Information Item: Draft Facility Plan for Metropolitan Wastewater Treatment Plant Solids **Processing Facility**

Bill Cook, MCES Engineering Services Manager, Technical Services

Environment Committee: December 8, 2015

Purpose

- Inform Environment Committee
 - Starting a public involvement/participation process
 - Develop messages that are aligned with Thrive
 - Report on exhaustive evaluations of technology options
- No action required

ation process vith Thrive echnology

Value in our Wastewater

Why do we need more capacity?

- Existing facility has a firm capacity of 240 dry tons per day (dtpd)
 - Currently operating at firm capacity and using standby capacity for peak loads
 - Back up capacity is landfilling which is not sustainable
 - Need to provide capacity for additional regional growth and to provide additional flexibility to other **MCES** Operations

Solids Planning from a Thrive Perspective

- Stewardship -- Responsible management of the region's finite resources
 - Rivers
 - Agriculture soils
 - Financial
 - Maximizing existing investments in infrastructure
- Prosperity
 - Foster economic competitiveness
 - Strategic private and public decisions
 - Encouraging redevelopment and infill
- Equity
 - Provide affordable service to everybody
- Livability
 - Minimize neighborhood disruption
- **Sustainability**
 - Climate change mitigation, adaption and resilience
 - Air quality
 - Surface water quality

Alternatives

- Continue sustainable incineration and energy recovery
- Convert to anaerobic digestion and methane recovery
- Convert to land application of digested sludge
- Alkaline stabilize sludge and land apply

hergy recovery hane recovery ludge

Stewardship and Prosperity

- Additional Maintenance Costs -
- Labor Cost
- Chemicals
- Incinerator Auxiliary Fuel
- Natural Gas
- Ash & Sludge Handling
- Total Near Term Capital Costs
- Electrical Savings 1
- PW of Salvage Value
- Total Present Worth

MCES Solids Impact on Greenhouse Gas Emissions

Greenhouse Gas Emissions Reduction, MPCA and MN Dept of

MCES Climate Registry Report, 2011

- Commercial
- Residential
- Industrial
- Agriculture
- Waste (Landfills, WWTPs)
- Transportation
- Electrical Production

Greenhouse Gas Production by Technology

Digestion and CHP

Maximum Achievable Control Technology (MACT) Results Show Sustainable Air Emissions

New Requirements for 2016

Livable Communities

- Recommended plan
 Impact on traffic
 - Impact on traffic
 - Odors
 - Disruption and inconvenience

Recovery Evaluation

- Energy from sludge
 - -2 megawatts annual average from incineration
- Phosphorus tecycle – Ash is 25% phosphorus (Metro is 10 dtpd phosphate)

Evaluation of Alternatives

- Continue sustainable incineration and energy recovery
 - Promotes stewardship and prosperity
 - Enhances livable communities
 - Provide affordable service to all customers
 - Provides sustainable solutions
 - Energy recovery
 - Phosphorus recycle
 - Reduces greenhouse gases

Path Forward

Metro Plant Solids Incineration Communications Process | PLANNING & PERMITTING PHASE

Questions

