

## Connected and Automated Vehicles

Jay Hietpas, P.E.

Connected and Automated Vehicles Director





#### **Presentation Overview**

 Connected and Automated (CAV) Background

 CAV Activities in Minnesota



5/16/2018

#### **Connected Automation**

#### **Autonomous Vehicles**

Operates in isolation from other vehicles using sensors





Connected Automated Vehicle
Uses connected and
automated technologies

#### **Connected Vehicles**

Communicates with vehicles and infrastructure







# Society of Automotive Engineers (SAE) Levels of Automation

# **Items Being Considered**



**Automated & Connected Vehicles** 



Mobility as a Service (MAAS)



Automated Delivery Services





**Electric Vehicles** 

#### CAV - When Will It Come?

GM will make an autonomous car without ering wheel or pedals by 2019

consumer Availability Rates
Market Penetration Rates consumer to buy up to

exus to introduce DSRC-based To a vehicles in the USA from 2021 con

# Pieces of Automation Already Available

- Adaptive Cruise Control
- Self Parking Features
- Lane Departure Systems
- GM Super Cruise / Tesla Auto-Pilot
- V2I Signal Systems (Audi, BMW, Apps)
- Self Driving Tests

### **National Items**



## What is the Impact to Minnesota?

Safety

Changes in operations

Infrastructure Changes

Regulation

Mobility Opportunities





Business Opportunities

# What are the Challenges?



# Snow / Ice

Salt

# Other Impacts

Parking Impacts

**Freight** 

**Cyber Security** 

**Pavement Markings** 

Geometric

Licensing Laws

**Bridge Loads** 

.

Design

**Smart Signs** 

Pavement Impacts

**Traffic Operations** 

Revenue

Mixed Traffic (AV & Non-AV)

Staffing

Land Use / Planning

#### Activities in Minnesota

- CAV-X Office
  - Policy
  - Research & Implementation Funding
- CTS Automated Vehicle Visioning Workshop
- Executive Order 18-04
- MnDOT CAV Strategic Plan
- Autonomous Shuttle Testing
- Connected Corridors Project



## Executive Order – Expected Outcomes

#### **Advisory Council**

- Study, assess, and prepare for the transformation and opportunities associated CAVs
- Develop recommendations for changes in state law
- Submit Report to Legislature by December 1, 2018.
- Establish programs for development, testing, and deployment;

5/16/2018

# Minnesota Connected and Automated Vehicles EO Organization Structure

# **Advisory Council**

#### I-CAV Team Economic Development, Cyber security Vehicle **Business** Transportation and data privacy Registration, Traffic Accessibility and Policy and Infrastructure Opportunities, Insurance standards Driving Training, Regulations **Planning** Equity Workforce Licensing Development Stakeholders Stakeholders Stakeholders Stakeholders Stakeholders Stakeholders Stakeholders Stakeholders

# MnDOT CAV Strategic Vision



### Safe Automated Vehicle Testing Demonstration

#### **Project Goals**

Snow and Ice Testing

Identify Infrastructure

**Identify Operations Impacts** 

Improve Future Mobility Options

Increase Minnesota's Influence

**Develop Partnerships** 

**Public Feedback** 



## Downtown Minneapolis - Nicollet Mall Demo



TOTAL riders for the 3 day demo: 1279



## **Connected Vehicles Corridor**



# Connected Vehicle Applications

- 1: Signal Phase and Timing (SPaT)
- 2: Transit/Pedestrian Conflict Warning
- 3: Snow Plow Signal Priority
- 4: CV Data Exchange
- 5: Mobile Work Zone Warning System
- 6: Transit/MnPASS Lane Status Notification System





# Thank you again!



Jay Hietpas, PE CAV-X Director

Jay.hietpas@state.mn.us

Transportation Advisory Board May 16, 2018

# Planning for Connected and Automated Vehicles



# **Planning**

The nation, state, region and local governments are facing great opportunity with automated vehicle technologies, yet also great uncertainty as this new technology develops and is implemented across our various environments.



# As yet, CAV has Uncertain Outcomes....

| COULD DECREASE DUE TO                                        | IMPLICATION             | COULD INCREASE DUE TO                                                                                                   |
|--------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Vehicle sharing, higher vehicle costs                        | Vehicle Ownership       | Smaller, lighter-weight vehicles lower cost, new types of vehicles                                                      |
| Increased travel willingness / better use of in-vehicle time | Land Use Density        | Network effects, shared & transit vehicles, less parking                                                                |
| Vehicle sharing, denser development                          | VMT / Trips             | Lower operating costs, zero-occupant trips, mode shift, expanded mobility for non-drivers, increased travel willingness |
| Follows all road rules / defensive driving                   | Road Capacity / Speed   | Reduced headways, smoother traffic flow, shorter signal lag times, fewer crashes, and real-time route optimization      |
| Machine precision                                            | Crashes                 | Hacking, complex human-machine interactions                                                                             |
| Low-emission vehicles, right-sized vehicles, eco-driving     | Air and Noise Pollution | More travel, larger vehicles                                                                                            |
| Vehicles avoid deficiencies, smoother traffic flow           | Pavement Distress       | Platooning / closer vehicle spacing, increased VMT                                                                      |
| Al (deep learning) displaces workers                         | Jobs                    | Technology creates more new high-skill jobs than the lower-skill ones it disrupts                                       |

Source: DVRPC, 2017. Adapted from Bryant Walker Smith, How Governments Can Promote Automated Driving, New Mexico Law Review, forthcoming, March 17, 2016, https://papers.ssrn.com/sol3/papers.cfm?abstract\_id=2749375; and Johanna Zmud, Ginger Goodin, Maarit Moran, Nidhi Kalra, and Eric Thorn, Advancing Automated and Connected Vehicles: Policy and Planning Strategies for State and Local Transportation Agencies, National Cooperative Highway Research Program; Transportation Research Board, National Academies of Sciences, Engineering, and Medicine, 2017, http://nap.edu/24872.



## How will autonomous vehicles arrive?

Fully Autonomous Personal Automation

Shared Automated/ Platooning

Semi-Autonomous



Shared Mobility

Personally Owned

**Mobility Fleets** 

# **Agency Roles**

Definition and understanding of various public agency roles is still evolving.....

- MnDOT
- Local governments
- University
- Transit operators
- Metro Council as the Metropolitan Planning Organization



# **Regional Outcomes and Goals**

Successful implementation of CAV technology means positive impacts on the outcomes and goals identified by the region.....

- Thrive regional outcomes: Stewardship, Prosperity, Equity, Livability, and Sustainability
- Transportation goals: System Stewardship, Safety and Security, Access to Destinations, Competitive Economy, Healthy and Equitable Communities, Leveraging Transportation Investments to Guide Land Use



# **Council MPO Roles**

- Connect the development and deployment of CAV to regional outcomes and goals
- Provide a forum and process for policy-makers and the public to be involved
- Ensuring concerns of all modes and users are addressed
- Monitor national and state activities and trajectory of CAV adoption, share knowledge
- Scenario and performance based planning



# **Potential Penetration of AV**



# **FHWA Scenario Planning**



Trajectories towards CV/AV Advancements

TODAY (circa 2017)



# **Council Focus Areas**

MPO work efforts will focus on understanding the impacts of CAV on:

- Travel behavior
- Revenues
- Investment needs
- Equity
- Land use



# **Work Program Activities**

- Participation in local and national activities
  - Governor's CAV Advisory Council
  - MnDOT CAV Strategic Plan
  - CTS CAV Workshop June 2018
  - AMPO Draft National Framework for Regional CAV Planning
  - FHWA CAV scenario modeling
- TPP Work Program
  - Regional framework and issues analysis
  - Scenario modeling and performance measurement
  - Integrating CAVs into the Congestion Management Process
  - Emerging truck technologies
  - Transportation investment needs assessment



# 2017 Work Owned/Shared Scenario Modeling

- Modeled changes in highway system performance at various levels of CAV deployment and combinations of owned versus shared CAVs
- Outcomes examined:
  - Vehicle miles traveled (VMT) and congested VMT
  - Average speeds
  - Number and % of unoccupied vehicle trips
  - % VMT occurring in unoccupied vehicles



# 2017 CAV Modeling Conclusions

- Number of vehicle trips and vehicle miles traveled increases substantially due to new unoccupied vehicle trips under both scenarios
- Number of congested miles increased substantially under both scenarios
- Worst case congestion scenario is during mixed fleet of CAV and non-CAV
- Number of vehicles in the region decreases under both owned and shared scenarios



# Why Shared Autonomous Vehicles are Coming - Fast

Thomas Fisher

Professor and Director

Minnesota Design Center, University of Minnesota

# The change will happen faster than you think





# A big driver of this change: cost of driving



### A second driver: safety



#### A third driver: reduced pollution



### The big stick driving the change: insurance



#### Today's infrastructure will go through this change



### Opportunities and Challenges



## This reflects a larger value shift: sharing economy



# Public rights of way will feel the change first





## Creating a lot more space for other things



# Cities will gain about 30% more land





## Homeowners will gain land and interior space





# The suburban landscape will change the most





### Parking ramps will have to find other uses





# Highways will become multi-modal

