MET COUNCIL SNART ASH

Carl Rosen, Persephone Ma Department of Soil, Water, and Climate | University of Minnesota Can sewage sludge incinerator ash (Met Council Smart Ash) be used as an agricultural phosphorus (P) source?

Questions

- 1) Does this ash provide P? How does it compare to other fertilizers?
- 2) What **other agronomic benefits** does this ash provide?
- 3) Are there **environmental risks** (chemical or microbiological) to its application?

Phosphorus

A REAL PROPERTY AND A REAL

Experimental Characteristics

- 2017 2019, in Rosemount, MN
- Field selection: low-medium available P
- P application rates:
 - 0 lb phosphate (P₂O₅) acre⁻¹
 - 40 lb P₂O₅ acre⁻¹
 - 80 lb P₂O₅ acre⁻¹
 - 120 lb P₂O₅ acre⁻¹
 - 160 lb P₂O₅ acre⁻¹
- Corn and soybean rotation

Year	East	West	
2017	Corn	Corn	
2018	Corn	Soybean	
2019	Soybean	Corn	

Phosphorus Sources

Sewage sludge incinerator ash (SSA)

- Provided by Met Council Environmental Services
- Added water for easy application

Triple superphosphate (TSP)

Commercial, chemically-treated, phosphorus-only agricultural fertilizer

Biosolids (BS)

- Provided from Blue Lake Wastewater Treatment Plant
- Dried, pelletized, "exceptional quality" (Class EQ)

Struvite (STR)

- Magnesium ammonium phosphate
- Provided by Ostara

Credit: Ashleymarie Landsman

Element		TSP	SSA	BS	STR
NH ₄ -N	%	0.0	0.0	0.4	0.1
Total N		0.2	0.0	5.4	5.4
Available P		19.3	5.9	3.3	11.8
Total P		19.5	11.2	3.7	12.0
Soluble K		0.0	1.9	0.1	0.0
Total K		0.4	3.1	0.5	0.4

Phosphorus Source Elemental Concentrations

Eler	nent	TSP	SSA	BS	STR
AI	mg kg⁻¹	1,966.18	28,755.40	4,674.04	13.39
As		9.18	23.30	9.04	0.91
В		52.60	52.42	74.17	12.62
Ва		143.92	1,476.86	578.25	1.02
Ве		1.71	0.38	0.23	0.23
Ca		218,431.23	133,075.88	39,199.01	2,394.61
Cd		22.22	7.05	0.78	0.23
CI		226.30	997.31	7,051.20	940.86
Со		0.50	15.15	4.61	0.23
Cr		217.62	342.17	42.41	0.23
Cu		40.11	1,949.18	835.95	0.91
Fe		1,952.82	31,667.44	52,077.35	343.12
Hg		0.01	1.80	0.38	0.00
Li		2.81	9.45	2.92	0.45
Mg		6,050.41	34,121.06	16,278.22	146,075.05
Mn		39.36	7,762.52	2,328.26	367.72
Мо		10.50	38.85	14.75	0.23
Na		3,827.17	5,474.14	2,090.23	125.89
Ni		45.46	124.20	23.80	0.45
Pb		4.84	100.50	21.89	0.68
Rb		22.40	26.00	22.40	22.40
S		16,055.47	7,162.53	11,053.76	69.57
Se		6.11	19.00	8.08	2.41
Si		2,022.59	3 <i>,</i> 496.64	4,181.42	31.03
Sr		943.48	244.43	127.82	1.30
Ti		88.59	1,736.10	1,147.65	1.24
V		262.56	31.99	13.68	1.81
Zn		480.34	3 <i>,</i> 395.96	1,124.81	4.73

Concentration versus Loading Rates

* when applied at 80 lb P_2O_5 per acre or 180 lb N per acre for BS-N.

EXPERIMENTAL RESULTS

Corn Yield

Soybean Yield

Rate (lb P_2O_5 ac⁻¹)

Zinc (3-year average)

Rate (lb P_2O_5 ac⁻¹)

Elements of Concern

Fungi

Conclusions

- SSA increases P in soil and appears to provide a slow-release form of P for plant uptake.
- **SSA provides Cu and Zn** at appropriate concentrations for plant nutrition.
- If applied at agronomic rates, **SSA amendment does not increase concentrations of elements of concern** to any biologically significant level.
- SSA does not affect microbial communities any differently than commercial P sources.

Recommendations

- 1. Product development, e.g. pelletization.
- 2. On-farm testing under realistic growing conditions in a variety of soil types and crops.
- 3. Periodic monitoring of soil P tests and soil concentrations of elements of concern.
- 4. Development of best practices for SSA application that include guidelines for analytical testing of available P, soil testing, and SSA application.

Acknowledgments

- Metropolitan Council Environmental Services
- UMN College of Food, Agricultural, and Natural Resource Sciences
- UMN Graduate School
- Baker Family Foundation
- Matt McNearney and Rosen Lab Field Crew
- Thor Sellie and Soil, Water, and Climate Field Crew
- Kimon Karelis and Rosemount Research and Outreach Field Crew
- UMN Research Analytical Lab

QUESTIONS?

Carl Rosen (rosen006@umn.edu) Persephone Ma (phma@umn.edu)

Credit: Stacy Nordstrom