

Project
Overview

Intersection Mobility and Safety Study

Study Background

- Analyze before-and-after conditions of previous projects
- Prioritize intersections (high, medium, low - similar to the 2017 Principal Arterial Intersection Conversion Study)
- Use this information to influence project scoping in the short term, and long-range investment planning
- Identify regional priorities for the 2050 Transportation Policy Plan (TPP) and Regional Solicitation

Study Locations

- The Intersection Mobility and Safety Study focused on principal arterials with at-grade intersections (i.e., excluded freeways like I-94 and I-35).
- While planning studies should occur at corridor level, projects are often delivered at the intersection-level due to a lack of funding and other constraints.
- MnDOT has focused more on preservation over the past 15 years so activities such as planning studies, funding pursuits, and even
 construction has been completed on major MnDOT intersections by cities and counties. (often with partial funding through the Regional Solicitation).

Reference Layers
~Principal Arterials Minor Aterials
TVivers and Major Lakes
[0unty Boundaries
City Boundaries

- MUSA 2040 MPO Area

Why prioritize intersections?

Intersections are a Core Focus Area in MnDOT's

2020-2024 Strategic Highway Safety Plan with 58% of the fatal and serious injury crashes occurring at intersections from 2018-2022 (on all Twin Cities roadways compared to 47% statewide).

Pedestrian safety is listed as an emerging priority.

Before-and-After Analysis

Project: Highway 169 and Highway 41 Interchange:

- Converted a traffic signal to an interchange, including new frontage roads, south of Shakopee in Scott County.
- Construction was completed in 2020.
- Project funded, in part, through the Regional Solicitation.
- Annual benefits: Achieved a $3: 1$ ratio of safety to mobility benefits
- $\$ 5.4$ million in annual crash cost savings
- $\$ 1.8$ million in annual travel time savings
- Recently completed projects show high effectiveness in improving travel times, reliability, and safety performance, as well as building out missing multimodal elements in the project areas and increasing ADA compliance.

Needs

Summary and Tiering

Performance Measures

MOBILITY

Total Intersection Delay

Peak Period Delay

CrossStreet Delay

Transit Passenger Delay

Daily personhours on buses passing through intersection
Daily personhours for all approaches

Person-hours for worst approach and worst peak

Daily personhours for cross street approaches

SAFETY

Rate of fatal+serious injury crashes over 5 years per MEV

Total dollar value over 5 years

MULTIMODAL \& EQUITY

Severe Crash Rate		Rate of fatal+serious injury crashes over 5 years per MEV
Total Crash Cost	$\frac{5}{5+\infty}$	Total dollar value over 5 years

Map of Tiering Results

- Total of 518 intersections analyzed in study
- Intersections by tier:
- High: 89
- Medium: 117
- Low: 312

Top Scoring Locations

Rank	Location
$\mathbf{1}$	6TH AVE N \& HIGHWAY 55 \& LYNDALE AVE N
$\mathbf{2}$	HWY 51 \& CR B
3	CSAH 23 (CEDAR AVE) \& CSAH 42
4	HIGHWAY 55 \& PENN AVE N
5	46TH ST E \& HIAWATHA AVE
6	TH 252 \& 85TH AVE
7	HIGHWAY 55 \& LYNDALE AVE N
8	TH 65 NE \& OSBORNE RD
9	TH 252 \& 66TH AVE
10	CSAH 42 \& CSAH 5
11	CSAH 23 (CEDAR AVE) \& 140TH ST
12	$38 T H$ ST E \& HIAWATHA AVE
13	35TH ST E \& HIAWATHA AVE
14	TH 65 \& 93RD LN
15	FERRY ST N \& FERRY ST S \& MAIN ST W
16	CEDAR AVE \& 160TH ST
17	HIGHWAY 101 \& DIAMOND LAKE RD S
18	TH 13 \& NICOLLET AVE
19	HIGHWAY 169 \& DAYTON RD
20	CSAH 42 \& NICOLLET AVE

Corridor Sections

Corridor Section	Total
CSAH 42 and Cedar Ave - Apple Valley	8
CSAH 42 Burnsville	10
Elk River Redefine 169	5
Highway 10 Anoka and Ramsey	8
Highway 169 - Champlin	8
TH 13 Savage and Burnsville	6
TH 252	13
TH 55 Hiawatha	8
TH 55 Plymouth	2
TH 61 at Burns and Warner	13
TH 65 - CR 10 to Bunker Lake Blvd	4
TH 7 St. Louis Park	3
TH 36 Oak Park Heights	7
TH 55 Golden Valley	7
TH 55 Olson Memorial	8
TH 65 - I-694 to CR 10	

Findings and Conclusions

- Approximately 90 intersections in the region with High Priority needs where an investment of $\$ 22 \mathrm{M}$ or more could be cost effective
- An additional 115 locations are Medium Priority where needs suggest substantial investment (\$11M-\$22M) could be cost effective
- Majority of high-need intersections in corridors with several high-need locations
- Many of these have been studied or are advancing through project development
- Corridor-level solutions may be more effective than isolated improvements
- Remaining stand-alone locations are also critical to fill gaps in the regional highway system
- Recently completed projects show high effectiveness in improving mobility and safety performance, as well as building out multimodal elements such as trails.

Implementation
 \& Next Steps

Implementation Plans One Pagers

2050 TPP

- All high priority locations will be included in the 2050 TPP as "project opportunities" (consistent with similar studies)
- Within high regional priority corridors, several locations that have completed planning work and are also local priorities for grade separations:
- Highway 13
- Highway 65
- Highway 36 and Highway 120
- Highway 5 and Hennepin CSAH 4
- High priority corridors that have not had a corridor study in the last decade should be prioritized for future study given their high needs

Reference Layers

Questions?

Website:

https://metrocouncil.org/Transportation/System/Highways/ Studies/Intersection-Mobility-and-Safety-Study.aspx

Steve Peterson, Senior Manager of Highway Planning steven.peterson@metc.state.mn.us, 651-602-1819

Michael Corbett, Area Engineer
michael.i.corbett@state.mn.us, 651-234-7793

Paul Morris, Policy \& System Studies Director pmorris@srfconsulting.com, 763-452-4773

Top 20 Intersections Overall Score

Top 20 Intersections Total Delay

Top 20 Intersections Peak Period Delay

Top 20 Intersections Cross Street Delay

Top 20 Intersections Transit Passenger Delay

Top 20 Intersections Total Crash Cost

Top 20 Intersections Severe Crash Rate

Top 20 Intersections SPACE Score

SPACE Analysis Process

- SPACE estimates latent demand for all modes of Active Transportation
- Spatially assigned using hexagons approximately $1 / 2$-mile across
- IMSS intersections were assigned a SPACE score of hexagon it is located within

SPACE Score Definition

Suitability of the Pedestrian and Cyclist Environment (SPACE) SPACE Score: 19 Factors are aggregated to an overall SPACE score on a 0-100 scale

```
Percent of population AGE 5-17 > average
Percent of population AGE 65+ > average
Percent of population FOREIGN BORN > average
Percent of population NATIVE AMERICAN > average
Percent of population with DISABILITY > average
"Area of concern" by MPCA ENVIRONMENTAL JUSTICE
UNEMPLOYMENT rate \geq average
Percent of population in POVERTY IN URBAN area }\geq25
```

Percent of workers COMMUTING 15 MIN or less > average
Percent of workers COMMUTING BY TRANSIT > 0\%
Percent of workers COMMUTING BY WALKING > 0\%
Percent of workers COMMUTING BY BICYCLE > 0%
Percent of workers with NO ACCESS TO A VEHICLE > 0\%
$\geq 25 \%$ population within half-mile of SUPERMARKET
Within 1-mile of K -12 SCHOOL
Within 500 feet of BUS STOP
Within an URBAN area

