Application

10353-2018 Roadway Expansion
10914 - CSAH 610/I-94 Interchange in Maple Grove
Regional Solicitation - Roadways Including Multimodal Elements

Status:
Submitted Date:
Submitted
07/13/2018 11:44 AM

Primary Contact

Name:*	Mr.		Hagen
	Salutation	First Name	Last Name
Title:	Transportation Operations Engineer		
Department:			
Email:	jhagen@maplegrovemn.gov		
Address:	City of Maple Grove		
	12800 Arbor Lakes Parkway		
	City of Maple Grove		
	Maple Grove	Minnesota	55369
	City	State/Province	Postal Code/Zip
Phone:*	763-494-6364		
	Phone		
Fax:	763-494-6418		
What Grant Programs are you most interested in?	Regional Soli Elements	ation - Roadways	Multimodal

Organization Information

Name:

Jurisdictional Agency (if different):

Organization Type:
Organization Website:
Address:
City
www.maplegrovemn.gov
12800 Arbor Lakes Parkway N

MAPLE GROVE	Minnesota	55311-6180
City	State/Province	Postal Code/Zip

Hennepin
763-494-6000
Phone:*
Ext.
Fax:
PeopleSoft Vendor Number

0000020964

Project Information

Project Name	CSAH 610 Expansion
Primary County where the Project is Located	Hennepin
Cities or Townships where the Project is Located:	City of Maple Grove
Jurisdictional Agency (If Different than the Applicant):	N/A

Brief Project Description (Include location, road name/functional class, type of improvement, etc.)

The proposed CSAH 610 project includes construction of a new four-lane divided A-Minor Arterial Expander roadway between CSAH 30 and TH 610 in Maple Grove. As shown in Figure 1, the project will complete missing movements in the I-94 interchange area, including a westbound I-94 to westbound CSAH 610 loop and an I-94 bridge on CSAH 610 connecting eastbound CSAH 30 to TH 610. CSAH 30 will be realigned to form a new signalized intersection with CSAH 610, and a traffic signal will be installed at the proposed CSAH 610 at I-94 eastbound on-ramp intersection. The project will construct sidewalks and multiuse trails along CSAH 610 including curb ramps and accessible pedestrian signals at all crosswalk locations.

The proposed project is an extension of the MnDOT TH 610 Completion project constructed in 2017 and included in the approved environmental documents. The first phase of these improvements was recently constructed by MnDOT with Corridors of Commerce funding. There are additional connections to the TH 610 project that are not yet funded (as identified in Figure 1) and were not included in the first phase of construction. The proposed CSAH 610 project will construct the remaining connections to assist the City in achieving their cost participation portion for the overall improvements highlighted in yellow in Figure 1.

The proposed project is a vital east-west link for the growing northern suburbs. CSAH 610 will provide improved regional connections to three important roadway facilities in the northwest Twin Cities Metropolitan Area: I-94, TH 610, and CSAH 30. The CSAH 30 corridor, as it extends to the west, serves a large geographic area between TH 55 and I-94 that is currently underserved by an arterial roadway system. The Metropolitan Council's

Environmental Services is currently extending an interceptor to serve Corcoran, Rogers, and Dayton, which will promote growth in this area with significant impacts to an already congested CSAH 30 corridor.

The proposed project will also provide multimodal benefits by providing direct access to the Blue Line LRT and the Maple Grove Transit Parkway Station located on Maple Grove Parkway between I-94 and TH 610.

More importantly, CSAH 610 is identified in the Metropolitan Council's 2040 Transportation Policy Plan as one the few remaining A-Minor Arterial Expander roadways that are planned, but not yet constructed. The proposed project is a pivotal component in fulfilling regional plans for expansion, while supporting infrastructure investments that are currently being made by MnDOT in the surrounding area.
(Limit 2,800 characters; approximately 400 words)

TIP Description Guidance (will be used in TIP if the project is selected for funding)

Project Length (Miles)

Construction of new four-lane divided highway (CSAH 610) between CSAH 30 and TH 610. Includes new bridge over I-94 and turning movement and signalization improvements on CSAH 30.
1.6

Project Funding

Are you applying for competitive funds from another source(s) to implement this project?

If yes, please identify the source(s)
Federal Amount
Match Amount \$13,477,000.00
Minimum of 20% of project total
Project Total
Match Percentage

No

N/A
\$7,000,000.00
\$20,477,000.00
65.82\%

Minimum of 20\%
Compute the match percentage by dividing the match amount by the project total

Source of Match Funds City of Maple Grove, Hennepin County

A minimum of 20% of the total project cost must come from non-federal sources; additional match funds over the 20% minimum can come from other federal sources

Preferred Program Year
Select one:
2022
Select 2020 or 2021 for TDM projects only. For all other applications, select 2022 or 2023.
Additional Program Years:
2020, 2021
Select all years that are feasible if funding in an earlier year becomes available.

Project Information: Roadway Projects

County, City, or Lead Agency	City of Maple Grove
Functional Class of Road	A-Minor Arterial Expander
Road System	CSAH
TH, CSAH, MSAS, CO. RD., TWP. RD., CITY STREET	
Road/Route No.	610
i.e., 53 for CSAH 53	
Name of Road	CSAH 610
Example; 1st ST., MAIN AVE	55311
Zip Code where Majority of Work is Being Performed	$06 / 01 / 2020$
(Approximate) Begin Construction Date	$12 / 31 / 2021$
(Approximate) End Construction Date	CSAH 30
TERMINI:(Termini listed must be within 0.3 miles of any work)	
From:	TH 610
(Intersection or Address)	
To:	
(Intersection or Address)	
DO NOT INCLUDE LEGAL DESCRIPTION	
Or At	

GRADE, AGG BASE, BIT BASE, BIT SURF, SIDEWALK, CURB AND GUTTER, STORM SEWER, SIGNALS, LIGHTING, BIKE PATH, PED RAMPS, BRIDGE, LANDSCAPING

[^0]| Old Bridge/Culvert No.: | N/A |
| :--- | :---: |
| New Bridge/Culvert No.: | TBD |
| Structure is Over/Under
 (Bridge or culvert name): | $\mathrm{I}-94$ |

Requirements - All Projects

All Projects

1.The project must be consistent with the goals and policies in these adopted regional plans: Thrive MSP 2040 (2014), the 2040 Transportation Policy Plan (2015), the 2040 Regional Parks Policy Plan (2015), and the 2040 Water Resources Policy Plan (2015).

Check the box to indicate that the project meets this requirement. Yes
2. The project must be consistent with the 2040 Transportation Policy Plan. Reference the 2040 Transportation Plan goals, objectives, and strategies that relate to the project.

Goal B: Safety and Security (2040 TPP, pg. 2.7); Objective: Reduce crash rates and improve safety and security for all modes of passenger travel and freight transport. Strategy B1: Regional transportation partners will incorporate safety and security considerations for all modes and users throughout the processes of planning, funding, construction, operation. Strategy B6: Regional transportation partners will use best practices to provide and improve facilities for safe walking and bicycling, since pedestrians and bicyclists are the most vulnerable users of the transportation system.

Goal C: Access to Destinations (2040 TPP, pg. 2.8); Objective: Increase the availability of multimodal travel options, especially in congested highway corridors. Objective: Improve multimodal travel options for people of all ages and abilities to connect to jobs and other opportunities, particularly for historically under-represented populations. Strategy C1: Regional transportation partners will continue to work together to plan and implement transportation system that are multimodal and provide connections between modes. The Council will prioritize regional projects that are multimodal and cost-effective and encourage investments to include appropriate provisions for bicycle and pedestrian travel. Strategy C2: Local units of government should provide a system of interconnected arterial roads, streets, bicycle facilities, and pedestrian facilities to meet local travel needs using Complete Street principles.

Goal D: Competitive Economy (2040 TPP, pg. 2.11); Objective: Support the region's economic competitiveness through the efficient movement of freight. Strategy D5: The Council and MnDOT will work with transportation partners to identify the impacts of highway congestion on freight and
identify cost-effective mitigation.

> Goal E: Healthy Environment (TPP, pg. 2.12); Objective: Increase the availability and attractiveness of transit, bicycling, and walking to encourage healthy communities and active car-free lifestyles. Strategy E3: Regional transportation partners will plan and implement a transportation system that considers the needs of all potential users, including children, senior citizens, and persons with disabilities, and that promotes active lifestyles and cohesive communities. A special emphasis should be place on promoting the environment and health benefits of alternative to single-occupancy vehicle travel.
3. The project or the transportation problem/need that the project addresses must be in a local planning or programming document. Reference the name of the appropriate comprehensive plan, regional/statewide plan, capital improvement program, corridor study document [studies on trunk highway must be approved by the Minnesota Department of Transportation and the Metropolitan Council], or other official plan or program of the applicant agency [includes Safe Routes to School Plans] that the project is included in and/or a transportation problem/need that the project addresses.

2040 Metropolitan Council Transportation Policy Plan (2015), Figures 1-2 and 12-1

2030 Hennepin County Transportation Systems Plan (2011), Page 5-12, Maps C through F

List the applicable documents and pages:
City of Maple Grove Transportation Plan (2018), Page 14

City of Maple Grove Transportation Plan (2009), Page 22

4. The project must exclude costs for studies, preliminary engineering, design, or construction engineering. Right-of-way costs are only eligible as part of transit stations/stops, transit terminals, park-and-ride facilities, or pool-and-ride lots. Noise barriers, drainage projects, fences, landscaping, etc., are not eligible for funding as a standalone project, but can be included as part of the larger submitted project, which is otherwise eligible.

Check the box to indicate that the project meets this requirement. Yes
5.Applicants that are not cities or counties in the seven-county metro area with populations over 5,000 must contact the MnDOT Metro State Aid Office prior to submitting their application to determine if a public agency sponsor is required.

Check the box to indicate that the project meets this requirement. Yes
6.Applicants must not submit an application for the same project elements in more than one funding application category.

Check the box to indicate that the project meets this requirement. Yes
7.The requested funding amount must be more than or equal to the minimum award and less than or equal to the maximum award. The cost of preparing a project for funding authorization can be substantial. For that reason, minimum federal amounts apply. Other federal funds may be combined with the requested funds for projects exceeding the maximum award, but the source(s) must be identified in the application. Funding amounts by application category are listed below.
Roadway Expansion: \$1,000,000 to \$7,000,000
Roadway Reconstruction/ Modernization Modernization and Spot Mobility: \$1,000,000 to \$7,000,000
Traffic Management Technologies (Roadway System Management): \$250,000 to \$7,000,000
Bridges Rehabilitation/ Replacement: \$1,000,000 to \$7,000,000
Check the box to indicate that the project meets this requirement. Yes
8. The project must comply with the Americans with Disabilities Act (ADA).

Check the box to indicate that the project meets this requirement. Yes
9.In order for a selected project to be included in the Transportation Improvement Program (TIP) and approved by USDOT, the public agency sponsor must either have, or be substantially working towards, completing a current Americans with Disabilities Act (ADA) self-evaluation or transition plan that covers the public right of way/transportation, as required under Title II of the ADA.

The applicant is a public agency that employs 50 or more people and has an adopted ADA transition plan that covers the public right of way/transportation.

Date plan adopted by governing body

The applicant is a public agency that employs 50 or more people Yes and is currently working towards completing an ADA transition plan that covers the public rights of way/transportation.

07/01/2016

Date process started

12/31/2018
Date of anticipated plan completion/adoption

The applicant is a public agency that employs fewer than 50 people and has a completed ADA self-evaluation that covers the public rights of way/transportation.

Date self-evaluation completed

The applicant is a public agency that employs fewer than 50 people and is working towards completing an ADA self-evaluation that covers the public rights of way/transportation.

Date process started
Date of anticipated plan completion/adoption
(TDM Applicants Only) The applicant is not a public agency subject to the self-evaluation requirements in Title II of the ADA.
10. The project must be accessible and open to the general public.

Check the box to indicate that the project meets this requirement. Yes
11.The owner/operator of the facility must operate and maintain the project year-round for the useful life of the improvement, per FHWA direction established 8/27/2008 and updated 6/27/2017.

Check the box to indicate that the project meets this requirement. Yes
12. The project must represent a permanent improvement with independent utility. The term independent utility means the project provides benefits described in the application by itself and does not depend on any construction elements of the project being funded from other sources outside the regional solicitation, excluding the required non-federal match. Projects that include traffic management or transit operating funds as part of a construction project are exempt from this policy.

Check the box to indicate that the project meets this requirement. Yes
13. The project must not be a temporary construction project. A temporary construction project is defined as work that must be replaced within five years and is ineligible for funding. The project must also not be staged construction where the project will be replaced as part of future stages. Staged construction is eligible for funding as long as future stages build on, rather than replace, previous work.

Check the box to indicate that the project meets this requirement. Yes
14. The project applicant must send written notification regarding the proposed project to all affected state and local units of government prior to submitting the application.

Check the box to indicate that the project meets this requirement. Yes

Roadways Including Multimodal Elements

1.All roadway and bridge projects must be identified as a principal arterial (non-freeway facilities only) or A-minor arterial as shown on the latest TAB approved roadway functional classification map.

Check the box to indicate that the project meets this requirement. Yes
Roadway Expansion and Reconstruction/Modernization and Spot Mobility projects only:
2.The project must be designed to meet 10 -ton load limit standards.

Check the box to indicate that the project meets this requirement. Yes
Bridge Rehabilitation/Replacement projects only:
3.Projects requiring a grade-separated crossing of a principal arterial freeway must be limited to the federal share of those project costs identified as local (non-MnDOT) cost responsibility using MnDOTs Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities manual. In the case of a federally funded trunk highway project, the policy guidelines should be read as if the funded trunk highway route is under local jurisdiction.

Check the box to indicate that the project meets this requirement.
4.The bridge must carry vehicular traffic. Bridges can carry traffic from multiple modes. However, bridges that are exclusively for bicycle or pedestrian traffic must apply under one of the Bicycle and Pedestrian Facilities application categories. Rail-only bridges are ineligible for funding.

Check the box to indicate that the project meets this requirement.
5.The length of the bridge must equal or exceed 20 feet.

Check the box to indicate that the project meets this requirement.
6. The bridge must have a sufficiency rating less than 80 for rehabilitation projects and less than 50 for replacement projects. Additionally, the bridge must also be classified as structurally deficient or functionally obsolete.

Check the box to indicate that the project meets this requirement.
Roadway Expansion, Reconstruction/Modernization and Spot Mobility, and Bridge Rehabilitation/Replacement projects only:
7. All roadway projects that involve the construction of a new/expanded interchange or new interchange ramps must have approval by the Metropolitan Council/MnDOT Interchange Planning Review Committee prior to application submittal. Please contact Michael Corbett at MnDOT (Michael.J.Corbett@state.mn.us or 651-234-7793) to determine whether your project needs to go through this process.

Check the box to indicate that the project meets this requirement. Yes

Requirements - Roadways Including Multimodal Elements

Specific Roadway Elements	
CONSTRUCTION PROJECT ELEMENTS/COST	Cost
ESTIMATES	$\$ 780,000.00$
Mobilization (approx. 5% of total cost)	$\$ 25,000.00$
Removals (approx. 5% of total cost)	$\$ 3,350,000.00$

Roadway (aggregates and paving) $\$ 3,520,000.00$
Subgrade Correction (muck) $\$ 0.00$
Storm Sewer \$1,470,000.00
Ponds $\$ 0.00$
Concrete Items (curb \& gutter, sidewalks, median barriers) $\$ 438,000.00$
Traffic Control \$459,000.00
Striping \$128,000.00
Signing \$341,000.00
Lighting \$89,000.00
Turf - Erosion \& Landscaping \$451,000.00
Bridge \$5,392,000.00
Retaining Walls \$278,000.00
Noise Wall (not calculated in cost effectiveness measure) $\$ 0.00$
Traffic Signals \$205,000.00
Wetland Mitigation $\$ 0.00$
Other Natural and Cultural Resource Protection $\$ 0.00$
RR Crossing $\$ 0.00$
Roadway Contingencies \$3,374,000.00
Other Roadway Elements $\$ 0.00$
Totals \$20,300,000.00
Specific Bicycle and Pedestrian Elements
CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES
Cost
Path/Trail Construction \$72,000.00
Sidewalk Construction \$105,000.00
On-Street Bicycle Facility Construction $\$ 0.00$
Right-of-Way $\$ 0.00$
Pedestrian Curb Ramps (ADA) $\$ 0.00$
Crossing Aids (e.g., Audible Pedestrian Signals, HAWK) $\$ 0.00$
Pedestrian-scale Lighting $\$ 0.00$
Streetscaping $\$ 0.00$
Wayfinding $\$ 0.00$
Bicycle and Pedestrian Contingencies $\$ 0.00$
Other Bicycle and Pedestrian Elements $\$ 0.00$
Specific Transit and TDM Elements
CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATESFixed Guideway Elements$\$ 0.00$
Stations, Stops, and Terminals $\$ 0.00$
Support Facilities $\$ 0.00$
Transit Systems (e.g. communications, signals, controls, $\$ 0.00$
fare collection, etc.)
Vehicles $\$ 0.00$
Contingencies $\$ 0.00$
Right-of-Way $\$ 0.00$
Other Transit and TDM Elements $\$ 0.00$
Totals $\$ 0.00$
Transit Operating Costs
Number of Platform hours 0
Cost Per Platform hour (full loaded Cost) $\$ 0.00$
Subtotal $\$ 0.00$
Other Costs - Administration, Overhead,etc. $\$ 0.00$

Totals

Total Cost	$\$ 20,477,000.00$
Construction Cost Total	$\$ 20,477,000.00$
Transit Operating Cost Total	$\$ 0.00$

Congestion on adjacent Parallel Routes:

Adjacent Parallel Corridor
CSAH 30 and Maple Grove Parkway
Adjacent Parallel Corridor Start and End Points:
Start Point:
End Point:
Free-Flow Travel Speed:

CSAH 30 at 520 feet east of Troy Lane
Maple Grove Parkway at TH 610
39

The Free-Flow Travel Speed is black number.
Peak Hour Travel Speed:
The Peak Hour Travel Speed is red number.
Percentage Decrease in Travel Speed in Peak Hour Compared to Free-Flow:

1531228730560_CSAH 610 Expansion_Level of Congestion.pdf

Principal Arterial Intersection Conversion Study:

Proposed interchange or at-grade project that reduces delay at a High Priority Intersection:
(80 Points)
Proposed at-grade project that reduces delay at a Medium Priority Intersection:
(60 Points)
Proposed at-grade project that reduces delay at a Low Priority Intersection:
(50 Points)
Proposed interchange project that reduces delay at a Medium Priority Intersection:
(40 Points)
Proposed interchange project that reduces delay at a Low Priority Intersection:
(0 Points)
Not listed as a priority in the study: Yes
(0 Points)

Measure B: Project Location Relative to Jobs, Manufacturing, and Education

Existing Employment within 1 Mile:
5044
Existing Manufacturing/Distribution-Related Employment within 1909
Mile:
Mile:
Existing Post-Secondary Students within 1 Mile:

Upload Map
1531228848467_CSAH 610 Expansion_Regional
Economy.pdf
Please upload attachment in PDF form.

Measure C: Current Heavy Commercial Traffic

RESPONSE: Select one for your project, based on the Regional Truck Corridor Study:
Along Tier 1:

Along Tier 2:
Yes
Along Tier 3:
The project provides a direct and immediate connection (i.e., intersects) with either a Tier 1, Tier 2, or Tier 3 corridor:

None of the tiers:

Measure A: Current Daily Person Throughput

Location	Maple Grove Parkway east of CSAH 30
Current AADT Volume	29000
Existing Transit Routes on the Project	787

For New Roadways only, list transit routes that will likely be diverted to the new proposed roadway (if applicable).

Upload Transit Connections Map
1531404662765_CSAH 610 Expansion_Transit
Connections.pdf
Please upload attachment in PDF form.

Response: Current Daily Person Throughput

Average Annual Daily Transit Ridership	18.0
Current Daily Person Throughput	37718.0

Measure B: $\mathbf{2 0 4 0}$ Forecast ADT

Use Metropolitan Council model to determine forecast (2040) ADT volume

If checked, METC Staff will provide Forecast (2040) ADT volume
OR

Identify the approved county or city travel demand model to determine forecast (2040) ADT volume

Forecast (2040) ADT volume

2040 Met Council Regional Activity Based Model refined for the City of Maple Grove. Forecast location on CSAH 610 between CSAH 30 and I-94. 33000

Measure A: Connection to disadvantaged populations and projects benefits, impacts, and mitigation

Select one:
Project located in Area of Concentrated Poverty with 50\% or more of residents are people of color (ACP50):
(up to 100% of maximum score)

Project located in Area of Concentrated Poverty:
(up to 80% of maximum score)
Projects census tracts are above the regional average for population in poverty or population of color:
(up to 60% of maximum score)
Project located in a census tract that is below the regional average for population in poverty or populations of color or Yes includes children, people with disabilities, or the elderly:
(up to 40% of maximum score)
1.(0 to 3 points) A successful project is one that has actively engaged low-income populations, people of color, children, persons with disabilities, and the elderly during the project's development with the intent to limit negative impacts on them and, at the same time, provide the most benefits.
Describe how the project has encouraged or will engage the full cross-section of community in decision-making. Identify the communities to be engaged and where in the project development process engagement has occurred or will occur. Elements of quality engagement include: outreach to specific communities and populations that are likely to be directly impacted by the project; techniques to reach out to populations traditionally not involved in the community engagement related to transportation projects; residents or users identifying potential positive and negative elements of the project; and surveys, study recommendations, or plans that provide feedback from populations that may be impacted by the proposed project. If relevant, describe how NEPA or Title VI regulations will guide engagement activities.

Response:

The TH 610 Completion project actively engaged the community during its development phase, which included the CSAH 610 component currently proposed for construction. Engagement activities already performed include 3 public open house events and 3 public meetings. Attendance at these events represented a full cross section of the community including low-income, people of color, children, people with disabilities, elderly residents, property owners, multimodal users, business owners, and school officials. These community members were able to learn about the project, review proposed designs, share their input and concerns, and ask questions and receive responses. The TH 610 project provided added engagement through brochures, newsletters, newspaper and TV advertising, a website, email alerts, direct mailings, project hotline, and direct contact information.

The CSAH 610 project will continue to engage the full cross section of the community through public events, print materials, social media, and one-onone meetings. Pop-up events will be held at locations accessible to low-income populations, people of color, children, people with disabilities, and the elderly to provide residents opportunities to receive information directly and voice their concerns in person. A survey will be facilitated within the community to identify specific positive and negative elements of the project.

The project will provide benefits to all members of the surrounding community including low-income populations, people of color, children, people with disabilities, and the elderly.

Supporting the City's local economy and providing opportunities for job growth is a direct benefit to nearby low-income populations. Improvements in regional accessibility and mobility resulting from the CSAH 610 extension will increase business demand, freight operations, and employment growth in the surrounding corridor by relieving congestion and travel delays on the overburdened existing roadway system. The demand for more business will provide low-income populations new employment opportunities within the project area and surrounding region.

Response:
Another direct benefit to all members of the community, especially low-income populations, children, people with disabilities, and the elderly, is the reduction of existing traffic volumes on CSAH 30 and Maple Grove Parkway. As indicated in the 2040 Met Council Regional Activity Based Model refined for the City of Maple Grove, the proposed CSAH 610 connections to TH 610 and I-94 will remove 55\% of traffic on CSAH 30 and 33% of traffic on Maple Grove Parkway by 2040, significantly reducing congestion. Reducing congestion on CSAH 30 and Maple Grove Parkway will provide the needed capacity for improving transit services by increasing access and mobility to nearby schools, employment centers, and healthcare facilities.

CSAH 610, CSAH 30, and Maple Grove Parkway are important access routes for all travel modes and serve various population groups. For example,
the project will improve access for low-income populations, people of color, children, people with disabilities, and the elderly to the Blue Line LRT. This connection will provide greater opportunities to access jobs throughout the Twin Cities without having to own a personal vehicle. The project will also improve regional access for children living in the area to Fernbrook Elementary School and the Maple Grove Senior High School.

The project is located in proximity to several hospitals and medical facilities on Maple Grove Parkway such as the Maple Grove Hospital, North Memorial Health, and Gillette Children's Specialty Healthcare. By reducing congestion on Maple Grove Parkway, the proposed project will benefit disabled and elderly populations by improving access, mobility, and emergency response times to these facilities.

The multiuse trails featured in the project will offer benefits to all users, including children and users with disabilities that are unable to drive. The multiuse trails along CSAH 610 will provide a multimodal connection across I-94, offering additional and alternative access to employment centers, schools, healthcare facilities, and other destinations.
3.(-3 to 0 points) Describe any negative externalities created by the project along with measures that will be taken to mitigate them. Negative externalities can result in a reduction in points, but mitigation of externalities can offset reductions.
Below is a list of negative impacts. Note that this is not an exhaustive list.
Increased difficulty in street crossing caused by increased roadway width, increased traffic speed, wider turning radii, or other elements that negatively impact pedestrian access.
Increased noise.
Decreased pedestrian access through sidewalk removal / narrowing, placement of barriers along the walking path, increase in auto-oriented curb cuts, etc.
Project elements that are detrimental to location-based air quality by increasing stop/start activity at intersections, creating vehicle idling areas, directing an increased number of vehicles to a particular point, etc.
Increased speed and/or cut-through traffic.
Removed or diminished safe bicycle access.
Inclusion of some other barrier to access to jobs and other destinations.
Displacement of residents and businesses.
Construction/implementation impacts such as dust; noise; reduced access for travelers and to businesses; disruption of utilities; and eliminated street crossings. These tend to be temporary.
Other

Response:
As with most construction projects negative externalities will be created; however proactive mitigation measures will be implemented to minimize impacts. For example, construction of the new CSAH 610 alignment will likely require temporary roadway closures and detour routes commonly resulting in negative externalities such as traffic congestion and delays. To minimize traffic congestion and delays near the work zone, a project-specific transportation management plan (TMP) will be designed and implemented to maintain acceptable levels of safety, accessibility, and mobility. The TMP will identify a variety of management strategies to mitigate negative impacts on traffic. These strategies will include increased incident management and vehicle removal capabilities, intelligent transportation system (ITS) technologies to divert traffic and inform travelers of delays and encourage alternate routes, work zone traffic simulations to forecast impacts on traffic flow and congestion, alternative scheduling and phasing including nighttime construction, and scheduling work to minimize lane closures and delays during peak traffic hours.

Noise originating from construction of the new CSAH 610 roadway is another negative externality of the project. Construction activities will occur in close proximity to existing employment centers, schools, healthcare facilities, and residences, and need to be closely controlled and monitored to avoid excessive noise impacts. Identifying noise sensitive locations within the adjacent community will allow proper mitigation measures to be employed. Mitigation approaches include performing construction activities at the appropriate time of day, adhering to local noise control requirements, utilizing the FHWA Roadway Construction Noise Model to predict noise levels during various stages of construction, and
restricting equipment to locations where noise will be reduced.

An additional negative externality is stormwater runoff due to increased impervious surface resulting from the project. Without proper mitigation measures, stormwater runoff can contaminate existing watersheds and erode existing support embankments and wetland barriers. Drainage ponds and other Best Management Practices (BMP) will be implemented to mitigate the impact of stormwater runoff. In addition, a NPDES permit will be required for construction activities associated with the project. During construction, grading, ditches, siltation fences, and fiber rolls will be employed as temporary erosion control measures. These measures will be implemented to control runoff and prevent off-site sedimentation. After construction, all disturbed areas will be sodded or seeded, leaving temporary erosion control measures in-place until the vegetative cover has been established.

1531238361795_CSAH 610 Expansion_Socio-Economic Conditions.pdf

Measure B: Affordable Housing

| | Segment Length
 (For stand-alone
 projects, enter
 population from
 Regional Economy
 map) within each
 City/Township | Segment
 Length/Total
 Project Length | Score |
| :---: | :---: | :---: | :---: | | Housing Score |
| :---: |
| Multiplied by |
| Segment percent |

Total Project Length

Affordable Housing Scoring

Total Project Length (Miles) or Population 1.6

Total Housing Score 75.0

Affordable Housing Scoring

Measure A: Infrastructure Age

Year of Original
Roadway Construction or Most Recent

Segment Length
Calculation
Calculation 2 Reconstruction

1965.0	1.22	2397.3	1965.0
	1	2397	1965

Average Construction Year

Weighted Year
1965.0

Total Segment Length (Miles)

Total Segment Length
1.22

Measure A: Congestion Reduction/Air Quality

					EXPLANATIO	
Total Peak	Total Peak	Total Peak			N of	
Hour Delay Per Vehicle	Hour Delay Per Vehicle	Hour Delay Per Vehicle	Volume	Total Peak	methodology used to	
Without The Project	With The Project	Reduced by Project	(Vehicles per hour)	Hour Delay Reduced by the Project:	calculate railroad	Synchro or HCM Reports
(Seconds/Veh	(Seconds/Veh	(Seconds/Veh			crossing	
icle)	icle)	icle)			delay, if	
					applicable.	

					See attached sheet with the calculations for vehicle delay reduction. Because the intersection volume changes between	15314998151
0	0	0	0	0	existing and improved, the online application calculator cannot be used. The total delay reduction is on the fourth page of the attachment.	87_SynchroRe sults.pdf

Vehicle Delay Reduced

Measure B:Roadway projects that do not include new roadway segments or railroad grade-separation elements

Total (CO, NOX, and VOC)
Peak Hour Emissions
without the Project
(Kilograms):

Peak Hour Emissions
(Kilograms):

Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms):

Total (CO, NOX, and VOC)
Peak Hour Emissions
Reduced by the Project
(Kilograms):

0

0

0

Total

Total Emissions Reduced:
0

Upload Synchro Report
Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

Measure B: Roadway projects that are constructing new roadway segments, but do not include railroad grade-separation elements (for Roadway Expansion applications only):

Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms):

Total (CO, NOX, and VOC)
Peak Hour Emissions
Reduced by the Project
(Kilograms):

Total Parallel Roadway

Emissions Reduced on Parallel Roadways 18.7

Upload Synchro Report
1530821205780_Synchro Results.pdf

Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

New Roadway Portion:

Cruise speed in miles per hour with the project: 50.0

Vehicle miles traveled with the project: 1127.0
Total delay in hours with the project: 14.0
Total stops in vehicles per hour with the project: 1589.0
Fuel consumption in gallons: 72.397
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced or Produced on New Roadway (Kilograms):

EXPLANATION of methodology and assumptions used:(Limit 1,400 characters; approximately 200 words)

Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):

Obtained results of the new CSAH 610 section over I-94. This includes the travel distance and delay and stops at the new intersection with CSAH 30.
11.482

Measure B:Roadway projects that include railroad grade-separation elements

Cruise speed in miles per hour without the project: 0
Vehicle miles traveled without the project: 0
Total delay in hours without the project: 0
Total stops in vehicles per hour without the project: 0
Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons (F1) 0
Fuel consumption in gallons (F2) 0
Fuel consumption in gallons (F3) 0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):EXPLANATION of methodology and assumptions used:(Limit1,400 characters; approximately 200 words)
Measure A: Benefit of Crash Reduction

Crash Modification Factor Used:
(Limit 700 Characters; approximately 100 words)

Rationale for Crash Modification Selected:
(Limit 1400 Characters; approximately 200 words)
Project Benefit (\$) from B/C Ratio:

Worksheet Attachment

Please upload attachment in PDF form.

See attached explanation form. The provided method for new roadways was used.

See attached explanation form. The provided method for new roadways was used.
1.5526348 E 7

1531328397296_Complete CSAH 610 Crash
Analysis8x11.pdf

Roadway projects that include railroad grade-separation elements:

Current AADT volume:
Average daily trains:
Crash Risk Exposure eliminated:

0
0
0

Measure A: Multimodal Elements and Existing Connections

The project includes a multiuse trail on the south side of CSAH 610 from CSAH 30 to Maple Grove Parkway, providing a safe, convenient, and gradeseparated pedestrian and bicycle crossing of I-94 and improving pedestrian and bicycle safety and connectivity. People of all ages and abilities will be able to use the new multiuse trail to connect to existing bicycle, pedestrian, and transit facilities and access parks, schools, employment centers, healthcare facilities, and commercial areas on CSAH 30 and Maple Grove Parkway.

The project will provide an alternative connection between CSAH 30 and TH 610, and as indicated in the 2040 Met Council Regional Activity Based Model refined for the City of Maple Grove, will reduce traffic volumes on Maple Grove Parkway by 15,000 vpd by 2040. Reduction of traffic volumes will improve access to pedestrian, bicycle, and transit facilities and improve existing transit operations by reducing congestion and increasing mobility. The project will provide an additional pedestrian and bicycle connection between CSAH 30 and the Medicine Lake Regional Trail.

The multiuse trail will tie into the existing CSAH 30 RBTN Tier 2 Corridor on the western terminus and the existing multiuse trail on Maple Grove Parkway on the eastern terminus, which provides direct access to the CSAH 81 RBTN Tier 1 Corridor. The CSAH 30 RBTN Tier 2 Corridor connects to the CSAH 101 RBTN Tier 2 Alignment, while the CSAH 81 RBTN Tier 1 Corridor connects to the Medicine Lake Regional Trail and CSAH 81 RBTN Tier 1 Alignment. The project will provide the missing RBTN connection between existing RBTN Tier 2 Corridors and Alignments west of I-94 to existing RBTN Tier 1 Alignments and Corridors east of I-94. By providing the missing RBTN connection, the
project will make it easier and safer for residents to connect to the regional bicycle system.

The project will also improve existing pedestrian and transit connections. Existing multiuse trails are located on both sides of CSAH 30 and Maple Grove Parkway and are included on the Medicine Lake Regional Trail and Elm Creek Park Reserve Trail. The project will provide a shorter and more direct connection between the CSAH 30 and Maple Grove Parkway pedestrian trails providing access to shopping centers, schools, healthcare facilities and the Medicine Lake Regional Trail and Elm Creek Park Reserve Trail.

The project will also enhance existing transit connections as the Maple Grove Transit (MGT) Parkway Station is located on Maple Grove Parkway east of I-94. The facility serves both MGT Local Connector Route 787 and Express Route 785 connecting to downtown Minneapolis. Other existing MGT connections include Express Route 781 which provides trips to and from downtown Minneapolis and services CSAH 30.

Transit Projects Not Requiring Construction

If the applicant is completing a transit application that is operations only, check the box and do not complete the remainder of the form. These projects will receive full points for the Risk Assessment.
Park-and-Ride and other transit construction projects require completion of the Risk Assessment below.
Check Here if Your Transit Project Does Not Require Construction

Measure A: Risk Assessment - Construction Projects

1)Layout (30 Percent of Points)

Layout should include proposed geometrics and existing and proposed right-of-way boundaries.

Layout approved by the applicant and all impacted jurisdictions (i.e., cities/counties that the project goes through or agencies that maintain the roadway(s)). A PDF of the layout must be attached along with letters from each jurisdiction to receive points.
100\%
Attach Layout
1531426121875_CSAH 610_Approved Layout.pdf
Please upload attachment in PDF form.
Layout completed but not approved by all jurisdictions. A PDF of the layout must be attached to receive points.

50\%
Attach Layout
Please upload attachment in PDF form.
Layout has not been started
0\%
Anticipated date or date of completion
10/29/2012
2)Review of Section 106 Historic Resources (20 Percent of Points)

No known historic properties eligible for or listed in the National Register of Historic Places are located in the project area, and Yes project is not located on an identified historic bridge

100\%
There are historical/archeological properties present but determination of no historic properties affected is anticipated.
100%
Historic/archeological property impacted; determination of no adverse effect anticipated

80\%
Historic/archeological property impacted; determination of adverse effect anticipated

40\%
Unsure if there are any historic/archaeological properties in the project area.
0%
Project is located on an identified historic bridge
3)Right-of-Way (30 Percent of Points)

Right-of-way, permanent or temporary easements either not required or all have been acquired

100\%
Right-of-way, permanent or temporary easements required, plat, legal descriptions, or official map complete

50\%
Right-of-way, permanent or temporary easements required, parcels identified

Right-of-way, permanent or temporary easements required, parcels not all identified

0\%
Anticipated date or date of acquisition
12/31/2021
4)Railroad Involvement (20 Percent of Points)

No railroad involvement on project or railroad Right-of-Way agreement is executed (include signature page, if applicable)

100\%

Signature Page
Please upload attachment in PDF form.
Railroad Right-of-Way Agreement required; negotiations have begun

50\%
Railroad Right-of-Way Agreement required; negotiations have not begun.

0\%
Anticipated date or date of executed Agreement

Measure A: Cost Effectiveness

Total Project Cost (entered in Project Cost Form):	$\$ 20,477,000.00$
Enter Amount of the Noise Walls:	$\$ 0.00$
Total Project Cost subtract the amount of the noise walls:	$\$ 20,477,000.00$
Points Awarded in Previous Criteria	
Cost Effectiveness	$\$ 0.00$

Other Attachments

File Name	Description	File Size
CSAH 610_Approval Letter_Interchange Planning Review Committee.pdf	Approval letter from Interchange Planning Review Committee.	54 KB
CSAH 610_Concept_Figure 1.pdf	Concept drawing (Figure 1).	1.9 MB
CSAH 610_Delay Reductions.pdf	CSAH 610 Intersection Delay Reductions	36 KB
CSAH 610_Existing Conditions Photograph.pdf	Existing conditions photograph.	1.2 MB
CSAH 610_Letter of Support_Hennepin County.pdf	Letter of support from Hennepin County.	106 KB
CSAH 610_Letter of Support_MnDOT.pdf CSAH 610_Project Summary.pdf	One-page project summary.	54168 KB

John Hagen

From:	John Hagen
Sent:	Friday, July 13, 2018 11:15 AM
To:	'Koutsoukos, Elaine'; Peterson, Steven
Cc:	Tim Babich; 'Tom Sachi'
Subject:	CSAH 610 Regional Solicitation Application: Section 5A (Total Delay Reduction)
Attachments:	Delay Email Question With Steve Peterson.pdf

Elaine and Steve:
The purpose of this email is remind you of the past discussions that you had with Tom Sachi with SRF Consulting (our consultant that is assisting us with the technical analysis our application) regarding our response to Section 5A (Congestion Reduction/Air Quality) of the Webgrant form for Maple Grove's CSAH 610 Expansion project 2018 Regional Solicitation Application.

As Tom pointed out in his attached July 2, 2018 email, the online application does not accurately show delay reductions for projects that result in a reduction of vehicles as a result of the proposed project. Based on a follow-up conversation that Tom had with Steve, the agreed upon approach was for us to enter zeros in Section 5A of the Webgrant form, in order for us to be able to include an attachment that provides our peak hour delay reductions at each intersection, total network delay reductions, and Synchro results.

Therefore, since the online application does not accurately show delay reductions for projects that result in reduction in vehicles, we respectfully request that you utilize the Total Peak Hour Delay reported in our PDF attachment of Section 5A for the scoring in Section 5A (Congestion Reduction/Air Quality) of our CSAH 610 Expansion project application.

Thanks for your time and consideration in this matter!

John

John Hagen, P.E., PTOE
Transportation Operations Engineer
City of Maple Grove
12800 Arbor Lakes Parkway
Maple Grove, MN 55369-7064
(Note: New mailing address Effective May 1, 2018)
Direct-Dial: 763-494-6364

From:	Peterson, Steven Steven.Peterson@metc.state.mn.us
Sent:	Monday, July 02, 2018 10:27 PM
To:	Tom Sachi
Subject:	Re: Synchro

Thanks

Sent from my iPhone

On Jul 2, 2018, at 5:34 PM, Tom Sachi TSachi@srfconsulting.com wrote:

Steve,

See attached for the synchro reports. The example I have is intersection \#70 in the attached reports. The delay at the intersection remains the same at $28 \mathrm{sec} /$ veh after optimizing, but the volume reduces from 1856 to 1656. In the application, we can only enter one volume, therefore, the application gives us a zero reduction in delay at intersection 70 , when really there is a reduction in overall delay because there is a fewer amount of vehicles

For example:
How the application shows it:
Existing Delay - $28 \mathrm{sec} / \mathrm{veh}$
Future delay - $28 \mathrm{sec} / \mathrm{veh}$
Delay Reduction $=0 \mathrm{sec} /$ veh
Number of Vehicles $=1856$ vehicles
Reduction in delay $=0$ sec

How I would show it
Existing: $28 \mathrm{sec} /$ veh * 1856 veh $=51968$ sec of delay
Future: $28 \mathrm{sec} / \mathrm{veh} * 1656$ veh $=46368 \mathrm{sec}$ of delay
Total Reduction = 5600 sec

The online app doesn't let us accurately show the reduction because it cannot account for the reduction in vehicles.

Let me know if you still have questions.
-Tom

From: Peterson, Steven [mailto:Steven.Peterson@metc.state.mn.us]
Sent: Monday, July 02, 2018 4:57 PM
To: Tom Sachi TSachi@srfconsulting.com
Subject: Synchro

Tom,
When you get done with the Synchro reports for those two projects, could you please share them with Elaine and I to make sure there isn't a way to input it into Webgrants somehow?

Steve Peterson, AICP

Manager of Highway Planning and TAB/TAC Process
Metropolitan Transportation Services
steven.peterson@metc.state.mn.us
P. 651.602.1819 | F. 651.602.1739
390 North Robert Street | St. Paul, MN | 55101 | metrocouncil.org

<image002.gif><image003.png><image004.png><image005.png> <image006.gif>

<Future PM_Balanced - Report.pdf>
<Existing PM_Balanced - Report.pdf>

Maple Grove - CSAH 610 Expansion

399: CR 30 and Lawndale		
Existing Volume	1936	vehicles
Existing Delay	36	sec/veh
Existing Total Delay	69696	seconds
Future Volume	737	vehicles
Future Delay	28	sec/veh
Future Total Delay	20636	seconds
Total Delay Reduction	49060	seconds

$40:$ CR 30 and Garland Ln		
Existing Volume	2134	vehicles
Existing Delay	19	sec/veh
Existing Total Delay	40546	seconds
Future Volume	935	vehicles
Future Delay	15	sec/veh
Future Total Delay	14025	seconds
Total Delay Reduction	26521	seconds

401:CR 30 and Dunkirk/Maple Grove Parkway		
Existing Volume	3935	vehicles
Existing Delay	37	sec/veh
Existing Total Delay	145595	seconds
Future Volume	2751	vehicles
Future Delay	26	sec/veh
Future Total Delay	71526	seconds
Total Delay Reduction	74069	seconds

402: Maple Grove Parkway/West 94 Ramps		
Existing Volume	3549	vehicles
Existing Delay	37	sec/veh
Existing Total Delay	131313	seconds
Future Volume	2591	vehicles
Future Delay	30	sec/veh
Future Total Delay	77730	seconds
Total Delay Reduction	53583	seconds

403: Maple Grove Parkway/East 94 Ramps		
Existing Volume	3164	vehicles
Existing Delay	39	sec/veh
Existing Total Delay	123396	seconds
Future Volume	2398	vehicles
Future Delay	29	sec/veh
Future Total Delay	69542	seconds
Total Delay Reduction	53854	seconds

404: Maple Grove Parkway/Upland Ln		
Existing Volume	2601	vehicles
Existing Delay	19	sec/veh
Existing Total Delay	49419	seconds
Future Volume	2061	vehicles
Future Delay	16	sec/veh
Future Total Delay	32976	seconds
Total Delay Reduction	16443	seconds

405: Maple Grove Parkway/Hospital Drive			
Existing Volume	2209	vehicles	
Existing Delay	28	sec/veh	
Existing Total Delay	61852	seconds	
Future Volume	1750	vehicles	
Future Delay	22	sec/veh	
Future Total Delay	38500	seconds	
Total Delay Reduction	23352	seconds	

406: Maple Grove Parkway/Grove Circle		
Existing Volume	2369	vehicles
Existing Delay	17	sec/veh
Existing Total Delay	40273	seconds
Future Volume	1839	vehicles
Future Delay	16	sec/veh
Future Total Delay	29424	seconds
Total Delay Reduction	10849	seconds

407: Maple Grove Parkway/South 610 Ramps		
Existing Volume	1901	vehicles
Existing Delay	4	sec/veh
Existing Total Delay	7604	seconds
Future Volume	1274	vehicles
Future Delay	4	sec/veh
Future Total Delay	5096	seconds
Total Delay Reduction	2508	seconds

408: Maple Grove Parkway/North 610 Ramps		
Existing Volume	1390	vehicles
Existing Delay	17	sec/veh
Existing Total Delay	23630	seconds
Future Volume	975	vehicles
Future Delay	13	sec/veh
Future Total Delay	12675	seconds
Total Delay Reduction	10955	seconds

409: Maple Grove Parkway/CR 81		
Existing Volume	2431	vehicles
Existing Delay	16	sec/veh
Existing Total Delay	38896	seconds
Future Volume	2331	vehicles
Future Delay	16	sec/veh
Future Total Delay	37296	seconds
Total Delay Reduction	1600	seconds

410: CR 81/Fernbrook Lane		
Existing Volume	3355	vehicles
Existing Delay	60	sec/veh
Existing Total Delay	201300	seconds
Future Volume	3255	vehicles
Future Delay	51	sec/veh
Future Total Delay	166005	seconds
Total Delay Reduction	35295	seconds

399: CR 30 \& Lawndale Ln

Direction	All
Future Volume (vph)	1936
Total Delay / Veh (s/v)	36
CO Emissions (kg)	3.36
NOx Emissions (kg)	0.65
VOC Emissions (kg)	0.78

400: CR 30 \& Garland Ln

Direction	All
Future Volume (vph)	2134
Total Delay / Veh (s/v)	19
CO Emissions (kg)	3.01
NOx Emissions (kg)	0.59
VOC Emissions (kg)	0.70

401: Dunkirk Ln/MGP \& CR 30

Direction	All
Future Volume (vph)	3935
Total Delay / Veh (s/v)	39
CO Emissions (kg)	5.99
NOx Emissions (kg)	1.17
VOC Emissions (kg)	1.39

402: West Ramps \& MGP

Direction	All
Future Volume (vph)	3549
Total Delay / Veh (s/v)	37
CO Emissions (kg)	5.13
NOx Emissions (kg)	1.00
VOC Emissions (kg)	1.19

403: East Ramps \& MGP

Direction	All
Future Volume (vph)	3164
Total Delay / Veh $(\mathrm{s} / \mathrm{v})$	39
CO Emissions (kg)	4.53
NOx Emissions (kg)	0.88
VOC Emissions (kg)	1.05

[^1]Page 1

404: Upland Ln \& MGP

Direction	All
Future Volume (vph)	2601
Total Delay / Veh (s/v)	19
CO Emissions (kg)	2.96
NOx Emissions (kg)	0.58
VOC Emissions (kg)	0.69

405: MGP \& Hospital Dr

Direction	All
Future Volume (vph)	2290
Total Delay / Veh (s/v)	28
CO Emissions (kg)	3.10
NOx Emissions (kg)	0.60
VOC Emissions (kg)	0.72

406: MGP \& Grove Circle/99th Ave

Direction	All
Future Volume (vph)	2369
Total Delay / Veh (s/v)	17
CO Emissions $(\mathrm{kg}$	2.67
NOx Emissions (kg)	0.52
VOC Emissions (kg)	0.62

407: MGP \& 610 South Ramps

Direction	All
Future Volume (vph)	1901
Total Delay / Veh (s/v)	4
CO Emissions (kg)	1.07
NOx Emissions (kg)	0.21
VOC Emissions (kg)	0.25

408: MGP \& 610 North Ramps

Direction	All
Future Volume (vph)	1390
Total Delay / Veh $(\mathrm{s} / \mathrm{v})$	17
CO Emissions (kg)	1.51
NOx Emissions (kg)	0.29
VOC Emissions (kg)	0.35

[^2]
409: MGP \& CR 81

Direction	All
Future Volume (vph)	2431
Total Delay / Veh $(\mathrm{s} / \mathrm{v})$	16
CO Emissions (kg)	4.39
NOx Emissions (kg)	0.85
VOC Emissions (kg)	1.02

410: Fernbrook Ln \& CR 81

Direction	All
Future Volume (vph)	3355
Total Delay / veh (s/v)	60
CO Emissions $(\mathrm{kg}$	7.50
NOx Emissions (kg)	1.46
VOC Emissions (kg)	1.74

	\pm		1	\rightarrow	4	\pm	4
Phase Number	1	2	3	4	5	6	8
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	None	None	None	Max	None
Maximum Split (s)	10	22	11	22	10	22	33
Maximum Split (\%)	15.4\%	33.8\%	16.9\%	33.8\%	15.4\%	33.8\%	50.8\%
Minimum Split (s)	10	22	10	22	10	22	22
Yellow Time (s)	4	4	4	4	4	4	4
All-Red Time (s)	2	2	2	2	2	2	2
Minimum Initial (s)	4	4	4	4	4	4	4
Vehicle Extension (s)	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0
Walk Time (s)		5		5		5	5
Flash Dont Walk (s)		11		11		11	11
Dual Entry	No	Yes	No	Yes	No	Yes	Yes
Inhibit Max	Yes						
Start Time (s)	0	10	32	43	0	10	32
End Time (s)	10	32	43	0	10	32	0
Yield/Force Off (s)	4	26	37	59	4	26	59
Yield/Force Off 170(s)	4	15	37	48	4	15	48
Local Start Time (s)	55	0	22	33	55	0	22
Local Yield (s)	59	16	27	49	59	16	49
Local Yield 170(s)	59	5	27	38	59	5	38
Intersection Summary							
Cycle Length			65				
Control Type	Actuate	d-Uncoo	dinated				
Natural Cycle			65				

Splits and Phases: 399: CR 30 \& Lawndale Ln

		1		\rightarrow	4	1	4	\pm
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBSB	WBL	EBWB	NBL	NBSB	EBL	EBWB
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	Max	None	None	None	Max	None	None
Maximum Split (s)	10	22	15	28	10	22	10	33
Maximum Split (\%)	13.3\%	29.3\%	20.0\%	37.3\%	13.3\%	29.3\%	13.3\%	44.0\%
Minimum Split (s)	10	22	10	22	10	22	10	22
Yellow Time (s)	4	4	4	4	4	4	4	4
All-Red Time (s)	2	2	2	2	2	2	2	2
Minimum Initial (s)	4	4	4	4	4	4	4	4
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		5		5		5		5
Flash Dont Walk (s)		11		11		11		11
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	0	10	32	47	0	10	32	42
End Time (s)	10	32	47	0	10	32	42	0
Yield/Force Off (s)	4	26	41	69	4	26	36	69
Yield/Force Off 170(s)	4	15	41	58	4	15	36	58
Local Start Time (s)	65	0	22	37	65	0	22	32
Local Yield (s)	69	16	31	59	69	16	26	59
Local Yield 170(s)	69	5	31	48	69	5	26	48
Intersection Summary								
Cycle Length			75					
Control Type	Actuated-Uncoordinated							
Natural Cycle			75					

Splits and Phases: 400: CR 30 \& Garland Ln

[^3]| | | | 4 | \rightarrow | 4 | \pm | 4 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lead | Lag | Lead | Lag | Lag | Lead | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | Max | None | None | None | Max | None | None |
| Maximum Split (s) | 18 | 33 | 17 | 22 | 13 | 38 | 17 | 22 |
| Maximum Split (\%) | 20.0\% | 36.7\% | 18.9\% | 24.4\% | 14.4\% | 42.2\% | 18.9\% | 24.4\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | No |
| Start Time (s) | 0 | 18 | 51 | 68 | 38 | 0 | 51 | 68 |
| End Time (s) | 18 | 51 | 68 | 0 | 51 | 38 | 68 | 0 |
| Yield/Force Off (s) | 12 | 45 | 62 | 84 | 45 | 32 | 62 | 84 |
| Yield/Force Off 170(s) | 12 | 34 | 62 | 73 | 45 | 21 | 62 | 73 |
| Local Start Time (s) | 72 | 0 | 33 | 50 | 20 | 72 | 33 | 50 |
| Local Yield (s) | 84 | 27 | 44 | 66 | 27 | 14 | 44 | 66 |
| Local Yield 170(s) | 84 | 16 | 44 | 55 | 27 | 3 | 44 | 55 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 90 | | | | | |
| Control Type | Actuated-Uncoordinated | | | | | | | |
| Natural Cycle | | | 90 | | | | | |

Splits and Phases: 401: Dunkirk Ln/MGP \& CR 30

[^4]| | | | 1 | \rightarrow | 4 | \pm | 4 | $1 \sim$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lag | Lead | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 15 | 23 | 19 | 33 | 14 | 24 | 12 | 40 |
| Maximum Split (\%) | 16.7\% | 25.6\% | 21.1\% | 36.7\% | 15.6\% | 26.7\% | 13.3\% | 44.4\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 9 | 76 | 24 | 43 | 76 | 0 | 24 | 36 |
| End Time (s) | 24 | 9 | 43 | 76 | 0 | 24 | 36 | 76 |
| Yield/Force Off (s) | 18 | 3 | 37 | 70 | 84 | 18 | 30 | 70 |
| Yield/Force Off 170(s) | 18 | 82 | 37 | 59 | 84 | 7 | 30 | 59 |
| Local Start Time (s) | 9 | 76 | 24 | 43 | 76 | 0 | 24 | 36 |
| Local Yield (s) | 18 | 3 | 37 | 70 | 84 | 18 | 30 | 70 |
| Local Yield 170(s) | 18 | 82 | 37 | 59 | 84 | 7 | 30 | 59 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 90 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 90 | | | | | |
| Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 402: West Ramps \& MGP

[^5]| | | | 1 | \rightarrow | 4 | \pm | 4 | $1 \sim$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lead | Lag | Lag | Lead | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 15 | 30 | 12 | 23 | 21 | 24 | 10 | 25 |
| Maximum Split (\%) | 18.8\% | 37.5\% | 15.0\% | 28.8\% | 26.3\% | 30.0\% | 12.5\% | 31.3\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 59 | 74 | 47 | 24 | 59 | 0 | 24 | 34 |
| End Time (s) | 74 | 24 | 59 | 47 | 0 | 24 | 34 | 59 |
| Yield/Force Off (s) | 68 | 18 | 53 | 41 | 74 | 18 | 28 | 53 |
| Yield/Force Off 170(s) | 68 | 7 | 53 | 30 | 74 | 7 | 28 | 42 |
| Local Start Time (s) | 59 | 74 | 47 | 24 | 59 | 0 | 24 | 34 |
| Local Yield (s) | 68 | 18 | 53 | 41 | 74 | 18 | 28 | 53 |
| Local Yield 170(s) | 68 | 7 | 53 | 30 | 74 | 7 | 28 | 42 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 80 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 80 | | | | | |
| Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 403: East Ramps \& MGP

[^6]| Phase Number | 2 | 3 | 4 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| Movement | NBL | WBL | EBT | WBT |
| Lead/Lag | | Lead | Lag | |
| Lead-Lag Optimize | | Yes | Yes | |
| Recall Mode | C-Max | None | None | None |
| Maximum Split (s) | 23 | 12 | 25 | 37 |
| Maximum Split (\%) | 38.3\% | 20.0\% | 41.7\% | 61.7\% |
| Minimum Split (s) | 22 | 10 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | 5 | | 5 | 5 |
| Flash Dont Walk (s) | 11 | | 11 | 11 |
| Dual Entry | Yes | No | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 0 | 23 | 35 | 23 |
| End Time (s) | 23 | 35 | 0 | 0 |
| Yield/Force Off (s) | 17 | 29 | 54 | 54 |
| Yield/Force Off 170(s) | 6 | 29 | 43 | 43 |
| Local Start Time (s) | 0 | 23 | 35 | 23 |
| Local Yield (s) | 17 | 29 | 54 | 54 |
| Local Yield 170(s) | 6 | 29 | 43 | 43 |
| Intersection Summary | | | | |

Cycle Length	60
Control Type	Actuated-Coordinated
Natural Cycle	60
Offset: $0(0 \%)$, Referenced to phase 2:NBL and 6:, Start of Green	

Splits and Phases: 404: Upland Ln \& MGP

		4		\rightarrow	4	1	4	$1 \sim$
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBTL	WBL	EBT	NBL	SBTL	EBL	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	C-Max	None	None	None	C-Max	None	None
Maximum Split (s)	10	22	10	23	10	22	10	23
Maximum Split (\%)	15.4\%	33.8\%	15.4\%	35.4\%	15.4\%	33.8\%	15.4\%	35.4\%
Minimum Split (s)	10	22	10	22	10	22	10	22
Yellow Time (s)	4	4	4	4	4	4	4	4
All-Red Time (s)	2	2	2	2	2	2	2	2
Minimum Initial (s)	4	4	4	4	4	4	4	4
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		5		5		5		5
Flash Dont Walk (s)		11		11		11		11
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	55	0	22	32	55	0	22	32
End Time (s)	0	22	32	55	0	22	32	55
Yield/Force Off (s)	59	16	26	49	59	16	26	49
Yield/Force Off 170(s)	59	5	26	38	59	5	26	38
Local Start Time (s)	55	0	22	32	55	0	22	32
Local Yield (s)	59	16	26	49	59	16	26	49
Local Yield 170(s)	59	5	26	38	59	5	26	38
Intersection Summary								
Cycle Length			65					
Control Type	Actu	ated-Coo	dinated					
Natural Cycle			65					
Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green								

Splits and Phases: 405: MGP \& Hospital Dr

[^7]| | | | 1 | \rightarrow | 4 | 1 | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBTL | NBL | SBT | EBL | WBTL |
| Lead/Lag | Lead | Lag | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 10 | 23 | 10 | 22 | 10 | 23 | 10 | 22 |
| Maximum Split (\%) | 15.4\% | 35.4\% | 15.4\% | 33.8\% | 15.4\% | 35.4\% | 15.4\% | 33.8\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 55 | 0 | 23 | 33 | 55 | 0 | 23 | 33 |
| End Time (s) | 0 | 23 | 33 | 55 | 0 | 23 | 33 | 55 |
| Yield/Force Off (s) | 59 | 17 | 27 | 49 | 59 | 17 | 27 | 49 |
| Yield/Force Off 170(s) | 59 | 6 | 27 | 38 | 59 | 6 | 27 | 38 |
| Local Start Time (s) | 55 | 0 | 23 | 33 | 55 | 0 | 23 | 33 |
| Local Yield (s) | 59 | 17 | 27 | 49 | 59 | 17 | 27 | 49 |
| Local Yield 170(s) | 59 | 6 | 27 | 38 | 59 | 6 | 27 | 38 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 65 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 65 | | | | | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 406: MGP \& Grove Circle/99th Ave

[^8]| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 6 | 8 |
| Movement | SBL | NBT | SBT | WBL |
| Lead/Lag | Lead | Lag | | |
| Lead-Lag Optimize | Yes | Yes | | |
| Recall Mode | None | C-Max | C-Max | None |
| Maximum Split (s) | 10 | 28 | 38 | 22 |
| Maximum Split (\%) | 16.7\% | 46.7\% | 63.3\% | 36.7\% |
| Minimum Split (s) | 10 | 22 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | 5 | 5 |
| Flash Dont Walk (s) | | 11 | 11 | 11 |
| Dual Entry | No | Yes | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 50 | 0 | 50 | 28 |
| End Time (s) | 0 | 28 | 28 | 50 |
| Yield/Force Off (s) | 54 | 22 | 22 | 44 |
| Yield/Force Off 170(s) | 54 | 11 | 11 | 33 |
| Local Start Time (s) | 50 | 0 | 50 | 28 |
| Local Yield (s) | 54 | 22 | 22 | 44 |
| Local Yield 170(s) | 54 | 11 | 11 | 33 |
| Intersection Summary | | | | |
| Cycle Length | | | 60 | |
| Control Type Actuated-Coor | | | dinated | |
| Natural Cycle | | | 60 | |
| Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | |

Splits and Phases: 407: MGP \& 610 South Ramps

[^9]| | | 4 | 1 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Phase Number | 2 | 5 | 6 | 8 |
| Movement | NBT | NBL | SBT | WBTL |
| Lead/Lag | | Lead | Lag | |
| Lead-Lag Optimize | | Yes | Yes | |
| Recall Mode | C-Max | None | C-Max | None |
| Maximum Split (s) | 33 | 11 | 22 | 22 |
| Maximum Split (\%) | 60.0\% | 20.0\% | 40.0\% | 40.0\% |
| Minimum Split (s) | 22 | 10 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | 5 | | 5 | 5 |
| Flash Dont Walk (s) | 11 | | 11 | 11 |
| Dual Entry | Yes | No | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 44 | 44 | 0 | 22 |
| End Time (s) | 22 | 0 | 22 | 44 |
| Yield/Force Off (s) | 16 | 49 | 16 | 38 |
| Yield/Force Off 170(s) | 5 | 49 | 5 | 27 |
| Local Start Time (s) | 44 | 44 | 0 | 22 |
| Local Yield (s) | 16 | 49 | 16 | 38 |
| Local Yield 170(s) | 5 | 49 | 5 | 27 |
| Intersection Summary | | | | |
| Cycle Length | | | 55 | |
| Control Type Actuated-Coo | | | dinated | |
| Natural Cycle | | | 55 | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | |

Splits and Phases: 408: MGP \& 610 North Ramps

Cycle Length	60
Control Type	Actuated-Coordinated
Natural Cycle	60
Offset: $0(0 \%)$, Referenced to phase 2:NBL and 6:, Start of Green	

Splits and Phases: 409: MGP \& CR 81

			1	\rightarrow	4	\pm	4	$1 \sim$
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	C-Max	None	None	None	C-Max	None	None
Maximum Split (s)	12	23	18	37	11	24	17	38
Maximum Split (\%)	13.3\%	25.6\%	20.0\%	41.1\%	12.2\%	26.7\%	18.9\%	42.2\%
Minimum Split (s)	10	22	10	22	10	22	10	22
Yellow Time (s)	4	4	4	4	4	4	4	4
All-Red Time (s)	2	2	2	2	2	2	2	2
Minimum Initial (s)	4	4	4	4	4	4	4	4
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		5		5		5		5
Flash Dont Walk (s)		11		11		11		11
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	78	0	23	41	78	89	23	40
End Time (s)	0	23	41	78	89	23	40	78
Yield/Force Off (s)	84	17	35	72	83	17	34	72
Yield/Force Off 170(s)	84	6	35	61	83	6	34	61
Local Start Time (s)	78	0	23	41	78	89	23	40
Local Yield (s)	84	17	35	72	83	17	34	72
Local Yield 170(s)	84	6	35	61	83	6	34	61
Intersection Summary								
Cycle Length			90					
Control Type	Actu	ated-Coo	dinated					
Natural Cycle			90					
Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green								

Splits and Phases: \quad 410: Fernbrook Ln \& CR 81

[^10]
399: CR 30 \& Lawndale Ln

Direction	All
Future Volume (vph)	737
Total Delay / Veh (s/v)	28
CO Emissions (kg)	1.05
NOx Emissions (kg)	0.20
VOC Emissions (kg)	0.24

400: CR 30 \& Garland Ln

Direction	All
Future Volume (vph)	935
Total Delay / Veh (s/v)	15
CO Emissions (kg)	1.11
NOx Emissions (kg)	0.21
VOC Emissions (kg)	0.26

401: Dunkirk Ln/MGP \& CR 30

Direction	All
Future Volume (vph)	2751
Total Delay / Veh (s/v)	26
CO Emissions (kg)	3.61
NOx Emissions (kg)	0.70
VOC Emissions (kg)	0.84

402: West Ramps \& MGP

Direction	All
Future Volume (vph)	2591
Total Delay / Veh (s/v)	30
CO Emissions (kg)	3.53
NOx Emissions (kg)	0.69
VOC Emissions (kg)	0.82

403: East Ramps \& MGP

Direction	All
Future Volume (vph)	2398
Total Delay / Veh $(\mathrm{s} / \mathrm{v})$	29
CO Emissions (kg)	2.98
NOx Emissions (kg)	0.58
VOC Emissions (kg)	0.69

[^11]Page 1

404: Upland Ln \& MGP

Direction	All
Future Volume (vph)	2061
Total Delay / Veh (s/v)	16
CO Emissions (kg)	2.21
NOx Emissions (kg)	0.43
VOC Emissions (kg)	0.51

405: MGP \& Hospital Dr

Direction	All
Future Volume (vph)	1750
Total Delay / Veh (s/v)	22
CO Emissions (kg)	2.15
NOx Emissions (kg)	0.42
VOC Emissions (kg)	0.50

406: MGP \& Grove Circle/99th Ave

Direction	All
Future Volume (vph)	1839
Total Delay / Veh (s/v)	16
CO Emissions (kg)	2.00
NOx Emissions kg$)$	0.39
VOC Emissions (kg)	0.46

407: MGP \& 610 South Ramps

Direction	All
Future Volume (vph)	1274
Total Delay / Veh (s/v)	4
CO Emissions (kg)	0.74
NOx Emissions (kg)	0.14
VOC Emissions (kg)	0.17

408: MGP \& 610 North Ramps

Direction	All
Future Volume (vph)	975
Total Delay / Veh (s/v)	13
CO Emissions (kg)	0.93
NOx Emissions kg$)$	0.18
VOC Emissions (kg)	0.22

[^12]
409: MGP \& CR 81

Direction	All
Future Volume (vph)	2331
Total Delay / Veh (s/v)	16
CO Emissions (kg)	4.21
NOx Emissions (kg)	0.82
VOC Emissions (kg)	0.98

410: Fernbrook Ln \& CR 81

Direction	All
Future Volume (vph)	3255
Total Delay / Veh (s/v)	51
CO Emissions (kg)	6.83
NOx Emissions (kg)	1.33
VOC Emissions (kg)	1.58

Splits and Phases: 399: CR 30 \& Lawndale Ln

[^13]

Splits and Phases: $\quad 400$: CR 30 \& Garland Ln

[^14]| | | | 7 | \rightarrow | 4 | 1 | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lead | Lag | Lag | Lead | Lag | Lead | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 13 | 22 | 13 | 22 | 13 | 22 | 12 | 23 |
| Maximum Split (\%) | 18.6\% | 31.4\% | 18.6\% | 31.4\% | 18.6\% | 31.4\% | 17.1\% | 32.9\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | No |
| Start Time (s) | 57 | 0 | 44 | 22 | 9 | 57 | 22 | 34 |
| End Time (s) | 0 | 22 | 57 | 44 | 22 | 9 | 34 | 57 |
| Yield/Force Off (s) | 64 | 16 | 51 | 38 | 16 | 3 | 28 | 51 |
| Yield/Force Off 170(s) | 64 | 5 | 51 | 27 | 16 | 62 | 28 | 40 |
| Local Start Time (s) | 57 | 0 | 44 | 22 | 9 | 57 | 22 | 34 |
| Local Yield (s) | 64 | 16 | 51 | 38 | 16 | 3 | 28 | 51 |
| Local Yield 170(s) | 64 | 5 | 51 | 27 | 16 | 62 | 28 | 40 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 70 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 70 | | | | | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 401: Dunkirk Ln/MGP \& CR 30

[^15]| | | | | \rightarrow | 4 | \pm | 4 | \Perp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lag | Lead | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 13 | 23 | 12 | 22 | 12 | 24 | 12 | 22 |
| Maximum Split (\%) | 18.6\% | 32.9\% | 17.1\% | 31.4\% | 17.1\% | 34.3\% | 17.1\% | 31.4\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 11 | 58 | 24 | 36 | 58 | 0 | 24 | 36 |
| End Time (s) | 24 | 11 | 36 | 58 | 0 | 24 | 36 | 58 |
| Yield/Force Off (s) | 18 | 5 | 30 | 52 | 64 | 18 | 30 | 52 |
| Yield/Force Off 170(s) | 18 | 64 | 30 | 41 | 64 | 7 | 30 | 41 |
| Local Start Time (s) | 11 | 58 | 24 | 36 | 58 | 0 | 24 | 36 |
| Local Yield (s) | 18 | 5 | 30 | 52 | 64 | 18 | 30 | 52 |
| Local Yield 170(s) | 18 | 64 | 30 | 41 | 64 | 7 | 30 | 41 |
| Intersection Summary | | | | | | | | |
| Cycle Length 70 | | | | | | | | |
| Control Type Actuated-Coordinated | | | | | | | | |
| Natural Cycle | | | 70 | | | | | |
| Offset: $0(0 \%$), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 402: West Ramps \& MGP

[^16]| | \pm | | 1 | \rightarrow | 4 | \pm | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lead | Lag | Lag | Lead | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 11 | 22 | 10 | 22 | 11 | 22 | 10 | 22 |
| Maximum Split (\%) | 16.9\% | 33.8\% | 15.4\% | 33.8\% | 16.9\% | 33.8\% | 15.4\% | 33.8\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 54 | 0 | 44 | 22 | 54 | 0 | 22 | 32 |
| End Time (s) | 0 | 22 | 54 | 44 | 0 | 22 | 32 | 54 |
| Yield/Force Off (s) | 59 | 16 | 48 | 38 | 59 | 16 | 26 | 48 |
| Yield/Force Off 170(s) | 59 | 5 | 48 | 27 | 59 | 5 | 26 | 37 |
| Local Start Time (s) | 54 | 0 | 44 | 22 | 54 | 0 | 22 | 32 |
| Local Yield (s) | 59 | 16 | 48 | 38 | 59 | 16 | 26 | 48 |
| Local Yield 170(s) | 59 | 5 | 48 | 27 | 59 | 5 | 26 | 37 |
| Intersection Summary | | | | | | | | |
| Cycle Length 65 | | | | | | | | |
| Control Type Actuated-Coordinated | | | | | | | | |
| Natural Cycle 65 | | | | | | | | |
| Offset: $0(0 \%$), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 403: East Ramps \& MGP

[^17]

Cycle Length	60
Control Type	Actuated-Uncoordinated
Natural Cycle	60

Splits and Phases: 404: Upland Ln \& MGP

[^18]| | | | | \rightarrow | 4 | 1 | 4 | $\stackrel{-}{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBTL | WBL | EBT | NBL | SBTL | EBL | WBT |
| Lead/Lag | Lead | Lag | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 10 | 22 | 10 | 23 | 10 | 22 | 11 | 22 |
| Maximum Split (\%) | 15.4\% | 33.8\% | 15.4\% | 35.4\% | 15.4\% | 33.8\% | 16.9\% | 33.8\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 55 | 0 | 22 | 32 | 55 | 0 | 22 | 33 |
| End Time (s) | 0 | 22 | 32 | 55 | 0 | 22 | 33 | 55 |
| Yield/Force Off (s) | 59 | 16 | 26 | 49 | 59 | 16 | 27 | 49 |
| Yield/Force Off 170(s) | 59 | 5 | 26 | 38 | 59 | 5 | 27 | 38 |
| Local Start Time (s) | 55 | 0 | 22 | 32 | 55 | 0 | 22 | 33 |
| Local Yield (s) | 59 | 16 | 26 | 49 | 59 | 16 | 27 | 49 |
| Local Yield 170(s) | 59 | 5 | 26 | 38 | 59 | 5 | 27 | 38 |
| Intersection Summary | | | | | | | | |
| Cycle Length 65 | | | | | | | | |
| Control Type Actuated-Coordinated | | | | | | | | |
| Natural Cycle 65 | | | | | | | | |
| Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green | | | | | | | | |

Splits and Phases: 405: MGP \& Hospital Dr

[^19]| | | | | \rightarrow | 4 | 1 | 4 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBTL | NBL | SBT | EBL | WBTL |
| Lead/Lag | Lead | Lag | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 10 | 23 | 10 | 22 | 10 | 23 | 10 | 22 |
| Maximum Split (\%) | 15.4\% | 35.4\% | 15.4\% | 33.8\% | 15.4\% | 35.4\% | 15.4\% | 33.8\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 55 | 0 | 23 | 33 | 55 | 0 | 23 | 33 |
| End Time (s) | 0 | 23 | 33 | 55 | 0 | 23 | 33 | 55 |
| Yield/Force Off (s) | 59 | 17 | 27 | 49 | 59 | 17 | 27 | 49 |
| Yield/Force Off 170(s) | 59 | 6 | 27 | 38 | 59 | 6 | 27 | 38 |
| Local Start Time (s) | 55 | 0 | 23 | 33 | 55 | 0 | 23 | 33 |
| Local Yield (s) | 59 | 17 | 27 | 49 | 59 | 17 | 27 | 49 |
| Local Yield 170(s) | 59 | 6 | 27 | 38 | 59 | 6 | 27 | 38 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 65 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 65 | | | | | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 406: MGP \& Grove Circle/99th Ave

[^20]| | | 4 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 6 | 8 | 8 |
| Movement | SBL | NBT | SBT | WBL | |
| Lead/Lag | Lead | Lag | | | |
| Lead-Lag Optimize | Yes | Yes | | | |
| Recall Mode | None | C-Max | C-Max | None | |
| Maximum Split (s) | 11 | 22 | 33 | 22 | |
| Maximum Split (\%) | 20.0\% | 40.0\% | 60.0\% | 40.0\% | |
| Minimum Split (s) | 10 | 22 | 22 | 22 | |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | | 0 |
| Walk Time (s) | | 5 | 5 | 5 | 5 |
| Flash Dont Walk (s) | | 11 | 11 | 11 | |
| Dual Entry | No | Yes | Yes | Yes | |
| Inhibit Max | Yes | Yes | Yes | Yes | |
| Start Time (s) | 44 | 0 | 44 | 22 | |
| End Time (s) | 0 | 22 | 22 | 44 | |
| Yield/Force Off (s) | 49 | 16 | 16 | 38 | |
| Yield/Force Off 170(s) | 49 | 5 | 5 | 27 | |
| Local Start Time (s) | 44 | 0 | 44 | 22 | |
| Local Yield (s) | 49 | 16 | 16 | 38 | |
| Local Yield 170(s) | 49 | 5 | 5 | 27 | |
| Intersection Summary | | | | | |
| Cycle Length | | | 55 | | |
| Control Type Actuated-Coo | | | dinated | | |
| Natural Cycle | | | 55 | | |
| Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | |

Splits and Phases: 407: MGP \& 610 South Ramps

[^21]| | | 4 | | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Phase Number | 2 | 5 | 6 | 8 |
| Movement | NBT | NBL | SBT | WBTL |
| Lead/Lag | | Lead | Lag | |
| Lead-Lag Optimize | | Yes | Yes | |
| Recall Mode | C-Max | None | C-Max | None |
| Maximum Split (s) | 33 | 11 | 22 | 22 |
| Maximum Split (\%) | 60.0\% | 20.0\% | 40.0\% | 40.0\% |
| Minimum Split (s) | 22 | 10 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | 5 | | 5 | 5 |
| Flash Dont Walk (s) | 11 | | 11 | 11 |
| Dual Entry | Yes | No | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 44 | 44 | 0 | 22 |
| End Time (s) | 22 | 0 | 22 | 44 |
| Yield/Force Off (s) | 16 | 49 | 16 | 38 |
| Yield/Force Off 170(s) | 5 | 49 | 5 | 27 |
| Local Start Time (s) | 44 | 44 | 0 | 22 |
| Local Yield (s) | 16 | 49 | 16 | 38 |
| Local Yield 170(s) | 5 | 49 | 5 | 27 |
| Intersection Summary | | | | |
| Cycle Length | | | 55 | |
| Control Type Actuated-Coo | | | dinated | |
| Natural Cycle | | | 55 | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | |

Splits and Phases: 408: MGP \& 610 North Ramps

[^22]| | 4 | 7 | \rightarrow | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Phase Number | 2 | 3 | 4 | 8 |
| Movement | NBL | WBL | EBT | WBT |
| Lead/Lag | | Lead | Lag | |
| Lead-Lag Optimize | | Yes | Yes | |
| Recall Mode | C-Max | None | None | None |
| Maximum Split (s) | 22 | 11 | 22 | 33 |
| Maximum Split (\%) | 40.0\% | 20.0\% | 40.0\% | 60.0\% |
| Minimum Split (s) | 22 | 10 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | 5 | | 5 | 5 |
| Flash Dont Walk (s) | 11 | | 11 | 11 |
| Dual Entry | Yes | No | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 0 | 22 | 33 | 22 |
| End Time (s) | 22 | 33 | 0 | 0 |
| Yield/Force Off (s) | 16 | 27 | 49 | 49 |
| Yield/Force Off 170(s) | 5 | 27 | 38 | 38 |
| Local Start Time (s) | 0 | 22 | 33 | 22 |
| Local Yield (s) | 16 | 27 | 49 | 49 |
| Local Yield 170(s) | 5 | 27 | 38 | 38 |
| Intersection Summary | | | | |
| Cycle Length | | | 55 | |
| Control Type Actuated-Coo | | | dinated | |
| Natural Cycle | | | 55 | |
| Offset: 0 (0\%), Referenced to phase 2:NBL and 6:, Start of Green | | | | |

Splits and Phases: 409: MGP \& CR 81

[^23]

Splits and Phases: 410: Fernbrook Ln \& CR 81

[^24]Maple Grove Regional Solicitation

Network Totals

Number of Intersections	1
Total Delay / Veh (s/v)	21
Total Delay (hr)	14
Stops (\#)	1589
Average Speed (mph)	27
Total Travel Time (hr)	41
Distance Traveled (mi)	1127
Fuel Consumed (gal)	72
Fuel Economy (mpg)	15.8
CO Emissions (kg)	5.00
NOx Emissions (kg)	0.97
VOC Emissions (kg)	1.16
Performance Index	18.7

Cycle Length	60
Control Type	Actuated-Uncoordinated
Natural Cycle	60

Splits and Phases: 3: CSAH 30/TH 610

[^25]399: CR 30 \& Lawndale Ln

Direction	All
Future Volume (vph)	1936
Total Delay / Veh (s/v)	36
CO Emissions (kg)	3.36
NOx Emissions (kg)	0.65
VOC Emissions (kg)	0.78

400: CR 30 \& Garland Ln

Direction	All
Future Volume (vph)	2134
Total Delay / Veh (s/v)	19
CO Emissions (kg)	3.01
NOx Emissions (kg)	0.59
VOC Emissions (kg)	0.70

401: Dunkirk Ln/MGP \& CR 30

Direction	All
Future Volume (vph)	3935
Total Delay / Veh (s/v)	39
CO Emissions (kg)	5.99
NOx Emissions (kg)	1.17
VOC Emissions (kg)	1.39

402: West Ramps \& MGP

Direction	All
Future Volume (vph)	3549
Total Delay / Veh (s/v)	37
CO Emissions (kg)	5.13
NOx Emissions (kg)	1.00
VOC Emissions (kg)	1.19

403: East Ramps \& MGP

Direction	All
Future Volume (vph)	3164
Total Delay / Veh $(\mathrm{s} / \mathrm{v})$	39
CO Emissions (kg)	4.53
NOx Emissions (kg)	0.88
VOC Emissions (kg)	1.05

[^26]Page 1

404: Upland Ln \& MGP

Direction	All
Future Volume (vph)	2601
Total Delay / Veh (s/v)	19
CO Emissions (kg)	2.96
NOx Emissions (kg)	0.58
VOC Emissions (kg)	0.69

405: MGP \& Hospital Dr

Direction	All
Future Volume (vph)	2290
Total Delay / Veh (s/v)	28
CO Emissions (kg)	3.10
NOx Emissions (kg)	0.60
VOC Emissions (kg)	0.72

406: MGP \& Grove Circle/99th Ave

Direction	All
Future Volume (vph)	2369
Total Delay / Veh (s/v)	17
CO Emissions $(\mathrm{kg}$	2.67
NOx Emissions (kg)	0.52
VOC Emissions (kg)	0.62

407: MGP \& 610 South Ramps

Direction	All
Future Volume (vph)	1901
Total Delay / Veh (s/v)	4
CO Emissions (kg)	1.07
NOx Emissions (kg)	0.21
VOC Emissions (kg)	0.25

408: MGP \& 610 North Ramps

Direction	All
Future Volume (vph)	1390
Total Delay / Veh $(\mathrm{s} / \mathrm{v})$	17
CO Emissions (kg)	1.51
NOx Emissions (kg)	0.29
VOC Emissions (kg)	0.35

[^27]
409: MGP \& CR 81

Direction	All
Future Volume (vph)	2431
Total Delay / Veh $(\mathrm{s} / \mathrm{v})$	16
CO Emissions (kg)	4.39
NOx Emissions (kg)	0.85
VOC Emissions (kg)	1.02

410: Fernbrook Ln \& CR 81

Direction	All
Future Volume (vph)	3355
Total Delay / veh (s/v)	60
CO Emissions $(\mathrm{kg}$	7.50
NOx Emissions (kg)	1.46
VOC Emissions (kg)	1.74

	\pm		1	\rightarrow	4	\pm	4
Phase Number	1	2	3	4	5	6	8
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	None	None	None	Max	None
Maximum Split (s)	10	22	11	22	10	22	33
Maximum Split (\%)	15.4\%	33.8\%	16.9\%	33.8\%	15.4\%	33.8\%	50.8\%
Minimum Split (s)	10	22	10	22	10	22	22
Yellow Time (s)	4	4	4	4	4	4	4
All-Red Time (s)	2	2	2	2	2	2	2
Minimum Initial (s)	4	4	4	4	4	4	4
Vehicle Extension (s)	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0
Walk Time (s)		5		5		5	5
Flash Dont Walk (s)		11		11		11	11
Dual Entry	No	Yes	No	Yes	No	Yes	Yes
Inhibit Max	Yes						
Start Time (s)	0	10	32	43	0	10	32
End Time (s)	10	32	43	0	10	32	0
Yield/Force Off (s)	4	26	37	59	4	26	59
Yield/Force Off 170(s)	4	15	37	48	4	15	48
Local Start Time (s)	55	0	22	33	55	0	22
Local Yield (s)	59	16	27	49	59	16	49
Local Yield 170(s)	59	5	27	38	59	5	38
Intersection Summary							
Cycle Length			65				
Control Type	Actuate	d-Uncoo	dinated				
Natural Cycle			65				

Splits and Phases: 399: CR 30 \& Lawndale Ln

		1		\rightarrow	4	1	4	\pm
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBSB	WBL	EBWB	NBL	NBSB	EBL	EBWB
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	Max	None	None	None	Max	None	None
Maximum Split (s)	10	22	15	28	10	22	10	33
Maximum Split (\%)	13.3\%	29.3\%	20.0\%	37.3\%	13.3\%	29.3\%	13.3\%	44.0\%
Minimum Split (s)	10	22	10	22	10	22	10	22
Yellow Time (s)	4	4	4	4	4	4	4	4
All-Red Time (s)	2	2	2	2	2	2	2	2
Minimum Initial (s)	4	4	4	4	4	4	4	4
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		5		5		5		5
Flash Dont Walk (s)		11		11		11		11
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	0	10	32	47	0	10	32	42
End Time (s)	10	32	47	0	10	32	42	0
Yield/Force Off (s)	4	26	41	69	4	26	36	69
Yield/Force Off 170(s)	4	15	41	58	4	15	36	58
Local Start Time (s)	65	0	22	37	65	0	22	32
Local Yield (s)	69	16	31	59	69	16	26	59
Local Yield 170(s)	69	5	31	48	69	5	26	48
Intersection Summary								
Cycle Length			75					
Control Type	Actuated-Uncoordinated							
Natural Cycle			75					

Splits and Phases: 400: CR 30 \& Garland Ln

[^28]| | | | 4 | \rightarrow | 4 | \pm | 4 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lead | Lag | Lead | Lag | Lag | Lead | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | Max | None | None | None | Max | None | None |
| Maximum Split (s) | 18 | 33 | 17 | 22 | 13 | 38 | 17 | 22 |
| Maximum Split (\%) | 20.0\% | 36.7\% | 18.9\% | 24.4\% | 14.4\% | 42.2\% | 18.9\% | 24.4\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | No |
| Start Time (s) | 0 | 18 | 51 | 68 | 38 | 0 | 51 | 68 |
| End Time (s) | 18 | 51 | 68 | 0 | 51 | 38 | 68 | 0 |
| Yield/Force Off (s) | 12 | 45 | 62 | 84 | 45 | 32 | 62 | 84 |
| Yield/Force Off 170(s) | 12 | 34 | 62 | 73 | 45 | 21 | 62 | 73 |
| Local Start Time (s) | 72 | 0 | 33 | 50 | 20 | 72 | 33 | 50 |
| Local Yield (s) | 84 | 27 | 44 | 66 | 27 | 14 | 44 | 66 |
| Local Yield 170(s) | 84 | 16 | 44 | 55 | 27 | 3 | 44 | 55 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 90 | | | | | |
| Control Type | Actuated-Uncoordinated | | | | | | | |
| Natural Cycle | | | 90 | | | | | |

Splits and Phases: 401: Dunkirk Ln/MGP \& CR 30

[^29]| | | | 1 | \rightarrow | 4 | \pm | 4 | $1 \sim$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lag | Lead | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 15 | 23 | 19 | 33 | 14 | 24 | 12 | 40 |
| Maximum Split (\%) | 16.7\% | 25.6\% | 21.1\% | 36.7\% | 15.6\% | 26.7\% | 13.3\% | 44.4\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 9 | 76 | 24 | 43 | 76 | 0 | 24 | 36 |
| End Time (s) | 24 | 9 | 43 | 76 | 0 | 24 | 36 | 76 |
| Yield/Force Off (s) | 18 | 3 | 37 | 70 | 84 | 18 | 30 | 70 |
| Yield/Force Off 170(s) | 18 | 82 | 37 | 59 | 84 | 7 | 30 | 59 |
| Local Start Time (s) | 9 | 76 | 24 | 43 | 76 | 0 | 24 | 36 |
| Local Yield (s) | 18 | 3 | 37 | 70 | 84 | 18 | 30 | 70 |
| Local Yield 170(s) | 18 | 82 | 37 | 59 | 84 | 7 | 30 | 59 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 90 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 90 | | | | | |
| Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 402: West Ramps \& MGP

[^30]| | | | 1 | \rightarrow | 4 | \pm | 4 | $1 \sim$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lead | Lag | Lag | Lead | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 15 | 30 | 12 | 23 | 21 | 24 | 10 | 25 |
| Maximum Split (\%) | 18.8\% | 37.5\% | 15.0\% | 28.8\% | 26.3\% | 30.0\% | 12.5\% | 31.3\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 59 | 74 | 47 | 24 | 59 | 0 | 24 | 34 |
| End Time (s) | 74 | 24 | 59 | 47 | 0 | 24 | 34 | 59 |
| Yield/Force Off (s) | 68 | 18 | 53 | 41 | 74 | 18 | 28 | 53 |
| Yield/Force Off 170(s) | 68 | 7 | 53 | 30 | 74 | 7 | 28 | 42 |
| Local Start Time (s) | 59 | 74 | 47 | 24 | 59 | 0 | 24 | 34 |
| Local Yield (s) | 68 | 18 | 53 | 41 | 74 | 18 | 28 | 53 |
| Local Yield 170(s) | 68 | 7 | 53 | 30 | 74 | 7 | 28 | 42 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 80 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 80 | | | | | |
| Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 403: East Ramps \& MGP

[^31]| Phase Number | 2 | 3 | 4 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| Movement | NBL | WBL | EBT | WBT |
| Lead/Lag | | Lead | Lag | |
| Lead-Lag Optimize | | Yes | Yes | |
| Recall Mode | C-Max | None | None | None |
| Maximum Split (s) | 23 | 12 | 25 | 37 |
| Maximum Split (\%) | 38.3\% | 20.0\% | 41.7\% | 61.7\% |
| Minimum Split (s) | 22 | 10 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | 5 | | 5 | 5 |
| Flash Dont Walk (s) | 11 | | 11 | 11 |
| Dual Entry | Yes | No | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 0 | 23 | 35 | 23 |
| End Time (s) | 23 | 35 | 0 | 0 |
| Yield/Force Off (s) | 17 | 29 | 54 | 54 |
| Yield/Force Off 170(s) | 6 | 29 | 43 | 43 |
| Local Start Time (s) | 0 | 23 | 35 | 23 |
| Local Yield (s) | 17 | 29 | 54 | 54 |
| Local Yield 170(s) | 6 | 29 | 43 | 43 |
| Intersection Summary | | | | |

Cycle Length	60
Control Type	Actuated-Coordinated
Natural Cycle	60
Offset: $0(0 \%)$, Referenced to phase 2:NBL and 6:, Start of Green	

Splits and Phases: 404: Upland Ln \& MGP

		4		\rightarrow	4	1	4	$1 \sim$
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBTL	WBL	EBT	NBL	SBTL	EBL	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	C-Max	None	None	None	C-Max	None	None
Maximum Split (s)	10	22	10	23	10	22	10	23
Maximum Split (\%)	15.4\%	33.8\%	15.4\%	35.4\%	15.4\%	33.8\%	15.4\%	35.4\%
Minimum Split (s)	10	22	10	22	10	22	10	22
Yellow Time (s)	4	4	4	4	4	4	4	4
All-Red Time (s)	2	2	2	2	2	2	2	2
Minimum Initial (s)	4	4	4	4	4	4	4	4
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		5		5		5		5
Flash Dont Walk (s)		11		11		11		11
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	55	0	22	32	55	0	22	32
End Time (s)	0	22	32	55	0	22	32	55
Yield/Force Off (s)	59	16	26	49	59	16	26	49
Yield/Force Off 170(s)	59	5	26	38	59	5	26	38
Local Start Time (s)	55	0	22	32	55	0	22	32
Local Yield (s)	59	16	26	49	59	16	26	49
Local Yield 170(s)	59	5	26	38	59	5	26	38
Intersection Summary								
Cycle Length			65					
Control Type	Actu	ated-Coo	dinated					
Natural Cycle			65					
Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green								

Splits and Phases: 405: MGP \& Hospital Dr

[^32]| | | | 1 | \rightarrow | 4 | 1 | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBTL | NBL | SBT | EBL | WBTL |
| Lead/Lag | Lead | Lag | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 10 | 23 | 10 | 22 | 10 | 23 | 10 | 22 |
| Maximum Split (\%) | 15.4\% | 35.4\% | 15.4\% | 33.8\% | 15.4\% | 35.4\% | 15.4\% | 33.8\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 55 | 0 | 23 | 33 | 55 | 0 | 23 | 33 |
| End Time (s) | 0 | 23 | 33 | 55 | 0 | 23 | 33 | 55 |
| Yield/Force Off (s) | 59 | 17 | 27 | 49 | 59 | 17 | 27 | 49 |
| Yield/Force Off 170(s) | 59 | 6 | 27 | 38 | 59 | 6 | 27 | 38 |
| Local Start Time (s) | 55 | 0 | 23 | 33 | 55 | 0 | 23 | 33 |
| Local Yield (s) | 59 | 17 | 27 | 49 | 59 | 17 | 27 | 49 |
| Local Yield 170(s) | 59 | 6 | 27 | 38 | 59 | 6 | 27 | 38 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 65 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 65 | | | | | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 406: MGP \& Grove Circle/99th Ave

[^33]| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 6 | 8 |
| Movement | SBL | NBT | SBT | WBL |
| Lead/Lag | Lead | Lag | | |
| Lead-Lag Optimize | Yes | Yes | | |
| Recall Mode | None | C-Max | C-Max | None |
| Maximum Split (s) | 10 | 28 | 38 | 22 |
| Maximum Split (\%) | 16.7\% | 46.7\% | 63.3\% | 36.7\% |
| Minimum Split (s) | 10 | 22 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | 5 | 5 |
| Flash Dont Walk (s) | | 11 | 11 | 11 |
| Dual Entry | No | Yes | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 50 | 0 | 50 | 28 |
| End Time (s) | 0 | 28 | 28 | 50 |
| Yield/Force Off (s) | 54 | 22 | 22 | 44 |
| Yield/Force Off 170(s) | 54 | 11 | 11 | 33 |
| Local Start Time (s) | 50 | 0 | 50 | 28 |
| Local Yield (s) | 54 | 22 | 22 | 44 |
| Local Yield 170(s) | 54 | 11 | 11 | 33 |
| Intersection Summary | | | | |
| Cycle Length | | | 60 | |
| Control Type Actuated-Coor | | | dinated | |
| Natural Cycle | | | 60 | |
| Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | |

Splits and Phases: 407: MGP \& 610 South Ramps

[^34]| | | 4 | 1 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Phase Number | 2 | 5 | 6 | 8 |
| Movement | NBT | NBL | SBT | WBTL |
| Lead/Lag | | Lead | Lag | |
| Lead-Lag Optimize | | Yes | Yes | |
| Recall Mode | C-Max | None | C-Max | None |
| Maximum Split (s) | 33 | 11 | 22 | 22 |
| Maximum Split (\%) | 60.0\% | 20.0\% | 40.0\% | 40.0\% |
| Minimum Split (s) | 22 | 10 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | 5 | | 5 | 5 |
| Flash Dont Walk (s) | 11 | | 11 | 11 |
| Dual Entry | Yes | No | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 44 | 44 | 0 | 22 |
| End Time (s) | 22 | 0 | 22 | 44 |
| Yield/Force Off (s) | 16 | 49 | 16 | 38 |
| Yield/Force Off 170(s) | 5 | 49 | 5 | 27 |
| Local Start Time (s) | 44 | 44 | 0 | 22 |
| Local Yield (s) | 16 | 49 | 16 | 38 |
| Local Yield 170(s) | 5 | 49 | 5 | 27 |
| Intersection Summary | | | | |
| Cycle Length | | | 55 | |
| Control Type Actuated-Coo | | | dinated | |
| Natural Cycle | | | 55 | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | |

Splits and Phases: 408: MGP \& 610 North Ramps

Cycle Length	60
Control Type	Actuated-Coordinated
Natural Cycle	60
Offset: $0(0 \%)$, Referenced to phase 2:NBL and 6:, Start of Green	

Splits and Phases: 409: MGP \& CR 81

			1	\rightarrow	4	\pm	4	$1 \sim$
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	C-Max	None	None	None	C-Max	None	None
Maximum Split (s)	12	23	18	37	11	24	17	38
Maximum Split (\%)	13.3\%	25.6\%	20.0\%	41.1\%	12.2\%	26.7\%	18.9\%	42.2\%
Minimum Split (s)	10	22	10	22	10	22	10	22
Yellow Time (s)	4	4	4	4	4	4	4	4
All-Red Time (s)	2	2	2	2	2	2	2	2
Minimum Initial (s)	4	4	4	4	4	4	4	4
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		5		5		5		5
Flash Dont Walk (s)		11		11		11		11
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	78	0	23	41	78	89	23	40
End Time (s)	0	23	41	78	89	23	40	78
Yield/Force Off (s)	84	17	35	72	83	17	34	72
Yield/Force Off 170(s)	84	6	35	61	83	6	34	61
Local Start Time (s)	78	0	23	41	78	89	23	40
Local Yield (s)	84	17	35	72	83	17	34	72
Local Yield 170(s)	84	6	35	61	83	6	34	61
Intersection Summary								
Cycle Length			90					
Control Type	Actu	ated-Coo	dinated					
Natural Cycle			90					
Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green								

Splits and Phases: \quad 410: Fernbrook Ln \& CR 81

[^35]
399: CR 30 \& Lawndale Ln

Direction	All
Future Volume (vph)	737
Total Delay / Veh (s/v)	28
CO Emissions (kg)	1.05
NOx Emissions (kg)	0.20
VOC Emissions (kg)	0.24

400: CR 30 \& Garland Ln

Direction	All
Future Volume (vph)	935
Total Delay / Veh (s/v)	15
CO Emissions (kg)	1.11
NOx Emissions (kg)	0.21
VOC Emissions (kg)	0.26

401: Dunkirk Ln/MGP \& CR 30

Direction	All
Future Volume (vph)	2751
Total Delay / Veh (s/v)	26
CO Emissions (kg)	3.61
NOx Emissions (kg)	0.70
VOC Emissions (kg)	0.84

402: West Ramps \& MGP

Direction	All
Future Volume (vph)	2591
Total Delay / Veh (s/v)	30
CO Emissions (kg)	3.53
NOx Emissions (kg)	0.69
VOC Emissions (kg)	0.82

403: East Ramps \& MGP

Direction	All
Future Volume (vph)	2398
Total Delay / Veh $(\mathrm{s} / \mathrm{v})$	29
CO Emissions (kg)	2.98
NOx Emissions (kg)	0.58
VOC Emissions (kg)	0.69

[^36]Page 1

404: Upland Ln \& MGP

Direction	All
Future Volume (vph)	2061
Total Delay / Veh (s/v)	16
CO Emissions (kg)	2.21
NOx Emissions (kg)	0.43
VOC Emissions (kg)	0.51

405: MGP \& Hospital Dr

Direction	All
Future Volume (vph)	1750
Total Delay / Veh (s/v)	22
CO Emissions (kg)	2.15
NOx Emissions (kg)	0.42
VOC Emissions (kg)	0.50

406: MGP \& Grove Circle/99th Ave

Direction	All
Future Volume (vph)	1839
Total Delay / Veh (s/v)	16
CO Emissions (kg)	2.00
NOx Emissions kg$)$	0.39
VOC Emissions (kg)	0.46

407: MGP \& 610 South Ramps

Direction	All
Future Volume (vph)	1274
Total Delay / Veh (s/v)	4
CO Emissions (kg)	0.74
NOx Emissions (kg)	0.14
VOC Emissions (kg)	0.17

408: MGP \& 610 North Ramps

Direction	All
Future Volume (vph)	975
Total Delay / Veh (s/v)	13
CO Emissions (kg)	0.93
NOx Emissions kg$)$	0.18
VOC Emissions (kg)	0.22

[^37]
409: MGP \& CR 81

Direction	All
Future Volume (vph)	2331
Total Delay / Veh (s/v)	16
CO Emissions (kg)	4.21
NOx Emissions (kg)	0.82
VOC Emissions (kg)	0.98

410: Fernbrook Ln \& CR 81

Direction	All
Future Volume (vph)	3255
Total Delay / Veh (s/v)	51
CO Emissions (kg)	6.83
NOx Emissions (kg)	1.33
VOC Emissions (kg)	1.58

Splits and Phases: 399: CR 30 \& Lawndale Ln

[^38]

Splits and Phases: $\quad 400$: CR 30 \& Garland Ln

[^39]| | | | 7 | \rightarrow | 4 | 1 | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lead | Lag | Lag | Lead | Lag | Lead | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 13 | 22 | 13 | 22 | 13 | 22 | 12 | 23 |
| Maximum Split (\%) | 18.6\% | 31.4\% | 18.6\% | 31.4\% | 18.6\% | 31.4\% | 17.1\% | 32.9\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | No |
| Start Time (s) | 57 | 0 | 44 | 22 | 9 | 57 | 22 | 34 |
| End Time (s) | 0 | 22 | 57 | 44 | 22 | 9 | 34 | 57 |
| Yield/Force Off (s) | 64 | 16 | 51 | 38 | 16 | 3 | 28 | 51 |
| Yield/Force Off 170(s) | 64 | 5 | 51 | 27 | 16 | 62 | 28 | 40 |
| Local Start Time (s) | 57 | 0 | 44 | 22 | 9 | 57 | 22 | 34 |
| Local Yield (s) | 64 | 16 | 51 | 38 | 16 | 3 | 28 | 51 |
| Local Yield 170(s) | 64 | 5 | 51 | 27 | 16 | 62 | 28 | 40 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 70 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 70 | | | | | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 401: Dunkirk Ln/MGP \& CR 30

[^40]| | | | | \rightarrow | 4 | \pm | 4 | \Perp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lag | Lead | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 13 | 23 | 12 | 22 | 12 | 24 | 12 | 22 |
| Maximum Split (\%) | 18.6\% | 32.9\% | 17.1\% | 31.4\% | 17.1\% | 34.3\% | 17.1\% | 31.4\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 11 | 58 | 24 | 36 | 58 | 0 | 24 | 36 |
| End Time (s) | 24 | 11 | 36 | 58 | 0 | 24 | 36 | 58 |
| Yield/Force Off (s) | 18 | 5 | 30 | 52 | 64 | 18 | 30 | 52 |
| Yield/Force Off 170(s) | 18 | 64 | 30 | 41 | 64 | 7 | 30 | 41 |
| Local Start Time (s) | 11 | 58 | 24 | 36 | 58 | 0 | 24 | 36 |
| Local Yield (s) | 18 | 5 | 30 | 52 | 64 | 18 | 30 | 52 |
| Local Yield 170(s) | 18 | 64 | 30 | 41 | 64 | 7 | 30 | 41 |
| Intersection Summary | | | | | | | | |
| Cycle Length 70 | | | | | | | | |
| Control Type Actuated-Coordinated | | | | | | | | |
| Natural Cycle | | | 70 | | | | | |
| Offset: $0(0 \%$), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 402: West Ramps \& MGP

[^41]| | \pm | | 1 | \rightarrow | 4 | \pm | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBT | NBL | SBT | EBL | WBT |
| Lead/Lag | Lead | Lag | Lag | Lead | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 11 | 22 | 10 | 22 | 11 | 22 | 10 | 22 |
| Maximum Split (\%) | 16.9\% | 33.8\% | 15.4\% | 33.8\% | 16.9\% | 33.8\% | 15.4\% | 33.8\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 54 | 0 | 44 | 22 | 54 | 0 | 22 | 32 |
| End Time (s) | 0 | 22 | 54 | 44 | 0 | 22 | 32 | 54 |
| Yield/Force Off (s) | 59 | 16 | 48 | 38 | 59 | 16 | 26 | 48 |
| Yield/Force Off 170(s) | 59 | 5 | 48 | 27 | 59 | 5 | 26 | 37 |
| Local Start Time (s) | 54 | 0 | 44 | 22 | 54 | 0 | 22 | 32 |
| Local Yield (s) | 59 | 16 | 48 | 38 | 59 | 16 | 26 | 48 |
| Local Yield 170(s) | 59 | 5 | 48 | 27 | 59 | 5 | 26 | 37 |
| Intersection Summary | | | | | | | | |
| Cycle Length 65 | | | | | | | | |
| Control Type Actuated-Coordinated | | | | | | | | |
| Natural Cycle 65 | | | | | | | | |
| Offset: $0(0 \%$), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 403: East Ramps \& MGP

[^42]

Cycle Length	60
Control Type	Actuated-Uncoordinated
Natural Cycle	60

Splits and Phases: 404: Upland Ln \& MGP

[^43]| | | | | \rightarrow | 4 | 1 | 4 | $\stackrel{-}{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBTL | WBL | EBT | NBL | SBTL | EBL | WBT |
| Lead/Lag | Lead | Lag | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 10 | 22 | 10 | 23 | 10 | 22 | 11 | 22 |
| Maximum Split (\%) | 15.4\% | 33.8\% | 15.4\% | 35.4\% | 15.4\% | 33.8\% | 16.9\% | 33.8\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 55 | 0 | 22 | 32 | 55 | 0 | 22 | 33 |
| End Time (s) | 0 | 22 | 32 | 55 | 0 | 22 | 33 | 55 |
| Yield/Force Off (s) | 59 | 16 | 26 | 49 | 59 | 16 | 27 | 49 |
| Yield/Force Off 170(s) | 59 | 5 | 26 | 38 | 59 | 5 | 27 | 38 |
| Local Start Time (s) | 55 | 0 | 22 | 32 | 55 | 0 | 22 | 33 |
| Local Yield (s) | 59 | 16 | 26 | 49 | 59 | 16 | 27 | 49 |
| Local Yield 170(s) | 59 | 5 | 26 | 38 | 59 | 5 | 27 | 38 |
| Intersection Summary | | | | | | | | |
| Cycle Length 65 | | | | | | | | |
| Control Type Actuated-Coordinated | | | | | | | | |
| Natural Cycle 65 | | | | | | | | |
| Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green | | | | | | | | |

Splits and Phases: 405: MGP \& Hospital Dr

[^44]| | | | | \rightarrow | 4 | 1 | 4 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Movement | SBL | NBT | WBL | EBTL | NBL | SBT | EBL | WBTL |
| Lead/Lag | Lead | Lag | Lead | Lag | Lead | Lag | Lead | Lag |
| Lead-Lag Optimize | Yes |
| Recall Mode | None | C-Max | None | None | None | C-Max | None | None |
| Maximum Split (s) | 10 | 23 | 10 | 22 | 10 | 23 | 10 | 22 |
| Maximum Split (\%) | 15.4\% | 35.4\% | 15.4\% | 33.8\% | 15.4\% | 35.4\% | 15.4\% | 33.8\% |
| Minimum Split (s) | 10 | 22 | 10 | 22 | 10 | 22 | 10 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Walk Time (s) | | 5 | | 5 | | 5 | | 5 |
| Flash Dont Walk (s) | | 11 | | 11 | | 11 | | 11 |
| Dual Entry | No | Yes | No | Yes | No | Yes | No | Yes |
| Inhibit Max | Yes |
| Start Time (s) | 55 | 0 | 23 | 33 | 55 | 0 | 23 | 33 |
| End Time (s) | 0 | 23 | 33 | 55 | 0 | 23 | 33 | 55 |
| Yield/Force Off (s) | 59 | 17 | 27 | 49 | 59 | 17 | 27 | 49 |
| Yield/Force Off 170(s) | 59 | 6 | 27 | 38 | 59 | 6 | 27 | 38 |
| Local Start Time (s) | 55 | 0 | 23 | 33 | 55 | 0 | 23 | 33 |
| Local Yield (s) | 59 | 17 | 27 | 49 | 59 | 17 | 27 | 49 |
| Local Yield 170(s) | 59 | 6 | 27 | 38 | 59 | 6 | 27 | 38 |
| Intersection Summary | | | | | | | | |
| Cycle Length | | | 65 | | | | | |
| Control Type | Actu | ated-Coo | dinated | | | | | |
| Natural Cycle | | | 65 | | | | | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | | | | |

Splits and Phases: 406: MGP \& Grove Circle/99th Ave

[^45]| | | 4 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Phase Number | 1 | 2 | 6 | 8 | 8 |
| Movement | SBL | NBT | SBT | WBL | |
| Lead/Lag | Lead | Lag | | | |
| Lead-Lag Optimize | Yes | Yes | | | |
| Recall Mode | None | C-Max | C-Max | None | |
| Maximum Split (s) | 11 | 22 | 33 | 22 | |
| Maximum Split (\%) | 20.0\% | 40.0\% | 60.0\% | 40.0\% | |
| Minimum Split (s) | 10 | 22 | 22 | 22 | |
| Yellow Time (s) | 4 | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | | 0 |
| Walk Time (s) | | 5 | 5 | 5 | 5 |
| Flash Dont Walk (s) | | 11 | 11 | 11 | |
| Dual Entry | No | Yes | Yes | Yes | |
| Inhibit Max | Yes | Yes | Yes | Yes | |
| Start Time (s) | 44 | 0 | 44 | 22 | |
| End Time (s) | 0 | 22 | 22 | 44 | |
| Yield/Force Off (s) | 49 | 16 | 16 | 38 | |
| Yield/Force Off 170(s) | 49 | 5 | 5 | 27 | |
| Local Start Time (s) | 44 | 0 | 44 | 22 | |
| Local Yield (s) | 49 | 16 | 16 | 38 | |
| Local Yield 170(s) | 49 | 5 | 5 | 27 | |
| Intersection Summary | | | | | |
| Cycle Length | | | 55 | | |
| Control Type Actuated-Coo | | | dinated | | |
| Natural Cycle | | | 55 | | |
| Offset: $0(0 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | | |

Splits and Phases: 407: MGP \& 610 South Ramps

[^46]| | | 4 | | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Phase Number | 2 | 5 | 6 | 8 |
| Movement | NBT | NBL | SBT | WBTL |
| Lead/Lag | | Lead | Lag | |
| Lead-Lag Optimize | | Yes | Yes | |
| Recall Mode | C-Max | None | C-Max | None |
| Maximum Split (s) | 33 | 11 | 22 | 22 |
| Maximum Split (\%) | 60.0\% | 20.0\% | 40.0\% | 40.0\% |
| Minimum Split (s) | 22 | 10 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | 5 | | 5 | 5 |
| Flash Dont Walk (s) | 11 | | 11 | 11 |
| Dual Entry | Yes | No | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 44 | 44 | 0 | 22 |
| End Time (s) | 22 | 0 | 22 | 44 |
| Yield/Force Off (s) | 16 | 49 | 16 | 38 |
| Yield/Force Off 170(s) | 5 | 49 | 5 | 27 |
| Local Start Time (s) | 44 | 44 | 0 | 22 |
| Local Yield (s) | 16 | 49 | 16 | 38 |
| Local Yield 170(s) | 5 | 49 | 5 | 27 |
| Intersection Summary | | | | |
| Cycle Length | | | 55 | |
| Control Type Actuated-Coo | | | dinated | |
| Natural Cycle | | | 55 | |
| Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green | | | | |

Splits and Phases: 408: MGP \& 610 North Ramps

[^47]| | 4 | 7 | \rightarrow | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Phase Number | 2 | 3 | 4 | 8 |
| Movement | NBL | WBL | EBT | WBT |
| Lead/Lag | | Lead | Lag | |
| Lead-Lag Optimize | | Yes | Yes | |
| Recall Mode | C-Max | None | None | None |
| Maximum Split (s) | 22 | 11 | 22 | 33 |
| Maximum Split (\%) | 40.0\% | 20.0\% | 40.0\% | 60.0\% |
| Minimum Split (s) | 22 | 10 | 22 | 22 |
| Yellow Time (s) | 4 | 4 | 4 | 4 |
| All-Red Time (s) | 2 | 2 | 2 | 2 |
| Minimum Initial (s) | 4 | 4 | 4 | 4 |
| Vehicle Extension (s) | 3 | 3 | 3 | 3 |
| Minimum Gap (s) | 3 | 3 | 3 | 3 |
| Time Before Reduce (s) | 0 | 0 | 0 | 0 |
| Time To Reduce (s) | 0 | 0 | 0 | 0 |
| Walk Time (s) | 5 | | 5 | 5 |
| Flash Dont Walk (s) | 11 | | 11 | 11 |
| Dual Entry | Yes | No | Yes | Yes |
| Inhibit Max | Yes | Yes | Yes | Yes |
| Start Time (s) | 0 | 22 | 33 | 22 |
| End Time (s) | 22 | 33 | 0 | 0 |
| Yield/Force Off (s) | 16 | 27 | 49 | 49 |
| Yield/Force Off 170(s) | 5 | 27 | 38 | 38 |
| Local Start Time (s) | 0 | 22 | 33 | 22 |
| Local Yield (s) | 16 | 27 | 49 | 49 |
| Local Yield 170(s) | 5 | 27 | 38 | 38 |
| Intersection Summary | | | | |
| Cycle Length | | | 55 | |
| Control Type Actuated-Coo | | | dinated | |
| Natural Cycle | | | 55 | |
| Offset: 0 (0\%), Referenced to phase 2:NBL and 6:, Start of Green | | | | |

Splits and Phases: 409: MGP \& CR 81

[^48]

Splits and Phases: 410: Fernbrook Ln \& CR 81

[^49]Maple Grove - CSAH 610 Expansion

399: CR 30 and Lawndale		
Existing Volume	1936	vehicles
Existing Delay	36	sec/veh
Existing Total Delay	69696	seconds
Future Volume	737	vehicles
Future Delay	28	sec/veh
Future Total Delay	20636	seconds
Total Delay Reduction	49060	seconds

$40:$ CR 30 and Garland Ln		
Existing Volume	2134	vehicles
Existing Delay	19	sec/veh
Existing Total Delay	40546	seconds
Future Volume	935	vehicles
Future Delay	15	sec/veh
Future Total Delay	14025	seconds
Total Delay Reduction	26521	seconds

401:CR 30 and Dunkirk/Maple Grove Parkway		
Existing Volume	3935	vehicles
Existing Delay	37	sec/veh
Existing Total Delay	145595	seconds
Future Volume	2751	vehicles
Future Delay	26	sec/veh
Future Total Delay	71526	seconds
Total Delay Reduction	74069	seconds

402: Maple Grove Parkway/West 94 Ramps		
Existing Volume	3549	vehicles
Existing Delay	37	sec/veh
Existing Total Delay	131313	seconds
Future Volume	2591	vehicles
Future Delay	30	sec/veh
Future Total Delay	77730	seconds
Total Delay Reduction	53583	seconds

403: Maple Grove Parkway/East 94 Ramps		
Existing Volume	3164	vehicles
Existing Delay	39	sec/veh
Existing Total Delay	123396	seconds
Future Volume	2398	vehicles
Future Delay	29	sec/veh
Future Total Delay	69542	seconds
Total Delay Reduction	53854	seconds

404: Maple Grove Parkway/Upland Ln		
Existing Volume	2601	vehicles
Existing Delay	19	sec/veh
Existing Total Delay	49419	seconds
Future Volume	2061	vehicles
Future Delay	16	sec/veh
Future Total Delay	32976	seconds
Total Delay Reduction	16443	seconds

405: Maple Grove Parkway/Hospital Drive			
Existing Volume	2209	vehicles	
Existing Delay	28	sec/veh	
Existing Total Delay	61852	seconds	
Future Volume	1750	vehicles	
Future Delay	22	sec/veh	
Future Total Delay	38500	seconds	
Total Delay Reduction	23352	seconds	

406: Maple Grove Parkway/Grove Circle		
Existing Volume	2369	vehicles
Existing Delay	17	sec/veh
Existing Total Delay	40273	seconds
Future Volume	1839	vehicles
Future Delay	16	sec/veh
Future Total Delay	29424	seconds
Total Delay Reduction	10849	seconds

407: Maple Grove Parkway/South 610 Ramps		
Existing Volume	1901	vehicles
Existing Delay	4	sec/veh
Existing Total Delay	7604	seconds
Future Volume	1274	vehicles
Future Delay	4	sec/veh
Future Total Delay	5096	seconds
Total Delay Reduction	2508	seconds

408: Maple Grove Parkway/North 610 Ramps		
Existing Volume	1390	vehicles
Existing Delay	17	sec/veh
Existing Total Delay	23630	seconds
Future Volume	975	vehicles
Future Delay	13	sec/veh
Future Total Delay	12675	seconds
Total Delay Reduction	10955	seconds

409: Maple Grove Parkway/CR 81		
Existing Volume	2431	vehicles
Existing Delay	16	sec/veh
Existing Total Delay	38896	seconds
Future Volume	2331	vehicles
Future Delay	16	sec/veh
Future Total Delay	37296	seconds
Total Delay Reduction	1600	seconds

410: CR 81/Fernbrook Lane		
Existing Volume	3355	vehicles
Existing Delay	60	sec/veh
Existing Total Delay	201300	seconds
Future Volume	3255	vehicles
Future Delay	51	sec/veh
Future Total Delay	166005	seconds
Total Delay Reduction	35295	seconds

Maple Grove Regional Solicitation

Network Totals

Number of Intersections	1
Total Delay / Veh (s/v)	21
Total Delay (hr)	14
Stops (\#)	1589
Average Speed (mph)	27
Total Travel Time (hr)	41
Distance Traveled (mi)	1127
Fuel Consumed (gal)	72
Fuel Economy (mpg)	15.8
CO Emissions (kg)	5.00
NOx Emissions (kg)	0.97
VOC Emissions (kg)	1.16
Performance Index	18.7

Cycle Length	60
Control Type	Actuated-Uncoordinated
Natural Cycle	60

Splits and Phases: 3: CSAH 30/TH 610

[^50]

Crash Reduction Methodology

Maple Grove Parkway - Methodology in Red

Question: For the Roadway Expansion application, how do I complete the Safety measure for a project that involves the construction of a new roadway? More specifically, there isn't a crash modification factor that can be used for the construction of a new roadway in the HSIP methodology.
Answer: With the construction of a new roadway, an analysis should be conducted to determine the parallel routes that will be affected by the project. The crash reduction factor can be calculated using the following methodology:

- Identify the parallel roadway(s) that will be affected by the project.
- CSAH 30 from Queensland Rd to Maple Grove Parkway, Maple Grove Parkway from CSAH 30 to CR 81, CR 81 from Maple Grove Parkway to Fernbrook Lane and Weaver Lake Rd Ramps will be most affected by the CSAH 610 extension.
- Using the crash data for the most recent three years, calculate the existing crash rate for the parallel roadway(s).
- Existing crash rate was calculated for the previously listed segments
- Identify the daily traffic volume that will be relocated from the parallel roadway(s) to the new roadway.
- Approximately $\mathbf{5 0 0 0}$ to $\mathbf{1 2 , 0 0 0}$ vehicles (based on year 2014 volumes)
- Calculate the number of crashes related to the relocated traffic volume using the existing crash rate for the parallel roadway(s). For instance, if 5,000 vehicles are expected to relocate from the existing parallel roadway to the new roadway, calculate the number of crashes related to the 5,000 vehicles.
- It was calculated that $\mathbf{4 6}$ crashes will be eliminated by reducing the volumes at the intersections.
- Identify the average crash rate for the new roadway using MnDOT's crash rates by roadway type. Using the average crash rate for the new roadway, calculate the number of crashes related to the relocated traffic (such as the 5,000 vehicles).
- The additional 6000 vpd on CSAH 610 are expected to add 11 crashes to the segment.
- Calculate the crash reduction factor using the existing number of crashes on the existing parallel roadway compared to the new roadway, due to the relocated traffic volume (such as the 5,000 vehicles).
- It is estimated that a total of $\mathbf{4 6}$ crashes will be reduced, however 11 new crashes are estimated to occur along the extension of CSAH 610, thus a reduced crash total of 35 crashes. The crash reduction factor is $35 / 250=14 \%$
- The calculated crash reduction factor should be used in the HSIP B/C worksheet.

 dı \forall

VEH 1 AND VEH 2 BOTH EXITED WESTBOUND I 94 ON THE WEAVER LAKE RD EXIT. THEY WERE BOTH TAKING THE DE
driver vehicle \#1 SAID He had exited westbound l-94 Exit ramp at weaver lkrd. he was slowing down a UPON ARRIVAL BOTH VEHICLES WERE OFF THE ROADWAY IN A PARKING LOT. THE DRIVER OF V1 STATED THAT HE
UNIT 2 WAS STOPPED AT THE TOP OF THE RAMP FROM WB I-94 TO EB CO RD 109. UNIT 1 WAS FOLLOWING AND DR
D1 WAS DRIVING V1 BEHIND D2 WHO WAS DRIVING V2. BOTH D1 AND D2 WERE EXITING 194 AT WEAVER LAKE RD T UNITS 1 AND 2 EXITING FROM WB I94 TO EAST WEAVER. UNIT 2 STOPPED FOR TRAFFIC AND UNIT 1 DID NOT SEE DRIVER TWO WAS STOPPED AT THE STOP LIGHT WHEN HE WAS REAR ENDED BY VEHICLE ONE. DRIVER ONE SAID S V1 (MNDOT SNOWPLOW) STOPPED AT TOP OF RAMP. DRIVER OF V2 TRAVELING TOO FAST FOR ROAD CONDITIONS CO
I SPOKE WITH THE DRIVERS INVOLVED IN THIS VEHICLE PROPERTY DAMAGE ACCIDENT AND I OBTAINED SOME OF T BOTH DRIVER EXITED FROM WEST 94 TO WEAVER LAKE RD. AT THE TOP OF THE RAMP, BOTH VEHICLES WERE GOIN

 8代00＋VIZ 76000000

 $\begin{array}{ll}\$ & \$ \\ \$ & \$ \\ \$ & \$ \\ \$ & \\ \\end{array} 8
$\$ \$$
$\$ \$$
$\$ \$$
$\$$ +6000000
+6000000
-6000000 $\begin{array}{ll}\$ & \$ \\ \$ & \$ \\ \$ & \\end{array} $\$ 8$
$\$$
$\$$
$\$$
8
$\$$ $\$$
$\$$
$\$$
$\$$
$\$$
$\$$
$\$$ $\$ \$$
$\$ \$$
$\$ \$$ $\begin{array}{ll}\$ & \$ \\ \$ \\ \$ \\ \$ \\ \\end{array} NUM
00000094

出苇出出出
背少
\＄
表
出
 $\begin{array}{lll}\$ & \$ \\ \$ & \$ \\ \$ & \$ \\ \$ & \$ \\ \$ & \$ \\ \$ & 8\end{array}$ $\$ \$$
$\$ \$$
$\$$
$\$$
$\$$
$\$$
$\$$ \qquad

영ㅇㅇㅇㅇㅇㅇ쑻	오오이옹ㅇㅂㅇㅗ	中 中 中 中 中 中 中
 	NㅜN NNN N 	
©	号芦芦芦芦芦芦 む	
NNNNNNT	NENNNNU	
		1 1 1 1｜旡旡范
－トNNON	$\stackrel{\rightharpoonup}{ }$	anowneran
	$\omega \omega \omega \bigcirc \omega \omega{ }^{\omega}$	$\omega \downarrow$ \％
$\subset \subset \subset \subset \subset \subset \subset \subset$	c	$\pm \pm \pm \pm \pm \pm \pm$

信

 VO\＆VH Sヨ彐 V y

 OTS SVM Jljゴ

 －3NVT

 d 16

0	\bigcirc	8โ0	tioz	SI	S	nЧ1－s	0 Oヵて	$\angle 7$	
0	8	000T	tioz	SI	S	nul－s	0 Oもて	LZ	
0	N	0¢\＆โ	bioz	てI	て	рәм－ヵ	0 Oヶて	LZ	¿̇WVN\＃
0	N	LZLO	btoz	†	โ	tes－L	0 Oもて	Lて	¿̇WVN\＃
0	N	Stoz	btoz	sz	IT	วก $\perp-\varepsilon$	0 Oもて	LZ	
0	N	6としI	عโoz	七て	2I	วก \perp－$¢$	0 Oもて	LZ	\perp NI э४ヨМ Sヨา
0	N	で9โ	ย10\％	92	L	！-9	0とちて	LZ	
0	N	てTくT	Stoz	£乙	L	nul－s	0 Oもて	Lて	O¢ \exists H \perp NMOQ צヨH
0	N	OちてT	Stoz	92	て	nч1－s	0 O¢て	LZ	
0	\bigcirc	82SI	bioz	61	8	วก \perp－$¢$	0 Oもて	Lて	
0	\bigcirc	\＆ร8โ	عโoz	L	てI	tes－L	0 O¢て	LZ	IHM ค $\forall H \perp$ Oヨ
0	N	S00I	ttoz	てI	OT	uns－t	0 Oもて	Lて	
0	N	TSLO	Stoz	8	L	рәм－t	0 Oもて	LZ	Tכוצ Э \ddagger（
0	N	80Z1	ย10\％	6	ε	tes－L	0 Oもて	LZ	H \downarrow JO \exists OIS H
0	N	£Zくโ	ยา0Z	81	て	now－z	Oともて	$\angle 乙$	
θ	9	OVET	Stoz	\＃	そモ	t	Oeve	せて	
θ	N	5590	Stoz	z	そモ	Pomb	O¢tz	tて	
θ	N	9でた	Stoz	比	6	How－て	O¢Vて	せて	
θ	N	Etit	Stoz	St	9	nytes	O¢vz	せて	
θ	9		Stoz	モ	$\bar{\chi}$	\％－i	Oeve	せて	
θ	\＆	teso	£̇Oz	比	z	nपt－s	O¢も乙	せて	
θ	H	もでて	Stoz	玨	理	NoMt	O¢tて	せて	
θ	＊	ชิṫ	Stoz	85	$0 \pm$	T	Oeve	せて	
θ	＊	2880	Stoz	$6 \pm$	8	－mb	Oeve	tて	

I-94 JCT WITH MSAS 106
(MAPLE GROVE PARKWAY N.)
$\mathrm{I}-94 \begin{gathered}100 \text { 's } \\ 200 \text { 's } \\ \text { A\&B's }\end{gathered}$ USE $=214+00.118$
MSAS $106 \underset{400 \text { 's }}{300 ' s}$ USE RP $=004+00.740$

HENNEPIN CO. 27
MAPLE GROVE 2430
PS 2520

$\sim N \mapsto \mapsto \mapsto$

$\infty \infty \infty \infty \infty \infty \infty \infty \infty$

$\infty \vee \omega \perp \vee \infty \vdash v \sim$

OOOAOOOOH

0000000000 춯

g
ぞき

$\mapsto \omega \mapsto N N N N \omega N \mapsto$

\sum

$\mapsto \vdash \vdash \vdash \omega N \omega \vdash \mapsto$

ンの・んルンNンのト

$\stackrel{\rightharpoonup}{\top}$
$\stackrel{\rightharpoonup}{\omega}$
$\stackrel{\rightharpoonup}{\bullet}$

OH $\omega \omega \rightarrow 0$ ○

ムぃேナேேேேேト
$\underset{\substack{\text { og } \\ \text { on }}}{\stackrel{1}{\infty}}$

$\mapsto \omega \vdash \mapsto \omega \vdash \mapsto \perp \mapsto \vdash$

ь

ค
$\underset{\sim}{\omega}$

$00 \mapsto 000$

जv $\varnothing \& \omega \mathrm{~m}$
\sum
$\mathscr{\infty} \infty \infty \infty \infty$

ロルのロ
Əヲ
$\mapsto \triangleright \stackrel{\rightharpoonup}{\circ} \downarrow \omega v$

K

ャート ज～䛱
$\stackrel{\stackrel{y}{\top}}{\substack{1 \\ N \\ N}}$
$00 \mapsto 000$ $\underset{\text { 市 }}{\stackrel{j}{~}}$
ームートート
$\underset{\substack{\text { oa } \\ \text { on }}}{\lesseqgtr}$

Н
-
$\stackrel{\rightsquigarrow}{\infty}$
y unu un u ol

 $069 \angle 66 t$
$\angle O L \angle 66 t$
Λ^{2} INIOd

True_Miles Route_Code	POINT_X	POINT_Y	
1.14	427000121	463668.2	4998609
1.14	427000121	463668.2	4998609
1.151	427000121	463668.7	4998627
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
1.15	427000121	463668.6	4998625
1.15	427000121	463668.6	4998625
1.15	427000121	463668.6	4998625
1.15	427000121	463668.6	4998625
1.15	427000121	463668.6	4998625
1.15	427000121	463668.6	4998625
1.15	427000121	463668.6	4998625
1.15	427000121	463668.6	4998625
1.15	427000121	463668.6	4998625
1.131	427000121	463667.9	4998594
13.939	427000081	463633.9	4998649
13.923	427000081	463664.6	4998628
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626
13.921	427000081	463668.4	4998626

（7）

民

믁ㄴ․

与

 \geqq

ト ٌ トゥ ト ト

ก	ε	て		N	$898 \cdot \tau$	0¢tooolzto	898：00＋T00	0¢t000＜z	to
ก	ε	ᄃ		s	－0¢＇	0¢t000Lてto	т08：00＋โ00	0¢t000＜z	to
ก	ε	τ		z	$00 \varepsilon^{\prime} \tau$	oftooolzto	008：00＋T00	0¢t000Lて	to
n	ε	โ		z	$00 \varepsilon^{\prime} \tau$	0عtooolzto	008：00＋100	0¢t000＜z	to
n	ε	โ		z	008 ＇	0عtooolzto	008 $00+$＋00	0عt000Lz	to
ก	ε	โ		N	008 ＇	oعtooolzto	008：00＋t00	0¢tooolz	to
n	ε	τ		z	$00 \varepsilon^{\prime} \tau$	0¢T000Lてヤo	008．00＋T00	0¢tooolz	to
n	ε	τ		N	00ε＇	0¢T000くてヤo	00800＋T00	0عtooolz	to
n	ε	โ		z	$00 \varepsilon^{\prime} \tau$	0¢T000Lてヤ0	008：00＋100	0عt000＜て	to
n	ε	โ		z	86て＇โ	0¢T000Lてヤ0	86て＇00＋100	0¢t000＜	to
ก	ε	τ		z	L6て＇T	0عT000Lてヤo	L6て＇00＋T00	0عtooolz	to
ก	0	โ		z	26\％＇t	0عtooolzto	262＇00＋ 00	oعtooolz	to
ע־ח	＾NI	¢اэ¢	W3า	צ10 ${ }^{\text {a }}$	WLI＇sio	эıกoy ${ }^{\text {¢ }}$ ¢	1NIOd ${ }^{\text {dy }}$	WnN	SAs

 S甘M QN \downarrow ค DRIVER 1 WAS STOPPED IN THE LEFT TURN LANE WAITING FOR TRAFFIC TO PASS. DRIVER 2 MOVED INTO THE DV1 STATED SHE WAS E/B WEAVER LAKE RD STOPPED IN TRAFFIC AT THE RED LIGHT AT ELM CREEK BLVD. V2 RAN BOTH UNITS WERE IN THE LEFT TURN LANE STOPPED. DR 1 SAID THE LIGHT TURNED GREEN BUT SHE AND DR 2 HA
DRIVER \#1 WAS TRAVELLING NORTHBOUND ON ELM CREEK BLVD. DRIVER \#2 WAS STOPPED FOR A RED LIGHT AT TH BOTH VEHICLES WERE IN THE INSIDE TURN LANE ON NORTHBOUND CO 130 TO GO WEST ON CO 109. BOTH DRIVE

$00000000000 \frac{2}{\frac{2}{2}}$
$\omega \sim$ NNNNNNNNNN $\frac{\substack{2 \\ \frac{2}{3} \\ \frac{1}{1}}}{\frac{1}{2}}$

$\stackrel{\rightharpoonup}{ }+\stackrel{\rightharpoonup}{ }$

$\stackrel{\rightharpoonup}{ } \stackrel{\rightharpoonup}{ } \stackrel{\rightharpoonup}{ }$

$0800 \mapsto 00 \vdash 0000 \sum_{\frac{1}{N}}^{\frac{1}{N}}$

000000000 ज $00 \frac{\pi}{N}$

VEH 1 AND VEH 2 BOTH EXITED WESTBOUND I 94 ON THE WEAVER LAKE RD EXIT. THEY WERE BOTH TAKING THE DE
driver vehicle \#1 SAID He had exited westbound l-94 Exit ramp at weaver lkrd. he was slowing down a UPON ARRIVAL BOTH VEHICLES WERE OFF THE ROADWAY IN A PARKING LOT. THE DRIVER OF V1 STATED THAT HE
UNIT 2 WAS STOPPED AT THE TOP OF THE RAMP FROM WB I-94 TO EB CO RD 109. UNIT 1 WAS FOLLOWING AND DR
D1 WAS DRIVING V1 BEHIND D2 WHO WAS DRIVING V2. BOTH D1 AND D2 WERE EXITING 194 AT WEAVER LAKE RD T UNITS 1 AND 2 EXITING FROM WB I94 TO EAST WEAVER. UNIT 2 STOPPED FOR TRAFFIC AND UNIT 1 DID NOT SEE DRIVER TWO WAS STOPPED AT THE STOP LIGHT WHEN HE WAS REAR ENDED BY VEHICLE ONE. DRIVER ONE SAID S V1 (MNDOT SNOWPLOW) STOPPED AT TOP OF RAMP. DRIVER OF V2 TRAVELING TOO FAST FOR ROAD CONDITIONS CO
I SPOKE WITH THE DRIVERS INVOLVED IN THIS VEHICLE PROPERTY DAMAGE ACCIDENT AND I OBTAINED SOME OF T BOTH DRIVER EXITED FROM WEST 94 TO WEAVER LAKE RD. AT THE TOP OF THE RAMP, BOTH VEHICLES WERE GOIN

 - VEH 2 WAS DRIVING WESTBOUND WEAVER LAKE RD. - VEH 2 WAS STARTING TO SLOW AND STOP IN TRAFFIC. -V
VEHICLE \# 1 TRAVELING WESTBOUND ON WEAVER LAKE ROAD JUST PAST EAST FISH LAKE ROAD AND STOPPED FOR TH
 VEH \#1 WAS TRAVELING WB ON WEAVER LAKE RD APPROACHING EAST FISH LAKE RD INTERSECTION IN THE RIGHT L
BOTH VEHICLES WERE ON THE OFF RAMP FROM WEST BOUND 194 TO WEAVER LK RD (CO 109). BOTH VEHICLES WER VEH \#1 WAS BEHIND VEH \#2 EB ON WEAVER LAKE ROAD IN THE RIGHT LANE WAITING FOR THE LIGHT AT EAST FI VEHICLE \#1 STOPPED IN EB WEAVER LK ROAD TRAFFIC. VEHICLE\#2 STOPPED BEHIND VEHICLE \#1. THE DRIVER OF
I WAS DISPATCHED TO TAKE A REPORT OF A CRASH AT THE NOTED LOCATION. DRIVER 1 HAD TO LEAVE FOR WORK VEHICLE \#1 STOPPED IN THE LEFT TURN LANE FROM WESTBOUND WEAVER LAKE ROAD TO GO SOUTHBOUND ON EAST F ON 12/05/2013 AT 1832 HOURS I RESPONDED TO A PROPERTY DAMAGE ACCIDENT AT THE INTERSECTION OF WEAVER
ALL VEHICLES INVOLVED WERE EASTBOUND ON CO 109 (WEAVER LK RD) INBETWEEN W FISH LK RD AND E FISH LAK VEH 1 WAS STOPPED IN THE TURN LANE, DRIVER 2 COULDNT STOP ON THE ICY ROAD AND REAR ENDED VEH 1. N' BOTH UNITS WERE WB WEAVER LAKE RD. UNIT 1 WAS IN THE LEFT TURN LANE FOR EAST FISH LAKE RD AND UNIT
V\#1 STOPPED AT RED LEFT TURN ARROW. V\#2 SLOWED BEHIND V\#1 AND V\#3 SLOWED BEHIND V\#2. ROADWAY WAS PA DV1 STATED HE WAS W/B WEAVER LAKE RD APPROACHING THE I 94 INTERSECTION W/B SIDE. STATED HE HAD A GRE DRIVER \#2 AND PASSENGER ADVISED THEY WERE STOPPED AT THE RED LIGHT AND WERE REAR-ENDED BY VEHICLE \# BOTH VEH. WERE EB ON WEAVER LAKE RD. DR 1 CHANGED LANES FROM LEFT TO RIGHT INFRONT OF DR 2. DR 1 HA
新

$\cap z z z z z z z z z z z z z z z z \cap z z z$ 自

$\omega ン V V \omega ン \omega \omega \omega \downarrow \omega ン V V V V N \omega \omega \omega_{\infty}$

ャレナ เ 卢

\mapsto	ω	$\stackrel{ }{ }$	

n	ε	โ		ヨ	$068{ }^{\prime}$	Lotoortzso	068＇00＋200	Lotoostr	¢0
n	ε	โ	โ	z	$068{ }^{\prime}$	LOTOOEtてS0	068 ${ }^{\circ} 00+200$	LOTOOEtて	so
ก	ε	โ		N	0682	Lotoortzso	068．00＋200	LOTOO\＆tて	so
n	ε	โ		z	828 ＇	Lotoortzso	8 $28.00+200$	Lotooctr	so
n	ε	ᄃ		ョ	T＜8＇て	Lotoortzso	1 $288^{\circ} 00+200$	LOTOO\＆tて	so
n	ε	τ		z	028.2	Lotoortzso	0z8 $00+200$	LOTOO\＆tて	so
n	ε	โ		z	06L＇z	LOT00\＆tてS0	064＇00＋z00	LOT00\＆ヤて	so
ก	ε	ᄃ		z	$06 L^{\prime}$	Lotoostzso	06 ${ }^{\circ} 00+200$	LOTOOEtて	so
n	ε	I		z	06L＇て	LOtoo\＆tてS0	06く ${ }^{\circ} 00+200$	LOTOO\＆tて	so
－	＾NI	¢اэх	W979		W LI^{-}－s	3ınoy ${ }^{\text {¢ }}$	INIOd ${ }^{\text {－}}$ ¢	WnN	SAs

 \#1 SAID SHE WAS SLOWING WHEN \#2 IN FRONT OF HER BEGAN TO START SKIDDING, \#1 APPLIED HER BRAKES BUT DRIVER WAS TRAVELING NORTH ON EAST FISH LAKE RD APPROACHING THE CURVE WEST BY MAPLE LA WHEN SHE HIT

* DRIVER CONTACTED US COMPLAINING OF NECK PAIN FROM OUR MC DONALDS AT 2307. * HE IS UNSURE OF WH

$$
\begin{aligned}
& 2 \\
& m \\
& 0 \\
& 0 \\
& \vdots
\end{aligned}
$$

$\mathcal{N} N \mathbb{N} N \mathbb{N} N \mathbb{N} O$

$\rightarrow \Delta \Delta V N \triangleright \mapsto N N \sum_{n}^{2}$

$\stackrel{\rightharpoonup}{ }$

ャ $\stackrel{\rightharpoonup}{ }$
$\triangleright \mapsto \vdash \perp \vdash \vdash \vdash \perp \perp \bar{Э}$

$\vdash N \triangleright G \vdash G \omega \vdash N$ 气

जजज ∞ ज ∞ \＆$\infty \infty$ 呙

$\omega \vdash ン \infty \omega \triangleright \circ \omega \vdash \frac{\square}{\pi}$

ε	τ	W	てて	τ	\dagger	N	τ	0	06	τ	ε	τ	W	૪S	τ	t	\bigcirc	โ
		W	91	τ	t	N	I	0	9τ	S	ऽ	L	W	七9	I	\square	N	I
		W		τ	t	N	τ	0	0	L	86	โ	W	99	I	t	N	I
		W	61	τ		N	I	0	I	9	9	ε	W	OZ	I	t	N	I
ε	†	\pm	切	τ	†	N	I	0	\downarrow	I	ε	ε	\pm	切	τ	†	N	I
โ	τ	\pm	0ε	τ	\dagger	N	I	โ9	97	โ	โ	τ	\pm	81	โ	†	N	τ
													\pm	6τ	โ	ε	N	โ
ऽ	ε	\ddagger	¢S	τ	\checkmark	N	I	0	τ	τ	S	ε	W	Sz	I	†	N	L
													W	81	I	ε	\bigcirc	I
カโษום	عโヨd入ı＾	2โXヨS	โัヨอง	OTSAHd	6dȮ	8 CNI	LNSOd	97כサ」	STJV」	t10＊	عצום	Zヨd入1＾	X 3 S	39V	SAHd	dO3	［ NI	NSOd
	ENOSY ${ }^{\text {dd }}$											ZNOS ${ }^{\text {2 }}$ ¢d						

Minnesota Department of Transportation
Metropolitan District
Waters Edge Building
1500 County Road B2 West
Roseville, MN 55113

July 7, 2016
John Hagen, P.E., PTOE
Transportation Operations Engineer
City of Maple Grove
12800 Arbor Lakes Parkway
PO Box 1180
Maple Grove, MN 55311
Dear Mr. Hagen,
This letter is to serve as your notification that the Interchange Review Committee has determined that the proposed CR 610 Extension to I-94 and MN 610 as shown in your July 5, 2016 memo is consistent with the qualifying criteria found in Appendix F of the Council's Transportation Policy Plan and no additional documentation is necessary.

Please note that this evaluation concerns itself only with appropriate location of access to the trunk highway system's Twin Cities freeways. We do have safety concerns with the specifics of how the movement from westbound TH 610 to eastbound I-94 is proposed and we look forward to later stages in the process where we can consider a wide range of alternatives to improve upon how this might be accomplished.

As the project layout and design progresses, please continue to work with MnDOT, FHWA and Met Council to assure the technical and design criteria of Appendix F continue to be met and that appropriate steps are taken to complete the Metropolitan Council's Controlled Access Approval (contact Steve Peterson at 651-602-1819) and FHWA's Interchange Access Request (IAR) (including a PM peak hour analysis) when needed.

We appreciate your efforts to work with the Interchange Review Committee in our effort to understand this project.

If you have any questions concerning this letter, please contact me at (651) 234-7784.
Sincerely,

Karen Scheffing
Principal Planner
CC:
Lynne Bly, MnDOT
Tony Fischer, MnDOT
Ryan Hickson, FHWA
John Griffith, MnDOT
Ramankutty Kanankutty, MnDOT
Steve Peterson, Met Council

Maple Grove - CSAH 610 Expansion

399: CR 30 and Lawndale		
Existing Volume	1936	vehicles
Existing Delay	36	sec/veh
Existing Total Delay	69696	seconds
Future Volume	737	vehicles
Future Delay	28	sec/veh
Future Total Delay	20636	seconds
Total Delay Reduction	49060	seconds

$40:$ CR 30 and Garland Ln		
Existing Volume	2134	vehicles
Existing Delay	19	sec/veh
Existing Total Delay	40546	seconds
Future Volume	935	vehicles
Future Delay	15	sec/veh
Future Total Delay	14025	seconds
Total Delay Reduction	26521	seconds

401:CR 30 and Dunkirk/Maple Grove Parkway		
Existing Volume	3935	vehicles
Existing Delay	37	sec/veh
Existing Total Delay	145595	seconds
Future Volume	2751	vehicles
Future Delay	26	sec/veh
Future Total Delay	71526	seconds
Total Delay Reduction	74069	seconds

402: Maple Grove Parkway/West 94 Ramps		
Existing Volume	3549	vehicles
Existing Delay	37	sec/veh
Existing Total Delay	131313	seconds
Future Volume	2591	vehicles
Future Delay	30	sec/veh
Future Total Delay	77730	seconds
Total Delay Reduction	53583	seconds

403: Maple Grove Parkway/East 94 Ramps		
Existing Volume	3164	vehicles
Existing Delay	39	sec/veh
Existing Total Delay	123396	seconds
Future Volume	2398	vehicles
Future Delay	29	sec/veh
Future Total Delay	69542	seconds
Total Delay Reduction	53854	seconds

404: Maple Grove Parkway/Upland Ln		
Existing Volume	2601	vehicles
Existing Delay	19	sec/veh
Existing Total Delay	49419	seconds
Future Volume	2061	vehicles
Future Delay	16	sec/veh
Future Total Delay	32976	seconds
Total Delay Reduction	16443	seconds

405: Maple Grove Parkway/Hospital Drive			
Existing Volume	2209	vehicles	
Existing Delay	28	sec/veh	
Existing Total Delay	61852	seconds	
Future Volume	1750	vehicles	
Future Delay	22	sec/veh	
Future Total Delay	38500	seconds	
Total Delay Reduction	23352	seconds	

406: Maple Grove Parkway/Grove Circle		
Existing Volume	2369	vehicles
Existing Delay	17	sec/veh
Existing Total Delay	40273	seconds
Future Volume	1839	vehicles
Future Delay	16	sec/veh
Future Total Delay	29424	seconds
Total Delay Reduction	10849	seconds

407: Maple Grove Parkway/South 610 Ramps		
Existing Volume	1901	vehicles
Existing Delay	4	sec/veh
Existing Total Delay	7604	seconds
Future Volume	1274	vehicles
Future Delay	4	sec/veh
Future Total Delay	5096	seconds
Total Delay Reduction	2508	seconds

408: Maple Grove Parkway/North 610 Ramps		
Existing Volume	1390	vehicles
Existing Delay	17	sec/veh
Existing Total Delay	23630	seconds
Future Volume	975	vehicles
Future Delay	13	sec/veh
Future Total Delay	12675	seconds
Total Delay Reduction	10955	seconds

409: Maple Grove Parkway/CR 81		
Existing Volume	2431	vehicles
Existing Delay	16	sec/veh
Existing Total Delay	38896	seconds
Future Volume	2331	vehicles
Future Delay	16	sec/veh
Future Total Delay	37296	seconds
Total Delay Reduction	1600	seconds

410: CR 81/Fernbrook Lane		
Existing Volume	3355	vehicles
Existing Delay	60	sec/veh
Existing Total Delay	201300	seconds
Future Volume	3255	vehicles
Future Delay	51	sec/veh
Future Total Delay	166005	seconds
Total Delay Reduction	35295	seconds

Existing Conditions within Project Area
CSAH 610 Expansion
City of Maple Grove

HENNEPIN COUNTY

MINNESOTA
June 7, 2018
Elaine Koutsoukos, TAB Coordinator
Metropolitan Council
390 North Robert Street
St. Paul, MN 55101

Re: Support for Regional Solicitation Application
 CSAH 610 Roadway Expansion Project
 From 93rd Avenue (CSAH 30) to I-94/TH 610

Dear Ms. Koutsoukos,
Hennepin County has been notified that the City of Maple Grove is submitting an application for funding as part of the Regional Solicitation through the Metropolitan Council. The project is the CSAH 610 Roadway Expansion Project as identified in the TH 610 Corridor Study.

The project will provide various mobility improvements in the Maple Grove area that include: additional access to I-94, an extension of TH 610 to the west, and connections to the local roadway system. Hennepin County supports this funding application and acknowledges that the county will have jurisdictional authority over the roadway. At this time, Hennepin County has no funding programmed in its 2018-2022 Transportation Capital Improvement Program (CIP) for this project. Additionally, Hennepin County will operate and maintain the CSAH 610 roadway facilities for the useful life of the improvements.

Hennepin County looks forward to working with the City of Maple Grove on this project, if the city is successful in securing funding.

Sincerely,

Carla Stueve, P.E., P.T.O.E.
County Engineer
Hennepin County Transportation Project Delivery
cc: Chad Ellos, Transportation Planning Division Manger

MnDOT Metro District
1500 West County Road B-2
Roseville, MN 55113

June 20, 2018
John Hagen, P.E., PTOE
Transportation Operations Engineer
City of Maple Grove
12800 Arbor Lakes Parkway
Maple Grove, MN 55369-7064

Re: Letter of Support for City of Maple Grove Metro Council/Transportation Advisory Board 2018 Regional Solicitation Funding Request for CSAH 610 project from CSAH 30 to I-94

Dear Mr. Hagen,
This letter documents MnDOT Metro District's support for the City of Maple Grove's funding request to the Metro Council for the 2018 regional solicitation for 2022-23 funding for its proposed CSAH 610 project from CSAH 30 to l-94.

As proposed, this project would impact MnDOT right-of-way on both MN 610 and Interstate I-94. As the agency with jurisdiction over MN 610 and I-94, MnDOT will support Maple Grove and will allow the improvements proposed in the application for the CSAH 610 project from CSAH 30 to I-94. Details of a future maintenance agreement with the City of Maple Grove will need to be determined during project development to define how the project improvements on MN 65 will be maintained for the project's useful life.

No funding from MnDOT is currently programmed for this project, and no discretionary funding in years 2022-23 is currently anticipated. However Metro District does have other roadway investments planned to occur nearby. I would request that you coordinate project development with MnDOT Area staff so that our agencies can work together to best leverage our respective efforts.
MnDOT Metro District looks forward to continued cooperation with the City of Maple Grove as this project moves forward and as we work together to improve safety and travel options within the Metro Area.

If you have questions or require additional information at this time, please reach out to your Area Manager at April Crockett@state.mn.us or 651-234-7728.

Sincerely,

Scott McBride
Metro District Engineer
CC: April Crockett, Metro District West Area Manager Lynne Bly, Metro Program Director Dan Erickson, Metro State Aid Engineer

2018 Metropolitan Council Regional Solicitation CSAH 610 Expansion - Project Summary

Project Name: CSAH 610 Expansion
Applicant: City of Maple Grove
Contact: John Hagen, PE, PTOE, Transportation Operations Engineer
Email/Phone: jhagen@maplegrovemn.gov (763) 494-6364

Project Details:

- Total Project Cost $=\$ 20,477,000$
- Requested Award Amount $=\$ 7,000,000$
- Construction Dates: Begin by June 2020
- Consistent with local \& regional plans
- Preliminary plans completed
- State environmental documents completed
- Technical analysis complete for interstate access (update required)
- Right of way needs identified \& ready for acquisition

Location Map:

Project Description:

The CSAH 610 project includes construction of a new four-lane divided A-Minor Arterial Expander roadway between CSAH 30 and TH 610. The project will complete the missing roadway movements in the l-94 interchange area, including a westbound I-94 to westbound CSAH 610 loop and an I-94 bridge on CSAH 610 connecting CSAH 30 to TH 610. CSAH 30 will be realigned to form a new signalized intersection with CSAH 610 , and a traffic signal will be installed at the proposed CSAH 610/Eastbound I-94 on-ramp intersection. The project will also construct a multiuse trail along the south side of CSAH 610 that will connect to existing multiuse trails on CSAH 30 and Maple Grove Parkway and provide a safe, convenient, and grade-separated pedestrian and bicycle crossing of I-94. The project is the next phase of the MnDOT TH 610 project that was recently constructed with Corridors of Commerce funding and is one of the few remaining A-Minor Arterial Expander roadways in the Met Council's 2040 Transportation Policy Plan that are planned, but not constructed.

Project Benefits:

- Improvements in regional accessibility and mobility by relieving congestion and travel delays on CSAH 30 and Maple Grove Parkway will promote growth and increase business demand, freight operations, and employment opportunities in the surrounding corridor.
- Reduction of existing traffic volumes on CSAH 30 and Maple Grove Parkway will provide the needed capacity for improving transit services and increasing access and mobility to nearby schools, employment centers, healthcare facilities, commercial areas, and the Blue Line LRT.
- Provides an additional pedestrian and bicycle route and serves as a connection between CSAH 30 and the Medicine Lake Regional Trail and will provide the missing RBTN connection between existing RBTN Corridors and Alignments west and east of I-94 making it easier and safer for Maple Grove residents to cross I-94 connect to the regional bicycle system.
- Will fulfill regional plans for expansion, while supporting infrastructure investments that are currently being made by MnDOT in the area.

[^0]: Examples: GRADE, AGG BASE, BIT BASE, BIT SURF,
 SIDEWALK, CURB AND GUTTER,STORM SEWER,
 SIGNALS, LIGHTING, GUARDRAIL, BIKE PATH, PED RAMPS,
 BRIDGE, PARK AND RIDE, ETC.
 BRIDGE/CULVERT PROJECTS (IF APPLICABLE)

[^1]: K:\TrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^2]: K:\TrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^3]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^4]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^5]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^6]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^7]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^8]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^9]: K:ITraffic ITom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^10]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^11]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^12]: K:ITraffic ITom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^13]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^14]: K:ITraffic TTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^15]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^16]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^17]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^18]: K:ITraffic TTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^19]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^20]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^21]: K:ITraffic TTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^22]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^23]: K:ITraffic TTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^24]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^25]: K:ITraffic|Tom|Regional Solicitation|2018|Maple GrovelSynchrol610 Intersections_Existing PM.syn Synchro 9 Report

[^26]: K:\TrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^27]: K:\TrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^28]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^29]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^30]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^31]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^32]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^33]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^34]: K:ITraffic ITom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^35]: K:|TrafficlTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Existing PM.syn Synchro 9 Report

[^36]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^37]: K:ITraffic ITom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^38]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^39]: K:ITraffic TTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^40]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^41]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^42]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^43]: K:ITraffic TTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^44]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^45]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^46]: K:ITraffic TTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^47]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^48]: K:ITraffic TTom|Regional Solicitationl2018|Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^49]: K:ITrafficlTom\Regional Solicitation\2018\Maple GrovelSynchrolMaple Grove Pkwy_Reduced Volumes PM.syn Synchro 9 Report

[^50]: K:ITraffic|Tom|Regional Solicitation|2018|Maple GrovelSynchrol610 Intersections_Existing PM.syn Synchro 9 Report

