Regional Climate Vulnerability Assessment – Transportation Tools & Resources

Technical Advisory Committee Planning Meeting March 14, 2019

Today's Discussion

Overview

Localized Flooding

- Approach and Limitations Methodology
- Transportation & Transit Overview

Next Steps

Tools for Community & Stakeholder Use

Why Conduct a Climate Vulnerability Assessment?

Sustainability Outcome

 Integrating climate mitigation, adaptation, and resilience into the Council's management of regional systems and supporting local governments in their planning and implementation.

Building in Resilience Land Use Policy

• Develop local resiliency to the impacts of climate change. The Council will identify and address potential vulnerabilities in regional systems as a result of increased frequency and severity in temperature, precipitation, and extreme weather.

Lead by Example

LOCAL PLANNIN ANDBOOL

Welcome to the Local Planning Handbook! The purpose of the Handbook is to omprehensive plans. The Handboo

- des clear and specific direction on what the minimu
- ides tools, maps, and resources to make it easier to co
- Individualizes community information as much as poss
- Connects communities with available resources, grants
- vides resources for value-add

Collaborate Across the Region

Why Rain & Heat?

Climate Change Trends in Minnesota through 2099

Hazard	Projections Through 2099	Confidence in Projected Changes			
Warming Winters	Continued loss of cold extremes and dramatic warming of coldest conditions	Highost			
Extreme Rainfall	Continued increase in frequency and magnitude; unprecedented flash-floods	Highest			
Heat Waves	More hot days with increases in severity, coverage, and duration of heat waves	High			
Drought	More days between precipitation events, leading to increased drought severity, coverage, and duration	Moderately High			
Heavy Snowfall	Large events less frequent as winter warms, but occasional very large snowfalls	Moderately Low			
Severe Thunderstorms & Tornadoes	More "super events" possible, even if frequency decreases				

What are We Assessing?

- Localized Flooding Analysis **Transportation and Transit** Wastewater **Council-owned Housing Regional Parks and Trails** Water Supply
- Localized Flooding Tools Story Map Interactive Flood Map Publicly Available Data

Extreme Heat Tools Story Map Interactive Extreme Heat Map Publicly Available Data

Human Vulnerability

Localized Flooding (Bluespot) Approach

Over half of Mega Rain Events since 1866 occurred since 2002

Challenges Most infrastructure planned for 5 to 10 year storm events

Under new modelling, the 100-year event has increased by 25%

*Defined as 6" or greater rains covering at least 1000sq mile and a peak amount of 8" or greater

Observation of Mega Rain Events* in MN

Types of Flooding

Riverine flooding

Extended rainfall or snowmelt causes a river to exceed its capacity

Surface or Localized flooding

High intensity rainfall creates a flooded area independent of an overflowing water body

IMAGE SOURCE: Twitter, Lowry Ave, NE Minneapolis, 7/5/2016

Why focus on localized flooding?

- Under-acknowledged risk
- Less well known than riverine flooding
- Less consideration of this risk when locating Council assets

Localized Flooding

Council Approach –

- Create localized flooding data layer from existing data
- Keep data simple to allow for broad application
- Group flood depth hazards to assist in screening Council assets

Flood Hazards

Council Bluespot Categorization

Bluespot Depth	Flood Hazard Category	E
3 in-1 foot total	Shallow	
0-2 feet	Primary	
2-4 feet	Secondary	
>4 feet	Tertiary	

Limitations of Localized Flooding Analysis

• Data

- -Does not account for stormwater infrastructure: "Worst case scenario".
- -Elevation data is from 2011

Discretion

-Flood Impact Zones based on Council assets

• Therefore:

- -The data is best used for screening and prioritization, and should be considered as *potential* vulnerability in the event of stormwater infrastructure failure
- -More site-specific analysis should incorporate other data

Transportation & Transit Overview

Transportation & Transit

82.6% of Assets Outside Flood Impact Zone

			Flood Impact Zone % for Assets in a FIZ				
Asset	Total	Total Assets in FIZ*	Primary	Secondary	Tertiary	FIZ Average Max. Depth**	Shallow
Bus Routes	5,976 mi.	17.4%	36.3%	27.3%	25.3%	4.76ft	11.1%
LRT/Commuter Lines	111 mi.	9.6%	47.5%	25.2%	18.4%	3.75ft	8.9%
All Transit Stops	19,422 stops	12.8%	46.6%	12.4%	12.9%	3.39ft	28.1%
All Roadways	44,266 mi.	12.8%	38.1%	25.2%	24.2%	3.87ft	12.5%
Regional Highways	24,584 mi.	16.2%	34.9%	26.4%	27.1%	4.28ft	11.6%
Bicycle Routes	6,773 mi.	15.5%	34.2%	26.6%	27.5%	4.02ft	11.6%

*Refer to Total Asset in FIZ column to determine total exposure to potential localized flooding for each asset. More than 80% of all Council assets are outside of a FIZ.

**FIZ Average Maximum Depth refers to Primary, Secondary, and Tertiary FIZ. It does not include Shallow.

Transportation & Transit

Format for Analysis of Each Asset Asset Overview Local Example

Rationale **GIS** Methodology Analysis Considerations **Existing Strategies Proposed Strategies** MC Strategies Local Strategies

Regional Hwy Network

Overview Analysis Potential Flood Vulnerability

Anoka	102.01 miles
Carver	19.14 miles
Dakota	137.47 miles
Hennepin	652.78 miles
Ramsey	239.85 miles
Scott	19.24 miles
Washington	61.27 miles
7-County Total	1231.76 miles

Localized Flooding – Acute and Chronic Stress

Flash flood traps cars under Roseville underpass [PHOTO]

Tuesday, July 5, 2016 by Mike Mullen in News

Local Roads South Lyndale & 27th Street March 11, 2019

A quick transition from snow piles to street flooding to potholes

Bus Transit Overview Analysis

Bus Routes & Stops - Potential Flood Vulnerability

High Vulnerability Bus Routes by Number of Stops in Flood Impact Zones

Bus Transit Portions of Bus Route 4 -

Potential Localized Flood Vulnerability

Broadway-St NE

Disclaimer

- The world is full of Bluespots
- Just because an asset is located in a Bluespot does not mean it will ever definitively flood
- Reminder:
 - -Use for screening and prioritization, and as *potential* vulnerability
 - -More site-specific analysis should incorporate other data

IMAGE SOURCE: Metro Transit

Next Steps with Transportation & Transit

- Relevant work units to perform more in-depth analysis of high vulnerability system assets
- Go beyond hazard mitigation
- Build equity into policies and strategies
- Consider this data for the next iteration of Thrive MSP 2040

Extreme Heat Land Surface Temperature (LST)

County Boundaries

Lakes and Rivers

Land Surface Temperature (°F)

Value

High : 125.21

Low : 74.17

IMAGE SOURCE: STAR TRIBUNE, DAVID BREWSTER, 2012

Loss of Tree Canopy

Urban Heat Island Effect

Explore the Analysis https://metrocouncil.org/cva

Extreme Heat Map Tool

~

Extreme Heat Story Map

Localized Flood Map Screening Tool

Calming the Storm: Localized Flooding in the Twin Cities Region

Mary Information and an In w P Z

Table of Contents

1. What is this?

2. Introduction: Mapping Locatored Power
Risk

3. Vaneportation & Samell

4. Materopoliteit Council Facilities

5. Wateropoliteit Council Facilities

5. Wateropoliteit Council Facilities

6. Regional Parks & Trais

7. Water Study (Concept Scott)

8. What can communities for?

9. Next Deeps

V/Tuel in: 1995/57

Localized Flooding Story Map

Eric Wojchik Local Planning Assistance 651-602-1330 eric.wojchik@metc.state.mn.us

Emily Resseger Water Resources- EQA 651-602-1033 emily.resseger@metc.state.mn.us

Any Questions?

THANKS!

