

# Assessing Urban Air Quality



Monika Vadali, Ph.D | Environmental Research Scientist

## Why are we doing this?









To better understand small-scale differences in urban air quality Availability of newer sensor technology to monitor air quality The Minnesota Legislature provided funding\*

Cost-saving in the long run

LCCMR: Legislative-Citizen Commission on Minnesota's Resources

# Why Minneapolis and St. Paul?

Disparities in air pollution-related health impacts in the metro area

- Rates of hospitalizations & emergency department visits
- Rates of asthma
- Populations with lower income
- People of color



Asthma rates for children living in the Twin Cities metro are 67% higher than for children living in Greater Minnesota.

### Our current monitoring network

Our current monitoring system gives us a regional look at how Minnesota compares to other states.





## The new sensors - AQMESH



Quick install Little maintenance Solar-powered



# What are we monitoring?



#### Fine particles (PM <sub>2.5</sub>)

A mix of solid particles and liquid droplets in the air – 30x smaller than a human hair



- Nitrogen oxides (NO<sub>x</sub>)
  - NO2 and NO
- Sulfur dioxide (SO<sub>2</sub>)
- Carbon monoxide (CO)



#### **Ground-level Ozone**

When chemicals and other pollutants mix with sunlight and heat – aka "smog"

- Temperature
- Relative Humidity

### **Project Updates**

- Phase I collocation all sensors Fall/Spring 2017-18 50 pods
- Community meetings R1 in study area Fall 2017
- Finalize locations in St.Paul Fall 2018
- Finalize locations in Minneapolis Winter 2019
- <u>All sites deployed Spring/Summer 2019 44 pods, 264 sensors</u>
- Community meetings R2 in study area Fall 2019



#### Site averages for CO & $SO_2(2019)$



#### Site averages for NOx(2019)



#### Site averages for ozone concentrations (2019)



O3 (ppb)

#### Site averages for Particulate matter(2019)



# Summary

| Pollutant                              | Minimum | Maximum |
|----------------------------------------|---------|---------|
| CO (ppb)                               | 260     | 420     |
| NO (ppb)                               | 1.3     | 61      |
| NO <sub>2</sub> (ppb)                  | 8.6     | 60      |
| O <sub>3</sub> (ppb)                   | 0.5     | 315     |
| SO <sub>2</sub> (ppb)                  | -1.3    | 9.2     |
| PM <sub>2.5</sub> (μg/m <sup>3</sup> ) | 0.6     | 7.6     |
| PM <sub>10</sub> (μg/m <sup>3</sup> )  | 2       | 11      |

| Pollutant                              | NAAQS Standard |
|----------------------------------------|----------------|
| CO (ppb)                               | 35,000 (1 Hr)  |
| NO (ppb)                               |                |
| NO <sub>2</sub> (ppb)                  | 100 (1Hr)      |
| O <sub>3</sub> (ppb)                   | 70 (8Hr)       |
| SO <sub>2</sub>                        | 75 (1 Hr)      |
| PM <sub>2.5</sub> (μg/m <sup>3</sup> ) | 35 (24 Hr)     |
| PM <sub>10</sub> (μg/m <sup>3</sup> )  | 150 (24 Hr)    |

### Data will inform air quality concerns



### Partners and Collaborators

- City of Minneapolis
- Saint Paul School District
- Minnesota State University, Mankato
- Xcel Energy
- AQMESH
- Minnesota Department of Health
- LCCMR



# Thank you!

Monika Vadali, Ph.D Monika.Vadali@state.mn.us www.pca.state.mn.us/urbanair



