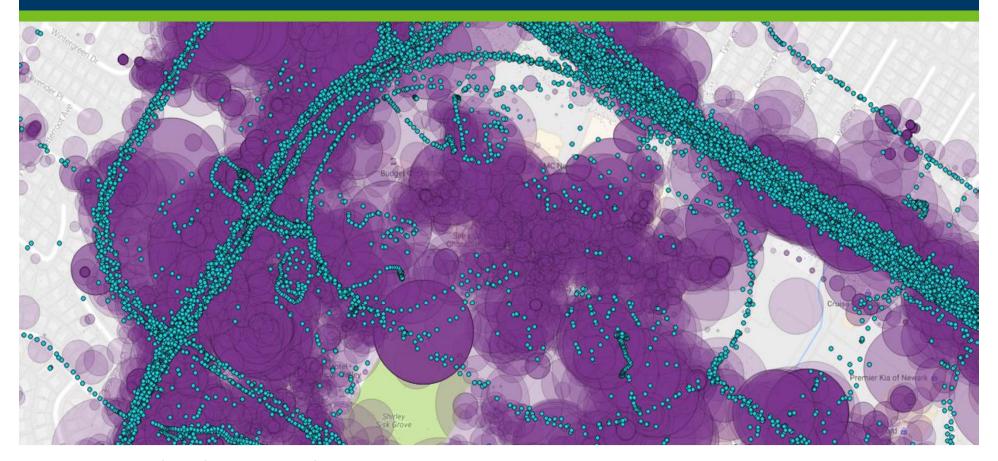


StreetLight Data Pilot: Using Big Data to Save Big Dollars

TAC Funding and Programming Thursday, November 16, 2017

Michael Corbett – State Program Administrator

MnDOT Metro Planning


Agenda

	Topic
1	StreetLight Insight <i>Pilot</i> Basics
2	Background – What's in the data
3	Uses
4	Previous Experience with Big Data
5	Examples: Arterials, Maryland 4-3 lane conversion, License Plate Study, Public Outreach: West 7 th Street
6	Upcoming Analyses
7	Upcoming Trainings
8	Tracking Pilot Subscription

StreetLight Basics

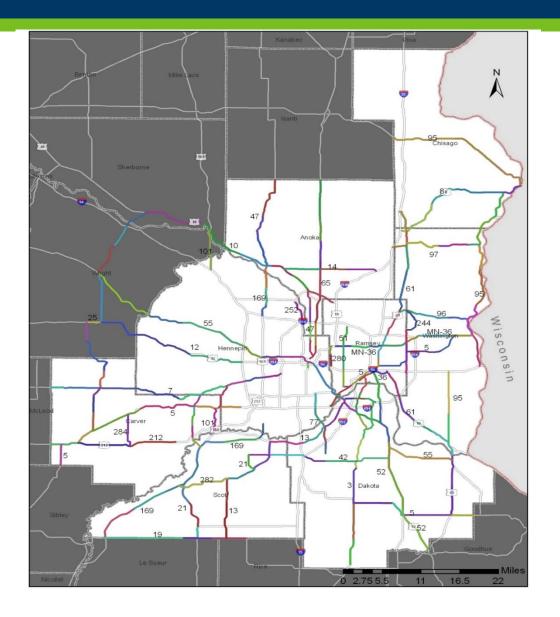
- Pilot Subscription service that uses a cloud-based, online software tool to generate analytics (metrics) about trends in transportation behavior.
- Transportation metrics derived from both navigation-GPS records and location-based services records.
- Transportation data collection tool that allows authorized users:
 - To run an unlimited number of transportation studies and analyses including Origin-Destination.
 - To run these studies and generate analytics directly from a computer with only an internet connection, no software is required.

StreetLight Basics

- Blue dots GPS data
- Purple circles mobile device data

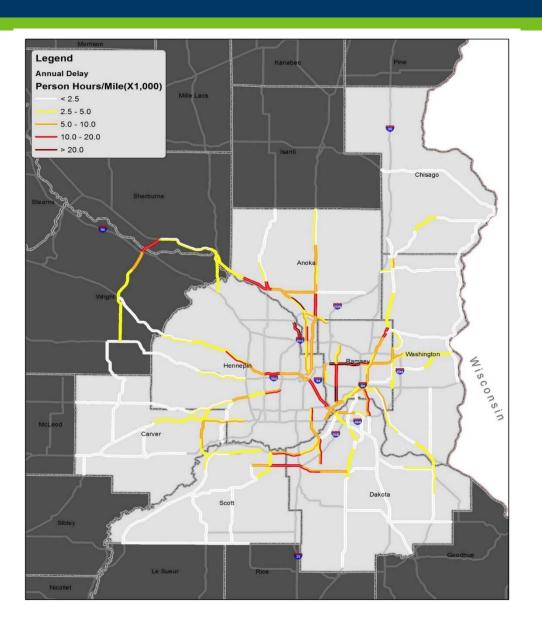
Selected Uses for the Data

- Measure congestion and delay
- Origin-Destination analyses
- Speed Limit studies
- Freight analyses (large and medium size trucks)
- Construction impacts, detour analyses
- Turning Movement Counts


Previous Experience with Big Data (2013)

Background

- MnDOT partnered with the Texas A&M Transportation Institute (TTI) in a study for "Developing Twin Cities Arterial Mobility Performance Measures Using GPS Speed Data"
- Travel speed data from INRIX was acquired for all MnDOT nonfreeway arterials in the Metro (2011 data)
 - included roadway location reference information (street names, cross streets, length of links, latitude/longitude of endpoints
 - included time/date ranges (hour-of-the-day and day-of-week averages)
 - Average speed, reference speed, and distribution percentiles of speed
 - Roadway segments ranked by annual delay per mile

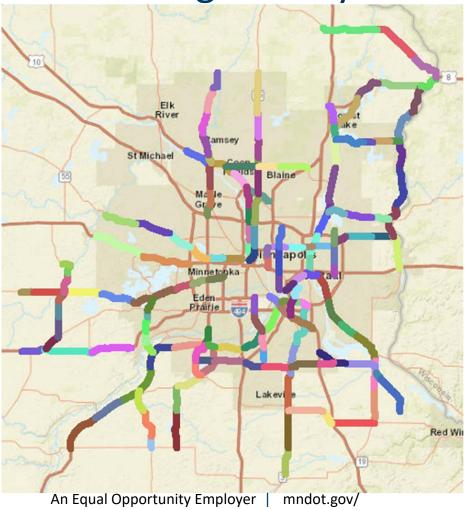

2013 Arterial Speed Analysis

Defined
Segments

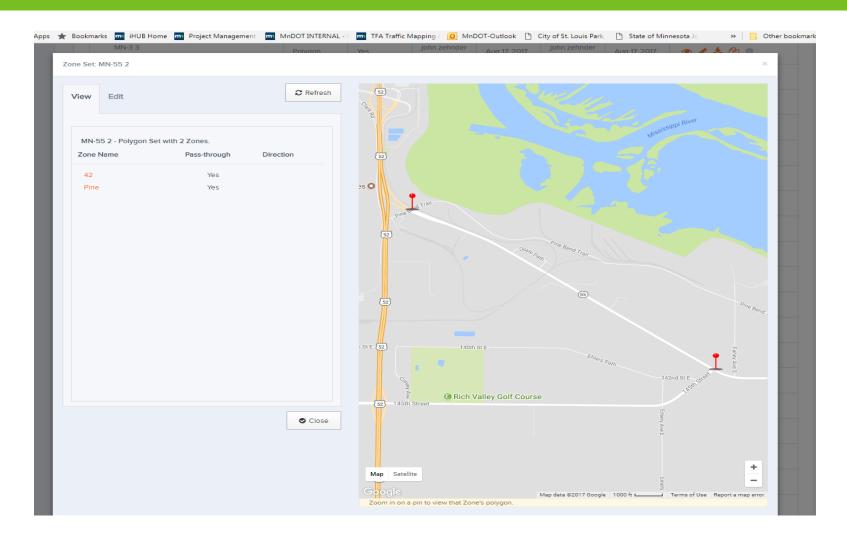
2013 Arterial Speed Analysis

Arterial Segments by Annual Delay Per Mile

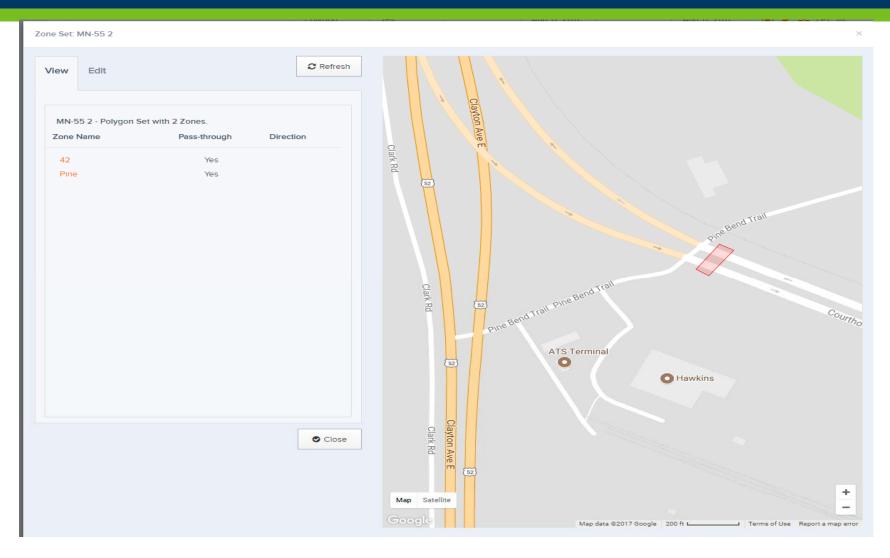
Total effort = 6-9 months \$125,000

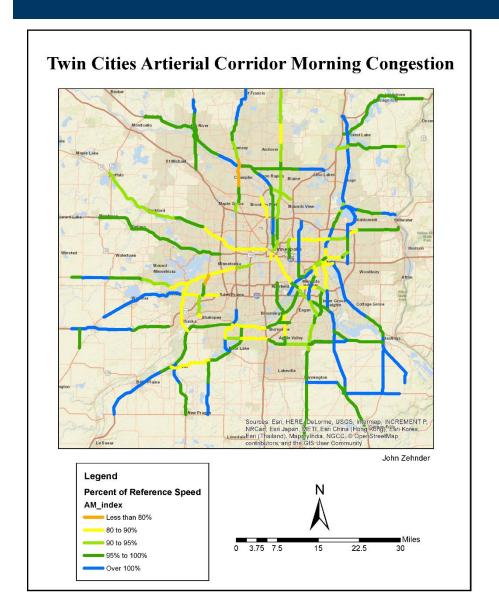

2017 MnDOT Arterial Speed Analysis

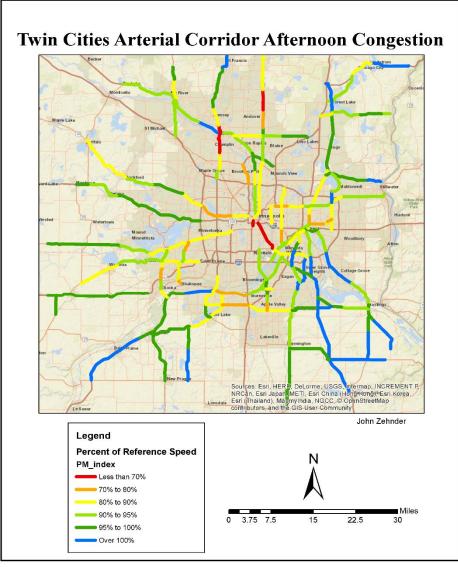
StreetLight Analysis of arterials


- Same roadway segments from 2013 study were used
- Gateways were drawn at segment endpoints
- Reference speed (free flow) was overnight period (9pm to 6am)
 - Determining Reference Speed from Probe-based Travel Speed Data, Technical Memorandum Prepared for the Mobility Measurement in Urban Transportation (MMUT) Pooled Fund Study, Texas A&M Transportation Institute (TTI) - May 2017
- Congestion formulas set up to report "speed as % of reference speed"

2017 MnDOT Arterial Speed Analysis

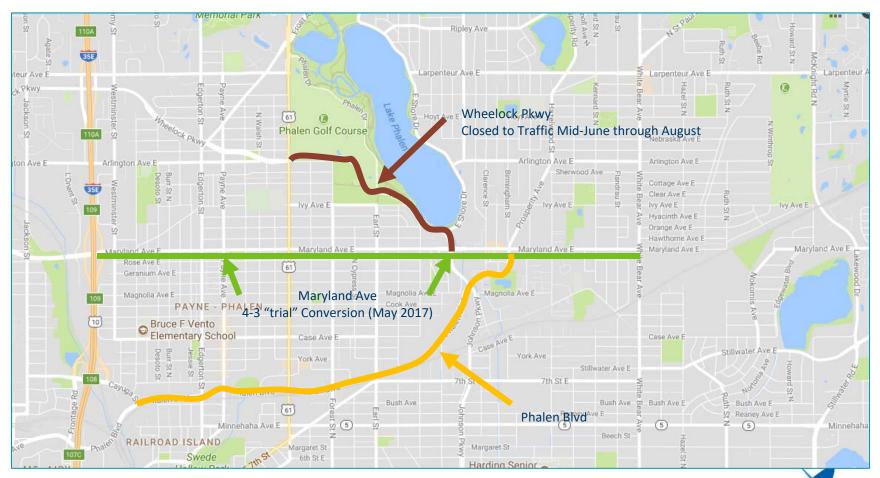

Segments used in StreetLight analysis




Segment Example: Arterial Speed Analysis

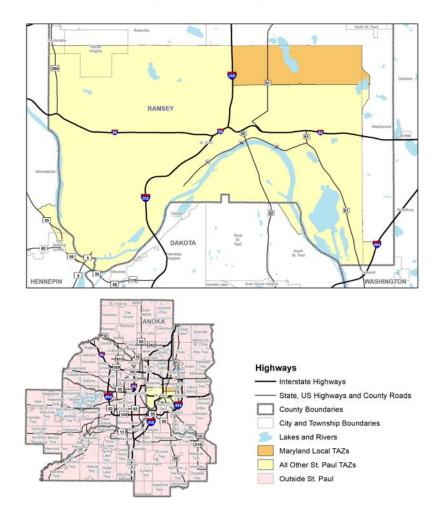
Segment Example: Arterial Speed Analysis

2017 MnDOT Arterial Speed Analysis


StreetLight Analysis of MnDOT Non-Freeway Arterials

- Additional segments are being analyzed
 - All-traffic
 - Freight (truck) traffic
 - Reporting and displaying both direction
- Idea is to report this annually, much like the Twin Cities Freeway Congestion report
- Compliance with MAP-21 performance measure reporting
- Augment the Congestion Management Process

Maryland 4 to 3 lane roadway conversion


StreetLight Insight in Action: Analyzing Users and the Impacts of a 4 to 3 Conversion in St. Paul

- Staff was interested in answering three primary questions regarding the Maryland Avenue corridor
 - Is Maryland Avenue being used more by the surrounding residents for local trips, or as a gateway for commuters to access I-35E?
 - What were the effects of the 4-to-3 lane conversion on traffic patterns, trip length, and speed along Maryland Avenue?
 - How were adjacent roadways affected by the closure of Wheelock Parkway? Did traffic volumes substantially increase along other roadways due to the Wheelock closure?
 - Impacts to area roadways (e.g. US 61)
 - Comparison to other 4-to-3 lane conversions

Title: Maryland Avenue Neighborhoods

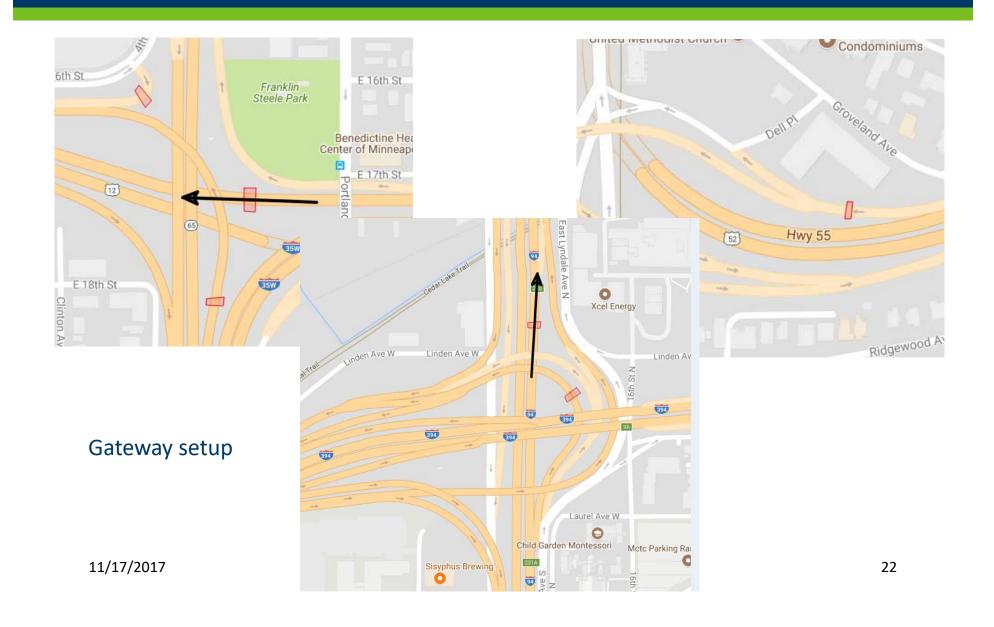
Maryland Avenue: Corridor Usage (O/D Analysis)

Origin	Destination				
	Local Maryland Area	St. Paul	Outside St. Paul		
Local Maryland Area	14%	15%	15%		
St. Paul	16%	9%	8%		
Outside St. Paul	12%	7 %	4%		

What were the effects of the 4-to-3 lane conversion and Wheelock closure on traffic patterns, speed, and travel time?

Before and After Analysis: July 2016 and July 2017

Location	Average Speed - 2016	Average Speed - 2017
Maryland	22	24
Phalen	22	22
Wheelock	27	N/A


 A typical analysis would take several months and \$100,000

Maryland 4 to 3 lane roadway conversion - Conclusions

- By utilizing the StreetLight Insight tool, staff was able to determine:
 - The majority of trips along Maryland Avenue had their origin, destination, or both origin and destination within the immediate neighborhood. Most other trips had an origin and/or destination within St. Paul. Very few non-St. Paul residents were using the corridor as a "pass through" to connect to I-35E.
 - The closure of Wheelock Parkway led to an increase of traffic along adjacent corridors.
 - Travel time and trip duration increased along Maryland Avenue and Phalen Blvd from July 2016 to July 2017; however, it is unclear if this was more an effect of the closure of Wheelock, the 4-to-3 lane conversion, or a combination of both.
- StreetLight provides a powerful and easy-to-use mechanism for evaluating the users and function of a corridor as well as a picture of the effects of roadway reconstruction on speed, traffic patterns, and trip duration.

Background

- 2011 Study looked at impacts of moving the I-35W NB and 4th
 Avenue flyover from the right side of I-94 to the left side
- Consultant selected to analyze license plate data to determine origins and destinations of vehicles using the NB I-35W ramp
- Video cameras captured license plates for <u>two</u> days in May
- StreetLight analysis used monthly data over the last few <u>years</u>

Results

Table 1: AM Peak Period O-D Summary for Personal Vehicles (7am-9am)

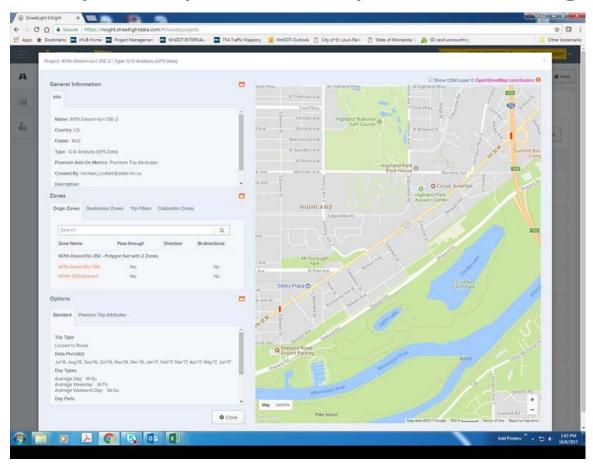
*Original ("Conventional") O-D study Percentages

Origin-Destination Table Personal Vehicles		Destinations				
		Hennepin/Ly ndale	WB I-394	WB I-94 Through		
SL	NB I-35W Flyover Entrance	20% *11%	18.4% *28%	61.5% *61%		
Origins	4 th Avenue Entrance	19.6% *2%	26.7% *35%	53.8% *63%		
	WB I-94 Mainline	38.7% *16%	36% *51%	25.2% *33%		

Table 2: AM Peak Period O-D Summary for Commercial Vehicles (7am-9am)

^{*}Medium and Heavy Duty Commercial Vehicles were not broken out in the original study.

Origin-Destination Table All Commercial Vehicles		Destinations			
		Hennepin/Lyndale	WB I-394	WB I-94 Through	
<u>v</u>	NB I-35W Flyover Entrance	13% *6%	5.6% *3%	81.2% *91%	
Origins	4 th Avenue Entrance	20.1% *3%	28.8% *8%	50% *89%	
0	WB I-94 Mainline	27% *31%	37.5% *69%	35.3% *0%	
Origin-Destination Table Medium Duty Commercial Vehicles*		Commercial- Medium	Commercial- Medium	Commercial- Medium	
ટ	NB I-35W Flyover Entrance	16.4%	8.4%	75%	
Origins	4 th Avenue Entrance	24.1%	27.7%	47.1%	
	WB I-94 Mainline	33.5%	33.2%	33.1%	
Origin-Destination Table Heavy Duty Commercial Vehicles*		Commercial-Heavy	Commercial-Heavy	Commercial-Heavy	
SC	NB I-35W Flyover Entrance	9.2%	2.4%	88%	
Origins	4 th Avenue Entrance	11.5%	31%	56.3%	
0	WB I-94 Mainline	15.8%	44.9%	39%	


^{*}Original ("Conventional") O-D study Percentages

Conclusions

- StreetLight effort took much less time and effort than the original study (\$100,000 and several months vs 11 hours (less than \$800).
- StreetLight Data provided substantially larger sample size
- Accuracy likely better since data not subject to human error (vs reading license capture images)

West 7th Street (MN -5) speed analysis

Speed analysis requested for public meeting

West 7th Street (MN -5) speed analysis

Speed analysis requested for public meeting with State Reps and Councilmembers

	EB (mph)	WB (mph)	EB (data pts)	WB (data pts)	EB+WB data pts	EB&WB avg speed (mph)
Peak AM (6am-10am)	30	27	1832	315	2147	30
Peak PM (3pm-7pm)	29	25	1803	445	2248	28
Off Peak (9pm-6am)	34	32	708	252	960	33

Typical speed analysis would have taken weeks and \$5,000-\$10,000

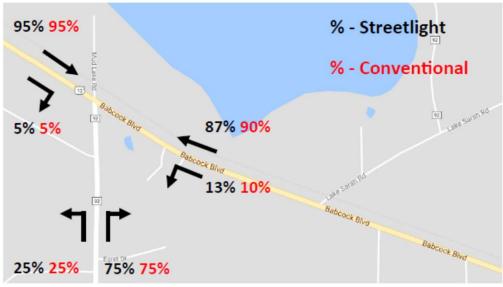
Turning Movement Count Comparison

Turning Movement Count: StreetLight vs. Video count

 One-day turning movement counts (6/12/2017) compared to StreetLight Data (annual average from August 2016 to July 2017)

Figure 1: Origin & Destination Gates—Streetlight Insight Analysis

Star indicates location of 06/12/2017 Turn Movement Count.



1b. SB CSAH 92 (East Intersection)

Turning Movement Count Comparison

Figure 2: Streetlight vs. Conventional Turn Movement Counts (All-Day)

West Intersection (USTH 12 and CSAH 92)

Turn Movement Count (06/12/2017). Streetlight Insight (Aug 2016 -Jul 2017).

A typical turning movement count would take about a week and \$1,000

Upcoming StreetLight Analyses

MnDOT and Met Council are working on additional analyses

- Some analyses are validations of previous studies
- Some projects are new analyses that were not feasible before

List of upcoming and potential uses include:

- US 10 Origin-Destination and speed study validation
- St. Croix River bridge affects on speeds and routes
- US 169 Nine-mile creek bridge closure and reopening

Upcoming StreetLight Analyses

List of upcoming and potential uses (continued)

- Origin-Destination analysis in District 8 (Glencoe area)
- Snelling Ave (TH 51) project
- I-35W and Lake Street Project
- I-35/I-535 and Blatnik Bridge in District 1
- TH 60 expansion from 2-4 lanes effects on I-90, I-35 & TH169 (District 7)
- Special events analysis
 - State Fair
 - Super Bowl

Tracking Pilot Subscription

StreetLight Subscription Cost and *Estimated* **Savings/Value***

2017 StreetLight Subscription Cost:		- \$725,000
2017 I-35W/I-94 O/D Validation Study		+ \$100,000
2017 Maryland Ave 4-3 Analysis (Met Council)		+\$100,000
2017 Metro District Arterial Speed Analysis		+ \$400,000
Speed studies	\$ 7,500 x 10	+ \$ 75,000
Turning movement counts	\$ 1,000 x 100	+ \$100,000
Estimated SL Subscription Balance		\$50,000

^{*} The project cost savings are estimates. Note that several other analyses are being conducted using the SL tool. This table will be updated periodically.

Thank you!

Paul Czech

Paul.Czech@state.mn.us

651-234-7785

Michael Corbett

Michael.J.Corbett@state.mn.us

651-234-7793