improvement Program (HSIP) Reactive Project

\section*{A. Roadway Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Route & TH 47 & District & Metro & County & Anoka \\
\hline Begin RP & 600 ft S of Xkimo St & End RP & Coolidge St NW & Miles & 0.7 mile \\
\hline Location & \multicolumn{5}{|l|}{TH 47 from 600 ft south of Xkimo St to Collidge St NW} \\
\hline
\end{tabular}

\section*{B. Project Description}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Proposed Work Project Cost*} & \multicolumn{3}{|l|}{Install center turn lane, signalized intersection, access restrictions, reconstruct shared use path} \\
\hline & \$6,527,000 & Installation Year & 2026 \\
\hline Project Service Life & 20 years & Traffic Growth Factor & 2.0\% \\
\hline \multicolumn{4}{|l|}{* exclude Right of Way from Project Cost} \\
\hline
\end{tabular}

\section*{C. Crash Modification Factor}

Fatal (K) Crashes
Serious Injury (A) Crashes
Moderate Injury (B) Crashes Possible Injury (C) Crashes

Property Damage Only Crashes
Reference
*SEE OTHER ATTACHED B-C WORKSHEETS

Crash Type \(\qquad\)
D. Crash Modification Factor (optional second CMF)
\begin{tabular}{lll} 
& Fatal (K) Crashes & Reference \\
& \\
\hline & Serious Injury (A) Crashes & \\
Moderate Injury (B) Crashes & Crash Type & \\
\hline & & \\
Possible Injury (C) Crashes & & WwW.CMFclearinghouse.org
\end{tabular}

F. Benefit-Cost Calculation
\begin{tabular}{lll}
\hline\(\$ 6,363,408\) & & Benefit (present value) \\
\hline\(\$ 6,527,000\) & Cost & B/C Ratio \(=\mathbf{0 . 9 8}\) \\
& Proposed project expected to reduce o crashes annually, o of which involving fatality or serious injury.
\end{tabular}

Traffic Safety Benefit-Cost Calculation
Highway Safety Improvement Program (HSIP) Reactive Project

\section*{A. Roadway Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Route & TH 47 & District & Metro & County & Anoka \\
\hline Begin RP & 600 ft S of Xkimo St & End RP & Coolidge St NW & Miles & 0.7 mile \\
\hline Location & \multicolumn{3}{|l|}{TH 47 from 600 ft south of Xkimo St to Collidge St NW} & & \\
\hline
\end{tabular}

\section*{B. Project Description}
\begin{tabular}{llll} 
Proposed Work & Install center turn lane & \\
Project Cost* & & Installation Year & 2026 \\
Project Service Life & 20 years & Traffic Growth Factor \(2.0 \%\) \\
\hline * exclude Right of Way from Project Cost & &
\end{tabular}
C. Crash Modification Factor
\begin{tabular}{|llll}
\hline 0.69 & Fatal (K) Crashes & Reference CMF ID: 2338 \\
\hline 0.69 & Serious Injury (A) Crashes & \\
\hline 0.69 & Moderate Injury (B) Crashes & Crash Type All \\
\hline 0.69 & Possible Injury (C) Crashes & & \\
\hline 0.69 & Property Damage Only Crashes & & Www.CMFclearinghouse.org \\
\hline
\end{tabular}
D. Crash Modification Factor (optional second CMF)
\begin{tabular}{lll} 
& Fatal (K) Crashes & Reference \\
\cline { 1 - 1 } & & \\
\hline & Serious Injury (A) Crashes & \\
\hline & Crash Type & \\
\hline & & \\
Possible Injury (C) Crashes & & www.CMFclearinghouse.org
\end{tabular}

F. Analysis Assumptions
\begin{tabular}{|l|r|l|l|}
\hline Crash Severity & Crash Cost & \\
\hline K crashes & \(\$ 1,500,000\) & Link: mndot.gov/planning/program/appendix_a.html \\
\hline A crashes & \(\$ 750,000\) & & \\
\hline B crashes & \(\$ 230,000\) & Real Discount Rate & \(0.7 \%\) \\
\hline C crashes & \(\$ 120,000\) & Traffic Growth Rate & \(2.0 \%\) \\
\hline PDO crashes & \(\$ 13,000\) & Project Service Life & 20 years \\
\hline
\end{tabular}
G. Annual Benefit
\begin{tabular}{|l|c|c|c|}
\hline Crash Severity & \multicolumn{1}{c|}{ Crash Reduction } & \multicolumn{1}{c|}{ Annual Reduction } & Annual Benefit \\
\hline K crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline A crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline B crashes & 0.31 & 0.10 & \(\$ 24,073\) \\
\hline C crashes & 0.31 & 0.10 & \(\$ 12,560\) \\
\hline PDO crashes & 4.40 & 1.47 & \(\$ 19,049\) \\
\hline
\end{tabular}
H. Amortized Benefit
\begin{tabular}{|c|c|c|c|}
\hline Year & Crash Benefits & Present Value & \\
\hline 2026 & \$55,683 & \$55,683 & Total \(=\quad \$ 1,261,418\) \\
\hline 2027 & \$56,796 & \$56,402 & \\
\hline 2028 & \$57,932 & \$57,130 & \\
\hline 2029 & \$59,091 & \$57,867 & \\
\hline 2030 & \$60,273 & \$58,614 & \\
\hline 2031 & \$61,478 & \$59,371 & \\
\hline 2032 & \$62,708 & \$60,137 & \\
\hline 2033 & \$63,962 & \$60,914 & \\
\hline 2034 & \$65,241 & \$61,700 & \\
\hline 2035 & \$66,546 & \$62,497 & \\
\hline 2036 & \$67,877 & \$63,303 & \\
\hline 2037 & \$69,234 & \$64,121 & \\
\hline 2038 & \$70,619 & \$64,948 & \\
\hline 2039 & \$72,031 & \$65,787 & \\
\hline 2040 & \$73,472 & \$66,636 & \\
\hline 2041 & \$74,942 & \$67,496 & \\
\hline 2042 & \$76,440 & \$68,368 & \\
\hline 2043 & \$77,969 & \$69,250 & \\
\hline 2044 & \$79,529 & \$70,144 & \\
\hline 2045 & \$81,119 & \$71,050 & \\
\hline 0 & \$0 & \$0 & \\
\hline
\end{tabular}

Traffic Safety Benefit-Cost Calculation
Highway Safety Improvement Program (HSIP) Reactive Project

\section*{A. Roadway Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Route & TH 47 & District & Metro & County & Anoka \\
\hline Begin RP & 600 ft S of Xkimo St & End RP & Coolidge St NW & Miles & 0.7 mile \\
\hline Location & TH 47 at McKinley St & & & & \\
\hline
\end{tabular}

\section*{B. Project Description}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Proposed Work \\
Project Cost*
\end{tabular}} & \multicolumn{3}{|l|}{Install signalized intersection with left turn lanes on all approaches} \\
\hline & & Installation Year & 2026 \\
\hline Project Service Life & 20 years & Traffic Growth Factor & 2.0\% \\
\hline \multicolumn{4}{|l|}{* exclude Right of Way from Project Cost} \\
\hline
\end{tabular}
C. Crash Modification Factor
\begin{tabular}{|c|c|c|c|c|}
\hline 0.56 & Fatal (K) Crashes & \multirow[t]{2}{*}{Reference} & \multicolumn{2}{|l|}{CMF ID: 325} \\
\hline 0.56 & Serious Injury (A) Crashes & & & \\
\hline 0.56 & Moderate Injury (B) Crashes & \multirow[t]{3}{*}{Crash Type} & All & \\
\hline 0.56 & \multicolumn{3}{|l|}{Possible Injury (C) Crashes} & \\
\hline 0.56 & Property Damage Only Crashes & & & www.CMFclearinghouse.org \\
\hline
\end{tabular}
D. Crash Modification Factor (optional second CMF)
\begin{tabular}{lll} 
& Fatal (K) Crashes & Reference \\
\cline { 1 - 1 } & & \\
\hline & Serious Injury (A) Crashes & \\
\hline & Crash Type & \\
\hline & & \\
Possible Injury (C) Crashes & & www.CMFclearinghouse.org
\end{tabular}

F. Analysis Assumptions
\begin{tabular}{|l|r|ll}
\hline Crash Severity & Crash Cost & \\
\hline K crashes & \(\$ 1,500,000\) & Link: & \\
\hline A crashes & \(\$ 750,000\) & & \\
\hline B crashes & \(\$ 230,000\) & Real Discount Rate & \(0.7 \%\) \\
\hline C crashes & \(\$ 120,000\) & Traffic Growth Rate & \(2.0 \%\) \\
\hline PDO crashes & \(\$ 13,000\) & Project Service Life & 20 years \\
\hline
\end{tabular}
G. Annual Benefit
\begin{tabular}{|l|c|c|c|}
\hline Crash Severity & \multicolumn{1}{c|}{ Crash Reduction } & \multicolumn{1}{c|}{ Annual Reduction } & Annual Benefit \\
\hline K crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline A crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline B crashes & 0.88 & 0.29 & \(\$ 67,467\) \\
\hline C crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline PDO crashes & 2.20 & 0.73 & \(\$ 9,533\) \\
\hline
\end{tabular}
H. Amortized Benefit
\begin{tabular}{|c|c|c|c|}
\hline Year & Crash Benefits & Present Value & \\
\hline 2026 & \$77,000 & \$77,000 & Total \(=\) \$1,744,335 \\
\hline 2027 & \$78,540 & \$77,994 & \\
\hline 2028 & \$80,111 & \$79,001 & \\
\hline 2029 & \$81,713 & \$80,021 & \\
\hline 2030 & \$83,347 & \$81,054 & \\
\hline 2031 & \$85,014 & \$82,100 & \\
\hline 2032 & \$86,715 & \$83,160 & \\
\hline 2033 & \$88,449 & \$84,234 & \\
\hline 2034 & \$90,218 & \$85,321 & \\
\hline 2035 & \$92,022 & \$86,423 & \\
\hline 2036 & \$93,863 & \$87,538 & \\
\hline 2037 & \$95,740 & \$88,668 & \\
\hline 2038 & \$97,655 & \$89,813 & \\
\hline 2039 & \$99,608 & \$90,972 & \\
\hline 2040 & \$101,600 & \$92,147 & \\
\hline 2041 & \$103,632 & \$93,336 & \\
\hline 2042 & \$105,704 & \$94,541 & \\
\hline 2043 & \$107,819 & \$95,762 & \\
\hline 2044 & \$109,975 & \$96,998 & \\
\hline 2045 & \$112,174 & \$98,250 & \\
\hline 0 & \$0 & \$0 & \\
\hline
\end{tabular}

Traffic Safety Benefit-Cost Calculation
Highway Safety Improvement Program (HSIP) Reactive Project

\section*{A. Roadway Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Route & TH 47 & District & Metro & County & Anoka \\
\hline Begin RP & 600 ft S of Xkimo St & End RP & Coolidge St NW & Miles & 0.7 mile \\
\hline Location & \multicolumn{3}{|l|}{TH 47 from 600 ft south of Xkimo St to Collidge St NW} & & \\
\hline
\end{tabular}

\section*{B. Project Description}
\begin{tabular}{llll} 
Proposed Work & Install center turn lane & \\
Project Cost* & & Installation Year & 2026 \\
Project Service Life & 20 years & Traffic Growth Factor \(2.0 \%\) \\
\hline * exclude Right of Way from Project Cost & &
\end{tabular}
C. Crash Modification Factor
\begin{tabular}{|c|c|c|c|c|}
\hline 0.61 & Fatal (K) Crashes & \multirow[t]{2}{*}{Reference} & \multicolumn{2}{|l|}{CMF ID: 2351} \\
\hline 0.61 & Serious Injury (A) Crashes & & & \\
\hline 0.61 & Moderate Injury (B) Crashes & \multirow[t]{3}{*}{Crash Type} & \multicolumn{2}{|l|}{Rear End} \\
\hline 0.61 & Possible Injury (C) Crashes & & & \\
\hline 0.61 & Property Damage Only Crashes & & & www.CMFclearinghouse.org \\
\hline
\end{tabular}
D. Crash Modification Factor (optional second CMF)
\begin{tabular}{lll} 
& Fatal (K) Crashes & Reference \\
\cline { 1 - 1 } & & \\
\hline & Serious Injury (A) Crashes & \\
Moderate Injury (B) Crashes & Crash Type & \\
\hline & & \\
Possible Injury (C) Crashes & & www.CMFclearinghouse.org
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{E. Crash Data} \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Begin Date \\
Data Source
\end{tabular}} & \multicolumn{2}{|l|}{1/1/2019} & 12/31/2021 & 3 years \\
\hline & \multicolumn{2}{|l|}{MnDOT} & & \\
\hline & Crash Severity & Rear End & < optional 2nd CMF > & \\
\hline & K crashes & 0 & & \\
\hline & A crashes & 0 & & \\
\hline & B crashes & 1 & & \\
\hline & C crashes & 0 & & \\
\hline & PDO crashes & 12 & & \\
\hline \multicolumn{5}{|l|}{F. Benefit-Cost Calculation} \\
\hline \multicolumn{2}{|r|}{\$1,131,552} & \multirow[t]{2}{*}{Benefit (present value)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(B / C\) Ratio \(=\mathbf{N} / \mathbf{A}\)}} \\
\hline \multicolumn{2}{|r|}{\$0} & & & \\
\hline \multicolumn{5}{|r|}{Proposed project expected to reduce 2 crashes annually, o of which involving fatality or serious injury.} \\
\hline
\end{tabular}
F. Analysis Assumptions
\begin{tabular}{|l|r|l|l|}
\hline Crash Severity & Crash Cost & \\
\hline K crashes & \(\$ 1,500,000\) & Link: mndot.gov/planning/program/appendix_a.html \\
\hline A crashes & \(\$ 750,000\) & & \\
\hline B crashes & \(\$ 230,000\) & Real Discount Rate & \(0.7 \%\) \\
\hline C crashes & \(\$ 120,000\) & Traffic Growth Rate & \(2.0 \%\) \\
\hline PDO crashes & \(\$ 13,000\) & Project Service Life & 20 years \\
\hline
\end{tabular}
G. Annual Benefit
\begin{tabular}{|l|c|c|c|}
\hline Crash Severity & \multicolumn{1}{c|}{ Crash Reduction } & Annual Reduction & Annual Benefit \\
\hline K crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline A crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline B crashes & 0.39 & 0.13 & \(\$ 29,670\) \\
\hline C crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline PDO crashes & 4.68 & 1.56 & \(\$ 20,280\) \\
\hline
\end{tabular}
H. Amortized Benefit
\begin{tabular}{|c|c|c|c|}
\hline Year & Crash Benefits & Present Value & \\
\hline 2026 & \$49,950 & \$49,950 & Total \(=\mathbf{\$ 1 , 1 3 1 , 5 5 2}\) \\
\hline 2027 & \$50,949 & \$50,595 & \\
\hline 2028 & \$51,968 & \$51,248 & \\
\hline 2029 & \$53,007 & \$51,910 & \\
\hline 2030 & \$54,067 & \$52,580 & \\
\hline 2031 & \$55,149 & \$53,259 & \\
\hline 2032 & \$56,252 & \$53,946 & \\
\hline 2033 & \$57,377 & \$54,642 & \\
\hline 2034 & \$58,524 & \$55,348 & \\
\hline 2035 & \$59,695 & \$56,062 & \\
\hline 2036 & \$60,889 & \$56,786 & \\
\hline 2037 & \$62,107 & \$57,519 & \\
\hline 2038 & \$63,349 & \$58,262 & \\
\hline 2039 & \$64,616 & \$59,014 & \\
\hline 2040 & \$65,908 & \$59,776 & \\
\hline 2041 & \$67,226 & \$60,547 & \\
\hline 2042 & \$68,571 & \$61,329 & \\
\hline 2043 & \$69,942 & \$62,121 & \\
\hline 2044 & \$71,341 & \$62,923 & \\
\hline 2045 & \$72,768 & \$63,735 & \\
\hline 0 & \$0 & \$0 & \\
\hline
\end{tabular}

Traffic Safety Benefit-Cost Calculation
Highway Safety Improvement Program (HSIP) Reactive Project

\section*{A. Roadway Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Route & TH 47 & District & Metro & County & Anoka \\
\hline Begin RP & 600 ft S of Xkimo St & End RP & Coolidge St NW & Miles & 0.7 mile \\
\hline Location & \multicolumn{3}{|l|}{TH 47 from 600 ft south of Xkimo St to Collidge St NW} & & \\
\hline
\end{tabular}

\section*{B. Project Description}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Proposed Work \\
Project Cost*
\end{tabular}} & \multicolumn{3}{|l|}{Install shared use path} \\
\hline & & Installation Year & 2026 \\
\hline Project Service Life & 20 years & Traffic Growth Factor & 2.0\% \\
\hline \multicolumn{4}{|l|}{* exclude Right of Way from Project Cost} \\
\hline
\end{tabular}
C. Crash Modification Factor
\begin{tabular}{|c|c|c|c|c|}
\hline 0.41 & Fatal (K) Crashes & \multirow[t]{2}{*}{Reference} & CMF ID: 9240 & \\
\hline 0.41 & \multicolumn{3}{|l|}{Serious Injury (A) Crashes} & \\
\hline 0.41 & Moderate Injury (B) Crashes & \multicolumn{3}{|l|}{Crash Type Ped/Bike} \\
\hline 0.41 & \multicolumn{4}{|l|}{Possible Injury (C) Crashes} \\
\hline 0.41 & Property Damage Only Crashes & & & www.CMFclearinghouse.org \\
\hline
\end{tabular}
D. Crash Modification Factor (optional second CMF)
\begin{tabular}{lll} 
& Fatal (K) Crashes & Reference \\
\cline { 1 - 1 } & & \\
\hline & Serious Injury (A) Crashes & \\
\hline & Crash Type & \\
\hline & & \\
Possible Injury (C) Crashes & & www.CMFclearinghouse.org
\end{tabular}

F. Analysis Assumptions
\begin{tabular}{|l|r|lll}
\hline Crash Severity & Crash Cost & \\
\hline K crashes & \(\$ 1,500,000\) & Link: & \\
\hline A crashes & \(\$ 750,000\) & & \\
\hline B crashes & \(\$ 230,000\) & Real Discount Rate & \(0.7 \%\) \\
\hline C crashes & \(\$ 120,000\) & Traffic Growth Rate & \(2.0 \%\) \\
\hline PDO crashes & \(\$ 13,000\) & Project Service Life & 20 years \\
\hline
\end{tabular}
G. Annual Benefit
\begin{tabular}{|l|c|c|c|}
\hline Crash Severity & Crash Reduction & \multicolumn{1}{c|}{ Annual Reduction } & Annual Benefit \\
\hline K crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline A crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline B crashes & 1.18 & 0.39 & \(\$ 90,467\) \\
\hline C crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline PDO crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline
\end{tabular}
H. Amortized Benefit
\begin{tabular}{|c|c|c|c|}
\hline Year & Crash Benefits & Present Value & \\
\hline 2026 & \$90,467 & \$90,467 & Total \(=\) \$2,049,404 \\
\hline 2027 & \$92,276 & \$91,635 & \\
\hline 2028 & \$94,122 & \$92,818 & \\
\hline 2029 & \$96,004 & \$94,016 & \\
\hline 2030 & \$97,924 & \$95,229 & \\
\hline 2031 & \$99,883 & \$96,459 & \\
\hline 2032 & \$101,880 & \$97,704 & \\
\hline 2033 & \$103,918 & \$98,965 & \\
\hline 2034 & \$105,996 & \$100,243 & \\
\hline 2035 & \$108,116 & \$101,537 & \\
\hline 2036 & \$110,278 & \$102,848 & \\
\hline 2037 & \$112,484 & \$104,176 & \\
\hline 2038 & \$114,734 & \$105,521 & \\
\hline 2039 & \$117,028 & \$106,883 & \\
\hline 2040 & \$119,369 & \$108,263 & \\
\hline 2041 & \$121,756 & \$109,660 & \\
\hline 2042 & \$124,191 & \$111,076 & \\
\hline 2043 & \$126,675 & \$112,510 & \\
\hline 2044 & \$129,209 & \$113,962 & \\
\hline 2045 & \$131,793 & \$115,434 & \\
\hline 0 & \$0 & \$0 & \\
\hline
\end{tabular}

Traffic Safety Benefit-Cost Calculation
Highway Safety Improvement Program (HSIP) Reactive Project

\section*{A. Roadway Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Route & TH 47 & District & Metro & County & Anoka \\
\hline Begin RP & 600 ft S of Xkimo St & End RP & Coolidge St NW & Miles & 0.7 mile \\
\hline Location & TH 47 at Collidge St NW & & & & \\
\hline
\end{tabular}

\section*{B. Project Description}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Proposed Work \\
Project Cost*
\end{tabular}} & \multicolumn{3}{|l|}{Install right-in/right-out} \\
\hline & & Installation Year & 2026 \\
\hline Project Service Life & 20 years & Traffic Growth Factor & 2.0\% \\
\hline \multicolumn{4}{|l|}{* exclude Right of Way from Project Cost} \\
\hline
\end{tabular}
C. Crash Modification Factor
\begin{tabular}{|lll}
\hline 0.55 & Fatal (K) Crashes & Reference CMF ID: 9821 \\
\hline 0.55 & Serious Injury (A) Crashes & \\
\hline 0.55 & Moderate Injury (B) Crashes & Crash Type All \\
\hline 0.55 & Possible Injury (C) Crashes & \\
\hline 0.55 & Property Damage Only Crashes & \\
\hline
\end{tabular}
D. Crash Modification Factor (optional second CMF)
\begin{tabular}{lll} 
& Fatal (K) Crashes & Reference \\
\cline { 1 - 1 } & & \\
\hline & Serious Injury (A) Crashes & \\
\hline & Crash Type & \\
\hline & & \\
Possible Injury (C) Crashes & & www.CMFclearinghouse.org
\end{tabular}

F. Analysis Assumptions
\begin{tabular}{|l|r|lll}
\hline Crash Severity & Crash Cost & \\
\hline K crashes & \(\$ 1,500,000\) & Link: & \\
\hline A crashes & \(\$ 750,000\) & & \\
\hline B crashes & \(\$ 230,000\) & Real Discount Rate & \(0.7 \%\) \\
\hline C crashes & \(\$ 120,000\) & Traffic Growth Rate & \(2.0 \%\) \\
\hline PDO crashes & \(\$ 13,000\) & Project Service Life & 20 years \\
\hline
\end{tabular}
G. Annual Benefit
\begin{tabular}{|l|c|c|c|}
\hline Crash Severity & \multicolumn{1}{c|}{ Crash Reduction } & \multicolumn{1}{c|}{ Annual Reduction } & Annual Benefit \\
\hline K crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline A crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline B crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline C crashes & 0.00 & 0.00 & \(\$ 0\) \\
\hline PDO crashes & 1.80 & 0.60 & \(\$ 7,800\) \\
\hline
\end{tabular}
H. Amortized Benefit
\begin{tabular}{|c|c|c|c|}
\hline Year & Crash Benefits & Present Value & \\
\hline 2026 & \$7,800 & \$7,800 & Total \(=\$ 176,699\) \\
\hline 2027 & \$7,956 & \$7,901 & \\
\hline 2028 & \$8,115 & \$8,003 & \\
\hline 2029 & \$8,277 & \$8,106 & \\
\hline 2030 & \$8,443 & \$8,211 & \\
\hline 2031 & \$8,612 & \$8,317 & \\
\hline 2032 & \$8,784 & \$8,424 & \\
\hline 2033 & \$8,960 & \$8,533 & \\
\hline 2034 & \$9,139 & \$8,643 & \\
\hline 2035 & \$9,322 & \$8,754 & \\
\hline 2036 & \$9,508 & \$8,868 & \\
\hline 2037 & \$9,698 & \$8,982 & \\
\hline 2038 & \$9,892 & \$9,098 & \\
\hline 2039 & \$10,090 & \$9,215 & \\
\hline 2040 & \$10,292 & \$9,334 & \\
\hline 2041 & \$10,498 & \$9,455 & \\
\hline 2042 & \$10,708 & \$9,577 & \\
\hline 2043 & \$10,922 & \$9,701 & \\
\hline 2044 & \$11,140 & \$9,826 & \\
\hline 2045 & \$11,363 & \$9,953 & \\
\hline 0 & \$0 & \$0 & \\
\hline
\end{tabular}

\section*{CMF / CRF Details}

CMF ID: 325

Install a traffic signal
Description:
Prior Condition: Stop controlled
Category: Intersection traffic control
Study: Accident Modification Factors for Traffic Engineering and ITS Improvements, Harkey et al., 2008
\begin{tabular}{|c|c|c|}
\hline Star Quality Rating: \\
\(\qquad\) Crash Modification Factor (CMF) \\
\hline Value: & 0.56 \\
\hline Adjusted Standard Error: & 0.03 \\
\hline Unadjusted Standard Error: & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multicolumn{2}{|c|}{ Crash Reduction Factor (CRF) } \\
\hline Value: & 44 (This value indicates a decrease in crashes) \\
\hline Adjusted Standard Error: & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Applicability} \\
\hline Crash Type: & All \\
\hline Crash Severity: & All \\
\hline Roadway Types: & Not specified \\
\hline Number of Lanes: & \\
\hline Road Division Type: & \\
\hline Speed Limit: & \\
\hline Area Type: & Rural \\
\hline Traffic Volume: & \\
\hline Time of Day: & \\
\hline If & untermeasure is intersection-based \\
\hline Intersection Type: & Roadway/roadway (not interchange related) \\
\hline Intersection Geometry: & 3-leg,4-leg \\
\hline Traffic Control: & Stop-controlled \\
\hline Major Road Traffic Volume: & 3261 to 29926 Annual Average Daily Traffic (AADT) \\
\hline Minor Road Traffic Volume: & 101 to 10300 Annual Average Daily Traffic (AADT) \\
\hline
\end{tabular}

Development Details

\begin{tabular}{|c|c|}
\hline Country: & \\
\hline Type of Methodology Used: & 2 \\
\hline Sample Size Used: & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline & Other Details \\
\hline Included in Highway Safety \\
Manual?
\end{tabular} \begin{tabular}{l} 
Yes. HSM lists this CMF in bold font to indicate that it has the highest \\
reliability since it has an adjusted standard error of 0.1 or less.
\end{tabular}

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment. CRASH MODIFICATION FACTORS CLEARINGHOUSE

\section*{CMF / CRF Details}

CMF ID: 2338

Install TWLTL (two-way left turn lane) on two lane road
Description:
Prior Condition: No Prior Condition(s)
Category: Roadway
Study: Safety Evaluation of Installing Center Two-Way Left-Turn Lanes on Two-Lane Roads, Lyon et al., 2008
```

Star Quality Rating:

```

\section*{解解 [View score details]}
\begin{tabular}{|r|l|}
\hline \multicolumn{2}{|c|}{ Crash Modification Factor (CMF) } \\
\hline Value: & 0.686 \\
\hline Adjusted Standard Error: & \\
\hline Unadjusted Standard Error: & 0.057 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multicolumn{2}{|c|}{ Crash Reduction Factor (CRF) } \\
\hline Value: & 31.4 (This value indicates a decrease in crashes) \\
\hline Adjusted Standard Error: & \\
\hline
\end{tabular}
5.7

\section*{Applicability}
\begin{tabular}{|c|c|}
\hline Crash Type: & All \\
\hline Crash Severity: & All \\
\hline Roadway Types: & Not Specified \\
\hline Number of Lanes: & 2 \\
\hline Road Division Type: & Divided by TWLTL \\
\hline Speed Limit: & \\
\hline Area Type: & All \\
\hline Traffic Volume: & \\
\hline Time of Day: & All \\
\hline \multicolumn{2}{|r|}{If countermeasure is intersection-based} \\
\hline Intersection Type: & \\
\hline Intersection Geometry: & \\
\hline Traffic Control: & \\
\hline Major Road Traffic Volume: & \\
\hline Minor Road Traffic Volume: & \\
\hline
\end{tabular}
\begin{tabular}{|r|c|}
\hline Development Details \\
\hline Date Range of Data Used: & 1991 to 2004 \\
\hline Municipality: & \\
\hline State: & CA \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline Country: & \\
\hline Type of Methodology Used: & Before/after using empirical Bayes or full Bayes \\
\hline Sample Size Used: & Mile-years \\
\hline Before Sample Size Used: & 89 Mile-years \\
\hline After Sample Size Used: & 89 Mile-years \\
\hline Included in Highway Safety \\
\hline & \\
\hline Manual? & No \\
\hline Date Added to Clearinghouse: & Dec-01-2009 \\
\hline & \\
\hline
\end{tabular}

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

\section*{CMF / CRF Details}

CMF ID: 2351

Install TWLTL (two-way left turn lane) on two lane road
Description:
Prior Condition: No Prior Condition(s)
Category: Roadway
Study: Safety Evaluation of Installing Center Two-Way Left-Turn Lanes on Two-Lane Roads, Lyon et al., 2008
```

Star Quality Rating:

```

\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Crash Modification Factor (CMF) } \\
\hline Value: & 0.613 \\
\hline Adjusted Standard Error: & \\
\hline Unadjusted Standard Error: & 0.04 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multicolumn{2}{|c|}{ Crash Reduction Factor (CRF) } \\
\hline Value: & 38.7 (This value indicates a decrease in crashes) \\
\hline Adjusted Standard Error: & \\
\hline
\end{tabular}

\section*{Applicability}
\begin{tabular}{|c|c|}
\hline Crash Type: & Rear end \\
\hline Crash Severity: & All \\
\hline Roadway Types: & Not Specified \\
\hline Number of Lanes: & 2 \\
\hline Road Division Type: & Divided by TWLTL \\
\hline Speed Limit: & \\
\hline Area Type: & All \\
\hline Traffic Volume: & \\
\hline Time of Day: & All \\
\hline \multicolumn{2}{|r|}{If countermeasure is intersection-based} \\
\hline Intersection Type: & \\
\hline Intersection Geometry: & \\
\hline Traffic Control: & \\
\hline Major Road Traffic Volume: & \\
\hline Minor Road Traffic Volume: & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & Development Details \\
\hline Date Range of Data Used: & 1990 to 2004 \\
\hline Municipality: & \\
\hline State: & AR, CA, IL, NC \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline Country: & \\
\hline Type of Methodology Used: & Before/after using empirical Bayes or full Bayes \\
\hline Sample Size Used: & Mile-years \\
\hline Before Sample Size Used: & 582 Mile-years \\
\hline After Sample Size Used: & 582 Mile-years \\
\hline Included in Highway Safety & \\
\hline Manual? & No \\
\hline Date Added to Clearinghouse: & Dec-01-2009 \\
\hline Comments: & \\
\hline
\end{tabular}

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

\section*{CMF / CRF Details}

CMF ID: 9240

\section*{Install sidewalk}

\section*{Description:}

Prior Condition: No sidewalk present
Category: Pedestrians
Study: Statewide Analysis of Bicycle Crashes, Alluri et al., 2017
```

Star Quality Rating:

```

\section*{XCtnm [View score details]}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Crash Modification Factor (CMF) } \\
\hline Value: & 0.41 \\
\hline Adjusted Standard Error: & \\
\hline Unadjusted Standard Error: & \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|} 
& Crash Reduction Factor (CRF) \\
\hline Value: & 59 (This value indicates a decrease in crashes) \\
\hline Adjusted Standard Error: & \\
\hline Unadjusted Standard Error: & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Crash Type: & Vehicle/bicycle \\
\hline Crash Severity: & K (fatal), A (serious injury) \\
\hline Roadway Types: & Principal Arterial Other \\
\hline Number of Lanes: & 2 \\
\hline Road Division Type: & Divided by Median \\
\hline Speed Limit: & \\
\hline Area Type: & Urban \\
\hline Traffic Volume: & 600 to 50500 Annual Average Daily Traffic (AADT) \\
\hline Time of Day: & Not specified \\
\hline \multicolumn{2}{|r|}{If countermeasure is intersection-based} \\
\hline Intersection Type: & \\
\hline Intersection Geometry: & \\
\hline Traffic Control: & \\
\hline Major Road Traffic Volume: & \\
\hline Minor Road Traffic Volume: & \\
\hline
\end{tabular}


\section*{Other Details}


This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

\section*{CMF / CRF Details}

CMF ID: 9821

Install right-in-right-out (RIRO) operations at stop-controlled intersections
Description:
Prior Condition: No Prior Condition(s)
Category: Access management
Study: Safety Effects of Turning Movement Restrictions at Stop-Controlled Intersections, Le et al., 2018
```

Star Quality Rating:

```
[View score details]
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Crash Modification Factor (CMF) } \\
\hline Value: & 0.55 \\
\hline Adjusted Standard Error: & \\
\hline Unadjusted Standard Error: & 0.09 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multicolumn{2}{|c|}{ Crash Reduction Factor (CRF) } \\
\hline Value: & 45 (This value indicates a decrease in crashes) \\
\hline Adjusted Standard Error: & \\
\hline
\end{tabular}

\section*{Applicability}
\begin{tabular}{|c|c|}
\hline Crash Type: & All \\
\hline Crash Severity: & All \\
\hline Roadway Types: & Not specified \\
\hline Number of Lanes: & 4 and 6 \\
\hline Road Division Type: & Divided by Median \\
\hline Speed Limit: & \\
\hline Area Type: & Urban \\
\hline Traffic Volume: & \\
\hline Time of Day: & All \\
\hline
\end{tabular}

\section*{If countermeasure is intersection-based}
\begin{tabular}{|r|l|}
\hline Intersection Type: & Roadway/roadway (not interchange related) \\
\hline Intersection Geometry: & 3-leg \\
\hline Traffic Control: & Stop-controlled \\
\hline Major Road Traffic Volume: & 13433 to 75000 Annual Average Daily Traffic (AADT) \\
\hline Minor Road Traffic Volume: & 51 to 2600 Annual Average Daily Traffic (AADT) \\
\hline
\end{tabular}

Development Details
\begin{tabular}{|r|l|l|}
\hline Date Range of Data Used: & \\
\hline Municipality: & \\
\hline State: & CA \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Country: & USA \\
\hline Type of Methodology Used: & Regression cross-section \\
\hline Sample Size Used: & \\
\hline & \\
\hline
\end{tabular}

\section*{Other Details}

\section*{Included in Highway Safety Manual?}

\section*{Date Added to Clearinghouse:}

\section*{Comments:}

No

Oct-27-2018

This CMF compares urban, three-legged, stop-controlled intersections with RIRO operation to full movement. This CMF looks at Total crashes. Total crashes are defined as all crashes within 100 ft of intersection (all types and severities combined)

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

Crash Case Listing
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Route System & Route Number & Measure & Co & City & \begin{tabular}{l}
Incident \\
Number
\end{tabular} & Date & Time & Day of Week & Basic Type & Num Veh & Sev \\
\hline 03-MNTH & 47 & 21.467 & 02 & Anoka & 00843736 & 09/30/20 & 1650 & WED & Rear End & 2 & N \\
\hline 03-MNTH & 47 & 21.504 & 02 & Anoka & 00706010 & 04/24/19 & 1550 & WED & Rear End & 2 & N \\
\hline 03-MNTH & 47 & 21.510 & 02 & Anoka & 00757242 & 10/25/19 & 1630 & FRI & Rear End & 2 & N \\
\hline 03-MNTH & 47 & 21.579 & 02 & Anoka & 00835809 & 08/17/20 & 1430 & MON & SSS & 2 & N \\
\hline 03-MNTH & 47 & 21.610 & 02 & Anoka & 00729020 & 06/24/19 & 1230 & MON & Bike & 1 & B \\
\hline 03-MNTH & 47 & 21.630 & 02 & Anoka & 00939495 & 08/31/21 & 0830 & TUE & Other & 2 & N \\
\hline 03-MNTH & 47 & 21.635 & 02 & Anoka & 00872483 & 01/02/21 & 0516 & SAT & Rear End & 3 & B \\
\hline 03-MNTH & 47 & 21.642 & 02 & Anoka & 00801067 & 02/27/20 & 1103 & THU & Rear End & 3 & N \\
\hline O3-MNTH & 47 & 21.644 & 02 & Anoka & 00935003 & 06/29/21 & 1744 & TUE & Rear End & 2 & N \\
\hline 03-MNTH & 47 & 21.646 & 02 & Anoka & 00755848 & 10/20/19 & 1455 & SUN & Rear End & 3 & N \\
\hline 03-MNTH & 47 & 21.654 & 02 & Anoka & 00736313 & 07/18/19 & 1725 & THU & Rear End & 3 & N \\
\hline 03-MNTH & 47 & 21.728 & 02 & Anoka & 00806599 & 04/10/20 & 1511 & FRI & Rear End & 2 & N \\
\hline 03-MNTH & 47 & 21.816 & 02 & Anoka & 00690811 & 02/22/19 & 1645 & FRI & Angle & 2 & N \\
\hline 03-MNTH & 47 & 21.832 & 02 & Anoka & 00801294 & 02/19/20 & 1150 & WED & Rear End & 2 & N \\
\hline 03-MNTH & 47 & 21.882 & 02 & Anoka & 00912856 & 06/17/21 & 1031 & THU & Angle & 2 & C \\
\hline 03-MNTH & 47 & 21.891 & 02 & Anoka & 00755650 & 10/18/19 & 2002 & FRI & Head On & 3 & N \\
\hline 03-MNTH & 47 & 21.894 & 02 & Anoka & 00975002 & 11/21/21 & 2055 & SUN & Angle & 2 & N \\
\hline 03-MNTH & 47 & 21.989 & 02 & Anoka & 00738424 & 07/26/19 & 1935 & FRI & Head On & 2 & N \\
\hline 03-MNTH & 47 & 22.083 & 02 & Anoka & 00849513 & 10/23/20 & 1545 & FRI & Rear End & 3 & N \\
\hline 03-MNTH & 47 & 22.089 & 02 & Anoka & 00838198 & 08/31/20 & 1612 & MON & Rear End & 2 & N \\
\hline 03-MNTH & 47 & 22.090 & 02 & Anoka & 00887208 & 01/29/21 & 1535 & FRI & Rear End & 2 & N \\
\hline 03-MNTH & 47 & 22.091 & 02 & Anoka & 00803777 & 03/05/20 & 1010 & THU & Angle & 2 & N \\
\hline 05-MSAS & 139 & 0.907 & 02 & Anoka & 00907699 & 05/23/21 & 0930 & SUN & SVROR & 1 & B \\
\hline
\end{tabular}

Selection Filter:
WORK AREA: County('659447') - FILTER: Year('2019','2020','2021') - SPATIAL FILTER APPLIED

Analyst:
Notes:

\section*{Jacob Bongard}


TH 47 Corridor Improvements
2022 Regional Solicitation Application
(1) BOTMON

M
\(\substack{\text { OEARTMENT OE, } \\ \text { RAASPORATION }} 1\)
Exhibit City of Anoka, MN


TH 47 Corridor Improvements
2022 Regional Solicitation Application

Mn
OEARPGMNTOF
TRANSPORTATION
\(\sim\) real. classic.
Exhibit
2 of 2


TH 47 Corridor Improvements - Existing Conditions
2022 Regional Solicitation Application

M

Exhibit City of Anoka, MN


TH 47 Corridor Improvements - Existing Conditions
2022 Regional Solicitation Application

\(\mathrm{m}^{n}\) OERARTMENT OF
TRANSPORTATON

Exhibit City of Anoka, MN

MnDOT Metro District
1500 West County Road B-2
Roseville, MN 55113

April 12, 2022
Ross Tillman Bolton \& Menk, Inc, on behalf of, City of Anoka

\section*{Re: MnDOT Letter for Anoka's Metropolitan Council/Transportation Advisory Board 2022 Regional Solicitation Funding Request for TH 47 Corridor Improvements}

Ross Tillman,

This letter documents MnDOT Metro District's recognition for the City of Anoka to pursue funding for the Metropolitan Council/Transportation Advisory Board's (TAB) 2022 Regional Solicitation for TH 47 Corridor Improvements.

As proposed, this project impacts MnDOT right-of-way on TH 47. As the agency with jurisdiction over TH 47, MnDOT will allow Anoka to seek improvements proposed in the application. Details of any future maintenance agreement with the City will need to be determined during the project development to define how the improvements will be maintained for the project's useful life if the project receives funding.

There is no funding from MnDOT currently planned or programmed for this improvement. If your project receives funding, continue to work with MnDOT Area staff to coordinate needs and opportunities for cooperation.

MnDOT Metro District looks forward to continued cooperation with Anoka as this project moves forward and as we work together to improve safety and travel options within the Metro Area.

If you have questions or require additional information at this time, please reach out to North Area Manager Melissa Barnes at melissa.barnes@state.mn.us or 651-234-7718.

Sincerely,
\begin{tabular}{|c|c|}
\hline Michael & Digitally signed by Michael Barnes \\
\hline Barnes & Date: 2 202.0.4.12. \\
\hline
\end{tabular}

Michael Barnes, PE
Metro District Engineer

CC: Melissa Barnes, Metro District Area Manager; Dan Erickson, Metro State Aid Engineer; Molly McCartney, Metro Program Director

\section*{TH 47 (St. Francis Blvd) Corridor Improvements Project}

Applicant, Location, \&
Route: City of Anoka in Anoka County, Highway 47 from 0.1 mi south of Xkimo St north to TH 47/Coolidge St NW


Application Category:
Roadways including Multimodal Elements - Roadway
Reconstruction/Modernization


Funding Information:
Requested Award Amount: \$4,951,600
Local Match: \$1,305,400
Project Total: \$6,527,000


Project Benefits:
- Crash reduction / safety improvements
- New traffic signal and improved side street access
- New bicycle and pedestrian shared use path, with linkage to regional parks, trails, high school and public library
- Marked/designated pedestrian crossings of TH 47 with pedestrian refuge areas
- Easier and safer left turns


\section*{Project Description}

This project will focus on improving intersection operations and safety, providing a new shared use path for bicyclists and pedestrians, safe left turning movements and driveway access, and a means to accommodate future growth. Project elements consist of a new signalized intersection, side street access restrictions, a new center left turn lane, a new shared use path and marked/designated pedestrian crossings of TH 47.


\section*{Project Benefits}

TH 47 is a busy (19,000+ ADT) two-lane road, and the project segment has a crash rate three times higher than the statewide average. Long queues are present along the corridor, turning from side streets is difficult, and there is no bicycle and pedestrian access. This project will improve all these factors - reducing crashes, alleviating delays, providing better access from adjacent neighborhoods, and providing new bicycle and pedestrian infrastructure to cross and travel along the highway.

\section*{Other Information}

This project links directly to a recently completed Anoka County intersection improvement project at Bunker Lake Blvd/TH 47, and the MnDOT-led BNSF rail grade separation project immediately south of the project area which is scheduled for 2025 construction.

\section*{Anoka County}

TRANSPORTATION DIVISION
Highway

Joseph J. MacPherson, P.E. County Engineer

April 11, 2022

Mr. Ben Nelson, Project Manager
City of Anoka
2015 First Avenue North
Anoka, MN 55303-2270
Dear Mr. Nelson,
Anoka County supports the City of Anoka's application for federal funding through the Met Council's 2022 Regional Solicitation for the TH 47 Corridor Improvements project within the City of Anoka.

The proposed project improvements link to, and leverage, the benefits of Anoka County's recently completed TH 47 at CSAH 116 (Bunker Lake Boulevard) Intersection Improvement Project in several ways. It extends the traffic management and safety improvements south of the TH 47 and Bunker Lake Blvd intersection through the addition of a center left turn lane along TH 47, along with a new median to prevent left turns at the intersection of TH 47 and Coolidge Street NW. The TH 47 Improvement Project also included the addition of a new multi-use trail, which will link the Central Anoka Regional Trail and the Anoka Rum River Regional Trail. This trail network would provide access to the Anoka County Fairgrounds, Rum River South County Park, Rivers' Bend Park, Anoka High School, and Anoka County Rum River Library. Additional enhanced crossing improvements will allow pedestrian and bicycle access to this regional trail network.

Anoka County believes the proposed improvements will greatly improve the safety and reliability of the existing corridor, as well as promote improved local road access to TH 47 by enhancing critical access locations and closing, or reducing, movements at several other locations. The traffic safety and non-motorized access changes will have regional benefits beyond the local area, while also providing long-awaited improvements to adjacent neighborhoods and residents.

Sincerely,

\footnotetext{
Goseph Mac Pherson
Joseph J. MacPherson, P.E.
Transportation Division Manager/County Engineer
}

Our Passion Is Your Safe Way Home


TH 47 Corridor Improvements
2022 Regional Solicitation Application
(1) BOTMON

M
\(\substack{\text { OEARTMENT OE, } \\ \text { RAASPORATION }} 1\)
Exhibit City of Anoka, MN


TH 47 Corridor Improvements
2022 Regional Solicitation Application

Mn
OEARPGMNTOF
TRANSPORTATION
\(\sim\) real. classic.
Exhibit
2 of 2

TH 47 Corridor Improvements - Existing Conditions: Looking north at Anoka County Fairgrounds


TH 47 Corridor Improvements - Existing Conditions: At McKinley Street, looking north


\section*{TH 47 Corridor Improvements - Existing Conditions: South of Dunham Drive, looking south}


TH 47 Corridor Improvements - Existing Conditions: South of Coolidge Street, looking south
```

