SOUTHWEST METRO SUBREGIONAL WATER SUPPLY PLANNING CONSIDERATIONS

A CHAPTER OF THE METRO AREA WATER SUPPLY PLAN

SECOND DRAFT – MARCH 2024
Table of Contents

Water supply planning context and current conditions ... 3
Definition of success for water supply planning in the southwest metro 3
Issues and opportunities .. 4
Prioritized focus areas and draft action plan ... 6
 Partnerships ... 7
 Education and engagement .. 8
 Evaluating and managing water supply system capacity ... 9
 Efficiency ... 9
 Plan alignment ... 10
 Actions to support success ... 12
Appendix A: Subregional engagement process .. 16
 Scoping and gaging local support ... 16
 Core team of local stakeholders to customize engagement for the Southwest subregion 16
 Subregional engagement: Workshops ... 16
 Workshop photos ... 18
Glossary and Initialisms .. 21
Water supply planning context and current conditions

Everything that happens on land impacts water, and water is all connected.

With the region as a whole expected to grow by more than 650,000 people between 2020 and 2050, the Southwest Metro will see growth. Preliminary estimates, which are being evaluated with community input through spring of 2024, suggest that approximately 84,000 more people, 43,000 more households, and 53,000 new jobs will be added to the area by 2050 compared to 2020.

Quality and quantity challenges already exist. See the Southwest chapter of the Water Supply Planning Atlas for examples.

Additionally, climate change serves as a risk multiplier, amplifying the impacts that drought and flooding can have on water supply.

In the southwest metro, collaboration on water supply planning is important because:

- Water is medicine, water is food, water is survival (FROM SMSC INTERVIEWS).
- Municipalities and rural landowners all rely on sufficient, reliable, and safe water supply for health and prosperity – now and for future generations.
- Safe water supply is also necessary to the function of unique community ecosystems in the southwest metro, like Boiling Springs and the Savage Fen.

The wide range of work already being done at the local level across the southwest metro can benefit from up-to-date and easily available information. Better collaboration also ensures that agencies’ water planning efforts are not siloed or duplicative and take into consideration cumulative impacts.

Definition of success for water supply planning in the southwest metro

Water supply planning for the southwest metro is successful if it achieves the shared goal of sustainable water supplies.

The southwest metro will have a sustainable water supply when:

- All the voices are heard as community plans are made and implemented – so that the full range of diverse water supply needs are met. For example, tribes are affected by all decisions. Always have tribes at the table for planning and public comment.
- High-value water resources are protected from impacts of groundwater withdrawals and contamination (examples: Boiling Springs, Savage Fen, wetlands that support wild rice, and others).
- Community planners know what water supply capacity exists to support growth and related water demand, including information about water supply quality threats and projects for the future.
- Growth is supported by investments in efficient expansion within capacity limits and that don’t reduce funding to preserve existing infrastructure.
- Water supplies (sources and infrastructure) are resilient to unknown impacts. For example, climate change affects the variability of climate – greater extremes of hot/cold, wet/dry weather.
Success is an accepted water budget to account for and manage supply/demand. Individual cities may have this data, but do they share/cooperate with neighbors?

- Continued clean and plentiful water for communities and visitors.
- Aquifers recharge and replenish supplies faster than withdrawn.

To successfully achieve a sustainable water supply for the southwest metro:

- Again, all the voices are heard as community plans are made and implemented – so that the full range of diverse water supply needs are met. For example, tribes are affected by all decisions. Always have tribes at the table for planning and public comment.
- Tools and data are available (like monitoring networks and models), and people are confident in the information they provide.
- Local water plan objectives and implementation strategies are aligned (ex: stormwater versus wellhead protection), and neighbors are aware of each other's plans and those plans are compatible.
- Policies and organizational cultures support public water suppliers and communities to collaborate and share resources.
- There must be strong public support for sustainable water supplies, based on everyone's (private well owners’ and municipal customers’) understanding of where their water comes from and goes and on its connection to food and other community needs. The information should be presented in an easy-to-read format for the public (6th grade level).
- Wasteful and harmful water uses are reduced.
- Communities, specifically the SMSC, have the ability to self-govern.
- Plans extend for 7 generations (~150 years)
- Climate variability is considered when permitting.
- Water rates reflect the true value of the resource.
- Brown water used for industrial purposes wherever possible and released cleaner than it started.
- Water regulations governing conservation and efficiency measures, water allocation priorities during emergency, water quality and source water protection, are enforced.

Issues and opportunities
Achieving the identified success will require addressing barriers as well as advancing opportunities across the full water supply picture.

Several issues and barriers make planning for a sustainable water supply challenging in the southwest metro. These include:
• There is still uncertainty and gaps in information for factors like climate, geology in buried bedrock valleys, emerging contaminants, gaps in monitoring networks that don’t effectively guide decision-making for resources like Savage Fen, Eagle Creek, and Boiling Springs, etc.

• There is an ongoing need to address large water supply users, including commercial pumping interests – both those who have been in the area a long time and new large water users who are looking to move to the area (examples: agricultural irrigators, bottled water businesses).

• The current business model for water supply service is broken; it isn’t equipped to handle current and emerging water supply challenges and solutions. For example: water supply and wastewater are disconnected.

• Agency and legislative work is needed to reduce siloed decision-making, address regulatory barriers to new approaches, and support communities’ abilities to enact local controls that support sustainable water supplies.

• Ongoing resources (money, staff) needed for this work at the state, regional and local levels for efforts like shifting to more ambitious water efficiency and getting local information back from planning processes.

• Rural private domestic well owners need more support to ensure safe and adequate supplies.

• Current and future land uses are associated with increased water use and water quality risks. This includes urban and suburban growth, agricultural irrigation and fertilizer, manufacturing, and industry (examples: Amazon, Shutterfly, and others near Minnesota River). In some cases, contaminants may be present and released without regulation.

• Lakes, rivers, and groundwater are connected and impacted by industrial, power plant, and mining use.

• Multi-year droughts like we are currently experiencing continue to put demand on water supplies.

Many things are already in place and working well for water supply planning and plan implementation in the southwest metro. These programs, practices and other strategies should continue to be supported and improved upon. Examples include:

• Where data and tools are available, they add good value. This includes existing groundwater and surface water monitoring networks (sites and data infrastructure), regional groundwater model information, and forecasts of groundwater levels for presentations.

• Existing collaboration is working well. Examples include agreements in place among agencies and communities, work group meetings, regional water policy and technical committees, and communities cooperating on projects and sharing resources and water.

• Sustainable water projects and programs are successful. Examples include projects that optimize pumping to manage aquifer drawdown, reuse water for irrigation, install more efficient fixtures and lead detection, and improves water quality through prairie restoration.

• Connections between local/subregional/regional planning that had led to grants and funding and partnerships.
Communities and their neighbors in the southwest metro have well trained staff and state of the art infrastructure.

Currently, many communities (such as the Shakopee Mdewakanton Sioux Community) are independently able to provide safe, clean water.

Where employee retention is strong (such as the Shakopee Mdewakanton Sioux Community) it helps with community water values adoption.

Additional work is also needed, particularly to address the issues and barriers discussed above. Examples:

- Gaps in data need to be filled, particularly for domestic residential wells and for unique resources like Savage Fen, Eagle Creek, and Boiling Springs.
- Partnerships between local water supply leaders and state organizations like Clean Water Council and DEED should be strengthened and leveraged.
- Collaboration on regional model updates and outreach should start up again and be continuously supported.
- Water planning and management should be approached from an aquifer scale. Policy is needed to protect surface water and groundwater. Regional water policy and technical committees should focus more on water supply and hydrology challenges.
- Support better approaches to water appropriation permitting. For example: allow better matches between source water quality to water use, and consider cumulative impacts.
- Strengthen local planning and local plan implementation tools, to link energy and water planning and support more sustainable water conservation/efficiency practices (including at HOAs, for example).
- More information is needed about what is the most sustainable way to treat, produce, and distribute water.
- Communities in the southwest metro should communicate with SMSC and hire native staff.
- Improve the feasibility/business case of using reclaimed wastewater.

Prioritized focus areas and draft action plan

To achieve the shared description of water supply planning success in the southwest metro by 2050, considering the known issues and opportunities, work should be focused in six general areas: partnerships, education, and engagement, enhancing data and tools, evaluating and managing water supply system capacity, efficiency, and plan alignment.

These subregionally-identified focus areas also relate to the Metro Area Water Supply Advisory Committee’s proposed framework to achieve progress on regional goals.

Figure 1. The framework for action to achieve MAWSAC goals includes four general steps. Southwest metro focus areas generally fall across the framework steps.
Partnerships

If work focusing on partnerships is successful, in 10-years’ time there will be ongoing regional communication and cooperation among the communities of the southwest metro. No community in the southwest metro will be an outlier in terms of their approach to water conservation or water supply planning. Water supply planning and conservation efforts will be coordinated and tap into the knowledge and experience of the indigenous community.

Some barriers that may need resources in order to address them include:

- Cities shy away from Met Council trying to regionalize water supply, but there may be value to that
- Political will/desire
- Perceived loss of control – what if partnerships fail?
- Needs to be a reason for the partnership (mandated?)
- There has to be value in the partnership
- Punishes growing communities
- Know the true value of water – building up a “war chest” of funding does not work
- Tiered rates theoretically address this (value of water)
- Metro Cities Board involvement
- Western education isn’t hands on or conversational; should tap into native people as educators who know history from a young age; they may lack academic credentials but will share personal knowledge

Several entities will have roles to play in this work:

- All water users (residents, HOAs, industrial, recreation)
- Growing communities may be unfairly impacted
- Metro Cities Board
• Metropolitan Council can continue to support water efficiency grant program
• Can the Metropolitan Council directly administer the water efficiency grant program?

Education and engagement
If work focusing on education and engagement is successful, new water supply management-related technology will be understood and wanted – trusted – by citizens and their local governments. This work will tap into the knowledge and experience of the indigenous community.

In 10-years’ time, government staff and citizens should have access to and take part in more water supply education. Educational resources should tap into real world metro region examples (like White Bear Lake) and should start young. This will lead to changing expectations and habits.

Some barriers that may need resources in order to address them include:

• Groundwater is hard to visualize
• Water use for commercial profit
• Not enough commonly available educational resources
• No formal education requirements regarding groundwater
• Need for materials
• Publicly available information about water quality
• The development of predictive water models

Some barriers that may need resources in order to address them include:

• The Minnesota legislature often opposes [funding requests for] monitoring. How to provide political cover for legislators, Council members?
• Agricultural lobbyists (corn, soy, irrigators associations) may oppose
• Staffing levels, attrition, and lost knowledge
• Funding limitations for:
 o Drilling monitoring wells, upgrading to telemetry, auto data loggers
 o Staffing
 o Continuing ongoing work
 o Modeling; more data is needed on the purpose of models (inputs)

Several entities will have roles to play in this work:

• DNR Eco Waters will need to ensure staffing is available [to install and maintain monitoring stations and collect, analyze, and provide access to data].
• High-level decision makers and the science community
• Water supply system operators will be interested
• The general public needs to be able to trust the data
• High water-use businesses and industries
• Metropolitan Council should continue to contract for good groundwater models

Evaluating and managing water supply system capacity
If work focusing on evaluating and managing water supply system capacity is successful, in 10-years’ time:

• Consensus among LGUs in the county as to what our system capacity is
• Reduced consumption
• Reuse (stormwater is the most practical)
• Recharge
• Plain language communication
• Smart salting to reduce chloride levels in water for future reuse

Some barriers that may need resources in order to address them include:

• Lack of information specific to the county leading to lack of consensus
• Hydrogeology is more of an art form, less linear
• Inconsistent enforcement of regulation
• Ability to get data from private wells
• Available supply
• Supply needs differ from city to city: growing versus build-out, redevelopment. Where there are differences, how do we explain that locally?

Several entities will have roles to play in this work:

• Everyone “sorry!”
• Property owners, regarding lawn irrigation

Efficiency
If work focusing on efficiency is successful, public water supply systems will see fewer extremes between winter and summer use because of a change in the perception of traditional green lawn being better than other ecological landscapes.

In 10-years’ time,

• Building and development codes are designed to prioritize efficiency rather than just allow or permit.
• Better yard and lawn management is widespread (smart irrigation controllers).
• It’s easy for landowners to take advantage of funding and technical resources.
• There is increased reuse.
• Prairie and natural areas are restored and protected.
• Conservation measures are promoted, specifically measures to curtail summer demands. How can we make a bigger dent on reduction and by approaching larger water users to look at reuse potential, etc.?
• Develop a program to approach homeowners associations (HOAs) and commercial property owners and look at their irrigation demands. This might make a bigger dent as we have more control versus individual users.

Some barriers that may need resources in order to address them include:

• Technology needs to be affordable for all users and dependable so the public has trust in it
• Efficiency programs are scattered and constantly changing
• Current ordinances, building codes and lack of requirement at the LGU level
• Need to be able to retrofit on a large scale – access to reuse facilities – not just new development
• Conservation may encourage additional use elsewhere

Several entities will have roles to play in this work:

• Producers who depend on rates
• Local leaders
• Elected officials

Plan alignment
If work focusing on plan alignment is successful, in 10-years’ time:

• Useful plans
• Comprehensive plans that are approved or accepted across state agencies especially for grants and funding such as city local water plans (submitted to Met Council and DNR) being accepted by BWSR for Clean Water Fund Grants.
• Prairie and natural areas are restored and protected

Some barriers that may need resources in order to address them include:

• Public culture and expectations
• Multiple regulations and agencies’ barriers to reuse (irrigation, stormwater management)
• Contaminants of emerging concern (CECs)
• Accommodate infiltration/flood protection land use needs

Several entities will have roles to play in this work:

• Cities
• Counties
- Watersheds
- Homeowners Associations (HOAs)
Actions to support success
The following pages reflect an action plan drafted by participants in a subregional water supply planning workshop series (Appendix A). It is possible and expected that actions not reflected here may emerge as important steps needed to be taken in subsequent years. This list, therefore, is a reflection of what was being considered in late 2023. They have been organized according to the Metro Area Water Supply Advisory Committee’s 2022 proposed framework to achieve progress on regional goals.

Table 1. Subregional water supply stakeholders proposed several actions to work on over the next 10 years (and in some cases, 25 years) to set the subregion up for long-term success in the priority focus areas discussed in this chapter. The action plan includes possible roles for leads, Met Council, subregional groups, and local entities. This action plan is intended as a high-level, long-term, collaborative planning tool. The details may change as collaboration gets underway and on resource availability.

<table>
<thead>
<tr>
<th>ACTION</th>
<th>RELATED FOCUS AREAS</th>
<th>10-YEAR PLAN</th>
<th>25-YEAR PLAN</th>
<th>PROPOSED ROLES (DRAFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2025-2030</td>
<td>2030-2035</td>
<td>2035-2040</td>
</tr>
<tr>
<td>COLLABORATION AND CAPACITY BUILDING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reach out more to the indigenous community – human connection is important and relevant</td>
<td>All</td>
<td>Municipalities</td>
<td>Reach out</td>
<td>Reach out</td>
</tr>
<tr>
<td>Scope actions by thinking more broadly by aquifer as opposed to political boundaries</td>
<td>Partnerships</td>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update and/or develop new agreements for coordinated water supply planning and implementation</td>
<td>Partnerships, Plan Alignment</td>
<td>Regional users</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop and use coordinated tools for tracking water supply planning and implementation partnerships</td>
<td>Partnerships</td>
<td>Metropolitan Council</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create educational and training materials that can be adapted for various communities, audiences</td>
<td>Education/Engagement</td>
<td>Met Council, indigenous communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide local public education opportunities to understand, support, and implement water management technologies</td>
<td>Education/Engagement</td>
<td>MDH, DNR, MGS, indigenous communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaborate (workshops, meetings?) to agree on and communicate about what data is needed and what is useful for water supply-related planning and implementation</td>
<td>Data and Tools, Education/Engagement</td>
<td>Water providers, regulators, indigenous communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create a change in social norms that extreme weather is the new normal within a year; Met Council policy needs to incorporate this</td>
<td>Education/engagement, Plan Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build up state-level capacity to enforce water quality regulations</td>
<td>MDA, MPCA, DNR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM ASSESSMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establish a data portal, such as the MN Geospatial Commons and/or a cooperative groundwater monitoring website, to consolidate data and information in a clearinghouse or data repository</td>
<td>Data and Tools, Education/Engagement</td>
<td>DNR, MDH, MGS, USGS, other agencies working together</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submit required information into one location and government, so agencies are able to spit out what they need or reduce duplicative work</td>
<td>Data and Tools, Partnerships</td>
<td>Agencies, locals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secure funding and technical support for studies and reports, including funding drilling monitoring wells, staffing, upgrading telemetry/data loggers, modeling</td>
<td>Data and Tools</td>
<td>Continue to contract for good groundwater models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTION</td>
<td>RELATED FOCUS AREAS</td>
<td>10-YEAR PLAN</td>
<td>25-YEAR PLAN</td>
<td>PROPOSED ROLES (DRAFT)</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2025-2030</td>
<td>2030-2035</td>
<td>2035-2040</td>
</tr>
<tr>
<td>Improve large-scale groundwater modeling to help systems understand supply</td>
<td>Data and Tools</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Drill monitoring wells to fill gaps where information is needed and useful (including at unique features like fens, springs, and trout streams)</td>
<td>Data and Tools</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Develop and implement data standards to connect monitoring datasets to support a total water balance analysis (stream, lake, groundwater, weather)</td>
<td>Data and Tools</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Maintain or increase Met Council monitoring program (and fix billing issues)</td>
<td>Data and tools</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Evaluate monitoring data to ensure its credibility</td>
<td>Data and Tools</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Work with Met Council and MDH to better understand arsenic contamination</td>
<td>Data and Tools</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Update the Scott County geologic atlas</td>
<td>Water System Capacity</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work to leverage and make funds available to make necessary upgrades and improvements to systems, including lead replacement</td>
<td>Water System Capacity</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MITIGATION MEASURE EVALUATION

<table>
<thead>
<tr>
<th>ACTION</th>
<th>RELATED FOCUS AREAS</th>
<th>10-YEAR PLAN</th>
<th>25-YEAR PLAN</th>
<th>PROPOSED ROLES (DRAFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2025-2030</td>
<td>2030-2035</td>
<td>2035-2040</td>
</tr>
<tr>
<td>Research the connection of wastewater treatment plant discharge versus aquifer recharge</td>
<td>Water System Capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLANNING AND IMPLEMENTATION

<table>
<thead>
<tr>
<th>ACTION</th>
<th>RELATED FOCUS AREAS</th>
<th>10-YEAR PLAN</th>
<th>25-YEAR PLAN</th>
<th>PROPOSED ROLES (DRAFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2025-2030</td>
<td>2030-2035</td>
<td>2035-2040</td>
</tr>
<tr>
<td>Extend plans to 7 generations (~150 years)</td>
<td>Plan Alignment, Water System Capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify stable funding for long-term planning and implementation, create more mechanisms for proactive versus reactive funding</td>
<td>Water System Capacity</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update the Scott County Groundwater Plan to leverage resources</td>
<td>Water System Capacity</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support grant funding for and local implementation of water efficiency programs, especially for cities and counties to replace turf with prairie/native plants</td>
<td>Efficiency, Partnerships</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support building and development codes that prioritize water efficiency, such as ordinances to permit stormwater reuse for irrigation</td>
<td>Efficiency, Partnerships</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update plans for developing fringe areas taking into account water supply as much as land use (and not just structural systems)</td>
<td>Efficiency, Partnerships, Plan Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTION</td>
<td>RELATED FOCUS AREAS</td>
<td>10-YEAR PLAN</td>
<td>25-YEAR PLAN</td>
<td>PROPOSED ROLES (DRAFT)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Update plans for developing fringe/urban expansion in a way that regional stormwater reuse is planned and developed just before/ahead of land use development</td>
<td>Efficiency, Partnerships, Plan Alignment</td>
<td></td>
<td></td>
<td>LGUs and Townships and Cities and maybe County and WD/WMOs</td>
</tr>
<tr>
<td>Continue work between agencies to streamline plans</td>
<td>Collaboration</td>
<td></td>
<td></td>
<td>Met Council</td>
</tr>
<tr>
<td>Collaborate with wellhead protection plans</td>
<td>Collaboration</td>
<td></td>
<td></td>
<td>Counties</td>
</tr>
<tr>
<td>Align plans and messaging around water conservation</td>
<td>Efficiency, Plan Alignment</td>
<td></td>
<td></td>
<td>Communities, public</td>
</tr>
<tr>
<td>Collect data that supports issue of plan alignment</td>
<td>Plan Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address land use practices and PONDS to restore and protect prairie and natural areas and water supply sources</td>
<td>Plan Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deal with PFAS in a coordinated way</td>
<td>Plan Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify and implement changes to water plans and agency funding sources to allow plans to be accepted by multiple agencies for funding</td>
<td>Plan Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement high water use industry zones near wastewater treatment plants to create water reuse loops at the industrial scales during the 2050 comprehensive plan process</td>
<td>Water System Capacity, Efficiency, Plan Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase regional water supply and quality management at the regional/aquifer level, not as a "pipe system" but as a cycle/framework</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan for need to upsize current water treatment plants by identifying costs required to upsize to handle emerging contaminants</td>
<td>Water System Capacity</td>
<td></td>
<td></td>
<td>MDH and suppliers</td>
</tr>
<tr>
<td>Where feasible, implement a water reuse system as a demo project in a city(ies) in the subregion and provide information and education as a case study.</td>
<td></td>
<td></td>
<td></td>
<td>Local</td>
</tr>
<tr>
<td>Promote natural/alternative drought resistant lawns through education and outreach in partnership with the University of Minnesota. Include information on how much water lawns need.</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Work to make implementing stormwater reuse for irrigating a viable option. Continue to promote rain barrels to the public for irrigation purposes.</td>
<td></td>
<td>x</td>
<td></td>
<td>Watershed districts</td>
</tr>
<tr>
<td>Implement high water use industry zones near wastewater treatment plants to create water reuse loops at the industrial scales during the 2050 comprehensive plan process.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create and implement model ordinances to permit stormwater reuse for irrigation</td>
<td></td>
<td>x</td>
<td></td>
<td>Local water suppliers</td>
</tr>
<tr>
<td>Implement ordinances for common sense outdoor water use (ex. No water between 10 am - 6 pm).</td>
<td></td>
<td>x</td>
<td></td>
<td>Local water suppliers</td>
</tr>
<tr>
<td>Construction/storage of surface water withdrawal systems to protect groundwater use</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>ACTION</td>
<td>RELATED FOCUS AREAS</td>
<td>10-YEAR PLAN</td>
<td>25-YEAR PLAN</td>
<td>PROPOSED ROLES (DRAFT)</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Promote and implement actions to further protect water supply from</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>runoff, including working with watershed districts, developers, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>state agencies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide education about contaminants of concern by geographic</td>
<td>x</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>location, with action steps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinate with area labs to inventory the different analyses</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>available at each and make it easier to pickup/drop-off water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>samples.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct a technical review of biosolid applications and impacts to</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>groundwater.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop regional low-salt design guidance (less chloride, de-icing)</td>
<td>x</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide guidance on treatment design/development for emerging</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contaminants such as PFAS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Local water suppliers
Met Council, local governments, MDH
Met Council with local support from cities
Met Council, MPCA
Alternatives for biosolids
Met Council, MPCA
Low-salt designs
MDA, MPCA
Appendix A: Subregional engagement process

Scoping and gaging local support
MAWSAC, in the 2022 report to the Council and MN Legislature, recommended updating the 2050 regional development guide and related policy and system plans (which connect to the master water supply plan) to support MAWSAC goals, customized for subregional and local conditions. The committee also recommended taking a new subregional approach that leverages subregional water supply working groups to inform regional and local policy and plan updates.

On July 19th and September 8th, 2022, the Metro Area Water Supply Advisory (MAWSAC) and their Technical Advisory Committee (TAC) discussed an approach to subregional engagement and potential content for subregional chapters in the updated Metro Area Water Supply Plan. Meeting materials document those discussions and are available on the Council’s website:

- July 19, 2022 MAWSAC meeting (agenda, presentation, handout, minutes)
- September 8, 2022 TAC meeting (agenda, presentation, handout, minutes)

On March 15, 2023, Metropolitan Council hosted a workshop for all the metro region’s subregional work group participants. Four people from the southwest metro attended. The proposed approach for subregional engagement was presented, and workshop participants expressed support for it and shared some water supply priorities in their areas. A summary about the workshop was shared with MAWSAC at their May 9, 2023 meeting and is available on the Council’s website (presentation, summary).

Core team of local stakeholders to customize engagement for the Southwest subregion
On August 10, 2023, a kick-off meeting was held with core team members to scope an engagement approach in the southwest metro.

Core team members included:

- Ole Olmanson, Shakopee Mdewakanton Sioux Community
- Seng Thongvanh, City of Savage
- Vanessa Strong, Scott County Watershed Management Organization

Outcomes that the core team sought from the engagement process:

- A shared vision for water supply in the subregion for 2050
- A shared understanding of the water supplies available in the southwest metro
- A list of all issues, with top issues identified (and inclusive of key opportunities)
- Action plans to address priority items
- An understanding of what the Metro Area Water Supply Plan is and how it benefits them

Subregional engagement: Workshops
On November 30, 2023, the first workshop for the southwest metro was held to introduce the project and the approach to updating the Metro Area Water Supply Plan, share subregional water supply information in the newly developed Water Supply Planning Atlas, and get input about what successful water supply planning should look like, what is already working well, what challenges exist, and what high-level goals do people have for the next ten years.
Attendees:

- David Hagen, Shakopee Public Utilities
- Lon Schemel, Shakopee Public Utilities
- Carrie Jennings, Freshwater Society/Eureka Township
- Seng Thongvanh, City of Savage
- Tony White, City of Burnsville
- Michael Klimers, City of Savage
- Bo Johnston, Black & Veatch
- Shane Nelson, Credit River
- Ole Olmanson, Shakopee Mdewakanton Sioux Community
- Kurt Ehresman, Shakopee Mdewakanton Sioux Community
- Jim Berg, Young Environmental (for Lower Minnesota Watershed District)
- Vanessa Strong, Scott County/WMO
- Eileen Kirby, Freshwater Society
- Alyssa Fabia, Freshwater Society

After the first workshop on November 30th, people volunteered to reach out and interview some of their peers and report back. Four people reported back on their interviews with 10 additional people: Carrie Jennings, Ole Olmanson, Vanessa Strong, and Seng Thongvanh.

Draft focus areas that emerged from the first workshop were also shared with workshop invitees in a survey to identify priorities to work on at the second workshop. Two people shared priorities.

On January 11, 2024, a second workshop for the southwest metro was held to focus on drafting action plans for priority focus areas identified at Workshop 1 and through the interviews and survey. In small groups, participants filled out action plan worksheets for the focus areas identified at the first workshop. Groups rotated through three topics each, revising and adding to the ideas of the group who discussed the topic before them.

Attendees:

- Carrie Jennings, Freshwater Society/Eureka Township
- Seng Thongvanh, City of Savage
- Jesse Carlson, City of Savage
- Tony White, City of Burnsville
- Michael Klimers, City of Savage
- Andy Brotzler, City of Prior Lake
- Vanessa Strong, Scott County/WMO
- Anneka Munsell, MDH
- Shane Nelson, Credit River
- Ole Olmanson, Shakopee Mdewakanton Sioux Community
- Kurt Ehresman, Shakopee Mdewakanton Sioux Community
- Jim Berg, Young Environmental (for Lower Minnesota Watershed District)
Figure 2. Workshop 1 for the southwest metro water supply group was hosted by the City of Savage and held at the McColl Pond Environmental Learning & Event Center.

Figure 3. The Southwest chapter of the recently-released Water Supply Planning Atlas for the Twin Cities Metropolitan Area provided subregional water supply information and context to support group discussion.
Figure 4. At Workshop 1, the southwest metro water supply group discussed what a successful water supply planning effort would look like.

Figure 5. At Workshop 1, the southwest metro water supply group discussed what is already working well for success.
Figure 6. At Workshop 1, the southwest metro water supply group discussed water supply planning challenges.

Figure 7. At Workshop 1, the southwest metro water supply group discussed opportunities for success.
Glossary and Initialisms

BWSR: Minnesota Board of Water and Soil Resources

CECs: Contaminants of emerging concern

Data standards: Data standards are documented agreements on representation, format, definition, structuring, tagging, transmission, manipulation, use, and management of data.

DNR: Minnesota Department of Natural Resources

DWSMA: Drinking water supply management area, designated by municipal water suppliers and the Minnesota Department of Health.

EMWREP: East Metro Water Resource Education Program, a partnership of 30 local units of government hosted by the Washington Conservation District.

HOA: Home Owners Association

MC: Metropolitan Council

MDH: Minnesota Department of Health

MIDS: Minimum Impact Design Standards

MPCA: Minnesota Pollution Control Agency

PFAS: Per- and Polyfluorinated Substances

SWCD: Soil and Water Conservation District

WD: Watershed District

WMO: Watershed Management Organization

VOC: Volatile organic compounds are compounds that have a high vapor pressure and a low water solubility.

What other terms should be included to ensure we all mean the same thing?
Metro Area Water Supply Plan Contacts

Lanya Ross
Environmental Analyst, Environmental Services – Water Policy and Planning

Jen Kader
Senior Planner, Environmental Services – Water Policy and Planning

Jen Kostrzewski
Assistant Manager, Environmental Services – Water Resources: Water Policy and Planning

Judy Sventek
Manager, Environmental Services – Water Resources