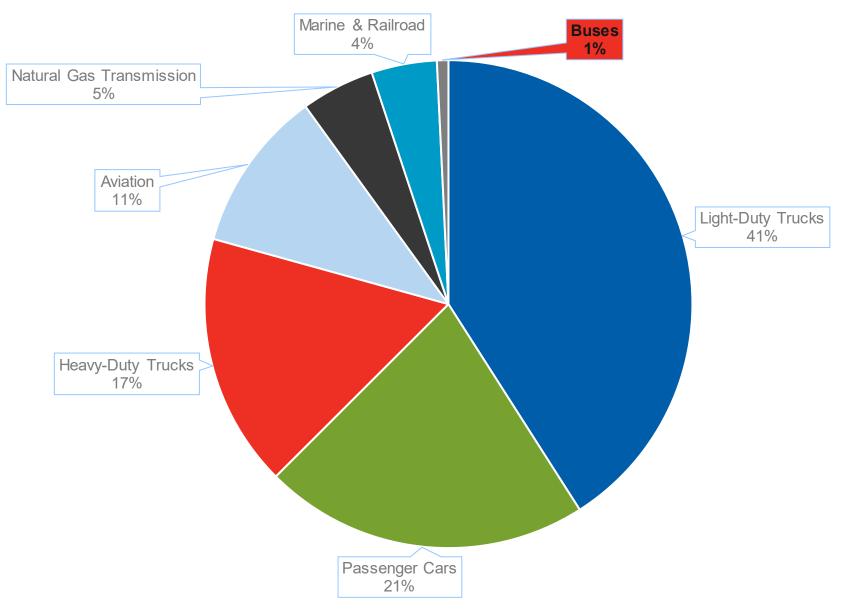
Zero Emission Bus Transition Plan

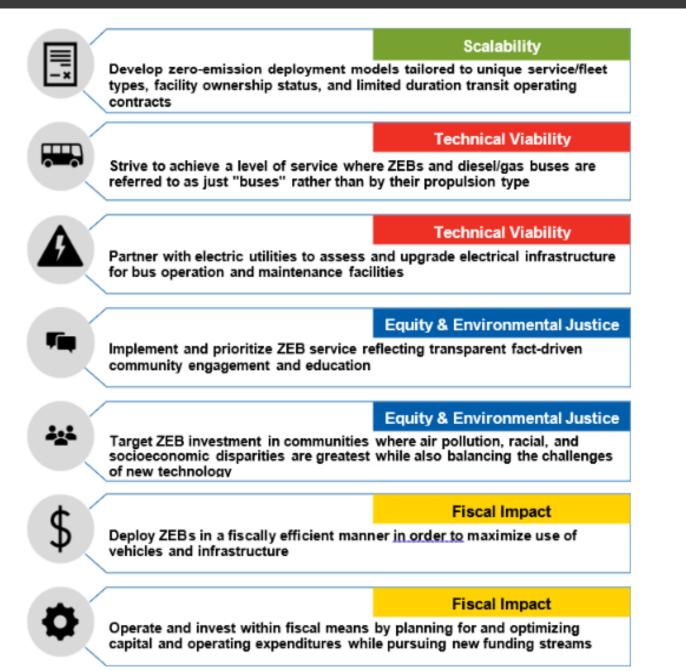
Metropolitan Transportation Services and Suburban Providers

12.12.23.23


Transportation Committee

Minnesota Transportation Emissions

Minnesota Transportation Sector GHG Emissions by Source



Guiding Principles

Zero-Emission Bus Technologies

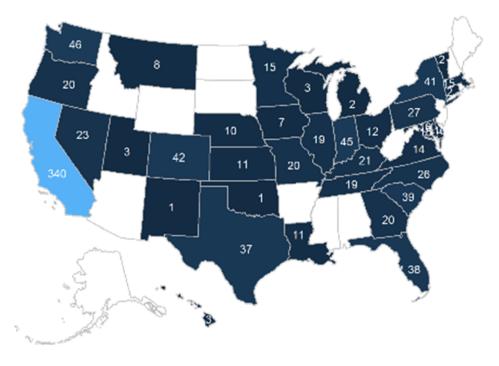
Electric Trolleybus

Fuel Cell Electric Bus (FCEB)

Battery Electric Bus (BEB)

Fixed Route Battery Electric Bus (BEB)

BEBs selected as short-term ZEB propulsion technology for implementation and deployment


Advantages

- Less expensive than Fuel Cell Electric Buses
- Charging infrastructure can be flexibly installed at a variety of locations either along a bus route or at a garage

Current Limitations

- Limited usable range (likely <150 miles on a single charge) influenced by battery capacities, challenging climates, and topographies
- Up to multi-hour charging times
- Major facility and operational changes often required


2021 NTD BEB Distribution (Active Fleet)

Nearly 1,000 BEBs available to operate in revenue service across 37 states

Service Evaluation: Fixed Route

Block-level BEB prioritization methodology

• Analysis used August 2022 service schedules

Findings: Fixed Route Service

Preliminary Results – Technical Viability

- 46% of all MTS & STP August 2022 blocks are technically viable
- Equity and Environmental Justice factors assigned priority levels
- Fiscal impact evaluation assures responsible investment of resources

ltem	TOTAL	MTS	Μντα	SWT	Plymouth	Maple Grove
Number of Technically Viable Blocks	206	27	116	18	24	21
Number of Priority 1 Blocks	27	2	18	0	7	0
Number of Priority 2 Blocks	59	5	39	6	8	1
Publicly Owned Facilities		No	Yes	Yes	No	Yes*

Demand Response Battery Electric Vehicles

Nationwide Active Fleet Summary

Agency	Vehicle Type	# of Electric Vehicles
City of South Pasadena (South Pasadena, CA)	*Cutaway	1
L.A. Metro (Los Angeles, CA)	Van	15
City of Porterville (Porterville, CA)	Van	12
Antelope Valley Transit Authority (North Los Angeles Co, CA)	Van	8
San Diego Association of Governments (San Diego, CA)	Van	4
Jaunt, Inc. (Charlottesville, VA)	Van	1

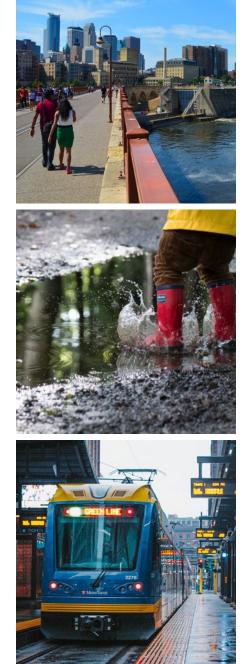
* >40,000 reported to National Transit Database in 2021

Findings: Demand Response Service

- Existing 60-mile bus range limits technical viability
- MTS would need to operate 2,354 electric vehicles to provide the existing level of Metro Mobility and Transit Link service.

*Vehicle Type (Metro Mobility)	Current Fleet	Estimated Electric Fleet	Difference from Existing Fleet
Cutaway (20-29 Foot)	599	2,032	+1,433
SUVs	31	42	+11
Vans	0	-	-

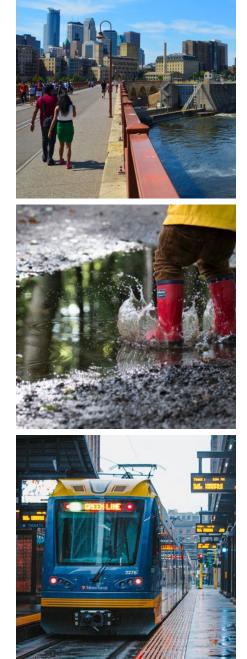
Vehicle Type (Transit Link)	Current Fleet	Estimated Electric Fleet	Difference From Existing Fleet
Cutaway (20-29 Foot)	80	280	+200
SUVs	0	-	-
Vans	0	-	-



Metropolita ounci

Contracted Service Challenges

- Contracts with service providers range from 3-6 years
- In order to electrify, the Council/Suburban Providers need to own garages or utilize long-term leases
- Operator shortages no current ability to operate a larger fleet
- Production and supply chain constraints
- Speed of innovation
- Electrical grid capacity


Near-term Opportunities

Fixed Route

- For Council service, fixed route should focus on Metro Transit.
- For other MTS Fleet, focus on suburban providers that own their facilities and where service is appropriate.
 - SWT to implement current grant-funded electrification.
 - MVTA to pursue discretionary grants to fund electrification.

Monitor evolution of small bus market electrification

- Current cutaway BEB technology does not support required vehicle range
- Demonstration efforts underway
- Five-year bus replacement cycle allows for short transition period.
- MTS conduct feasibility of garage ownership or long-term leasing to allow for public electrification investment.

etropolitan Council

 \leq

Paul Colton

Fleet Manager Metropolitan Transportation Serviced

