Water Quality Planning to Transition from Groundwater to Lake Michigan Water

Tony Myers – Jacobs Kelly Zylstra– Waukesha Water Utility

Jacobs

Presentation Outline

- Background Transition from groundwater to Lake Michigan water
- Pre-Transition Water Quality Planning Studies
- Post-Transition Results

Background

Waukesha Water Utility SERVING WAUKESHA SINCE 1886

Background – Current Water System

- Waukesha serves about 70,000 people in southeast Wisconsin.
- Waukesha water supply was from deep and shallow wells.
- The deep wells contain radium above the EPA limit
- The aquifer is not sustainable.
- Waukesha has been studying water supply alternatives for over three decades.

Waukesha Water System - Then and Now

Facility	Groundwater System	Lake Michigan System
Wells	12	4 (Emergency)
Booster Pump Stations	11	12
Ground Storage Reservoirs	6 (12.8 MG)	4 (20.7 MG)
Elevated Towers	5 (2 MG)	6 (3 MG)
Pressure Zones	10	10

Booster Pump Station and Reservoirs

Purpose of Water Quality Planning

 Continue providing high quality drinking water as Waukesha transitions from groundwater to treated Lake Michigan water.

Water Quality Planning Studies

Groundwater Differences Waukesha WI and North and East Metro Area

Differences in WI Groundwater vs Lake Michigan – Corrosion Inhibitor

Differences in WI Groundwater vs Lake Michigan – Disinfectant

Chloramines 101

Tony Myers, P.E.

Jacobs

Chlorine + Ammonia = Chloramines

- Monochloramine (NH₂Cl)
- Dichloramine (NHCl₂)
- Trichloramine (NCl₃)

What is the Proper Chlorine to Ammonia Ratio to form Monochloramine?

• About 4.5 parts chlorine (Cl₂) to 1 part ammonia (NH₃-N), by weight

Waukesha uses liquid sodium hypochlorite and liquid ammonium sulfate to "boost" chloramine

Typical breakpoint curve for pH 7.5-8.5

Chlorine vs Monochloramine

Chlorine	Chloramine
Stronger disinfectant, but decays faster in distribution system	Weaker disinfectant but longer lasting residual and good for biofilms in pipes
Easier to use (1 chemical)	More complex (2 chemicals)
Forms regulated chlorinated DBPs	Does not form regulated chlorinated DBPs. Forms some unregulated DBPs.
	Potential for nitrification

What should I measure in my water?

✓ Total Chlorine
✓ Monochloramine
✓ Free Ammonia

✓Nitrite

6 Elements of Water Quality Transition Planning

Planning for the new water supply (1)

 A corrosion control treatment study using Waukesha pipes and Milwaukee water to determine impacts on water quality. 2018 -2019

1. Corrosion Control Treatment Study

Major Findings

- Lead was lower with Milwaukee water in Waukesha pipes, versus Waukesha groundwater.
- Release of iron and manganese was low
- Radium was not released from the pipe scale.

Planning for the new water supply (2)

- A pipe loop corrosion control study using Waukesha pipes and Milwaukee water to determine impacts on water quality. 2018 - 2019
- 2. A unidirectional flushing (UDF) program to flush sediment from the distribution system pipes before and after the water transition. 2020 – 2021, 2023

2. Unidirectional Flushing (UDF) Program

Highlights

- Completed in 2021 by Waukesha Water Utility.
- 115 flushing zones and 1,500 flush sequences throughout the distribution system
- Over 1 million feet of water main flushed.
- 4 to 5 person crew, took4 to 5 months.

2. Unidirectional Flushing (UDF)

- Gathered good information on areas with high color
- Useful for determining area for follow up flushing

Planning for the new water supply (3)

- A pipe loop corrosion control study using Waukesha pipes and Milwaukee water to determine impacts on water quality. 2018 -2019
- 2. A unidirectional flushing (UDF) program to flush sediment from the distribution system pipes before and after the water transition. 2020 – 2021, 2023
- **3.** An Initial Distribution System Evaluation (IDSE) to determine water sampling locations to meet regulations. 2021.

Planning for the new water supply (4)

- A pipe loop corrosion control study using Waukesha pipes and Milwaukee water to determine impacts on water quality. 2018

 2019
- 2. A unidirectional flushing (UDF) program to flush sediment from the distribution system pipes before and after the water transition. 2020 - 2021, 2023
- **3.** An Initial Distribution System Evaluation (IDSE) to determine water sampling locations to meet regulations. 2021.
- A distribution system water quality monitoring plan recommending monitoring to maintain water quality. 2021 - 2023

Distribution System Water Quality Monitoring Plan

Final Report

4. Distribution System Water Quality Monitoring Plan (1 of 2)

Highlights

- Not a regulatory requirement
- Better manage water quality at areas with longer water age.
- Measures indicators of nitrification (nitrite, free ammonia) plus monochloramine and others.

Distribution System Water Quality Monitoring Plan

Final Report

4. Distribution System Water Quality Monitoring Plan (2 of 2)

Four locations initially, plus entry point.

Parameters Measured

On-line

- Monochloramine
- Total ammonia
- Free ammonia
- Nitrite
- Nitrate
- Color
- UV 254
- pH/temp

Grab

- Iron
- Orthophosphate
- Fluoride
- HPC

Planning for the new water supply (5)

- A pipe loop corrosion control study using Waukesha pipes and Milwaukee water to determine impacts on water quality. 2018 - 2019
- 2. A unidirectional flushing (UDF) program to flush sediment from the distribution system pipes before and after the water transition. 2020 – 2021, 2023
- **3. An Initial Distribution System Evaluation (IDSE)** to determine water sampling locations to meet regulations. 2021.
- **4. A distribution system water quality monitoring plan** recommending monitoring to maintain water quality. 2021 - 2023
- 5. A transition flushing plan to move the groundwater out and the Lake Michigan water while maintaining water quality 2022 - 2023

5. Transition Flushing Plan (1 of 1)

Highlights

- <u>Minimize mixing</u> chlorinated groundwater and chloraminated Lake Michigan water
- May not be necessary for a chlorine-tochlorine or chloramine-to-chloramine water transition.
- <u>Need to incorporate Utility operational</u> <u>expertise with</u> <u>hydraulic modeling.</u>

5. Transition Flushing Plan (2 of 2)

Three alternatives evaluated.

- No hydrant Flushing –Normal tower operations. Water moves based on demand.
- Active Flushing 70 hydrants flushed. All towers offline. 24-hr crew.
- Staggered Tank 12 hydrants flushed. Tower on and off based on water movement.

5. Transition Flushing Plan – No Flushing (1 of 2)

Method

Normal operations

Results

- Greater than 20 days transition
- Significant mixing of water sources

5. Transition Flushing Plan – No Flushing (2 of 2)

5. Transition Flushing Plan – Active Flushing

Method

- 70 flushing hydrants
- Valved off storage tanks

Results

- About 4 days transition
- Minimal mixing of water sources

5. Transition Flushing Plan – Staggered Tank

Method

- 12 flushing hydrants
- Tanks <u>offline</u> when Lake Michigan water enters
- Tanks <u>online</u> when Lake Michigan water arrives

Results

- About 5 days transition
- Minimal mixing of water sources
- Better fire protection

Planning for the new water supply (6)

- 1. A pipe loop corrosion control study using Waukesha pipes and Milwaukee water to determine impacts on water quality. 2018 - 2019
- 2. A unidirectional flushing (UDF) program to flush sediment from the distribution system pipes before and after the water transition. 2020 – 2021, 2023
- **3.** An Initial Distribution System Evaluation (IDSE) to determine water sampling locations to meet regulations. 2021.
- 4. A distribution system water quality monitoring plan recommending monitoring to maintain water quality. 2021 2023
- 5. A transition flushing plan to move the groundwater out and the Lake Michigan water while maintaining water quality 2022 2023
- 6. An overall Transition Plan Summarized 5 reports, nitrification control, re-chloramination, distribution system water quality, customer information.

Draft WAUKESHA WATER TRANSITION PLAN

6. Overall Water Transition Plan

- Summarized 5 previous studies
- Addressed nitrification, re-chloramination
- Best practices for distribution system water quality.
- Information for Water Customers (Dialysis, Fish, Home Softening, etc.)

^{Final Report} Waukesha Water Utility – Initial Distribution System Evaluation

Water Quality at the Start of the Transition

- Boosted monochloramine residual from about 1.5 mg/L to 2.5 mg/L
- Used lower chlorine: ammonia ratio (3.5 to 1)

Water Quality after the Transition

- Reduce monochloramine residual slowly.
- Increase chlorine: ammonia ratio (4.5 or 5 to1)
- Monitored free ammonia.
- Monitor for nitrite and other parameters in the Distribution System Water Quality Monitoring Plan.

Excel Spreadsheet for determining chlorine and ammonia doses

Parameter	<u>Value</u>	<u>Units</u>		
Monochloramine, Upstream of chemical addition	1.36	mg/l		
Free Ammonia, <u>Upstream</u> of chemical addition	0.08	mg/l as N		
Flowrate in chemical addition pipe	1,950	gpm		
Flowrate in chemical addition pipe	2.81	mgd		
Desired Monochloramine Residual <u>after</u> chemical addition.	<mark>2.50</mark>	mg/l		
Cl ₂ :N weight ratio	5.0			
Chlorine dose added	1.14	mg/l as Cl ₂		
Ammonia dose added	0.148	mg/l as N		
Chlorine pump setting				
Gal/hr	0.88			
ml/min	56			
RPM	32			
% speed	15%			
Ammonia pump setting				
Gal/hr	0.19			
ml/min	12			
RPM	7			
% cnood	2%			

Getting Ready

✓ Started filling reservoirs October 6, 2023 (Friday).

✓ Started delivering water October 9 (Monday).

Target Monochloramine 2.5 mg/l

Target Free Ammonia 0.10 mg/l

Transition Results

Public Information Early and Often

- Kidney Dialysis centers
- Hospitals and long-term care facilities
- Pet stores
- Major Industry
- Correctional Institutes
- Social media, websites, news outlets

Frequently Answered Questions

- 2023 Water Transition
- Causes
- Construction
- Impact
- Implementation
- Root River
- Waukesha Rates

Frequently Asked Questions Chloramine Conversion

What is chloramine?

Chloramine is a disinfectant added to the water for public health protection. Chloramine is most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramine provides long-lasting protection as it does not break down quickly in water pipes.

The Environmental Protection Agency (EPA) approves the use of chloramine as a disinfectant in drinking water.

Why are water utilities switching from a chlorine disinfectant to a chloramine disinfectant?

In order to meet new stricter EPA regulations, which go into effect in 2012 and require water utilities to control levels of regulated disinfection byproducts (DBPs), Tulsa's water utility is changing the way water is treated in the distribution system.

The City of Tulsa will continue to use chlorine as a primary disinfectant at the water treatment plants to kill microbes like viruses and bacteria. Chloramine will be used as a longer-lasting secondary disinfectant to lower the concentration of disinfection byproducts in the distribution lines carrying water from the treatment plants to your house.

Is chloramine safe?

Yes, chloramine has been used safely in the U.S., Canada and Great Britain for more than 90 years. Nearby cities such as Oklahoma City, Sand Springs, Lawton, Norman, Denver, Dallas and Fort Worth have been using chloramine as part of their treatment process for decades.

43

Operational Steps Needed Before Transition, Day - 3

Begin filling reservoir #1

 with MWW water and
 adjusting chemistry for
 higher disinfectant for
 Day 0 (start up)

Operational Steps Needed Before Transition, Day - 2

Begin filling reservoir #2
 with MWW water and
 adjusting chemistry for
 higher disinfectant for
 Day 0

Operational Steps Needed Before Transition, Day -1 (1 of 2)

- Using reservoir mixing pumps, continuously mix water and verify chemistry prior to Day 0
- Mixing lines in reservoirs

Operational Steps Needed Before Transition, Day -1 (2 of 2)

 Move in 'hotel' at the BPS for overnight operations.

Operational Steps Transition, Day 0, Monday 10/9/2023 (1 of 2)

Operational Steps Transition, Day 0, Monday 10/9/2023 (2 of 2)

- The Mayor, Commission
 President and Dan
 started the pumps.
- Operation staff turned off the wells and started the field work.

Day 0 + 43 minutes

Water Transition at Hour 0

1

	Day 0											
	7	8	9	10	11	12	1	2	3	4	5	6
Rempe Nike water quality confirmed, start of transition	*											T
Close valve at Hillcrest, reservoir is now permanently offline												T
Close valve at Davidson												T
Close valve at Hunter												Т
Close valve at Morris												T
Close valve at Saylesville			l.					i				
Open Hydrant ID 10715			1							1		Т
Hydrant ID 10715 flow at 150 gpm			1									
Open Hydrant ID 12086			(Т
Hydrant ID 12086 flow at 200 gpm			1					1		l.		
Open Hydrant ID 13709												T
Hydrant ID 13709 flow at 300 gpm												
Open Hydrant ID 12597												Т
Hydrant ID 12597 flow at 150 gpm			1									
Open Hydrant ID 10984			Ĵ.									T
Hydrant ID 10984 flow at 250 gpm			l.					1				
Open Hydrant ID 12652												T
Hydrant ID 12652 flow at 300 gpm			l.									
Open Hydrant ID 13741												Т
Hydrant ID 13741 flow at 125 gpm												
Open Hydrant ID 13644												T
Hydrant ID 13644 flow at 300 gpm												
Open Hydrant ID 13566												Т
Hydrant ID 13566 flow at 200 gpm												
Empty Davidson												
Empty Morris												Т
Empty Saylesville												T
Empty Hillcrest												Г
Empty Hunter												T
Close valve at Crestwood												
Open Hydrant ID 13726												
Hydrant ID 13726 flow at 300 gpm												
Close valve at UWW, turn on 1 pump at Airport and Madison												T

Operational Steps Transition, Day 0, Monday 10/9/2023

- Consultants field testing water quality entering and leaving BPS.
- BPS required on site monitoring 24/7 by WWU staff.
- Field testing of water quality done by WWU staff in the system; 3 shifts

Transition, Day 0, plus 12 hours

On-line map was
 designed so customers
 would know where the
 Lake Michigan water was.

Day 0, plus 12 hours

Day 0, plus 16 hours

Day 1 – model v map

Day One (Tuesday) – Some time during the day

Day 3 – model v map

Day 4 – model v map

Day 5 – model v map

Day – No clue, time not sure, too tired to know.

Water Quality

- \checkmark Lead and copper levels very low
- ✓ Radium at detection level
- ✓ Chloramine residual throughout system
- \checkmark No signs of nitrification
- \checkmark Iron and Manganese levels low
- \checkmark Customers are pleased with the new water!

Lucky Mascot

What did Customers Say?

- Mostly positive comments
 - Love the softer water
 - Initial chlorine smell but went away
 - Some localized red water, but nothing out of the ordinary

Water Utility reports transition to Lake Michigan water going smoothly, Waukesha Freeman, October 11, 2023

"It's better than expected," "We were very, very pleasantly surprised with the limited number of complaints that we had."

"Looks pretty good," southeast Waukesha neighbor Andrea Matthis

"Community members didn't receive any major complaints about the quality of the H2O."

Acknowledgements

Questions?

Water Quality Planning to Transition from Groundwater to Lake Michigan Water

The important thing is to Not stop questioning. Curiosity has its own reasons for existing.

~Albert Einstein

Water Temperature Entering the Distribution System

Water Quality Summary

Community	Total hardness (mg/L as CaCO3)	Alkalinity (mg/L as CaCO3)	рН	Fe (mg/L)	Mn (mg/L)	Free chlorine (mg/L)	Corrosion Inhibitor
City Of North St Paul	255	210	7.5	0.0	0.02		
City of Oakdale	250	200	7.7	0.0	0.01	0.4	
Mahtomedi	200	180	7.8	1.0	0.30	0.2	Polyphosphate
Vadnais Heights	210	210	8.2	0.4	0.05	1.0	Polyphosphate
City of Lake Elmo		210	7.5	0.0		0.7	
City of Hugo	258	207	7.9	0.0	0.08	0.3	Polyphosphate
City of New Brighton	359	360	7.8	0.1	0.32	0.8	Polyphosphate
White Bear Township	230		7.8	0.3	0.15	0.7	Polyphosphate
City of Shoreview	250		7.7	0.2	0.25	0.4	
White Bear Lake	200	210	7.7	0.4	0.06	0.3	
City of Lino Lakes	234	245	7.7	2.7	0.27	0.6	Polyphosphate
Average	245	226	7.8	0.5	0.2	0.5	
Minimum	200	180	7.5	0	0.01	0.2	
Maximum	359	360	8.2	2.7	0.32	1	