Electric Vehicle Planning Study
Overview

- Why electric vehicles?
- Electric vehicle basics
- State of the electric vehicle market today
- Scaling electric vehicles
- Metropolitan Council Electric Vehicle Planning Study
Battery Electric Vehicles (BEVs)

BEVs use a battery to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. Examples of BEVs include the Nissan Leaf, Chevy Bolt, Tesla Model 3, etc...

Plug-In Hybrid Electric Vehicles (PHEV)

PHEVs are powered by an internal combustion engine that can run on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The vehicle can be plugged into an electric power source to charge the battery. Examples of PHEVs include the Mitsubishi Outlander, Chrysler Pacifica Hybrid, and Chevy Volt.

Hybrid Electric Vehicles (HEV)

HEVs are primarily powered by an internal combustion engine that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. Hybrid vehicles do not get plugged into an electric power source for charging and are not a focus of Drive Electric MN. A common example of an HEV is the Toyota Prius.
Benefits of EVs

• Large greenhouse gas emissions reductions.
• Zero tailpipe emissions from BEVs.
• As a result, improved air quality and reduce public health impacts from transportation.
• Helps states meet climate and energy goals.
• Less maintenance and more fuel savings for consumers and fleets.
• Operation: Fun to drive, smooth, no acceleration lag, QUIET.
Total U.S. Greenhouse Gas Emissions by Economic Sector in 2018

- Transportation: 28%
- Industry: 22%
- Electricity: 27%
- Commercial & Residential: 12%
- Agriculture: 10%

Source: Minnesota Pollution Control Agency, https://www.pca.state.mn.us/air/greenhouse-gas-emissions-data
Annual well-to-wheel car emissions by fuel type (12,000 miles compact / midsize car)

Source: Minnesota Pollution Control Agency, https://www.pca.state.mn.us/air/electric-vehicles
GHG Emissions: Gasoline vs. Electric in Minnesota

Source: Great Plains Institute, 2017
Opportunity for Greenhouse Gas Emissions through EV Adoption

<table>
<thead>
<tr>
<th>Electric Grid Mix</th>
<th>% Reduction in Lifecycle GHG Emissions from Gasoline Vehicle</th>
<th># of Electric Vehicles (% of Passenger Fleet)</th>
<th>Annual Reduction (Tons CO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xcel Energy (2025 Mix)</td>
<td>71%</td>
<td>91 thousand (5%)</td>
<td>364 thousand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>274 thousand (15%)</td>
<td>1.1 million</td>
</tr>
<tr>
<td>100% Renewable</td>
<td>95%</td>
<td>91 thousand (5%)</td>
<td>487 thousand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>274 thousand (15%)</td>
<td>1.5 million</td>
</tr>
</tbody>
</table>

Note: Remaining emissions associated with 100% renewable electricity mix are attributable to vehicle development, battery, etc. Analysis assumes average annual VMT of 12k miles per vehicle.
Maintenance Schedule for your
2016 Chevrolet Cruze Limited

| Certified Service | 7,500 miles | 15,000 miles | 22,500 miles | 30,000 miles | 37,500 miles | 45,000 miles | 52,500 miles | 60,000 miles | 67,500 miles | 75,000 miles | 82,500 miles | 90,000 miles | 97,500 miles | 105,000 miles |
|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Rotate tires, if recommended for the vehicle, and perform Required Services. Crack engine oil seal and oil dipstick. Change engine oil and filter, if needed. Replace passenger compartment air filter (or 2 years, whichever comes first). Replace engine air cleaner filter (or every 4 years, whichever occurs first). Replace spark plugs and inspect spark plug wires. Replace spark plugs. Inspect ignition coil boots. (Applies to 1.4L.) Change automatic transmission fluid, if equipped. If filter is serviceable, change filter. (Applies to 7-speed) Change manual transmission fluid. (Applies to: Manual, 7-speed) Drain and fill engine cooling system (or every 5 years, whichever comes first). Change brake fluid (or every 3 years, whichever occurs first). Change clutch fluid (or every 3 years, whichever occurs first). (Applies to: Manual) Inspect evaporative control system. Inspect engine accessory drive belts for fraying, excessive cracks or obvious damage (or every 10 years, whichever occurs first). | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Maintenance Schedule for your
2017 Chevrolet Bolt EV

<table>
<thead>
<tr>
<th>Certified Service</th>
<th>3,000 miles</th>
<th>6,000 miles</th>
<th>9,000 miles</th>
<th>12,000 miles</th>
<th>15,000 miles</th>
<th>18,000 miles</th>
<th>21,000 miles</th>
<th>24,000 miles</th>
<th>27,000 miles</th>
<th>30,000 miles</th>
<th>33,000 miles</th>
<th>36,000 miles</th>
<th>39,000 miles</th>
<th>42,000 miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotate tires, if recommended for the vehicle, and perform Required Services. Replace passenger compartment air filter (or 2 years, whichever comes first). (Applies to 1.4L.) Drain and fill vehicle coolant circuits.</td>
<td>✓</td>
</tr>
</tbody>
</table>

Source: Shift2Electric.com
EV Basics
• Nearly all new BEVs have ranges over 150 miles—suitable for a lot of use cases
 – Use cases: Commuting, Road trips, Car sharing programs, Fleet, Uber/Lyft, others
• Charging: Need to plug in to a charging station or outlet to refuel
 – Level 1: Slowest charge; 120-volt outlet; 2-5 miles of range per hour (24-60 miles of range if plugged in for twelve hours overnight)
 – Level 2: Faster charge; 240-volt outlet; 10-20 miles of range per hour
 – DCFC: Fastest charge, speeds up to 350kW; typically charges vehicle in 30 minutes or less
• Locating public chargers:
 – PlugShare.com
 – All EVs come with technology to locate chargers for that vehicle
EV Basics: Medium & Heavy-Duty

• Technology is still nascent
• Most common use cases today: delivery, transit (including school buses)
• Charging technology:
 – Plug-in: Utilize same plug standards as light-duty
 – Overhead: Typically used to charge buses; can output greater power than plug-in
• Further out: long-range semis, garbage trucks, airplanes
 – Currently in demonstration phase
Medium & heavy-duty options for fleets
State of the EV Market Today
Minnesota EV Registrations & Charging Availability

Charging points

<table>
<thead>
<tr>
<th>Level 2 charger</th>
<th>DC fast charger</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>953</td>
<td>191</td>
<td>1,144</td>
</tr>
</tbody>
</table>

Total vehicles per Level 2 charger

- 20

Total vehicles per DC fast charger

- 98

Vehicles

<table>
<thead>
<tr>
<th>Battery electric vehicles (BEV)</th>
<th>Plug-in hybrid electric vehicles (PHEV)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,184</td>
<td>7,565</td>
<td>18,749</td>
</tr>
</tbody>
</table>

Source: Minnesota Pollution Control Agency, https://www.pca.state.mn.us/air/minnesota-ev-dashboard
Minnesota Charging Corridors

Volkswagen Settlement Phase 2
Aims to fund 39 new charging stations along corridors

Minnesota EV Sales
Big EV Commitments

G.M. Will Sell Only Zero-Emission Vehicles by 2035

The move, one of the most ambitious in the auto industry, is a piece of a broader plan by the company to become carbon neutral by 2040.

Volvo Plans to Sell Only Electric Cars by 2030

The Swedish company would phase out internal combustion engine vehicles faster than other automakers.

Xcel Energy’s new electric vehicle vision to save customers billions while delivering cleaner air

Transitioning 20% of all vehicles to electric by 2030 will reduce carbon emissions and save customers billions in fuel costs

From Amazon To FedEx, The Delivery Truck Is Going Electric

March 17, 2021 - 5:01 AM ET
US Annual EV Sales Forecast, 2020-2040

Actual 2020 EV sales
US: 306 thousand
MN: 3 thousand

Current Automobiles
US: 109 million
MN: 1.8 million

Annual Sales
US: 16.8 million
MN: 250 thousand

Source: GPI Analysis based on EIA AEO 2020
Correlating EV Sales Forecast for MN

Actual 2020 EV sales
US: 306 thousand
MN: 3 thousand

Current Automobiles
US: 109 million
MN: 1.8 million

Annual Sales
US: 16.8 million
MN: 250 thousand

Source: GPI Analysis based on EIA AEO 2020
Correlating EV Sales Forecast for MN

2030:
91 thousand EVs in MN, out of ~2 million automobiles
< 5% of MN fleet

Source: GPI Analysis based on EIA AEO 2020
Scaling EVs—Pillars of Success
Public Policy

• Policies include HOV lane access, EV rebates, low carbon fuel standard, LEV/ZEV, infrastructure rebates and grants, and more

• Minnesota is behind other states when it comes to supportive EV policy
 – Ranked 12th in State Transportation Electrification Scorecard by American Council for an Energy-Efficient Economy. 39.5/100 score.
Vehicle Availability

- MN offers 48 EV models compared to 66 offered in other states
 - 19 are BEV; 29 are PHEV
- Consumers want greater selection (body style, trims, colors)
 - More EVs are coming including trucks, vans, SUVs
 - 8 BEV pickups coming in 2021-2022
 - 24 SUVs coming 2021-2024 (mostly BEVs)
- Fleets need more medium & heavy-duty options
Charging Stations

- Lack of charging in multi-unit dwellings means tenants cannot switch over to EVs
- Correlation has been shown between access to public charging and EV adoption—more public charging stations are needed
- More charging stations provide greater comfort to travelers
Utility EV Programs

- Common programs include deploying charging infrastructure, supporting fleet adoption, specialized EV rates, and educating consumers
- Lower cost for charging reduces fueling cost and encourages shift to EV
EV Ready Cities

- **Policy:** acknowledge EV benefits and support development of charging infrastructure
- **Regulation:** implement development standards and regulations that enable EV use
- **Administration:** create transparent and predictable EV permitting processes
- **Programs:** develop public programs to overcome market barriers
- **Leadership:** demonstrate EV viability in public fleets and facilities
Metropolitan Council EV Planning Study
Study Goals

• Identify strategies to accelerate EV adoption in the Twin Cities as a way to reduce greenhouse gas emissions and improve public health
• Guide future investments, policies, and other work to accelerate EV adoption for the Met Council and partner agencies
• Inform the 2040 Transportation Policy Plan and other investment and policy proposals
• Deliver final products by December 2021
Planned Engagement

• Technical Advisory Committee consisting of industry, NGOs, academia, local government, state agencies, and others
• Fleet managers as part of fleet analysis
• Interviews with equity groups
• Webinar
Planned Outcomes

• EV white paper
 – EV landscape
 – Data analysis on travel patterns, vehicles, streetlight data, public awareness
 – Fleet analysis
• EV use case identification and evaluation
• EV charging needs assessment for Twin Cities
• Identification and recommendation of strategies to help Twin Cities scale EV adoption and improve public health, including an equity analysis
• Summary report and presentation
Questions?