🤽 University of Minnesota

Minnesota Geological Survey Harvey Thorleifson, Director

DISTRIBUTION OF VERTICAL RECHARGE TO UPPER BEDROCK AQUIFERS TWIN CITIES METROPOLITAN AREA

Robert G. Tipping, Minnesota Geological Survey

November 9, 2011

Report submitted as deliverable for contract between University of Minnesota and the Metropolitan Council for project entitled "Aquifer Recharge and Contaminant Plume Mapping for Portions for the Twin Cities Metropolitan Area, Metropolitan Council Contract Number 10I021" Review and editing of this report for eventual publication may result in changes to content. Produced for, and funded by, the Metropolitan Council.

Executive Summary	1
Introduction	2
Background and data sources	3
Methods	6
Distribution and hydraulic characteristics of unconsolidated	
subsurface materials	6
Hydraulic gradient	10
Calculation of vertical travel times	12
Groundwater chemical and isotopic composition	13
Results	14
Regional maps	14
Regional cross sections	15
Local cross sections	16
Discussion	17
Suggested Use	21
Acknowledgements	24
References cited	25
Appendices	
A. Summary of hydraulic conductivity values	27
B. Point data geodatabase structure and lookup tables	
C. Water chemistry and hydraulic conductivity field names and	
descriptions	

TABLE OF CONTENTS

D. Regional summary data geodatabase structure, field nam	ies
and definitions	
E. Guide to database use	
Figures	

Executive summary

This report summarizes work performed by the Minnesota Geological Survey (MGS) in partial fulfillment of work as described under contract 10I021 between the University of Minnesota and the Metropolitan Council. The goal of this investigation was to provide datasets that would assist the Metropolitan Council with regional ground water planning. Specifically, vertical travel times were calculated from a regional water table surface to bedrock in order to gain a better understanding of recharge to upper bedrock aquifers in the extended Twin Cities Metropolitan Area (TCMAx). A focus of this investigation, therefore, was on the permeability of unconsolidated sediments overlying the bedrock surface, and the regional distribution of vertical hydraulic gradient.

Permeability of unconsolidated deposits was estimated based on subsurface textures linked to measured permeabilities compiled in an earlier study (Tipping et al., 2010). The distribution of unconsolidated deposits of variable permeability was mapped by Quaternary geologists, or estimated by interpolation of water well driller's records. To accommodate both types of data, a regional matrix of regularly spaced datapoints from the land surface to the bedrock surface was constructed, with horizontal dimensions of 250 meters, and vertical spacing of 20 feet. Texture attributes were added to each datapoint based on its position relative to subsurface mapping and interpolation results. Regional distribution of hydraulic gradient was determined by building a bedrock potentiometric surface based on synoptic measurements (Sanocki et al., 2009) and water well records, and subtracting it from a regional water table surface (Barr, 2010). The difference in hydraulic head was then divided by distance from the regional water table to the bedrock surface to obtain hydraulic gradient.

Vertical travel time was calculated using a Darcy-flux based approach, using harmonic means of vertical hydraulic conductivity for each matrix horizontal (XY) location, hydraulic gradient, and a effective porosity value of 20 percent. Results were compared to distribution of recent waters (Tipping et al., 2010) in order to test the validity of this method.

The distribution of recent waters in the TCMAx upper bedrock aquifers broadly supports groundwater recharge rates calculated in this investigation. In general, recent waters are found at depth in areas with large vertical gradients and coarse, relatively high permeability material over bedrock. Furthermore, chemical results support the premise that water most impacted by activities at the landsurface – "manageable waters" – occur at elevations controlled by regional discharge to the major rivers, permeability of glacial deposits and high capacity pumping from upper bedrock aquifers.

At local and regional scales, project deliverables improve groundwater model calibration by helping to refine conceptual models of groundwater flow. Residence time data, reflected in the distribution of vertical recharge to upper bedrock aquifers, can be used to guide interpretation of calibration results as an alternative to calibration strictly by head values alone. These steps can result in a more realistic distribution of hydraulic conductivity parameters in numeric models.

Introduction

This report summarizes work performed by the Minnesota Geological Survey (MGS) in partial fulfillment of work as described under contract no. 10I021 between the University of Minnesota and the Metropolitan Council. The goal of this investigation was to provide information on recharge to bedrock aquifers in the extended Twin Cities Metropolitan Area (TCMAx) (Figure 1). This report focuses on vertical movement of groundwater through

unconsolidated deposits to bedrock aquifers; a second, complementary report focuses on the hydraulic conductivity and hydrostratigraphy of the Platteville Formation (Runkel et al., this study).

Resource managers make decisions which hinge on questions related to groundwater such as *What's the groundwater quality in my area? Is the groundwater getting worse or better? If we increase our use of the groundwater, what are the consequences?* Efficient management of groundwater resources requires better information on how these aquifers recharge. The distribution of overlying glacial materials clearly effects recharge to bedrock aquifers in the Twin Cities Metropolitan Area. However, residence times and pathways of groundwaters through these deposits are not well characterized.

While groundwater pathways through glacial deposits can be complex, two fundamental components of this flow system can be addressed: 1.) what is the composition, spatial distribution and hydraulic characteristics of unconsolidated materials overlying bedrock aquifers?, and 2.) what is the spatial distribution of vertical gradient that drives the downward movement of groundwater through these deposits? This investigation uses subsurface glacial mapping through parts of the TCMAx in addition to recent regional mapping of both water table and potentiometric surfaces of major TCMAx bedrock aquifers to calculate vertical flux of groundwater from the water table to the bedrock surface. Estimated travel times are then compared with the chemical and isotopic composition of TCMAx groundwaters to test the validity of this method.

Background and data sources

Focus on the downward flux of groundwater as a means of assessing groundwater recharge through glacial deposits is not a new approach. Larson-Higdem et al., 1975, applied

similar methods to look at downward leakage to the Prairie du Chien – Jordan aquifer system in the Twin Cities metropolitan area; their work was incorporated into a more recent evaluation of recharge to Twin Cities unconfined bedrock aquifers (Ruhl et al., 2002). In a more general application, vertical flux of groundwater is the fundamental part of ground water sensitivity mapping (Minnesota Department of Natural Resources, 1991). In all cases, the complex pathways of groundwater movement through unconsolidated materials are simplified by considering the vertical component of groundwater flow only.

While the vertical movement of groundwater is conceptually clear, its calculation is dependent on estimates of vertical hydraulic conductivity that are highly variable and difficult to measure. Most aquifer tests are designed to estimate horizontal hydraulic conductivity, based on the premise that ground water flow to a pumping well is primarily horizontal. Direct measurements of vertical hydraulic conductivity are largely limited to laboratory experiments; field based values are typically based on leakage estimates derived from deviations from typical water level response curves to pumping. Notwithstanding scale effects that account for increases in hydraulic conductivity due to scale of measurement - lab to field to regional – it is assumed that a reasonable regional scale estimate of vertical hydraulic conductivity falls within the broad range of measured horizontal hydraulic conductivity values from an earlier investigation for the Metropolitan Council (Tipping et al., 2010) were used as estimates of vertical hydraulic conductivity. Expected ranges of hydraulic conductivity for given textures of unconsolidated deposits used in this study are provided in Appendix A.

The most complete data on the distribution of subsurface materials comes from areas where Quaternary stratigraphic mapping has taken place (Figure 1). In the TCMAx, Quaternary

subsurface mapping occurred first in Washington County as part of a county project (Meyer and Tipping, 1998), was included as part of a hydrogeologic investigation of the northwestern metropolitan area (Meyer and Tipping, 2007) and has been part of more recent county atlases in Scott, Carver and Chisago Counties (Lusardi and Tipping, 2006; Lusardi and Tipping, 2009; Meyer, 2010). In areas not covered subsurface mapping, subsurface texture distributions were estimated from data in the state water well database County Well Index (CWI), as described in the methods section of this report.

Data on vertical hydraulic gradients comes from two sources. Water table elevations were taken from a regional investigation on groundwater surface-water interaction (Barr, 2010). Bedrock potentiometric surfaces are based primarily on synoptic measurements of the Prairie du Chien and Jordan aquifers (Sanocki et al., 2009), augmented with data from CWI where these rocks are absent. Based on bedrock hydrostratigraphy, elevation of bedrock units and elevation of regional discharge (Mississippi, St. Croix and Minnesota Rivers), horizontal groundwater flux is assumed to be greatest within Prairie du Chien Group and Jordan Sandstone. It is expected that this flux drops off significantly below the St. Lawrence Formation. By combining synoptic measurements from the Prairie du Chien and Jordan aquifers, with CWI data for upper-most bedrock units beyond the extent of the Prairie du Chien and Jordan, the resultant bedrock potentiometric surface is meant to provide generalized base hydraulic head data for flow systems most directly connected to activities at the land surface.

Sources of historic water chemistry data collected as part of a previous investigation (Meyer and Tipping, 2007) for the Metropolitan Council are: the U.S. Geological Survey National Water Inventory System (U.S. Geological Survey, 2010); the Minnesota Department of Health; the Minnesota Pollution Control Agency GWMAP program—both ambient groundwater monitoring and land-use studies (Minnesota Pollution Control Agency, 2010); University of Minnesota graduate studies (Tipping, 1992; Nemetz, 1993; Burman, 1995); Dakota County Environmental Management (2006); Anoka County Community Health and Environmental Services (Marsh, 1996, 2001); and samples from 27 wells in northwestern Hennepin County where there were limited existing data. Additional data include earlier historic data from both regional (Hall et al., 1911; Maderak, 1963; Sabel, 1985; Lively et al., 1992) and local studies (Alexander and Ross, 2003; Andrews et al., 2005), along with tritium and strontium isotope analyses from northwestern Hennepin County (Tipping and others 2010).

Methods

Distribution and hydraulic characteristics of unconsolidated subsurface materials

In this investigation, vertical hydraulic conductivity values for unconsolidated materials are based on their textural distribution from the land surface to the bedrock surface. Subsurface mapping of unconsolidated deposits is not continuous across the Twin Cities metropolitan area (Figure 1). As a result, the compilation of subsurface Quaternary textures presented here is a hybrid of detailed subsurface mapping based on cross sections, and interpolation of textures from CWI.

Although the methods for detailed subsurface mapping have changed with time, the basic approach is the same. Subsurface materials are mapped in three dimensions by evaluating well records and cuttings, rotosonic core and textural analyses, within the context of stratigraphic order and conditions of deposition. To clarify textural descriptions in this report, the term *fine-grained materials* is used to describe clay loam to sandy loam basal tills, but can include lacustrine deposits composed of laminated fine sand, silt and clay; the term *coarse-grained*

materials is used to describe sand and gravel glacio-fluvial deposits, including ice contact, valley train, subglacial and outwash deposits; the term *mixed fine and coarse-grained materials* is used to describe textures found in ice stagnation zones and other conditions resulting in a complex mixture of the two. Digital elevation models of the tops and bottoms of stratigraphic units produced by subsurface mapping were used in this investigation to delineate subsurface textures in these mapped areas shown on Figure 1.

Within the TCMAx, areas with no Quaternary subsurface mapping include Dakota, Ramsey, Isanti and portions of Hennepin County. Subsurface mapping is currently underway as part of the Wright and Sherburne geologic atlases, but are not completed at this time. In order to determine the distribution of subsurface textures in these areas, interpolation methods were used modified from those earlier geologic atlases were used (e.g. Meyer et al., 1995). With this approach, stratigraphic records from water wells are coded based on primary lithology into three generalized textural categories of fine-grained, coarse-grained, or a mixture of fine and coarsegrained. In driller's records, these intervals are typically referred to as clay, sand/gravel, and sandy clay/clayey sand. The stratigraphic record is then resampled into equal 10 foot elevation intervals. Two-dimensional interpolation using ordinary kriging is used to determine the likelihood of each category for a given elevation interval.

Two-dimensional, rather than three-dimensional interpolation is used, based on the premise that glacial deposits have undergone minimal structural deformation since their deposition, and that correlation is optimized by evaluating data at equal elevations. Interpolated results for each elevation interval are merged to into a single dataset to create a three-dimensional model for each of the three textural types (see Figures 2, 3 and 4).

In order to combine textural datasets from subsurface mapping and the interpolated model, a matrix of points between the land surface and bedrock surface was created, spaced 250 meters apart in the horizontal direction and 20 feet apart in the vertical direction, herein referred to as gridpoints. The size was chosen to cover the TCMAx at a scale that can be reasonably managed on a desktop computer. A range of vertical hydraulic conductivities (Kv) were assigned each gridpoint, based on its location within mapped Quaternary stratigraphic layers. Where subsurface mapping does not exist, a range of values were assigned based on interpolated model results. If neither of these sources were available for a given gridpoint, a null value was assigned. A final adjustment to assigned Kv values was made based on depth. If the gridpoint is within 20 feet of the land surface (upper-most gridpoint) it texture-derived hydraulic conductivity was assigned based on the current 1:200,000 scale surfical geologic map of the Twin Cities metropolitan region (Meyer, 2007). If the gridpoint is greater than 60 feet in depth from the land surface, its assigned range of hydraulic conductivity is two orders of magnitude less than the values assigned to a similar texture in the upper 60 feet. Textures and assigned ranges of hydraulic conductivities are included in Appendix A., Table 1. These estimates are based on a regional compilation of hydraulic conductivity measurements for glacial deposits, conducted at a wide range of scales (Tipping et. al., 2010). Methods for gridpoint assignment are illustrated on Figure 5.

In addition to hydraulic conductivities, gridpoints contain attributes on texture, texture source (subsurface mapping or interpolated model), Quaternary stratigraphic unit if mapped, surficial map unit, and unique identifiers for the six neighboring points. The latter is included to facilitate finite difference modeling.

For travel time calculations, a single "composite" Kv was assigned to each gridpoint based on the following hierarchy. If no other texture estimate was available, Kv was assigned based on texture from interpolated model. These Kv's were replaced by texture-based Kv's from subsurface mapping, which in turn were replaced by texture-based Kv's from the surficial map (upper 20 feet only). After these assignments were made, if a single column of gridpoints from the land surface to the bedrock surface had texture-derived Kv's for more than 40 percent of its points, the remaining blanks were assigned an intermediate value 10.05 ft/day; if less than 40 percent had texture-derived Kv's, the remaining blanks had no value assigned.

A second dataset was created to summarize subsurface conditions for each XY location within gridpoints, herein referred to as XY locations. This dataset contains information on: what percent of the subsurface is represented, either by subsurface and surface mapping or interpolation, by a texture attribute and associated K value; regional water table surface elevation; bedrock potentiometric surface elevation; and top of bedrock elevation.

For each XY location with greater than 40 percent of its subsurface gridpoint textures represented by mapping or interpolation, arithmetic, geometric and harmonic mean Kv values were calculated. This calculation was done both for points from water table elevation to the bedrock surface and from the water table elevation to the land surface, and are referred to as "Kv_sat" and "Kv_unsat" respectively in dataset XY locations. Kv_sat values based on harmonic mean of each composite Kv for a given XY location are shown on Figure 6. Field descriptions for datasets gridpoints and XY locations are included in Appendix D.

Hydraulic Gradient

Hydraulic head differences used to establish a hydraulic gradient between the water in upper, unconsolidated deposits and water in bedrock aquifers were determined using raster calculations. The regional water table raster surface was constructed to help evaluate the impact of pumping on surface water bodies at a regional scale (Barr, 2010). By design, it is well suited for this investigation, by providing generalized regional elevations of saturated conditions, without including zones of perched groundwater systems. Main sources of data sources for the regional water table surface are Minnesota Department of Natural Resources observation well network for water table wells, the County Well Index (CWI), and data from site specific studies. Results from regional groundwater flow models and surface-water elevations for reaches of some streams known to be gaining were also used as a control, particularly where data from other sources were sparse (Barr, 2010).

The regional bedrock potentiometric raster surface is a combination elevations from contoured synoptic water level measurements in the Prairie du Chien Group and Jordan Sandstone (Sanocki et al., 2009) and contoured water levels from the County Well Index for upper-most bedrock aquifers where the Prairie du Chien and Jordan are not present. The resultant bedrock potentiometric surface is meant to provide generalized bedrock hydraulic head data for flow systems most directly connected to activities at the land surface.

The regional water table and bedrock potentiometric surfaces are generalized surfaces both spatially and temporally. Both surfaces are based, in part, on measurements from CWI, taken most often at the date of installation, spanning all seasons over many decades. Filtering and data processing and final cross-validation of the water table CWI dataset resulted in values dropped with absolute residuals 20 feet or greater (Barr, 2010). Error for both regional water

table surface and the bedrock potentiometric surface elevations are estimated to be at a minium +/- 20 feet in areas based solely on data from CWI. Water table data from the DNR's observation well network are based on reliable measurements, but are subject to seasonal variations not included in this model. Bedrock water level data from 2008 synoptic water level measurements provide data that is temporally consistent across the metro area. Measurements were taken in March and August of 2008, and provide information on seasonal changes in hydraulic head within bedrock aquifers.

Subtracting the bedrock potentiometric surface from the regional water table surface produced negative values over much of the TCMAx. Many of these areas were focused on the major rivers, where upward discharge of bedrock aquifers is reflected in expected negative values. In other areas, it is less clear whether actual artesian conditions exist, or where uncertainty in the surface values produces overlap. For the purposes of travel time calculations, areas with negative values near major discharge areas, or areas where CWI records indicate flowing (artesian) bedrock wells were identified and are shown on the vertical recharge map. Outside of these areas, bedrock potentiometric surface elevations greater than the regional water table were lowered to one-half foot below the regional water table.

Subtraction of the adjusted bedrock potentiometric surface from the regional water table surface reveals seasonal changes in bedrock hydraulic head (Figure 7). Synoptic measurements taken in August 2008 show a broadening and deepening of hydraulic head in the central metropolitan area when compared to March 2008 measurements. The cause of this change is likely increased high capacity pumping in response to increased summer demand.

The hydraulic gradient between the regional water table and bedrock aquifers was determined by dividing the difference in hydraulic head by the vertical distance from the water table to the bedrock surface (Figure 8). Perched conditions in the central metropolitan area are present within and above the Plattville Formation; in places, the St. Peter Sandstone is partially unsaturated below it. These conditions invalidate the use of a Darcy flux- based calculation to estimate travel time from the water table to the Prarie du Chien Group and Jordan Sandstones. Although unsaturated conditions within glacial sediment are known to occur under the regional water table surface, the unconsolidated deposits below the regional water table were considered to be fully saturated for the travel-time calculation.

Calculation of vertical travel times

Vertical travel times for both saturated and unsaturated conditions were calculated for each XY location as follows:

$$T = L/((Kv*365* grad_h)/n)$$

T = vertical time of travel in years

L

for saturated conditions: distance from regional water table to bedrock surface, in feet for unsaturated conditions: distance from land surface to the regional water table, in feet

Kv = bulk vertical hydraulic conductivity in feet/day

for saturated conditions: mean value of gridpoints from water table to bedrock surface for unsaturated conditions: mean value gridpoints from land surface to the water table

grad_h

for saturated conditions: difference in elevation between regional water table and bedrock poteniometric surfaces, divided by L, in feet for unsaturated conditions: set equal to 1

n = effective porosity, set equal to 0.20

Time of travel estimates were calculated for arithmetic, geometric and harmonic means for both

saturated and unsaturated conditions, and are included in the XY location dataset.

Groundwater chemical and isotopic composition

To evaluate vertical travel time estimates, three ground water chemical types, or hydrochemical facies, were mapped at the regional scale (Tipping et al., 2010): 1. Recent waters were distinguished by: a.) the presence of detectable tritium in water well samples. Elevations of these tritium detections were mapped as the land surface elevation minus casing depth; b.) areas within 50 feet of the land surface where the uppermost geologic unit is NW provenance till associated with the Des Moines lobe; c.) areas with sand and gravel at the land surface to a depth not greater than 30 feet below local elevations of the Mississippi and Minnesota Rivers. Conditions (b) and (c) are based on literature values (e.g. Schilling and Tassier-Surine 2006) and site-specific data (Tipping, et. al., 2010) generalized to broad regions having limited chemical data. These criteria resulted in a composite generalized contour map showing the elevation above mean sea level where recent water would be expected to be found (Figure 9). Other indicators of recent water such as the presence of elevated chloride, nitrate, or anthropogenic compounds generally fit within these contours. It should be noted that within the center part of the basin, contours show a bowl shaped presence of recent waters to an elevation of 475 feet. Vintage waters have been found above this elevation within the upper Prairie du Chien Group where it is covered by the Platteville and Glenwood Formations (see Figure 19, cross section F-F'). This condition of younger water underlying older water is expected to be present elsewhere within the TCMAx under similar hydrogeologic conditions; 2. Waters with distinct cation ratios were distinguished by having strontium to calcium plus magnesium molar ratios greater than 0.001. These waters are predominantly in the western part of the metro area, with the exception of the Mt. Simon aquifer, where they extend to the central and southeastern parts of the basin

(Figure 10) Elevated strontium to calcium plus magnesium ratios may be associated with recharge through NW provenance tills, and are also considered to an indicator of longer residence time (Eckman and Alexander, 2002); and 3. *Waters with naturally elevated chloride* were distinguished by having chloride levels greater than 15 ppm and carbon 14 age dates greater than 1,000 years. These waters were mapped in the Mt. Simon aquifer only, but are thought to be present in shallow aquifers near major fault zones in the metro area, including the cities of Hastings, Anoka, and Belle Plaine (Figure 11).

Results

Regional maps

Calculated vertical travel times for saturated and unsaturated conditions range from less than a year to well over 500 years (Figures 12 and 13). Results show differences in near surface and deeper subsurface hydraulic conditions. Anoka County, for example, has short travel times to the regional water table through coarse-grained deposits at the land surface, and long vertical travel times to bedrock, through complex subsurface layering of NE and NW provenance till and sand (see Figure 15, cross section B-B'). Areas in the central metropolitan area with travel times that are faster in saturated conditions than unsaturated result from texture differences between shallow and deeper sediments, and distance differences from the land surface to the water table and water table to bedrock, and areas near the Plateville subcrop edges where the saturated vertical gradient is greater than 1.

Chemical results show recent waters in uppermost bedrock aquifers at elevations generally above 700 feet (Figure 14). Recent waters detected at lower elevations are most often found in high capacity wells and in wells near areas of high capacity pumping. Bedrock aquifers

containing highest percentage of recent waters are stratigraphically above the St. Lawrence Formation (Figure 15).

Regional cross sections

Physical setting, hydraulic gradient and chemical data are summarized by cross section in Figures 16 through 22. A key for cross section symbols is included in Figure 25. Regional cross sections A-A' through E-E' show variation in chemical types with depth along the general direction of groundwater flow towards regional discharge areas (Minnesota, Mississippi and St. Croix Rivers. Local cross sections F-F' through I-I' illustrate hydrologic conditions that impact groundwater movement.

- Cross section A-A', Sherburne County to Mississippi River (Figure 16). Recent waters interpreted as present in the upper 50 feet of unconsolidated deposits, increasing with depth in the central part of the basin. Lowest elevation of recent waters occurs in the Jordan Sandstone. Carbon 14 dates for Mt. Simon are shown, indicating a sharp contrast in recharge rates for the upper and lower aquifer systems.
- Cross section B-B', St. Francis, Anoka County to Mississippi River (Figure 17). Recent waters interpreted as present in the upper 50 feet of unconsolidated deposits, increasing with depth in the central part of the basin. Lowest elevation of recent waters occurs in the Jordan Sandstone. Complexity of unconsolidated deposits over bedrock, below surficial sands is shown.
- Cross section C-C', Big Marine Lake, Washington County to Mississippi River near downtown St. Paul (Figure 18). Recent waters between Big Marine and White Bear Lake in the Prairie du Chien Group largely based on tritium measurements from samples west and east of the cross section line interpreted as mixed waters (TU between 1 and 10).

Recent water is found at depth towards downtown St. Paul, coincident with a larger downward gradient and coarse unconsolidated deposits over bedrock. Slight upward gradient at White Bear Lake; downward gradient near Big Marine possibly marking groundwater divide, with regional discharge west towards the St. Croix River. Vintage waters in the Mt. Simon aquifer

- Cross section D-D', western Dakota County to Mississippi River near Hastings (Figure 19). Limited data show presence of clay, based on the interpolated model, restrict the downward movement of water west of the South Branch of the Vermillion River.
 Remainder of the cross section is largely sand and gravel over Prairie du Chien Group. A large buried valley filled with sand and gravel is present west of Hastings. Recent waters within this valley on this cross section based on sampled wells within and on the edges of the valley to the southeast.
- Cross section E-E', southeastern Scott County to Minnesota River near Shakopee Figure 20. Anthropogenic waters absent below cover of alternating NW and NE provenance tills. Elevated strontium to calcium plus magnesium ratios are limited to bedrock valley in upper aquifers and to the Mt. Simon in the lower aquifer. Naturally elevated chloride present in the Mt. Simon at the northeast end of the cross section. Presence of recent water in the Jordan in this area based on sampled wells to the east and west of the cross section line. A strong upward gradient from the Jordan is present near the Minnesota River.

Local cross sections

• Cross section F-F' Edina area (Figure 21). Age inversion within the open hole of a single well is shown. Grab samples from the lower portion of the open hole had

detectible tritium, while the uppermost sample, located within the Shakopee Formation – Prairie du Chien Group, did not (MDH, 2010). Flow logging from a nearby test well (MN unique well no. 748656) showed strong downflow from the lower Shakopee to the Jordan Sandstone, corresponding to stratigraphic position of detectible tritium in this well. Interpreted stagnation zone of older water illustrated as present underneath the central portion of the Platteville/Glenwood cap.

- Cross section G-G' Eastern Hennepin County (Figure 21). Recent water occurs at depth east of till cover. Flow logging east of Highway 169 showed strong upflow from fractures in the upper Jordan Sandstone to the upper Oneota Formation Prairie du Chien Group (MN unique well no. 676445.)
- Cross section H-H', south central Washington County to Mississippi River (Figure 22).
 Stratification of perflourochemical (PFC) detections between Shakopee (upper Prairie du Chien Group) and Jordan samples is shown. Results infer separate flow systems, with possibly greater flux through the Shakopee Formation compared to the Jordan Sandstone.
- Cross section I-I', southeastern Washington County to St. Croix River (Figure 22).
 Downward gradient over a north-south trending bedrock valley in the center of the cross section, west of Manning Avenue. The valley, filled with primarily coarse-grained material, shows cluster of PFC detections. Occurrence of PFC's near the St. Croix River indicates movement of groundwater through fractures and fault blocks, crossing stratigraphic units with wide ranging permeability.

Discussion

The distribution of recent waters in the TCMAx upper bedrock aquifers broadly supports groundwater recharge rates calculated in this investigation. In general, recent waters are found at

depth in areas with large vertical gradients and coarse material over bedrock. Furthermore, chemical results support the premise that waters most impacted by activities at the landsurface – "manageable waters" – occur at elevations controlled by regional discharge to the major rivers, and high capacity pumping from the Prairie du Chien and Jordan aquifers or other uppermost bedrock aquifers where these rocks are not present. (Figures 14 and 15).

In southern Washington and central to east central Dakota County, coarse sediments overlie the Prairie du Chien Group. Much of this area is less than 50 feet to bedrock and the water table is largely below the bedrock surface. A large bedrock valley west of Hastings is also filled with coarse sediments. In areas where sufficient data exists, calculated vertical travel times are generally less than a year. Vertical gradients are controlled largely by regional discharge, although high capacity pumping for public water supply, commercial use and irrigation enhance vertical gradients locally.

In central and northern Washington County, relatively recent recharge occurs in areas of sandy NE provenance till over bedrock. Calculated vertical travel times are generally less than one to greater than 50 years depending on the presence of fine-grained sediment in the subsurface. A groundwater divide runs north-south through this portion of the county as water moves either east towards the St. Croix River or southwest towards the Mississippi River. Vertical gradients are controlled largely by regional discharge. Recent waters are found at elevations below regional discharge in east central and southeastern Washington County, where high capacity pumping increases vertical gradients locally.

Northeastern Washington, western Chisago and eastern Anoka and Northern Ramsey Counties have calculated vertical travel times generally greater than 500 years, largely due to the

presence of fine-grained NW provenance tills and lacustrine sediment in the subsurface combined with a low vertical gradient. In western Anoka County, calculated vertical travel times are less, where the subsurface is composed of a greater percentage of coarse-grained sediments. Further west into Sherburne County, predominantly coarse grained sediments over bedrock result in calculated vertical travel times of less than a year. Recent waters are generally found only at shallower depths. Elevated strontium to calcium plus magnesium waters are limited to deeper aquifers in the central metro area, indicating diminished NW provenance till signature in recharge waters within these counties.

Where sufficient data exists, western Hennepin, Wright, Carver and Scott Counties generally have calculated vertical travel times of greater than 500 years. In these areas, a thick succession of NW and NE provenance tills and minimal vertical gradient restrict the downward movement of groundwater to bedrock. Water samples from bedrock wells below these tills have no detectible tritium, low chloride, and elevated strontium to calcium plus magnesium ratios, all indicative of older water receiving minimal recharge from the land surface. In northeastern Hennepin County, water chemistry changes to more recent waters at depth, concomitant with a thinning and replacement of NW provenance till by coarse-grained terrace deposits along the Mississippi River. Calculated vertical travel times in the area are generally less than 50 years.

Eastern Hennepin and Southern Ramsey County generally have calculated vertical travel times of less than a year, with the exception of areas where fine-grained material is present in the subsurface. Recent waters are found at elevations below regional discharge where high capacity pumping increases vertical gradients locally. These areas have the largest downward vertical gradients in the metropolitan area, in large part due to the presence of the Platteville and

Glenwood Formations, along with remnants of Decorah Shale above them. Recognizing that much of the water table is perched within and above these formations, seasonal changes in the bedrock potentiometric surface based on synoptic measurements in March and August clearly demonstrate the influence of high capacity pumping on vertical gradient in these areas (Figure 7).

In eastern Hennepin and southern Ramsey County and elsewhere, recent waters are found at depth in areas with large vertical gradients and coarse material over bedrock. These areas are commonly located in bedrock valleys which provide important "windows" to lower aquifers where upper bedrock aquitards are absent. Data provided in this investigation show that not all bedrock valleys are filled with coarse material. Texture-based hydraulic conductivity estimates stored in a regular three dimensional grid format should help with groundwater modeling across these bedrock valleys.

Much effort has been dedicated over the past decade to characterize water bearing characteristics of aquifers and aquitards in the Paleozoic rocks found in the Twin Cities area and elsewhere (Bradbury and Runkel, 2011). While advances have been made in our understanding of horizontal fractures, we are just beginning to understand and document the role of vertical fractures in these systems (e.g. Meyer et al., 2008; Anderson et al., 2011; Runkel et. al, this study). Elevations of detectable tritium in the central part of the basin are lower than regional discharge elevations. Flow log and borehole video data provide evidence for rapid downward flow in multi-aquifer test wells located near municipal well fields. Less well documented, but likely just as important is downward flow through vertical fractures (Hart, 2006). In both cases, increased vertical gradients caused by hi-capacity pumping create conditions for rapid migration of water in the vertical direction. The implications of enhanced vertical recharge to the

municipal recharge municipal wellfields are two-fold. Wells that are receiving enhanced vertical recharge can be expected to be good suppliers of water in the future because the aquifer recharges rapidly compared to wells that are primarily receiving lateral recharge. However these same wells are more susceptible to surface contamination within wellhead protection areas, at rates likely faster than those predicted by conventional groundwater modeling.

Suggested use

Project deliverables were designed to provide water planners with both regional and site specific data for understanding groundwater flow in a geographic information systems (GIS) environment. Distribution of subsurface textures in unconsolidated deposits and associated ranges of hydraulic conductivity are supplemented by site-specific hydraulic conductivity data collected over a wide range of scales provide information on permeability; Hydrochemical facies mapping supplemented with site specific analytical results provide information on groundwater flow paths and residence times. To illustrate these features, an example of suggested use is presented for a groundwater contamination site in central Hennepin County.

Trichloroethene (TCE) contaminant plumes for 1990 and 2009 at the Honeywell site along with site specific measurements of horizontal hydraulic conductivity are shown in Figure 23a (MACTEC, 2010). The change in plumes from 1990 to 2009 shows plume migration with time to the east. The same plumes are shown in Figure 23b, along with texture-based estimates of vertical hydraulic conductivity from the regional Quaternary subsurface dataset. In both figures, lower hydraulic conductivity values area shown in blue, intermediate values in green and higher values in yellow. Lower hydraulic conductivity values to the southeast are visible in both the site specific and regional data.

Regional subsurface data for unconsolidated deposits, expanded out from the site, show the distribution of subsurface textures in the broader context of regional geology. Low permeability clay loam sediments are present northwest of the site at the land surface, while layers of clay loam to sandy clay loam and sand are present southwest of the site in the subsurface (Figure 24a). Expanding further out from the site, the change from fine-grained textures to the west to coarse-grained textures, including a largely sand filled bedrock valley to the east is visible Figure 24b. The addition of hydrochemical facies shows the distribution of recent waters in this area (Figure 24c). Recent waters are found in the shallow subsurface to the northwest, extending deeper into the bedrock valley southwest of the site. Further details are provided both by gridpoints, where till textures are separated by provenance, and in site specific datasets for both hydraulic conductivity and water chemistry from individual measurements can be added as GIS layers (Tipping et al., 2010).

At local and regional scales, project deliverables improve groundwater model calibration by helping to refine conceptual models of groundwater flow. Residence time data, reflected in the distribution of vertical recharge to upper bedrock aquifers, can be used to guide interpretation of calibration results as an alternative to calibration strictly by head values alone. These steps can result in a more realistic distribution of hydraulic conductivity parameters in numeric models.

Acknowledgements

The authors of this and complementary report on hydrogeology of the Platteville Formation gratefully acknowledge the Metropolitan Council for their support of this investigation. Meetings and informal discussions with Lanya Ross, Brian Davis at the Metropolitan Council, Steve Robertson and Amal Djerrari – MDH, Evan Christianson and Ray Woulo – Barr Engineering, Glen Champion and Joy Loughry – MnDNR greatly improved the content of this report and the format of the associated databases.

References cited

- Alexander, S.C., and Ross, M., 2003, Sources and residence times of ground water recharge in the St. Croix River basin: Experience from northern Washington County, in abstracts: St. Croix River Research Rendezvous, Science Museum of Minnesota, <http://www.smm.org/SCWRS/rendezvous/abstracts03.php>.
- Andrews, W.J., Stark, J.R., Fong, A.L., and Fallon, J.D., 2005, Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin—Ground-water quality along a flow system in the Twin Cities metropolitan area, Minnesota, 1997-1998: U.S. Geological Survey SIR 2005-5120, 44 p.
- Barr Engineering, 2010, Evaluation of groundwater and surface-water interaction: guidance for resource assessment, Twin Cities Metropolitan Area, Minnesota. Prepared for Metropolitan Council, June 2010. 27 p. plus GIS files.
 <u>http://www.metrocouncil.org/environment/WaterSupply/gwswinteractionevaluation.htm</u> (Accessed August 17, 2011)
- Bradbury, K.R. and Runkel, A.C., 2011, Recent advances in the hydrostratigraphy of Paleozoic bedrock in the Midwestern United States. GSA Today, v. 21, no. 9, pp 10-12.
- Burman, S.R., 1995, Pilot study for testing and refining an empirical groundwater sensitivity assessment methodology: Minneapolis, University of Minnesota, M.S. thesis, 256 p.
- Dakota County Environmental Management, 2006, Jill Trescott, written communication.
- Eckman, J., and Alexander, S.C., 2002, Ground-water chemistry and residence time, Regional Hydrogeologic Assessment Ottertail Area, West-Central Minnesota, Minnesota Department of Natural Resources Regional Hydrologic Assessment Series RHA-5, technical appendix to part B, 15 p.

- Hall, C.W., Meinzer, O.E., and Fuller, M.L., 1911, Geology and underground waters of southern Minnesota: USGS Water-Supply Paper 256, 406 p.
- Hart, D.J., Bradbury, K.R., and Feinstein, D.T., 2006, The vertical hydraulic conductivity of an aquitard at two spatial scales. Ground Water, v. 44, no. 2, pp. 201-211.
- Jirsa, M.A., Boerboom, T.J., Chandler, V.W., Mossler, J.H., Runkel, A.C., Setterholm, D.R., 2011, Geologic Map of Minnesota – Bedrock Geology. Minnesota Geological Survey State Map Series S-21, <u>http://purl.umn.edu/101466</u> (Accessed November 1, 2011)
- Larson-Hidgem, D., Larson, S.P., Norvitch, R.F., 1975, Configuration of the water table and distribution of downward leakage to the Prairie du Chien-Jordan aquifer in the Minneapolis-St. Paul metropolitan area, Minnesota. United States Geological Survey Open-File Report 75-342, 33 p.
- Lively, R.S., Jameson, R., Alexander, E.C., Jr., and Morey, G.B., 1992, Radium in the Mt. Simon-Hinckley aquifer, east-central and southeastern Minnesota: Minnesota Geological Survey Information Circular IC-36, 58 p.
- Lusardi, B.A. and Tipping, R.G., 2006, Quaternary Stratigraphy, pl 4 of Setterholn, D.R., project manager, Geologic Atlas of Scott County, Minnesota. Minnesota Geological Survey County Atlas C-17.
- Lusardi, B. and Tipping, R.G., 2009, Quaternary Stratigraphy and Sand Distribution Model, pl.4 of Bauer, E.J., project manager, Geologic Atlas of Carver County, Minnesota. Minnesota Geological Survey County Atlas C-21, Part A.
- MACTEC, 2010, On-site investigation report: Revised site conceptual model: Honeywell Golden Valley Site, Golden Valley, Minnesota, March 12, 2010: MACTEC project number 3310090001.
- Maderak, M.L., 1963, Quality of waters, Minnesota: A compilation, 1955-1962: St. Paul, Minn., Minnesota Conservation Department, Bulletin 21, 104 p.
- Marsh, R., 1996, Groundwater chemistry and recharge estimation using environmental tritium: Anoka County, Minnesota: Anoka County Community Health and Environmental Services Department, prepared under an Agricultural Preservation and Conservation Awareness Grant, 62 p.
- 2001, Hydrogeology of the buried drift aquifers: Anoka County, Minnesota: Anoka County Community Health and Environmental Services Department, prepared under an Agricultural Preservation and Conservation Awareness Grant, 44 p.
- Meyer, G.N., 2010, Quaternary Stratigraphy, pl 4 of Runkel, A.C., project manager, Geologic atlas of Chisago County, Minnesota. Minnesota Geological Survey County Atlas C-22, Part A.

- Meyer, G.N., Knaeble, A.R., and Tipping, R.G., 1995, Quaternary Stratigraphy, pl 4 of Meyer, G.N., project manager, Geologic atlas of Stearns County, Minnesota, Minnesota Geological Survey County Atlas C-10, Part A.
- Meyer, G. and Tipping, R.G., 1998, Digital elevation models of tops and bottoms of four tills within Washington County, Minnesota: Minnesota Geological Survey, Unpublished Manuscript Maps, Scale 1:50,000, eight digital files.
- Meyer, G.N. and R.G. Tipping, 2007, Geology in support of ground-water management for the Twin Cities Metropolitan Area, Metropolitan Council Water Supply Master Plan Development – Phase I. Minnesota Geological Survey Open File Report OF07-02.
- Meyer, J.R., Parker, B.L., and Cherry, J.A., 2008, Detailed hydraulic head profiles as essential data for defining hydrogeologic unis in layered fractured sedimentary rock. Environmental Geology, v. 56 pp. 27-44.
- Minnesota Department of Health, 2010a, Perfluorochemical data for portions of Washington and Ramsey and Dakota Counties, Minnesota. Written communication.
- Minnesota Deparment of Health, 2010b, Sourcewater protection tritium data, Justin Blum, written Communication
- Minnesota Department of Health, 2010c, Radium study, written communication.
- Minnesota Department of Natural Resources, 1991, Criteria and Guidelines for Assessing Geologic Sensitivity of Ground Water Resources in Minnesota. St. Paul, Minnesota.
- Minnesota Pollution Control Agency, 2010, Groundwater catalog (ambient ground water monitoring program): St. Paul, Minn., <<u>http://www.pca.state.mn.us/index.php/topics/environmental-data/eda-environmental-dataaccess/eda-groundwater-searches/eda-groundwater-catalog.html</u>>. Accessed November 10, 2010.
- Nemetz, D.A., 1993, The geochemical evolution of ground water along flow paths in the Prairie du Chien-Jordan aquifer of southeastern Minnesota: Minneapolis, University of Minnesota, M.S. thesis, 182 p.
- Ruhl, J.F., Kanivetsky, Roman, and Shmagin, Boris, 2002, Estimates of recharge to unconfined aquifers and leakage to confined aquifers in the seven-county metropolitan area of Minneapolis-St. Paul, Minnesota: <u>U.S. Geological Survey Water-Resources Investigations</u> <u>Report 02-4092</u>, 32 p.
- Runkel, A.C., Anderson, J.R., and Tipping, R.G., 2011, Hydraulic conductivity and hydrostratigraphy of the Platteville Formation, Twin Cities Metropolitan Area, Minnesota. Report delivered to the Metropolitan Council for Metropolitan Council Water Supply Plan Development.
- Sabel, G., 1985, Ground water quality monitoring program. A compilation of analytical data collected from 1978 to 1984. Minnesota Pollution Control Agency Division of Solid and Hazardous Waste, Program Development Section, v. 6.: Data available from MPCA

Environmental Data Access, <<u>http://www.pca.state.mn.us/index.php/topics/environmental-data/eda-environmental-data-access/eda-environmental-data-access-home.html</u>>. Accessed November 10, 2010.

- Sanocki, C.A., Langer, S.K., and Menard, J.C., 2009, Potentiometric surfaces and changes in groundwater levels in selected bedrock aquifers in the Twin Cities Metropolitan Area, March– August 2008 and 1988–2008. United States Geological Survey Scientific Investigations Report 2009–5226, 76 p.
- Schilling, K., and Tassier-Surine, S., 2006, Hydrogeology of Pre-Illinoian till at the I-380 rest stop site, Linn County Iowa. Iowa Geological Survey Technical Information Series 51, Iowa Department of Natural Resources, 53 p.
- Tipping, R.G., 1992, An isotopic and chemical study of groundwater flow in the Prairie du Chien and Jordan Aquifers: Minneapolis, University of Minnesota, M.S. thesis, 117 p.
- Tipping, R.G., Runkel, A.C. and Gonzalez, C.M., 2010, Geologic investigation for portions of the Twin Cities Metropolitan Area: I. Quaternary/bedrock hydraulic conductivity, II. Groundwater chemistry. Informal report delivered to the Metropolitan Council for Metropolitan Council Water Supply Master Plan Development, 62 p.
- U.S. Geological Survey, 2010, National Water Information System: Web interface: U.S. Geological Survey, <<u>http://waterdata.usgs.gov/nwis</u>>. Accessed November 10, 2010.

Appendix A., Table 1 hydraulic conductivity values for subsurface textures.

Corresponds to field "K_composite" in gridpoint. code specifies range of expected hydraulic conductivity in feet/day. Reference to "deep" in codes 8-11 are for point depths greater than 60 feet from land surface, estimated to be 2 orders of magnitude lower hydraulic conductivity than equivalent textures in shallow settings:

code	Texture Description	Kmax (ft/day	Kmin (ft/day)	
1	loam to clay loam	3.0E-3	1.0E-3	
2	loam to sandy loam	2.0E+1	1.0E-1	
3	loam, silt rich; silt and clay	2.0E-2	3.0E-4	
4	loam to sandy clay loam	2.0E+1	1.0E-1	
5	sand and gravel	5000	100	
6	fine sand	30	0.3	
7	sandy silt	3	0.1	
8	loam to clay loam - deep	3.0E-5	1.0E-5	
9	loam to sandy loam - deep	2.0E-1	1.0E-3	
10	loam, silt rich; silt and clay - deep	2.0E-4	3.0E-6	
11	loam to sandy clay loam - deep	2.0E-1	1.0E-3	

Source	Location/till	Texture	Lab (permeameter)tests	Slug tests	Larger scale
Hooyer and Mode (2008)	Winnebago co Wisc Green Bay Lobe	From Rodenbeck (1988) Kirby Lk: S 28%, Sl 44%, Cl, 29% Middle Inlet; S 18%, Sl 47%, Cl, 35%	10 ⁻⁴ ft/day	10^{-1} to 10^{-2} ft/day (suggests fractures)	
Simpkins and Bradbury (1992)	"southeastern Wisc till	average S 12%, SI 53%, Cl, 35%	1 to 2 orders magnitude less than slug test values	10^{-3} ft/day (fractured) to 10^{-5} ft/day (less fractured)	
Bradbury and Muldoon (1990)	Eastern wisc tills	UNKNOWN	10 ⁻³ to 10 ⁻⁵ ft/day	10^{-1} to 10^{-3} ft day	
Schilling and Tassier- Surine (2006)	Pre-Illinoian till, Linn County Iowa	average S 44%, Sl 37%, Cl, 19%	none	Geomean 10^{-2} ft/day oxidized till Geomean 10^{-4} ft/day unoxidized till	
Cravens and Ruedisili (1987)	East-central S. Dakota till	average S 21%, SI 51%, Cl 28%	none	Avg. 2.1×10^{-2} ft/day (oxidized) Avg. 1.1×10^{-3} ft/day (unoxidized)	
McKay, Cherry, Gillham (1993)	SW Ontario Till	Greater than 25% clay	10 ⁻⁵ to 10 ⁻⁶ ft/day	10^{-5} to 8×10^{-2} ft/day (fractured till) (also summarize "other" Canadian sites with fractured tills as btw 10^{-3} to 10^{-1} ft/day)	Field trench 5m (deep) by 7m (wide) ~6x10 ⁻² ft/day
Gerber et al. (2001)	Ontario till	"Sandy-silt" till		~1.4 x 10 ⁻⁴ ft/day	Water chemistry & modeling indicate Kh 1 to 2 orders magn. > than slug test K. Max.bulk vertical K estimate is 10 ⁴ ft/day
Tipping el al. (2010)	Des Moines Lobe 11 county Twin Cities Metro	average S 42%, Sl 37%, Cl, 21%	Avg 8.6 x 10^{-2} ft/day Geom 8 x 10^{-4} ft/day n= 32	Avg 4.2 x 10 ⁻¹ ft/day Geom 5.3 x10 ⁻² ft/day n= 17	
Tipping et al., (2010)	Superior Lobe 11 county Twin Cities Metro	average S 62%, Sl 26%, Cl, 12%	Avg 2.3 x10 ⁻² ft/day Geom 1.2 x 10 ⁻³ ft/day n= 21	Avg 7.3 $\times 10^{-1}$ ft/day Geom 1.6 $\times 10^{-1}$ ft/day n= 30	

Appendix A., Table 1 Comparison of hydraulic conductivity values for mid-continent tills at various scales.

Appendix A., Table 3 Summary of horizontal and vertical hydraulic conductivity values by method (Tipping et al., 2010)

Hydraulic	Cor	nductivity - horizontal (ft/d	ay)				
method/hydro_class		n	mean	min	max	geomean	
Grain size		description					
	1	loam to clay loam	1155	2.37E-01	2.83E-05	5.45E+00	9.64E-02
	2	loam to sandy loam	325	1.26E+00	2.78E-03	1.42E+01	5.70E-01
	3	loam, silt rich; silt and clay	79	3.45E-01	8.57E-03	3.35E+00	1.39E-01
	4	loam to sandy clay loam	37	1.35E+00	8.85E-02	3.42E+00	1.02E+00
	5	sand and gravel	168	5.47E+01	2.83E-02	3.09E+02	1.92E+01
	6	fine sand	32	4.81E+00	5.84E-05	3.69E+01	1.61E-01
	7	sandy silt	38	5.65E-01	1.42E-04	1.13E+01	2.42E-02
Lab Perm	ean	neter					
	5	sand and gravel	3	2.34E+00	4.30E-01	4.50E+00	1.60E+00
Aquifer te	est						
	5	sand and gravel	118	1.17E+02	4.82E-01	4.15E+02	6.53E+01
Slug test							
	1	loam to clay loam	17	3.87E-01	5.67E-04	3.83E+00	2.80E-02
	2	loam to sandy loam	34	2.27E+00	2.83E-03	4.30E+01	2.00E-01
	2	loam, silt rich; silt and	7	1 /2F-02	7 655-05	0 255-02	7 7/F_0/
	5	clay	/	1.432-02	7.032-03	9.33E-02	7.74L-04
	5	sand and gravel	215	3.98E+01	5.00E-03	5.40E+02	8.07E+00
	6	fine sand	14	3.91E+00	1.42E-03	2.61E+01	5.11E-01
	7	sandy silt	18	2.49E+01	1.40E-01	1.50E+02	5.54E+00
Specific C	ара	city - excluding CWI					
	5	sand and gravel	17	40.7294	1.5	152	2.66E+01
Hydraulic	Cor	nductivity - vertical (ft/dav)				
method	•••		'n	mean	min	max	geomean
Lab Perm	ean	neter - constant head					8
	1	loam to clav loam	17	1.68E-01	6.24E-05	2.83E+00	7.26E-04
	5	sand and gravel	51	7.79E+00	4.82E-05	1.11E+02	1.69E+00
	6	fine sand	2	1.70E+00	1.50E+00	1.90E+00	1.69E+00
	7	sandy silt	9	8.55E-01	8.50E-04	5.67E+00	8.88E-02
Lab Perm	ean	neter - falling head					
	1	loam to clav loam	37	7.14E-02	2.83E-06	1.98E+00	2.19E-04
	2	loam to sandy loam	14	2.45E-01	1.98E-05	3.40E+00	9.81E-04
	_	loam, silt rich: silt and					
	3	clay	4	1.94E-04	6.80E-05	3.97E-04	1.55E-04
	5	sand and gravel	4	4.27E-01	6.80E-03	1.13E+00	1.22E-01
	6	fine sand	1	2.35E-01	2.35E-01	2.35E-01	2.35E-01
	7	sandy silt	31	1.07E-01	9.35E-06	1.64E+00	1.73E-03
Aquifer te	est	,	3	-			
-	5	sand and gravel	3	6.76E+01	7.00E-01	1.01E+02	1.93E+01

Appendix B. Point data geodatabase structure.

Geodatabase Name: PointData.mdb (personal geodatabase)

Spatially enabled data tables

Name	Description
C_complete	Water chemistry, complete dataset. 1 row for each sample event
C_indx	Water chemistry, index summary data, linked to subsets of C_complete (tables with name beginning 'Csub')
	by field "relate_date"
K_complete	Hydraulic conductivity, complete dataset. 1 row for each measurement
K_indx	Hydraulic conductivity, index summary data, linked to subsets of K_complete (tables with name beginning
	'Ksub') by field "seqno"

Subset data tables

Name	Description
Csub_age	Subset of water chemistry containing interpreted age and supporting data
Csub_agency_program	Subset of water chemistry containing agency and program information associated with water sample
Csub_field_parameters	Subset of water chemistry containing field parameter data
Csub_goodchargebalance	Subset of water chemistry containing samples with charge balance error less than 5%
Csub_isotopes	Subset of water chemistry containing samples with stable or radiogenic isotope data
Csub_majorcations_anions	Subset of water chemistry containing major cation and anion data. Strontium, barium, and choride
	concentrations included here because of their use for data interpretation.
Csub_PFCs	Subset of water chemistry containing PFC data from Washington County and portions of Ramsey and Dakota
	County, assembled by the Minnesota Department of Health
Ksub_data	Subset of hydraulic conductivity containing summary information
Ksub_specific_capacity	Subset of hydraulic conductivity containing data used to calculate hydraulic conductivity from specific capacity
	data
Ksub_texture	Subset of hydraulic conductivity containing texture information, if available, associated with K measurement.

Lookup tables

Name	Description
XAGENCY	Corresponds to field "agency," code specifies agency or organization that administers progam under which
	data was collected or managed:
	CO2 Anoka County

	C19 Dakota County
	C82 Washington County
	DNR MN Department of Natural Resources
	DOT MN Department of Transportation
	MDA MN Department of Agriculture
	MDH MN Department of Health
	METC Metropolitan Council
	MWCC Metropolitan Waste Control Commission
	PCA Mn Pollution Control Agency
	UMN University of Minnesota
	USEPA U.S. Environmental Protection Agency
	USGS United States Geological Survey
xAQUIFER_THCK_	Corresponds to field "aquifer_thck_ft_mc," code specifies method used to establish aquifer thickness, in
MC	feet – used to calculate horizontal hydraulic conductivity from transmissivity values:
	OH equal to open hole/screen length
	EST estimated from cross section or other
xDATA_REFERENCE	Corresponds to field "agency_prg," which is a concatenation of fields "agency" and "program." For water
	chemistry data, this field uniquely identifies source of agency/program that collected or managed the data:
xDEPTH_MC	Corresponds to field "depth_mc," code specifies method used to establish depth of borehole or well:
_	EST Estimated from cross section or other
xELEV MC	Corresponds to field "eley mc " code specifies method used to establish land surface elevation of
_	sample/test location:
	A Altimeter (+/- 1 foot)
	G GPS (Global Positioning System / satellite)
	H GPS >12M (> +- 40')
	GPS 3-12M (+- 10-40')
	J GPS 1-3M
	GPS 3-12M (+- 40) GPS 3-12M (+- 10-40') J GPS 1-3M

	К	GPS <= 1M						
	RV	report value						
	S	Surveyed						
	т	7.5 min	ute topog	e topographic map (+/- 5 feet)				
	Т2	Calc fro	m DEM (l	JSGS 7.5 min or equiv.)				
	Т3	Calc fro	m County	2 ft. DEM				
xGCMCODE	Corresponds to field "gcm code," code specifies method used to establish sample/test location:							
	А	Digitize	d - scale 1	L:24,000 or larger				
	A**	Digitize	d from W	ashington Co. 1/2 section maps, verified by County Survey GPS				
	В	Digitize	d - scale 1	1:100,000 to 1:24,000				
	DS1	Digitiza	tion (Scre	en) - Map (1:24,000)				
	DS2	Digitiza	tion (Scre	en) - Map (1:12,000)				
	G3	GPS Dif	ferentially	/ Corrected				
	G6A	GPS SA	On (avera	aged)				
	G60 GPS SA Off (averaged)			aged)				
	I GPS; accuracy 3 to 12 meters (+ 6 to 40 feet)							
	PQ6	26 Public Land Survey - QQQQQQ Section						
	RD	From re	m report description (estimated error +/- 1000 m) tized from georeferenced site map, accuracy unknown					
	SM	digitize						
	SPL	SPL						
	UNK Unknown method			d				
xPROGRAM	Corre	esponds	to field '	program," code specifies which program within a given agency collected the data:				
	Progi	ram	Agency	Description				
	ACHE	S	C02	Anoka County Community Health And Environmental Services				
	CGA		MGS	Minnesota Geological Survey County Geologic Atlas Part A				
	CLF		MPCA	Pollution Control Agency Closed Landfill Program				
	CMTS	S_RA	MGS	MGS-UMN Mt. Simon Aquifer Radium Study				
	DNEN	∕I_MS	UMN	University Of MN - David Nemetz M.S. Thesis (1993)				
	DOW		DNR	Dept. of Natural Resources Division Of Waters				
	EM		CO19	Dakota County Environmental Management				
	ES		METC	Metropolitan Council Environmental Services				

	GU	MDOT	Dept. of Transportation Geology unit
	GWM_04-08	MPCA	PCA Groundwater Monitoring & Assessment Program, Ambient Data 2004-2008
	GWM_92-96	MPCA	PCA Groundwater Monitoring & Assessment Program, Baseline Data 1992-1996
	LCMROPDC	MGS	Sampling For LCMR Prairie Du Chien Hydrogeology Project
	LFS	MWCC	Metropolitan Waste Control Commission Landfill Study (MICA)
	LFS	C27	Hennepin County Landfill Siting Study - 1980S
	METC_NW1	MGS	Sampling For Metropolitan Council Phase I Study
	NAWQA	USGS	USGS National Water Quality Assessment Program
	PFC	MDH	Dept. of Health PFC Investigation
	PWS	MDH	Dept. of Health Public Water Supply
	RTIP_MS	UMN	University Of MN - Robert Tipping M.S. Thesis (1992)
	SBUR_MS	UMN	University Of MN - Sandeep Burman M.S. Thesis (1995)
	SCA_1	UMN	University Of MN - Scott Alexander, MN Groundwater Age Data (MNGWAGE.XLS)
	SCA_2	UMN	University Of MN - Scott Alexander, Washington County Data (WASHCODATA.XLS)
	SCA_3	UMN	University Of MN - Scott Alexander, Dakota County Data (DAKOTA3D.XLS)
	SF	MPCA	Pollution Control Agency Superfund
	SW	MPCA	Pollution Control Agency Solid Waste
	T&S	MPCA	Pollution Control Agency Tanks And Spills
	UMORE	UMN	University Of MN - UMORE Park Groundwater Assessment June 30, 2009
	WHP	MDH	Dept. of Health Wellhead Protection
xREPORT_REFERENCES	Corresponds	to field '	'report_ref," contents specify author and year associated with data:
	Alexander,	Alexand	ler, S.C., 2010a, Minnesota groundwater age data, University of Minnesota Hydrogeochemistry
	2010a	Laborat	ory, written communication
	Alexander,	Alexand	ler, S.C., 2010b, Washington County groundwater data, University of Minnesota
	2010b	Hydroge	eochemistry Laboratory, written communication
	Alexander	مامدمهم	lan C.C. 2010a Delvata County anoundurates data University of Minnasata Undragonal envirtury
	Alexander,	Alexano	er, S.C., 2010c, Dakota County groundwater data, University of Minnesota Hydrogeochemistry
	20100	Laborat	ory, written communication
	Anderson et Anderson, J.R., Runkel, A.C., Tipping, R.		on, J.R., Runkel, A.C., Tipping, R.G., Barr, K., D.L., and Alexander, E.C., Jr., 2011.
	al., 2011	Hydrost	ratigraphy of a fractured, urban, aquitard: in Miller, J.D., Jr., Hudak, G.J., Tittkop, C., and
		McLaug	hlin, P.I., eds, Archean to Anthropocene: Field Guides to the Geology of the Mid-Continent of
	North America: Geological Society of America Field Guide 24, 457-475		
---	---		
Andrews et al., 2005	Andrews, W.J., Stark, J.R., Fong, A.L., and Fallon, J.D., 2005, Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin – Ground-water quality along a flow system in the Twin Cities metropolitan area, 1997-1998. 44 p		
Barr Engineering, June, 1977	Barr Engineering, 1977, Soil and ground water investigation former coal tar distillation and wood preserving facility, St Louis Park, Minnesota: June 1977 report on file at the Minnesota Pollution Control Agency.		
Barr Engineering, 1983	Barr Engineering, 1983, Hydrogeologic Investigation, Phase 3 Final Report: Oakdale Disposal Sites, April 1983: On file at the Minnesota Pollution Control Agency, 111p.		
Barr Engineering, 1988	Barr Engineering, 1988, Schumacher Site Remedial Investigation/Assessment of Response Action Alternatives Report, Prepared for Isanti Sites Trust, on-file at MPCA		
Barr Engineering, 1989	Barr Engineering, 1989, Supplemental Investigation; Superior Plating, Inc., Minneapolis, Minnesota: January 1989 report on file at Minnesota Pollution Control Agency.		
Barr Engineering, November, 1991	Barr Engineering, 1991, Magnolia Member aquifer pump test report-Remedial action design plan: East Hennepin Avenue site, 2010 East Hennepin Avenue, Minneapolis: November 1991 report on file at Minnesota Pollution Control Agency.		
Barr Engineering, 1991	Barr Engineering, 1991, Burnsville Sanitary Landfill SW-56 Supplemental Remedial Investigation April 1991, on-file at MPCA		
Barr Engineering, 1992	Barr Engineering, 1992, Dakhue Sanitary Landfill Site, August, 1992, on-file at MPCA		
Barr Engineering,	Barr Engineering, 1996, Burnsville Sanitary Landfill SW-56 Hydrogeology - Phase III Water Monitory		

1996	Report December 1996, on-file at MPCA
Barr Engineering, 2009	Barr Engineering, 2009, Groundwater Assesment Report: Report document for Environmental Impact Statement, UMORE Park - University of Minnesota, June, 2009. http://purl.umn.edu/91611, Accessed November 15, 2010.
Braun Intertec, 1993	Braun Intertec, 1993, Phase II geotechnical investigation environmental monitoring system installation report, prepared for the city of Hopkins, Project No. CMKX-92-0092, Novermber 3, 1993, on-file at MPCA
Braun Intertec, 2009	Braun Intertec Corporation, 2009, Report of Hydrogeologic Information, Sites A and E, East Bethel, Minnesota, prepared for Metropolitan Council Environmental Services, December 14, 2009, Project No. SP-07-01054G, 198 p, on-file at MGS
Braun, 1990	Braun, 1990, EG-015: Geotechnical investigation and environmental monitoring system installation report, Hopkins Sanitary Landfill, Hopkins Minnesota, March 6, 1990, on-file at MPCA
Brown and Caldwell, 1995	Brown and Caldwell, 1995, Metropolitan Wastewater Treatment Plant, Metro Plant Environmental Inventory, Phase II - Implementation, MCWS Project No. 930405, Brown and Caldwell Project No. 2201.01, RUST Project No. 43052.547, February 1995, on-file at MGS
Burman, 1995	Burman, S.R., 1995, Pilot study for testing and refining an empirical groundwater sensitivity assessment methodology, Unpublished M.S. Thesis, University of Minnesota, 256 p.
CDM, 1991	Camp, Dresser and McKee, 1991, TCAAP Superfund site: Phase 1A Multi-Point Source Ground Water Remedial Investigation February 1991, on-file at MGS
CDM, 1993	Camp, Dresser and McKee, 1993, Detailed site investigation for the Johnson Brothers Landfill site, prepared for the Minnesota Pollution Control Agency, April, 1993, on-file at MPCA
CDM, 1994a	Camp, Dresser and McKee, 1994a, Corrective Action Investigative Report, Volume II, Elk River Landfill, SW-74, March 1994, on-file at MPCA
CDM, 1994b	Camp, Dresser and McKee, 1994b, Corrective Action Investigative Report, Volume III, Elk River Landfill, SW-74, March 1994, on-file at MPCA
CNA and	CNA Consulting Engineers (CNA), HNTB Corp., American Engineering and Testing, Liesch and

others, June 30, 2000	Associates, and Hatch Mott MacDonald, 2000, Minneapolis-St Paul International Airport LRT Tunnels and Station Contract, Book 1 and Book 2, June, 2000 report prepared for the Metropolitan Airports Commission.
CNA, March 26, 1997	CNA Consulting Engineers (CNA), 1997, Geotechnical Data Report, University of Minnesota Library Access Center, UM Project No. 297-91-2023, 22p.
Conestoga- Rovers, 1985	Conestoga-Rovers, 1985, WDE Landfill Remedial Investigation October 1985, on-file at MPCA
Conestoga- Rovers, 1988	Conestoga-Rovers, 1988, Freeway Sanitary Land Fill SW-57 February 15, 1988, on-file at MPCA
Conestoga- Rovers, 1992	Conestoga-Rovers and Associates, 1992, WDE Landfill Remedial Action and Design Pumping Test Report September 28, 1992, Reference No., 1472-90 (61), on-file at MPCA
Conestoga- Rovers, Sept, 1999	Constego-Rovers and Associates (CRA), 1999, Groundwater investigation report: Former gas holder no. 4: Former Minneapolis gas works site, Minneapolis, Minnesota: September 1999 report on file at Minnesota Pollution Control Agency.
CSC Joint Venture, 1985	CSC Joint Venture, 1985, Geotechnical Report, Project No. 87-54, Minneapolis East Interceptor, Phase 2, Volume 4A: Produced for the Metropolitan Waste Control Commission, 66p.
Dakota County, 2006	Dakota County Environmental Management, 2006, Jill Trescott, written communication.
Davis, J.H., 2007	Davis, J.H., 2007, Evaluation of the contributing area for recovery wells at the Naval Industrial Reserve Ordinance Plant (NIROP), Fridley Minnesota, United States Geological Survey Scientific Investigations Report 2007-5109, 50p.
Delta, 2006	Delta, 2006, MPCA Leak Site Report, Anoka County Leak 00016369, Nowthen Country Store Leak Site, on-file at MPCA
DNR, 2001	Minnesota Department of Natural Resources, 2001 tritium sample of American Linen Mt. Simon well,

	data from Scott Alexander, file wtrl3h98.xls
Donohue and Assoc., 1986	Donohue and Assoc., 1986, Workplan for conducting supplementary groundwater investigations at the Elk River Sanitary Landfill site, January 15, 1986, on-file at MPCA
Donohue and Assoc., 1987	Donohue and Assoc., 1987, Supplementary Groundwater Investigations at Elk River Sanitary Landfill Site, April 13, 1987, on-file at MPCA
Donohue and Assoc., 1988	Donohue and Assoc., 1988, Supplementary Groundwater Investigations at Elk River Sanitary Landfill Site, February 15, 1988, on-file at MPCA
Donohue and Assoc., 1989a	Donohue and Assoc., 1989a, Hydrogeologic Investigation at the Elk River Sanitary Landfill, March 1989, on-file at MPCA
Donohue and Assoc., 1989b	Donohue and Assoc., 1989b, Washington County Landfill EIS, Site G, Hydrogeologic Investigation - Technical Memorandum, December 28, 1989, on-file at MGS
Donohue and Assoc., 1990	Donohue and Associates, 1990, EIS Hydrogeologic site investigation: Anoka County: Landfill Inventory Sites D, P, and Q: Volume 1, Text, 229 p.
Donohue and Assoc., 1998	Donohue and Assoc., 1998, Phase I Corrective Action Field Procedures Report Elk Rifer Vol II Apendices D and E, in Elk River Sanitary Landfill Monitoring Data 1998, on-file at MPCA
EarthTech, 2003	Earthtech, 2003, Hydrogeologic Assessment of Area Near Well I Washington County Landfil, I July 2003, on-file at MPCA
EarthTech, 2006	EarthTech, 2006, Well spacing assesment and three-dimensional ground water flow model results, WDE Landfill Andover, Minnesota - MPCA Closed Lanfill Program June 2006, on-file at MPCA
EarthTech,	EarthTech, 2007, Engineering services for hazardous waste pit at WDE Landfill, January 22, 2007, on-

2007	file at MPCA
EnecoTech, 1992	EnecoTech, 1992, MPCA Leak Site Report, Anoka County Leak 1003, Sinclair Leak Site, on-file at MPCA
ENSR, July 15, 1991	ENSR, 1991, Drift-Platteville aquifer, northern area: Supplemental Remedial Investigation for the Reilly Tar and Chemical Corporation N.P.L. site, St Louis Park, Minnesota: July 15, 1991 Report on file at Minnesota Pollution Control Agency.
ENSR, May 20, 1992	ENSR, 1992, Technical Memorandum; Hydrogeologic investigation of the northern area drift-Platteville aquifer , St Louis Park, Minnesota (Reilly Tar and Chemical Site); May 1992 Report on file at the Minnesota Pollution Control Agency.
EOR, 2003	Emmons and Olivier Resources, 2003, Integrating Groundwater and Surface Water Management – Northern Washington County, a Report to Washington County. Data CD.
ERM-North Central, 1986	Environmental Resource Management-North Central, 1986, Remedial investigation of Flying Cloud Sanitary Landfill, Eden Prairie Minnesota, Project No. 5034X5, February 14, 1986, on-file at MPCA
ERT, Inc., December 16, 1987	ERT, Inc., 1987, Drift-Platteville aquifer source and gradient control wells: Construction and aquifer test report (Reilly Tar and Chemical site): December 1987 Report on file at Minnesota Pollution Control Agency.
Foth and Van Dyke, 1989	Foth and Van Dyke, 1989, Aquifer analysis, Anoka Regional Sanitary Landfill, prepared for Waste Management of Minnesota, May, 1989, on-file at MPCA
Foth and Van Dyke, 1992	Foth and Van Dyke, 1992, Response action groundwater pump-out and treatment system, Final Report, Anoka Regional Sanitary Landfill, Scope ID 91W58, May 1992, on-file at MPCA
GeoTrans, 1988	GeoTrans, 1988, Pumping Test Report Flying Cloud Landfill November 1988, on-file at MPCA
GeoTrans,	GeoTrans, 1991, Twenty-five Day Pumping Test Report, Volume I, Report Appendix A and B, August

1991	1991, on-file at MPCA				
Hall et al., 1911	Hall, C.W., Meinzer, O.E., and Fuller, M.L., 1911, Geology and underground waters of southern Minnesota: USGS Water-Supply Paper 256, 406 p.				
Hickok and Assoc., 1983	Hickok and Assoc., 1983, Washington County Sanitary Landfill No. 1, Phase IV Report, October, 1983, on-file at MPCA				
Hickok and Assoc., 1984	Hickok and Assoc., 1984, Freeway Sanitary Land Fill SW-57 Novermber 1984, on-file at MPCA				
Hickok/Foth and Van Dyke, 1987	Hickok/Foth and Van Dyke, 1987, Remedial investigation, Anoka Regional Sanitary Landfill, Volume I - Final Report, February 1987, on-file at MPCA				
Hult, 1984	Hult, M.F., 1984, Assessment of ground-water contamination by coal-tar derivatives, St Louis Park, Minnesota: Draft USGS report on file at Minnesota Pollution Control Agency.				
International Technology Corp., 1993	International Technology Corp., 1993, MPCA Leak Site Report, Anoka county leak 1010, Onan Leak Site, on-file at MPCA				
Kelton Barr Consulting, 2000	Kelton Barr Consulting, 2000, Minnehaha Creek Watershed District, Bluff Area Summary Report, April 2000, 30 p. plus appendicies, on-file at MGS				
Keystone Env. Resources, April, 1992	Keystone Environmental Resources, 1992, Remedial Investigation for the former Koppers Coke Plant, St. Paul, Minnesota, April 1992 Report on file at Minnesota Pollution Control Agency.				
Liesch and Assoc., 1973	Liesch, B.A., 1973, Groundwater investigation for the Minnesota Highway Department at the Minnehaha Park tunnel: Minneapolis, Minn., State Project no. 2724-78, 131 p.				
Liesch and Assoc., 1981	Leisch and Associates, 1981, Burnsville Sanitary Landfill SW-56 Security Testing Program, on-file at MPCA				
•					

Liesch and Assoc., 1990	Liesch and Associates, 1990, Final report, remedial investigation, East Bethel landfill, Anoka County, Minnesota, Volume I, February 16, 1990, on-file at MPCA
Liesch and Assoc., 1991	Leisch and Associates, 1991, Supplemental Remedial Investigation for Freeway Landfill March 1991
Liesch and Assoc., 1994	Liesch and Associates, 1994, Response action plan, groundwater withdrawl, well installation and aquifer testing, East Bethel Landfill, June 1994, on-file at MPCA
Lively et al., 1992	Lively, R.S., Jameson, R., Alexander, E.C. Jr., and Morey, G.B., 1992, Radium in the Mt. Simon-Hinckley aquifer, east-central and southeastern Minnesota, Minnesota Geological Survey Information Circular IC-36. 58 p.
MACTEC, 2010	MACTEC, 2010, On-site Investigation Report: Revised site conceptual model: Honeywell Golden Valley Site, Golden Valley, Minnesota, March 12, 2010, Project number 3310090001.
Maderak, 1963	Maderak, M.L., 1963, Quality of waters, Minnesota: a compilation, 1955-1962: State of Minnesota, Minnesota Conservation Department, Bulletin 21, St. Paul, MN, 104 p.
Marsh, 1996	Marsh, R., 1996, Groundwater chemistry and recharge estimation using environmental tritium. : Anoka County, Minnesota. Anoka County Community Health and Environmental Services Department. 62 p.
Marsh, 2001	Marsh, R., 2001, Hydrogeology of the buried drift aquifers: Anoka County, Minnesota. Anoka County Community Health and Environmental Services Department.
McCain and Assoc., 2003	McCain and Assoc., 2003, Hydrogeologic Evaluation and Monitoring Report: Burnsville Sanitary Landfill, September, 2003, on-file at MPCA
MDH, 2010a	Minnesota Department of Health, 2010a, Perfluorochemical data for portions of Washington and Ramsey and Dakota Counties, Minnesota. Written communication.
MDH, 2010b	Minnesota Department of Health, 2010b, Sourcewater protection tritium data, Justin Blum, written communication
MDH, 2010c	Minnesota Department of Health, 2010c, Radium study, written communication

MDH, 2010d	Minnesota Department of Health, 2010d, aqt2000 – Aquifer test database, Minnesota Department of Health, Justin Blum, written communication
MDH, 2010e	Minnesota Department of Health, 2010e, aquitest - Aquifer test database, joint project of USGS and MDH, compiled in 1990, funded by USEPA, has not been updated, Justin Blum, written communication
METC, 2010	Metropolitan Council, 2010, Hydraulic conductivity data compiled for metro area ground water model, http://www.metrocouncil.org/environment/WaterSupply/metromodel/June09/AquiferTests_WHPP_ Dec08.xls, Accessed November 15, 2010.
MGS, 2001	Minnesota Geological Survey, 2001, chemistry collected as part of a LCMR sponsored investigation into hydrogeology of the Prairie Du Chien Group, CUFS No. 1542-6114, unpublished data, on-file at MGS.
MGS, 2010a	Minnesota Geological Survey, 2010a, data from county atlas and regional hydrogeologic assessments, 1990-1991. Data from CWI version 3 datasets, on-file at MGS.
MGS, 2010b	Minnesota Geological Survey, 2010b, Hydraulic conductivity calculated from field investigations, on- file at MGS.
MGS, 2010c	Minnesota Geological Survey, 2010c, texture data collected by Gary Meyer from consultants logs - 1980's Hennepin County Landfill Siting Study, on-file at MGS
MICA, 1981	MICA (Metropolitan Inter-County Association), 1981, Unpublished reports by HDR Inc., compiled as part of a landfill site inventory for the 7-county Twin Cities Metropolitan area. Archived at the Minnesota Geological Survey in three binders.
MNDOT, 2005	MNDOT, 2005, Minnesota Department of Transportation memorandum, Geology Unit, from Charles Howe to Dan Hayne, SP 6211-81, TH36, Station 559 to station 578 Groundwater control , recommendation, August 19, 2005, on-file at MGS
MNDOT, 2010	MNDOT, 2010, Hydraulic conductivity data from Minnesota Department of Transportation, I-394 project, S.P. 2789-17, segment 4, locations from staging layout 4 - Phase I, Charles Howe, written communication, on-file at MGS
MPCA, 1998	Minnesota Pollution Control Agency, 1998, Baseline water quality of Minnesota's principal aquifers.
	MDH, 2010d MDH, 2010e METC, 2010 MGS, 2001 MGS, 2010b MGS, 2010c MICA, 1981 MNDOT, 2005 MNDOT, 2010

	Ground Water Monitoring and Assessment Program (GWMAP) 1992-1996
MPCA, 2010a	Minnesota Pollution Control Agency, 2010, Ground water monitoring and assessment program , ambient data 2004-2008, Sherri Kroening, written communication
MPCA, 2010b	Minnesota Pollution Control Agency, 2010b, data from solid waste program, Elk River Landfill, Terry Johnson-Waste Management, written communication.
National Biocentric, 197	National Biocentric, 1977, Hydrogeologic and Chemical Report, Wood Lake Sanitary Landfill, April 18, 1977, on-file at MPCA
Nemetz, 1993	Nemetz, D.A., 1993, The geochemical evolution of ground water along flow paths in the Prairie du Chien-Jordan aquifer of southeastern Minnesota, Unpublished M.S. Thesis, University of Minnesota, 182 p.
Peer, 1999	Peer, 1999, Additional Project Area Characterization, Minnesota Library Access Center, University of Minnesota, 2 Volumes, November 1999. On-file at MGS.
Peer, 2003	Peer Environmental and Engineering Resources, Inc, 2003, Performance Monitoring Report Interim Response Action Implementation, Minnesota Library Access Center, University of Minnesota, On file at the Minnesota Pollution Control Agency, January 17, 2003, 12 p.
RMT, 1986	RMT, Inc, 1986, Supplemental hydrogeological investigation Woodlake Sanitary Landfill, Woodlake Sanitary Services, In. A subsidiary of BFI Waste Systems: March, 1986, 43p.
Sabel, 1985	Sabel, G., 1985, Ground water quality monitoring progam. A compilation of analytical data collected from 1978 to 1984. MPCA Divison of Solid and Hazardous Waste, Program Development Section. Volume 6.
Stratigraphic s, 2001	Stratigraphics, 2001, Piezometric cone penetration testing with soil electrical conductivity measurements and penetrometer groundwater sampling, MPCA Linden plume exploration, Lindenfelster Landfill, St. Michael, Minnesota. Prepared for Earthtech Inc., o
STS Consultants,	STS Consultants, 1988, Geotechnical investigation report for Lindenfelster Landfill, St. Michael Minnesota, Project 93844-XA, August 30, 1988, on-file at MPCA

	1988	
	Sunde Engineering, 1985	Sunde Engineering, 1985, French Lake Sanitary Landfill Hydrogeologic Investigation, March 28, 1985, on-file at MPCA
	Thatcher Eng., 2006	Thatcher Eng., 2006, MPCA Leak Site Report, Washington County Leak 16508, Stillwater Motors Leak Site, on-file at MPCA
	Tipping et al., 2007	Tipping, R.G., and Meyer, G.N., 2007, Geology in support of ground-water management for the Twin Cities Metropolitan Area, Metropolitan Council Water Supply Master Plan Development - Phase I. Minnesota Geological Survey Open-File Report 0F07-02
	Tipping, 1992	Tipping, R.G., 1992, An isotopic and chemical study of groundwater flow in the Prairie du Chien and Jordan Aquifers, unpublished M.S. Thesis, University of Minnesota, 117 p.
	USGS, 2010	United States Geological Survey, 2010, National Water Information System, United States Geological Survey, http://waterdata.usgs.gov/nwis, Accessed November 10, 2010.
	Wenck, 1994	Wenck, 1994, PW-5B pumping test, East Bethel Landfill, Anoka County, Minnesota, Wenck File No. 0335-01-206, December 1994, on-file at MPCA
xSITE_CONDITIONS	Corresponds	to field "site_conditions," contents specify structural or true thickness conditions
	E	Indicates bedrock unit at site is considered "eroded"
	М	Indicates bedrock unit at site is on monocline
xSITE_NAME Corresponds to field "site name", contents specify name of site from which K values w		to field "site_name", contents specify name of site from which K values were derived:
	FMGW	Former Minneapolis Gas Works
	GMEH	General Mills/East Hennepin Avenue
	КС	Koppers Coke
	LTS	Lindbergh Terminal Station
	MEI	Minneapolis East Interceptor
	MLAC	Minnesota Library Access Center
	MPT	Minnehaha Park Tunnel
	ODS	Oakdale Disposal
	RTC	Reilly Tar and Chemical
	SP	Superior Plating

	U of M	University of Minnesota east and west bank monitor wells
xTDS_MC	Correspo	nds to field "tds_mc," contents specify method used to determine total dissolved solids:
	EV	residue on evaporation
xTEST_MC	Correspo	nds to field "test_mc," contents specify method used to measure transmissivity/hydraulic
	conductiv	rity:
	BD	borehole dilution test
	СН	constant head
	FLMC	flowmeter inject/pump - constant head
	FSFH	field falling head slug test
	FSRH	field rising head, includes slug tests and baildown tests
	FSU	Field Slug Test Unspecified
	GP	Guelph permeameter
	GSE	grain-size estimate
	GSE_A	grain-size estimate assumed based on report
	LBH	laboratory backpressure or consolidometer, horizontal
	LBU	laboratory unspecified
	LBV	laboratory backpressure or consolidometer, vertical
	LCH	laboratory constant head, orientation unknown
	LCHH	laboratory constant head, horizontal
	LCHV	laboratory constant head, vertical
	LFH	laboratory falling head, orientation unknown
	LFHH	laboratory falling head, horizontal
	LFHV	laboratory falling head, vertical
	LKG	Leakage into excavation beneath Platteville
	LRH	laboratory rising head, orientation unknown
	LRHH	laboratory rising head, horizontal
	LRHV	laboratory rising head, vertical
	MPDP	Philip-Dunne permeameter
	OTH	other
	PPPT	packer pressure test – discrete interval
	PTD	pumping test - discrete interval

	PTE	pumping test - entire open hole	
	PTE_A	pumping test - entire open hole assumed	
	SPC	calculated from specific capacity	
	UNK	unknown	
xUNIT_TESTED	Correspon	ds to field "unit_tested," contents specify unit tested, most often as described in report:	
	AE	aeolian (wind blown)	
	AI, ?	Alluvium, and another unknown component	
	Al, C	Alluvium, coarse	
	Al, F	Allumvium, fine	
	Al, F	Alluvium, fine, deeply buried	
	Al, F/M	Alluvium, fine to medium	
	Al, M	Alluvium, medium	
	Al, M, Lac	Alluvium, medium, lacustrine	
	Al, mixed	Alluvium, variable grain size	
	CFRN	Franconia Formation (Tunnel City Group)	
	CJDN	Jordan Sandstone	
	CMTS	Mt. Simon Sandstone	
	CSLF	St. Lawrence and Franconia (Tunnel City Group) Formations, undivided	
	CR	Decorah Shale, Carimona Member	
	CRMG	Carimona (Decorah Shale) and Magnolia (Platteville) members	
	FLOAT	Large block of limestone within unconsolidated quaternary sediment	
	GF	Glaciofluvial	
	HF	Platteville Formation, Hidden Falls member	
	HFL	Platteville Formation, Hidden Falls member, likely lower part	
	HFMF	Platteville Formation, Hidden Falls and Mifflin members	
	HFMFPC	Platteville Formation, Hidden Falls, Mifflin, and Pecatonica members	
	HFMP	Platteville Formation, Hidden Falls, Mifflin, and possibly Pecatonica members	
	IC	Ice contact (heterolithic)	
	Lac	Lacustrine	
	Lac/Ow?	Lacustrine and/or outwash	
	Lac?/Ow	Lacustrine and/or outwash; move "buried" to secondary unit tested column	
	ML in outw	rash inorganic silt in outwash	
	MF	Platteville Formation, Mifflin member	

MFL	Platteville Formation, Mifflin member, likely lower part
MFPC	Platteville Formation, Mifflin and Pecatonica members
MFU	Platteville Formation, Mifflin member, likely upper part
MG	Platteville Formation, Magnolia member
MGHF	Platteville Formation, Magnolia and Hidden Falls members
MGHFMP	Platteville Formation, Magnolia, Hidden Falls, Mifflin and possibly Pecatonica members
MGL	Platteville Formation, Magnolia, likely lower part
MP	Platteville Formation, Mifflin and possibly Pecatonica members
OGWD	Glenwood Formation
OPCJ	Prairie du Chien Group and Jordan Sandstone
OPDC	Prairie du Chien Group
OPDC, middle	Prairie du Chien Group, middle
OPDC, shallow	Prairie du Chien Group, shallow
OPDC, upper	Prairie du Chien Group, upper
OPVL	Platteville Formation, undifferentiated
OSTP	St. Peter Sandstone
OSTP?	questionable St. Peter Sandstone
Ow	Outwash
Ow, surficial	Outwash, surficial unit
Ow, buried	Outwash, buried by possible aquitard
Ow, buried, and CSLF	Outwash, buried by possible aquitard, and St. Lawrence and Franconia (Tunnel City Group)
	Formations, undivided
Ow, buried, and CSLF	Outwash, buried by possible aquitard, and St. Lawrence and Franconia (Tunnel City Group)
	Formations, undivided
Ow, buried, lower	Outwash, buried by possible aquitard, referred to as lower at site
Ow, buried, lowest	Outwash, buried by possible aquitard, referred to as lowest at site
Ow, buried, upper	Outwash, buried by possible aquitard, referred to as upper at site
Ow, IC	Outwash and ice contact
Ow, lower	Outwash, referred to as lower at site
Ow, ML lenses	Outwash and inorganic silt lenses
Ow, Mo	Outwash and moraine
Ow, surficial	Outwash, surficial unit
Ow, surficial and T	Outwash, surficial unit and till
Ow, surficial and T	Outwash, surficial unit and till

	Ow, T	Outwash and till
	Ow, T, Ow	Outwash and till
	Ow, upper	Outwash, referred to as upper at site
	Ow, upper and Lac	Outwash, referred to as upper at site, and lacustrine
	Ow, upper and T	Outwash, referred to as upper at site, and till
	Ow, upper and Lac	Outwash, referred to as upper at site, and lacustrine
	Ow, upper and T	Outwash, referred to as upper at site, and till
	Р	Peat
	Pal	Palustrine
	Peat	Peat
	SOIL	Soil
	Sw	Swamp
	Т	Till
	T, lower	Till, referred to as lower at site
	T, middle	Till, referred to as middle at site
	T, Ow	Till and outwash
	T, Ow, buried	Till and outwash that is likely buried beneath aquitard
	T, Ow, middle	Till and outwash, referred to as middle at site
	T, reworked	Till that is reworked
	T, surficial	Till, surficial unit
	T, upper	Till, referred to as upper at site
	T/Ow	Till and or outwash
	Τ?	Questionable till
	ТОР	Topsoil
	Ow, surficial	Outwash, surficial unit
	TV	Tunnel Valley deposits
	UNK	unknown
xUNIT_TESTED_ADDL	Corresponds to field "u	unit_tested_addl," contents specify additional information about tested interval:
	DESM M	Des Moines lobe sediment, from MGS Ostrat models
	SUP M	Superior lobe sediment, from MGS Ostrat models
	deep glacial unit	as referred to in report
	Anoka SP	Anoka Sand Plain

at water table	at water table
Bedrock St. Peter Sandstone	Bedrock is St. Peter Sandstone
brown	brown
Brown-Grey fine to coarse sand with gravel	Brown-gray fine to coarse sand with gravel
Brown-Grey silty fine to coarse sand, some gravel	Brown-gray silty fine to coarse sand, some gravel
Brown-Yellow Sandy silt trace gravel and clay	Brown-yellow sandy silt trace gravel and clay
buried Lacustrine	buried refers to possible burial beneath aquitard
buried to not buried	buried refers to possible burial beneath aquitard
buried to not buried, SUP Ow	buried refers to possible burial beneath aquitard
buried??	buried refers to possible burial beneath aquitard
Clay	Clay
coarse to gravelly sand	coarse to gravelly sand
cobbles	cobbles
Des Moines Lobe Outwash	Des Moines lobe outwash
DESM	Part of Des Moines lobe deposition
DESM Red, Fine	Part of Des Moines lobe deposition, red, fine
DESM, grey	Part of Des Moines lobe deposition, gray
DESM/SUP mix	DESM= Mix of Des Moines and Superior lobe deposition
DESM? Unit B1	as referred to in report; part of Des Moines lobe deposition fine
sand	fine sand
fine-coarse sand	fine-coarse sand
fine-med sand	fine-med sand
Fridley Fm	as referred to in report
G, S	Gravel and sand
Grey	Gray
Hillside sand	as referred to in report
intermediate depth	as referred to in report
just above bedrock	as referred to in report
Lite Brown silty fine to coarse sand, little gravel	Lite brown silty fine to coarse sand, little gravel
Loess?	Loess?
Lower Aquifer	as referred to in report
Lower Confining Unit; SUP till and Ow	as referred to in report; part of Superior lobe deposition Lower Old
Gray Till	as referred to in report
Lower Sand Aquifer unit	as referred to in report

LS, some G	Loamy sand?, gravel
med sand, gravel	med sand, gravel
med sand,gravel	med sand, gravel
Middle Aquifer	as referred to in report
most of OPDC is open-hole	most of OPDC is open-hole
Old gray outwash horizon No. 1 / Upper old Gray	as referred to in report
Till/ Old Gray Outwash Horizon No. 2	
Old gray outwash Horizon no. 2	as referred to in report
Old Gray Outwash no. 4	as referred to in report
Old gray outwash no.1 / upper old gray till /	as referred to in report
Old gray outwash Horizon no. 2	
perhaps Till	perhaps till
River Falls Outwash	as referred to in report
S, LS, G	Sand, loamy sand, gravel
S, minor LS	Sand, minor loamy sand
S,G	sand, gravel
S,G, some LS	sand, gravel, some loamy sand
S,G,S-Cr	sand, gravel, coarse sand
S-Cr	sand, coarse sand
SL-F, G	fine loamy sand, gravel
SM	silty sand
SUP	part of Superior lobe deposition
SUP mostly	mostly part of Superior lobe deposition
SUP ow, Unit C	as referred to in report; part of Superior lobe deposition SUP,
middle till	as referred to in report; part of Superior lobe deposition
SUP, Unit B2	as referred to in report; part of Superior lobe deposition
Till Mantle Unit Tested	as referred to in report
Twin Cities Fm	as referred to in report
Upper Aquifer Unit	as referred to in report
Upper Aquifer Unit, Anoka SP	as referred to in report; Anoka SP=Anoka Sand Plain
Upper Confining Unit (DESM)/ Middle Aquifer	as referred to in report; part of Des Moines lobe deposition
Upper Confining Unit; DESM	as referred to in report; part of Des Moines lobe deposition
Upper Old Gray Till	as referred to in report

xUSCS_CODE	Corresponds to field "uscs_code," contents specify Unified Soil Classification System code:		
	CH inorganic clay, liquid limit greater than 50		
	CL inorganic clay, liquid limit less than 50		
	GC clayey gravel		
	GM silty gravel		
	GP poorly-graded gravel		
	GW well-graded gravel		
	MH inorganic silt, liquid limt greater than 50		
	ML inorganic silt, liquid limit less than 50		
	OH organic clay		
	OL organic silt		
	PT peat		
	SC clayey sand		
	SM silty sand		
	SP poorly graded sand		
	SW well-graded sand		
xVALUE_MINMAX	Corresponds to field "minmax," contents specify if K value is a minimum or maximum value		
	< indicates K value is a maximum value		
	> indicates K value is a minimum value		

Appendix C. Water Chemistry and Hydraulic Conductivity field names and descriptions

Geodatabase Name: PointData.mdb (personal geodatabase)

Water chemistry table: C_complete (note: detection and uncertainty fields are not listed. Blank in fieldname_det - reported concentration is the measured value; "<" - reported concentration is the detection limit; Blank in fieldname_unc – uncertainty unknown. Unless otherwise noted, fieldname _unc reported in same units as fieldname, error estimate - larger of 1. Predicted standard deviation, 2. Measured standard deviation).

Field Name	Description
relateid	CWI unique identifier
unique_no	Minnesota unique well number
wellname	Well name. Info from CWI if available
alt_id	Alternate identifier, e.g. field sample number
mpca_ambient_id	MPCA Ambient Groundwater Monitoring Identifier
mpca_EDA_id	MPCA Environmental Data Access Identifier
mdh_PWSID	MDH Public Water Supply Identifier
agency	Agency
program_id	Agency program associated with sample event
sample_date	date of sample collection as text in format yyyymmdd where
	equivalent sample_date2 available
sample_date2	date of sample collection as date/time field
cond_TC25	specific conductance of sample corrected to 25 degrees Celsius
	and reported as microsiemens per centimeter
cond	specific conductance of sample reported as microsiemens per
	centimeter - may or may not be corrected for temperature.
temp_c	temperature in degrees Celsius, assumed to be at time of
	sampling unless noted otherwise in remarks
рН	Negative log of hydrogen concentration
ORP	Eh: oxidation-reduction potential referenced to standard
	hydrogen electrode, in millivolts
ORP2	oxidation-reduction potential relative to the silver:silver
	chloride reference electrode, in millivolts

DO	dissolved oxygen concentration in milligrams per liter
DO_units	A few DO analyses reported as percent atmospheric, indicated
	by "%" in this column
ТОС	total organic carbon in milligrams per liter
Са	calcium concentration in milligrams per liter
Mg	magnesium concentration in milligrams per liter
Na	sodium concentration in milligrams per liter
К	potassium concentration in milligrams per liter
Na_K	sodium plus potassium concentration in milligrams per liter -
	(used in Hall and others, 1911)
Fe	iron concentration in milligrams per liter
Mn	manganese concentration in milligrams per liter
Sr	strontium concentration in milligrams per liter
Ва	barium concentration in milligrams per liter
Р	phosphorous concentration in milligrams per liter
Al	aluminum concentration in milligrams per liter
Si	silicon concentration in milligrams per liter as SIO2 - assumed
TOTS	Total sulfur concentration in milligrams per liter as sulfur
ТОТР	total phosphorous concentration in milligrams per liter as
	phosphorous
Alk_CaCO3	total alkalinity of the solution reported as calcium carbonate in
	milligrams per liter
Cl	chloride concentration in milligrams per liter
SO4	sulfate concentration in milligrams per liter
S2O3	thiosulfate concentration in milligrams per liter
Br	bromide concentration in milligrams per liter
F	fluoride concentration in milligrams per liter
NO3_N	nitrate concentration in milligrams per liter reported as
	nitrogen
NO2_NO2_asN	nitrite concentration in milligrams per liter reported as nitrogen
TOTN	Total nitrogen (nitrate + nitrite + ammonia + organic-N) in
	milligrams per liter
NH3 N	Ammonia concentration in milligrams per liter as nitrogen

NH3_OrgN_N	Ammonia plus organic nitrogen concentration in milligrams per
	liter reported as nitrogen
NH4	Ammonium concentration in milligrams per liter
ORTHO_PO4_P	orthophosphate concentration in milligrams per liter reported as phoshorus
PO4_P	phosphate concentration in milligrams per liter reported as phosphorus
TOTAL_CATIONS	total cations in milli-equivalents per liter
TOTAL_ANIONS	total anions in milli-equivalents per liter
PERCENT_ERR	charge balance percent error
TDS	total dissolved solids in milligrams per liter
TDC_MC	Total dissolve solids method code, "EV" indicates residue on
	evaporation
deuterium	deuterium isotope (per mil)
oxygen_18	oxygen 18 isotope (per mil)
sulfur_34	sulfur 34 isotope (per mil)
Gross_Alpha	gross alpha concentration in picocuries per liter
Polonium	polonium concentration in picocuries per liter
Rn_det	
Rn	radon concentration in picocuries per liter
Ra226_det	
Ra226	radium 226 concentration in picocuries per liter
Ra228_det	
Ra228	radium 228 concentration in picocuries per liter
U_det	
U	uranium concentration in micrograms per liter
U234_U238	uranium 234 to uranium 238 activity ratio
U238_U234	uranium 238 to uranium 234 activity ratio
H3_det	
tritium	tritium concentration in tritium units (TU)
H3_err	tritium error (precision)
C14_PMC	carbon-14 reported as percent modern carbon
C14_PMC_unc	reported one sigma counting error

C14_corr	carbon-14 corrected, reported as percent modern carbon
C14_corr_unc	
C13	carbon-13 (per mil)
soil_dC13_C12	
Methane_dC13_C12	
SF6	sulfur hexafluoride concentration in femtograms per kilogram
CFC	Chlorofluorocarbon
Years_modifier	modifier, less than (<) or greater than (>)
Years	Model estimated age in years
Years_unc	Model estimated age uncertainty in years
age_Model	Name of model used to estimate age (C14; H3/He; SF6; CFC;
	other)
age_class	age class
age_basis	basis for age class
PFOs_det	
PFOS	perfluorchemicals: perfluorooctonate sulfate concentration in
	micrograms per liter
PFOA_det	
PFOA	perfluorchemicals: perfluorooctanoic Acid concentration in
	micrograms per liter
PFBA_det	
PFBA	perfluorchemicals: perfluorooctanoic Acid concentration in
	micrograms per liter
PFBS_det	
PFBA	perfluorochemicals: perfluorobutanoic acid concentration in
	micrograms per liter
PFBS_det	
PFBS	perfluorochemicals: perfluorobutane sulfonate concentration in
	micrograms per liter
PFHxA_det	
PFHxA	perfluorochemicals: perfluorohexanoic acid concentration in
	micrograms per liter
PFHxS_det	

PFHxS	perfluorochemicals: perfluorohexanesulfonate concentration in
	micrograms per liter
PFPeA_det	
PFPeA	perfluorochemicals: perfluoropentanoic acid concentration in
	micrograms per liter
Acetate_det	
Acetate	organic acid: acetate concentration in milligrams per liter
Lactate_det	
Lactate	organic acid: lactate concentration in milligrams per liter
Chlorate_det	
Chlorate	organic acid: chlorate concentration in milligrams per liter
Formate_det	
Formate	organic acid: formate concentration in milligrams per liter
Oxalate_det	
Oxalate	organic acid: oxalate concentration in milligrams per liter
utme	Universal Transverse Mercator easting, UTM zone 15 extended,
	NAD83
utmn	Universal Transverse Mercator northing, UTM zone 15
	extended, NAD83
gcm_code	geographic coordinate method code
geoc_src	geographic coordinate source
elevation	land surface elevation in feet above mean sea level. Info from
	CWI if available
elev_mc	elevation method code. Info from CWI if available
depth_comp	depth completed in feet. Info from CWI if available
case_depth	casing depth in feet. Info from CWI if available
depth2bdrk	depth to bedrock in feet. info from CWI if available
first_bdrk	upper most bedrock. info from CWI if available
ohtopunit	open hole top unit. info from CWI if available
ohbotunit	open hole bottom unit. info from CWI if available
ohtopelev	top of open hole elevation
ohbotelev	bottom of open hole elevation
depth_top	depth to top of sampled interval if different from casing depth

	(in feet)
depth_bot	depth to bottom of sampled interval if different from depth
	_completed (in feet)
grout	well grouted? (Y, N, U). Info from CWI if available
use_c	well use code. Info from CWI if available
file_src	name of source file(s)
agency_prg	unique agency-program ID: concatenation of agency and
	program_id fields
relate_date	sample event comparison field
duplicate	duplicate from same sample date, 1 = yes
remarks	comments on data in row
report_ref	report reference, if available
redox_cat	Redox category as assigned by Jurgens and others (2009) based
	on DO, NO3_N, Mn, Fe and SO4 concentrations
redox_process	Redox process as assigned by Jurgens and others (2009) based
	on DO, NO3_N, Mn, Fe and SO4 concentrations
sr_ca_mg_ratio	strontium to calcium plus magnesium molar ratio
cl_br_ratio	chloride to bromide ratio, mg/L
flg_goodchargebalance	data flag - good charge balance
flg_fieldparameters	data flag – 1 indicates field parameters/physical characteristics
	(cond, temp, pH, DO)
flg_stable_radio_isotope	data flag - 1 indicates stable and radiogenic isotopes
flg_nutrients	data flag - 1 indicates nutrient data (phosphorous, nitrogen
	compounds)
flg_pfc	data flag - 1 indicates PFC data
flg_trace_metals	data flag - 1 indicates trace metals
flg_other	data flag - 1 indicates major cations and anions, physical
	characteristics - no or poor charge balance
flg_age	data flag - 1 indicates age determination
flg_redox_condition	data flag - 1 indicates redox condition assigned
flg_swuds	data flag - 1 indicates unique number matched DNR SWUD
flg_metro	data flag - 1 indicates sample location within 11-county metro
	area plus 5000 meters

flg_deliver	data flag - 1 indicates deliver to met council
seqno	Unique row identifier

Hydraulic conductivity table: K_complete

Field Name	Description	
seqno	Unique row identifer	
relateid	Unique site identifier – either unique well number or "Q	
	series" number assigned at MGS	
unique_no	Minnesota unique well number	
alternate_id	Alternate ID	
mdh_testid	identifier for MDH Aquifer Test Information System	
usgs_mdh_aquitest_recnum	sequential identifier in USGS-MDH Aquifer Properties	
	Database (Aquitest)	
dnr_aquitest_recnum	sequential identifier in DNR version or USGS-MDH Aquifer	
	Properties Database (from Jay Frischman)	
agency	agency	
program_id	Agency program identifier	
test_contact	Test contact person or organization	
wellname_from_file	well name from file or report	
wellname_CWI	well name from CWI	
T_min	Transmissivity – minimum	
T_min_units	T minimum units	
T_min_test_method	T minimum test method	
T_min_analytical_method	T minimum analytical method	
T_max	Transmissivity - maximum	
T_max_units	T maximum units	
T_max_test_method	T maximum test method	
T_max_analytical_method	T maximum analytical method	
Т	Transmissivity	
T_units	Transmissivity units	

T_test_method	Transmissivity test method	
T_analytical_mc	Transmissivity analytical method	
aquifer_thck_ft	estimated aquifer thickness in feet	
aquifer_thck_mc	estimated aquifer thickness method code	
Kh_min	K value – horizontal – minimum	
Kh_max	K value – horizontal – maximum	
Kh	K value – horizontal	
Kv	K value – vertical	
K_units	K (horizontal/vertical) units	
minmax	specifies if K value is a minimum or maximum value	
Kh_ftday	K value – horizontal in ft/day	
Kv_ftday	K value – vertical in ft/day	
test_method	K test method	
analytical_method	K calculation method	
meas_date	measurement date as text in format yyyymmdd where	
	equivalent meas_date2 available	
meas_date2	Measurement date in date format	
aquifer_test_use	Well use as part of aquifer test. Not known whether	
	pumping or observation well	
data_src	Data source	
site_name	Site name	
report_reference_primary	Primary report reference	
report_reference_secondary	Secondary report reference	
elevation	land surface elevation in feet above mean sea level. Info	
	from CWI if available	
elev_mc	elevation method	
depth_comp	depth completed in feet, info from CWI if available	
depth_mc	Depth method	
case_diam	casing diameter in inches, info from CWI if available	
case_depth	casing depth in feet, info from CWI if available	
depth2bdrk	depth to bedrock in feet, info from CWI if available	
first_bdrk	uppermost bedrock unit, info from CWI if available	
ohtopunit	open hole top unit, info from CWI if available	

ohbotunit	open hole bottom unit, info from CWI if available		
aquifer	aquifer unit, info from CWI if available		
soil_class	soil class		
depth_top	depth to top of test interval in feet		
depth_bot	depth to bottom of test interval in feet		
ohtopelev	elevation, top of test interval, in feet		
ohbotelev	elevation, bottom of test interval, in feet		
utme	Universal Transverse Mercator easting, UTM zone 15		
	extended, NAD83		
utmn	Universal Transverse Mercator northing, UTM zone 15		
	extended, NAD83		
gcm_code	Geographic coordinates method		
geoc_src	Geographic coordinates source		
file_src	name of electronic source file, if available, or local file if		
	entered from paper records at MGS		
comments1	comments, set 1		
comments2	comments, set 2		
comments3	Comments, set 3		
unit_tested_per_report	Unit tested as described in report		
unit_tested	Interpreted unit tested		
unit_tested_addl	Additional information on unit tested		
site_conditions	specifies structural or true thickness conditions		
tx_summary	texture summary soil class or qualitative description		
tx_depth_top	depth to top of sample interval for texture data, in feet		
tx_depth_bot	depth to bottom of sample interval for texture data, in feet		
porosity_prc	porosity, measured as percent		
prc_crse_grvl	percent coarse gravel		
prc_med_grvl	percent medium gravel		
prc_fine_grvl	percent fine gravel		
prc_crse_sand	percent coarse sand		
prc_med_sand	percent medium sand		
prc_fine_sand	percent fine sand		
prc_grvl	percent gravel		

prc_sand	percent sand
prc_silt	percent silt
prc_clay	percent clay
prc_siltclay	percent silt and clay combined
prc100txt	materials making up weight percent denominator
D60_mm	D60 number, in millimeters
D30_mm	D30 number, in millimeters
D10_mm	D10 number, in millimeters
dryweight_g	dryweight of sample in grams
sv_3in	sieve weight retained in grams - 3 inch
sv_2in	sieve weight retained in grams - 2 inch
sv_1in	sieve weight retained in grams - 1 inch
sv_p75in	sieve weight retained in grams - 0.75 inch
sv_p375in	sieve weight retained in grams - 0.375 inch
sv_no4	sieve weight retained in grams - number 4 sieve
sv_n10	sieve weight retained in grams - number 10 sieve
sv_no18	sieve weight retained in grams - number 18 sieve
sv_no40	sieve weight retained in grams - number 40 sieve
sv_no70	sieve weight retained in grams - number 70 sieve
sv_no100	sieve weight retained in grams - number 100 sieve
sv_no200	sieve weight retained in grams - number 200 sieve
sv_no230	sieve weight retained in grams - number 230 sieve
swl	static water level in feet, info from CWI if available
pump_wl	pumping water level in feet, info from CWI if available
hours	number of hours pumped, info from CWI if available
gpm	pumping rate in gallons per minute, info from CWI if
	available
spc_strcoeff	storage coefficient used for specific capacity to hydraulic
	conductivity conversion
spc_wlcoeff	well loss coefficient used for specific capacity to hydraulic
	conductivity conversion
flg_metro	Data flag - 1 indicates test in 11 county metro area
flg_bdrk	Data flag - 1 indicates bedrock sample

flg_uncs	Data flag - 1 indicates unconsolidated sample
flg_texture	Data flag - 1 indicates texture data
flg_cwi_spcap	Data flag - 1 indicates specific capacity data from CWI

Appendix D. Regional summary geodatabase structure and field names/descriptions.

Geodatabase Name: RegionalData.gdb (file geodatabase)

Spatially enabled data table

Name	Description
gridpoints_Q	3D collection of regularly spaced grid points with estimated range of K data for unconsolidated deposits. This version differs from gridpoints in Tipping et al., 2010 by having 250 meter horizontal resolution as opposed to 500 meter horizontal resolution
gridpoints_waterchem	3D collection of regularly spaced grid points showing regional hydrochemical facies. Subset of Tipping et al., 2010, containing hydorchemical facies only
XY_locations	2D collection of points regularly spaced points, summarizing subsurface conditions used for vertical travel time calculations, for each XY location in gridpoints_Q.

Field names and definitions: gridpoints_Q

Name	Description
elev	Elevation of point in feet above mean sea level
utme, utmn	Universal Transverse Mercator easting and northing for each point. North American Datum 83, zone 15
loc_code	Unique identifier for each point – combination of text string values for utme, utmn and elevation (in feet)
Loc_codeXY	Identifier for XY location of each datapoint – combination of text string values for utme and utmn
nT, nB, nE, nW, nN, nS	Loc_codes of six neighboring points. Used to facilitate groundwater modeling
Kx, Ky, Kz, Ss, pH, R, Q,	Place holder fields for hydraulic parameters. Used to facilitate groundwater modeling
delta_h, h1, h2, b, sat	
sand_prob	Likelyhood that point texture is coarse-grained. Result of subsurface interpolation of water well data
mix_prob	Likelyhood that point texture is mixture of fine and coarse-grained. Result of subsurface interpolation of
	water well data in CWI
clay_prob	Likelyhood that point texture is fine-grained. Result of subsurface interpolation of water well data in CWI
grid_code	Quaternary subsurface map code
maplabel	
K_classM	Hydraulic conductivity class code for sub surface points, based on subsurface interpolation of water well data,
	see lookup table xK_CLASS
K_class	Hydraulic conductivity class code for near-surface points, based on subsurface Quaternary stratigraphy
	mapping, see lookup table xK_CLASS
K_classSG	Hydraulic conductivity class code for near-surface points, based on surficial geology map units, see lookup

	table xK_CLASS		
K_class_composite	Heirachy of K class assignments for each point: K_classSG replaces K_class; K_class replaces K_classM – this		
	field can be used to display textures only. Select by value = code as specified in table xK_CLASS		
K_classNULL	Value of 1 indicates points with no K class designation due to insufficient data		
K_composite	Composite K value based on K_class composite depth. With the exception of sand and gravel, values are		
	taken as arithmetic mean for K_class ranges as specified in table xK_CLASS. Points with K_classNULL = 1 are		
	assigned an intermediate value of 10.05 feet/day. Sand and gravel are assigned a value of 50 ft/day		

Field names and definitions: gridpoints_waterchem

Name	Description
POINTID	Unique identifier for each point
GRID_CODE	Quaternary subsurface map code
ELEV	Elevation of point in feet above mean sea level
K_class	Hydraulic conductivity class code, see lookup table xK_CLASS
K_class_sgpg	Hydraulic conductivity class code for near-surface points, based on surficial geology map units, see lookup
	table xK_CLASS
nat_elev_cl	Data flag – 1 indicates waters likely to have elevated chloride concentrations (greater than 15 ppm) likely due
	to natural conditions – not anthropogenic inputs.
srcamg	Data flag – 1 indicates waters likely to have strontium to calcium plus magnesium molar ratios likely greater
	than 0.001
recent	Data flag – 1 indicates water likely to contain some component less than 60 years old

Field names and definitions: XY_locations.

Name	Description
loc_codeXY	Unique identifier for each point
loc_codeMAXe	Gridpoints_Q loc_code for given XY with highest elevation (land surface gridpoint_Q point)
minimum_elev	Minimum gridpoint _Q elevation for given XY, in feet
maximum_elev	Maximum gridpoint_Q elevation for given XY, in feet
utme, umtn	Universal Transverse Mercator easting and northing for each point. North American Datum 83, zone 15,
	meters
count_loc_codeXY	Number of gridpoints_Q for given XY
count_KzU	Count of unassigned gridpoint_Q for given XY
count_KzM	Number of gridpoints_Q for given XY with assigned texture class from interpolated model

prnct_vertM	Percent of gridpoints_Q for given XY that have assigned texture texture class from interpolated model
prcnt_vert	Percent of gridpoints_Q for given XY with assigned texture class from either interpolated model, subsurface
	mapping or surficial map
maplabel	Map label from surficial geology map MGS Open-File Report 07-02
K_class_sgpg	K_class assignment from surfical geology map
elev_WT	Regional water table elevation in feet
elev_bdrk	Bedrock elevation regional bedrock surface digital elevation model (feet above msl)
elev_opcjx_M08	Regional bedrock potentiometric elevation, March 2008, in feet
elev_opcjx_A08	Regional bedrock potentiometric elevation, August 2008, in feet
delta_h_M08	Difference in hydraulic head, March 2008, in feet (elev_WT – elev_opcjx_M08)
delta_h_A08	Difference in hydraulic head, August 2008, in feet (elev_WT – elev_opcjx_A08)
grad_h_M08	Hydraulic gradient, March 2008 (delta_h_M08/distance)
grad_h_A08	Hydraulic gradient, August 2008 (delta_h_A08/distance)
Kz_mean_sat	Arithmetic mean of gridpoint Q K_composite value for points below regional water table, in ft/day
Kz_gmean_sat	Geometric mean of gridpoint Q K_composite value for points below regional water table, in ft/day
Kz_hmean_sat	harmonic mean of gridpoint Q K_composite value for points below regional water table, in ft/day
Kz_mean_unsat	Arithmetic mean of gridpoint Q K_composite value for points above regional water table, in ft/day
Kz_gmean_unsat	Geometric mean of gridpoint Q K_composite value for points above regional water table, in ft/day
Kz_hmean_unsat	harmonic mean of gridpoint Q K_composite value for points above regional water table, in ft/day
distance	Vertical distance from regional water table to bedrock surface, in feet
distance_unsat	Vertical distance from land surface to regional water table, in feet
porosity	Porosity, used for time of travel calculations. Set to 0.2 for all records
travel_time_yrs_Kzg	Vertical travel time from regional water table to bedrock surface calculated using geometric mean, in years
travel_time_yrs_Kzh	Vertical travel time from regional water table to bedrock surface calculated using harmonic mean, in years
travel_time_yrs_Kzh_unsat	Vertical travel time from land surface to regional water table calculated using harmonic mean and a vertical
	gradient of 1, in years
eleven_co_metro	Set to 1 where point is within eleven county extended metropolitan area
qstrat_mapped	Set to 1 for areas where subsurface mapping has taken place
WT_above_bdrk	Set to 1 where water table is above bedrock
opgw_absent	Set to 1 where Plattville Formation is not present

Lookup tables

Name	Descri	otion			
xGRIDCODE	Corres	ponds to field "GRID_CODE," code specifies	Quaternary subsurface map code, unit description	on and	
	corresp	ponding mapping project name:			
	code	Description	Project	Мар	K_Class
				Label	
	1	(diamicton)	Washington County (Meyer and Tipping, 1998)	tl	1
	2	till, generally sandy textured (diamicton)	Washington County (Meyer and Tipping, 1998)	t2	2
	3	loam till, generally silt-rich, loam -textured	Washington County (Meyer and Tipping, 1998)	t3	3
	4	till, generally sandy textured (diamicton)	Washington County (Meyer and Tipping, 1998)	t4	4
	5	silt and clay (bedded)	NW Metro (Meyer and Tipping, 2007)	cl	3
	6	till, generally sandy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	ct1	2
	7	till, generally sandy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	ct	2
	8	till, generally loamy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	xt	3
	9	till, generally sandy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	rt	4
	10	till, generally loamy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	pt	3
	11	till, generally sandy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	vt	4
	12	undifferentiated sediment	NW Metro (Meyer and Tipping, 2007)	unk	-1
	13	loam to clay loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	dth	1
	14	clay loam to sandy loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	dtv	1
	15	sandy loam(diamicton)	Carver County (Lusardi and Tipping, 2009)	rt	2
	16	loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	bt	3
	17	loam to sandy loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	gt	3
	18	loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	xt	3
	19	unknown	Carver County (Lusardi and Tipping, 2009)	ups	-1
	20	silt and clay	NW Metro (Meyer and Tipping, 2007)	nl	1
	21	New Ulm till - sandy to loamy; high to low relief (diamicton)	NW Metro (Meyer and Tipping, 2007)	nt	1
	22	sandy loam to clay loam (diamicton) - nw provenance	Scott County (Lusardi and Tipping, 2006)	t1	1
	23	loam to sandy loam (diamicton) - mixed provenance	Scott County (Lusardi and Tipping, 2006)	t2	1

24	loam (diamicton) - nw provenance	Scott County (Lusardi and Tipping, 2006)	t3	3
26	silt and clay	Chisago County (Meyer, 2010)	nl	1
27		Chisago County (Meyer, 2010)	nt1	1
28	New Ulm till, includes lacustrine silt and clay at base to the north	Chisago County (Meyer, 2010)	qnu	1
29	lacustrine clay and silt to till	Chisago County (Meyer, 2010)	qlc	3
30	Cromwell, sandy till	Chisago County (Meyer, 2010)	qcr	2
31	sandy till, may be finer-textured towards the base in deep valleys	Chisago County (Meyer, 2010)	qce	2
32	loam till, generally silt-rich, loam -textured	Chisago County (Meyer, 2010)	qxt	3
33	Superior provenance - sandy till	Chisago County (Meyer, 2010)	qrt	4
34	undifferentiated sediment	Chisago County (Meyer, 2010)	qu	-1
50	fine sand to gravel (bedded)	NW Metro (Meyer and Tipping, 2007	co1	5
51	fine sand to gravel (bedded)	NW Metro (Meyer and Tipping, 2007	со	5
52	fine sand to gravel (bedded)	NW Metro (Meyer and Tipping, 2007	no2	5
53	fine sand to gravel (bedded)	NW Metro (Meyer and Tipping, 2007	no	5
54	fine sand to gravel (bedded)	NW Metro (Meyer and Tipping, 2007	ро	5
55	fine sand to gravel (bedded)	NW Metro (Meyer and Tipping, 2007	Ro	5
56	fine sand to gravel (bedded)	NW Metro (Meyer and Tipping, 2007	terr	5
57	fine sand to gravel (bedded)	NW Metro (Meyer and Tipping, 2007	vo	5
58	fine sand to gravel (bedded)	NW Metro (Meyer and Tipping, 2007	хо	5
60	fine sand to gravel (bedded)	Chisago County (Meyer, 2010)	qsc	5
61	fine sand to gravel (bedded)	Chisago County (Meyer, 2010)	qse	5
62	fine sand to gravel (bedded)	Chisago County (Meyer, 2010)	qsl	5
63	fine sand to gravel (bedded)	Chisago County (Meyer, 2010)	qsr	5
65	fine sand to gravel (bedded)	Chisago County (Meyer, 2010)	qsx	5
65	fine sand to gravel (bedded)	Chisago County (Meyer, 2010)	qu	5
67	fine sand to gravel (bedded)	Chisago County (Meyer, 2010)	sp	5
68	fine sand to gravel (bedded)	Chisago County (Meyer, 2010)	sup	5
70	fine sand to gravel (bedded)	Carver County (Lusardi and Tipping, 2009)	sb	5
71	fine sand to gravel (bedded)	Carver County (Lusardi and Tipping, 2009)	sdo	5
72	fine sand to gravel (bedded)	Carver County (Lusardi and Tipping, 2009)	sdv	5
73	fine sand to gravel (bedded)	Carver County (Lusardi and Tipping, 2009)	sg	5

	74 fine	e sand to gravel (bedded)	Carver Cou	nty (Lusardi and Tipping, 2009)	sr	5
	75 fine	e sand to gravel (bedded)	Carver Cou	nty (Lusardi and Tipping, 2009)	su	5
	76 fine	e sand to gravel (bedded)	Carver Cou	nty (Lusardi and Tipping, 2009)	SX	5
	80 fine	e sand to gravel (bedded)	Scott Cour	nty (Lusardi and Tipping, 2006)	s1	5
	81 fine	e sand to gravel (bedded)	Scott Cour	nty (Lusardi and Tipping, 2006)	s2	5
	82 fine	e sand to gravel (bedded)	Scott Cour	nty (Lusardi and Tipping, 2006)	s3	5
	83 fine	e sand to gravel (bedded)	Scott Cour	nty (Lusardi and Tipping, 2006)	s4	5
	84 fine	e sand to gravel (bedded)	Scott Cour	nty (Lusardi and Tipping, 2006)	riv	5
	90 fine	e sand and gravel (areas unmapped by till	y till Washington County (Meyer and Tipping, 1998)			5
	surf	faces)				
xMAPLABEL	APLABEL Corresponds to field "maplabel," code specifies map label and unit description from metro area surfi				rficial geol	ogy
	map, MGS (Open-File Report 07-02 (Meyer and Tippir	ng, 2007).			
xK_CLASS	Corresponds to fields "K class," and "K class sgpg," code specifies range of expected hydraulic conductivity in					
	feet/day. Reference to "deep" in codes 8-11 are for point depths greater than 60 feet from land surface, estimated					imated
	to be 2 orders of magnitude lower hydraulic conductivity than equivalent textures in shallow settings:				ngs:	
		.	, .		0	
	code	Texture Description	Kmax (ft/day	Kmin (ft/day)		
	1	loam to clay loam	3.0E-3	1.0E-3		
	2	loam to sandy loam	2.0E+1	1.0E-1		
	3	loam, silt rich; silt and clay	2.0E-2	3.0E-4		
	4	loam to sandy clay loam	2.0E+1	1.0E-1		
	5	sand and gravel	5000	100		
	6	fine sand	30	0.3		
	7	sandy silt	3	0.1		
	8	loam to clay loam - deep	3.0E-5	1.0E-5		
	9	loam to sandy loam - deep	2.0E-1	1.0E-3		
	10	loam, silt rich; silt and clay - deep	2.0E-4	3.0E-6		
	11	loam to sandy clay loam - deep	2.0E-1	1.0E-3		

Appendix E. Guide to database use.

Travel time calculations

Several choices were made that impact the time of travel calculations shown on Figures 12 and 13, and on the accompanying map:

- 1.) Harmonic mean of vertical hydraulic conductivity (Kv) values for set of gridpoints at each XY location was used, as opposed to arithmetic or geometric mean. The harmonic mean is influenced more by lower values than the geometric or arithmetic mean. It was chosen based on the premise that low conductivity layers have the greatest influence on ground water flowpaths.
- 2.) In places other than those identified as regional discharge zones, the bedrock potentiometric surface was lowered one-half foot below the regional water table surface in places where it was greater than the water table surface. (Note: gradients shown on cross sections were not changed). This allowed for travel time calculation over a broader area where adequate subsurface data was available.
- 3.) Effective porosity was set at 20% for all calculations based on literature values. It is expected that actual effective porosity varies substantially over a range of textures and depositional environments.

These choices result in *extremely* long travel times under certain conditions, such as very low gradients and low bulk Kv. Rather than replace these travel time values with a realistic number, they were left in to reflect the limitations of this type of method at depicting actual groundwater flow. The resulting map is a reasonable depiction of the relative rather than absolute differences in vertical travel times across the metropolitan area. It should also be noted that in areas identified as regional discharge zones – bedrock potentiometric surface higher than the regional water table – travel time values were set to null.

Layer files

The following ArcGIS layer files are included to assist with database display. Depending on processing speed of the desktop computer, it may be help to use the "Definition Query" tab under layer properties to display only subsets of the larger database.

XY	locations	feature	class
_		J	

Name Description

travel_time_yrs_Kzh _sat.lyr	Use to display vertical travel time in years from the regional water table to the bedrock surface calculated	
	using harmonic mean of composite vertical hydraulic conductivity	
travel_time_yrs_Kzh_unsat.lyr Use to display vertical travel time in years from land surface to regional water table calculate		
	harmonic mean of composite vertical hydraulic conductivity	

gridpoints_Q feature class – represents any occurrence from landsurface to bedrock

Name	Description
gridpoints_Q_K_classM.lyr	Use to display subsurface textures as determined by interpolated model – based on driller's
	descriptions
gridpoints_Q_K_class.lyr	Use to display subsurface textures as determined by stratigraphic mapping
gridpoints_Q_K_classSG.lyr	Use to display near surface textures as determined by surfical mapping
gridpoints_Q_K_class_composite.lyr	Use to display near surface and subsurface textures, as determined by hierarchy of K_classM superceded by K_class, superceded by K_classSG.

gridpoints_waterchem

Name	Description
gridpoints_waterchem_nat_elev_cl.lyr	Use to display subsurface distribution of naturally elevated chloride waters
gridpoints_waterchem_srcamg.lyr	Use to display subsurface distribution of elevated strontium to calcium plus magnesium waters
gridpoints_waterchem_recent.lyr	Use to display near subsurface distribution of recent waters
- Figure 1. Investigation covers the extended 11-county Twin Cities metropolitan area, Minnesota. Areas with mapped Quaternary stratigraphy are shaded (Meyer and Tipping, 1998; Lusardi and Tipping, 2006; Meyer and Tipping, 2007; Lusardi and Tipping, 2009; Meyer, 2010). Locations of cross section (Figures 14 through 20) are shown.
- **Figure 2.** Regional map showing distribution of subsurface relatively coarse-grained sediments, based on interpolation from CWI. Color indicates occurrence at any depth from the land surface to bedrock, having a minimum thickness of 10 feet. See text for explanation of interpolation methods.
- **Figure 3.** Regional map showing distribution of subsurface relatively mixed fine and coarsegrained sediment, based on interpolation from CWI. Color indicates occurrence at any depth from the land surface to bedrock, having a minimum thickness of 10 feet. See text for explanation of interpolation methods.
- **Figure 4.** Regional map showing distribution of subsurface relatively fine-grained sediment, based on interpolation from CWI. Color indicates occurrence at any depth from the land surface to bedrock, having a minimum thickness of 10 feet. See text for explanation of interpolation methods.
- **Figure 5.** Schematic drawing of Quaternary points model. Columns of points where less than 40 percent of the column can be assigned texture- and depth-based range of hydraulic conductivities are left out of the final time of travel calculation.
- **Figure 6.** Regional map showing composite hydraulic conductivities at each gridpoint XY location. Harmonic mean for each column of values was chosen over arithmetic and geometric means, based on the assumption that low conductivity units have the biggest impact on groundwater flow.
- **Figure 7.** Regional maps showing adjusted vertical change in hydraulic head for March (**A**.) and August (**B**.) 2008. Bedrock surfaces were adjusted to be one half foot below the water table surface except in areas of groundwater discharge (Mississippi, Minnesota, St. Croix, and portions of the Crow River). Constructed by subtracting the bedrock potentiometric surface from the water table surface, summer increases in hydraulic gradient are most visible in the central metropolitan area. These changes reflect increased drawdown in the bedrock potentiometric surface due to higher summer pumping rates from the Prairie du Chien Group and Jordan Sandstone.
- **Figure 8.** Schematic drawing showing the time of travel calculation. Mean hydraulic conductivity is calculated for points that fall between the water table and the bedrock surface. Hydraulic gradient is calculated over this same distance. The presence of Decorah/Plattville/Glenwood Formations and the possibility of unsaturated St. Peter Sandstone below precludes the use of Darcy calculation for time of travel where these units area present.

- **Figure 9.** Regional maps showing the distribution of recent waters. **A.**) Chloride concentrations from water wells. Concentrations greater than 5 mg/l considered to be indicator of recent recharge. **B.**) Tritium results from water wells. Well with tritium concentrations greater than 10 tritium units (TU) considered to be dominated by waters having entered the ground since 1960; wells with less than 1 TU considered to be dominated by waters having entered the ground prior to 1960; intermediate values from 1 to 10 TU considered a mixture of older and recent waters. Distribution of elevated chloride and tritium is broadly similar. **C.**) Contours of open hole top (casing bottom) elevation for wells with detectable tritium. **D.**) raster surface marking the base elevation for recent waters, constructed in part using the contours shown in C.
- Figure 10. Regional map showing strontium vs calcium plus magnesium concentrations. A.)
 Strontium to calcium plus magnesium molar ratios for all wells with acceptable charge balance. Elevated ratios to the west and southwest. B.) Contours of open hole top (casing bottom) elevation for Quaternary wells with strontium to calcium plus magnesium ratios greater than 0.001. C.) Contours of open hole top (casing bottom) elevation for Jordan wells with strontium to calcium plus magnesium ratios greater than 0.001. D.) Contours of open hole top (casing bottom) elevation for Mount Simon wells with strontium to calcium plus magnesium ratios greater than 0.001. D.) Contours of open hole top (casing bottom) elevation for Mount Simon wells with strontium to calcium plus magnesium ratios greater than 0.001. Elevated ratios may be associated with recharge through NW provenance tills and/or longer residence time.
- **Figure 11.** Regional map showing naturally elevated chloride concentrations. **A.**) Chloride concentrations in mg/l for wells with carbon 14 determined ages of greater than 1200 years. Also shown are chloride outliers from Hall et al., 1911. Blue contours show height of open hole bottoms above the pre-Cambrian bedrock surface; colored contours show elevation for elevated chloride in unconsolidated deposits in the Belle Plaine area, Scott County. Major metropolitan area bedrock faults are also shown. Old waters with elevated chloride are associated with fault zones, possibly due to upwelling of waters associated with pre-Cambrian bedrock. B.) Chloride to bromide ratios, all wells. Chloride to bromide ratios less than 200 considered to be indicator of chloride from bedrock as opposed to anthropogenic sources. Contours of recent water elevations from Figure 9 shown for comparison to chloride bromide ratios. Elevated ratios (greater than 1000) are generally found in shallow wells with recent waters.
- **Figure 12.** Calculated vertical travel time from regional water table the bedrock surface (saturated conditions) travel times greater than 500 years calculated for much of the western metropolitan area, where a thick sequence of clay loam NW provenance till and sandy loam NE provenance tills overlie bedrock. Shorter residence times are present where relatively coarse sediment overlies bedrock and in areas of large hydraulic gradient.

- **Figure 13.** Calculated vertical travel time from the land surface to the regional water table surface (unsaturated conditions). Differences from the saturated map are most visible where surfical geologic conditions is different from subsurface conditions.
- Figure 14. Histogram comparing chloride concentrations to top-of-open-hole elevation in sampled wells. Elevated chloride in metropolitan area water well samples, indicative of recent waters, is typically found at elevations above 700 feet above mean sea level, approximate elevation of the Minnesota, Mississippi and St. Croix Rivers. A.) Y axis from 400 to 1000 feet.
 B.) Expanded Y axis from 600 to 900 feet.
- **Figure 15.** Lithostratigraphic column showing distribution of residence time by open hole interval. Recent waters found most often in bedrock stratigraphically higher than the St. Lawrence Formation.
- **Figure 16.** Regional cross section A-A', Sherburne County to Mississippi River. Recent waters interpreted as present in the upper 50 feet of unconsolidated deposits, increasing with depth in the central part of the basin. Lowest elevation of recent waters occurs in the Jordan Sandstone. Carbon 14 dates for Mt. Simon are shown, indicating a sharp contrast in recharge rates for the upper and lower aquifer systems.
- **Figure 17.** Regional cross section B-B', St. Francis, Anoka County to Mississippi River. Recent waters interpreted as present in the upper 50 feet of unconsolidated deposits, increasing with depth in the central part of the basin. Lowest elevation of recent waters occurs in the Jordan Sandstone. Complexity of unconsolidated deposits over bedrock, below surficial sands is shown.
- **Figure 18.** Regional cross section C-C', Big Marine Lake, Washington County to Mississippi River near downtown St. Paul. Recent waters between Big Marine and White Bear Lake in the Prairie du Chien Group largley based on tritium measurements from samples west and east of the cross section line interpreted as mixed waters (TU between 1 and 10). Recent water is found at depth towards downtown St. Paul, coincident with a downward gradient and coarse unconsolidated deposits over bedrock. Slight upward gradient at White Bear Lake; downward gradient near Big Marine possibly marking groundwater divide, with regional discharge west towards the St. Croix River. Vintage waters in the Mt. Simon aquifer.
- **Figure 19.** Regional cross section D-D', western Dakota County to Mississippi River near Hastings. Limited data show presence of clay, based on the interpolated model, restrict the downward movement of water west of the South Branch of the Vermillion River. Remainder of the cross section is largely sand and gravel over Prairie du Chien Group. A large buried valley filled with sand and gravel is present west of Hastings. Recent waters within this valley based on sampled wells within and on the edges of the valley to the southeast.

- **Figure 20.** Regional cross section E-E', southeastern Scott County to Minnesota River near Shakopee. Anthropogenic waters absent below cover of alternating NW and NE provenance tills. Elevated strontium to calcium plus magnesium ratios limited to bedrock valley in upper aquifers and to the Mt. Simon in the lower aquifer. Naturally elevated chloride present in the Mt. Simon at the northeast end of the cross section. Presence of recent water in the Jordan in this area based on sampled wells to the east and west of the cross section line. A strong upward gradient from the Jordan is present near the Minnesota River.
- **Figure 21A.** Local cross section F-F' Edina area. Age inversion within the open hole of a single well is shown. Grab samples from the lower portion of the open hole had detectible tritium, while the uppermost sample, located within the Shakopee Formation Prairie du Chien Group, did not (MDH, 2010b). Flow logging from a nearby test well (MN unique well no. 748656) showed strong downflow from the lower Shakopee to the Jordan Sandstone, corresponding to stratigraphic position of detectible tritium in this well. Interpreted stagnation zone of older water illustrated as present underneath the central portion of the Platteville/Glenwood cap.
- **Figure 21B.** Local cross section G-G' Eastern Hennepin County. Recent water occurs at depth east of till cover. Flow logging east of Highway 169 showed strong upflow from fractures in the upper Jordan Sandstone to the upper Oneota Formation Prairie du Chien Group (MN unique well no. 676445.
- **Figure 22A.** Local cross section H-H', south central Washington County to Mississippi River. Stratification of perflourochemical (PFC) detections between Shakopee (upper Prairie du Chien Group) and Jordan samples is shown. Results infer separate flow systems, with possibly greater flux through the Shakopee Formation compared to the Jordan Sandstone.
- **Figure 22B.** Local cross section I-I', southeastern Washington County to St. Croix River. Downward gradient over a north-south trending bedrock valley in the center of the cross section, west of Manning Avenue. The valley, filled with primarily coarse-grained material, shows cluster of PFC detections. Occurrence of PFC's near t he St. Croix River indicates movement of groundwater through fractures and fault blocks, crossing stratigraphic units with wide ranging permeability.
- Figure 23. Honeywell contamination site, Golden Valley, Minnesota. A.) TrichloroetheneTCE contaminant plumes for 1990 and 2009 at the Honeywell site along with site specific measurements of horizontal hydraulic conductivity are shown. Change in plumes from 1990 to 2009 shows plume migration with time to the east **B**.) 1990 and 2009 plumes, along with texture-based estimates of vertical hydraulic conductivity from the XY locations dataset. In both A and B, lower hydraulic conductivity values area shown in blue, intermediate values in green and higher values in yellow. Lower hydraulic conductivity values to the southeast are visible in both the site specific and regional data.

Figure 24. Honeywell contamination site, Golden Valley, Minnesota . perspective views from the southeast A.) TCE contours indicate location of the site. Texture classes from gridpoint have been added, along with bedrock units. Low permeability clay loam sediments are present northwest of the site at the land surface, while layers of clay loam to sandy clay loam and sand are present southwest of the site in the subsurface B.) Perspective view extend back further. The change from fine-grained textures to the west to coarse-grained textures, including a largely sand filled bedrock valley to the east is visible. C.) Perspective view with distribution of recent waters added. Recent waters are found in the shallow subsurface to the northwest, extending deeper into the bedrock valley southwest of the site.

Figure 25. Cross section key for Figures 16 through 22.

bedrock

- K value assigned from surfical map
- K value assigned
- x unassigned

March 2008

Hydraulic head difference - water table to bedrock potentiometric surface (feet). Blues indicate upwar gradient

August 2008

gradient = delta h / L Kz saturated mean calculated only over distance L

elevation of open-hole top bedrock wells with detectible tritium

digital elevation model for marking base elevation for recent waters

Number of samples

Residence time classification

recent

vintage

lithology

Figure 20

A.

Β.

1990 plume

2009 plume

Α.

В.

- Generalized unconsilidated sediment textures. grid spacing 250 meters in horizontal, 20 feet in vertical
- coarse-grained
- coarse- to fine-grained
- fine-grained

Bedrock

Platteville Formation

St. Peter Sandstone

2009 plume

1990 plume

Prairie du Chien Group

bedrock stratigraphically lower than the Pairie du Chien Group

C.

Regional distribution of recent waters. grid spacing 500 meters in horizontal, 20 feet in vertical

 gridpoint identifying recent waters, based on elevation of detectible tritium or anthropogenic contaminants

hydrochemical facies

Recent/anthropogenic waters:

waters distinguished primarily by the presence of detectible tritium. Other indicators of recent water such as elevated chloride, nitrate, or anthropogenic compounds generally also present.

Elevated strontium to calcium plus magnesium ratios:

waters distinguished by having strontium to calcium plus magnesium molar ratios greater than 0.001. Elevated strontium to calcium plus magnesium ratios may be associated with recharge through NW provenance tills, and are also considered to an indicator of longer residence time

Naturally elevated chloride:

waters distinguished by having chloride levels greater than 15 ppm and carbon 14 age dates greater than 1,000 years. Where data is available, these waters should also have chloride to bromide ratios less than 300.

Selected wells from the water chemistry database. Colors of open-hole intervals correspond to assigned qualitative age classes. Recent waters are dominated by waters having entered the ground since the late 1950s; Vintage water are dominated by waters having entered the ground prior to the late 1950's; Mixed waters are considered a combination of recent vintage waters. See text for discussion

Mt. Simon Aquifer age determined from carbon-14 analysis; well name (Lively, etal., 1992) for wells not shown, location projected to cross section line.

hydraulic gradient

Head difference between regional water table and bedrock potentiometric surface, in feet. Blue indicates upward gradient; green indicates downward gradient

flowmeter measuremt. errow indicates direction of ambient flow in an open borehole

700 feet above msl line, marks regional discharge elevation as approximate elevation of the Mississippi, Minnesota and St. Croix Rivers

mapped Quaternary stratigraphy

- sand and gravel
- loam to clay loam generally NW provenance till
 - loam to sandy loam generally NE provenance till
- loam, silt rich; silt and clay generally N provenance till; lacustrine deposits
-] undifferentiated

interpolated model

- likelyhood of coarse-grained deposits > 40%
 - likelyhood of coarse- to fine-grained deposits > 40%
- likelyhood of fine-grained material >40%

bedrock fault, indicating upthrown and downthrown sides