Federal HSIP Funding Application (Form 1)

INSTRUCTIONS: Complete and return completed application to Lars Impola, MnDOT, Metro District, 1500 West County Road B2, Roseville, Minnesota 55113. (651) 234-7820. Applications must be received by $4: 30$ pm or postmarked on June July 1, 2020.*Be sure to complete and attach the Project Information form. (Form 2)			
I. GENERAL INFORMATION			
1. APPLICANT: Minnesota Department of Transportation			
2. JURISDICTIONAL AGENCY (IF DIFFERENT):			
3. MAILING ADDRESS: 1500 County Road B2			
CITY: Roseville	STATE: MN	ZIP CODE: 55113	4. COUNTY:
5. CONTACT PERSON: Kaare Festvog	TITLE: Senio	gineering Specialist	$\begin{aligned} & \text { PHONE NO. } \\ & (651) 234-781 \end{aligned}$
CONTACT E-MAIL ADDRESS: Kaare.festvog@state.mn.us			
II. PROJECT INFORMATION			

6. PROJECT NAME: TH 13 from Lynn Ave to Nicollet Ave, Cable Median Barrier
7. BRIEF PROJECT DESCRIPTION - Include location, road name, type of improvement, etc... (A complete description can be submitted separately): This project will construct cable median barrier on TH 13 from Lynn Ave to Nicollet Ave.
8. HSIP PROJECT CATEGORY - Circle which project grouping in which you wish your project to be scored.

Proactive Reactive
III. PROJECT FUNDING
9. Are you applying or have you applied for funds from another source(s) to fund this project? Yes \square No X If yes, please identify the source(s):

10. FEDERAL AMOUNT*: $\$ 425,250$	13. MATCH \% OF PROJECT TOTAL: 10%
11. MATCH AMOUNT: $\$ 47,250$	14. SOURCE OF MATCH FUNDS: State Funds
12. PROJECT TOTAL: \$472,500	15. REQUESTED PROGRAM YEAR(S) : SEE NOTE BELOW** $\square 2024 \quad 2025 \quad$ X Either year
16. SIGNATURE: Lars Impola	17. TITLE: Principal Engineer

*Would you accept a federal award that covers $\mathbf{8 0 \%}$ of the total project cost if non-HSIP federal funds were awarded? Yes \qquad
**NOTE: If funding becomes available in 2022 or 2023 would this project be able to be advanced to meet this schedule? Yes

Which years would work? 2023 \qquad

Scoping Map DEPARTMENT OF
TRANSPORTATION

LOcATION: TH 13 from Lynn Ave to Nicollet Ave
 PROJECT MANAGER: Vasas, VIctor E FUNCTIONAL AREA:
 countr: Dakota, Scott

 PRoJect manager: Vasas, Victor E

 PRoJect manager: Vasas, Victor E}cirr: Burnsville, Savage

PURPOSE STATEMENT: Reduce fatal and serious injury crashes.

FISCALYEAR:
STATE PROJECT:
STATE PROJECT:
METRO SCOPING ID:

$$
\begin{array}{r}
2025 \\
1901-186 \\
1869
\end{array}
$$

DEPARTMENT OF
TRANSPORTATION
| 4
need statement: This segment has a history of median crossover crashes.

* See project documentation for more information.

Date: June 25, 2020

Subject: HSIP TH13 from Lynn Ave to Nicollet-Install cable median barrier

This project meets the intent of the HSIP program as it seeks to reduce crossover and head on crashes. Between 2016 and 2018, there were 25 segment crashes, including 5 injury crashes. Installing cable median barrier is a proactive approach to reducing serious crashes that result when a driver crosses the median. These crashes are random by their nature and therefore do not occur frequently, but when they do, they often result in severe injuries or fatalities. Cable median barrier is proven to reduce severe crashes and fatalities. Research suggests a significant impact on crashes compared to areas without barrier - 42% decrease in fatal crashes and a 20% decrease in severe crashes. This location has the characteristics we generally associate with a risk of crossovers crashes, including high speeds and volumes and a lack of a barrier separation between opposing lanes. MnDOT has seen great benefits in preventing crossover and head-on crashes since the first installation of cable median barrier in 2004. MnDOT Metro has been working toward addressing all locations with these characteristics as a way to support the Toward Zero Deaths initiative. Receiving HSIP funding would help move the project forward and have significant impacts on driver safety in the South Metro.

Bike/Pedestrians

There are minor incidental impacts on bike and pedestrian safety associated with the installation of cable median barrier. Barriers tend to discourage bike and pedestrians from crossing highways. Generally, the highways that benefit from cable median barrier have high volumes and speeds. Bikes and pedestrians will have the safest crossings at controlled intersections in these situations.
TH 13 from Lynn Ave to Nicollet Ave:

Total Length: RP 93.031 to $96.081=3.050$ miles

TH 13 F \& A only (Correctable crashes only)

objectid Incident ID Date and T Year
Hour

UNIT \#1 WAS SOUTHBOUND ON MNTH 13 IN THE INSIDE (LEFT) TRAFFIC LANE JUST SOUTH OF WASHBURN AVE. S. UNIT \#2 WAS NORTHBOUND MNTH 13 IN THE INSIDE (LEFT) TRAFFIC LANE JUST SOUTH OF WASHBURN AVE. S. UNIT \#3 WAS TRAVELING NORTHBOUND BEHIND UNIT \#2. ACCORDING TO WITNESSES, UNIT \#1 WAS TRAVELING AT A HIGH RATE OF SPEED WHEN IT LEFT THE ROADWAY, CROSSED THE MEDIAN DITCH AND VAULTED, COLLIDING WITH UNIT \#2. UNIT \#1 THEN COLLIDED WITH UNIT \#3. A PASSENGER OF UNIT \#2 DIED AS A RESULT OF THE CRASH. THE DRIVER OF UNIT \#1 WAS TRANSPORTED BY AMBULANCE TO HCMC. THE DRIVER OF UNIT \#2 WAS TRANSPORTED BY HELICOPTER TO NORTH MEMORIAL. TWO PASSENGERS OF UNIT \#2 WERE TRANSPORTED BY AMBULANCE TO HCMC. DRIVER OF UNIT \#3 WAS NOT INJURED. ALL THREE VEHICLES WERE TOWED BY ALLEN'S TOWING.

objectid Incident ID Date and T Year Hour | 2579211 | 331629 | $2 / 23 / 2016$, |
| :--- | :--- | :--- |
| 1940306 | 420409 | $1 / 29 / 2017$, |
| 1868479 | 361626 | $7 / 5 / 2016$, |
| 1926562 | 324882 | $1 / 31 / 2016$, |
| 2186207 | $3296332 / 16 / 2016$, | 2016 |
| 2187242 | 384205 | $9 / 18 / 2016$, |
| 2266111 | 383387 | $10 / 1 / 2016$, |
| 2556335 | 399843 | $12 / 1 / 2016$, |
| 1901529 | 503617 | $9 / 24 / 2017$, |
| 2216 | | |, 2475069451449 5/10/2017, 2017 2477846507146 9/21/2017. 2017 1792090655637 10/18/201 2018 1817509566399 2/16/2018, 2018 1947707601683 5/29/2018, 2018 2113419622248 7/20/2018 2018 2113733624077 7/19/2018. 2018 $23685746353189 / 13 / 2018,2018$ 2455383626105 8/5/2018, : 2018 $25064916341609 / 6 / 2018$,! 2018 1946381350755 5/20/2016. 2016 1972531389792 10/27/201 2016 2022123355729 6/10/2016. 2016 2047461349463 5/3/2016,! 2016 $20731503387403 / 28 / 2016, \quad 2016$ 2098176394449 11/14/201 2016 $21862843405364 / 6 / 2016$, 2016 2209789409306 12/28/201 2016

2212864379314 9/15/2016, 2016
$23918763810849 / 16 / 2016, \quad 2016$
2411382334751 3/8/2016, 2016
2411594346266 5/2/2016, : 2016
2476796344574 4/25/2016. 2016
$24776013681767 / 20 / 2016, \quad 2016$

2607382389767 10/27/201 2016
1908288504929 9/29/2017. 2017
1940758511977 10/27/201 2017
2071960473382 6/29/2017. 2017
2106244416236 1/17/2017. 2017
2112802502624 9/20/2017. 2017
2157892412863 1/9/2017,: 2017
2158533431105 3/23/2017. 2017
2163903514653 11/4/2017. 2017
2210320447072 4/13/2017. 2017

Crash Severity) Number Kill Number of Officer Nat 23 Fatal Crash 1 LOCATION 21 Fatal Crash
7 Minor Injury (20 Minor Injury ($\begin{array}{lll}17 \text { Minor Injury (} & 0 & 2 \text { Driver of } \\ 12 \text { Minor Injury (} & 0 & 1 \text { VEHICLE \#1 }\end{array}$ $\begin{array}{rll}15 \text { Minor Injury (} & 0 & 4 \text { ALL FOUR } \\ 7 \text { Minor Injury (} & 0 & 5 \text { Crash occu }\end{array}$ 15 Minor Injury (19 Minor Injury (17 Minor Injury (
8 Minor Injury (19 Minor Injury (15 Minor Injury (10 Minor Injury (15 Minor Injury (12 Minor Injury (
12 Minor Injury (
12 Minor Injury (
$\begin{array}{rll}9 \text { Minor Injury (} & 0 & 4 \text { NORTHBOI } \\ 12 \text { Possible Injur } & 0 & 5 \text { LOCATION } \\ 6 \text { Possible Injur } & 0 & 3 \text { LOCATION } \\ 15 \text { Possible Injur } & 0 & 3 \text { VEHICLES }\end{array}$

5 Possible Injur	0	1 DRIVER ST/
17 Possible Injur	0	2 VEHICLES V
8 Possible Injur	0	1 UNIT \#1 W,
16 Possible Injur	0	3 VEHICLES V
17 Possible Injur	0	2 VEHICLES
6 Possible Injur	0	2 UNIT 1 \& 2
17 Possible Injun	0	3 NB NTH

7 Possible Injur $\quad 0 \quad 2$ Crash occu

20 Possible Injur	0	3 VEHICLES
9 Possible Injur	0	2 NB HWY

18 Possible Injur $\quad 0 \quad 2$ WB 13 /

6 Possible Injur	0	4 Crash occu
16 Possible Injur	0	2 VEHICLE'S
7 Possible Injur	0	3 V3 rear enc
10 Possible Injur	0	1 Driver 1
22 Possible Injur	0	2 UNIT 1
14 Possible Injur	0	2 Both vehicl
14 Possible Injur	0	2 VEHICLE 1
17 Possible Injur	0	2 Vehicle twi
22 Possible Injur	0	2 SB HWY
16 Possible Injur	0	2 BB NTH

objectid In	Incident ID Date and T Year	Hour	Crash Severity Number Kil Number of Officer Nar		
2339031	507883 10/5/2017.	2017	15 Possible Injur	0	1 - CRASH
2428345	501692 9/16/2017.	2017	13 Possible Injur	0	2 Both vehicl
2525452	419511 1/30/2017.	2017	14 Possible Injur	0	2 UNIT\#1 AN
2603794	475248 6/26/2017.	2017	17 Possible Injur'	0	3 LOCATION
1882673	606802 6/25/2018	2018	21 Possible Injur'	0	2 UNIT 1
1895865	631504 8/30/2018.	2018	23 Possible Injur	0	1 At the
2077391	569945 2/28/2018	2018	7 Possible Injur	0	1 E/B HWY 1
2138331	599019 5/22/2018.	2018	18 Possible Injur	0	2 Both
2191038	671052 12/19/201:	2018	20 Possible Injur	0	2 - CRASH
2217736	650129 10/6/2018.	2018	23 Possible Injur	0	2 UNIT 1 \& U
2394954	657367 11/6/2018,	2018	17 Possible Injur	0	2 EB HWY
2478791	542093 2/2/2018,1	2018	6 Possible Injur	0	3 All vehicles
1796683	338928 3/29/2016.	2016	18 Property Darr	0	3 Unit 1 was
1807774	386664 10/13/201	2016	18 Property Darr	0	2 VEHICLE 1
1807795	389953 10/26/201	2016	14 Property Dar	0	2 On
1842687	382065 9/26/2016.	2016	17 Property Darr	0	2 VEHICLE'S
1848687	353134 5/29/2016,	2016	21 Property Dar	0	1 VEHICLE W
1874608	341597 4/11/2016	2016	9 Property Dar	0	2 UNIT \#1 AN
1874944	392405 11/4/2016	2016	13 Property Darr	0	1 LOCATION
1881169	334799 3/9/2016,	2016	7 Property Darr	0	2 NB HWY
1888080	402025 12/10/201	2016	21 Property Darr	0	1 driver of th
1927163	406034 12/19/201	2016	9 Property Darr	0	1 UNIT \#1 W.
1940053	382561 9/28/2016.	2016	16 Property Dar	0	2 VEHICLE'S
1953123	404824 12/16/201	2016	14 Property Darr	0	2 V 1
1959091	329717 2/15/2016.	2016	5 Property Darr	0	1 Vehicle 1 u
2019265	404425 12/15/201	2016	17 Property Dar	0	1 UNIT 1 UNI
2048102	360392 6/29/2016.	2016	16 Property Dar	0	2 VEHICLE'S
2072854	321946 1/20/2016,	2016	16 Property Darr	0	2 -Both
2073137	336791 3/19/2016.	2016	10 Property Dar	0	1 DRIVER \#1
2073424	345229 4/28/2016,	2016	12 Property Dar	0	2 LOCATION
2095953	367032 7/21/2016.	2016	17 Property Darr	0	2 LOCATION
2111484	384951 10/7/2016,	2016	16 Property Dam	0	3 Vehicle\#1
2111884	393832 10/31/201	2016	17 Property Dar	0	2 LOCATION
2134784	341220 4/7/2016,	2016	13 Property Dar	0	2 LOCATION
2135470	370137 7/22/2016.	2016	16 Property Darr	0	2 BOTH
2161128	373670 8/10/2016.	2016	17 Property Darr	0	2 LOCATION
2185607	319447 1/11/2016,	2016	18 Property Dam	0	1 VEHICLE 1
2186006	341312 4/10/2016,	2016	2 Property Dar	0	1 OFFICERS V
2189388	410045 12/31/201	2016	14 Property Dar	0	2 Driver of V
2209515	401721 12/9/2016.	2016	17 Property Darr	0	2 DRIVER
2214974	387306 10/2/2016	2016	16 Property Darr	0	2 MNTH 13
2235281	411615 12/30/201	2016	13 Property Dam	0	1 Crash occu
2235451	388605 10/20/201	2016	14 Property Darr	0	2 BOTH UNIT
2238163	348176 5/9/2016,	2016	15 Property Dam	0	2 CRASH OCC
2238797	370234 8/8/2016,	2016	16 Property Darr	0	2 UNIT 1
2263524	329739 2/14/2016.	2016	14 Property Darr	0	1 Crash occu

objectid Incident ID Date and T Year Hour

2604241328075 2/10/2016, 2016
1797221415796 1/16/2017. 2017
$\begin{array}{lll}1797519 & 4762677 / 11 / 2017 . & 2017 \\ 1797700 & 509999 & 10 / 19 / 201\end{array}$
$\begin{array}{lll}1797700 & 509999 & 10 / 19 / 201\end{array} 2017$
$\begin{array}{lll}1849754 & 531569 & 12 / 28 / 201 \\ 1855863 & 420985 & 2017 \\ 2017\end{array}$
$\begin{array}{lll}1855863 & 420985 \text { 2/6/2017,i } \\ 1856072 & 4691706 / 1 / 2017, i & 2017\end{array}$
1856073469178 6/4/2017,: 2017
1856398524851 12/6/2017. 2017
1862331445273 3/27/2017. 2017
1882159503106 9/22/2017. 2017
1894968446483 4/20/2017. 2017
1895231503572 9/22/2017. 2017
1895298513152 10/31/201 2017
1895345519969 11/20/201 2017
1914333448154 4/27/2017. 2017
1921300501279 9/13/2017. 2017
1921451523654 12/5/2017. 2017
$19405944880537 / 10 / 2017,2017$
1940690500794 9/12/2017. 2017
1966239449785 5/4/2017,! 2017
$19663914897037 / 24 / 2017.2017$
1966443497642 8/23/2017. 2017
1966633522510 12/5/2017. 2017
2000457504458 9/27/2017. 2017
$\begin{array}{lll}\text { Crash Severity) } & \text { Number Kill } & \text { Number of Officer Mar } \\ 9 \text { Property Dar } & 0 & 2 \text { Both vehicle }\end{array}$

14 Property Dam	0	1 UNIT \#1 W.
12 Property Dam	0	2 VEHICLE \#1
16 Property Dam	0	2 VEHICLES V
8 Property Dam	0	2 LOCATION
6 Property Dam	0	2 Driver \# 2 I
8 Property Dam	0	2 LOCATION
3 Property Dam	0	2 VEHICLE 1
6 Property Dam	0	3 Crash ccu

7 Property Dam	0	2 LOCATION
9 Property Dam	0	2 LOCATION
19 Property Dam	0	2 LOCATION

17 Property Dar	0	2 VI WAS SUI
17 Property Dar	0	2 UNIT 1
17 Property Dar	0	2 BOTH N/B ।
19 Property Dar	0	1 VI SB
7 Property Dar	0	2 LOCATION
19 Property Dam	0	2 The Buick
8 Property Dam	0	2 VI CROCE
23 Property Dar	0	2 V\#1 CAME
18 Property Dam	0	2 BOTH VEHI
21 Property Dam	0	1 LOCATION
17 Property Dam	0	2 WB HWY
16 Property Dam	0	4 W/B NT

12 Property Dar $\quad 0 \quad 2$ Vi
$\begin{array}{cll}12 \text { Property Dar } & 0 & 2 \text { UNIT \#1 W. } \\ 8 \text { Property Dar } & 0 & 2 \text { UNIT \#1 AN }\end{array}$

16 Property Dart	0	2 both
15 Property Dart	0	2 vo was on

$\begin{array}{lrl}\text { objectid } & \text { Incident ID Date and T Year Hour } \\ 2019715 & 423610 & 2 / 17 / 2017\end{array}$

| 2019715 | 423610 | $2 / 17 / 2017$. |
| :--- | :--- | :--- | 2017

MnDOT Metro District

 Highway Safety PlanMay 2012

Prepared for:

Minnesota Department of Transportation

TABLE 4-1 Potential Freeway Run Off Road Projects-Embedded Wet Reflective Edge Marking						
Priority	Location	Crash Densify*	No. of Crashes	Length in Miles	Unit Cost per Mile	Total Project Cost
1	Inside I-494/694 Ring	0.09	67	143	$\$ 8,500$	$\$ 1,216,000$
2	1-494/694 Ring	0.08	31	76	$\$ 8,500$	$\$ 646,000$
3	Outside 1-494/694 Ring	0.06	56	182	$\$ 8,500$	$\$ 1,547,000$
TOTAL				401		$\$ 3,409,000$

*Severe run off road crashes per mile per year **Severe run off road crashes

4.1.2 Rear End Crashes

Analysis of severe rear end crashes suggests that they are correlated with congestion. The average severe rear end crash density is greatest (0.05) on segments that are over capacity and lowest (0.02) on segments that are under capacity. No common characteristics were revealed after study of rear end crash sites. Given that these types of crashes seem to be associated with congestion, and that there are no low cost strategies were identified in either the safety literature or at the Metro District's safety workshop, it was concluded that this type of crash is not a good candidate for HSIP funding.

4.1.3 Cross Median Crashes

These severe crashes are the most noteworthy from the perspective of generating public comment and questions about why countermeasures were not deployed before the crashes occur. The challenge to a proactive deployment involves a very low density of crashes, the lack of any high crash locations, few common characteristics among the locations with crashes, combined with the fact that there are 118 miles of freeway in the Metro District without any type of barrier.

The potential high priority safety strategy is installing cable barrier in the freeway medians at an installation cost of approximately $\$ 210,000$ per mile. Figure 4-2 provides an example of cable median barrier installation. To cover the remaining 118 miles of freeway without barrier would require

Figure 4.2
Cable Median Barrier Example an investment of nearly $\$ 25,000,000$.
Metro District staff's long-term goal is to install barrier along every mile of freeway. There are a variety of approaches to prioritize the remaining roadway segments. One potential strategy for adding barrier is to extend the barrier from current termini. The analysis of the cross median crashes found one characteristic common to almost 70% of the locations with a crashproximity to an interchange. A prioritized ranking of the remaining major freeway segments was then developed using interchange density as the risk factor. The resulting ranking and the description of approximately $\$ 19,000,000$ of cable barrier installation projects are identified in Table 4-2.

TABLE A-2
Potential Freeway Cross Median Projects - Corridor Ranking

Segment	Description	Interchange /Length Ratio	Road Length	Existing Cable Length	New Cable Length	Estimated Cost in Millions $\$$
ISTH 94	$494 / 694$ to MN/NIS Border	0.54	9.19	-	9.19	$\$ 1.94$
ISTH 35	CSAH 2 to CSAH 50	0.35	8.481	-	8.481	$\$ 1.79$
ISTH 35E	I-694 to North Junction I35/35W	0.30	13.43	6.93	6.5	$\$ 1.37$
ISTH 35	N. Junction of I35E/I35W to PINE Counly Line	0.20	35.71	16.71	19.0	$\$ 4.01$
TOTAL:			66.81	23.64	43.17	$\$ 9.11$

4.2 Conventional Roads-Pedestrian/Bicycle Crashes

The second most common type of severe crash on the Metro District's roadways is the pedestrian-related crash. The majority of these crashes occurred at intersections along conventional roadways (not freeways) and almost 80% of those occurred at intersections with traffic signals. As a result, the safety project identification effort focused on intersections in general and in particular on signalized intersections.
Intersections were then analyzed by corridors since treating a spot location along a corridor would not be as effective as treating all intersections that have the same characteristics in a similar fashion. Deploying countermeasures on a corridor basis would also provide pedestrians with a more consistent message as to what they can expect for amenities.
The suggested pedestrian mitigation strategies were selected based on their cost and effectiveness. The data prove that severe pedestrian crashes are scattered around the Metro District's system. This places a priority on low cost strategies that can be widely implemented. A decision tree (Figure 4-3) indicates the process used to develop the suggested projects for particular intersection types.

Figure 4.3
Pedestrian Project Decision Tree

Minnesota

STRATEGIC HIIGHWAY SAFETY PLAN

Fatal and Serious Injury Crashes:
Lame Deppariurie

Fatal and serious injury crashes
3,199 severe crashes
640 severe crashes per year
45.5% of all severe crashes
Crashes of all severities
86,902 crashes
17,380 crashes per year 24.0% of all crashes

On Minnesota roadways, there were 3,199 severe lane departure crashes (including run-off-road, head-on, and sideswipe opposing crashes) between 2008 and 2012. This is an average of 640 severe crashes per year and accounted for 45.5% of all severe crashes during the five-year period.

Statewide Crash Statistics

Jurisdiction and area type distribution of severe crashes involving lane departure

	Rural		Urban		Other		Statewide	
State Trunk Highways	859	27%	337	11%	18	1%	1214	38%
County Roads	1011	32%	350	11%	42	1%	1403	44%
City	33	1%	335	10%	15	$<1 \%$	383	12%
Township	159	5%	3	$<1 \%$	24	1%	186	6%
Other	5	$<1 \%$	0	0%	8	$<1 \%$	13	$<1 \%$
All Jurisdictions	2067	65%	1025	32%	107	3%	3199	100%

Severe lane departure crashes primarily occur in rural areas (2067 of 3199; 65\%).

These crashes occur primarily on two roadway jurisdictions: County (1403 of 3199; 44\%) and State (1214 of $3199 ; 38 \%$).

Proportion of severe lane departure crashes along curves by jurisdiction and area type

DEPARTMENT OF TRANSPORTATION

Date: June 25, 2020

Subject: CMF Justification for TH 13 from Lynn Ave to Nicollet Ave - Cable Median Barrier

The CMFs for installing Cable Median Barrier were chosen because they most closely match the construction planned at this location. These CMFs were from one of the only studies that broke down the CMFs by severity. The results also closely match results of an internal study MnDOT Metro conducted on the I-94 cable median barrier installation.

CMF | CRF Details

CMF ID: 5235

Install cable median barrier (high tension)

Description:

Prior Condition: No Cable Median Barrier

Category: Roadside

Study: In-Service Performance Evaluation (ISPE) for G4 (1S) Type of Strong-Post W-Beam Guardrail System and Cable Median Barrier: Volume II, Alluri, P., K. Hallem, and A. Gan., 2012

Star Quality Rating:

(xind [View score details]

Crash Modification Factor (CMF)

Value: 0.578

Adjusted Standard Error:

Unadjusted Standard Error:
0.265

Crash Reduction Factor (CRF)

Value: $\quad 42.2$ (This value indicates a decrease in crashes)

```
                                    Applicability
            Crash Type: Other
            Crash Severity: K (fatal)
            Roadway Types: Principal Arterial Other Freeways and Expressways
            Number of Lanes:
                Road Division Type: Divided by Median
            Speed Limit:
            Area Type:
            Traffic Volume: }37429\mathrm{ to 74191 Annual Average Daily Traffic (AADT)
            Time of Day:
```

 If countermeasure is intersection-based
 Intersection Type:
 Intersection Geometry:
 Traffic Control:
 Major Road Traffic Volume:
Minor Road Traffic Volume:

Date Range of Data Used: 2003 to 2010 Municipality:

State: FL

Country:	
Type of Methodology Used:	Simple before/after
Sample Size Used:	Crashes
After Sample Size Used:	9 Crashes
Included in Highway Safety	No Sle Size Used:
Manual?	13 Crashes
Comments:	Median Related Crashes

CIMI

CRASH MODIFICATION FACTORS CLEARINGHOUSE

CMF / CRF Detaills

CMF ID: 5236

Install cable median barrier (high tension)

Description:

Prior Condition: No Cable Median Barrier

Category: Roadside
Study: In-Service Performance Evaluation (ISPE) for G4 (1S) Type of Strong-Post W-Beam Guardrail System and Cable Median Barrier: Volume II, Alluri, P., K. Hallem, and A. Gan., 2012

Star Quality Rating: [View score details]

Crash Modification Factor (CMF)		
Value:	0.799	
Adjusted Standard Error:		
Unadjusted Standard Error:	0.215	

Crash Reduction Factor (CRF)

Value: $\quad 20.1$ (This value indicates a decrease in crashes)

Adjusted Standard Error:

	Applicability
Crash Type:	Other
Crash Severity:	A (serious injury)
Roadway Types:	Principal Arterial Other Freeways and Expressways
Number of Lanes:	
Road Division Type:	Divided by Median
Speed Limit:	
Area Type:	
Traffic Volume:	37429 to 74191 Annual Average Daily Traffic (AADT)
Time of Day:	
If	untermeasure is intersection-based
Intersection Type:	
Intersection Geometry:	
Traffic Control:	
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Development Details

Date Range of Data Used: 2003 to 2010

Municipality:

State: FL

Country:	
Type of Methodology Used:	Simple before/after
Sample Size Used:	
Before Sample Size Used:	31
After Sample Size Used:	30
Included in Highway Safety	
Manual?	No
Date Added to Clearinghouse:	Dec-02-2013
Comments:	Median Related Crashes

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

