MINNESOTA'S 2025 ENERGY ACTION PLAN

Stakeholder-Driven Strategies for Success

Metropolitan Council December 14, 2016

Outline for today's presentation

- 1. Introduction to Energy Action Plan project
- 2. Overview of Minnesota's energy landscape, state energy goals, & current status
- 3. Stakeholder-driven strategies for success:
 - 1. Transportation
 - 2. Energy Supply and Grid Modernization
 - 3. Efficient Buildings and Integrated Energy Systems
 - 4. Industrial and Agricultural Processes
 - 5. Local Planning and Action
- 4. Next steps
- 5. Q&A

The energy landscape is changing

 In Minnesota and around the country, the energy landscape is changing due to market forces, technological development, demand for consumer choices, and state and federal policies.

Minnesota's 2025 Energy Action Plan

Minnesota is positioned to strengthen its clean energy leadership

FROM 1997 to 2012

MINNESOTANS HAVE SAVED OVER 56 TRILLION BTUS OF ELECTRICITY & NATURAL GAS

Purpose of 2025 Energy Action Plan:

- Develop recommended next steps to leverage near-term opportunities for a clean, affordable, reliable, and resilient energy system
- Emphasize consensus-driven strategies with traction to move forward

Minnesota's 2025 Energy Action Plan

- Funded by US Department of Energy grant
- Project team:
 - Minnesota Department of Commerce,
 - Legislative Energy Commission,
 - Rocky Mountain Institute,
 - Great Plains Institute,

Intro

- LHB
- Stakeholder advisory committee
- Additional input from over 50 subject matter experts from multiple sectors

Minnesota's 2025 Energy Action Plan

LOCAL PLANNING & ACTION Coordinated energy and resilience planning, adopting best practices

TRANSPORTATION Electric vehicles and alternativefuel vehicles

ENERGY SUPPLY & GRID MODERNIZATION Smart meters and smart inverters, storage, updated pricing and programs

EFFICIENT BUILDINGS & INTEGRATED ENERGY SYSTEMS Low-energy design, efficient operations, thermal energy integration

INDUSTRIAL & AGRICULTURAL PROCESSES Advanced biofuels, business leadership on energy

Intro

Landscape

Strategies

Next steps

ESTIMATED MINNESOTA ENERGY USE IN 2013

1860 TRILLION BTU

Data source: U.S. Energy Information Administration. State Energy Data System (SEDS): 1960-2013. July 2015.

7

ESTIMATED MINNESOTA ENERGY USE IN 2013 1860 TRILLION BTU

Data source: U.S. Energy Information Administration. State Energy Data System (SEDS): 1960-2013. July 2015.

Minnesota energy use

Data source: U.S. Energy Information Administration. State Energy Data System (SEDS): 1960-2014. October 2016.

Minnesota energy use per capita

Data source: U.S. Energy Information Administration. State Energy Data System (SEDS): 1960-2014. October 2016. U.S. Census Bureau

Minnesota energy use per GDP

Minnesota —United States

Data source: U.S. Energy Information Administration. State Energy Data System (SEDS): 1960-2014. October 2016. Federal Reserve Bank of St. Louis.

Minnesota electricity net generation by source

Data source: U.S. Energy Information Administration "Net Generation by State by Type of Producer by Energy Source (EIA-906, EIA-920, and EIA-923), 1990-2014" and "Electric Power Monthly with data for December 2015, Net Generation by State by Type of Producer by Energy Source," U.S. Energy Information Administration."

Strategies

Next steps

Landscape

Intro

12

Minnesota greenhouse gas emissions

Stakeholder strategies for success

- Strategies selected through consensus process, based on the following criteria:
 - The potential impact to support Minnesota's current goals related to energy, climate and air quality, and environmental justice
 - The potential to significantly advance progress toward clean energy
 - Anticipated benefits relative to costs
 - Commitment by champions to advance the strategy and ability to leverage additional resources
 - Potential to provide benefits across economic sectors
 - A timeframe of ten years or less for implementation

Stakeholder strategies for success (cont'd)

- Each strategy identifies:
 - Specific actions for strategy implementation
 - Champions and key participants
 - Success factors
 - Indicators of strategy success
 - Cross-sector opportunities and synergies
 - Ongoing Minnesota initiatives
 - Additional resources

Cross-sector opportunities: Example

			Cross-sector opportunities					
Sector	Strategy	Purpose	Transportation	Energy Supply and Grid Modernization	Efficient Buildings and Integrated Energy Systems	Industrial and Agricultural Processes	Local Planning and Action	
	Increase adoption of personal electric vehicles	Electric vehicles offer reduce emissions and lower operating costs compared to conventional vehicles						
	Electrify buses	Electric buses offer increased fuel efficiency and reduced air emissions						
ч	Electrify fleets	Electric vehicles in high-mileage fleets offer increased economic benefits						
Transportatic	Increase adoption of alternative-fuel heavy-duty vehicles	Heavy-duty vehicles powered by renewable natural gas offer emissions savings						

Intro

Landscape

Transportation

- Electric vehicles:
 - Increasing adoption of personal electric vehicles
- Encouraging electric vehicles in fleets
 - Promoting electric buses

Intro

• Increasing adoption of heavyduty alternative-fuel vehicles

RESIDENTIAL 417	REJECTED 1074
COMMERCIAL 358	USEFUL 786
TRANSPORTATION 504	

Next steps

Transportation: EV emissions

Total GHG emissions per mile for light-duty vehicles, by fuel

Transportation: Ongoing activities

Intro

Landscape

Strategies

Next steps

Local Planning and Action

ELECT. IMPORTS

Local Planning

KEY ELEMENTS OF COMMUNITY ENERGY PLANNING

ELEMENTS OF COMMUNITY ENERGY PLANNING	EXAMPLE ACTIVITIES
IDENTIFY AND BRING TOGETHER KEY LEADERS	 Assemble a small group of individuals with a shared interest in advancing a community energy action plan Secure the support of a few key leaders, seek third-party consultants, and collect their input
BUILD A SHARED UNDERSTANDING OF THE GOALS	 Organize a collaborative workshop for key stakeholders to coalesce around a vision, strategies, goals, and next steps
BASELINING: INVENTORY CURRENT ENERGY USE AND INITIATIVES	 Understand current energy use, energy expenditures and associated greenhouse gas emissions, and investment and job opportunities Map related initiatives in order to leverage and to build upon success
PRIORITIZE STRATEGIES AND TACTICS	Select strategies and tactics to achieve the community's goals for its energy future
DEVELOP A PLAN THAT CAN MOBILIZE THE COMMUNITY	Establish a plan that will empower the community to achieve the envisioned energy future and solicit community feedback
SEEK COMMITMENTS TO THE PLAN	 Adopt a plan via appropriate avenues (e.g., city-council vote, business commitments, county-commission vote, or another appropriate avenue) Execute strategy and tactics within the specified timeframe
MEASURE PROGRESS AND SHARE RESULTS	Monitor progress and periodically release results to the community and other interested parties

Intro

Landscape

Strategies

Next steps

Local Action: Ongoing activities

22

Local Planning and Action: Cross-sector opportunities

			Cross-sector opportunities				
Sector	Strategy	Purpose	Transportation	Energy Supply and Grid Modernization	Efficient Buildings and Integrated Energy Systems	Industrial and Agricultural Processes	Local Planning and Action
ining and	Advance energy planning at the local level	Third parties can support local governments to plan for energy efficiency and renewables					
Local Plan Action	Pursue near-term actions at the local level	Local governments can leverage their unique authority to advance clean energy					

- Review Action Plan and identify how your work is reflected in various strategies
- Convene small groups of stakeholders on strategies to identify next steps
- Work with stakeholders and interested groups to promote Action Plan
- Identify conference/speaking opportunities to present information about Action Plan

ACKNOWLEDGEMENTS

This project was made possible by a grant from the U.S. Department of Energy and the Minnesota Department of Commerce through the Energy Policy and Conservation Act (42 U.S.C. 6321 et seq. and amendments thereto); U.S. Department of Energy Financial Assistance Rules (10CFR600); and Title 2 of the Code of Federal Regulations.

The Minnesota Department of Commerce and the Legislative Energy Commission provided high-level guidance to ensure that the project meets guidelines for DOE funding. The following consultants conducted analysis and research to support the deliberations of the Stakeholder Advisory Committee: Great Plains Institute (committee facilitation, stakeholder engagement); LHB, Inc. (metrics and indicators); and Rocky Mountain Institute (analysis and report development). Additional project guidance and contributions came from Energy Systems Consulting, the Minnesota Environmental Quality Board, the Minnesota Pollution Control Agency, and the U.S. Department of Energy.

Check out the complete Plan at:

http://www.lec.leg.mn/projects/2025/MN_E2025_final.pdf

Additional Slides

Energy Supply and Grid Modernization

Energy Supply and Grid Modernization

HYDRO	4.9	
GEOTHERMAL	1.1	
BIOMASS	148.4	
NUCLEAR	111.9	
COAL		
PETROLEUM		

• Grid modernization:

 Deploying advanced metering infrastructure (AMI)

Enabling smart inverter functionality

TRANSPORTATION 504,

 Integrating energy storage and demand response

Energy Supply and Grid Modernization

AMI deployment by state, 2014

Energy Supply and Grid Modernization: Ongoing activities

Efficient Buildings and Integrated Energy Systems

		ELECTRICITY 509		REJECTED 1074
HYDRO	4.9	New		
GEOTHERMAL		Ruildings	RESIDENTIAL 417	
BIOMASS	148.4	E I II		
NUCLEAR	111.9	Existing	COMMERCIAL	
NATURAL GAS	478.8	Buildings		OSEFOL 786
	•	Integrated	INDUSTRIAL581	
		Energy		
COAL		Systems	TRANSPORTATION 504	
PETROLEUM		Systems		

Intro

ELECT. IMPORTS

Landscape

Efficient Buildings and Integrated Energy Systems

• New Buildings

 Adopting SB 2030 as an optional stretch code for new buildings, additions, and major renovations

Efficient Buildings and Integrated Energy Systems

- Existing Buildings
 - Enhancing energy data access
 - Increasing adoption of commercialbuilding energy-benchmarking and disclosure programs
 - Improving building operations
 - Promoting behavioral energy efficiency strategies

Landscape

Data Access and Benchmarking

0	X	cel Energy•		Billing & Payment	Start, Trans	St	top, r	Programs Rebates	9	Outag Emerg	e ð en	cies	٩
Home	/	Programs and Rebates	/	Business Programs	& Rebates	/	New Co	onstruction and V	Vhole	Building	/	Energy	Benchn

Energy Benchmarking

Energy benchmarking is a key energy management best practice that enables you to identify the energy performance of your building(s), invest strategically in energy efficiency upgrades and monitor effectiveness of energy improvements. Benchmarking is the process of comparing measurements against a standard, average or best practice with the purpose of improving current practice and moving toward the use of best practices.

What's included?

We are providing a direct feed of who repository into ENERGY STAR Portfoli we will update your data on a month energy.

Get Started

Project and Technical Assistance

The Minnesota Department of Commerce provides and supports a number of programs to assist public entities with the implementation of energy efficiency and renewable energy projects.

These programs provide various levels of technical assistance for project development, financing, implementation and performance evaluation. Review the programs outlined below to determine which program best addresses your needs.

Technical Assistance Programs Project Resources

Technical Assistance Programs

Guaranteed Energy Savings Program (GESP)

The Guaranteed Energy Savings Program is a procurement and financing mechanism that assists state agencies, local units of government, school districts and institutions of higher education with the development, implementation and ongoing measurement & verification of energy efficiency and/or renewable energy projects. Participants gain access to technical assistance from Commerce, pre-qualified Energy Services Companies, Master Contract, selection and procurement documents, and GESP staff oversight for each phase of the project that can last up to 25 years. The intent of the program is to maximize job creation and operational cost savings through investment in public facilities.

Local Energy Efficiency Program (LEEP)

The Local Energy Efficiency Program helps local units of government and school districts identify, study, implement, and finance energy efficiency and recommissioning projects. LEEP makes it easy to identify site-specific goals, find high-quality firms to perform an investment grade audit, and gain access to low-interest lease-purchase financing. Participants gain access to Commerce's technical assistance through each stage of the process, ensuring a comprehensive, cost-effective, quality project.

Intro

Landscape

Efficient Buildings and Integrated Energy Systems

- Integrated Energy Systems
 - Identifying opportunities for thermal energy grids
 - Supporting combined heat and power (CHP) development

Selected university, hospital, and municipal thermal energy projects in Minnesota, by city, as of January 2016

Industrial and Agricultural Processes

WIND 78.8 ELECTRICITY 509	REJ	ECTED 1074
Reducing wasted energy and promoting clean	RESIDENTIAL 417	
energy focus in industry	COMMERCIAL 358	FUL 786
Promoting bioenergy in the	INDUSTRIAL581	
agricultural sector	TRANSPORTATION 504	
PETROLEUM 5834		

Intro

Landscape

Industrial and Agricultural Processes: Promoting bioenergy in the agricultural sector

Annual Forest and Wood Residue Available by County

Annual Crop Residue Available By County

37

Industrial and Agricultural Processes:

Reducing wasted energy and promoting clean energy focus in industry

• Promoting industrial and agricultural efficiency practices by sharing state and federal programs to improve energy productivity, and strengthening peer networks to share best practices on energy management

Landscape

Strategies

Next steps

Industrial and Agricultural Processes: Cross-sector opportunities

			Cross-sector opportunities				
Sector	Strategy	Purpose	Transportation	Energy Supply and Grid Modernization	Efficient Buildings and Integrated Energy Systems	Industrial and Agricultural Processes	Local Planning and Action
	Commercialize advanced biofuels and biobased chemicals	Leverage agriculture and forestry sectors to produce biofuels and biobased chemicals					
ocesses	Capture organic feedstocks through anaerobic digestion	Anaerobic digestion uses waste material to produce renewable natural gas, heat, and electricity					
gricultural Pro	Promote industrial efficiency practices	Industrial facilities can take advantage of opportunities to increase efficiency and save money					
Industrial and A	Coordinate and promote the clean energy industry	Increase coordination and communication across the clean energy industry to maximize economic development					

Intro

Landscape