Application

17071-2022 Roadway Spot Mobility
17634 - Highway 11 Intersection Improvement Project
Regional Solicitation - Roadways Including Multimodal Elements

Status:
Submitted Date:
Submitted
04/13/2022 10:36 PM

Primary Contact

Name:*	Angie			StensonLast Name
	Pronouns	First Name	Middle Name	
Title:	Sr. Transportation Planner			
Department:	Public Works Division			
Email:	astenson@co.carver.mn.us			
Address:	11360 Highway 212			
	Suite 1			
*	Cologne	Minnesota		55322
	city	State/Province		Postal Code/Zip
Phone:*	952-466-5273			
	Phone Ext.	Ext.		
Fax:	952-466-5			
What Grant Programs are you most interested in?	Regional Elements	ation - Roadway	s Includin	Multimodal

Organization Information

Name:

Jurisdictional Agency (if different):
Organization Type: County Government
Organization Website:
Address:
PUBLIC WORKS
11360 HWY 212 W \#1

$*$	COLOGNE	Minnesota	Stase/Province

Phone:*
Ext.

Fax:

PeopleSoft Vendor Number
0000026790A12

Project Information

Project Name
Primary County where the Project is Located
Cities or Townships where the Project is Located:
Jurisdictional Agency (If Different than the Applicant):

Highway 11 Intersection Improvement Project
Carver
Laketown Township

Brief Project Description (Include location, road name/functional class, type of improvement, etc.)

The Highway 11 Intersection Improvement project will reconstruct the intersection of Highway 11 and 10 in Carver County. Proposed improvements include the expansion of Highway 11 to a four-lane divided section, and the addition of a second eastbound lane on Highway 10 through the project intersection area. The project will support high priority needs identified in Highway 11 and Highway 10 corridor studies led by Carver County.

Highway 11, an A-Minor arterial, links the cities of Victoria and Carver to Highway 10 and to US 212. Highway 10, an A-Minor Arterial, serves as a major corridor connecting the cities of Chaska, Victoria, Waconia and Carver, as well as providing access to US 212. Highway 10 is one of only three major thoroughfares running east-west through Carver County. Due to the large amounts of residential growth in Victoria and Carver in recent years, this intersection serves as an existing and future important hub for local and regional mobility as large amounts of growth are projected to continue in the area in the coming years. The Cities of Victoria, Chanhassen, and Chaska will each average a 43% growth rate by 2040.

This intersection is over capacity during the peak hours with existing volumes and is currently controlled by a wood pole signal system which was installed in 2013 in response to several severe injury vehicle crashes occurring at the intersection. Since the signal's installation, severe crashes have been reduced, but the growth in area traffic volumes is creating notable operational concerns. The signal system now only adequately serves the intersection during non-peak hours, and the existing intersection geometry is over capacity during the peak hours with queues a quarter mile occurring daily and unacceptable delays for users attempting to access Highway 10. The issues at the
intersection have been noted by county residents and policy makers and this is a high-priority project for the County.

This project will offer immediate relief in added capacity through the intersection with the installation of additional eastbound and westbound through lanes and extended turn lanes on Highway 10. Highway 11 will be reconstructed to a four-lane divided urban section with dual southbound left turn lanes. The project will connect to an existing multiuse trail, provide improved intersection crossing environment for pedestrians, and proactively accommodate the planned regional trail facility and other future pedestrian facilities planned with future development by limiting future impacts to the intersection. The proposed improvements are expected to efficiently and safely serve the greater area for years to come and accommodate future development in the immediate area.

TRANSPORTATION IMPROVEMENT PROGRAM (TIP) DESCRIPTION - will be used in TIP if the project is selected for funding. See MnDOT's TIP description guidance.

Reconstruction of CSAH 11 and CSAH 10 Intersection in Carver County

Include both the CSAH/MSAS/TH references and their corresponding street names in the TIP Description (see Resources link on Regional Solicitation webpage for examples).

Project Funding

Are you applying for competitive funds from another source(s) to implement this project?

If yes, please identify the source(s)
Federal Amount \$3,040,000.00
Match Amount \$760,000.00
Minimum of 20% of project total
Project Total
$\$ 3,800,000.00$
For transit projects, the total cost for the application is total cost minus fare revenues.

Minimum of 20\%
Compute the match percentage by dividing the match amount by the project total
Source of Match Funds
County
A minimum of 20% of the total project cost must come from non-federal sources; additional match funds over the 20% minimum can come from other federal sources

Preferred Program Year
Select one:
2026, 2027
Select 2024 or 2025 for TDM and Unique projects only. For all other applications, select 2026 or 2027.
Additional Program Years:
2025
Select all years that are feasible if funding in an earlier year becomes available.

Project Information: Roadway Projects

County, City, or Lead Agency	Carver County
Functional Class of Road	A-Minor Arterial Connector
Road System	CSAH
TH, CSAH, MSAS, CO. RD., TWP. RD., CITY STREET	
Road/Route No.	11
i.e., 53 for CSAH 53	
Name of Road	Victoria Blvd/Jonathan Carver Pkwy.
Example; 1st ST., MAIN AVE	
Zip Code where Majority of Work is Being Performed	55318
(Approximate) Begin Construction Date	03/01/2026
(Approximate) End Construction Date	10/30/2026
TERMINI:(Termini listed must be within 0.3 miles of any work)	

From:
(Intersection or Address)
To:
(Intersection or Address)
DO NOT INCLUDE LEGAL DESCRIPTION
Or At
Miles of Sidewalk (nearest 0.1 miles)
Miles of Trail (nearest 0.1 miles)
Miles of Trail on the Regional Bicycle Transportation Network (nearest 0.1 miles)

Primary Types of Work

Examples: GRADE, AGG BASE, BIT BASE, BIT SURF, SIDEWALK, CURB AND GUTTER,STORM SEWER, SIGNALS, LIGHTING, GUARDRAIL, BIKE PATH, PED RAMPS, BRIDGE, PARK AND RIDE, ETC.
0.3

800 ft S of Guernsey Ave, 1000 ft W of CSAH 11
$1,200 \mathrm{ft} \mathrm{N}$ of CSAH 10, 1,600 ft E of CSAH 11

0
0.2

Grading, Agg Base, Bituminous Surface, Signals, Bike Path, Ped Ramps

BRIDGE/CULVERT PROJECTS (IF APPLICABLE)

Old Bridge/Culvert No.:

New Bridge/Culvert No.:
Structure is Over/Under
(Bridge or culvert name):

Requirements - All Projects

All Projects

1.The project must be consistent with the goals and policies in these adopted regional plans: Thrive MSP 2040 (2014), the 2040 Transportation Policy Plan (2018), the 2040 Regional Parks Policy Plan (2018), and the 2040 Water Resources Policy Plan (2015).

Check the box to indicate that the project meets this requirement. Yes
2. The project must be consistent with the 2040 Transportation Policy Plan. Reference the 2040 Transportation Plan goals, objectives, and strategies that relate to the project.

Briefly list the goals, objectives, strategies, and associated pages:

The project aligns with the 2040 Transportation Policy Plan by prioritizing the following goals and strategies:

Goal: Safety and Security (p. 60)

Objective: A) Reduce crashes and improve safety and security for all modes of passenger travel and freight transport (p. 60)

Strategies: B1) Regional transportation partners will incorporate safety and security considerations for all modes and users throughout the processes of planning, funding, construction, and operation (p. 2.20); and B3) Regional transportation partners should monitor and routinely analyze safety and security data by mode and severity to identify priorities and progress (p. 2.21).

Goal: Access to Destinations (p. 62)

Objectives: B) Increase travel time reliability and predictability for travel on highway and transit systems.

Strategies: C9) The Metropolitan Council will support investments in A-minor arterials that build, manage, or improve the system's ability to supplement the capacity of the Principal Arterial system and support access to the region's job, activity, and industrial and manufacturing concentrations (p. 2.32); and C15) Regional transportation partners should focus investments on completing Priority Regional Transportation Corridors and on improving the larger Regional Bicycle Transportation Network (p. 2.36).

Goal: Competitive Economy (p. 64)

Objective: B.) Invest in a multimodal transportation system to attract and retain businesses and
residents (p. 64)

Strategies: D2) The Metropolitan Council will coordinate with other agencies planning and pursuing transportation investments that strengthen connections to other regions in Minnesota and the Upper Midwest, the nation, and world including intercity bus and passenger rail, highway corridors, air service, and freight infrastructure (p. 2.38).

Goal: Healthy Environment (p. 66)

Objectives: A) Reduce transportation-related air emissions.

Strategies: E2) The Metropolitan Council and MnDOT will consider reductions in transportationrelated emissions of air pollutants and greenhouse gases when prioritizing transportation investments (p. 2.43).

Goal: Leveraging Transportation Investment to Guide Land Use (p. 70)

Objectives: B) Maintain adequate highway, riverfront, and rail-accessible land to meet existing and future demand for freight movement; C) Encourage local land use design that integrates highways, streets, transit, walking, and bicycling.

Strategies: F2) Local governments should plan for increased density and a diversification of uses in job concentrations, nodes along corridors, and local centers to maximize the effectiveness of the transportation system (p. 2.49); F3) governments will plan, build, operate, maintain, and rebuild an adequate system of interconnected hwys and local roads (p. 2.50).
3. The project or the transportation problem/need that the project addresses must be in a local planning or programming document. Reference the name of the appropriate comprehensive plan, regional/statewide plan, capital improvement program, corridor study document [studies on trunk highway must be approved by the Minnesota Department of Transportation and the Metropolitan Council], or other official plan or program of the applicant agency [includes Safe Routes to School Plans] that the project is included in and/or a transportation problem/need that the project addresses.

Carver County 2040 Comprehensive Plan: pages
4.11, 4.12, 4.22,4.39-43.

Carver County 2013 Roadway Safety Plan: page 4-
20.

List the applicable documents and pages: Unique projects are exempt from this qualifying requirement because of their innovative nature.

City of Chaska 2040 Comprehensive Plan: pages 6-15, 6-30, 6-66.

City of Victoria 2040 Comprehensive Plan: pages 122, 124.

Highway 10 Corridor Study (2018-2020): pages 1315, 56, 74-80.

Limit 2,800 characters, approximately 400 words
4.The project must exclude costs for studies, preliminary engineering, design, or construction engineering. Right-of-way costs are only eligible as part of transit stations/stops, transit terminals, park-and-ride facilities, or pool-and-ride lots. Noise barriers, drainage projects, fences, landscaping, etc., are not eligible for funding as a standalone project, but can be included as part of the larger submitted project, which is otherwise eligible. Unique project costs are limited to those that are federally eligible.

Check the box to indicate that the project meets this requirement. Yes
5.Applicant is a public agency (e.g., county, city, tribal government, transit provider, etc.) or non-profit organization (TDM and Unique Projects applicants only). Applicants that are not State Aid cities or counties in the seven-county metro area with populations over 5,000 must contact the MnDOT Metro State Aid Office prior to submitting their application to determine if a public agency sponsor is required.

Check the box to indicate that the project meets this requirement. Yes
6.Applicants must not submit an application for the same project elements in more than one funding application category.

Check the box to indicate that the project meets this requirement. Yes
7.The requested funding amount must be more than or equal to the minimum award and less than or equal to the maximum award. The cost of preparing a project for funding authorization can be substantial. For that reason, minimum federal amounts apply. Other federal funds may be combined with the requested funds for projects exceeding the maximum award, but the source(s) must be identified in the application. Funding amounts by application category are listed below in Table 1. For unique projects, the minimum award is $\$ 500,000$ and the maximum award is the total amount available each funding cycle (approximately \$4,000,000 for the 2022 funding cycle)
Strategic Capacity (Roadway Expansion): \$1,000,000 to \$10,000,000
Roadway Reconstruction/Modernization: \$1,000,000 to \$7,000,000
Traffic Management Technologies (Roadway System Management): \$500,000 to \$3,500,000
Spot Mobility and Safety: \$1,000,000 to \$3,500,000
Bridges Rehabilitation/Replacement: \$1,000,000 to \$7,000,000
Check the box to indicate that the project meets this requirement. Yes
8. The project must comply with the Americans with Disabilities Act (ADA).

Check the box to indicate that the project meets this requirement. Yes
9.In order for a selected project to be included in the Transportation Improvement Program (TIP) and approved by USDOT, the public agency sponsor must either have a current Americans with Disabilities Act (ADA) self-evaluation or transition plan that covers the public right of way/transportation, as required under Title II of the ADA. The plan must be completed by the local agency before the Regional Solicitation application deadline. For the 2022 Regional Solicitation funding cycle, this requirement may include that the plan is updated within the past five years.

The applicant is a public agency that employs 50 or more people and has a completed ADA transition plan that covers the public Yes right of way/transportation.
(TDM and Unique Project Applicants Only) The applicant is not a public agency subject to the self-evaluation requirements in Title II of the ADA.

Date plan completed:
02/18/2014

Link to plan:
https://www.co.carver.mn.us/home/showdocument?
id=1164
The applicant is a public agency that employs fewer than 50 people and has a completed ADA self-evaluation that covers the public right of way/transportation.

Date self-evaluation completed:
Link to plan:
Upload plan or self-evaluation if there is no link
Upload as PDF
10.The project must be accessible and open to the general public.

Check the box to indicate that the project meets this requirement. Yes
11.The owner/operator of the facility must operate and maintain the project year-round for the useful life of the improvement, per FHWA direction established 8/27/2008 and updated 6/27/2017. Unique projects are exempt from this qualifying requirement.

Check the box to indicate that the project meets this requirement. Yes
12. The project must represent a permanent improvement with independent utility. The term independent utility means the project provides benefits described in the application by itself and does not depend on any construction elements of the project being funded from other sources outside the regional solicitation, excluding the required non-federal match. Projects that include traffic management or transit operating funds as part of a construction project are exempt from this policy.

Check the box to indicate that the project meets this requirement. Yes
13.The project must not be a temporary construction project. A temporary construction project is defined as work that must be replaced within five years and is ineligible for funding. The project must also not be staged construction where the project will be replaced as part of future stages. Staged construction is eligible for funding as long as future stages build on, rather than replace, previous work.

Check the box to indicate that the project meets this requirement. Yes
14.The project applicant must send written notification regarding the proposed project to all affected state and local units of government prior to submitting the application.

Check the box to indicate that the project meets this requirement. Yes

Roadways Including Multimodal Elements

1.All roadway and bridge projects must be identified as a principal arterial (non-freeway facilities only) or A-minor arterial as shown on the latest TAB approved roadway functional classification map.

Check the box to indicate that the project meets this requirement. Yes
Roadway Strategic Capacity and Reconstruction/Modernization and Spot Mobility projects only:
2.The project must be designed to meet 10 -ton load limit standards.

Check the box to indicate that the project meets this requirement. Yes
Bridge Rehabilitation/Replacement and Strategic Capacity projects only:
3.Projects requiring a grade-separated crossing of a principal arterial freeway must be limited to the federal share of those project costs identified as local (non-MnDOT) cost responsibility using MnDOTs Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities manual. In the case of a federally funded trunk highway project, the policy guidelines should be read as if the funded trunk highway route is under local jurisdiction.

Check the box to indicate that the project meets this requirement.
4.The bridge must carry vehicular traffic. Bridges can carry traffic from multiple modes. However, bridges that are exclusively for bicycle or pedestrian traffic must apply under one of the Bicycle and Pedestrian Facilities application categories. Rail-only bridges are ineligible for funding.

Check the box to indicate that the project meets this requirement.
Bridge Rehabilitation/Replacement projects only:
5.The length of the bridge clear span must exceed 20 feet.

Check the box to indicate that the project meets this requirement.
6. The bridge must have a National Bridge Inventory Rating of 6 or less for rehabilitation projects and 4 or less for replacement projects.

Check the box to indicate that the project meets this requirement.
Roadway Expansion, Reconstruction/Modernization, and Bridge Rehabilitation/Replacement projects only:
7. All roadway projects that involve the construction of a new/expanded interchange or new interchange ramps must have approval by the Metropolitan Council/MnDOT Interchange Planning Review Committee prior to application submittal. Please contact Michael Corbett at MnDOT (Michael.J.Corbett@state.mn.us or 651-234-7793) to determine whether your project needs to go through this process as described in Appendix F of the 2040 Transportation Policy Plan.

Check the box to indicate that the project meets this requirement.

Requirements - Roadways Including Multimodal Elements

Specific Roadway Elements

CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES
Concrete Items (curb \& gutter, sidewalks, median barriers) \$393,700.00
Traffic Control \$126,000.00
Striping $\$ 40,300.00$
Signing \$40,300.00
Lighting $\$ 0.00$
Turf - Erosion \& Landscaping \$107,700.00
Bridge $\$ 0.00$
Retaining Walls $\$ 0.00$
Noise Wall (not calculated in cost effectiveness measure) $\$ 0.00$
Traffic Signals \$300,000.00
Wetland Mitigation $\$ 0.00$
Other Natural and Cultural Resource Protection $\$ 0.00$
RR Crossing $\$ 0.00$
Roadway Contingencies $\$ 424,400.00$
Other Roadway Elements $\$ 0.00$
Totals\$3,713,100.00
Specific Bicycle and Pedestrian Elements
CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES Cost
Path/Trail Construction \$14,000.00
Sidewalk Construction $\$ 0.00$
On-Street Bicycle Facility Construction $\$ 0.00$
Right-of-Way $\$ 0.00$
Pedestrian Curb Ramps (ADA) \$20,000.00
Crossing Aids (e.g., Audible Pedestrian Signals, HAWK) $\$ 0.00$
Pedestrian-scale Lighting $\$ 0.00$
Streetscaping \$52,900.00
Wayfinding $\$ 0.00$
Bicycle and Pedestrian Contingencies $\$ 0.00$
Other Bicycle and Pedestrian Elements $\$ 0.00$
Totals \$86,900.00

Specific Transit and TDM Elements

CONSTRUCTION PROJECT ELEMENTS/COST
ESTIMATES Cost
Fixed Guideway Elements $\$ 0.00$
Stations, Stops, and Terminals $\$ 0.00$
Support Facilities $\$ 0.00$
Transit Systems (e.g. communications, signals, controls, fare collection, etc.)
Vehicles $\$ 0.00$
Contingencies $\$ 0.00$
Right-of-Way $\$ 0.00$
Other Transit and TDM Elements $\$ 0.00$
Totals $\$ 0.00$

Transit Operating Costs

Number of Platform hours	0
Cost Per Platform hour (full loaded Cost)	$\$ 0.00$
Subtotal	$\$ 0.00$
Other Costs - Administration, Overhead,etc.	$\$ 0.00$

Totals

Total Cost	$\$ 3,800,000.00$
Construction Cost Total	$\$ 3,800,000.00$
Transit Operating Cost Total	$\$ 0.00$

Congestion within Project Area:

Free-Flow Travel Speed:57

The free-flow travel speed is the black number
Peak Hour Travel Speed:
42
The peak hour travel speed is the red number
Percentage Decrease in Travel Speed in Peak Hour Compared to
Free-Flow (calculation):
Upload the "Level of Congestion" map:

Congestion on adjacent Parallel Routes:

Adjacent Parallel Corridor Start and End Points:

Start Point:	Bavaria
End Point:	TH 41
Free-Flow Travel Speed:	34
The Free-Flow Travel Speed is black number.	18
Peak Hour Travel Speed:	

The Peak-Hour Travel Speed is red number.
Percentage Decrease in Travel Speed in Peak Hour Compared to Free-Flow (calculation):

Upload the "Level of Congestion" map:
1649818317934_CSAH11IntersectionImpts_LvICongest_parall el.pdf

Principal Arterial Intersection Conversion Study:

Proposed at-grade project that reduces delay at a High Priority
Intersection:
(70 Points)
Proposed at-grade project that reduces delay at a Medium Priority Intersection:
(65 Points)
Proposed at-grade project that reduces delay at a Low Priority Intersection:
(60 Points)
Not listed as a priority in the study: Yes
(0 Points)

Congestion Management and Safety Plan IV:

Proposed at-grade project that reduces delay at a CMSP opportunity area:
(70 Points)
Not listed as a CMSP priority location: Yes
(0 Points)

Measure C: Current Heavy Commercial Traffic

RESPONSE: Select one for your project, based on the updated 2021 Regional Truck Corridor Study:
Along Tier 1:
Miles:
(to the nearest 0.1 miles)
Along Tier 2:

Miles:
(to the nearest 0.1 miles)
Along Tier 3:
Yes
Miles:
(to the nearest 0.1 miles)
The project provides a direct and immediate connection (i.e., intersects) with either a Tier 1, Tier 2, or Tier 3 corridor:

None of the tiers:

Measure A: Engagement

i.Describe any Black, Indigenous, and People of Color populations, low-income populations, disabled populations, youth, or older adults within a $1 / 2$ mile of the proposed project. Describe how these populations relate to regional context. Location of affordable housing will be addressed in Measure C.
ii.Describe how Black, Indigenous, and People of Color populations, low-income populations, persons with disabilities, youth, older adults, and residents in affordable housing were engaged, whether through community planning efforts, project needs identification, or during the project development process.
iii.Describe the progression of engagement activities in this project. A full response should answer these questions:

The project service area benefits low-income, persons with disabilities, youth and elderly, Hispanic, and underserved rural populations. A lowincome, Hispanic population has 430 households in Brandondale Manufactured Home neighborhoods near the project area. The project also connects to the Chaska Public School campus with two middle schools, La Academia, outdoor activity fields, and the Chaska Community Center with numerous programs for youth, persons with disabilities, and the elderly. Chaska Middle School East and West and La Academia have a student population (K-8) of approximately 1,800 students. La Academia is a dual immersion program for learners starting in kindergarten with a goal for students to become biliterate and bilingual (Spanish and English).

These populations were engaged through the Highway 10 Corridor Study, a robust planning process with a focus on community engagement. Specific outreach to target populations included a pop-up meeting at the Chaska Community Center Lodge Senior Center on March 5, 2020; outreach to the Brandondale Manufactured Home neighborhood and translation of meeting invitations and materials into Spanish; neighborhood meetings; meetings with ISD 112 staff and survey of student's parents regarding transportation priorities for students.

In-person open houses were held on August 21, 2019 and December 19, 2019 with a virtual open house held in March-April 2020. To reach youth populations and families with children, an interactive online survey and comment map was made available with each round of public outreach. Residents were notified of public open houses or neighborhood meetings via direct postcard mailing. The mailing list contained over 4,000 addresses.

Meeting information was shared on social media including Facebook and Twitter and sent out via a project e-bulletin email with a project subscriber list of over 200. To reach rural populations that will benefit with improved regional mobility, the project was presented and discussed at the Laketown Township board meeting three times, including at the annual resident meeting with approximately 40 rural residents participating. Proposed improvements were presented to these groups and wide support for the project was gathered. Feedback from target populations focused on existing congestion, safety, and access concerns.

The project was impacted by public feedback with a strong desire for a near-term spot-mobility improvement instead of waiting for the full corridor reconstruct because of obvious concerns for significant safety and mobility issues. All populations will be further engaged through final design and construction. But funds are needed now for immediate regional safety and mobility benefits to these populations.

Measure B: Equity Population Benefits and Impacts

Describe the projects benefits to Black, Indigenous, and People of Color populations, low-income populations, children, people with disabilities, youth, and older adults. Benefits could relate to:
This is not an exhaustive list. A full response will support the benefits claimed, identify benefits specific to Equity populations residing or engaged in activities near the project area, identify benefits addressing a transportation issue affecting Equity populations specifically identified through engagement, and substantiate benefits with data.
Acknowledge and describe any negative project impacts to Black, Indigenous, and People of Color populations, low-income populations, children, people with disabilities, youth, and older adults. Describe measures to mitigate these impacts. Unidentified or unmitigated negative impacts may result in a reduction in points.
Below is a list of potential negative impacts. This is not an exhaustive list.

The project will improve a deficient intersection and provide mobility and access improvements through a low-cost, high benefit improvement. Currently, the 2-lane rural highway intersection with turn lanes and a wood pole signal system is a congestion barrier and safety issue for pedestrians in the area. The Highway $11 / 10$ intersection is a key connection for these communities for health, employment, and education opportunities, and the project will provide a reliable, safer, and more efficient connection.

The project will benefit all populations, including identified environmental justice populations living in the area, with improved regional connectivity and access to US 212 which is a major throughout fare to the SouthWest Transit East Creek Transit Station and job centers in Chaska and beyond to Eden Prairie and into the metro urban core. Highway 10 also parallels the Chaska Public School campus and Community Center. Downtown Chaska is an employment destination for much of the Hispanic/Latino population in the area. Through improvements to the Highway 10 corridor, this project will improve motorized and non-motorized access to this employment center and community destinations downtown.

Safety improvements includes enhanced pedestrian environment with ADA compliancy and a median refuge. Vulnerable users will be able to more confidently cross the roadway, using accessible ramps and crossings. Wider shoulders will also greatly improve the pedestrian and bicycle environment in this rural area until the RBTN Tier 2 corridor is built out with planned near future investments.

This project will not create negative impacts for the
> low-income populations, people of color, children, people with disabilities, or the elderly in Carver County. Instead, intersection improvements at the Highway 10/11 intersection will decrease travel times through the corridor and increase travel time reliability, this also means a decrease in transportation cost and increases in quality of life.

(Limit 2,800 characters; approximately 400 words):

Measure C: Affordable Housing Access

Describe any affordable housing developmentsexisting, under construction, or plannedwithin $1 / 2$ mile of the proposed project. The applicant should note the number of existing subsidized units, which will be provided on the Socio-Economic Conditions map. Applicants can also describe other types of affordable housing (e.g., naturally-occurring affordable housing, manufactured housing) and under construction or planned affordable housing that is within a half mile of the project. If applicable, the applicant can provide self-generated PDF maps to support these additions. Applicants are encouraged to provide a self-generated PDF map describing how a project connects affordable housing residents to destinations (e.g., childcare, grocery stores, schools, places of worship).
Describe the projects benefits to current and future affordable housing residents within $1 / 2$ mile of the project. Benefits must relate to affordable housing residents. Examples may include:
This is not an exhaustive list. Since residents of affordable housing are more likely not to own a private vehicle, higher points will be provided to roadway projects that include other multimodal access improvements. A full response will support the benefits claimed, identify benefits specific to residents of affordable housing, identify benefits addressing a transportation issue affecting residents of affordable housing specifically identified through engagement, and substantiate benefits with data.

There are 10 affordable housing units served by the $1 / 2$ mile buffer of the project area, all of which are owner-occupied Community Land Trust properties. The County can also confirm there are Housing Choice Vouchers being accepted by private landlords throughout this area. Affordability details for each location including number of units, number of bedrooms per unit, level of affordability, funding restrictions, voucher status, and fair housing plan status are listed in the attached documentation.

Response:
Also of note is affordable housing served by this project but outside the urban-focused $1 / 2$ mile boundary. The project is located in a rural township guided for one building eligibility per 40 acres, so a larger buffer area to define affordable housing served by the project would be consistent with Appendix D of the TPP. A cluster of affordable housing is located about one mile northeast of the project area. Another significant area served by the project is located 2-2.5 miles east of the project area and includes owner-occupied properties located in the Brandondale Manufactured Home neighborhood and approved Habitat for Humanity housing (8 units) at the southeast corner of the CSAH 10/TH 41 intersection. Shepherd of the Hill Presbyterian Church located at the southeast corner of CSAH 10/TH 41 intersection recently completed the final plat approval process with the City of Chaska for 8 new lots on the southeast corner of their property that will become twinhomes for Habitat for Humanity. The Brandondale Manufacture Home neighborhood has 430 existing units and is located east of the project area. With space for up to 493 households, the Brandondale neighborhood is generally affordable to those at less than 30\% of AMI.

The project will improve the transportation system
for these residents by improving reliability and delay, enhancing pedestrian amenities, and better connecting to schools, parks, transit station, and jobs in the community and region. The project will decrease delay and emissions in the corridor for this environmental justice population.

Measure D: BONUS POINTS

Project is located in an Area of Concentrated Poverty:
Projects census tracts are above the regional average for population in poverty or population of color (Regional Environmental Justice Area):

Project located in a census tract that is below the regional average for population in poverty or populations of color Yes (Regional Environmental Justice Area):

Upload the Socio-Economic Conditions map used for this measure.

1649815813181_CSAH11IntersectionImpts_SocioEcon_Afford ableHousing combined.pdf

Measure A: Congestion Reduction/Air Quality

| Total Peak | | | | | | EXPLANA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hour | Total Peak | Total Peak | | | | TION of |

44436

Vehicle Delay Reduced

Measure B:Roadway projects that do not include new roadway segments or railroad grade-separation elements

Total (CO, NOX, and VOC)
Peak Hour Emissions
without the Project

(Kilograms): \quad\begin{tabular}{c}
Total (CO, NOX, and VOC)

Peak Hour Emissions with

the Project (Kilograms):

Total (CO, NOX, and VOC)

Peak Hour Emissions

Reduced by the Project

(Kilograms):
\end{tabular}

Total

Total Emissions Reduced:
Upload Synchro Report

1649694746028_CSAH 11 Int_AM Peak Synchro Reports.pdf

Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

Measure B: Roadway projects that are constructing new roadway segments, but do not include railroad grade-separation elements (for Roadway Expansion applications only):

Total (CO, NOX, and VOC)
Peak Hour Emissions without the Project (Kilograms):

Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms):

Total (CO, NOX, and VOC)
Peak Hour Emissions
Reduced by the Project
(Kilograms):

0

0

0

Total Parallel Roadway

Emissions Reduced on Parallel Roadways 0

Upload Synchro Report
Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

New Roadway Portion:

Cruise speed in miles per hour with the project:
Vehicle miles traveled with the project:0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0

Fuel consumption in gallons:	0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced or	
Produced on New Roadway (Kilograms):	0
EXPLANATION of methodology and assumptions used:(Limit	
1,400 characters; approximately 200 words)	
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the	
Project (Kilograms):	0.0

Measure B:Roadway projects that include railroad grade-separation elements
Cruise speed in miles per hour without the project: 0
Vehicle miles traveled without the project: 0
Total delay in hours without the project: 0
Total stops in vehicles per hour without the project: 0
Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons (F1) 0
Fuel consumption in gallons (F2) 0
Fuel consumption in gallons (F3) 0Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by theProject (Kilograms):0EXPLANATION of methodology and assumptions used:(Limit
1,400 characters; approximately 200 words)

Measure A: Benefit of Crash Reduction

Crash Modification Factor Used:

CMF's used in the crash reduction associated with intersection improvements include upgrading the typical sections at the intersection to a divided section.

	The project intersection has historically been a location with concerning safety issues. The intersection was sidestreet stop-controlled until 2013 when the County installed a span-wire traffic signal to improve operations and safety for sidestreet movements. The signal has corrected the noted issues to a point, but this countermeasure was never intended to be
Rationale for Crash Modification Selected:	permanent. While the temporary signal currently in place has provided the desired safety benefit for nearly 10 years, the remaining crash issues can be associated to the underbuilt rural two-lane section. Dividing this high-speed, high-volume roadway is expected to provide reductions of all crash types. Lengthened turn lanes on Highway 10 are also expected to reduce rear end and sideswipe type collisions.
(Limit 1400 Characters; approximately 200 words)	
Project Benefit (\$) from B/C Ratio	\$3,499,391.00
Total Fatal (K) Crashes:	0
Total Serious Injury (A) Crashes:	0
Total Non-Motorized Fatal and Serious Injury Crashes:	0
Total Crashes:	15
Total Fatal (K) Crashes Reduced by Project:	0
Total Serious Injury (A) Crashes Reduced by Project:	0
Total Non-Motorized Fatal and Serious Injury Crashes Reduced by Project:	
Total Crashes Reduced by Project:	2
Worksheet Attachment Upload Crash Modification Factors and B/C Worksheet in PDF form.	1649820514397_CSAH10_11_Safety packaged-updated.pdf
Measure A: Pedestrian Safety	
Determine if these measures do not apply to your project. Does the project match either of the following descriptions? If either of the items are checked yes, then score for entire pedestrian safety measure is zero. Applicant does not need to respond to the sub-measures and can proceed to the next section.	
Project is primarily a freeway (or transitioning to a freeway) and does not provide safe and comfortable pedestrian facilities and crossings.	No

Existing location lacks any pedestrian facilities (e.g., sidewalks, marked crossings, wide shoulders in rural contexts) and project does not add pedestrian elements (e.g., reconstruction of a No roadway without sidewalks, that doesnt also add pedestrian crossings and sidewalk or sidepath on one or both sides).

SUB-MEASURE 1: Project-Based Pedestrian Safety Enhancements and Risk Elements

To receive maximum points in this category, pedestrian safety countermeasures selected for implementation in projects should be, to the greatest extent feasible, consistent with the countermeasure recommendations in the Regional Pedestrian Safety Action Plan and state and national best practices. Links to resources are provided on the Regional Solicitation Resources web page.
Please answer the following two questions with as much detail as possible based on the known attributes of the proposed design. If any aspect referenced in this section is not yet determined, describe the range of options being considered, to the greatest extent available. If there are project elements that may increase pedestrian risk, describe how these risks are being mitigated.

1. Describe how this project will address the safety needs of people crossing the street at signalized intersections, unsignalized intersections, midblock locations, and roundabouts.
Treatments and countermeasures should be well-matched to the roadways context (e.g., appropriate for the speed, volume, crossing distance, and other location attributes). Refer to the Regional Solicitation Resources web page for guidance links.

The project is located in a rural township area and reconstructs the only existing pedestrian crossing of Highway 10 for over a mile to the east in the City of Chaska and over 6.5 miles to the west in the City of Waconia. The project will greatly improve pedestrian safety at the intersection to connect the intersection to existing and future regional trails by providing a marked crossing of Highway 10 and Highway 11, where one does not exist today, and where the improved traffic signal will include APS components such as countdown times, APS push buttons, ADA compliant pedestrian ramps and high visibility crosswalk blocks. The traffic signal will also include intersection lighting for increased visibility to Response: pedestrians during nighttime hours. Furthermore, the reconstruction of Highway 11 will feature raised center medians which will have sufficient width to provide refuge to pedestrians crossing at the Highway 10 traffic signal and decrease crossing distance compared to the existing. This implementation is consistent with County, MnDOT, NCHRP and FHWA guidance for high-speed, highvolume intersections. Highway 11 is planned for a future linking trail connecting the Cities of Chaska, Victoria, Carver and Waconia. The design of the Highway 10/11 intersection will plan to accommodate the junction of these two future regional trails and connect to the existing trail on the south side of Highway 11.

Is the distance in between signalized intersections increasing (e.g., removing a signal)?
Select one:
No
If yes, describe what measures are being used to fill the gap between protected crossing opportunities for pedestrians (e.g., adding HighIntensity Activated Crosswalk beacons to help motorists yield and help pedestrians find a suitable gap for crossing, turning signal into a roundabout to slow motorist speed, etc.).

Response:
(Limit 1,400 characters; approximately 200 words)
Will your design increase the crossing distance or crossing time across any leg of an intersection? (e.g., by adding turn or through lanes, widening lanes, using a multi-phase crossing, prohibiting crossing on any leg of an intersection, pedestrian bridge requiring length detour, etc.). This does not include any increases to crossing distances solely due to the addition of bike lanes (i.e., no other through or turn lanes being added or widened).

Select one:
If yes,
How many intersections will likely be affected?
Response:
Describe what measures are being used to reduce exposure and delay for pedestrians (e.g., median crossing islands, curb bulb-outs, etc.)
Spot mobility improvements at the intersection with the addition of turn lanes and intersection capacity will be implemented with a divided section which will increase the total crossing distance for the intersection from the existing undivided section but decreases the currently uncontrolled crossing distance by adding pedestrian crossing infrastructure including a center median. Center median widths will be sufficient to serve as pedestrian refuge and decrease pedestrian exposure to traffic. Intersection radii design will be balanced between serving truck turning movements and minimizing pedestrian crossing distances. Existing facilities empty onto roadway shoulder abruptly and shoulder width varies along the highspeed Highway 11 corridor which also features limited sight distance due to vertical and horizontal curves. The pedestrian crossings will be signalized as part of this project to minimize pedestrian delay. The pedestrian safety and amenities will be greatly increased with this project compared to the rural, temporary wood-pole signal system currently in place. (See Existing conditions attachment)

If grade separated pedestrian crossings are being added and increasing crossing time, describe any features that are included that will reduce the detour required of pedestrians and make the separated crossing a more appealing option (e.g., shallow tunnel that doesnt require much elevation change instead of pedestrian bridge with numerous switchbacks).

Response:
(Limit 1,400 characters; approximately 200 words)
If mid-block crossings are restricted or blocked, explain why this is necessary and how pedestrian crossing needs and safety are supported in other ways (e.g., nearest protected or enhanced crossing opportunity)

Mid-block crossings are not restricted or blocked; however, no mid-block crossings exist or are accommodated because there are currently no land uses to serve where a mid-block crossing may be desired. Pedestrian facilities are included on one side of Highway 11 to serve the existing and nearterm development and are being implemented as the City of Victoria annexes and develops land north of the intersection. The area east of Highway 11 is designated as Chaska?s green-belt and development is not expected in the 20-year Comprehensive Plan horizon. For this reason, pedestrian facilities are not needed to serve midResponse: block crossings from west to east or to serve access to and from destinations on all sides of the intersection as might be required in urban areas, as it is currently a rural township area. Further, poor sightlines due to vertical and horizontal curvature further from the intersection create for unsafe and uncomfortable mid-block crossings that will detour users from wanting to cross mid-block within the project area. The new signal system will include APS components such as countdown times, APS push buttons, ADA compliant pedestrian ramps and high visibility crosswalk blocks making the dedicated intersection crossings much more convenient for users.
(Limit 1,400 characters; approximately 200 words)
2. Describe how motorist speed will be managed in the project design, both for through traffic and turning movements. Describe any project-related factors that may affect speed directly or indirectly, even if speed is not the intended outcome (e.g., wider lanes and turning radii to facilitate freight movements, adding turn lanes to alleviate peak hour congestion, etc.). Note any strategies or treatments being considered that are intended to help motorists drive slower (e.g., visual narrowing, narrow lanes, truck aprons to mitigate wide turning radii, etc.) or protect pedestrians if increasing motorist speed (e.g., buffers or other separation from moving vehicles, crossing treatments appropriate for higher speed roadways, etc.). effect to counter of the added roadway width.
Response: Drivers naturally travel at lower speeds in urban sections where curb and gutter is present. Pedestrian crossings will be marked, signalized, and use high visibility markings and signing to make drivers aware of their presence in the project area and to allow for dedicated pedestrian crossing movements.
(Limit 2,800 characters; approximately 400 words)
If known, what are the existing and proposed design, operation, and posted speeds? Is this an increase or decrease from existing conditions?
The posted speed limit is projected to stay the
Response: same in the project area. Existing posted speeds on CSAH 10 and 11 are 55 mph .
(Limit 1,400 characters; approximately 200 words)
SUB-MEASURE 2: Existing Location-Based Pedestrian Safety Risk Factors
These factors are based on based on trends and patterns observed in pedestrian crash analysis done for the Regional Pedestrian Safety Action Plan. Check off how many of the following factors are present. Applicants receive more points if more risk factors are present.

Existing road configuration is a One-way, 3+ through lanes
or

Existing road configuration is a Two-way, 4+ through lanes
Existing road has a design speed, posted speed limit, or speed study/data showing 85th percentile travel speeds in excess of 30 Yes MPH or more

Existing road has AADT of greater than 15,000 vehicles per day

List the AADT

SUB-MEASURE 3: Existing Location-Based Pedestrian Safety Exposure Factors
These factors are based on based on trends and patterns observed in pedestrian crash analysis done for the Regional Pedestrian Safety Action Plan. Check off how many of the following existing location exposure factors are present. Applicants receive more points if more risk factors are present.

Existing road has transit running on or across it with 1+ transit stops in the project area (If flag-stop route with no fixed stops, then 1+ locations in the project area where roadside stops are allowed. Do not count portions of transit routes with no stops, such as non-stop freeway sections of express or limited-stop routes. If service was temporarily reduced for the pandemic but is expected to return to 2019 levels, consider 2019 service for this item.)

Existing road has high-frequency transit running on or across it and 1+ high-frequency stops in the project area (high-frequency defined as service at least every 15 minutes from 6am to 7pm weekdays and 9am to 6pm Saturdays. If service frequency was temporarily reduced for the pandemic but is expected to return to 2019 levels, consider 2019 frequency for this item.)

Existing road is within 500 of $1+$ shopping, dining, or entertainment destinations (e.g., grocery store, restaurant)

If checked, please describe:

Yes
The project will serve the existing Chaska Creek commercial and office development area just east of the project in the City of Chaska. This includes data center offices, shopping/grocery store, and medical offices.
The northwest quadrant of the Highway 11 and 10 intersection contains a parcel of land bounded by both highways and the TCWR tracks. This parcel is targeted for major development and annexation into the City of Victoria in the next 5 years. Expected land uses include, commercial, light industrial, and medium-density residential. The site is anticipated to generate thousands of daily vehicle and pedestrian trips. The proposed improvements take this planned development into account and are expected to be able to adequately serve the additional traffic. Pedestrian facilities along Highway 11 will be completed by the developer at the time of development.
(Limit 1,400 characters; approximately 200 words)
Existing road is within 500 of other known pedestrian generators (e.g., school, civic/community center, senior housing, multifamily housing, regulatorily-designated affordable housing)

Westbrook Community Church is located on the southwest quadrant of the CSAH 10 and 11 intersection. The church opened in 2020 and has plans for future expansion as area development increases. The Sri Saibaba Mandir Prayer Center is adjacent to the project and will also be served by the project. The northwest quadrant of the intersection is planned for heavy commercial, industrial, and high-density residential land use in the next 5 years. In addition, a regional trail along the Highway 11, connecting south to the City of Carver, generates a lot of trail users.

Measure A: Multimodal Elements and Existing Connections

As an intersection improvement project, the major focus of multimodal components is to improve the crossing and pedestrian connection across the CSAH 11/10 intersection, where existing multimodal infrastructure is limited. The proposed project will incorporate the existing multi-use trail on the east side of CSAH 11 and add an ADA compliant, accessible pedestrian signal system at the busy CSAH 11/10 intersection. The new signal system will include APS components such as countdown times, APS push buttons, ADA compliant ped. ramps and high visibility crosswalk blocks making the dedicated intersection crossings safer for users. All pedestrian and bicycle facilities reinstalled with the project will be ADA compliant and an accessible pedestrian signal system will be installed. The project will improve the pedestrian facilities and accessibility in preparation for nearterm development and the trail system that is planned to be built simultaneously.
Response:
The project is located in a rural township area where wide shoulders on County roads serve as a connection for multimodal users. The addition of thru-lanes and/or wider shoulders to the intersection area on all legs will better accommodate on-road bicyclists and pedestrians compared to the minimal aggregate shoulder existing within the project area.

The project includes the RBTN Tier 2 alignment and regional trail corridor along CSAH 10. The trail along CSAH 11 from the intersection south is also an RBTN Tier 2 Alignment. The intersection improvement will better serve the existing trail system. This area is within the future City of Victoria and City of Chaska, and both cities and the County plan to build the trail network with near-term development.

The CSAH 10 RBTN Tier 2 alignment and regional
trail corridor will connect from the City of Waconia to the City of Chaska and continue into Hennepin County when complete. The trail's crossing of CSAH 11 will be a major junction of the trail network and two RBTN alignments, and it is vital that a safe and accessible junction is provided. A multi-use trail following the CSAH 11 corridor from CSAH 10 north to Victoria is also planned as the trail is currently being built south from Victoria with development.

SouthWest Transit provides on-demand transit service, SouthWest Prime, to the cities along the project corridor and utilizes the intersection for connecting trips. This transit service allows residents to use transit in a cost-effective ondemand system. Improvements to this intersection and the bicycle and pedestrian system will provide better access to SouthWest Prime transit service. Improvement to congestion at this intersection will improve access to the SouthWest Transit East Creek Station east of the project area.

Transit Projects Not Requiring Construction

If the applicant is completing a transit application that is operations only, check the box and do not complete the remainder of the form. These projects will receive full points for the Risk Assessment.
Park-and-Ride and other transit construction projects require completion of the Risk Assessment below.
Check Here if Your Transit Project Does Not Require Construction

Measure A: Risk Assessment - Construction Projects

1.Public Involvement (20 Percent of Points)

Projects that have been through a public process with residents and other interested public entities are more likely than others to be successful. The project applicant must indicate that events and/or targeted outreach (e.g., surveys and other web-based input) were held to help identify the transportation problem, how the potential solution was selected instead of other options, and the public involvement completed to date on the project. The focus of this section is on the opportunity for public input as opposed to the quality of input. NOTE: A written response is required and failure to respond will result in zero points.

Multiple types of targeted outreach efforts (such as meetings or online/mail outreach) specific to this project with the general public and partner agencies have been used to help identify the Yes project need.
100\%
At least one meeting specific to this project with the general public has been used to help identify the project need.

50\%
At least online/mail outreach effort specific to this project with the general public has been used to help identify the project need.

50\%
No meeting or outreach specific to this project was conducted, but the project was identified through meetings and/or outreach related to a larger planning effort.

25\%
No outreach has led to the selection of this project.
0\%
Describe the type(s) of outreach selected for this project (i.e., online or in-person meetings, surveys, demonstration projects), the method(s) used to announce outreach opportunities, and how many people participated. Include any public website links to outreach opportunities.

Response:
Agency coordination and public involvement were key components to the successful development of the Highway 10 Corridor Study. The study kicked off in late September 2018 and concluded with County Board and City Council resolutions of support in February and March 2021.Three public open houses occurred during the project. The first occurred on August 21, 2019, in the early phases of the study, to introduce the project and solicit input on issues, needs, and opportunities along the corridor. The second open house was held on December 19, 2019 to solicit input on a range of improvement options under consideration for Highway 10. The third open house occurred online from April 20th through May 6th due to restrictions on public gathering during the COVID-19 pandemic. Open house materials were posted online along with a survey to solicit input on all corridor improvement recommendations and proposed implementation. To reach rural populations that will benefit with improved regional mobility, the project was presented and discussed at the Laketown Township board meeting three times, including at the annual resident meeting with approximately 40 rural residents participating. Proposed improvements were presented to these groups and wide support for the project was gathered. Feedback from target populations focused on existing congestion, safety, and access concerns. Public feedback showed a strong desire for a near-term spot-mobility improvement at this intersection instead of waiting for the full corridor reconstruct because of obvious concerns for significant safety and mobility issues. Engagement successfully solidified the needs of the area and provided support of the chosen alternative.

The mailing area for open houses included over 2,400 properties covering a broad area of potential stakeholders surrounding the highway. A project
website and Facebook page were maintained by Carver County Public Works throughout the duration of the project. Notices and meeting materials were posted on these media for review and comment by all as another means of communicating study progress and upcoming meetings to the public. An online comment map was also used to collect community input on issues during key periods in the study process.
Participants were able to see input provided by others and provide responses to comments.

Project website:

https://www.co.carver.mn.us/departments/public-works/projects-studies/highway-10-study-victoria-chaska-area
(Limit 2,800 characters; approximately 400 words)
2.Layout (25 Percent of Points)

Layout includes proposed geometrics and existing and proposed right-of-way boundaries. A basic layout should include a base map (north arrow; scale; legend;* city and/or county limits; existing ROW, labeled; existing signals;* and bridge numbers*) and design data (proposed alignments; bike and/or roadway lane widths; shoulder width;* proposed signals;* and proposed ROW). An aerial photograph with a line showing the projects termini does not suffice and will be awarded zero points. *If applicable

Layout approved by the applicant and all impacted jurisdictions (i.e., cities/counties/MnDOT. If a MnDOT trunk highway is impacted, approval by MnDOT must have occurred to receive full Yes points. A PDF of the layout must be attached along with letters from each jurisdiction to receive points.
100%
A layout does not apply (signal replacement/signal timing, standalone streetscaping, minor intersection improvements). Applicants that are not certain whether a layout is required should contact Colleen Brown at MnDOT Metro State Aid colleen.brown@state.mn.us.

100\%
For projects where MnDOT trunk highways are impacted and a MnDOT Staff Approved layout is required. Layout approved by the applicant and all impacted local jurisdictions (i.e., cities/counties), and layout review and approval by MnDOT is pending. A PDF of the layout must be attached along with letters from each jurisdiction to receive points.

Layout completed but not approved by all jurisdictions. A PDF of the layout must be attached to receive points.

Layout has been started but is not complete. A PDF of the layout must be attached to receive points.

25\%
Layout has not been started
0\%
Attach Layout
1649699280151_CSAH 10_CSAH 11_Proposed.pdf
Please upload attachment in PDF form.
Additional Attachments
1649700416992_Carver Co Layout Letter_CSAH 11-10.pdf
Please upload attachment in PDF form.

3.Review of Section 106 Historic Resources (15 Percent of Points)

No known historic properties eligible for or listed in the National Register of Historic Places are located in the project area, and Yes project is not located on an identified historic bridge
100\%
There are historical/archeological properties present but determination of no historic properties affected is anticipated.

100\%
Historic/archeological property impacted; determination of no adverse effect anticipated

80\%
Historic/archeological property impacted; determination of adverse effect anticipated

40\%
Unsure if there are any historic/archaeological properties in the project area.

0\%
Project is located on an identified historic bridge
4.Right-of-Way (25 Percent of Points)

Right-of-way, permanent or temporary easements, and MnDOT agreement/limited-use permit either not required or all have been acquired

100\%
Right-of-way, permanent or temporary easements, and/or MnDOT agreement/limited-use permit required - plat, legal descriptions, or official map complete

50\%
Right-of-way, permanent or temporary easements, and/or MnDOT agreement/limited-use permit required - parcels identified Yes

25\%
Right-of-way, permanent or temporary easements, and/or MnDOT agreement/limited-use permit required - parcels not all identified 0\%

5.Railroad Involvement (15 Percent of Points)

No railroad involvement on project or railroad Right-of-Way
agreement is executed (include signature page, if applicable) Yes
100%

Signature Page
Please upload attachment in PDF form.
Railroad Right-of-Way Agreement required; negotiations have begun

50\%
Railroad Right-of-Way Agreement required; negotiations have not begun.

0\%

Measure A: Cost Effectiveness

Total Project Cost (entered in Project Cost Form):	$\$ 3,800,000.00$
Enter Amount of the Noise Walls:	$\$ 0.00$
Total Project Cost subtract the amount of the noise walls:	$\$ 3,800,000.00$
Enter amount of any outside, competitive funding:	$\$ 0.00$
Attach documentation of award:	
Points Awarded in Previous Criteria	$\$ 0.00$

Other Attachments

File Name	Description	File Size
17634_Measure 1A Congestion on adjacent Parallel Route documentation.pdf	Measure 1A Congestion on adjacent Parallel Route documentation	64 KB
Carver County Resolution 23-22 signed.pdf	Carver County Resolution - Highway 11 Intersection	368 KB
Chaska LOS-CSAH11-10 Intersection_Pages from 20220405111140359-3.pdf	City of Chaska Letter of Support Highway 11 Intersection	437 KB
City of Victoria 2022-03-28-Letter of Support.pdf	City of Victoria Letter of Support Highway 11 Intersection	82 KB
Copy of Carver Regional Solicitation CSAH 10 Request.xlsx	Measure 1A Congestion on adjacent Parallel Route documentation	20 KB
CSAH 10_CSAH 11_Before Aerial Photo.pdf	Existing Conditions Aerial - Highway 11 Intersection	181 KB
CSAH 10_CSAH 11_Existing Conditions Photos.pdf	Existing Conditions Photos - Highway 11 Intersection	3.6 MB
CSAH 10_CSAH 11_Proposed.pdf	Project Layout - Highway 11 Intersection	193 KB
Laketown Township Support Letters for Grant Funding.pdf	Laketown Township Letter of Support Highway 11 Intersection	52 KB
One Page Description Highway 11 Project.pdf	Project Summary - Highway 11 Intersection	311 KB

Socio-Economic Conditions

Total of publicly subsidized rental
housing units in census
tracts within $1 / 2$ mile: 153
Project located in census tracts
that are BELOW the regional average
for population in poverty or
population of color.

Points
Area of Concentrated Poverty

For complete disclaimer of accuracy, please visit http://giswebsite.metc.state.mn.us/gissite/notice.aspx

Highway 10 Corridor Study
Carver County, MN

3: CSAH 11 \& CSAH 10

Direction	All
Future Volume (vph)	1932
Total Delay $/$ Veh $(\mathrm{s} / \mathrm{v})$	43
CO Emissions (kg)	5.41
NOx Emissions (kg)	1.05
VOC Emissions (kg)	1.25

Splits and Phases: 3: CSAH 11 \& CSAH 10

3: CSAH 11 \& CSAH 10

Direction	All
Future Volume (vph)	1932
Total Delay /Veh $(\mathrm{s} / \mathrm{v})$	20
CO Emissions (kg)	4.67
NOx Emissions (kg)	0.91
VOC Emissions (kg)	1.08

	7	\rightarrow	4	1	4	4	(1
Phase Number	1	2	3	4	5	6	7	8
Movement	WBL	EBTL	NBL	SBTL	EBL	WBTL	SBL	NBTL
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes		Yes		Yes		Yes	
Recall Mode	None							
Maximum Split (s)	13	62	15	30	14	61	15	30
Maximum Split (\%)	10.8\%	51.7\%	12.5\%	25.0\%	11.7\%	50.8\%	12.5\%	25.0\%
Minimum Split (s)	12.7	27	13	17	12.7	27	13	28
Yellow Time (s)	3	5.5	3	5.5	3	5.5	3	5.5
All-Red Time (s)	2.7	1.5	3	1.5	2.7	1.5	3	1.5
Minimum Initial (s)	7	20	7	10	7	20	7	10
Vehicle Extension (s)	3	6	3	6	3	6	3	6
Minimum Gap (s)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)								7
Flash Dont Walk (s)								14
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	0	13	75	90	0	14	75	90
End Time (s)	13	75	90	0	14	75	90	0
Yield/Force Off (s)	7.3	68	84	113	8.3	68	84	113
Yield/Force Off 170(s)	7.3	68	84	113	8.3	68	84	99
Local Start Time (s)	107	0	62	77	107	1	62	77
Local Yield (s)	114.3	55	71	100	115.3	55	71	100
Local Yield 170(s)	114.3	55	71	100	115.3	55	71	86
Intersection Summary								
Cycle Length			120					
Control Type	Actuated-Uncoordinated							
Natural Cycle			85					

Splits and Phases: 3: CSAH 11 \& CSAH 10

3: CSAH 11 \& CSAH 10

Direction	All
Future Volume (vph)	1932
Total Delay $/$ Veh $(\mathrm{s} / \mathrm{v})$	43
CO Emissions (kg)	5.41
NOx Emissions (kg)	1.05
VOC Emissions (kg)	1.25

Splits and Phases: 3: CSAH 11 \& CSAH 10

3: CSAH 11 \& CSAH 10

Direction	All
Future Volume (vph)	1932
Total Delay /Veh $(\mathrm{s} / \mathrm{v})$	20
CO Emissions (kg)	4.67
NOx Emissions (kg)	0.91
VOC Emissions (kg)	1.08

	7	\rightarrow	4	1	4	4	(1
Phase Number	1	2	3	4	5	6	7	8
Movement	WBL	EBTL	NBL	SBTL	EBL	WBTL	SBL	NBTL
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes		Yes		Yes		Yes	
Recall Mode	None							
Maximum Split (s)	13	62	15	30	14	61	15	30
Maximum Split (\%)	10.8\%	51.7\%	12.5\%	25.0\%	11.7\%	50.8\%	12.5\%	25.0\%
Minimum Split (s)	12.7	27	13	17	12.7	27	13	28
Yellow Time (s)	3	5.5	3	5.5	3	5.5	3	5.5
All-Red Time (s)	2.7	1.5	3	1.5	2.7	1.5	3	1.5
Minimum Initial (s)	7	20	7	10	7	20	7	10
Vehicle Extension (s)	3	6	3	6	3	6	3	6
Minimum Gap (s)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)								7
Flash Dont Walk (s)								14
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	0	13	75	90	0	14	75	90
End Time (s)	13	75	90	0	14	75	90	0
Yield/Force Off (s)	7.3	68	84	113	8.3	68	84	113
Yield/Force Off 170(s)	7.3	68	84	113	8.3	68	84	99
Local Start Time (s)	107	0	62	77	107	1	62	77
Local Yield (s)	114.3	55	71	100	115.3	55	71	100
Local Yield 170(s)	114.3	55	71	100	115.3	55	71	86
Intersection Summary								
Cycle Length			120					
Control Type	Actuated-Uncoordinated							
Natural Cycle			85					

Splits and Phases: 3: CSAH 11 \& CSAH 10

Traffic Safety Benefit-Cost Calculation

Highway Safety Improvement Program (HSIP) Reactive Project

A. Roadway Description

Route	CSAH 10/11	District	Metro	County	Carver
Begin RP	1/4 mile from intersect	End RP		Miles	1.250
Location	CSAH 10 (Engler Blvd) at CSAH 11 (Victoria Dr/Jonathan Carver Pkwy)				

B. Project Description

Proposed Work	Expansion of CSAH 10 to 4-lane divided section, turn lane additions/extensions on all legs, sig		
Project Cost*	\$3,800,000	Installation Year	2026
Project Service Life	20 years	Traffic Growth Factor	2.0\%
* exclude Right of Way from Project Cost			

C. Crash Modification Factor

0.71	Fatal (K) Crashes	Reference ID 7569	
0.71	Serious Injury (A) Crashes	Crash Type All (2-lane to 4-lane divided)	
0.71	Moderate Injury (B) Crashes		
0.71	Possible Injury (C) Crashes		
0.71	Property Damage Only Crashes		www.CMFclearinghouse.org

D. Crash Modification Factor (optional second CMF)

	Fatal (K) Crashes	Reference
	Serious Injury (A) Crashes	
Moderate Injury (B) Crashes	Crash Type	
Possible Injury (C) Crashes		www.CMFclearinghouse.org

E. Crash Data				
Begin Date Data Source	1/1/201	End Date	12/31/2021	3 years
	MnDOT			
	Crash Severity	All (2-lane to 4-lane divided)	< optional 2nd CMF >	
	K crashes	0		
	A crashes	0		
	B crashes	4		
	C crashes	5		
	PDO crashes	6		

F. Benefit-Cost Calculation
$\frac{\$ 3,499,391}{\$ 3,800,000}$

Benefit (present value)
Cost
B / C Ratio $=0.93$
Proposed project expected to reduce 2 crashes annually, o of which involving fatality or serious injury.
F. Analysis Assumptions

Crash Severity	Crash Cost
K crashes	$\$ 1,500,000$
A crashes	$\$ 750,000$
B crashes	$\$ 230,000$
C crashes	$\$ 120,000$
PDO crashes	$\$ 13,000$

Link: mndot.gov/planning/program/appendix_a.html

Real Discount Rate 0.7\%
Traffic Growth Rate 2.0\%
Project Service Life 20 years
G. Annual Benefit

Crash Severity	Crash Reduction	Annual Reduction	Annual Benefit
K crashes	0.00	0.00	$\$ 0$
A crashes	0.00	0.00	$\$ 0$
B crashes	1.16	0.39	$\$ 88,933$
C crashes	1.45	0.48	$\$ 58,000$
PDO crashes	1.74	0.58	$\$ 7,540$

H. Amortized Benefit			
Year	Crash Benefits	Present Value	
2026	\$154,473	\$154,473	Total = \$3,499,391
2027	\$157,563	\$156,468	
2028	\$160,714	\$158,487	
2029	\$163,928	\$160,533	
2030	\$167,207	\$162,606	
2031	\$170,551	\$164,705	
2032	\$173,962	\$166,831	
2033	\$177,441	\$168,985	
2034	\$180,990	\$171,167	
2035	\$184,610	\$173,376	
2036	\$188,302	\$175,615	
2037	\$192,068	\$177,882	
2038	\$195,910	\$180,178	
2039	\$199,828	\$182,504	
2040	\$203,824	\$184,860	
2041	\$207,901	\$187,247	
2042	\$212,059	\$189,664	
2043	\$216,300	\$192,112	
2044	\$220,626	\$194,593	
2045	\$225,038	\$197,105	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	

CMF / CRF Details

CMF ID: 7569

Convert 2 lane roadway to 4 lane divided roadway
Description: Conversion of urban and rural two-lane roadways to four-lane divided roadways

Prior Condition: 2 lane roadway

Category: Roadway

Study: Evaluation of the Safety Effectiveness of the Conversion of Two-Lane Roadways to Four-Lane Divided Roadways: Bayesian vs. Empirical Bayes, Ahmed et al., 2015

Crash Modification Factor (CMF)	
Value:	0.712
Adjusted Standard Error:	
Unadjusted Standard Error:	0.076

Crash Reduction Factor (CRF)

Value:
28.79 (This value indicates a decrease in crashes)

Adjusted Standard Error:	
Unadjusted Standard Error:	7.65
Applicability	
Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Number of Lanes:	2
Road Division Type:	Undivided
Speed Limit:	
Area Type:	Rural
Traffic Volume:	
Time of Day:	All
If countermeasure is intersection-based	
Intersection Type:	
Intersection Geometry:	
Traffic Control:	
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Development Details	
Date Range of Data Used:	2002 to 2012
Municipality:	

State:	FL	
Country:	USA	
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes	
Sample Size Used:		

Other Details

| Included in Highway Safety |
| ---: | :--- |
| Manual? |\quad No

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

Crash Case Listing

Route System	Route Number	Measure	Co	City	Incident Number	Date	Time	Day of Week	Basic Type	Num Veh	Sev
04-CSAH	10	19.907	10		00847515	10/20/20	1220	TUE	Head On	2	C
04-CSAH	10	20.089	10		00743087	08/27/19	0738	TUE	Rear End	2	C
04-CSAH	10	20.157	10		00980862	12/16/21	0715	THU	SVROR	1	N
O4-CSAH	10	20.169	10		00842739	09/25/20	1004	FRI	Rear End	2	N
04-CSAH	10	20.195	10		00968213	10/21/21	0700	THU	Rear End	2	N
O4-CSAH	10	20.196	10		00776605	01/02/20	0745	THU	Rear End	2	N
04-CSAH	10	20.199	10		00766341	11/29/19	1923	FRI	Rear End	2	B
04-CSAH	10	20.201	10		00745089	09/05/19	1936	THU	Angle	2	B
04-CSAH	10	20.202	10		00758604	10/31/19	1858	THU	Left Turn	2	B
04-CSAH	10	20.202	10		00983738	12/27/21	1320	MON	Rear End	2	C
04-CSAH	10	20.203	10		00772898	12/18/19	1655	WED	Rear End	2	N
04-CSAH	11	8.661	10		00811573	05/25/20	1409	MON	Head On	2	C
04-CSAH	11	8.664	10		00813774	06/10/20	1158	WED	Angle	2	C
04-CSAH	11	8.665	10		00940022	09/08/21	1732	WED	Other	2	B
04-CSAH	11	8.709	10		00729993	06/28/19	1021	FRI	Angle	2	N

Selection Filter:
WORK AREA: County('659455') - FILTER: Year('2019','2020','2021') - SPATIAL FILTER APPLIED

Analyst:
Notes:
Jacob Bongard

April 11, 2022
Elaine Koutsoukos
TAB Coordinator
Metropolitan Council
390 Robert St. N
St. Paul, MN 55101
SUBJECT: CSAH 11 Intersection Improvement Project Risk Assessment Layout Approval Letter
Dear Ms. Koutsoukos:
This letter is to confirm the County's agreement with and approval to date of the attached layout for the Highway 11 Intersection Improvement Project (at CSAH 10). The project has undergone substantial study and coordination with project partners. The County led and partnered on the development of the layout with Laketown Township, the City of Victoria, and the City of Chaska through the Highway 10 Corridor Study planning process and is aware of the details specified in the application attachment.

Although not required, Laketown Township, the City of Chaska, and City of Victoria provided letters of support for the project. The County is committed to working with project partners to complete the final layout approval engineering process for the Highway 11 Intersection Improvement Project in the coming months.

Sincerely,

Lyndon Robjent, P.E.
Public Works Director/County Engineer

			Avg Segment	Free Flow		
Zone Name	Day Type	Day Part	Speed (mph)	Speed (mph)	Free Flow Factor	
212 to Bavaria	1: Weekday (M-Th)	00: All Day (12am-12am)	36	40.833	0.879	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	01: 12am (12am-1am)	N/A	40.833	0.979	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	02: 1am (1am-2am)	N/A	40.833	0.943	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	03: 2am (2am-3am)	N/A	40.833	1	
212 to Bavaria	1: Weekday (M-Th)	04: 3am (3am-4am)	N/A	40.833	0.992	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	05: 4am (4am-5am)	37	40.833	0.896	
212 to Bavaria	1: Weekday (M-Th)	06: 5am (5am-6am)	41	40.833	0.996	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	07: 6am (6am-7am)	36	40.833	0.874	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	08: 7am (7am-8am)	35	40.833	0.845	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	09: 8am (8am-9am)	32	40.833	0.789	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	10: 9am (9am-10am)	37	40.833	0.905	
212 to Bavaria	1: Weekday (M-Th)	11: 10am (10am-11am)	37	40.833	0.917	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	12: 11am (11am-12noon)	37	40.833	0.908	
212 to Bavaria	1: Weekday (M-Th)	13: 12pm (12noon-1pm)	37	40.833	0.902	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	14: $1 \mathrm{pm}(1 \mathrm{pm}-2 \mathrm{pm})$	38	40.833	0.927	
212 to Bavaria	1: Weekday (M-Th)	15: $2 \mathrm{pm}(2 \mathrm{pm}-3 \mathrm{pm})$	36	40.833	0.892	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	16: $3 \mathrm{pm}(3 \mathrm{pm}-4 \mathrm{pm}$)	34	40.833	0.841	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	17: 4 pm ($4 \mathrm{pm}-5 \mathrm{pm}$)	35	40.833	0.86	
212 to Bavaria	1: Weekday (M-Th)	18: $5 \mathrm{pm}(5 \mathrm{pm}-6 \mathrm{pm})$	36	40.833	0.878	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	19: $6 \mathrm{pm}(6 \mathrm{pm}-7 \mathrm{pm})$	37	40.833	0.904	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	20: 7 pm ($7 \mathrm{pm}-8 \mathrm{pm}$)	36	40.833	0.89	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	21: 8 pm (8pm-9pm)	38	40.833	0.922	
212 to Bavaria	1: Weekday (M-Th)	22: 9 pm (9pm-10pm)	39	40.833	0.945	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	23: 10 pm (10pm-11pm)	39	40.833	0.959	
212 to Bavaria	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	24: 11 pm (11pm-12am)	38	40.833	0.938	
Bavaria to TH41	1: Weekday (M-Th)	00: All Day (12am-12am)	24	33.891	0.715	
Bavaria to TH41	1: Weekday (M-Th)	01: 12am (12am-1am)	N/A	33.891	0.907	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	02: 1am (1am-2am)	N/A	33.891	0.9	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	03: 2am (2am-3am)	N/A	33.891	0.948	
Bavaria to TH41	1: Weekday (M-Th)	04: 3am (3am-4am)	N/A	33.891	0.878	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	05: 4am (4am-5am)	N/A	33.891	1	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	06: 5am (5am-6am)	31	33.891	0.904	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	07: 6am (6am-7am)	24	33.891	0.701	
Bavaria to TH41	1: Weekday (M-Th)	08: 7am (7am-8am)	24	33.891	0.702	
Bavaria to TH41	1: Weekday (M-Th)	09: 8am (8am-9am)	18	33.891	0.522	The dataset was aggregating a 3.5 mile segment, so Met Council staff provided this information with the proper segmentation.
Bavaria to TH41	1: Weekday (M-Th)	10: 9am (9am-10am)	26	33.891	0.763	
Bavaria to TH41	1: Weekday (M-Th)	11: 10am (10am-11am)	24	33.891	0.721	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	12: 11am (11am-12noon)	26	33.891	0.772	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	13: 12pm (12noon-1pm)	25	33.891	0.748	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	14: $1 \mathrm{pm}(1 \mathrm{pm}-2 \mathrm{pm})$	26	33.891	0.767	
Bavaria to TH41	1: Weekday (M-Th)	15: 2 pm (2pm-3pm)	26	33.891	0.754	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	16: $3 \mathrm{pm}(3 \mathrm{pm}-4 \mathrm{pm}$)	21	33.891	0.631	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	17: 4 pm ($4 \mathrm{pm}-5 \mathrm{pm}$)	23	33.891	0.674	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	18: $5 \mathrm{pm}(5 \mathrm{pm}-6 \mathrm{pm})$	24	33.891	0.698	
Bavaria to TH41	1: Weekday (M-Th)	19: $6 \mathrm{pm}(6 \mathrm{pm}-7 \mathrm{pm})$	27	33.891	0.784	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	20:7pm (7pm-8pm)	26	33.891	0.755	
Bavaria to TH41	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	21:8pm (8pm-9pm)	27	33.891	0.806	
Bavaria to TH41	1: Weekday (M-Th)	22: 9 pm ($9 \mathrm{pm}-10 \mathrm{pm}$)	28	33.891	0.839	
Bavaria to TH41	1: Weekday (M-Th)	23: 10pm (10pm-11pm)	30	33.891	0.89	
Bavaria to TH41	1: Weekday (M-Th)	24: 11pm (11pm-12am)	31	33.891	0.912	
Clover Ridge to 212	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	00: All Day (12am-12am)	39	52.456	0.742	
Clover Ridge to 212	1: Weekday (M-Th)	01: 12am (12am-1am)	N/A	52.456	0.925	
Clover Ridge to 212	1: Weekday (M-Th)	02: 1am (1am-2am)	N/A	52.456	0.839	
Clover Ridge to 212	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	03: 2am (2am-3am)	N/A	52.456	0.726	
Clover Ridge to 212	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	04: 3am (3am-4am)	N/A	52.456	0.841	
Clover Ridge to 212	1: Weekday (M-Th)	05: 4am (4am-5am)	52	52.456	1	
Clover Ridge to 212	1: Weekday (M-Th)	06: 5am (5am-6am)	48	52.456	0.908	
Clover Ridge to 212	1: Weekday (M-Th)	07: 6am (6am-7am)	40	52.456	0.77	
Clover Ridge to 212	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	08: 7am (7am-8am)	39	52.456	0.734	
Clover Ridge to 212	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	09: 8am (8am-9am)	37	52.456	0.709	
Clover Ridge to 212	1: Weekday (M-Th)	10: 9am (9am-10am)	40	52.456	0.757	
Clover Ridge to 212	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	11: 10am (10am-11am)	40	52.456	0.766	
Clover Ridge to 212	1: Weekday (M-Th)	12: 11am (11am-12noon)	37	52.456	0.711	
Clover Ridge to 212	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	13: 12pm (12noon-1pm)	38	52.456	0.719	
Clover Ridge to 212	1: Weekday ($\mathrm{M}-\mathrm{Th}$)	14: 1 pm (1pm-2pm)	39	52.456	0.744	
Clover Ridge to 212	1: Weekday (M-Th)	15: 2 pm ($2 \mathrm{pm}-3 \mathrm{pm}$)	39	52.456	0.743	
Clover Ridge to 212	1: Weekday (M-Th)	16: 3 pm (3pm-4pm)	36	52.456	0.686	

Clover Ridge to 212	1: Weekday (M-Th)	17: $4 \mathrm{pm}(4 \mathrm{pm}-5 \mathrm{pm})$		37	52.456	0.708
Clover Ridge to 212	1: Weekday (M-Th)	18: $5 \mathrm{pm}(5 \mathrm{pm}-6 \mathrm{pm})$		37	52.456	0.713
Clover Ridge to 212	1: Weekday (M-Th)	19: $6 \mathrm{pm}(6 \mathrm{pm}-7 \mathrm{pm})$		40	52.456	0.755
Clover Ridge to 212	1: Weekday (M-Th)	20: 7pm (7pm-8pm)		39	52.456	0.74
Clover Ridge to 212	1: Weekday (M-Th)	21: 8pm (8pm-9pm)		42	52.456	0.809
Clover Ridge to 212	1: Weekday (M-Th)	22: 9 pm ($9 \mathrm{pm}-10 \mathrm{pm}$)		43	52.456	0.826
Clover Ridge to 212	1: Weekday (M-Th)	23: 10 pm (10pm-11pm)		47	52.456	0.902
Clover Ridge to 212	1: Weekday (M-Th)	24: 11 pm (11pm-12am)		46	52.456	0.867
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	00: All Day (12am-12am)		46	57.5	0.792
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	01: 12am (12am-1am)	N/A		57.5	0.926
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	02: 1am (1am-2am)	N/A		57.5	0.994
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	03: 2am (2am-3am)	N/A		57.5	0.974
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	04: 3am (3am-4am)		58	57.5	
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	05: 4am (4am-5am)		56	57.5	0.966
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	06: 5am (5am-6am)		54	57.5	0.93
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	07: 6am (6am-7am)		46	57.5	0.805
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	08: 7am (7am-8am)		43	57.5	0.743
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	09: 8am (8am-9am)		44	57.5	0.76
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	10: 9am (9am-10am)		46	57.5	0.792
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	11: 10am (10am-11am)		46	57.5	0.806
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	12: 11am (11am-12noon)		47	57.5	0.814
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	13: 12pm (12noon-1pm)		47	57.5	0.811
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	14: $1 \mathrm{pm}(1 \mathrm{pm}-2 \mathrm{pm})$		46	57.5	0.804
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	15: $2 \mathrm{pm}(2 \mathrm{pm}-3 \mathrm{pm})$		47	57.5	0.812
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	16: 3 pm (3pm-4pm)		44	57.5	0.767
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	17: 4 pm ($4 \mathrm{pm}-5 \mathrm{pm}$)		43	57.5	0.741
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	18: $5 \mathrm{pm}(5 \mathrm{pm}-6 \mathrm{pm})$		44	57.5	0.772
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	19: 6 pm ($6 \mathrm{pm}-7 \mathrm{pm}$)		46	57.5	0.792
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	20:7pm (7pm-8pm)		47	57.5	0.818
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	21: 8 pm (8pm-9pm)		49	57.5	0.856
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	22: 9 pm ($9 \mathrm{pm}-10 \mathrm{pm}$)		49	57.5	0.85
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	23: 10 pm (10pm-11pm)		51	57.5	0.894
CSAH 11 to Clover Ridge	1: Weekday (M-Th)	24: 11pm (11pm-12am)		53	57.5	0.913
Park Ridge to Audubon	1: Weekday (M-Th)	00: All Day (12am-12am)		35	39.611	0.873
Park Ridge to Audubon	1: Weekday (M-Th)	01: 12am (12am-1am)	N/A		39.611	0.89
Park Ridge to Audubon	1: Weekday (M-Th)	02: 1am (1am-2am)	N/A		39.611	0.896
Park Ridge to Audubon	1: Weekday (M-Th)	03: 2am (2am-3am)	N/A		39.611	0.918
Park Ridge to Audubon	1: Weekday (M-Th)	04: 3am (3am-4am)	N/A		39.611	0.851
Park Ridge to Audubon	1: Weekday (M-Th)	05: 4am (4am-5am)	N/A		39.611	
Park Ridge to Audubon	1: Weekday (M-Th)	06: 5am (5am-6am)		39	39.611	0.979
Park Ridge to Audubon	1: Weekday (M-Th)	07: 6 am ($6 \mathrm{am}-7 \mathrm{am}$)		35	39.611	0.892
Park Ridge to Audubon	1: Weekday (M-Th)	08: 7am (7am-8am)		35	39.611	0.895
Park Ridge to Audubon	1: Weekday (M-Th)	09: 8am (8am-9am)		33	39.611	0.833
Park Ridge to Audubon	1: Weekday (M-Th)	10: 9am (9am-10am)		35	39.611	0.885
Park Ridge to Audubon	1: Weekday (M-Th)	11: 10am (10am-11am)		36	39.611	0.909
Park Ridge to Audubon	1: Weekday (M-Th)	12: 11am (11am-12noon)		34	39.611	0.855
Park Ridge to Audubon	1: Weekday (M-Th)	13: 12pm (12noon-1pm)		35	39.611	0.877
Park Ridge to Audubon	1: Weekday (M-Th)	14: $1 \mathrm{pm}(1 \mathrm{pm}-2 \mathrm{pm})$		36	39.611	0.896
Park Ridge to Audubon	1: Weekday (M-Th)	15: $2 \mathrm{pm}(2 \mathrm{pm}-3 \mathrm{pm})$		37	39.611	0.931
Park Ridge to Audubon	1: Weekday (M-Th)	16: 3 pm (3pm-4pm)		32	39.611	0.796
Park Ridge to Audubon	1: Weekday (M-Th)	17: 4 pm ($4 \mathrm{pm}-5 \mathrm{pm}$)		34	39.611	0.863
Park Ridge to Audubon	1: Weekday (M-Th)	18: 5 pm ($5 \mathrm{pm}-6 \mathrm{pm}$)		35	39.611	0.883
Park Ridge to Audubon	1: Weekday (M-Th)	19: 6 pm ($6 \mathrm{pm}-7 \mathrm{pm}$)		34	39.611	0.87
Park Ridge to Audubon	1: Weekday (M-Th)	20:7pm (7pm-8pm)		35	39.611	0.876
Park Ridge to Audubon	1: Weekday (M-Th)	21: 8 pm (8pm-9pm)		36	39.611	0.898
Park Ridge to Audubon	1: Weekday (M-Th)	22: 9 pm ($9 \mathrm{pm}-10 \mathrm{pm}$)		36	39.611	0.92
Park Ridge to Audubon	1: Weekday (M-Th)	23: 10 pm (10pm-11pm)		36	39.611	0.897
Park Ridge to Audubon	1: Weekday (M-Th)	24: 11pm (11pm-12am)	N/A		39.611	0.957
TH 41 to Park Ridge	1: Weekday (M-Th)	00: All Day (12am-12am)		20	28.5	0.694
TH 41 to Park Ridge	1: Weekday (M-Th)	01: 12am (12am-1am)	N/A		28.5	0.93
TH 41 to Park Ridge	1: Weekday (M-Th)	02: 1am (1am-2am)	N/A		28.5	0.737
TH 41 to Park Ridge	1: Weekday (M-Th)	03: 2am (2am-3am)	N/A		28.5	0.754
TH 41 to Park Ridge	1: Weekday (M-Th)	04: 3am (3am-4am)	N/A		28.5	0.785
TH 41 to Park Ridge	1: Weekday (M-Th)	05: 4am (4am-5am)	N/A		28.5	
TH 41 to Park Ridge	1: Weekday (M-Th)	06: 5am (5am-6am)		27	28.5	0.931
TH 41 to Park Ridge	1: Weekday (M-Th)	07: 6am (6am-7am)		21	28.5	0.747
TH 41 to Park Ridge	1: Weekday (M-Th)	08: 7am (7am-8am)		20	28.5	0.711
TH 41 to Park Ridge	1: Weekday (M-Th)	09: 8am (8am-9am)		19	28.5	0.671
TH 41 to Park Ridge	1: Weekday (M-Th)	10: 9am (9am-10am)		20	28.5	0.693
TH 41 to Park Ridge	1: Weekday (M-Th)	11: 10am (10am-11am)		20	28.5	0.69
TH 41 to Park Ridge	1: Weekday (M-Th)	12: 11am (11am-12noon)		21	28.5	0.725
TH 41 to Park Ridge	1: Weekday (M-Th)	13: 12 pm (12noon-1pm)		21	28.5	0.732
TH 41 to Park Ridge	1: Weekday (M-Th)	14: $1 \mathrm{pm}(1 \mathrm{pm}-2 \mathrm{pm})$		21	28.5	0.751

TH 41 to Park Ridge	1: Weekday (M-Th)	15: $2 \mathrm{pm}(2 \mathrm{pm}-3 \mathrm{pm})$	20	28.5	0.686
TH 41 to Park Ridge	1: Weekday (M-Th)	16: $3 \mathrm{pm}(3 \mathrm{pm}-4 \mathrm{pm})$	16	28.5	0.56
TH 41 to Park Ridge	1: Weekday (M-Th)	17: $4 \mathrm{pm}(4 \mathrm{pm}-5 \mathrm{pm})$	16	28.5	0.558
TH 41 to Park Ridge	1: Weekday (M-Th)	18: $5 \mathrm{pm}(5 \mathrm{pm}-6 \mathrm{pm})$	19	28.5	0.656
TH 41 to Park Ridge	1: Weekday (M-Th)	19: $6 \mathrm{pm}(6 \mathrm{pm}-7 \mathrm{pm})$	21	28.5	0.741
TH 41 to Park Ridge	1: Weekday (M-Th)	20: $7 \mathrm{pm}(7 \mathrm{pm}-8 \mathrm{pm})$	20	28.5	0.708
TH 41 to Park Ridge	1: Weekday (M-Th)	21: $8 \mathrm{pm}(8 \mathrm{pm}-9 \mathrm{pm})$	22	28.5	0.777
TH 41 to Park Ridge	1: Weekday (M-Th)	22: $9 \mathrm{pm}(9 \mathrm{pm}-10 \mathrm{pm})$	22	28.5	0.769
TH 41 to Park Ridge	1: Weekday (M-Th)	23: $10 \mathrm{pm}(10 \mathrm{pm}-11 \mathrm{pm})$	23	28.5	0.82
TH 41 to Park Ridge	1: Weekday (M-Th)	24: $11 \mathrm{pm}(11 \mathrm{pm}-12 \mathrm{am})$	24	28.5	0.825

CITY OF CHASKA
 ONE CITY HALL PLAZA / CHASKA MN 55318-1962

April 5, 2022
Lyndon Robjent, P.E.
Public Works Director, County Engineer
Carver County Public Works
11360 Highway 212, Suite 1, Cologne, MN 55322
Dear Mr. Robjent,
The City of Chaska is pleased to support Carver County's application for the Highway 11 Intersection Improvement Project under the Roadway Spot Mobility and Safety category of the Metropolitan Council's 2022 Regional Solicitation for federal transportation funding.

The proposed improvement includes reconstruction and widening of the CSAH 11 (Victoria Dr./Jonathan Carver Pkwy.) and CSAH 10 (Engler Blvd.) intersection including additional through lanes and turn lanes and a permanent traffic signal system. The project will also include bicycle and pedestrian accommodations at the intersection.

This low-cost, high-benefit project will address existing operational and safety issues and provide needed regional highway infrastructure in this fast-growing area. CSAH 10 is a critical east-west mobility corridor for the County's regional transportation network connecting the Cities of Waconia and Victoria to the City of Chaska and US Highway 212. The intersection design at CSAH 10/CSAH 11 lacks the through-put and turn lanes to operate at an acceptable level of service for everyday traffic and has a wood-pole signal system that was installed as a short-term mitigation strategy for severe crashes.

The proposed project is endorsed by the City of Chaska, and we are supportive of the County's application to the Metropolitan Council's 2022 Regional Solicitation funding program.

Sincerely,

Mark Windschitl, Mayor
City of Chaska

March 28, 2022

Mr. Lyndon Robjent, P.E.
Public Works Director, County Engineer
Carver County Public Works
11360 Highway 212, Suite 1, Cologne, MN 55322
Dear Mr. Robjent,

The City of Victoria is pleased to support Carver County's application for the Highway 11 Intersection Improvement Project under the Roadway Spot Mobility and Safety category of the Metropolitan Council's 2022 Regional Solicitation for federal transportation funding.

The proposed improvement includes reconstruction and widening of the CSAH 11 (Victoria Dr./Jonathan Carver Pkwy.) and CSAH 10 (Engler Blvd.) intersection including additional through lanes and turn lanes and a permanent traffic signal system. The project will also include bicycle and pedestrian accommodations at the intersection.

This low-cost, high-benefit project will address existing operational and safety issues and provide needed regional highway infrastructure in this fast-growing area. CSAH 10 is a critical east-west mobility corridor for the County's regional transportation network connecting the Cities of Waconia and Victoria to the City of Chaska and US Highway 212. The intersection design at CSAH 10/CSAH 11 lacks the through-put and turn lanes to operate at an acceptable level of service for everyday traffic and has a wood-pole signal system that was installed as a short-term mitigation strategy for severe crashes.

The proposed project is endorsed by the City of Victoria, and we are supportive of the County's application to the Metropolitan Council's 2022 Regional Solicitation funding program.

Sincerely,

Debra McMillan
Mayor

pdf-color.pltcfg
bmi.tbl

CSAH 10 at CSAH 11 Intersection Existing Conditions - CSAH 10, looking west

CSAH 10 at CSAH 11 Intersection Existing Conditions - CSAH 11, looking north

Township of Laketown
 9530 Laketown Road
 Chaska MN 55318
 Phone: 952-442-5278
 Laketowntownship@gmail.com

March 28, 2022

Lyndon Robjent, P.E.
Public Works Director, County Engineer
Carver County Public Works
11360 Highway 212, Suite 1, Cologne, MN 55322
Dear Mr. Robjent,
Laketown Township is pleased to support Carver County's application for the Highway 11 Intersection Improvement Project under the Roadway Spot Mobility and Safety category of the Metropolitan Council's 2022 Regional Solicitation for federal transportation funding.

The proposed improvement includes reconstruction and widening of the CSAH 11 (Victoria Dr./Jonathan Carver Pkwy.) and CSAH 10 (Engler Blvd.) intersection including additional through lanes and turn lanes and a permanent traffic signal system. The project will also include bicycle and pedestrian accommodations at the intersection.

This low-cost, high-benefit project will address existing operational and safety issues and provide needed regional highway infrastructure in this fast-growing area. CSAH 10 is a critical east-west mobility corridor for the County's regional transportation network connecting the Cities of Waconia and Victoria to the City of Chaska and US Highway 212. The intersection design at CSAH 10/CSAH 11 lacks the through-put and turn lanes to operate at an acceptable level of service for everyday traffic and has a wood-pole signal system that was installed as a short-term mitigation strategy for severe crashes.

The proposed project is endorsed by Laketown Township, and we are supportive of the County's application to the Metropolitan Council's 2022 Regional Solicitation funding program.

Sincerely,

Signature
Pete Maris
Chairman

Primary Contact:

Angie Stenson
Sr. Transportation Planner 11360 Hwy 212, Suite 1, Cologne, MN 55322
612.360.7422
astenson@co.carver.mn.us

Application Category: Roadways including Multimodal Elements - Spot Mobility

Corridor Fast Facts:

- Intersection serves half of the county population
- Highway 11 volumes anticipated to double in the next 20 years
- Project decreases over 50\% peak hour congestion

Project Description

This project at Highway 11 (Jonathan Carver Parkway/Victoria Drive) and Highway 10 (Engler Boulevard) installs a permanent signal system accompanied with geometric expansions on all four legs of the intersection. Geometric improvement includes the expansion of Highway 11 to a four-lane divided urban section with dual left-turn lanes on the north leg and a second eastbound lane through the intersection, adding capacity to Highway 10 turn lanes.

Regional Significance: This intersection serves connection between the cities of Chaska, Waconia, Victoria and Carver. Centrally located, the rural area has been experiencing development pressures with near-term and continued development over the next 20 years.

The Issues: The Highway 10/11 intersection on the border of the Cities of Victoria and Chaska is has significant crash and congestion issues impacting the movement of goods and people throughout the region. Operational issues create queues a quarter mile long on multiple legs during both peak hours; these queues are particularly problematic eastbound, as maximum queues are encroaching an at-grade railroad crossing. A temporary wood pole signal system that was installed in 2013 to address safety concerns with the two-way stop control at the intersection. Since its installation, reductions in fatal and severe injury crashes have been observed; demonstrating the priority need for a permanent system with ADA compliant facilities.

Funding Information:
Requested Award Amount: \$3,040,000
Local Match: \$760,000
Construction Total: \$3,800,000

Match \$ Sources:

- Carver County

Project Benefits

Proposed improvements will increase corridor safety, address congestion and operational issues, and provide safe pedestrian/bicycle crossings of Highways 10/11. The project will address existing safety and mobility issues at the intersection and upgrade Highway 11 to the adopted vision. With development pressures, pedestrian demand is highly anticipated. The Highway 10 corridor is an RBTN Tier 2 corridor linking the region and proposed improvements will provide for a supportive trail crossing.

Part of a Bigger Picture

Studies recently completed on the Highway 10 and 11 corridors have identified this intersection as a high priority for regional mobility. This project is the first step in several infrastructure investments and development opportunities along both highways of which all project partners are committed to. This project as proposed fits the vision for the corridor and will guide future investments and development.

