Twin Cities Highway Mobility Needs Analysis

Metropolitan Council TAC Funding & Programming May 20, 2021

Consulting Team:

SRF Consulting Group
Sambatek, Inc.
Texas A&M Transportation Institute (TTI)
Associated Consulting Services (ACS)

- The Minnesota Department of Transportation (MnDOT) and the Metropolitan Council are developing a performance-based approach to mobility investment on highways in the Twin Cities
- This approach
 - Sets a highway mobility target
 - Estimates a 20-year capital investment need on metro-area state highways

Project overview

Project approach

Target recommendation

Use a Twin Cities Highway
Mobility target of 40-hours of
annual delay per person to
calculate MnDOT's 20-year
investment needs on the state
highway system

Target Value	40-hours annual delay per person
Change from 2018	10%
Change from 2040 base	25%
20-year cost	\$4 to \$6 billion

Project background

Planning Context

- Twin Cities highway mobility ...
 - Requires coordinated,
 collaborative planning at the local, state, and
 federal levels
 - Is not currently guided by a performance target

MINNESOTA GO

Stewardship | Prosperity Equity | Livability Sustainability Maximize the health of people, the environment and the economy

- Transportation System
 Stewardship
- Safety and Security
- Access to Destinations
- Competitive Economy
- Heathy and Equitable Communities

- Open Decision-Making
- Transportation Safety
- Critical Connections
- System Stewardship
- Heathy Communities

Outcome Measures

Access | Travel Time | Emissions

Performance Measure
Delay per capita

Transportation Policy Plan 2040 Investment Priorities for Highway Mobility

- 1. Travel Demand Management (TDM)
- 2. Traffic Management Technologies
- 3. Spot Mobility (Lower Cost/High Benefit)
- 4. MnPASS
- 5. Strategic Capacity Enhancements (e.g., new interchanges or lanes)

These investment principles were used throughout the project.

Connection to Regional Solicitation

- To meet state and federal performance measures, MnDOT has shifted most of its capital resources to asset preservation.
- As a result, metro cities and counties have assisted in the planning and partial funding of highway mobility projects on MnDOT's system.
- Since the Regional Solicitation redesign, 10 different cities and all 7 counties have been awarded funding for highway mobility projects on MnDOT's system (primarily new interchanges).
- Typically, the Regional Solicitation pays 1/3 of the project cost, the local city/county 1/3, and MnDOT 1/3.
- The Regional Solicitation helps make these locally-led, multi-agency, partnership projects possible.

Minnesota State Highway Investment Plan (MnSHIP)

- Sets direction (i.e., spending targets) for capital investment on the state highway system for a 20-year period
- Measures used to define need and project outcomes under alternative spending levels

MnSHIP Investment Categories

Investment Category	Performance Measure
Pavement Condition	Share of system with Poor ride quality
Bridge Condition	Share of bridges in Poor condition
Roadside Infrastructure Condition	Share of other assets (e.g., culverts, signs, etc.) in Poor condition
Accessible Pedestrian Infrastructure	Share of sidewalks, curb ramps and signalized intersections meeting ADA standards
Traveler Safety	Traffic fatalities; serious injuries; fatal and serious injury crash rates
Twin Cities Highway Mobility	TBD

2017 MnSHIP approach to Twin Cities Highway Mobility

- Performance outcomes expressed in terms of strategy implementation
- Delay and reliability referred to as risks
- Performance level 4
 (highest level) set at
 \$4.5 billion over 20
 years

Performance Level 1

Lower cost, higher risk

Approximately corresponds with

Assign measure goals

Why measure system performance in terms of delay per capita?

- Simple
- Relatable at the regional, corridor, project and person-level
- Responsive to MnDOT/Met Council highway investment strategies
- Supportive of economic analyses
- Captures the extent to which highway mobility contributes to broader transportation goals

Modeled Results – Average Annual Delay

Modeled Results - Job Access

Number of Jobs Accessible to the Average Twin Cities Resident by Auto in 30 minutes (7-8am)

Modeled Results - Vehicle Miles Traveled

^{*} Modeled results do not account for impacts of additional transportation investment on land use

Peak hour Travel Time Index for major freight movements

Equity analysis

- How does job access of equity populations change under each funding scenario, in absolute terms and in relation to the region as a whole?
 - The number of additional jobs accessible due to the highway mobility investment was similar across income, race, and ethnic groups.
- What is the impact of each funding scenario on transit delay?
 - Transit delay decreased as highway mobility investment increased.

Telecommute Sensitivity Analysis

- Illustrative examples developed to understand outcomes at different levels of telecommuting
- Identify mobility needs with an additional 10%, 20%, and 30%
 Telecommuting
- Increasing telework participation reduces the need for capital investment to meet the performance target.

Twin Cities Highway Mobility Target Recommendation

Target recommendation

Use a Twin Cities Highway
Mobility target of 40-hours of
annual delay per person to
calculate MnDOT's 20-year
investment needs on the state
highway system

Target Value	40-hours annual delay per person
Change from 2018	10%
Change from 2040 base	25%
20-year cost	\$4 to \$6 billion

Twin Cities Highway Mobility Performance Levels

Zero Revenue (PLO)

• Current Revenue (Pears 1-10 (2022-2)27) \$0 M

Increased Revenue (PL2)

Beyond increase of the provided by the provide

Beyond Increased Revenue 2 (PL4)

Overarching Goal: Optimize the capacity of the existing system and provide reliable travel alternatives to nove people and freight as effectively and efficiently as possible

Level	ĊO BA	\$12C M
Approach Folio)	Approach A, C	Approximately corresponds with current investment, Approach B
	Lowest cost, greatest risk	Lower cost, highe r risk
	Periorillalice Level 0	Periorillalice Level I

identified in 2013 MnSHIP

VEAG		_+ <i>)</i>
Risks	Less predictable travel times	Less predictable travel times
	and longer lasting congestion for people driving Medium	and longer lasting congestion for people driving
	 Reduced reliability and efficiency for transit services Inability to attract/retain people and businesses Decreased system resiliency for all users Reduced ability for all users to reach desired destinations 	Reduced reliability and efficiency for transit services Inability to attract/retain people and businesses Decreased system resiliency for all users Reduced ability for all users to reach desired destinations
System Investment Strategies What strategies would MnDOT use to manage isk?	 Invest in currently planned and programmed mobility projects 	Focus on investments that provide reliable congestion-free options for commuters in 1 corridor Focus on low cost spot mobility projects that provide safety and reduced delays

Performance Objectives: Manage delay by providing reliable altern

	Greater cost, lov	Greater cost	, lower		
	Does not correspond with an approach			Does not cor	respon
	\$1,204 M			\$2,408 M	+
ility 3%	\$59.7 M/yr \$84.6 M/yr	Romaining roverus available	Twin Cities Mobility 7.2% see investment rother tegories	\$119.4 M/yr \$169.2 M/yr	Ba i
	25 A. I. C. C.	4 4 4	The second of the second of	O 11 1	general control of

Current level of investment through 2021; \$44 M | per year through 20 per year through 2037

- 3-4 MnPASS investments
- 5 miles or 1 corridor of ATM investments per
- year, assuming an increase in RTMC operating

- Less predictable travel times and longer lasting congestion for people driving
- Inability to attract/retain people and
- Reduced ability for all users to reach desired
- Focus on investments that provide reliable congestion-free options for commuters in 4
- Focus on multiple spot mobility projects that provide safety and delay benefits
- Focus on lower cost strategic mobility improvements

- - 6+ MnPASS inves
 - 20-24 spot mobilit
 - 5-7 major capacit

Performance Lev

 10 miles or 1-2 con per year, assuming operating budget

Less predictable

lasting congestion

Decreased system

Reduced reliabili

Inability to attract

Reduced ability for a

Focus on investme

corridors

congestion-free op

Focus multiple spot

provide safety and d

 Focus on low and improvements

High

 Less predictable travel times and longer lasting congestion for people driving

Medium

- Reduced reliability and efficiency for transit services
- Inability to attract/retain people and businesses
- Decreased system resiliency for all

 Reduced ability for all users to reach desired destinations

Performance Level 1

Lower cost, higher risk

Approximately corresponds with current investment, Approach B

Current level of investment as identified in 2013 MnSHIP

- 1 MnPASS investment
- 6 spot mobility improvements
- No major capacity projects
- No ATM investments

ransit

able s in 13

hat nobility

21

Performance Level Information

* Relative to 2040 TPP
Current Revenue Scenario

	PL0	PL1	PL2	PL3	PL4
Objective	No additional investment	Maintain current investment	Limit growth in congestion	Sustain regional Mobility	Improve regional mobility
20-year investment	\$0	\$1 - \$2 billion	\$2 – \$3 billion	\$3.5 – \$5.5 billion	\$4 – \$6 billion
Delay per capita	56 hours per person/per year	52 hours per person/per year	48 hours per person/per year	44 hours per person/per year	40 hours per person/per year
Travel time savings*	- 4 hours (5%) per person/per year	N/A	4 hours (5%) per person/per year	8 hours (15%) per person/per year	12 hours (25%) per person/per year
20-year benefit from travel time savings*	- \$2 billion	N/A	\$2 billion	\$5 billion	\$8 billion
Job access benefits*	- 60,000 jobs accessible by auto within 30 minutes (AM peak)	N/A	+ 40,000 jobs accessible by auto within 30 minutes (AM peak)	+ 80,000 jobs accessible by auto within 30 minutes (AM peak)	+120,000 jobs accessible by auto within 30 minutes (AM peak)
GHG emissions*	Slight decrease (0 – 2.0%)	N/A	Slight increase (0 – 2.0%)	Slight increase (0 – 2.0%)	Slight increase (0 – 2.0%)
Risk of not reaching target	High	High	Moderate	Moderate	Low

Next steps

Next Steps

- Use performance data and outcomes in MnSHIP process
- Congestion Management Process Handbook (ongoing)
- Electric Vehicle Planning Study (ongoing)
- TDM Study (fall 2021 start)
- Principal Arterial Intersection Conversion Study Update (late 2021 start)
- Transportation and GHG Measures (2022 start)
- Review Regional Approach to Congestion/TPP Goals (late 2022 start)

More information

- Project website: metrocouncil.org/mobility
- Contact us:
 - Steve Peterson, Metropolitan Council
 Steven.Peterson@metc.state.mn.us
 651-602-1819
 - Paul Czech, MnDOT
 paul.czech@state.mn.us
 651-234-7785

