

Application 10353 - 2018 Roadway Expansion 10914 - CSAH 610/I-94 Interchange in Maple Grove Regional Solicitation - Roadways Including Multimodal Elements Status: Submitted Submitted Date: 07/13/2018 11:44 AM **Primary Contact** Mr. John M Hagen Name:* Salutation First Name Middle Name Last Name Title: **Transportation Operations Engineer Department:** Email: jhagen@maplegrovemn.gov Address: City of Maple Grove 12800 Arbor Lakes Parkway City of Maple Grove Maple Grove 55369 Minnesota City State/Province Postal Code/Zip 763-494-6364 Phone:* Phone Ext. Fax: 763-494-6418 Regional Solicitation - Roadways Including Multimodal

Elements

Organization Information

What Grant Programs are you most interested in?

Name: MAPLE GROVE, CITY OF

Jurisdictional Agency (if different):			
Organization Type:	City		
Organization Website:	www.maplegrovemn.gov		
Address:	12800 Arbor Lakes Parkway N		
*	MAPLE GROVE	Minnesota	55311-6180
	City	State/Province	Postal Code/Zip
County:	Hennepin		
Phone:*	763-494-6000		
		Ext.	
Fax:			
PeopleSoft Vendor Number	0000020964		

Project Information

Project Name CSAH 610 Expansion

Primary County where the Project is Located Hennepin

Cities or Townships where the Project is Located: City of Maple Grove

Jurisdictional Agency (If Different than the Applicant): N/A

The proposed CSAH 610 project includes construction of a new four-lane divided A-Minor Arterial Expander roadway between CSAH 30 and TH 610 in Maple Grove. As shown in Figure 1, the project will complete missing movements in the I-94 interchange area, including a westbound I-94 to westbound CSAH 610 loop and an I-94 bridge on CSAH 610 connecting eastbound CSAH 30 to TH 610. CSAH 30 will be realigned to form a new signalized intersection with CSAH 610, and a traffic signal will be installed at the proposed CSAH 610 at I-94 eastbound on-ramp intersection. The project will construct sidewalks and multiuse trails along CSAH 610 including curb ramps and accessible pedestrian signals at all crosswalk locations.

Brief Project Description (Include location, road name/functional class, type of improvement, etc.)

The proposed project is an extension of the MnDOT TH 610 Completion project constructed in 2017 and included in the approved environmental documents. The first phase of these improvements was recently constructed by MnDOT with Corridors of Commerce funding. There are additional connections to the TH 610 project that are not yet funded (as identified in Figure 1) and were not included in the first phase of construction. The proposed CSAH 610 project will construct the remaining connections to assist the City in achieving their cost participation portion for the overall improvements highlighted in yellow in Figure 1.

The proposed project is a vital east-west link for the growing northern suburbs. CSAH 610 will provide improved regional connections to three important roadway facilities in the northwest Twin Cities Metropolitan Area: I-94, TH 610, and CSAH 30. The CSAH 30 corridor, as it extends to the west, serves a large geographic area between TH 55 and I-94 that is currently underserved by an arterial roadway system. The Metropolitan Council's

Environmental Services is currently extending an interceptor to serve Corcoran, Rogers, and Dayton, which will promote growth in this area with significant impacts to an already congested CSAH 30 corridor.

The proposed project will also provide multimodal benefits by providing direct access to the Blue Line LRT and the Maple Grove Transit Parkway Station located on Maple Grove Parkway between I-94 and TH 610.

More importantly, CSAH 610 is identified in the Metropolitan Council's 2040 Transportation Policy Plan as one the few remaining A-Minor Arterial Expander roadways that are planned, but not yet constructed. The proposed project is a pivotal component in fulfilling regional plans for expansion, while supporting infrastructure investments that are currently being made by MnDOT in the surrounding area.

(Limit 2,800 characters; approximately 400 words)

TIP Description <u>Guidance</u> (will be used in TIP if the project is selected for funding)

Project Length (Miles)

to the nearest one-tenth of a mile

Construction of new four-lane divided highway (CSAH 610) between CSAH 30 and TH 610. Includes new bridge over I-94 and turning movement and signalization improvements on CSAH 30.

1.6

No

Project Funding

Are you applying for competitive funds from another source(s) to implement this project?

If yes, please identify the source(s) N/A

Federal Amount \$7,000,000.00

Match Amount \$13,477,000.00

Minimum of 20% of project total

Project Total \$20,477,000.00

Match Percentage 65.82%

Minimum of 20%

Compute the match percentage by dividing the match amount by the project total

Source of Match Funds

City of Maple Grove, Hennepin County

A minimum of 20% of the total project cost must come from non-federal sources; additional match funds over the 20% minimum can come from other federal sources

Preferred Program Year

Select one: 2022

Select 2020 or 2021 for TDM projects only. For all other applications, select 2022 or 2023.

Additional Program Years: 2020, 2021

Select all years that are feasible if funding in an earlier year becomes available.

Project Information: Roadway Projects

County, City, or Lead Agency City of Maple Grove

Functional Class of Road A-Minor Arterial Expander

Road System CSAH

TH, CSAH, MSAS, CO. RD., TWP. RD., CITY STREET

Road/Route No. 610

i.e., 53 for CSAH 53

Name of Road CSAH 610

Example; 1st ST., MAIN AVE

Zip Code where Majority of Work is Being Performed 55311

(Approximate) Begin Construction Date 06/01/2020
(Approximate) End Construction Date 12/31/2021

TERMINI:(Termini listed must be within 0.3 miles of any work)

From:

(Intersection or Address)

To:

(Intersection or Address)

DO NOT INCLUDE LEGAL DESCRIPTION

Or At

GRADE, AGG BASE, BIT BASE, BIT SURF, SIDEWALK,
CURB AND GUTTER, STORM SEWER, SIGNALS,

LIGHTING, BIKE PATH, PED RAMPS, BRIDGE,

LANDSCAPING

Examples: GRADE, AGG BASE, BIT BASE, BIT SURF, SIDEWALK, CURB AND GUTTER,STORM SEWER, SIGNALS, LIGHTING, GUARDRAIL, BIKE PATH, PED RAMPS, BRIDGE, PARK AND RIDE, ETC.

BRIDGE/CULVERT PROJECTS (IF APPLICABLE)

Old Bridge/Culvert No.:	N/A
New Bridge/Culvert No.:	TBD
Structure is Over/Under (Bridge or culvert name):	I-94

Requirements - All Projects

All Projects

1. The project must be consistent with the goals and policies in these adopted regional plans: Thrive MSP 2040 (2014), the 2040 Transportation Policy Plan (2015), the 2040 Regional Parks Policy Plan (2015), and the 2040 Water Resources Policy Plan (2015).

Check the box to indicate that the project meets this requirement. Yes

2. The project must be consistent with the 2040 Transportation Policy Plan. Reference the 2040 Transportation Plan goals, objectives, and strategies that relate to the project.

Goal B: Safety and Security (2040 TPP, pg. 2.7); Objective: Reduce crash rates and improve safety and security for all modes of passenger travel and freight transport. Strategy B1: Regional transportation partners will incorporate safety and security considerations for all modes and users throughout the processes of planning, funding, construction, operation. Strategy B6: Regional transportation partners will use best practices to provide and improve facilities for safe walking and bicycling, since pedestrians and bicyclists are the most vulnerable users of the transportation system.

List the goals, objectives, strategies, and associated pages:

Goal C: Access to Destinations (2040 TPP, pg. 2.8); Objective: Increase the availability of multimodal travel options, especially in congested highway corridors. Objective: Improve multimodal travel options for people of all ages and abilities to connect to jobs and other opportunities, particularly for historically under-represented populations. Strategy C1: Regional transportation partners will continue to work together to plan and implement transportation system that are multimodal and provide connections between modes. The Council will prioritize regional projects that are multimodal and cost-effective and encourage investments to include appropriate provisions for bicycle and pedestrian travel. Strategy C2: Local units of government should provide a system of interconnected arterial roads, streets, bicycle facilities, and pedestrian facilities to meet local travel needs using Complete Street principles.

Goal D: Competitive Economy (2040 TPP, pg. 2.11); Objective: Support the region's economic competitiveness through the efficient movement of freight. Strategy D5: The Council and MnDOT will work with transportation partners to identify the impacts of highway congestion on freight and

identify cost-effective mitigation.

Goal E: Healthy Environment (TPP, pg. 2.12); Objective: Increase the availability and attractiveness of transit, bicycling, and walking to encourage healthy communities and active car-free lifestyles. Strategy E3: Regional transportation partners will plan and implement a transportation system that considers the needs of all potential users, including children, senior citizens, and persons with disabilities, and that promotes active lifestyles and cohesive communities. A special emphasis should be place on promoting the environment and health benefits of alternative to single-occupancy vehicle travel.

3. The project or the transportation problem/need that the project addresses must be in a local planning or programming document. Reference the name of the appropriate comprehensive plan, regional/statewide plan, capital improvement program, corridor study document [studies on trunk highway must be approved by the Minnesota Department of Transportation and the Metropolitan Council], or other official plan or program of the applicant agency [includes Safe Routes to School Plans] that the project is included in and/or a transportation problem/need that the project addresses.

2040 Metropolitan Council Transportation Policy Plan (2015), Figures 1-2 and 12-1

2030 Hennepin County Transportation Systems Plan (2011), Page 5-12, Maps C through F

List the applicable documents and pages:

City of Maple Grove Transportation Plan (2018), Page 14

City of Maple Grove Transportation Plan (2009), Page 22

4. The project must exclude costs for studies, preliminary engineering, design, or construction engineering. Right-of-way costs are only eligible as part of transit stations/stops, transit terminals, park-and-ride facilities, or pool-and-ride lots. Noise barriers, drainage projects, fences, landscaping, etc., are not eligible for funding as a standalone project, but can be included as part of the larger submitted project, which is otherwise eligible.

Check the box to indicate that the project meets this requirement. Yes

5. Applicants that are not cities or counties in the seven-county metro area with populations over 5,000 must contact the MnDOT Metro State Aid Office prior to submitting their application to determine if a public agency sponsor is required.

Check the box to indicate that the project meets this requirement. Yes

6.Applicants must not submit an application for the same project elements in more than one funding application category.

Check the box to indicate that the project meets this requirement. Yes

7. The requested funding amount must be more than or equal to the minimum award and less than or equal to the maximum award. The cost of preparing a project for funding authorization can be substantial. For that reason, minimum federal amounts apply. Other federal funds may be combined with the requested funds for projects exceeding the maximum award, but the source(s) must be identified in the application. Funding amounts by application category are listed below.

Roadway Expansion: \$1,000,000 to \$7,000,000

Roadway Reconstruction/ Modernization Modernization and Spot Mobility: \$1,000,000 to \$7,000,000

Traffic Management Technologies (Roadway System Management): \$250,000 to \$7,000,000

Bridges Rehabilitation/ Replacement: \$1,000,000 to \$7,000,000

Check the box to indicate that the project meets this requirement. Yes

8. The project must comply with the Americans with Disabilities Act (ADA).

Check the box to indicate that the project meets this requirement. Yes

9.In order for a selected project to be included in the Transportation Improvement Program (TIP) and approved by USDOT, the public agency sponsor must either have, or be substantially working towards, completing a current Americans with Disabilities Act (ADA) self-evaluation or transition plan that covers the public right of way/transportation, as required under Title II of the ADA.

The applicant is a public agency that employs 50 or more people and has an adopted ADA transition plan that covers the public right of way/transportation.

The applicant is a public agency that employs 50 or more people Yes and is currently working towards completing an ADA transition plan that covers the public rights of way/transportation.

The applicant is a public agency that employs fewer than 50 people and has a completed ADA self-evaluation that covers the public rights of way/transportation.

The applicant is a public agency that employs fewer than 50 people and is working towards completing an ADA self-evaluation that covers the public rights of way/transportation.

(TDM Applicants Only) The applicant is not a public agency subject to the self-evaluation requirements in Title II of the ADA.

10. The project must be accessible and open to the general public.

Check the box to indicate that the project meets this requirement. Yes

11.The owner/operator of the facility must operate and maintain the project year-round for the useful life of the improvement, per FHWA direction established 8/27/2008 and updated 6/27/2017.

Check the box to indicate that the project meets this requirement. Yes

12. The project must represent a permanent improvement with independent utility. The term independent utility means the project provides benefits described in the application by itself and does not depend on any construction elements of the project being funded from other sources outside the regional solicitation, excluding the required non-federal match. Projects that include traffic management or transit operating funds as part of a construction project are exempt from this policy.

Check the box to indicate that the project meets this requirement. Yes

13. The project must not be a temporary construction project. A temporary construction project is defined as work that must be replaced within five years and is ineligible for funding. The project must also not be staged construction where the project will be replaced as part of future stages. Staged construction is eligible for funding as long as future stages build on, rather than replace, previous work.

Check the box to indicate that the project meets this requirement. Yes

14. The project applicant must send written notification regarding the proposed project to all affected state and local units of government prior to submitting the application.

Check the box to indicate that the project meets this requirement. Yes

Date plan adopted by governing body

07/01/2016 12/31/2018

Date of anticipated plan Date process started completion/adoption

Date self-evaluation completed

Date of anticipated plan Date process started

completion/adoption

Roadways Including Multimodal Elements

1.All roadway and bridge projects must be identified as a principal arterial (non-freeway facilities only) or A-minor arterial as shown on the latest TAB approved roadway functional classification map.

Check the box to indicate that the project meets this requirement. Yes

Roadway Expansion and Reconstruction/Modernization and Spot Mobility projects only:

2. The project must be designed to meet 10-ton load limit standards.

Check the box to indicate that the project meets this requirement. Yes

Bridge Rehabilitation/Replacement projects only:

3.Projects requiring a grade-separated crossing of a principal arterial freeway must be limited to the federal share of those project costs identified as local (non-MnDOT) cost responsibility using MnDOTs Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities manual. In the case of a federally funded trunk highway project, the policy guidelines should be read as if the funded trunk highway route is under local jurisdiction.

Check the box to indicate that the project meets this requirement.

4.The bridge must carry vehicular traffic. Bridges can carry traffic from multiple modes. However, bridges that <u>are exclusively</u> for bicycle or pedestrian traffic must apply under one of the Bicycle and Pedestrian Facilities application categories. Rail-only bridges are ineligible for funding.

Check the box to indicate that the project meets this requirement.

5. The length of the bridge must equal or exceed 20 feet.

Check the box to indicate that the project meets this requirement.

6. The bridge must have a sufficiency rating less than 80 for rehabilitation projects and less than 50 for replacement projects. Additionally, the bridge must also be classified as structurally deficient or functionally obsolete.

Check the box to indicate that the project meets this requirement.

Roadway Expansion, Reconstruction/Modernization and Spot Mobility, and Bridge Rehabilitation/Replacement projects only:

7. All roadway projects that involve the construction of a new/expanded interchange or new interchange ramps must have approval by the Metropolitan Council/MnDOT Interchange Planning Review Committee prior to application submittal. Please contact Michael Corbett at MnDOT (Michael.J.Corbett@state.mn.us or 651-234-7793) to determine whether your project needs to go through this process.

Check the box to indicate that the project meets this requirement. Yes

Requirements - Roadways Including Multimodal Elements

Specific Roadway Elements

CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES

Cost

Mobilization (approx. 5% of total cost)

\$780,000.00

Removals (approx. 5% of total cost)

\$25,000.00

Roadway (grading, borrow, etc.)

\$3,350,000.00

Roadway (aggregates and paving)	\$3,520,000.00
Subgrade Correction (muck)	\$0.00
Storm Sewer	\$1,470,000.00
Ponds	\$0.00
Concrete Items (curb & gutter, sidewalks, median barriers)	\$438,000.00
Traffic Control	\$459,000.00
Striping	\$128,000.00
Signing	\$341,000.00
Lighting	\$89,000.00
Turf - Erosion & Landscaping	\$451,000.00
Bridge	\$5,392,000.00
Retaining Walls	\$278,000.00
Noise Wall (not calculated in cost effectiveness measure)	\$0.00
Traffic Signals	\$205,000.00
Wetland Mitigation	\$0.00
Other Natural and Cultural Resource Protection	\$0.00
RR Crossing	\$0.00
Roadway Contingencies	\$3,374,000.00
Other Roadway Elements	\$0.00
Totals	\$20,300,000.00

Specific Bicycle and Pedestrian Elements

CONSTRUCTION PROJECT ELEMENTS/COST

ESTIMATES	Cost
Path/Trail Construction	\$72,000.00
Sidewalk Construction	\$105,000.00
On-Street Bicycle Facility Construction	\$0.00
Right-of-Way	\$0.00
Pedestrian Curb Ramps (ADA)	\$0.00
Crossing Aids (e.g., Audible Pedestrian Signals, HAWK)	\$0.00
Pedestrian-scale Lighting	\$0.00
Streetscaping	\$0.00
Wayfinding	\$0.00
Bicycle and Pedestrian Contingencies	\$0.00
Other Bicycle and Pedestrian Elements	\$0.00

Totals \$177,000.00

Specific Transit and TDM Elements

CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES	Cost
Fixed Guideway Elements	\$0.00
Stations, Stops, and Terminals	\$0.00
Support Facilities	\$0.00
Transit Systems (e.g. communications, signals, controls, fare collection, etc.)	\$0.00
Vehicles	\$0.00
Contingencies	\$0.00
Right-of-Way	\$0.00
Other Transit and TDM Elements	\$0.00
Totals	\$0.00

Transit Operating Costs

Number of Platform hours 0

Cost Per Platform hour (full loaded Cost) \$0.00

Subtotal \$0.00

Other Costs - Administration, Overhead,etc. \$0.00

Totals

 Total Cost
 \$20,477,000.00

 Construction Cost Total
 \$20,477,000.00

Transit Operating Cost Total \$0.00

Congestion on adjacent Parallel Routes:

Adjacent Parallel Corridor CSAH 30 and Maple Grove Parkway

Adjacent Parallel Corridor Start and End Points:

Start Point: CSAH 30 at 520 feet east of Troy Lane

End Point: Maple Grove Parkway at TH 610

Free-Flow Travel Speed: 39

The Free-Flow Travel Speed is black number.

Peak Hour Travel Speed:

29

The Peak Hour Travel Speed is red number.

Percentage Decrease in Travel Speed in Peak Hour Compared to

Free-Flow:

25.64%

Upload Level of Congestion Map: 1531228730560_CSAH 610 Expansion_Level of

Congestion.pdf

Principal Arterial Intersection Conversion Study:

Proposed interchange or at-grade project that reduces delay at a High Priority Intersection:

(80 Points)

Proposed at-grade project that reduces delay at a Medium Priority Intersection:

(60 Points)

Proposed at-grade project that reduces delay at a Low Priority Intersection:

(50 Points)

Proposed interchange project that reduces delay at a Medium Priority Intersection:

(40 Points)

Proposed interchange project that reduces delay at a Low Priority Intersection:

(0 Points)

Not listed as a priority in the study:

Yes

(0 Points)

Measure B: Project Location Relative to Jobs, Manufacturing, and Education

Existing Employment within 1 Mile: 5044

Existing Manufacturing/Distribution-Related Employment within 1

Mile:

909

Existing Post-Secondary Students within 1 Mile:

Upload Map 1531228848467_CSAH 610 Expansion_Regional

Economy.pdf

Please upload attachment in PDF form.

Measure C: Current Heavy Commercial Traffic

RESPONSE: Select one for your project, based on the Regional Truck Corridor Study:

Along Tier 1:

Along Tier 2:

Yes

Along Tier 3:

The project provides a direct and immediate connection (i.e., intersects) with either a Tier 1, Tier 2, or Tier 3 corridor:

None of the tiers:

Measure A: Current Daily Person Throughput

Location Maple Grove Parkway east of CSAH 30

Current AADT Volume 29000

Existing Transit Routes on the Project 787

For New Roadways only, list transit routes that will likely be diverted to the new proposed roadway (if applicable).

Upload Transit Connections Map

Connections.pdf

Please upload attachment in PDF form.

Response: Current Daily Person Throughput

Average Annual Daily Transit Ridership 18.0

Current Daily Person Throughput 37718.0

Measure B: 2040 Forecast ADT

Use Metropolitan Council model to determine forecast (2040) ADT volume

No

If checked, METC Staff will provide Forecast (2040) ADT volume

OR

Identify the approved county or city travel demand model to

determine forecast (2040) ADT volume

2040 Met Council Regional Activity Based Model refined for the City of Maple Grove. Forecast location on CSAH 610 between CSAH 30 and I-94.

Forecast (2040) ADT volume 33000

Measure A: Connection to disadvantaged populations and projects benefits, impacts, and mitigation

Select one:

Project located in Area of Concentrated Poverty with 50% or more of residents are people of color (ACP50):

(up to 100% of maximum score)

Project located in Area of Concentrated Poverty:

(up to 80% of maximum score)

Projects census tracts are above the regional average for population in poverty or population of color:

(up to 60% of maximum score)

Project located in a census tract that is below the regional average for population in poverty or populations of color or includes children, people with disabilities, or the elderly:

Yes

(up to 40% of maximum score)

1.(0 to 3 points) A successful project is one that has actively engaged low-income populations, people of color, children, persons with disabilities, and the elderly during the project's development with the intent to limit negative impacts on them and, at the same time, provide the most benefits.

Describe how the project has encouraged or will engage the full cross-section of community in decision-making. Identify the communities to be engaged and where in the project development process engagement has occurred or will occur. Elements of quality engagement include: outreach to specific communities and populations that are likely to be directly impacted by the project; techniques to reach out to populations traditionally not involved in the community engagement related to transportation projects; residents or users identifying potential positive and negative elements of the project; and surveys, study recommendations, or plans that provide feedback from populations that may be impacted by the proposed project. If relevant, describe how NEPA or Title VI regulations will guide engagement activities.

Response:

The TH 610 Completion project actively engaged the community during its development phase, which included the CSAH 610 component currently proposed for construction. Engagement activities already performed include 3 public open house events and 3 public meetings. Attendance at these events represented a full cross section of the community including low-income, people of color, children, people with disabilities, elderly residents, property owners, multimodal users, business owners, and school officials. These community members were able to learn about the project, review proposed designs, share their input and concerns, and ask questions and receive responses. The TH 610 project provided added engagement through brochures, newsletters, newspaper and TV advertising, a website, email alerts, direct mailings, project hotline, and direct contact information.

The CSAH 610 project will continue to engage the full cross section of the community through public events, print materials, social media, and one-on-one meetings. Pop-up events will be held at locations accessible to low-income populations, people of color, children, people with disabilities, and the elderly to provide residents opportunities to receive information directly and voice their concerns in person. A survey will be facilitated within the community to identify specific positive and negative elements of the project.

(Limit 1,400 characters; approximately 200 words)

2.(0 to 7 points) Describe the projects benefits to low-income populations, people of color, children, people with disabilities, and the elderly. Benefits could relate to safety; public health; access to destinations; travel time; gap closure; leveraging of other beneficial projects and investments; and/or community cohesion. Note that this is not an exhaustive list.

The project will provide benefits to all members of the surrounding community including low-income populations, people of color, children, people with disabilities, and the elderly.

Supporting the City's local economy and providing opportunities for job growth is a direct benefit to nearby low-income populations. Improvements in regional accessibility and mobility resulting from the CSAH 610 extension will increase business demand, freight operations, and employment growth in the surrounding corridor by relieving congestion and travel delays on the overburdened existing roadway system. The demand for more business will provide low-income populations new employment opportunities within the project area and surrounding region.

Response:

Another direct benefit to all members of the community, especially low-income populations, children, people with disabilities, and the elderly, is the reduction of existing traffic volumes on CSAH 30 and Maple Grove Parkway. As indicated in the 2040 Met Council Regional Activity Based Model refined for the City of Maple Grove, the proposed CSAH 610 connections to TH 610 and I-94 will remove 55% of traffic on CSAH 30 and 33% of traffic on Maple Grove Parkway by 2040, significantly reducing congestion. Reducing congestion on CSAH 30 and Maple Grove Parkway will provide the needed capacity for improving transit services by increasing access and mobility to nearby schools, employment centers, and healthcare facilities.

CSAH 610, CSAH 30, and Maple Grove Parkway are important access routes for all travel modes and serve various population groups. For example,

the project will improve access for low-income populations, people of color, children, people with disabilities, and the elderly to the Blue Line LRT. This connection will provide greater opportunities to access jobs throughout the Twin Cities without having to own a personal vehicle. The project will also improve regional access for children living in the area to Fernbrook Elementary School and the Maple Grove Senior High School.

The project is located in proximity to several hospitals and medical facilities on Maple Grove Parkway such as the Maple Grove Hospital, North Memorial Health, and Gillette Children's Specialty Healthcare. By reducing congestion on Maple Grove Parkway, the proposed project will benefit disabled and elderly populations by improving access, mobility, and emergency response times to these facilities.

The multiuse trails featured in the project will offer benefits to all users, including children and users with disabilities that are unable to drive. The multiuse trails along CSAH 610 will provide a multimodal connection across I-94, offering additional and alternative access to employment centers, schools, healthcare facilities, and other destinations.

(Limit 2,800 characters; approximately 400 words)

3.(-3 to 0 points) Describe any negative externalities created by the project along with measures that will be taken to mitigate them. Negative externalities can result in a reduction in points, but mitigation of externalities can offset reductions.

Below is a list of negative impacts. Note that this is not an exhaustive list.

Increased difficulty in street crossing caused by increased roadway width, increased traffic speed, wider turning radii, or other elements that negatively impact pedestrian access.

Increased noise.

Decreased pedestrian access through sidewalk removal / narrowing, placement of barriers along the walking path, increase in auto-oriented curb cuts, etc.

Project elements that are detrimental to location-based air quality by increasing stop/start activity at intersections, creating vehicle idling areas, directing an increased number of vehicles to a particular point, etc.

Increased speed and/or cut-through traffic.

Removed or diminished safe bicycle access.

Inclusion of some other barrier to access to jobs and other destinations.

Displacement of residents and businesses.

Construction/implementation impacts such as dust; noise; reduced access for travelers and to businesses; disruption of utilities; and eliminated street crossings. These tend to be temporary.

Other

Response:

As with most construction projects negative externalities will be created; however proactive mitigation measures will be implemented to minimize impacts. For example, construction of the new CSAH 610 alignment will likely require temporary roadway closures and detour routes commonly resulting in negative externalities such as traffic congestion and delays. To minimize traffic congestion and delays near the work zone, a project-specific transportation management plan (TMP) will be designed and implemented to maintain acceptable levels of safety, accessibility, and mobility. The TMP will identify a variety of management strategies to mitigate negative impacts on traffic. These strategies will include increased incident management and vehicle removal capabilities, intelligent transportation system (ITS) technologies to divert traffic and inform travelers of delays and encourage alternate routes, work zone traffic simulations to forecast impacts on traffic flow and congestion, alternative scheduling and phasing including nighttime construction, and scheduling work to minimize lane closures and delays during peak traffic hours.

Noise originating from construction of the new CSAH 610 roadway is another negative externality of the project. Construction activities will occur in close proximity to existing employment centers, schools, healthcare facilities, and residences, and need to be closely controlled and monitored to avoid excessive noise impacts. Identifying noise sensitive locations within the adjacent community will allow proper mitigation measures to be employed. Mitigation approaches include performing construction activities at the appropriate time of day, adhering to local noise control requirements, utilizing the FHWA Roadway Construction Noise Model to predict noise levels during various stages of construction, and

restricting equipment to locations where noise will be reduced.

An additional negative externality is stormwater runoff due to increased impervious surface resulting from the project. Without proper mitigation measures, stormwater runoff can contaminate existing watersheds and erode existing support embankments and wetland barriers. Drainage ponds and other Best Management Practices (BMP) will be implemented to mitigate the impact of stormwater runoff. In addition, a NPDES permit will be required for construction activities associated with the project. During construction, grading, ditches, siltation fences, and fiber rolls will be employed as temporary erosion control measures. These measures will be implemented to control runoff and prevent off-site sedimentation. After construction, all disturbed areas will be sodded or seeded, leaving temporary erosion control measures in-place until the vegetative cover has been established.

(Limit 2,800 characters; approximately 400 words)

Upload Map

1531238361795_CSAH 610 Expansion_Socio-Economic Conditions.pdf

Measure B: Affordable Housing

Segment Length (For stand-alone projects, enter **Segment Housing Score** City Length/Total **Multiplied by** population from Score Regional Economy **Project Length** Segment percent map) within each City/Township Maple Grove 1.6 1.0 75.0 75.0

Total Project Length

1.6

Affordable Housing Scoring

Total Project Length (Miles) or Population

Total Housing Score 75.0

Affordable Housing Scoring

Measure A: Infrastructure Age

Year of Original

Roadway Construction Segment Length Calculation **Calculation 2** or Most Recent Reconstruction

> 1965.0 1.22 2397.3 1965.0

> > 1 2397 1965

> > > **EXPLANATIO**

Average Construction Year

Weighted Year 1965.0

Total Segment Length (Miles)

Total Segment Length 1.22

Measure A: Congestion Reduction/Air Quality

Total Peak Hour Delay Per Vehicle Without The Project (Seconds/Veh icle)	Total Peak Hour Delay Per Vehicle With The Project (Seconds/Veh icle)	Total Peak Hour Delay Per Vehicle Reduced by Project (Seconds/Veh icle)	Volume (Vehicles per hour)	Total Peak Hour Delay Reduced by the Project:	N of methodology used to calculate railroad crossing delay, if applicable.	Synchro or HCM Reports
--	---	---	----------------------------------	--	---	---------------------------

See attached sheet with the calculations for vehicle delay reduction. Because the intersection volume changes

between 15314998151 0 existing and 87_SynchroRe

improved, the sults.pdf

online
application
calculator
cannot be
used. The total
delay
reduction is on

the fourth page of the attachment.

Vehicle Delay Reduced

Total Peak Hour Delay Reduced

0

0

0

0

0

Measure B:Roadway projects that do not include new roadway segments or railroad grade-separation elements

Total (CO, NOX, and VOC)
Peak Hour Emissions
without the Project
(Kilograms):

Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms): Total (CO, NOX, and VOC)
Peak Hour Emissions
Reduced by the Project
(Kilograms):

0 0

Total

Total Emissions Reduced:

0

Upload Synchro Report

Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

Measure B: Roadway projects that are constructing new roadway segments, but do not include railroad grade-separation elements (for Roadway Expansion applications only):

Total (CO, NOX, and VOC)
Peak Hour Emissions
without the Project
(Kilograms):

Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms): Total (CO, NOX, and VOC)
Peak Hour Emissions
Reduced by the Project
(Kilograms):

18.7

63.38 44.68

45 19

63

Total Parallel Roadway

Emissions Reduced on Parallel Roadways 18.7

Upload Synchro Report 1530821205780_Synchro Results.pdf

Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

New Roadway Portion:

Cruise speed in miles per hour with the project: 50.0

Vehicle miles traveled with the project: 1127.0

Total delay in hours with the project: 14.0

Total stops in vehicles per hour with the project: 1589.0

Fuel consumption in gallons: 72.397

Total (CO, NOX, and VOC) Peak Hour Emissions Reduced or 7.218

Produced on New Roadway (Kilograms):

7.210

EXPLANATION of methodology and assumptions used:(Limit 1,400 characters; approximately 200 words)

Obtained results of the new CSAH 610 section over I-94. This includes the travel distance and delay and stops at the new intersection with CSAH 30.

Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):

11.482

Measure B:Roadway projects that include railroad grade-separation elements

Cruise speed in miles per hour without the project:

0
Vehicle miles traveled without the project:

0
Total delay in hours without the project:

0
Total stops in vehicles per hour without the project:

0
Cruise speed in miles per hour with the project:

0
Vehicle miles traveled with the project:

0

Total delay in hours with the project:	0
Total stops in vehicles per hour with the project:	0
Fuel consumption in gallons (F1)	0
Fuel consumption in gallons (F2)	0
Fuel consumption in gallons (F3)	0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):	0
EXPLANATION of methodology and assumptions used:(Limit 1,400 characters; approximately 200 words)	
Measure A: Benefit of Crash Reduction	
Measure A: Benefit of Crash Reduction Crash Modification Factor Used:	See attached explanation form. The provided method for new roadways was used.
	·
Crash Modification Factor Used:	·
Crash Modification Factor Used: (Limit 700 Characters; approximately 100 words)	method for new roadways was used. See attached explanation form. The provided
Crash Modification Factor Used: (Limit 700 Characters; approximately 100 words) Rationale for Crash Modification Selected:	method for new roadways was used. See attached explanation form. The provided

Roadway projects that include railroad grade-separation elements:

Current AADT volume:	C
Average daily trains:	C
Crash Risk Exposure eliminated:	C

Please upload attachment in PDF form.

Measure A: Multimodal Elements and Existing Connections

Response:

The project includes a multiuse trail on the south side of CSAH 610 from CSAH 30 to Maple Grove Parkway, providing a safe, convenient, and grade-separated pedestrian and bicycle crossing of I-94 and improving pedestrian and bicycle safety and connectivity. People of all ages and abilities will be able to use the new multiuse trail to connect to existing bicycle, pedestrian, and transit facilities and access parks, schools, employment centers, healthcare facilities, and commercial areas on CSAH 30 and Maple Grove Parkway.

The project will provide an alternative connection between CSAH 30 and TH 610, and as indicated in the 2040 Met Council Regional Activity Based Model refined for the City of Maple Grove, will reduce traffic volumes on Maple Grove Parkway by 15,000 vpd by 2040. Reduction of traffic volumes will improve access to pedestrian, bicycle, and transit facilities and improve existing transit operations by reducing congestion and increasing mobility. The project will provide an additional pedestrian and bicycle connection between CSAH 30 and the Medicine Lake Regional Trail.

The multiuse trail will tie into the existing CSAH 30 RBTN Tier 2 Corridor on the western terminus and the existing multiuse trail on Maple Grove Parkway on the eastern terminus, which provides direct access to the CSAH 81 RBTN Tier 1 Corridor. The CSAH 30 RBTN Tier 2 Corridor connects to the CSAH 101 RBTN Tier 2 Alignment, while the CSAH 81 RBTN Tier 1 Corridor connects to the Medicine Lake Regional Trail and CSAH 81 RBTN Tier 1 Alignment. The project will provide the missing RBTN connection between existing RBTN Tier 2 Corridors and Alignments west of I-94 to existing RBTN Tier 1 Alignments and Corridors east of I-94. By providing the missing RBTN connection, the

project will make it easier and safer for residents to connect to the regional bicycle system.

The project will also improve existing pedestrian and transit connections. Existing multiuse trails are located on both sides of CSAH 30 and Maple Grove Parkway and are included on the Medicine Lake Regional Trail and Elm Creek Park Reserve Trail. The project will provide a shorter and more direct connection between the CSAH 30 and Maple Grove Parkway pedestrian trails providing access to shopping centers, schools, healthcare facilities and the Medicine Lake Regional Trail and Elm Creek Park Reserve Trail.

The project will also enhance existing transit connections as the Maple Grove Transit (MGT) Parkway Station is located on Maple Grove Parkway east of I-94. The facility serves both MGT Local Connector Route 787 and Express Route 785 connecting to downtown Minneapolis. Other existing MGT connections include Express Route 781 which provides trips to and from downtown Minneapolis and services CSAH 30.

(Limit 2,800 characters; approximately 400 words)

Transit Projects Not Requiring Construction

If the applicant is completing a transit application that is operations only, check the box and do not complete the remainder of the form. These projects will receive full points for the Risk Assessment.

Park-and-Ride and other transit construction projects require completion of the Risk Assessment below.

Check Here if Your Transit Project Does Not Require Construction

Measure A: Risk Assessment - Construction Projects

1)Layout (30 Percent of Points)

Layout should include proposed geometrics and existing and proposed right-of-way boundaries.

Layout approved by the applicant and all impacted jurisdictions (i.e., cities/counties that the project goes through or agencies that Yes maintain the roadway(s)). A PDF of the layout must be attached along with letters from each jurisdiction to receive points.

100%

Attach Layout

1531426121875_CSAH 610_Approved Layout.pdf

Please upload attachment in PDF form.

Layout completed but not approved by all jurisdictions. A PDF of the layout must be attached to receive points.

50%

Attach Layout

Please upload attachment in PDF form.

Layout has not been started

0%

Anticipated date or date of completion

10/29/2012

2) Review of Section 106 Historic Resources (20 Percent of Points)

No known historic properties eligible for or listed in the National Register of Historic Places are located in the project area, and project is not located on an identified historic bridge

Yes

100%

There are historical/archeological properties present but determination of no historic properties affected is anticipated.

100%

Historic/archeological property impacted; determination of no adverse effect anticipated

80%

Historic/archeological property impacted; determination of adverse effect anticipated

40%

Unsure if there are any historic/archaeological properties in the project area.

Project is located on an identified historic bridge

3)Right-of-Way (30 Percent of Points)

Right-of-way, permanent or temporary easements either not required or all have been acquired

100%

Right-of-way, permanent or temporary easements required, plat, legal descriptions, or official map complete

Yes

Right-of-way, permanent or temporary easements required, parcels identified

25%

Right-of-way, permanent or temporary easements required, parcels not all identified

0%

Anticipated date or date of acquisition 12/31/2021

4)Railroad Involvement (20 Percent of Points)

No railroad involvement on project or railroad Right-of-Way agreement is executed (include signature page, if applicable)

Yes

100%

Signature Page

Please upload attachment in PDF form.

Railroad Right-of-Way Agreement required; negotiations have begun

50%

Railroad Right-of-Way Agreement required; negotiations have not begun.

0%

Anticipated date or date of executed Agreement

Measure A: Cost Effectiveness

Total Project Cost (entered in Project Cost Form): \$20,477,000.00

Enter Amount of the Noise Walls: \$0.00

Total Project Cost subtract the amount of the noise walls: \$20,477,000.00

Points Awarded in Previous Criteria

Cost Effectiveness \$0.00

Other Attachments

File Name	Description	File Size
CSAH 610_Approval Letter_Interchange Planning Review Committee.pdf	Approval letter from Interchange Planning Review Committee.	54 KB
CSAH 610_Concept_Figure 1.pdf	Concept drawing (Figure 1).	1.9 MB
CSAH 610_Delay Reductions.pdf	CSAH 610 Intersection Delay Reductions	36 KB
CSAH 610_Existing Conditions Photograph.pdf	Existing conditions photograph.	1.2 MB
CSAH 610_Letter of Support_Hennepin County.pdf	Letter of support from Hennepin County.	106 KB
CSAH 610_Letter of Support_MnDOT.pdf	Letter of support from MnDOT.	541 KB
CSAH 610_Project Summary.pdf	One-page project summary.	168 KB

Regional Economy Roadway Expansion Project: CSAH 610 Expansion | Map ID: 1529424372686 - Ercelten-lin-M 101 Results WITHIN ONE MI of project: Postsecondary Students: 0 Totals by City: **Maple Grove** Population: 11104 Employment: 5044 Mfg and Dist Employment: 909 Maple Grove Hospital NCompass Technologies **Project Points** Manfacturing/Distribution Centers **Project Job Concentration Centers** 0.25 0.5 1.5 Created: 6/19/2018 For complete disclaimer of accuracy, please visit _ Miles LandscapeRSA5

John Hagen

From: John Hagen

Sent: Friday, July 13, 2018 11:15 AM **To:** 'Koutsoukos, Elaine'; Peterson, Steven

Cc: Tim Babich; 'Tom Sachi'

Subject: CSAH 610 Regional Solicitation Application: Section 5A (Total Delay Reduction)

Attachments: Delay Email Question With Steve Peterson.pdf

Elaine and Steve:

The purpose of this email is remind you of the past discussions that you had with Tom Sachi with SRF Consulting (our consultant that is assisting us with the technical analysis our application) regarding our response to Section 5A (Congestion Reduction/Air Quality) of the Webgrant form for Maple Grove's CSAH 610 Expansion project 2018 Regional Solicitation Application.

As Tom pointed out in his attached July 2, 2018 email, the online application does not accurately show delay reductions for projects that result in a reduction of vehicles as a result of the proposed project. Based on a follow-up conversation that Tom had with Steve, the agreed upon approach was for us to enter zeros in Section 5A of the Webgrant form, in order for us to be able to include an attachment that provides our peak hour delay reductions at each intersection, total network delay reductions, and Synchro results.

Therefore, since the online application does not accurately show delay reductions for projects that result in reduction in vehicles, we respectfully request that you utilize the Total Peak Hour Delay reported in our PDF attachment of Section 5A for the scoring in Section 5A (Congestion Reduction/Air Quality) of our CSAH 610 Expansion project application.

Thanks for your time and consideration in this matter!

John

John Hagen, P.E., PTOE
Transportation Operations Engineer
City of Maple Grove
12800 Arbor Lakes Parkway
Maple Grove, MN 55369-7064

(Note: New mailing address Effective May 1, 2018)

Direct-Dial: 763-494-6364

Tom Sachi

From: Peterson, Steven < Steven.Peterson@metc.state.mn.us>

Sent: Monday, July 02, 2018 10:27 PM

To: Tom Sachi
Subject: Re: Synchro

Thanks

Sent from my iPhone

On Jul 2, 2018, at 5:34 PM, Tom Sachi <TSachi@srfconsulting.com> wrote:

Steve,

See attached for the synchro reports. The example I have is intersection #70 in the attached reports. The delay at the intersection remains the same at 28 sec/veh after optimizing, but the volume reduces from 1856 to 1656. In the application, we can only enter one volume, therefore, the application gives us a zero reduction in delay at intersection 70, when really there is a reduction in overall delay because there is a fewer amount of vehicles

For example:

How the application shows it: Existing Delay – 28 sec/veh Future delay – 28 sec/veh Delay Reduction = 0 sec/veh Number of Vehicles = 1856 vehicles Reduction in delay = 0 sec

How I would show it

Existing: 28 sec/veh * 1856 veh = 51968 sec of delay Future: 28 sec/veh * 1656 veh = 46368 sec of delay

Total Reduction = 5600 sec

The online app doesn't let us accurately show the reduction because it cannot account for the reduction in vehicles.

Let me know if you still have questions.

-Tom

From: Peterson, Steven [mailto:Steven.Peterson@metc.state.mn.us]

Sent: Monday, July 02, 2018 4:57 PM **To:** Tom Sachi <TSachi@srfconsulting.com>

Subject: Synchro

Tom,

When you get done with the Synchro reports for those two projects, could you please share them with Elaine and I to make sure there isn't a way to input it into Webgrants somehow?

Thanks, Steve

<image001.png>

Steve Peterson, AICP

Manager of Highway Planning and TAB/TAC Process

Metropolitan Transportation Services steven.peterson@metc.state.mn.us
P. 651.602.1819 | F. 651.602.1739

390 North Robert Street | St. Paul, MN | 55101 | metrocouncil.org

<image002.gif><image003.png><image004.png><image005.png> <image006.gif>

<Future PM_Balanced - Report.pdf>

< Existing PM_Balanced - Report.pdf>

Maple Grove - CSAH 610 Expansion

399: CR 30 and Lawndale		
Existing Volume	1936	vehicles
Existing Delay	36	sec/veh
Existing Total Delay	69696	seconds
Future Volume	737	vehicles
Future Delay	28	sec/veh
Future Total Delay	20636	seconds
Total Delay Reduction	49060	seconds

40:. CR 30 and Garland Ln		
Existing Volume	2134	vehicles
Existing Delay	19	sec/veh
Existing Total Delay	40546	seconds
Future Volume	935	vehicles
Future Delay	15	sec/veh
Future Total Delay	14025	seconds
Total Delay Reduction	26521	seconds

401:CR 30 and Dunkirk/Maple Grove Parkway		
Existing Volume	3935	vehicles
Existing Delay	37	sec/veh
Existing Total Delay	145595	seconds
Future Volume	2751	vehicles
Future Delay	26	sec/veh
Future Total Delay	71526	seconds
Total Delay Reduction	74069	seconds

402: Maple Grove Parkway/West 94 Ramps		
Existing Volume	3549	vehicles
Existing Delay	37	sec/veh
Existing Total Delay	131313	seconds
Future Volume	2591	vehicles
Future Delay	30	sec/veh
Future Total Delay	77730	seconds
Total Delay Reduction	53583	seconds

403: Maple Grove Parkway/East 94 Ramps		
Existing Volume	3164	vehicles
Existing Delay	39	sec/veh
Existing Total Delay	123396	seconds
Future Volume	2398	vehicles
Future Delay	29	sec/veh
Future Total Delay	69542	seconds
Total Delay Reduction	53854	seconds

404: Maple Grove Parkway/Upland Ln		
Existing Volume	2601	vehicles
Existing Delay	19	sec/veh
Existing Total Delay	49419	seconds
Future Volume	2061	vehicles
Future Delay	16	sec/veh
Future Total Delay	32976	seconds
Total Delay Reduction	16443	seconds

405: Maple Grove Parkway/Hospital Drive		
Existing Volume	2209	vehicles
Existing Delay	28	sec/veh
Existing Total Delay	61852	seconds
Future Volume	1750	vehicles
Future Delay	22	sec/veh
Future Total Delay	38500	seconds
Total Delay Reduction	23352	seconds

406: Maple Grove Parkway/Grove Circle		
Existing Volume	2369	vehicles
Existing Delay	17	sec/veh
Existing Total Delay	40273	seconds
Future Volume	1839	vehicles
Future Delay	16	sec/veh
Future Total Delay	29424	seconds
Total Delay Reduction	10849	seconds

407: Maple Grove Parkway/South 610 Ramps		
Existing Volume	1901	vehicles
Existing Delay	4	sec/veh
Existing Total Delay	7604	seconds
Future Volume	1274	vehicles
Future Delay	4	sec/veh
Future Total Delay	5096	seconds
Total Delay Reduction	2508	seconds

408: Maple Grove Parkway/North 610 Ramps			
Existing Volume	1390	vehicles	
Existing Delay	17	sec/veh	
Existing Total Delay	23630	seconds	
Future Volume	975	vehicles	
Future Delay	13	sec/veh	
Future Total Delay	12675	seconds	
Total Delay Reduction	10955	seconds	

409: Maple Grove Parkway/CR 81			
Existing Volume	2431	vehicles	
Existing Delay	16	sec/veh	
Existing Total Delay	38896	seconds	
Future Volume	2331	vehicles	
Future Delay	16	sec/veh	
Future Total Delay	37296	seconds	
Total Delay Reduction	1600	seconds	

410: CR 81/Fernbrook Lane			
Existing Volume	3355	vehicles	
Existing Delay	60	sec/veh	
Existing Total Delay	201300	seconds	
Future Volume	3255	vehicles	
Future Delay	51	sec/veh	
Future Total Delay	166005	seconds	
Total Delay Reduction	35295	seconds	

Total Network Dela	y Reduction	358089	seconds

399: CR 30 & Lawndale Ln

Direction	All	
Future Volume (vph)	1936	
Total Delay / Veh (s/v)	36	
CO Emissions (kg)	3.36	
NOx Emissions (kg)	0.65	
VOC Emissions (kg)	0.78	

400: CR 30 & Garland Ln

Direction	All	
Future Volume (vph)	2134	
Total Delay / Veh (s/v)	19	
CO Emissions (kg)	3.01	
NOx Emissions (kg)	0.59	
VOC Emissions (kg)	0.70	

401: Dunkirk Ln/MGP & CR 30

Direction	All	
Future Volume (vph)	3935	
Total Delay / Veh (s/v)	39	
CO Emissions (kg)	5.99	
NOx Emissions (kg)	1.17	
VOC Emissions (kg)	1.39	

402: West Ramps & MGP

Direction	All	
Future Volume (vph)	3549	
Total Delay / Veh (s/v)	37	
CO Emissions (kg)	5.13	
NOx Emissions (kg)	1.00	
VOC Emissions (kg)	1.19	

403: East Ramps & MGP

Direction	All
Future Volume (vph)	3164
Total Delay / Veh (s/v)	39
CO Emissions (kg)	4.53
NOx Emissions (kg)	0.88
VOC Emissions (kg)	1.05

404: Upland Ln & MGP

Direction	All	
Future Volume (vph)	2601	
Total Delay / Veh (s/v)	19	
CO Emissions (kg)	2.96	
NOx Emissions (kg)	0.58	
VOC Emissions (kg)	0.69	

405: MGP & Hospital Dr

Direction	All
Future Volume (vph)	2290
Total Delay / Veh (s/v)	28
CO Emissions (kg)	3.10
NOx Emissions (kg)	0.60
VOC Emissions (kg)	0.72

406: MGP & Grove Circle/99th Ave

Direction	All	
Future Volume (vph)	2369	
Total Delay / Veh (s/v)	17	
CO Emissions (kg)	2.67	
NOx Emissions (kg)	0.52	
VOC Emissions (kg)	0.62	

407: MGP & 610 South Ramps

Direction	All	
Future Volume (vph)	1901	
Total Delay / Veh (s/v)	4	
CO Emissions (kg)	1.07	
NOx Emissions (kg)	0.21	
VOC Emissions (kg)	0.25	

408: MGP & 610 North Ramps

Direction	All
Future Volume (vph)	1390
Total Delay / Veh (s/v)	17
CO Emissions (kg)	1.51
NOx Emissions (kg)	0.29
VOC Emissions (kg)	0.35

409: MGP & CR 81

Direction	All	
Future Volume (vph)	2431	
Total Delay / Veh (s/v)	16	
CO Emissions (kg)	4.39	
NOx Emissions (kg)	0.85	
VOC Emissions (kg)	1.02	

410: Fernbrook Ln & CR 81

Direction	All
Future Volume (vph)	3355
Total Delay / Veh (s/v)	60
CO Emissions (kg)	7.50
NOx Emissions (kg)	1.46
VOC Emissions (kg)	1.74

	>	†	•	*	4	ļ	4.		
Phase Number	1	2	3	4	5	6	8		
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	WBT		
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes			
Recall Mode	None	Max	None	None	None	Max	None		
Maximum Split (s)	10	22	11	22	10	22	33		
Maximum Split (%)	15.4%	33.8%	16.9%	33.8%	15.4%	33.8%	50.8%		
Minimum Split (s)	10	22	10	22	10	22	22		
Yellow Time (s)	4	4	4	4	4	4	4		
All-Red Time (s)	2	2	2	2	2	2	2		
Minimum Initial (s)	4	4	4	4	4	4	4		
Vehicle Extension (s)	3	3	3	3	3	3	3		
Minimum Gap (s)	3	3	3	3	3	3	3		
Time Before Reduce (s)	0	0	0	0	0	0	0		
ime To Reduce (s)	0	0	0	0	0	0	0		
Valk Time (s)		5		5		5	5		
Flash Dont Walk (s)		11		11		11	11		
Dual Entry	No	Yes	No	Yes	No	Yes	Yes		
nhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Start Time (s)	0	10	32	43	0	10	32		
End Time (s)	10	32	43	0	10	32	0		
'ield/Force Off (s)	4	26	37	59	4	26	59		
'ield/Force Off 170(s)	4	15	37	48	4	15	48		
ocal Start Time (s)	55	0	22	33	55	0	22		
∟ocal Yield (s)	59	16	27	49	59	16	49		
ocal Yield 170(s)	59	5	27	38	59	5	38		
ntersection Summary									
Cycle Length			65						
Control Type	Actuate	ed-Uncoo							
Natural Cycle			65						
Splits and Phases: 399: 0	CR 30 & La	wndale L	n						
\								<u>A.</u> .	
	7 2				√ 0	73	22	€ •Ø4	
10 s 22 s					11 s		22	S	
↑ Ø5	76				4-6	18			

	>	*	•	₩	4	4	٠	*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBSB	WBL	EBWB	NBL	NBSB	EBL	EBWB	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	None	None	None	Max	None	None	
Maximum Split (s)	10	22	15	28	10	22	10	33	
Maximum Split (%)	13.3%	29.3%	20.0%	37.3%	13.3%	29.3%	13.3%	44.0%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	0	10	32	47	0	10	32	42	
End Time (s)	10	32	47	0	10	32	42	0	
Yield/Force Off (s)	4	26	41	69	4	26	36	69	
Yield/Force Off 170(s)	4	15	41	58	4	15	36	58	
Local Start Time (s)	65	0	22	37	65	0	22	32	
Local Yield (s)	69	16	31	59	69	16	26	59	
Local Yield 170(s)	69	5	31	48	69	5	26	48	
Intersection Summary									
Cycle Length			75						
Control Type	Actuate	ed-Uncoo							
Natural Cycle			75						
Splits and Phases: 400: C	R 30 & Ga	arland Ln							
<u></u>				√ 0	72		_	3.4	
10 s 22 s				15 s	93		28 s	74	

	/	†	•	*	4	4	٠	4*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	None	None	None	Max	None	None	
Maximum Split (s)	18	33	17	22	13	38	17	22	
Maximum Split (%)	20.0%	36.7%	18.9%	24.4%	14.4%	42.2%	18.9%	24.4%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	No	No	No	No	No	No	No	No	
Start Time (s)	0	18	51	68	38	0	51	68	
End Time (s)	18	51	68	0	51	38	68	0	
Yield/Force Off (s)	12	45	62	84	45	32	62	84	
Yield/Force Off 170(s)	12	34	62	73	45	21	62	73	
Local Start Time (s)	72	0	33	50	20	72	33	50	
Local Yield (s)	84	27	44	66	27	14	44	66	
Local Yield 170(s)	84	16	44	55	27	3	44	55	
Intersection Summary									
Cycle Length			90						
Control Type	Actuate	ed-Uncoo	rdinated						
Natural Cycle			90						
Splits and Phases: 401: D	Ounkirk Ln/	MGP & C	R 30						
Cpinto di la l' llaboo. 401. L	A		1100			Τ,			
Ø1	Ø2					- ✓	Ø3		₩ Ø4
18 s	33 s					17 s			22 s
∜ Ø6				1	15	1	Ø7		4 [®] Ø8

	>	†-	•	*	4	4	٠	4.	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	15	23	19	33	14	24	12	40	
Maximum Split (%)	16.7%	25.6%	21.1%	36.7%	15.6%	26.7%	13.3%	44.4%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	9	76	24	43	76	0	24	36	
End Time (s)	24	9	43	76	0	24	36	76	
Yield/Force Off (s)	18	3	37	70	84	18	30	70	
Yield/Force Off 170(s)	18	82	37	59	84	7	30	59	
Local Start Time (s)	9	76	24	43	76	0	24	36	
Local Yield (s)	18	3	37	70	84	18	30	70	
Local Yield 170(s)	18	82	37	59	84	7	30	59	
Intersection Summary									
Cycle Length			90						
Control Type	Actu	ated-Coo							
Natural Cycle			90						
Offset: 0 (0%), Referenced Splits and Phases: 402: V	to phase 2: West Ramp			tart of Gr	een				
.	vesi Kamp	S & IVIGP		Τ,					
l¹Ø2 (R) ■	-	Ø1		√ 0	3			Ø4	
23 s	15	S		19 s ▶		42	33 s		
	Ø6 (R)			_	7	ďø	8		
14 s 24 s				12 s		40 s			

	>	†-	•	*	4	4	•	4.	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	15	30	12	23	21	24	10	25	
Maximum Split (%)	18.8%	37.5%	15.0%	28.8%	26.3%	30.0%	12.5%	31.3%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
/linimum Gap (s)	3	3	3	3	3	3	3	3	
ime Before Reduce (s)	0	0	0	0	0	0	0	0	
ime To Reduce (s)	0	0	0	0	0	0	0	0	
Valk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
nhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
start Time (s)	59	74	47	24	59	0	24	34	
ind Time (s)	74	24	59	47	0	24	34	59	
'ield/Force Off (s)	68	18	53	41	74	18	28	53	
/ield/Force Off 170(s)	68	7	53	30	74	7	28	42	
ocal Start Time (s)	59	74	47	24	59	0	24	34	
ocal Yield (s)	68	18	53	41	74	18	28	53	
ocal Yield 170(s)	68	7	53	30	74	7	28	42	
ntersection Summary									
Cycle Length			80						
Control Type	Actu	ated-Cooi							
Natural Cycle			80						
Offset: 0 (0%), Referenced to	phase 2	:NBT and	6:SBT, S	tart of Gr	een				

Splits and Phases: 403: East Ramps & MGP

	•	•	*	←		
Phase Number	2	3	4	8		
Movement	NBL	WBL	EBT	WBT		
Lead/Lag		Lead	Lag			
Lead-Lag Optimize		Yes	Yes			
Recall Mode	C-Max	None	None	None		
Maximum Split (s)	23	12	25	37		
Maximum Split (%)	38.3%	20.0%	41.7%	61.7%		
Minimum Split (s)	22	10	22	22		
Yellow Time (s)	4	4	4	4		
All-Red Time (s)	2	2	2	2		
Minimum Initial (s)	4	4	4	4		
Vehicle Extension (s)	3	3	3	3		
Minimum Gap (s)	3	3	3	3		
Time Before Reduce (s)	0	0	0	0		
Time To Reduce (s)	0	0	0	0		
Walk Time (s)	5		5	5		
Flash Dont Walk (s)	11		11	11		
Dual Entry	Yes	No	Yes	Yes		
Inhibit Max	Yes	Yes	Yes	Yes		
Start Time (s)	0	23	35	23		
End Time (s)	23	35	0	0		
Yield/Force Off (s)	17	29	54	54		
Yield/Force Off 170(s)	6	29	43	43		
Local Start Time (s)	0	23	35	23		
Local Yield (s)	17	29	54	54		
Local Yield 170(s)	6	29	43	43		
Intersection Summary						
Cycle Length			60			
Control Type	Actu	ated-Coo				
Natural Cycle			60			
Offset: 0 (0%), Referenced	to phase 2:	NBL and	6:, Start of	of Green		
Splits and Phases: 404:	Upland Ln 8	& MGP				
ÿ2 (R)				Ø3	▼ Ø4	
23 s			12		25 s	
			4			
			27	Ø8		

	-	- ₹	1	*	1	\$⊳	•	**	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBTL	WBL	EBT	NBL	SBTL	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	10	22	10	23	10	22	10	23	
Maximum Split (%)	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	15.4%	35.4%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	55	0	22	32	55	0	22	32	
End Time (s)	0	22	32	55	0	22	32	55	
Yield/Force Off (s)	59	16	26	49	59	16	26	49	
Yield/Force Off 170(s)	59	5	26	38	59	5	26	38	
Local Start Time (s)	55	0	22	32	55	0	22	32	
Local Yield (s)	59	16	26	49	59	16	26	49	
Local Yield 170(s)	59	5	26	38	59	5	26	38	

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Splits and Phases: 405: MGP & Hospital Dr

	-	₽	•	4	1	4	۶	*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	EBL	WBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	10	23	10	22	10	23	10	22	
Maximum Split (%)	15.4%	35.4%	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	55	0	23	33	55	0	23	33	
End Time (s)	0	23	33	55	0	23	33	55	
Yield/Force Off (s)	59	17	27	49	59	17	27	49	
Yield/Force Off 170(s)	59	6	27	38	59	6	27	38	
Local Start Time (s)	55	0	23	33	55	0	23	33	
Local Yield (s)	59	17	27	49	59	17	27	49	
Local Yield 170(s)	59	6	27	38	59	6	27	38	

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Splits and Phases: 406: MGP & Grove Circle/99th Ave

	>	₱	ļ	*	
Phase Number	1	2	6	8	
Movement	SBL	NBT	SBT	WBL	
Lead/Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes			
Recall Mode	None	C-Max	C-Max	None	
Maximum Split (s)	10	28	38	22	
Maximum Split (%)	16.7%	46.7%	63.3%	36.7%	
Minimum Split (s)	10	22	22	22	
Yellow Time (s)	4	4	4	4	
All-Red Time (s)	2	2	2	2	
Minimum Initial (s)	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)		5	5	5	
Flash Dont Walk (s)		11	11	11	
Dual Entry	No	Yes	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	50	0	50	28	
End Time (s)	0	28	28	50	
Yield/Force Off (s)	54	22	22	44	
Yield/Force Off 170(s)	54	11	11	33	
Local Start Time (s)	50	0	50	28	
Local Yield (s)	54	22	22	44	
Local Yield 170(s)	54	11	11	33	
Intersection Summary					
Cycle Length			60		
Control Type	Actu	ated-Coo			
Natural Cycle	riolu	4104 000	60		
Offset: 0 (0%), Referenced	to phase 2	NBT and		tart of Gre	een
21100t. 0 (070), 110101011000	a to pridoc Z		0.001, 0	tart or Ort	3001
Splits and Phases: 407:	MGP & 610	South R	amps		
ø ₁	1 ø2 (R)				
10 s 28	S				
(%) (%)			<u> </u>		v Ø8
▼ Ø6 (R) ▼					▼ Ø8
50.5					LL 3

	†	4	4	$\overline{\forall}$	
Phase Number	2	5	6	8	
Movement	NBT	NBL	SBT	WBTL	
Lead/Lag		Lead	Lag		
Lead-Lag Optimize		Yes	Yes		
Recall Mode	C-Max	None	C-Max	None	
Maximum Split (s)	33	11	22	22	
Maximum Split (%)	60.0%	20.0%	40.0%	40.0%	
Minimum Split (s)	22	10	22	22	
Yellow Time (s)	4	4	4	4	
All-Red Time (s)	2	2	2	2	
Minimum Initial (s)	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)	5		5	5	
Flash Dont Walk (s)	11		11	11	
Dual Entry	Yes	No	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	44	44	0	22	
End Time (s)	22	0	22	44	
Yield/Force Off (s)	16	49	16	38	
Yield/Force Off 170(s)	5	49	5	27	
Local Start Time (s)	44	44	0	22	
Local Yield (s)	16	49	16	38	
Local Yield 170(s)	5	49	5	27	
Intersection Summary					
Cycle Length			55		
Control Type	Actu	ated-Coo			
Natural Cycle			55		
Offset: 0 (0%), Referenced	to phase 2:	NBT and	6:SBT, S	tart of Gre	en
Splits and Phases: 408: I	MGP & 610	North Do	mne		
opiilo anu rhases. 400.1	VIGE & UIU	INUI III Ka	iiips		
T _{Ø2 (R)}	•				
33 s					
↑ ø5		٥١			★ Ø8
1 20	₩ ₩0 (I	V			₹ 20

	→ √°	•	**	←
Phase Number	2	3	4	8
Movement	NBL	WBL	EBT	WBT
Lead/Lag		Lead	Lag	
Lead-Lag Optimize		Yes	Yes	
Recall Mode	C-Max	None	None	None
Maximum Split (s)	22	16	22	38
Maximum Split (%)	36.7%	26.7%	36.7%	63.3%
Minimum Split (s)	22	10	22	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	5	- 0	5	5
Flash Dont Walk (s)	11		11	11
Dual Entry	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	0	22	38	22
End Time (s)	22	38	0	0
Yield/Force Off (s)	16	32	54	54
Yield/Force Off 170(s)	5	32	43	43
Local Start Time (s)	0	22	38	22
	16	32	56 54	54
Local Yield (s)		32		
Local Yield 170(s)	5	32	43	43
Intersection Summary				
Cycle Length			60	
Control Type	Actu	ated-Coor		
Natural Cycle	, .5ta		60	
Offset: 0 (0%), Referenced to	to phase 2:	NBL and	• •	of Green
550t. 0 (070), 1 tolololloud (.o pridoo Z.	DL and	on, otare c	. 010011
Splits and Phases: 409: N	MGP & CR	81		
• (an m)			1	-
ï2 (R)				Ø3
22 s			16 s	
			-	Ø8

	-	₽	•	*	4	4	ᄼ	40	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	12	23	18	37	11	24	17	38	
Maximum Split (%)	13.3%	25.6%	20.0%	41.1%	12.2%	26.7%	18.9%	42.2%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	78	0	23	41	78	89	23	40	
End Time (s)	0	23	41	78	89	23	40	78	
Yield/Force Off (s)	84	17	35	72	83	17	34	72	
Yield/Force Off 170(s)	84	6	35	61	83	6	34	61	
Local Start Time (s)	78	0	23	41	78	89	23	40	
Local Yield (s)	84	17	35	72	83	17	34	72	
Local Yield 170(s)	84	6	35	61	83	6	34	61	
Intersection Cummery									

Cycle Length 90
Control Type Actuated-Coordinated
Natural Cycle 90

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Splits and Phases: 410: Fernbrook Ln & CR 81

399: CR 30 & Lawndale Ln

Direction	All	
Future Volume (vph)	737	
Total Delay / Veh (s/v)	28	
CO Emissions (kg)	1.05	
NOx Emissions (kg)	0.20	
VOC Emissions (kg)	0.24	

400: CR 30 & Garland Ln

Direction	All		
Future Volume (vph)	935		
Total Delay / Veh (s/v)	15		
CO Emissions (kg)	1.11		
NOx Emissions (kg)	0.21		
VOC Emissions (kg)	0.26		

401: Dunkirk Ln/MGP & CR 30

Direction	All	
Future Volume (vph)	2751	
Total Delay / Veh (s/v)	26	
CO Emissions (kg)	3.61	
NOx Emissions (kg)	0.70	
VOC Emissions (kg)	0.84	

402: West Ramps & MGP

Direction	All	
Future Volume (vph)	2591	
Total Delay / Veh (s/v)	30	
CO Emissions (kg)	3.53	
NOx Emissions (kg)	0.69	
VOC Emissions (kg)	0.82	

403: East Ramps & MGP

D'acceptant	AII
Direction	All
Future Volume (vph)	2398
Total Delay / Veh (s/v)	29
CO Emissions (kg)	2.98
NOx Emissions (kg)	0.58
VOC Emissions (kg)	0.69

404: Upland Ln & MGP

Direction	All
Future Volume (vph)	2061
Total Delay / Veh (s/v)	16
CO Emissions (kg)	2.21
NOx Emissions (kg)	0.43
VOC Emissions (kg)	0.51

405: MGP & Hospital Dr

Direction	All		
Future Volume (vph)	1750		
Total Delay / Veh (s/v)	22		
CO Emissions (kg)	2.15		
NOx Emissions (kg)	0.42		
VOC Emissions (kg)	0.50		

406: MGP & Grove Circle/99th Ave

Direction	All	
Future Volume (vph)	1839	
Total Delay / Veh (s/v)	16	
CO Emissions (kg)	2.00	
NOx Emissions (kg)	0.39	
VOC Emissions (kg)	0.46	

407: MGP & 610 South Ramps

Direction	All	
Future Volume (vph)	1274	
Total Delay / Veh (s/v)	4	
CO Emissions (kg)	0.74	
NOx Emissions (kg)	0.14	
VOC Emissions (kg)	0.17	

408: MGP & 610 North Ramps

Direction	All
Future Volume (vph)	975
Total Delay / Veh (s/v)	13
CO Emissions (kg)	0.93
NOx Emissions (kg)	0.18
VOC Emissions (kg)	0.22

409: MGP & CR 81

Direction	All	
Future Volume (vph)	2331	
Total Delay / Veh (s/v)	16	
CO Emissions (kg)	4.21	
NOx Emissions (kg)	0.82	
VOC Emissions (kg)	0.98	

410: Fernbrook Ln & CR 81

Direction	All
Future Volume (vph)	3255
Total Delay / Veh (s/v)	51
CO Emissions (kg)	6.83
NOx Emissions (kg)	1.33
VOC Emissions (kg)	1.58

	>	†	•	*	4	ļ	4*		
Phase Number	1	2	3	4	5	6	8		
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	WBT		
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes			
Recall Mode	None	Max	None	None	None	Max	None		
Maximum Split (s)	10	22	11	22	10	22	33		
Maximum Split (%)	15.4%	33.8%	16.9%	33.8%	15.4%	33.8%	50.8%		
Minimum Split (s)	10	22	10	22	10	22	22		
Yellow Time (s)	4	4	4	4	4	4	4		
All-Red Time (s)	2	2	2	2	2	2	2		
Minimum Initial (s)	4	4	4	4	4	4	4		
Vehicle Extension (s)	3	3	3	3	3	3	3		
Minimum Gap (s)	3	3	3	3	3	3	3		
Time Before Reduce (s)	0	0	0	0	0	0	0		
Time To Reduce (s)	0	0	0	0	0	0	0		
Walk Time (s)		5		5		5	5		
Flash Dont Walk (s)		11		11		11	11		
Dual Entry	No	Yes	No	Yes	No	Yes	Yes		
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Start Time (s)	0	10	32	43	0	10	32		
End Time (s)	10	32	43	0	10	32	0		
Yield/Force Off (s)	4	26	37	59	4	26	59		
Yield/Force Off 170(s)	4	15	37	48	4	15	48		
Local Start Time (s)	55	0	22	33	55	0	22		
Local Yield (s)	59	16	27	49	59	16	49		
Local Yield 170(s)	59	5	27	38	59	5	38		
Intersection Summary									
Cycle Length			65						
Control Type	Actuate	ed-Uncoo							
Natural Cycle			65						
Splits and Phases: 399: C	R 30 & La	wndale L	n						
\ Ø1 ↑ Ø	32				€0	33	4	▶ Ø4	
10 s 22 s	_				11 s		22	3	
4 1					**				

	>	4	•	₩	4	4	۶	*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBSB	WBL	EBWB	NBL	NBSB	EBL	EBWB	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	None	None	None	Max	None	None	
Maximum Split (s)	10	23	10	22	10	23	10	22	
Maximum Split (%)	15.4%	35.4%	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	0	10	33	43	0	10	33	43	
End Time (s)	10	33	43	0	10	33	43	0	
Yield/Force Off (s)	4	27	37	59	4	27	37	59	
Yield/Force Off 170(s)	4	16	37	48	4	16	37	48	
Local Start Time (s)	55	0	23	33	55	0	23	33	
Local Yield (s)	59	17	27	49	59	17	27	49	
Local Yield 170(s)	59	6	27	38	59	6	27	38	
Intersection Summary									
Cycle Length			65						
Control Tuno	A atuata	d Haaaa	اممانام						

Cycle Length 65
Control Type Actuated-Uncoordinated
Natural Cycle 65

Splits and Phases: 400: CR 30 & Garland Ln

	-	₱	•	*	4	4	ᄼ	44	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	13	22	13	22	13	22	12	23	
Maximum Split (%)	18.6%	31.4%	18.6%	31.4%	18.6%	31.4%	17.1%	32.9%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	No								
Start Time (s)	57	0	44	22	9	57	22	34	
End Time (s)	0	22	57	44	22	9	34	57	
Yield/Force Off (s)	64	16	51	38	16	3	28	51	
Yield/Force Off 170(s)	64	5	51	27	16	62	28	40	
Local Start Time (s)	57	0	44	22	9	57	22	34	
Local Yield (s)	64	16	51	38	16	3	28	51	
Local Yield 170(s)	64	5	51	27	16	62	28	40	
Intersection Summary									

70 Cycle Length Control Type Actuated-Coordinated Natural Cycle

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

	-	†-	•	*	4	4	۶	44	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	13	23	12	22	12	24	12	22	
Maximum Split (%)	18.6%	32.9%	17.1%	31.4%	17.1%	34.3%	17.1%	31.4%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	11	58	24	36	58	0	24	36	
End Time (s)	24	11	36	58	0	24	36	58	
Yield/Force Off (s)	18	5	30	52	64	18	30	52	
Yield/Force Off 170(s)	18	64	30	41	64	7	30	41	
Local Start Time (s)	11	58	24	36	58	0	24	36	
Local Yield (s)	18	5	30	52	64	18	30	52	
Local Yield 170(s)	18	64	30	41	64	7	30	41	
Intersection Summary									

Cycle Length 70
Control Type Actuated-Coordinated
Natural Cycle 70

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

	-	†·	•	*	1	4	•	44	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	11	22	10	22	11	22	10	22	
Maximum Split (%)	16.9%	33.8%	15.4%	33.8%	16.9%	33.8%	15.4%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	54	0	44	22	54	0	22	32	
End Time (s)	0	22	54	44	0	22	32	54	
Yield/Force Off (s)	59	16	48	38	59	16	26	48	
Yield/Force Off 170(s)	59	5	48	27	59	5	26	37	
Local Start Time (s)	54	0	44	22	54	0	22	32	
Local Yield (s)	59	16	48	38	59	16	26	48	
Local Yield 170(s)	59	5	48	27	59	5	26	37	
Intersection Summary									

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

	*	•	*	←
Phase Number	2	3	4	8
Movement	NBL	WBL	EBT	WBT
Lead/Lag		Lead	Lag	
Lead-Lag Optimize		Yes	Yes	
Recall Mode	Max	None	None	None
Maximum Split (s)	23	13	24	37
Maximum Split (%)	38.3%	21.7%	40.0%	61.7%
Minimum Split (s)	22	10	22	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	5	0	5	5
Flash Dont Walk (s)	11		11	11
Dual Entry	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	0	23	36	23
End Time (s)	23	36	0	0
Yield/Force Off (s)	17	30	54	54
Yield/Force Off 170(s)	6	30	43	43
Local Start Time (s)	0	23	36	23
	17	30	56 54	23 54
Local Yield (s)		30		43
Local Yield 170(s)	6	30	43	43
Intersection Summary				
Cycle Length			60	
Control Type	Actuate	ed-Uncoo	rdinated	
Natural Cycle			60	
Splits and Phases: 404: I	Jpland Ln 8	& MGP	_	
√ √ø2		·		Ø3
23 s			13	
233				
				Ø8
1			37	_

	-	- ₹	1	*	1	\$⊳	•	**	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBTL	WBL	EBT	NBL	SBTL	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	10	22	10	23	10	22	11	22	
Maximum Split (%)	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	16.9%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	55	0	22	32	55	0	22	33	
End Time (s)	0	22	32	55	0	22	33	55	
Yield/Force Off (s)	59	16	26	49	59	16	27	49	
Yield/Force Off 170(s)	59	5	26	38	59	5	27	38	
Local Start Time (s)	55	0	22	32	55	0	22	33	
Local Yield (s)	59	16	26	49	59	16	27	49	
Local Yield 170(s)	59	5	26	38	59	5	27	38	

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Splits and Phases: 405: MGP & Hospital Dr

	-	₽	•	4	1	4	•	*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	EBL	WBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	10	23	10	22	10	23	10	22	
Maximum Split (%)	15.4%	35.4%	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	55	0	23	33	55	0	23	33	
End Time (s)	0	23	33	55	0	23	33	55	
Yield/Force Off (s)	59	17	27	49	59	17	27	49	
Yield/Force Off 170(s)	59	6	27	38	59	6	27	38	
Local Start Time (s)	55	0	23	33	55	0	23	33	
Local Yield (s)	59	17	27	49	59	17	27	49	
Local Yield 170(s)	59	6	27	38	59	6	27	38	

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Splits and Phases: 406: MGP & Grove Circle/99th Ave

	>	•	ļ	~
Phase Number	1	2	6	8
Movement	SBL	NBT	SBT	WBL
Lead/Lag	Lead	Lag		
Lead-Lag Optimize	Yes	Yes		
Recall Mode	None	C-Max	C-Max	None
Maximum Split (s)	11	22	33	22
Maximum Split (%)	20.0%	40.0%	60.0%	40.0%
Minimum Split (s)	10	22	22	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)		5	5	5
Flash Dont Walk (s)		11	11	11
Dual Entry	No	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	44	0	44	22
End Time (s)	0	22	22	44
Yield/Force Off (s)	49	16	16	38
Yield/Force Off 170(s)	49	5	5	27
Local Start Time (s)	44	0	44	22
Local Yield (s)	49	16	16	38
Local Yield 170(s)	49	5	5	27
Intersection Summary				
Cycle Length			55	
Control Type	Actu	ated-Coo		
Natural Cycle			55	
Offset: 0 (0%), Referenced	to phase 2:	:NBT and	6:SBT, S	tart of Gre
Splits and Phases: 407: N	MGP & 610	South Ra	amps	
ø ₀ 1	T ø2 (R)		
11 s	22 s			
₩ Ø6 (R)				
33 s	•			

	†	•	4	\checkmark	
Phase Number	2	5	6	8	
Movement	NBT	NBL	SBT	WBTL	
Lead/Lag		Lead	Lag		
Lead-Lag Optimize		Yes	Yes		
Recall Mode	C-Max	None	C-Max	None	
Maximum Split (s)	33	11	22	22	
Maximum Split (%)	60.0%	20.0%	40.0%	40.0%	
Minimum Split (s)	22	10	22	22	
Yellow Time (s)	4	4	4	4	
All-Red Time (s)	2	2	2	2	
Minimum Initial (s)	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)	5		5	5	
Flash Dont Walk (s)	11		11	11	
Dual Entry	Yes	No	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	44	44	0	22	
End Time (s)	22	0	22	44	
Yield/Force Off (s)	16	49	16	38	
Yield/Force Off 170(s)	5	49	5	27	
Local Start Time (s)	44	44	0	22	
Local Yield (s)	16	49	16	38	
Local Yield 170(s)	5	49	5	27	
Intersection Summary					
Cycle Length			55		
Control Type	Actu	ated-Coo			
Natural Cycle	7.010		55		
Offset: 0 (0%), Referenced	to phase 2:	:NBT and		tart of Gre	een
, ,					
Splits and Phases: 408: I	MGP & 610	North Ra	amps		
T ø2 (R)	•				
33 s					
↑ ø5	∮ ∳ Ø6 (R)			₩ Ø8
11 s	22 s				22 s

	→ √°	•	*	←
Phase Number	2	3	4	8
Movement	NBL	WBL	EBT	WBT
Lead/Lag		Lead	Lag	
Lead-Lag Optimize		Yes	Yes	
Recall Mode	C-Max	None	None	None
Maximum Split (s)	22	11	22	33
Maximum Split (%)	40.0%	20.0%	40.0%	60.0%
Minimum Split (s)	22	10	22	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	5		5	5
Flash Dont Walk (s)	11		11	11
Dual Entry	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	0	22	33	22
End Time (s)	22	33	0	0
Yield/Force Off (s)	16	27	49	49
Yield/Force Off 170(s)	5	27	38	38
Local Start Time (s)	0	22	33	22
Local Yield (s)	16	27	49	49
Local Yield 170(s)	5	27	38	38
Local field 170(S)	5	21	30	30
Intersection Summary				
Cycle Length			55	
Control Type	Actu	ated-Coo		
Natural Cycle			55	
Offset: 0 (0%), Referenced	to phase 2:	NBL and	• •	of Green
2 2 2 2 (2),			,	
Splits and Phases: 409: N	MGP & CR	81		
4				_
ÿ2 (R)				ÿ3
22 s			1	1s
				Ø8

	-	₽	•	*	4	4	ᄼ	44	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	12	22	18	38	11	23	18	38	
Maximum Split (%)	13.3%	24.4%	20.0%	42.2%	12.2%	25.6%	20.0%	42.2%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	78	0	22	40	78	89	22	40	
End Time (s)	0	22	40	78	89	22	40	78	
Yield/Force Off (s)	84	16	34	72	83	16	34	72	
Yield/Force Off 170(s)	84	5	34	61	83	5	34	61	
Local Start Time (s)	78	0	22	40	78	89	22	40	
Local Yield (s)	84	16	34	72	83	16	34	72	
Local Yield 170(s)	84	5	34	61	83	5	34	61	

Cycle Length 90
Control Type Actuated-Coordinated
Natural Cycle 90

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Splits and Phases: 410: Fernbrook Ln & CR 81

Network Totals

Number of Intersections	1
Total Delay / Veh (s/v)	21
Total Delay (hr)	14
Stops (#)	1589
Average Speed (mph)	27
Total Travel Time (hr)	41
Distance Traveled (mi)	1127
Fuel Consumed (gal)	72
Fuel Economy (mpg)	15.8
CO Emissions (kg)	5.00
NOx Emissions (kg)	0.97
VOC Emissions (kg)	1.16
Performance Index	18.7

	*	•	*	←
Phase Number	2	3	4	8
Movement	NBL	WBL	EBT	WBT
Lead/Lag		Lead	Lag	
Lead-Lag Optimize		Yes	Yes	
Recall Mode	Max	None	None	None
Maximum Split (s)	32	8	20	28
Maximum Split (%)	53.3%	13.3%	33.3%	46.7%
Minimum Split (s)	20	8	20	20
Yellow Time (s)	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	5	- 0	5	5
Flash Dont Walk (s)	11		11	11
Dual Entry	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	0	32	40	32
End Time (s)	32	40	0	0
Yield/Force Off (s)	32 28	36	56	56
	28 17	36	45	
Yield/Force Off 170(s)				45
Local Start Time (s)	0	32	40	32
Local Yield (s)	28	36	56	56
Local Yield 170(s)	17	36	45	45
Intersection Summary				
Cycle Length			60	
Control Type	Actuate	d-Uncoo	rdinated	
Natural Cycle			60	
Splits and Phases: 3: CS	AH 30/TH 6	510		
√ √ø2				
32 s				
J2 3				
1				

399: CR 30 & Lawndale Ln

Direction	All	
Future Volume (vph)	1936	
Total Delay / Veh (s/v)	36	
CO Emissions (kg)	3.36	
NOx Emissions (kg)	0.65	
VOC Emissions (kg)	0.78	

400: CR 30 & Garland Ln

Direction	All	
Future Volume (vph)	2134	
Total Delay / Veh (s/v)	19	
CO Emissions (kg)	3.01	
NOx Emissions (kg)	0.59	
VOC Emissions (kg)	0.70	

401: Dunkirk Ln/MGP & CR 30

Direction	All	
Future Volume (vph)	3935	
Total Delay / Veh (s/v)	39	
CO Emissions (kg)	5.99	
NOx Emissions (kg)	1.17	
VOC Emissions (kg)	1.39	

402: West Ramps & MGP

Direction	All	
Future Volume (vph)	3549	
Total Delay / Veh (s/v)	37	
CO Emissions (kg)	5.13	
NOx Emissions (kg)	1.00	
VOC Emissions (kg)	1.19	

403: East Ramps & MGP

Direction	All
Future Volume (vph)	3164
Total Delay / Veh (s/v)	39
CO Emissions (kg)	4.53
NOx Emissions (kg)	0.88
VOC Emissions (kg)	1.05

404: Upland Ln & MGP

Direction	All	
Future Volume (vph)	2601	
Total Delay / Veh (s/v)	19	
CO Emissions (kg)	2.96	
NOx Emissions (kg)	0.58	
VOC Emissions (kg)	0.69	

405: MGP & Hospital Dr

Direction	All	
Future Volume (vph)	2290	
Total Delay / Veh (s/v)	28	
CO Emissions (kg)	3.10	
NOx Emissions (kg)	0.60	
VOC Emissions (kg)	0.72	

406: MGP & Grove Circle/99th Ave

Direction	All	
Future Volume (vph)	2369	
Total Delay / Veh (s/v)	17	
CO Emissions (kg)	2.67	
NOx Emissions (kg)	0.52	
VOC Emissions (kg)	0.62	

407: MGP & 610 South Ramps

Direction	All	
Future Volume (vph)	1901	
Total Delay / Veh (s/v)	4	
CO Emissions (kg)	1.07	
NOx Emissions (kg)	0.21	
VOC Emissions (kg)	0.25	

408: MGP & 610 North Ramps

Direction	All
Future Volume (vph)	1390
Total Delay / Veh (s/v)	17
CO Emissions (kg)	1.51
NOx Emissions (kg)	0.29
VOC Emissions (kg)	0.35

409: MGP & CR 81

Direction	All	
Future Volume (vph)	2431	
Total Delay / Veh (s/v)	16	
CO Emissions (kg)	4.39	
NOx Emissions (kg)	0.85	
VOC Emissions (kg)	1.02	

410: Fernbrook Ln & CR 81

Direction	All
Future Volume (vph)	3355
Total Delay / Veh (s/v)	60
CO Emissions (kg)	7.50
NOx Emissions (kg)	1.46
VOC Emissions (kg)	1.74

	>	†	•	*	4	ļ	4.		
Phase Number	1	2	3	4	5	6	8		
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	WBT		
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes			
Recall Mode	None	Max	None	None	None	Max	None		
Maximum Split (s)	10	22	11	22	10	22	33		
Maximum Split (%)	15.4%	33.8%	16.9%	33.8%	15.4%	33.8%	50.8%		
Minimum Split (s)	10	22	10	22	10	22	22		
Yellow Time (s)	4	4	4	4	4	4	4		
All-Red Time (s)	2	2	2	2	2	2	2		
Minimum Initial (s)	4	4	4	4	4	4	4		
Vehicle Extension (s)	3	3	3	3	3	3	3		
Minimum Gap (s)	3	3	3	3	3	3	3		
Time Before Reduce (s)	0	0	0	0	0	0	0		
ime To Reduce (s)	0	0	0	0	0	0	0		
Valk Time (s)		5		5		5	5		
Flash Dont Walk (s)		11		11		11	11		
Dual Entry	No	Yes	No	Yes	No	Yes	Yes		
nhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Start Time (s)	0	10	32	43	0	10	32		
End Time (s)	10	32	43	0	10	32	0		
'ield/Force Off (s)	4	26	37	59	4	26	59		
'ield/Force Off 170(s)	4	15	37	48	4	15	48		
ocal Start Time (s)	55	0	22	33	55	0	22		
∟ocal Yield (s)	59	16	27	49	59	16	49		
ocal Yield 170(s)	59	5	27	38	59	5	38		
ntersection Summary									
Cycle Length			65						
Control Type	Actuate	ed-Uncoo							
Natural Cycle			65						
Splits and Phases: 399: 0	CR 30 & La	wndale L	n						
\								<u>A.</u> .	
	7 2				√ 0	73	22	€ •Ø4	
10 s 22 s					11 s		22	S	
↑ Ø5	76				4-6	18			

	>	*	•	₩	4	4	٠	*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBSB	WBL	EBWB	NBL	NBSB	EBL	EBWB	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	None	None	None	Max	None	None	
Maximum Split (s)	10	22	15	28	10	22	10	33	
Maximum Split (%)	13.3%	29.3%	20.0%	37.3%	13.3%	29.3%	13.3%	44.0%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	0	10	32	47	0	10	32	42	
End Time (s)	10	32	47	0	10	32	42	0	
Yield/Force Off (s)	4	26	41	69	4	26	36	69	
Yield/Force Off 170(s)	4	15	41	58	4	15	36	58	
Local Start Time (s)	65	0	22	37	65	0	22	32	
Local Yield (s)	69	16	31	59	69	16	26	59	
Local Yield 170(s)	69	5	31	48	69	5	26	48	
Intersection Summary									
Cycle Length			75						
Control Type	Actuate	ed-Uncoo							
Natural Cycle			75						
Splits and Phases: 400: C	R 30 & Ga	arland Ln							
<u></u>				√ 0	72		_	3.4	
10 s 22 s				15 s	93		28 s	74	

	/	†	•	*	4	4	٠	4*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	None	None	None	Max	None	None	
Maximum Split (s)	18	33	17	22	13	38	17	22	
Maximum Split (%)	20.0%	36.7%	18.9%	24.4%	14.4%	42.2%	18.9%	24.4%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	No	No	No	No	No	No	No	No	
Start Time (s)	0	18	51	68	38	0	51	68	
End Time (s)	18	51	68	0	51	38	68	0	
Yield/Force Off (s)	12	45	62	84	45	32	62	84	
Yield/Force Off 170(s)	12	34	62	73	45	21	62	73	
Local Start Time (s)	72	0	33	50	20	72	33	50	
Local Yield (s)	84	27	44	66	27	14	44	66	
Local Yield 170(s)	84	16	44	55	27	3	44	55	
Intersection Summary									
Cycle Length			90						
Control Type	Actuate	ed-Uncoo	rdinated						
Natural Cycle			90						
Splits and Phases: 401: D	Ounkirk Ln/	MGP & C	R 30						
Cpinto di la l'iladoo. 401. L	A		1100			Τ,			
Ø1	Ø2					- ✓	Ø3		₩ Ø4
18 s	33 s					17 s			22 s
∜ Ø6				1	15	1	Ø7		4 [®] Ø8

	>	†-	•	*	4	4	٠	4.	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	15	23	19	33	14	24	12	40	
Maximum Split (%)	16.7%	25.6%	21.1%	36.7%	15.6%	26.7%	13.3%	44.4%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	9	76	24	43	76	0	24	36	
End Time (s)	24	9	43	76	0	24	36	76	
Yield/Force Off (s)	18	3	37	70	84	18	30	70	
Yield/Force Off 170(s)	18	82	37	59	84	7	30	59	
Local Start Time (s)	9	76	24	43	76	0	24	36	
Local Yield (s)	18	3	37	70	84	18	30	70	
Local Yield 170(s)	18	82	37	59	84	7	30	59	
Intersection Summary									
Cycle Length			90						
Control Type	Actu	ated-Coo							
Natural Cycle			90						
Offset: 0 (0%), Referenced Splits and Phases: 402: V	to phase 2: West Ramp			tart of Gr	een				
.	vesi Kamp	S & IVIGP		Τ,					
l¹Ø2 (R) ■	-	Ø1		√ 0	3			Ø4	
23 s	15	S		19 s ▶		42	33 s		
	Ø6 (R)			_	7	ďø	8		
14 s 24 s				12 s		40 s			

	>	†-	•	*	4	4	•	4.	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	15	30	12	23	21	24	10	25	
Maximum Split (%)	18.8%	37.5%	15.0%	28.8%	26.3%	30.0%	12.5%	31.3%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
/linimum Gap (s)	3	3	3	3	3	3	3	3	
ime Before Reduce (s)	0	0	0	0	0	0	0	0	
ime To Reduce (s)	0	0	0	0	0	0	0	0	
Valk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
nhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
start Time (s)	59	74	47	24	59	0	24	34	
ind Time (s)	74	24	59	47	0	24	34	59	
'ield/Force Off (s)	68	18	53	41	74	18	28	53	
/ield/Force Off 170(s)	68	7	53	30	74	7	28	42	
ocal Start Time (s)	59	74	47	24	59	0	24	34	
ocal Yield (s)	68	18	53	41	74	18	28	53	
ocal Yield 170(s)	68	7	53	30	74	7	28	42	
ntersection Summary									
Cycle Length			80						
Control Type	Actu	ated-Cooi							
Natural Cycle			80						
Offset: 0 (0%), Referenced to	phase 2	:NBT and	6:SBT, S	tart of Gr	een				

Splits and Phases: 403: East Ramps & MGP

	•	•	*	←		
Phase Number	2	3	4	8		
Movement	NBL	WBL	EBT	WBT		
Lead/Lag		Lead	Lag			
Lead-Lag Optimize		Yes	Yes			
Recall Mode	C-Max	None	None	None		
Maximum Split (s)	23	12	25	37		
Maximum Split (%)	38.3%	20.0%	41.7%	61.7%		
Minimum Split (s)	22	10	22	22		
Yellow Time (s)	4	4	4	4		
All-Red Time (s)	2	2	2	2		
Minimum Initial (s)	4	4	4	4		
Vehicle Extension (s)	3	3	3	3		
Minimum Gap (s)	3	3	3	3		
Time Before Reduce (s)	0	0	0	0		
Time To Reduce (s)	0	0	0	0		
Walk Time (s)	5		5	5		
Flash Dont Walk (s)	11		11	11		
Dual Entry	Yes	No	Yes	Yes		
Inhibit Max	Yes	Yes	Yes	Yes		
Start Time (s)	0	23	35	23		
End Time (s)	23	35	0	0		
Yield/Force Off (s)	17	29	54	54		
Yield/Force Off 170(s)	6	29	43	43		
Local Start Time (s)	0	23	35	23		
Local Yield (s)	17	29	54	54		
Local Yield 170(s)	6	29	43	43		
Intersection Summary						
Cycle Length			60			
Control Type	Actu	ated-Coo				
Natural Cycle			60			
Offset: 0 (0%), Referenced	to phase 2:	NBL and	6:, Start of	of Green		
Splits and Phases: 404:	Upland Ln 8	& MGP				
ÿ2 (R)				Ø3	▼ Ø4	
23 s			12		25 s	
			4			
			27	Ø8		

	-	- ₹	1	*	1	\$⊳	•	**	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBTL	WBL	EBT	NBL	SBTL	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	10	22	10	23	10	22	10	23	
Maximum Split (%)	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	15.4%	35.4%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	55	0	22	32	55	0	22	32	
End Time (s)	0	22	32	55	0	22	32	55	
Yield/Force Off (s)	59	16	26	49	59	16	26	49	
Yield/Force Off 170(s)	59	5	26	38	59	5	26	38	
Local Start Time (s)	55	0	22	32	55	0	22	32	
Local Yield (s)	59	16	26	49	59	16	26	49	
Local Yield 170(s)	59	5	26	38	59	5	26	38	

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Splits and Phases: 405: MGP & Hospital Dr

	-	₽	•	4	1	4	•	*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	EBL	WBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	10	23	10	22	10	23	10	22	
Maximum Split (%)	15.4%	35.4%	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	55	0	23	33	55	0	23	33	
End Time (s)	0	23	33	55	0	23	33	55	
Yield/Force Off (s)	59	17	27	49	59	17	27	49	
Yield/Force Off 170(s)	59	6	27	38	59	6	27	38	
Local Start Time (s)	55	0	23	33	55	0	23	33	
Local Yield (s)	59	17	27	49	59	17	27	49	
Local Yield 170(s)	59	6	27	38	59	6	27	38	

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Splits and Phases: 406: MGP & Grove Circle/99th Ave

	>	†-	ļ	*			
Phase Number	1	2	6	8			
Movement	SBL	NBT	SBT	WBL			
Lead/Lag	Lead	Lag					
Lead-Lag Optimize	Yes	Yes					
Recall Mode	None	C-Max	C-Max	None			
Maximum Split (s)	10	28	38	22			
Maximum Split (%)	16.7%	46.7%	63.3%	36.7%			
Minimum Split (s)	10	22	22	22			
Yellow Time (s)	4	4	4	4			
All-Red Time (s)	2	2	2	2			
Minimum Initial (s)	4	4	4	4			
Vehicle Extension (s)	3	3	3	3			
Minimum Gap (s)	3	3	3	3			
Time Before Reduce (s)	0	0	0	0			
Time To Reduce (s)	0	0	0	0			
Walk Time (s)		5	5	5			
Flash Dont Walk (s)		11	11	11			
Dual Entry	No	Yes	Yes	Yes			
Inhibit Max	Yes	Yes	Yes	Yes			
Start Time (s)	50	0	50	28			
End Time (s)	0	28	28	50			
Yield/Force Off (s)	54	22	22	44			
Yield/Force Off 170(s)	54	11	11	33			
Local Start Time (s)	50	0	50	28			
Local Yield (s)	54	22	22	44			
Local Yield 170(s)	54	11	11	33			
Intersection Summary							
Cycle Length			60				
Control Type	Actu	ated-Coo					
Natural Cycle			60				
Offset: 0 (0%), Referenced	to phase 2:	NBT and	6:SBT, S	tart of Gre	n		
0.19 1.00	MOD 2 2/2	0 " -					
Splits and Phases: 407:	MGP & 610	South R	amps				
ø ₀₁	f _{Ø2 (R)}						
10 s 28 s						ĺ	
↓ Ø6 (R) •						₹ø8	
₩ 20 (K)						₩ 128	

	→ √°	•	**	←
Phase Number	2	3	4	8
Movement	NBL	WBL	EBT	WBT
Lead/Lag		Lead	Lag	
Lead-Lag Optimize		Yes	Yes	
Recall Mode	C-Max	None	None	None
Maximum Split (s)	22	16	22	38
Maximum Split (%)	36.7%	26.7%	36.7%	63.3%
Minimum Split (s)	22	10	22	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	5	- 0	5	5
Flash Dont Walk (s)	11		11	11
Dual Entry	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	0	22	38	22
End Time (s)	22	38	0	0
Yield/Force Off (s)	16	32	54	54
Yield/Force Off 170(s)	5	32	43	43
Local Start Time (s)	0	22	38	22
	16	32	56 54	54
Local Yield (s)		32		
Local Yield 170(s)	5	32	43	43
Intersection Summary				
Cycle Length			60	
Control Type	Actu	ated-Coor		
Natural Cycle	, .5ta		60	
Offset: 0 (0%), Referenced to	to phase 2:	NBL and	• •	of Green
550t. 0 (070), 1 tolololloud (.o pridoo Z.	DL and	on, otare c	. 010011
Splits and Phases: 409: N	MGP & CR	81		
• (an m)			1	-
ï2 (R)				Ø3
22 s			16 s	
			-	Ø8

	-	₽	•	*	4	4	ᄼ	4.	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	12	23	18	37	11	24	17	38	
Maximum Split (%)	13.3%	25.6%	20.0%	41.1%	12.2%	26.7%	18.9%	42.2%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	78	0	23	41	78	89	23	40	
End Time (s)	0	23	41	78	89	23	40	78	
Yield/Force Off (s)	84	17	35	72	83	17	34	72	
Yield/Force Off 170(s)	84	6	35	61	83	6	34	61	
Local Start Time (s)	78	0	23	41	78	89	23	40	
Local Yield (s)	84	17	35	72	83	17	34	72	
Local Yield 170(s)	84	6	35	61	83	6	34	61	
Intersection Cummery									

Cycle Length 90
Control Type Actuated-Coordinated
Natural Cycle 90

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Splits and Phases: 410: Fernbrook Ln & CR 81

399: CR 30 & Lawndale Ln

Direction	All	
Future Volume (vph)	737	
Total Delay / Veh (s/v)	28	
CO Emissions (kg)	1.05	
NOx Emissions (kg)	0.20	
VOC Emissions (kg)	0.24	

400: CR 30 & Garland Ln

Direction	All		
Future Volume (vph)	935		
Total Delay / Veh (s/v)	15		
CO Emissions (kg)	1.11		
NOx Emissions (kg)	0.21		
VOC Emissions (kg)	0.26		

401: Dunkirk Ln/MGP & CR 30

Direction	All	
Future Volume (vph)	2751	
Total Delay / Veh (s/v)	26	
CO Emissions (kg)	3.61	
NOx Emissions (kg)	0.70	
VOC Emissions (kg)	0.84	

402: West Ramps & MGP

Direction	All	
Future Volume (vph)	2591	
Total Delay / Veh (s/v)	30	
CO Emissions (kg)	3.53	
NOx Emissions (kg)	0.69	
VOC Emissions (kg)	0.82	

403: East Ramps & MGP

D'acceptant	AII
Direction	All
Future Volume (vph)	2398
Total Delay / Veh (s/v)	29
CO Emissions (kg)	2.98
NOx Emissions (kg)	0.58
VOC Emissions (kg)	0.69

404: Upland Ln & MGP

Direction	All
Future Volume (vph)	2061
Total Delay / Veh (s/v)	16
CO Emissions (kg)	2.21
NOx Emissions (kg)	0.43
VOC Emissions (kg)	0.51

405: MGP & Hospital Dr

Direction	All		
Future Volume (vph)	1750		
Total Delay / Veh (s/v)	22		
CO Emissions (kg)	2.15		
NOx Emissions (kg)	0.42		
VOC Emissions (kg)	0.50		

406: MGP & Grove Circle/99th Ave

Direction	All	
Future Volume (vph)	1839	
Total Delay / Veh (s/v)	16	
CO Emissions (kg)	2.00	
NOx Emissions (kg)	0.39	
VOC Emissions (kg)	0.46	

407: MGP & 610 South Ramps

Direction	All	
Future Volume (vph)	1274	
Total Delay / Veh (s/v)	4	
CO Emissions (kg)	0.74	
NOx Emissions (kg)	0.14	
VOC Emissions (kg)	0.17	

408: MGP & 610 North Ramps

Direction	All
Future Volume (vph)	975
Total Delay / Veh (s/v)	13
CO Emissions (kg)	0.93
NOx Emissions (kg)	0.18
VOC Emissions (kg)	0.22

409: MGP & CR 81

Direction	All	
Future Volume (vph)	2331	
Total Delay / Veh (s/v)	16	
CO Emissions (kg)	4.21	
NOx Emissions (kg)	0.82	
VOC Emissions (kg)	0.98	

410: Fernbrook Ln & CR 81

Direction	All
Future Volume (vph)	3255
Total Delay / Veh (s/v)	51
CO Emissions (kg)	6.83
NOx Emissions (kg)	1.33
VOC Emissions (kg)	1.58

	>	†	•	*	4	ļ	4*		
Phase Number	1	2	3	4	5	6	8		
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	WBT		
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes			
Recall Mode	None	Max	None	None	None	Max	None		
Maximum Split (s)	10	22	11	22	10	22	33		
Maximum Split (%)	15.4%	33.8%	16.9%	33.8%	15.4%	33.8%	50.8%		
Minimum Split (s)	10	22	10	22	10	22	22		
Yellow Time (s)	4	4	4	4	4	4	4		
All-Red Time (s)	2	2	2	2	2	2	2		
Minimum Initial (s)	4	4	4	4	4	4	4		
Vehicle Extension (s)	3	3	3	3	3	3	3		
Minimum Gap (s)	3	3	3	3	3	3	3		
Time Before Reduce (s)	0	0	0	0	0	0	0		
Time To Reduce (s)	0	0	0	0	0	0	0		
Walk Time (s)		5		5		5	5		
Flash Dont Walk (s)		11		11		11	11		
Dual Entry	No	Yes	No	Yes	No	Yes	Yes		
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Start Time (s)	0	10	32	43	0	10	32		
End Time (s)	10	32	43	0	10	32	0		
Yield/Force Off (s)	4	26	37	59	4	26	59		
Yield/Force Off 170(s)	4	15	37	48	4	15	48		
Local Start Time (s)	55	0	22	33	55	0	22		
Local Yield (s)	59	16	27	49	59	16	49		
Local Yield 170(s)	59	5	27	38	59	5	38		
Intersection Summary									
Cycle Length			65						
Control Type	Actuate	ed-Uncoo							
Natural Cycle			65						
Splits and Phases: 399: C	R 30 & La	wndale L	n						
\ Ø1 ↑ Ø	32				€0	33	4	▶ Ø4	
10 s 22 s	_				11 s		22	3	
4 1					**				

	>	4	•	₩	4	4	۶	*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBSB	WBL	EBWB	NBL	NBSB	EBL	EBWB	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	None	None	None	Max	None	None	
Maximum Split (s)	10	23	10	22	10	23	10	22	
Maximum Split (%)	15.4%	35.4%	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	0	10	33	43	0	10	33	43	
End Time (s)	10	33	43	0	10	33	43	0	
Yield/Force Off (s)	4	27	37	59	4	27	37	59	
Yield/Force Off 170(s)	4	16	37	48	4	16	37	48	
Local Start Time (s)	55	0	23	33	55	0	23	33	
Local Yield (s)	59	17	27	49	59	17	27	49	
Local Yield 170(s)	59	6	27	38	59	6	27	38	
Intersection Summary									
Cycle Length			65						
Control Tuno	A atuata	d Haaaa	اممانام						

Cycle Length 65
Control Type Actuated-Uncoordinated
Natural Cycle 65

Splits and Phases: 400: CR 30 & Garland Ln

	-	₱	•	*	4	4	ᄼ	44	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	13	22	13	22	13	22	12	23	
Maximum Split (%)	18.6%	31.4%	18.6%	31.4%	18.6%	31.4%	17.1%	32.9%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	No								
Start Time (s)	57	0	44	22	9	57	22	34	
End Time (s)	0	22	57	44	22	9	34	57	
Yield/Force Off (s)	64	16	51	38	16	3	28	51	
Yield/Force Off 170(s)	64	5	51	27	16	62	28	40	
Local Start Time (s)	57	0	44	22	9	57	22	34	
Local Yield (s)	64	16	51	38	16	3	28	51	
Local Yield 170(s)	64	5	51	27	16	62	28	40	
Intersection Summary									

70 Cycle Length Control Type Actuated-Coordinated Natural Cycle

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

	-	†-	•	*	4	4	۶	44	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	13	23	12	22	12	24	12	22	
Maximum Split (%)	18.6%	32.9%	17.1%	31.4%	17.1%	34.3%	17.1%	31.4%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	11	58	24	36	58	0	24	36	
End Time (s)	24	11	36	58	0	24	36	58	
Yield/Force Off (s)	18	5	30	52	64	18	30	52	
Yield/Force Off 170(s)	18	64	30	41	64	7	30	41	
Local Start Time (s)	11	58	24	36	58	0	24	36	
Local Yield (s)	18	5	30	52	64	18	30	52	
Local Yield 170(s)	18	64	30	41	64	7	30	41	
Intersection Summary									

Cycle Length 70
Control Type Actuated-Coordinated
Natural Cycle 70

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

	-	†·	•	*	1	4	ၨ	44	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	11	22	10	22	11	22	10	22	
Maximum Split (%)	16.9%	33.8%	15.4%	33.8%	16.9%	33.8%	15.4%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	54	0	44	22	54	0	22	32	
End Time (s)	0	22	54	44	0	22	32	54	
Yield/Force Off (s)	59	16	48	38	59	16	26	48	
Yield/Force Off 170(s)	59	5	48	27	59	5	26	37	
Local Start Time (s)	54	0	44	22	54	0	22	32	
Local Yield (s)	59	16	48	38	59	16	26	48	
Local Yield 170(s)	59	5	48	27	59	5	26	37	
Intersection Summary									

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

	*	•	*	←
Phase Number	2	3	4	8
Movement	NBL	WBL	EBT	WBT
Lead/Lag		Lead	Lag	
Lead-Lag Optimize		Yes	Yes	
Recall Mode	Max	None	None	None
Maximum Split (s)	23	13	24	37
Maximum Split (%)	38.3%	21.7%	40.0%	61.7%
Minimum Split (s)	22	10	22	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	5	0	5	5
Flash Dont Walk (s)	11		11	11
Dual Entry	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	0	23	36	23
End Time (s)	23	36	0	0
Yield/Force Off (s)	17	30	54	54
Yield/Force Off 170(s)	6	30	43	43
Local Start Time (s)	0	23	36	23
	17	30	56 54	23 54
Local Yield (s)		30		43
Local Yield 170(s)	6	30	43	43
Intersection Summary				
Cycle Length			60	
Control Type	Actuate	ed-Uncoo	rdinated	
Natural Cycle			60	
Splits and Phases: 404: I	Jpland Ln 8	& MGP	_	
√ √ø2		·		Ø3
23 s			13	
233				
				Ø8
1			37	_

	-	- ₹	1	*	1	\$⊳	•	**	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBTL	WBL	EBT	NBL	SBTL	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	10	22	10	23	10	22	11	22	
Maximum Split (%)	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	16.9%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	55	0	22	32	55	0	22	33	
End Time (s)	0	22	32	55	0	22	33	55	
Yield/Force Off (s)	59	16	26	49	59	16	27	49	
Yield/Force Off 170(s)	59	5	26	38	59	5	27	38	
Local Start Time (s)	55	0	22	32	55	0	22	33	
Local Yield (s)	59	16	26	49	59	16	27	49	
Local Yield 170(s)	59	5	26	38	59	5	27	38	

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Splits and Phases: 405: MGP & Hospital Dr

	-	₽	•	4	1	4	•	*	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBTL	NBL	SBT	EBL	WBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	10	23	10	22	10	23	10	22	
Maximum Split (%)	15.4%	35.4%	15.4%	33.8%	15.4%	35.4%	15.4%	33.8%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	55	0	23	33	55	0	23	33	
End Time (s)	0	23	33	55	0	23	33	55	
Yield/Force Off (s)	59	17	27	49	59	17	27	49	
Yield/Force Off 170(s)	59	6	27	38	59	6	27	38	
Local Start Time (s)	55	0	23	33	55	0	23	33	
Local Yield (s)	59	17	27	49	59	17	27	49	
Local Yield 170(s)	59	6	27	38	59	6	27	38	

Cycle Length 65
Control Type Actuated-Coordinated
Natural Cycle 65

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Splits and Phases: 406: MGP & Grove Circle/99th Ave

	>	•	ļ	~
Phase Number	1	2	6	8
Movement	SBL	NBT	SBT	WBL
Lead/Lag	Lead	Lag		
Lead-Lag Optimize	Yes	Yes		
Recall Mode	None	C-Max	C-Max	None
Maximum Split (s)	11	22	33	22
Maximum Split (%)	20.0%	40.0%	60.0%	40.0%
Minimum Split (s)	10	22	22	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)		5	5	5
Flash Dont Walk (s)		11	11	11
Dual Entry	No	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	44	0	44	22
End Time (s)	0	22	22	44
Yield/Force Off (s)	49	16	16	38
Yield/Force Off 170(s)	49	5	5	27
Local Start Time (s)	44	0	44	22
Local Yield (s)	49	16	16	38
Local Yield 170(s)	49	5	5	27
Intersection Summary				
Cycle Length			55	
Control Type	Actu	ated-Coo		
Natural Cycle			55	
Offset: 0 (0%), Referenced	to phase 2:	:NBT and	6:SBT, S	tart of Gre
Splits and Phases: 407: N	MGP & 610	South Ra	amps	
ø ₀ 1	T ø2 (R)		
11 s	22 s			
₩ Ø6 (R)				
33 s	•			

	†	•	4	\checkmark	
Phase Number	2	5	6	8	
Movement	NBT	NBL	SBT	WBTL	
Lead/Lag		Lead	Lag		
Lead-Lag Optimize		Yes	Yes		
Recall Mode	C-Max	None	C-Max	None	
Maximum Split (s)	33	11	22	22	
Maximum Split (%)	60.0%	20.0%	40.0%	40.0%	
Minimum Split (s)	22	10	22	22	
Yellow Time (s)	4	4	4	4	
All-Red Time (s)	2	2	2	2	
Minimum Initial (s)	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)	5		5	5	
Flash Dont Walk (s)	11		11	11	
Dual Entry	Yes	No	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	44	44	0	22	
End Time (s)	22	0	22	44	
Yield/Force Off (s)	16	49	16	38	
Yield/Force Off 170(s)	5	49	5	27	
Local Start Time (s)	44	44	0	22	
Local Yield (s)	16	49	16	38	
Local Yield 170(s)	5	49	5	27	
Intersection Summary					
Cycle Length			55		
Control Type	Actu	ated-Coo			
Natural Cycle	7.010		55		
Offset: 0 (0%), Referenced	to phase 2:	:NBT and		tart of Gre	een
, ,					
Splits and Phases: 408: I	MGP & 610	North Ra	amps		
T ø2 (R)	•				
33 s					
↑ ø5	∮ ∳ Ø6 (R)			₩ Ø8
11 s	22 s				22 s

	→ √°	•	*	←
Phase Number	2	3	4	8
Movement	NBL	WBL	EBT	WBT
Lead/Lag		Lead	Lag	
Lead-Lag Optimize		Yes	Yes	
Recall Mode	C-Max	None	None	None
Maximum Split (s)	22	11	22	33
Maximum Split (%)	40.0%	20.0%	40.0%	60.0%
Minimum Split (s)	22	10	22	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	5		5	5
Flash Dont Walk (s)	11		11	11
Dual Entry	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	0	22	33	22
End Time (s)	22	33	0	0
Yield/Force Off (s)	16	27	49	49
Yield/Force Off 170(s)	5	27	38	38
Local Start Time (s)	0	22	33	22
Local Yield (s)	16	27	49	49
Local Yield 170(s)	5	27	38	38
Local field 170(S)	5	21	30	30
Intersection Summary				
Cycle Length			55	
Control Type	Actu	ated-Coo		
Natural Cycle			55	
Offset: 0 (0%), Referenced	to phase 2:	NBL and	• •	of Green
2 2 2 2 (2),			,	
Splits and Phases: 409: N	MGP & CR	81		
4				_
ÿ2 (R)				ÿ3
22 s			1	1s
				Ø8

	-	₽	•	*	4	4	۶	44	
Phase Number	1	2	3	4	5	6	7	8	
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes								
Recall Mode	None	C-Max	None	None	None	C-Max	None	None	
Maximum Split (s)	12	22	18	38	11	23	18	38	
Maximum Split (%)	13.3%	24.4%	20.0%	42.2%	12.2%	25.6%	20.0%	42.2%	
Minimum Split (s)	10	22	10	22	10	22	10	22	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	4	4	4	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		5		5		5		5	
Flash Dont Walk (s)		11		11		11		11	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes								
Start Time (s)	78	0	22	40	78	89	22	40	
End Time (s)	0	22	40	78	89	22	40	78	
Yield/Force Off (s)	84	16	34	72	83	16	34	72	
Yield/Force Off 170(s)	84	5	34	61	83	5	34	61	
Local Start Time (s)	78	0	22	40	78	89	22	40	
Local Yield (s)	84	16	34	72	83	16	34	72	
Local Yield 170(s)	84	5	34	61	83	5	34	61	

Cycle Length 90
Control Type Actuated-Coordinated
Natural Cycle 90

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Splits and Phases: 410: Fernbrook Ln & CR 81

Maple Grove - CSAH 610 Expansion

399: CR 30 and Lawndale				
Existing Volume	1936	vehicles		
Existing Delay	36	sec/veh		
Existing Total Delay	69696	seconds		
Future Volume	737	vehicles		
Future Delay	28	sec/veh		
Future Total Delay	20636	seconds		
Total Delay Reduction	49060	seconds		

40:. CR 30 and Garland Ln				
Existing Volume	2134	vehicles		
Existing Delay	19	sec/veh		
Existing Total Delay	40546	seconds		
Future Volume	935	vehicles		
Future Delay	15	sec/veh		
Future Total Delay	14025	seconds		
Total Delay Reduction	26521	seconds		

401:CR 30 and Dunkirk/Maple Grove Parkway			
Existing Volume	3935	vehicles	
Existing Delay	37	sec/veh	
Existing Total Delay	145595	seconds	
Future Volume	2751	vehicles	
Future Delay	26	sec/veh	
Future Total Delay	71526	seconds	
Total Delay Reduction	74069	seconds	

402: Maple Grove Parkway/West 94 Ramps				
Existing Volume	3549	vehicles		
Existing Delay	37	sec/veh		
Existing Total Delay	131313	seconds		
Future Volume	2591	vehicles		
Future Delay	30	sec/veh		
Future Total Delay	77730	seconds		
Total Delay Reduction	53583	seconds		

403: Maple Grove Parkway/East 94 Ramps				
Existing Volume	3164	vehicles		
Existing Delay	39	sec/veh		
Existing Total Delay	123396	seconds		
Future Volume	2398	vehicles		
Future Delay	29	sec/veh		
Future Total Delay	69542	seconds		
Total Delay Reduction	53854	seconds		

404: Maple Grove Parkway/Upland Ln			
Existing Volume	2601	vehicles	
Existing Delay	19	sec/veh	
Existing Total Delay	49419	seconds	
Future Volume	2061	vehicles	
Future Delay	16	sec/veh	
Future Total Delay	32976	seconds	
Total Delay Reduction	16443	seconds	

405: Maple Grove Parkway/Hospital Drive			
Existing Volume	2209	vehicles	
Existing Delay	28	sec/veh	
Existing Total Delay	61852	seconds	
Future Volume	1750	vehicles	
Future Delay	22	sec/veh	
Future Total Delay	38500	seconds	
Total Delay Reduction	23352	seconds	

406: Maple Grove Parkway/Grove Circle			
Existing Volume	2369	vehicles	
Existing Delay	17	sec/veh	
Existing Total Delay	40273	seconds	
Future Volume	1839	vehicles	
Future Delay	16	sec/veh	
Future Total Delay	29424	seconds	
Total Delay Reduction	10849	seconds	

407: Maple Grove Parkway/South 610 Ramps				
Existing Volume	1901	vehicles		
Existing Delay	4	sec/veh		
Existing Total Delay	7604	seconds		
Future Volume	1274	vehicles		
Future Delay	4	sec/veh		
Future Total Delay	5096	seconds		
Total Delay Reduction	2508	seconds		

408: Maple Grove Parkway/North 610 Ramps				
Existing Volume	1390	vehicles		
Existing Delay	17	sec/veh		
Existing Total Delay	23630	seconds		
Future Volume	975	vehicles		
Future Delay	13	sec/veh		
Future Total Delay	12675	seconds		
Total Delay Reduction	10955	seconds		

409: Maple Grove Parkway/CR 81				
Existing Volume	2431	vehicles		
Existing Delay	16	sec/veh		
Existing Total Delay	38896	seconds		
Future Volume	2331	vehicles		
Future Delay	16	sec/veh		
Future Total Delay	37296	seconds		
Total Delay Reduction	1600	seconds		

410: CR 81/Fe	rnbrook Lan	е
Existing Volume	3355	vehicles
Existing Delay	60	sec/veh
Existing Total Delay	201300	seconds
Future Volume	3255	vehicles
Future Delay	51	sec/veh
Future Total Delay	166005	seconds
Total Delay Reduction	35295	seconds

Total Network Dela	y Reduction	358089	seconds

Network Totals

Number of Intersections	1
Total Delay / Veh (s/v)	21
Total Delay (hr)	14
Stops (#)	1589
Average Speed (mph)	27
Total Travel Time (hr)	41
Distance Traveled (mi)	1127
Fuel Consumed (gal)	72
Fuel Economy (mpg)	15.8
CO Emissions (kg)	5.00
NOx Emissions (kg)	0.97
VOC Emissions (kg)	1.16
Performance Index	18.7

	*	•	→►	←
Phase Number	2	3	4	8
Movement	NBL	WBL	EBT	WBT
Lead/Lag		Lead	Lag	
Lead-Lag Optimize		Yes	Yes	
Recall Mode	Max	None	None	None
Maximum Split (s)	32	8	20	28
Maximum Split (%)	53.3%	13.3%	33.3%	46.7%
Minimum Split (s)	20	8	20	20
Yellow Time (s)	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5
Minimum Initial (s)	4	4	4	4
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	5	U	5	5
Flash Dont Walk (s)	11		11	11
Dual Entry	Yes	No	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	0	32	40	32
End Time (s)	32	40	40	0
	32 28	36	56	56
Yield/Force Off (s)				
Yield/Force Off 170(s)	17	36	45	45
Local Start Time (s)	0	32	40	32
Local Yield (s)	28	36	56	56
Local Yield 170(s)	17	36	45	45
Intersection Summary				
Cycle Length			60	
Control Type	Actuate	d-Uncoo	rdinated	
Natural Cycle			60	
Splits and Phases: 3: CS	AH 30/TH 6	610		
√ /ø2				
32 s				
J2 3				

HS			Control Section	T.H. / Roadway		Location			Beginning Ref. Pt.	Ending Ref. Pt.	State, County, City or Township	Study Period Begins	Study Period Ends	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5110			CSAH 30/Maple Grove Pkwy	CSAH 30 From Q MGP from CSAI						Maple Grove	1/1/2013	12/31/2015	
			Descripti Work	on of Proposed	CSAH 610 Extens	sion (redu	cing number	of vehicles/da	v on roadway)					
Accie	dent D	iagram Codes	1 Rear End	i	2 Sideswipe Same Direction		n Main Line		4,7 Ran off Road	8, 9 Head On/ Sideswipe -		6, 90, 99		
	\		,			9	←			Opposite Direction	Pedestrian	Other	Total	
	Fatal	F								1			1	
	_													
Study Period:	Personal Injury (PI)	В		4	1						2		7	
Number of Crashes				31				8	2	3	1	3	48	
	Property	PD PD		85	13		3	12	2	3		4	122	
% Change	ıtal	F								-14%				
in Crashes		A												
*Use Crash	PI	В		-14%	-14%			-14%			-14%			
Modification Factors		С		-14%				-14%	-14%	-14%	-14%	-14%		
Clearinghouse	Property	PD Pallage		-14%	-14%		-14%	-14%	-14%	-14%		-14%		
	Fatal	F								-0.14			-0.14	
		A												
Change in Crashes	PI	В		-0.56	-0.14						-0.28		-0.98	
= No. of	'n	C		-4.34				-1.12	-0.28	-0.42	-0.14	-0.42	-6.72	
% change in crashes	Propert	PD PD		-11.90	-1.82		-0.42	-1.68	-0.28	-0.42		-0.56	-17.08	
Year (Safety	Impro	ovemen	t Construct	ion)	2021									
Project Cos	t (exc	lude Ri	ght of Way))	\$ 20,477,000	Type of Crash	Study Period: Change in Crashes	Annual Change in Crashes	Cost per Crash	Annual Benefit		B/C=	0.66	
Right of Wa	ıy Co	sts (op	tional)			F	-0.14	-0.05	\$ 1,180,000	\$ 55,117	Using present			
Traffic Gro	wth I	actor			3%	A			\$ 590,000		B=		3,512,832	
Capital Rec						В	-0.98				C = See "Calculat		0,477,000 <i>for</i>	
1. Discour			e. (.)		1.3%	C	-6.72			ĺ	amortization.			
2. Project	Serv	ice Lii	te (n)		30	PD Total	-17.08	-5.70	\$ 7,800	1				
						Total				\$ 350,208	<u> </u>			

Weaver Lake Rd From Queensland Rd to Maple Grove Parkway, and MGP/94 Ramps (Both) and Weaver Maple Grove 1/1/2013	Study Period Ends	Study Period Begins	State, County, City or Township	Ending Ref. Pt.	eginning Ref. Pt.				Location		H. / Roadway	Control Section			HS works				
Accident Diagram Rear End Sudeswipe Sudeswipe Same Direction S	12/31/2015	1/1/2013	Maple Grove	oth) and Weaver	•			•			f Proposed	escription							
Study Period: Number of Crashes B B C C C C C C C C	Total			Sideswipe - Opposite Direction	Ran off Road		5 Right Angle			2 Sideswipe			gram		Accid				
Study Period: Number of Crashes PI B				→	*		_						F	atal					
Change in Crashes PD 39 4 7 2 2 2 2 2 2 2 2 2																			
Classics F F F F F F F F F													В	nal Injury					
% Change in Crashes F A A "Use Crash Modification Factors Clearinghouse C -14% -14% -14% Clearinghouse Description of Crashes F A -14% -14% -14% Change in Crashes F A -14% -14% -14% -14% Change in Crashes X % change in crashes X % change in crashes C -0.84 -0.14 -0.14 -0.14 -0.14 -0.14 -0.28 -0.28 Year (Safety Improvement Construction) 2021 -0.28 -0.28 -0.28	8		1		1						6								
% Change in Crashes F A A "Use Crash Modification Factors Clearinghouse C -14% -14% -14% Clearinghouse Description of Crashes F A -14% -14% -14% Change in Crashes F A -14% -14% -14% -14% Change in Crashes X % change in crashes X % change in crashes C -0.84 -0.14 -0.14 -0.14 -0.14 -0.14 -0.28 -0.28 Year (Safety Improvement Construction) 2021 -0.28 -0.28 -0.28	54	2			2	,	7			4	39		PD	Property Damage					
Vise Crash Modification Eactors C																			
C													A		in Crashes				
Factors C												В	ΡI						
Change in Crashes PI			-14%		-14%						-14%			ge ty	<u>Factors</u>				
Change in Crashes PI A B = No. of crashes X % change in crashes C -0.84 -0.14 -0.14 Year (Safety Improvement Construction) 2021		-14%			-14%)	-14%			-14%	-14%		PD						
Change in Crashes PI B -0.14 -0.14 = No. of crashes X % change in crashes C -0.84 -0.14 -0.14 % change in crashes PD -5.46 -0.56 -0.98 -0.28 Year (Safety Improvement Construction)													F	Fatal					
Crashes P1 B = No. of crashes X % change in crashes C -0.84 -0.14 -0.14 % change in crashes PD -5.46 -0.56 -0.98 -0.28 Year (Safety Improvement Construction)													A		Change in				
crashes X % change in crashes														PI					
Year (Safety Improvement Construction) 2021	-1.12		-0.14		-0.14						-0.84		_	erty age	crashes X				
2021	-7.56	-0.28			-0.28	3	-0.98			-0.56	-5.46		PD	Prop Dam					
SUIOV			1 (Study		2021		Construction	ement	mprov	Year (Safety l				
Period: Change in Change in Crashes Crash Benefit B/C=	0.10	B/C=			_		Change in	Period: Change in		\$ 20,447,000		t of Way)	de Rig	(exclu	Project Cost				
Right of Way Costs (optional) F \$ 1,180,000 Using present worth value					1,180,000	\$			F										
	2,013,516		1		590,000	\$			A	3%									
See "Calculations" sheet for	0,447,000																		
1. Discount Rate 1.3% C -1.12 -0.37 \$ 87,000 \$ 32,510 amortization.			amortization.	ĺ															
2. Project Service Life (n) 30 PD -7.56 -2.52 \$ 7,800 \$ 19,674 Total \$ 52,184								-7.56		30		oject Service Life (n)							

Future	Existing																							
Weaver Lake Rd/South 94 Ramps	Weaver Lake Rd/South 94 Ramps	Weaver Lake Rd/North 94 Ramps	Weaver Lake Rd/North 94 Ramps	Weaver Lake Rd/Fish Lake Rd	Weaver Lake Rd/Fish Lake Rd	Elm Creek Rd and Weaver Lake Rd	Elm Creek Rd and Weaver Lake Rd	CR 81 and Fernbrook	CR 81 and Fernbrook	Maple Grove Pakway/CR 81	Maple Grove Pakway/CR 81	Maple Grove Pakway/99th ave	Maple Grove Pakway/99th ave	Maple Grove Pakway/Hospital Ln	Maple Grove Pakway/Hospital Ln	Maple Grove Pakway/Upland Dr	Maple Grove Pakway/Upland Dr	Maple Grove Parkway/East 94 Ramp	Maple Grove Parkway/East 94 Ramp	Maple Grove Parkway/West 94 Ramp	Maple Grove Parkway/West 94 Ramp	Maple Grove Parkway/CSAH 30	Maple Grove Parkway/CSAH 30	Intersections
7	00	11	12	26	30	10	12	33	34	41	43	7	10	4	6	7	9	10	12	12	20	30	44	Total Number of Accidents
з	3	3	33	ω	3	3	ω	3	3	ω	33	3	3	3	ω	ω	w	w	w	3	3	3	3	Years of Data
32250	34750	41150	43650	20700	23200	35600	39600	32550	33550	23250	24250	18665	23665	16300	21300	19300	23800	22075	26575	12700	20700	25550	37550	ADT*
0.20	0.22	0.25	0.26	1.15	1.19	0.26	0.28	0.93	0.93	1.62	1.62	0.35	0.39	0.23	0.26	0.34	0.35	0.42	0.42	0.87	0.89	1.08	1.08	Calculated Crash Rate (Million Entering Vehicles)
Signalized; High Volume, Low Speed	Type of Intersection: Low Vol < 15K ADT; Low Speed < 45 mph																							
0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	Average Crash Rate for Similar Intersections, Ra
35.31	38.05	45.06	47.80	22.67	25.40	38.98	43.36	35.64	36.74	25.46	26.55	20.44	25.91	17.85	23.32	21.13	26.06	24.17	29.10	13.91	22.67	27.98	41.12	Vehicle Exposure During Study Period, m

	Segments	Total Number of Years of Accidents Data	Years of Data	ADT	ADT Segment Length (Miles)	Calculated Crash Rate (Million Entering Vehicles)	Calculated Crash Rate (Million Type of Segment: 2, 3, 4, or 5-Lane; Average Crash Rate for Entering Vehicles) Urban v. 8 furni; Divided vs. Undivided Similar Segments, Ra	Average Crash Rate for Similar Segments, Ra
	CSAH 30 from Queensland Dr to Maple Grove Parkway	10	3	14800	1.0	0.62	4-Lane Divided Conventional	2.84
Future	CSAH 30 from Queensland Dr to Maple Grove Parkway	6	3	8800	1.0	0.75	4-Lane Divided Conventional	2.84
Future New Road	610 Volume from CSAH 30	11	3	6000	1.0	1.52	4-Lane Expressway	1.67
	Notes:							

Notes:

* ADT: used the total volume at each leg of the intersection divided by two (to only account for the vehicles entering the intersection)

A total of 46 crashes will be reduced from this project, however, 11 additional crashes will occur along CSAH 610, thus reducing the crashes reduced to 35 crashes.

resents the Minnesota Average Crash Rates for the Metro Area similar roadway segments or intersections.

Crash Reduction Methodology

Maple Grove Parkway - Methodology in Red

Question: For the Roadway Expansion application, how do I complete the Safety measure for a project that involves the construction of a new roadway? More specifically, there isn't a crash modification factor that can be used for the construction of a new roadway in the HSIP methodology.

Answer: With the construction of a new roadway, an analysis should be conducted to determine the parallel routes that will be affected by the project. The crash reduction factor can be calculated using the following methodology:

- Identify the parallel roadway(s) that will be affected by the project.
 - CSAH 30 from Queensland Rd to Maple Grove Parkway, Maple Grove Parkway from CSAH 30 to CR 81, CR 81 from Maple Grove Parkway to Fernbrook Lane and Weaver Lake Rd Ramps will be most affected by the CSAH 610 extension.
- Using the crash data for the most recent three years, calculate the existing crash rate for the parallel roadway(s).
 - Existing crash rate was calculated for the previously listed segments
- Identify the daily traffic volume that will be relocated from the parallel roadway(s) to the new roadway.
 - Approximately 5000 to 12,000 vehicles (based on year 2014 volumes)
- Calculate the number of crashes related to the relocated traffic volume using the existing crash rate for the parallel roadway(s). For instance, if 5,000 vehicles are expected to relocate from the existing parallel roadway to the new roadway, calculate the number of crashes related to the 5,000 vehicles.
 - It was calculated that 46 crashes will be eliminated by reducing the volumes at the intersections.
- Identify the average crash rate for the new roadway using MnDOT's crash rates by roadway type. Using the average crash rate for the new roadway, calculate the number of crashes related to the relocated traffic (such as the 5,000 vehicles).
 - The additional 6000 vpd on CSAH 610 are expected to add 11 crashes to the segment.
- Calculate the crash reduction factor using the existing number of crashes on the existing parallel roadway compared to the new roadway, due to the relocated traffic volume (such as the 5,000 vehicles).
 - It is estimated that a total of 46 crashes will be reduced, however 11 new crashes are estimated to occur along the extension of CSAH 610, thus a reduced crash total of 35 crashes. The crash reduction factor is 35/250 = 14%
- The calculated crash reduction factor should be used in the HSIP B/C worksheet.

Crash data is managed by the Mn/DOT Office of Traffic, Safety, and Operations. Maple Grove Pkwy from approx 350' east and west of CSAH 30 (2013 - 2015)

1	1	9	207 110 1111110	01100011101	io, caroty,	and opening				:	
Ŋ	š	NUM	REF_POINT	GIS_ROUTE	GIS_TM	RD_DIR	ELEM	RELY	N	R_C	
0	55	24300106	004+00.444	0524300106	4.444	Z		┙	ω	C	
0	55	٠,	004+00.499	0524300106	4.499	z		Ь	ω	C	
0	55	٠,	004+00.502	0524300106	4.502	z		₽	ω	C	
0	05	24300106	004+00.505	0524300106	4.505	т		┙	1	C	
_	55	٠.	004+00.506	0524300106	4.506	Z		₽	ω	C	
0	55	٠,	004+00.506	0524300106	4.506	Z		₽	ω	C	
0	5	0,	004+00.506	0524300106	4.506	z		Ц	ω	C	
0	5	٠,	004+00.506	0524300106	4.506	2		₽	ω	C	
_	5	0,	004+00.506	0524300106	4.506	Z		┙	ω	C	
0	5	0,	004+00.524	0524300106	4.524	2		Ц	ω	C	

IO CSAH 30 from approx 350' north and south of Maple Grove Pkwy (2013 - 2015)

04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	04	SYS	Crash da
27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	27000030	NOM	<u>ıta is manage</u>
007+00.207	007+00.207	007+00.188	007+00.185	007+00.164	007+00.160	007+00.160	007+00.160	007+00.160	007+00.160	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.151	007+00.146	007+00.140	REF_POINT	d by the Mn/D
0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	0427000030	GIS_ROUTE	Crash data is managed by the Mn/DOT Office of Traffic, Safety, and Operations
7.207	7.207	7.188	7.185	7.164	7.160	7.160	7.160	7.160	7.160	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.151	7.146	7.140	GIS_TM	affic, Safety,
т	2	Z	ш	8	Z	т	8	Z	8	Z	8	8	2	\$	Z	Z	2	т	z	z	т	8	Z	S	8	Z	Z	Z	т	Z	т	Z	m	RD_DIR	and Operati
																																		ELEM	ons.
2	2	Ľ	2	Ь	1	₽	Ц	₽	1	Ъ	1	Д	1	┙	Д	1	⊣	Ľ	1	₽	1	1	₽	1	1	₽	1	1	₽	1	1	1	L	RELY	
ω	ω	ω	ω	ω	ω	ω	ш	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	N	
C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	R_C	•

ΑŢΡ

DRIVER 1 WAS TURNING RIGHT FROM WB CO 30 ONTO MAPLE GROVE PKWY. A BLACK SUBURBAN WAS INFRONT OF HER BUT STATED HE WAS NOT INJURED & DID NOT WANT MEDICAL ATTENTION. -I OBSERVERD HEAVY FRONT END DAMAG VEHICLE 2 WAS EASTBOUND AND STOPPED AT THE TRAFFIC SIGNAL AT COUNTY RD 30/MAPLE GROVE PARKWAY IN TH VEH #1 WAS TRAVELING WB ON COUNTY ROAD 30 APPROACHING DUNKIRK LANE IN THE RIGHT LANE. VEH #2 WAS TR BOTH VEHICLES WERE SOUTH ON DUNKIRK TURNING TO WESTBOUND CO 30. VEHICLE ONE WAS BEHIND VEHICLE 2 I VEH.#1 WAS ON THE RAMP FROM MAPLE GROVE PARKWAY TO E/B 94. IT WAS ICY UNDER THE CR30 BRIDGE WHEN T UNITS 1 AND 2 WERE BOTH NORTH BOUND ON DUNKIRK APPROACHING COUNT 30. THE DRIVER OF UNIT 2 SAID SH DV1 STATED SHE WAS STOPPED IN TRAFFIC AT RED LIGHT ON E/B COUNTY RD 30 A DUNKIRK LN IN THE RIGHTMOS BOTH VEHICLES WERE IN THE RIGHT LANE OF NORTHBOUND TRAFFIC ON DUNKIRK LANE SOUTH OF CO 30. BOTH VE ALL THREE VEHICLES WERE N/B DUNKIRK LN TO GO E/B CO RD 30. D#3 STATED HE STOPPED & LOOKED LEFT TO L

27 27 27 27 27 27 27 27 27 27 27

DRIVER OF VEHICLE #1 WAS MAKING A RIGHT TURN FROM NORTHBOUND MAPLE GROVE PARKWAY TO EASTBOUND COUNT DRIVER 1 WAS WEST BOUND ON CO RD 30. DRIVER 2 WAS SOUTH BOUND ON DUNKIRK LN TURNING WESTBOUND ONTO VEHICLE 1 WAS EASTBOUND ON COUNTY ROAD 30 APPROACHING DUNKIRK LANE. VEHICLE 2 WAS NORTHBOUND FROM BOTH VEHICLES HAD BEEN GOING WEST ON CSAH 30 AND WERE IN THE TURN LANE TO GO NORTH ONTO MAPLE GROVE DV1 STATED SHE WAS W/B CO RD 30 APPROACHING DUNKIRK WHEN THE VEH IN FRONT OF HER STOPPED SUDDENLY C VEHICLE 1 WAS NORTHBOUND 93RD AVENUE. VEHICLE 2 WAS WESTBOUND MAPLE GROVE PARKWAY. VEHICLE 2 HAD D#1 AND BOTH HER PASSENGERS ADVISED THEY WERE REAR-ENDED BY V#2. JUVENILE PASSENGER (CAROLINE LYNGE VEHICLE WAS WAS MERGING ONTO MAPLE GROVE PARKWAY. SHE STOPPED WHEN SHE OBSERVED A CAR COMING IN UNITS 1 AND 2 WERE WAITING FOR TRAFFIC TO CLEAR SO THEY COULD ENTER ONTO MAPLE GROVE PARKWAY. UNIT -V1 & V2 TRAVELING WESTBOUND CO-30 AT THE LIGHT OF MAPLE GROVE PKWY/DUNKIRK LN. -BOTH VEHICLES WERE WHILE TRAVELING EASTBOUND ON COUNTY 30 APPROACHING DUNKIRK LANE, THE DRIVER OF VEHICLE #1 STATED TH BOTH VEH WERE NB DUNKIRK LA GOING TO TURN RIGHT ONTO EB CO RD 30. -DR 1 SAID HE SAW AN UNKNOWN VEH UNIT 1 WAS CROSSING SOUTH OVER CSAH 30 FROM PARKING LOTS. HEAVY TRAFFIC AND CARS IN TURN LANE TO GO DRV 2 WAS WAITING FOR EB CO 30 RD TRFC TO CLEAR SO HE COULD MERGE IN. DRV 1 THOUGHT VEH 2 WAS MOVIN VEHICLE #1 TRAVELING EASTBOUND ON COUNTY ROAD 30 APPROACHING DUNKIRK LANE. DRIVER OF VEHICLE #1 ST UNITS 1 AND 2 WERE STOPPED IN THE TURN LANE TO GO NORTH ON DUNKIRK LANE FROM CO 30. THE LIGHT CHANG DRIVER #1 WAS TRAVELING EASTBOUND COUNTY ROAD 30 IN THE FAR LEFT TURN LANE WITH SIGNAL ON APPROACHI UNIT1 WAS WEST ON CO RD 30 IN THE OUTSIDE LEFT TURN LANE TO GO SOUTH ON DUNKIRK LANE WITH A GREEN L * DRIVER ONE WAS MAKING A LEFT TURN FROM WEST BOUND CO 30 TO SOUTH BOUND DUNKIRK LN. * DRIVER ONE DRIVERS 1 AND 2 WERE STOPPED , JUST GETTING READY TO BEGIN MOVING AGAIN WHEN VEHICLE 3 REAR ENDED V UNIT 1 WAS IN RIGHT MERGE LANE FROM CO RD 30 WB ONTO MAPLE GROVE PKWY. , BOTH ROADS ARE 2 LANE. UNI UNIT 1 TURNED NB ONTO SERVICE RD FROM EB CO 30 AND DID NOT SEE UNIT 2 TRAVELING WB DUE TO CARS STOP VEHICLE (VEH) 1 WAS NORTH BOUND IN PARKING LOT OF SHOPPING CENTER APPROACHING EXIT AT CO RD 30. VEH UNIT 1 TRAVELING NORTH ON DUNKIRK LA N. DRIVER OF UNIT 1 SAID LIGHT WAS YELLOW AND SHE DIDNT THINK' THE DRIVER OF UNIT #1 WAS NOT PAYING ATTENTION WHILE DRIVING AND REARENDED UNIT #2 WHILE IT WAS STO UNITS 1 AND 2 WERE IN THE MERGE LANE FROM WB CSAH 30 TO NB DUNKIRK LANE. UNIT 2 STOPPED FOR TRAFFIC D1 WAS IN V1 NB ON DUNKIRK LA AND TURNING RIGHT INTO THE PARKING LOT AREA OF GOODWILL. D2 WAS IN V2 BOTH VEHICLES WERE EASTBOUND ON CO RD 30. VEHICLE 2 WAS STOPPED FOR THE RED LIGHT AT DUNKIRK LN N. VEHICLE 1 HAD JUST TURNED RIGHT FROM SOUTHBOUND DUNKIRK LANE TO WESTBOUND COUNTY RD 30 - DRIVER 1 UNITS 1 AND 2 WERE E BOUND ON CO RD 30 APPROACHING DUNKIRK LN. UNIT 2 STOPPED FOR THE RED LIGHT. UN UNIT #3 WAS STOPPED AT A RED LEFT TURN SEMAPHORE. UNIT #2 WAS STOPPED BEHIND UNIT #3. UNIT #1 WAS S VEHICLE 2 WAS STOPPED FOR THE TRAFFIC SIGNAL ON COUNTY ROAD 30 AND DUNKIRK LANE FACING EAST IN THE D1 WAS DRIVING V1 SB DUNKIRK LN. D2 WAS DRIVING V2 WB CO RD 30. D1 PULLED OUT INFRONT OF V2 AND ALL BOTH UNITS WERE IN THE #2 LEFT TURN LANE. DR. 1 SAID HE WAS TRYING TO USE HIS HAND CONTROLS TO STOP ΑŢΡ

2430 2430 2430 2430 2430 2430	2430 2430 2430 2430 2430 2430	2430 2430 2430 2430 2430 2430 2430	2430 2430 2430 2430 2430 2430 2430 2430	CITY 2430 2430 2430 2430 2430 2430 2430 2430	CITY 2430 2430 2430 2430 2430 2430 2430 2430
3-Tue 4-Wed 5-Thu 5-Thu 3-Tue	5-Thu 7-Sat 5-Thu 2-Mon 3-Tue 6-Fri	5-Thu 4-Wed 3-Tue 3-Tue 6-Fri 3-Tue	7-Sat 3-Tue 4-Wed 7-Sat 7-Sat 4-Wed 1-Sun	2-Mon 6-Fri 3-Tue 1-Sun 2-Mon 4-Wed 6-Fri 6-Fri 2-Mon	DOW 4-Wed 2-Mon 6-Fri 2-Mon 7-Sat 4-Wed 2-Mon 7-Sat 1-Sun 3-Tue 2-Mon
10 9 5 9	3 5 10 10 12	7 8 8 9 10 11	5 7 9 12 1	MONTH 6 3 5 6 11 12 12 12 2	MONTH 6 8 1 1 1 7 7 11
15 25 2 2 2 22 8	29 15 13 21 21	2 12 18 15 30 3	17 29 30 27 6 28	DAY 23 8 21 9 17 27 11 11 13 20 24	DAY 19 11 24 27 16 10 22 23 23 17
2013 2013 2013 2014 2015	2014 2014 2014 2014 2014 2014 2015	2015 2015 2015 2015 2015 2015 2015	2014 2014 2014 2014 2014 2014 2015 2015	YEAR 2014 2013 2013 2013 2013 2013 2013 2013 2013	YEAR 2013 2014 2014 2014 2013 2013 2013 2013 2013 2013 2015
1524 0840 1420 1420 1646	1/32 1802 1950 2040 0709 0644	1140 1808 1507 1801 1640 1348	0802 1843 0654 1729 1742 0721 1233	TIME 1049 0826 0839 1447 14635 1420 0540 1712 1545	TIME 1514 1631 0717 1055 0829 0801 11540 11520 0136
ZZOOZ	znnnnz	z	0 Z Z 0 Z Z Z	Z Z Z Z Z Z Z Z Z Z S S S	0 Z Z Z Z 2 0 Z Z Z EV
0000	00000		000000	NUM_KILLED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NUM_KILLED
2 2 2 2	2 2 2 3 2 1	3 8 8 8 8 8 8	3 2 2 2 2 2 2	NUM_VEH 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NUM_VEH 2 3 1 1 2 2 2 2 2 2 2 2 2
4 1 1	14444	444444	4448444	JUNC 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	JUNC 1 1 4 4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4
45 46 45 45	45 40 45 45	40 40 45 45 40	45 40 10 40 40	40 40 40 40 40 40 40 40 40 40 40 40 40 4	\$L 45 45 45 40 40 40 40 40 40
				TYPE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TYPE 34
5 12 5 6 12	ω μ σ σ μ _⊢	1811251	1 1 1 6 1 1 1	DIAG 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DIAG 1 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			1 1 1 6 1 1 1	LOC1	LOC1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1
1 4 98 98 98	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	л г г г г г г г	1 1 5 4 1 1 1	7CD	TCD 98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u> </u>	1 4 8 4 9 4	2 12 12 13 12 12 12	1 4 4 1 1 1 1	7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11113	1 1 2 2 1 1	<u>, , , , , , , , , , , , , , , , , , , </u>	1 2 1 1 1 1	WTHR1 1 3 3 2 2 1	WTHR1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1
0 0 0 1 0	0 0 0 0 0 F	-000000	0 2 0 1 0 1	WTHR2 1 2 0 0 2 0 4 1	WTHR2 0 1 1 0 0 0 0
1112	2	<u> </u>	122111	SURF 1 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	SURF 1 1 4 4 5 5 5 5 7 1 1 1 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7
<u>р р р р о</u>	и и – – и и	личттт	n	CHAR 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	CHAR 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
шишиш	5 3 3 3 3		, , , , , , , , , , , , , , , , , , ,	DESGN 5 90 90 90 5 5 5 5 5 5 5 5 5 5 6 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	DESGN 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
132880219 132680055 131220088 141420113 152510322	140880099 141350130 142870253 142940030 153520020	151830107 152240210 152300107 152580181 153030142 153080169	141370032 142100185 142110027 142700133 143400113 150280029 150320051	ACC_NUM 14174062 130670065 131410119 131680108 133310128 133460030 133470193 133540169 140550342	ACC_NUM 131700118 142240087 140240150 140340346 130750199 131000049 132030122 140540167 153210099 150120072
г ж ж т ж	2 - 3 -	<u>, , , , , , , , , , , , , , , , , , , </u>	3 1 1 1 1 2 4	VTYPE 3 4 4 7 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PERSON1 VTYPE 1 1 1 1 1 2 3 3 1 4 4 4 3 3 3 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D _R	DIR 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ACT 11 11 11 11 11 11 11 11 11 11 11 11 11	ACT 1 1 1 5 5 5 5 7 7 7 11 11
FAC1 15 15 17 18 19 19 19 10 11 11 11 11 11 11 11 11 11 11 11 11	FAC1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FAC2 FAC2 1 1 1 1 1 1 1 1 1 1 1 1 1	FAC2 0 1 1 15 15 0 0
POSN	POSN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
z z z n z z n z z z z n z z z z n z z z n z	0 2 2 2 2 2 0 2 2 2 2
PQ	EQP 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
PHS	PHYS
S AGE 32 AGE 32 AGE 34 AGE 32 AGE 34	s AGE 39 17 58 50 29 21 31 31 31 31 43
	π
VITYPEZ VITYPEZ 4 4 4 7 7 7 7 7 7 7 7 7 7	PERSON2 VTYPE2 2 4 3 3 1 1 1 2 3 3
DIR3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	DIR3 1 1 1 7 7 7
ACT4 11 11 11 11 11 11 11 11 11 11 11 11 11	ACT4 9 14 5 5 1
FAC15 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FAC15 21 8 8 1 1 1 1 3 3
FAC26 8 8 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FAC26 0 1 0 0 0 0 0
5 POS.W7	5 POSN7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22222200222220202022222222222222222222	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
8 EQP9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	EQP9
PHYS10	PHYS10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AGE11 36 66 38 39 20 20 20 20 21 21 22 28 28 28 28 28 28 29 29 29 39 39 39 39 39 39 39 39 39 3	AGE11 16 63 54 58 58 58 73
	SEXIZ
VTVPEASON VIII 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PERSON3 VITYPE13 2 1 1 3
3 DIR14 3 3 3 3 3 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7	3 DR14 1 1 5 5
ACT15	ACT15

	FAC116	
	FAC217	
	POSN18	
	INJ19	
	EQP20	
	PHYS21	
	AGE22	
	SEX23	
DEBCONIA	VTYPE24	PERSON4
	DIR25	
	ACT26	
	FAC127	
	FAC228	
	POSN29	
	INJ30	
	EQP31	
	EQP31 PHYS32 AGE33	
	SEX34	

FAC116 FAC217 POSN18 INJ19 EQP20 PHYS21 AGE22 SEX23 VTYPE24 DIR25 ACT26 FAC127 FAC228 POSN29 INJ30 EQP31 PHYS32 AGE33 SEX34

TH 94 @ Weaver Lake Road East and West Ramps (2013 - 2015)

Crash data SYS North Ramp	ata is manage NUM mp 00000094	A by the Mn/Do REF_POINT 215+00.579	rash data is managed by the Mn/DOT Office of Traffic, Safety SYS NUM REF_POINT GIS_ROUTE GIS_TM orth Ramp 01 00000094 215+00.579 0100000094 216.236 01 00000094 215-00.579 0100000094 216.236	ffic, Safety, GIS_TM 216.236	and Operations RD_DIR E	ELEM A04	RELY	ı ı N	= ⊂
01	00000094	215+00.579 215+00.579	0100000094	216.236 216.236	N €	A04 A04		ωц	c c
01	00000094	215+00.579	0100000094	216.236	\$	A04	1	1	_
01	00000094	215+00.579	0100000094	216.236	8	A04	1	ω	_
01	00000094	215+00.579	0100000094	216.236	Z	A04	1	ω	C
01	00000094	215+00.579	0100000094	216.236	ш	A04	1	ω	_
01	00000094	215+00.579	0100000094	216.236	2	A04	1	ω	_
01	00000094	215+00.579	0100000094	216.236	<	A04	2	Ц	_
01	00000094	215+00.579	0100000094	216.236	Z	A04	2	ω	C
01	00000094	215+00.579	0100000094	216.236	2	A05	1	0	_
01	00000094	215+00.579	0100000094	216.236	<	A05	┙	ω	_
South Ramp	mp								
01	00000094	215+00.579	0100000094	216.236	m	B03	2	ω	_
01	00000094	215+00.579	0100000094	216.236	т	B04	1	_	_
01	00000094	215+00.579	0100000094	216.236	2	B04	1	ω	_
01	00000094	215+00.579	0100000094	216.236	ш	B04	2	1	_
01	00000094	215+00.579	0100000094	216.236	<	B05	1	ω	_
01	00000094	215+00.579	0100000094	216.236	т	B05	2	ω	_
01	00000094	215+00.579	0100000094	216.236	П	B15	1	ᆫ	_
01	00000094	215+00.579	0100000094	216.236	ш	B15	1	3	_

Α.
₽

BOTH VEHICLES WERE ENTERING EASTBOUND I 694 FROM WEAVER LAKE RD. BOTH VEHICLES, AS WELL AS SEVERAL	UPON ARRIVAL V1 WAS IN THE APEX OF 94 EASTBOUND FROM WEAVER LAKE RD. THE DRIVER MAY HAVE HAD SOME	KIDD ADVISED SHE WAS WALKING E/B WEAVER LAKE RD AND WALKED OVER THE 194 BRIDGE ON THE SOUTH SIDE. S	SIGN ON THE OFF RAMP INDICATING TO TRAFFIC THAT IS ATTEMPTING TO EXIT ONTO WEAVER LAKE RD EB THEY	V1 WAS STOPPED ON THE RAMP FROM EB ISTH94 TO WEAVER LAKE ROAD IN THE CENTER LANE. DV1 STATED HE WA	#1 SAID SHE WAS GOING SLOWLY THINKING SHE HAD TO MERGE AND NOT REALIZING SHE HAD HER OWN LANE AFTER	BOTH VEHICLES WERE ON THE RAMP FROM E/B 94 TO WEAVER LAKE ROAD. THE DRIVER OF VEH.#1 STATED THAT H	DRIVER 1 WAS ON THE ENTRANCE RAMP TO EASTBOUND I 94 FROM WEAVER LAKE RD. AS HE WAS GOING AROUND TH	VEH 1 AND VEH 2 BOTH EXITED WESTBOUND I 94 ON THE WEAVER LAKE RD EXIT. THEY WERE BOTH TAKING THE DE		DRIVER VEHICLE #1 SAID HE HAD EXITED WESTBOUND I-94 EXIT RAMP AT WEAVER LKRD. HE WAS SLOWING DOWN A	UPON ARRIVAL BOTH VEHICLES WERE OFF THE ROADWAY IN A PARKING LOT. THE DRIVER OF V1 STATED THAT HE	#NAME?	D1 WAS DRIVING V1 BEHIND D2 WHO WAS DRIVING V2. BOTH D1 AND D2 WERE EXITING 194 AT WEAVER LAKE RD T	UNIT 2 WAS STOPPED AT THE TOP OF THE RAMP FROM WB 1-94 TO EB CO RD 109. UNIT 1 WAS FOLLOWING AND DR	UNITS 1 AND 2 EXITING FROM WB 194 TO EAST WEAVER. UNIT 2 STOPPED FOR TRAFFIC AND UNIT 1 DID NOT SEE	DRIVER TWO WAS STOPPED AT THE STOP LIGHT WHEN HE WAS REAR ENDED BY VEHICLE ONE. DRIVER ONE SAID S	I SPOKE WITH THE DRIVERS INVOLVED IN THIS VEHICLE PROPERTY DAMAGE ACCIDENT AND I OBTAINED SOME OF T	V1 (MNDOT SNOWPLOW) STOPPED AT TOP OF RAMP. DRIVER OF V2 TRAVELING TOO FAST FOR ROAD CONDITIONS CO	BOTH DRIVER EXITED FROM WEST 94 TO WEAVER LAKE RD. AT THE TOP OF THE RAMP, BOTH VEHICLES WERE GOIN	ATP
27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	8
2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	CITY
4-Wed	3-Tue	5-Thu	6-Fri	5-Thu	4-Wed	3-Tue	1-Sun	4-Wed	1-Sun	4-Wed	3-Tue	6-Fri	4-Wed	7-Sat	4-Wed	5-Thu	3-Tue	1-Sun	1-Sun	DOW
12	ω	10	9	12	ω	2	12	7	ω	∞	2	ᆫ	12	9	12	11	6	1	₽	MONTH
25	12	∞	26	31	13	12	13	15	31	19	24	24	24	13	11	21	18	27	20	DAY
2013	2013	2015	2014	2015	2013	2013	2015	2015	2013	2015	2015	2014	2014	2014	2013	2013	2013	2013	2013	YEAR
0903	2007	0946	1145	1043	1344	1238	0907	1706	1300	0850	1855	1200	1614	0924	1341	2026	1153	1455	1802	TIME
z	z	С	z	z	С	z	z	С	z	z	z	z	z	z	z	z	z	z	z	SEV
_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NUM_KILLED

2	1	1	2	2	2	2	1	ı)	2	2	2	2	2	2	2	2	2	2	2	NUM_VEH
1	20	21	21	2	7	7	20	•	4	0	4	Ь	21	2	21	21	4	21	Ь	4	JUNC
60	60	40	45	30	40	60	60	č	40	30	40	60	60	40	40	40	60	60	30	35	SF
ב	22	7	₽	₽	1	₽	1	,	_	1	1	1	1	1	1	_	1	1	1	1	TYPE
G	4	90	1	1	1	2	7	ı	_	1	1	1	_	1	1	1	1	1	2	1	DIAG
1	ь	1	ь	Ь	Ц	↦	1	,	_	0	ь	Ь	1	1	Ц	Ц	Ц	1	ъ	1	LOC1
98	98	90	90	Ь	98	98	98	,	_	σ	1	Ь	90	σ	98	σı	1	1	Ь	1	TCD
1	4	┙	₽	1	1	₽	1	,	_	₽	₽	4	₽	₽	1	1	4	1	1	4	5
4	_	<u>~</u>	↦	2	_	<u>~</u>	ω	,	_	<u> </u>	ω	Н	2	↦	ь	ш	2	ь	4	ц	WTHR1
0	0	0	1	0	_	0	0	Ó	0	0	0	0	2	1	0	0	0	0	0	0	WTHR2
4	2	↦	ь	Ь	ъ	↦	2	,	_	↦	2	Ь	↦	₽	Ь	ъ	Ь	_	ω	1	SURF
6	_	7	5	2	_	_	6	(л	0	7	5	7	↦	5	6	_	2	2	5	CHAR
2	1	2	2	2	ω	2	2	1	2	0	2	2	2	5	2	2	2	2	2	2	DESGN
133590043	130880166	152810076	142690091	153650280	130720142	130450337	153470031		151960405	131230062	152310065	150680193	150240122	143580152	142560064	133450177	133260222	131690099	130310215	130250242	ACC_NUM
2	ω	54	4	2	ω	31	2	(u	4	4	ω	ω	ω	1	₽	₽	ω	90	ω	PERSON1 VTYPE
ω	ω	98	7	3	ω	5	ω	(J.	₽	7	7	2	ω	ω	7	7	7	7	∞	DIR
Ь	_	35	<u>~</u>	11	57	6	1	;		5	10	11	5	↦	5	11	_	9	11	10	ACT
61	∞	<u>~</u>	<u>~</u>	_	∞	_	46	!	14	0	<u>~</u>	ш	_	↦	15	<u>~</u>	18	15	ш	ъ	FAC1
46	90	0	<u>~</u>	0	<u>~</u>	0	16	Ó	0	0	0	0	_	<u>~</u>	0	0	0	0	0	0	FAC2
ь	₽	35	1	1	1	₽	1	,	_	₽	₽	1	₽	₽	₽	₽	₽	₽	₽	1	POSN
z	z	С	z	z	С	z	z	Ó	C	z	z	z	z	z	z	z	z	z	z	z	Z

	m						"												10		
	EQP	4	4	4	4	4	99	4	4	4	4	4	4	4	4	4	4	4	8	•	99
	PHYS	ш	ь	₽	2	1	1	₽	₽	₽	1	0	Ь	1	₽	1	₽	₽	₽	90	
	AGE	42	56	58	40	30	58	33	17	45	34	65	34	17	37	52	55	22	33	52	
	SEX	TI	T	T	TI	п	≤	≤	П	≤	≤	≤	ŦI	≤	Ζ	П	≤	≤	П	TI	
PERSONZ	VTYPE2	1	Ľ	4	ᆫ	ᆸ	Ь	↦	ω	1	ω	↦	ω	2	2	4	3	↦	<u> </u>		
	DIR3	∞	7	7	7	7	ω	ω	2	7	7	1	ω	ω	ъ	ω	ω	7	1		
	ACT4	10	Ц	11	11	5	5	₽	5	₽	10	5	11	1	ъ	57	1	11	5		
	FAC15	4	15	ь	ь	4	ъ	ω	4	4	15	0	14	46	15	15	4	₅	99		
	FAC26	15	ω	₽	0	46	0	4	4	15	9	0	0	16	0	1	15	9	0		
	POSN7	1	Ц	₽	ב	1	1	₽	₽	₽	1	1	₽	15	₽	1	1	1	┙		
	NJ8	z	z	z	z	z	z	z	z	z	z	z	С	z	z	z	z	z	z		
	EQP9	4	4	4	4	4	99	4	4	4	4	0	4	0	4	4	4	4	0		
	PHYS10	ы	1	1	1	1	Ľ	↦	Ľ	1	ь	0	ь	98	ь	1	ъ	₽	0		
	AGE11	42	26	44	20	31	27	23	39	58	23	901	61	904	50	38	32	39	903		
	SEX12	П	П	≤	≤	П	т	≤	TI	≤	т	≤	TI	Z	≤	П	T	т	TI		
PERSONS	VTYPE13	Ь	1				↦		ω	ω	ω	↦			31		ω	4			
	DIR14	∞	7				ω		2	7	7	⊢			5		ω	7			
i	ACT15																				
	FAC116																				
	16																				

FAC217 POSN18

FAC127	FAC127 FAC228	FAC127 FAC228 POSN29 INI30	FAC127 FAC228 POSN29 INI30	FAC127 FAC228 POSN29 INI30 FOP31	FAC127 FAC228 POSN29 INI30 FOP31 PHYS32
4 1 DIR25 ACT26 FAC127	4 DIR25 ACT26 FAC127 FAC228	4 DIR25 ACT26 FAC127 FAC228 POSN29 INJ30	4 1 DIR25 ACT26 FAC127 FAC228 POSN29 INJ30	6 ACT26 FAC127 FAC228 POSN29 I	4 DIR25 ACT26 FAC127 FAC228 POSN29 INJ30 EOP31
ACT26 FAC127	ACT26 FAC127 FAC228	S ACT26 FAC127 FAC228 POSN29 INJ30	S ACT26 FAC127 FAC228 POSN29 INJ30	S ACT26 FAC127 FAC228 POSN29 INI30 EOP31 I	S ACT26 FAC127 FAC228 POSN29 INI30 FOD31 PHYS32
EAC127	EAC127 FAC228	FAC127 FAC228 POSN29 INI30	FAC127 FAC228 POSN29 INI30	EAC127 EAC228 POSN29 INI30 FOP31	FAC127 FAC228 POSN29 INI30 FOP31 PHYS32
FAC228	~	POSN29 INJ30	POSN29 INJ30	3 POSN29 INJ30 EQP31 I	3 POSNZ9 INJ30 EOP31 PHYS32 /
	POSN29	9 INJ30	9 INJ30	9 INJ30 EQP31 I	9 INJ30 EOP31 PHYS32

TH 94 @ Maple Grove Pkwy (100's & 200's) (A&B's) 2013 -2015 Crash data is managed by the Mn/DOT Office of Traffic, Safety, and Operations,

	S.X.S	NUM QQQQQQQ4 QQQQQQQ4 QQQQQQQ4 QQQQQQQ4 QQQQQQ	d by the Min/DI REF_POINT 2144-00.118 2144-00.118 2144-00.118 2144-00.118 2144-00.118 2144-00.118 2144-00.118 2144-00.118	IC IC	GIS_ROUTE 1100000094 1100000094 1100000094 1100000094 1100000094 1100000094 1100000094			raffic, Safety, and Operations GIS_TM RD_DIR E 2144.798 W 2144.798 E 2144.798 E 2144.798 E 2144.798 E 2144.798 E 2144.798 E 2144.798 F 2144.798 F 2144.798 F	fic. Safety, and Operation GIS_TM RD_DIR G14.798 ₩ 214.798	fic. Safety, and Operations. GIS_TM RD_DIR ELEM 214.798 W 101 214.798 E 103 214.798 E 103
100000001 100000001 100000001 1000000	00000094 00000094 00000094 00000094 00000094		214+00.118 214+00.118 214+00.118 214+00.118 214+00.118 214+00.118	010000094 010000094 010000094 010000094 010000094	214.798 214.798 214.798 214.798 214.798 214.798		to to to to to to (
214-00.118 010000094 214-00.118 010000094	00000094	44	214+00.118 214+00.118	0100000094	214.798 214.798		th th			
214400.118 010000094 214400.118 010000094	88	000094 000094	214+00.118 214+00.118	0100000094 0100000094	214.798 214.798		do do	106		
214-00.118 010000094 214-00.118 010000094		00000094	21/1+00.118 21/1+00.118	0100000094 01000000094	214.798 214.798	do do		*	*	*
214-00.118 010000094 214-00.118 010000094		00000094	214+00.118	0100000094	214.7	8		ı din	ı din	ı din
214-00.118 010000094 214-00.118 010000094		00000094	214+00.118	0100000094	214.7	800			dn 1	dn 1
214-00.118 010000094 214-00.118 010000094		00000094	21/1+00,118	0100000094	214.7	867	•	ı (m	ı (m	ı (m
214-00.118 010000094 214-00.118 010000094		00000094	214+00.118	0100000094	214.	208 208	798 In In	, qu	in din	in din
214400.118 010000094 214400.118 010000094		00000094	214+00.118	0100000094	214.	298	•	ф	ф	ф
214-00.118 010000094 214-00.118 010000094		00000094	214+00.118	0100000094	214	798	Ī	Ī	ďπ	ďπ
214-00.118 010000094 214-00.118 010000094		00000094	21/4+00,118	0100000094	214. 214	798			h dh	h dh
2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094 2114-00.118 010000094		00000094	214+00.118	0100000094	214	867	798 ₽	ďπ	ďπ	ďπ
214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094		00000094	214+00,118	0100000094	214.	798	798	ďπ	ďπ	ďπ
214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094		00000094	214+00,118	0100000094	214	798	•	•	*	*
214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094		00000094	214+00.118	0100000094	11 12	798	. 798 ₩	•	. ₹	. ₹
214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094 214+00.118 010000094		00000094	214+00.118	0100000094	214	798		Į.	Į.	Į.
214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094		00000094	214+00.118	0100000094	214	798	.798 ₩	.798 ₩ 203	*	*
214-00.118 0100000094 214-00.118 0100000094		00000094	21/4-00:118	0100000094	<u> </u>	798 867	./9& ₩		r t	r t
214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094		00000094	214+00,118	0100000094	21/2	.798	.798 <u>z</u>	798 <u>z</u> <u>208</u>	ız ız	ız ız
214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094		00000094	21/1+00,118	0100000094	; <u> </u>	1.798	1.798 E	1.798	n (m	n (m
214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094 214400.118 0100000094		00000094	214+00.118	0100000094	112	1.798	. 798	dm I	dm I	dm I
214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094 214400.118 010000094		00000094	214+00.118	0100000094	121	798		ı de	ı de	ı de
214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094		00000094	214+00.118	0100000094	##	867	.798 ₩	./98	* * * #	* * * #
214-00.118 010000094 214-00.118 010000094 214-00.118 010000094 214-00.118 010000094	4	00000094	214+00.118	0100000094	211	.798	.798 N	.798 № 208	** *	** *
214+00.118 0100000094 214+00.118 0100000094 214+00.118 0100000094	FF	00000094	214+00.118 214+00.118	0100000094	##	798	798 W	.798 ₩ 208	≵ m	≵ m
. 214+00.118 0100000094	#2	00000094	214+00.118	0100000094	214.	798	798 <u>z</u>	798 Z 208	įΝ	įΝ
	2 2	00000094	214+00.118 214+00.118	0100000094	214.	798 798	798 E Z	798 Z 208 798 E 309	798	798

01	01	01	01	01	01	01	01	West Ramp	01	01	01	01	01	01	01	East Ramp	#2	₽	₽	#	#2	₽	₽	#2	#2
00000094	00000094	00000094	00000094	00000094	00000094	00000094	00000094	ηp	00000094	00000094	00000094	00000094	00000094	00000094	00000094	φ	00000094	00000094	00000094	00000094	00000094	00000094	00000094	00000094	00000094
214+00.118	214+00.118	214+00.118	214+00.118	214+00.118	214+00.118	214+00.104	214+00.118		214+00.118	214+00.118	214+00.118	214+00.117	214+00.118	214+00.118	214+00.118		214+00,118	214+00.118	214+00.118	214+00.118	214+00.118	214+00.110	214+00.118	214+00.118	214+00,118
0100000094	0100000094	0100000094	0100000094	0100000094	01000000094	0100000094	0100000094		0100000094	0100000094	0100000094	0100000094	0100000094	0100000094	0100000094		0100000094	0100000094	0100000094	0100000094	0100000094	0100000094	0100000094	0100000094	0100000094
214.798	214.798	214.798	214.798	214.798	214.798	214.784	214.798		214.798	214.798	214.798	214.797	214.798	214.798	214.798		214.798	214.798	214.798	214.798	214.798	214.790	214.798	214.798	214.798
Z	Z	Z	Z	Z	Z	т	Z		Z	\$	Z	Z	Z	Z	S		Þ	ф	ф	ŧ	din	ф	2	2	đπ
A14	A14	A14	A14	A04			409		B05	B05	B05	B05	352	352	351		I	I	I	I	I	I	209	309	309
Н	ᆸ	_	ᆫ	2	2	ω	2		2	ᆫ	<u>~</u>	ш	_	ᆫ	<u> </u>		12	4	ιþ	ψ	#	2	12	中	12
1	0	ω	ω	0	ω	<u> </u>	ω		ω	ω	ω	0	ω	ω	ω		ψ	H	4	#	#	ψ	中	ψ	₽
C	_	C	C	C	_	_	_		_	_	C	_	_	_	_		¢	¢	¢	¢	¢	¢	¢	¢	¢

ъ
▿

-BOTH VEHS E/B 194, VEH 1 DIRECTLY BEHIND VEH 2VEH 2 STOPPED ABRUPTLY FOR TRAFFIC IN FRONT OF H	BOTH A PHICLES WERE SOUTH ON WINDE PRINCE FUNKWAY GOING OVER 1941. VEHICLE ONE WAS BEHIND VEHICLE I WO		VEH 1, 2, 3 WB 94 LEFT LANE, VEH 1 REAREND VEH 2 SLOWING IN TRAFFIC PUSHING INTO VEH 3 SLOWING IN T	DV1 STATED THAT SHE WAS IN THE FAR RIGHT LANE HEADING WB ISTH 91. SHE STATED THAT V2 LOST CONTROL A	VEH 1 AND VEH 2 WERE EB 94. VEH 1 WAS ENTERING FREEWAY FROM MAPLE GROVE PARKWAY, VEH 2 WAS IN CENT	UNIT1 WAS WEST ON 194 APPROACHING OVERPASS OF CO RD 30 IN THE INSIDE LANE COMING TO A STOP DUE TO T	VEH #1 LOST CONTROL ON ICY ROADS AND JACK KNIFED INTO THE MEDIAN BLOCKING ALL LANES. VEH #2 WAS UN	A FLATBED SEMI-WAS TRAVELING ON AND OFF OF THE RIGHT SHOULDER EB 94. THIS CAUSED V2 TO STOP IN RIGH	VEH.#1 WAS E/B ON 94 AT MAPLE GROVE PARKWAY WHEN THE VEHICLE WENT OFF THE ROAD TO THE RIGHT JUST EA	UPON ARRIVAL BOTH VEHICLES WERE ON THE LEFT SHOULDER.—THE DRIVER OF VI STATED THAT SHE WAS IN THE	BOTH VEHICLES WERE IN THE LEFT LANE IN MODERATELY HEAVY TRAFFIC. DRVR 1 HAD TO APPLY BRAKES HARD A	BOTH VEHICLES HAD BEEN 1-94 E/B IN THE LEFT LANE. DI STATED THAT HE HAD BEEN LOOKING AT HIS RADIO.		VEH 1 WAS EXITING EB I 94 TO MAPLE GROVE PKWY. VEH 2 WAS STOPPED AT A RED TRAFFIC SIGNAL AT THE TOP	V1 WAS HEADING WB ON ISTH94 IN THE LEFT LANE. DV1 STATED THAT SHE WAS SLOWING WITH TRAFFIC WHEN SH	V2 SLOWED FOR TRAFFIC. D1 WAS UNABLE TO STOP IN TIME. V1 STRUCK THE REAR OF V2. BOTH OCCUPANT IN	UNIT 1 AND 2 DRIVING WESTBOUND ON 194 NEAR MAPLE GROVE PKWY. UNIT 1 IN LANE 1. UNIT 2 BEHIND UNIT	V1 WAS HEADING WB ON ISTH 94 IN THE LEFT LANE. DV1 STATED THAT HE WAS TRAVELING APPROXIMATELY 10MP	BOTH VEHICLES WERE IN THE LEFT LANE OF WEST BOUND HWY 91. DRIVER 1 SAID TRAFFIC AHEAD OF VEHICLE 1	ALL VEHICLES WERE WB 1-94. V1 AND V2 WERE SLOWING IN HEAVY TRAFFIC. DRIVER OF V3 STATED SHE LOOKE	UPON ARRIVAL BOTH V1 AND V2 WERE ON THE LEFT SHOULDER AGAINST THE CABLE SAFETY BARRIER. THE DRIV	AURICH (V1) STATED CAME OFF RAMP FROM MGP, LOST CONTROL, HIT MEDIAN CABLE SAFETY BARRIER, BOUNCED O	V1 WAS 1-94 E/B. D1 STATED THAT SHE WAS INTENDING TO EXIT TO MAPLE GROVE PKWY. D1 STATED THAT SH	BOTH VEHICLES TRAVELING EB ON ISTH 94 NEAR MAPLE GROVE PKWY. DRIVER OF VEHICLE #1 RICHARDSON STAT	DRIVER 1 REALIZED THE ROADS WERE SUPPERY AND THERE WERE EMERGENCY VEHICLES AHEAD ON THE SIDE OF TH	BOTH VEHICLES WERE IN THE LEFT LANE OF HWY 94 EAST-BOUND NEAR MAPLE GROVE PARKWAY. TRAFFIC WAS SLO	VEH 1 WAS IN LEFT LANE OF E/B 94 UNDER MAPLE GROVE PARKWAY. VEH 2 AND OTHER TRAFFIC STOPRED DUE TO	SQUAD HAD BEEN ON RIGHT SHOULDER OF E/B 94 WITH REAR EMERGENCY LIGHTS FLASHING, ASSISTING ANOTHER M	VEHICLE 1 WAS IN THE LEFT LANE OF EAST-BOUND 94 AND VEHICLE 2 WAS IN THE CENTER LANE. BOTH DRIVERS	V1 WAS HEADING EB ON ISTH94 IN THE LEFT LANE. DV1 STATED THAT SHE WAS STOPPED IN TRAFFIC WHEN SHE	WEH 1 AND 2 WERE STOPPED. DRIVER 3 SAID SHE WAS LOOKING OVER HER SHOULDER AND DIDNT SEE THAT THEY	VEHICLE 1 WAS IN THE RIGHT THROUGH-LANE OF EAST-BOUND 94 AND VEHICLE 2 WAS IN RIGHT MERGE LANE. D	BOTH VEHICLES WERE WB 1-94. V1 WAS STOPPED IN HEAVY TRAFFIC IN THE LEFT LANE. DRIVER OF V2 STATE	UPON ARRIVAL BOTH VEHICLES WERE ON THE RIGHT SHOULDER. THE DRIVER OF VI STATED THAT SHE WAS IN THE	V#1 WAS TRAVELING EB ON 191 NEAR MAPLE GROVE PARKWAY. IT WAS SNOWING AND THE ROADS WERE SNOW COV	ALL VEHICLES 1-94 E/B IN THE LEFT LANE. "E MORNING RUSH HOUR"E TRAFFIC CONDITIONS. D1 ST	UPON ARRIVAL BOTH VEHICLES WERE ON THE RIGHT SHOULDER. THE DRIVER OF V1 STATED THAT SHE HAD JUST	VEH 1 EB 94 LEFT ROADWAY TO THE RIGHT, STRUCK SIGN STRUCTURE AND ENDED UP IN DITCH WITH WATER. DRIV	-UNIT 1 WAS TRANELING EASTBOUND ON 194 FROM MAPLE GROVE PARKWAY IN THE ACCELERATION LANE UNIT 2	-UPON ARRIVAL V1 WAS ON THE RIGHT SHOULDER PER WITNESSES V1 WAS TRAVELING IN THE CENTER LANE	V1 AND V2 WERE STOPPED IN THE LEFT LANE OF EB 94 DUE TO RUSH HOUR TRAFFIC. DV3 STATED HE WAS IN TH	UPON ARRIVAL BOTH VEHICLES WERE ON THE LEFT SHOULDER. THE DRIVER OF V1 STATED THAT SHE WAS IN THE	UPON ARRIVAL BOTH VEHICLES WERE ON THE LEFT SHOULDER. THE DRIVER OF V1 STATED THAT SHE WAS STOPPED	DRIVE SPUN OUT ON SNOWY / ICY ROADS. I ASKED HOW FAST HE WAS GOING AND HE TOLD ME 60 AND WAS KEEPIN	АТР
27	‡	ا 7	#	#	27	27	27	27	27	27	77	27	#	##	27	#	27	27	27	77	27	27	##	27	27	11	22	11	11	11	11	22	11	27	11	27	27	#	#	27	27	#	7,2	11	8
2430	1430	000	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	СІТҮ
1-Sun	9-1110	1	\$ 	3 Tue	4-Wed	5-Thu	€ ₩.	7-Sat	3-Tue	€	2-Mon	3-Tue	5-Thu	5-Th	3-Tue	⊕ ‡ :	3-Tue	<u>€</u> -	€ <u>.</u> <u>F</u> .	6-E ri	3-Tue	3-Tue	4-Wed	1-Sun	7-Sat	4-Wed	4-Wed	2 Mon	6-Eri	€ ₩.	6 	4-Wed	6-Eri	3-Tue	6. ₩.	4-Wed	7-Sat	3-Tue	5-Thu	6 <u>-</u> F	3-Tue	2-Mon	2-Mon	5-Thu	DOW
4	ŧ	.	4	ψ	фо	4	ħ	4	#	ŧ	#	ŧ	φυ	ŧ	#	ŧ	Ф	фо	7	4	44	4-	#	ŧ	4-	44	ŧ	#	#	ŧ	#	ŧ	фо	ф	4	2	ф	ψ	4	Ф	#	Ф	Ф	4	MONTH
26	16	3	þ	ψ	27	14	#	#	24	4	#	ф	7	#	#	Ф	11	#	#	25	#	#	ŧ	#	#	фо	串	#	30	th.	31	#1	фо	ψп	4	фп	4	Ф	24	#	2 2	3	30	Ħ	DAY
2015	-1107	201	2015	2015	2014	2014	2014	2014	2013	2013	2013	2013	2013	2015	2015	2015	2015	2015	2015	2014	2014	2014	2014	2014	2014	2014	2013	2013	2015	2015	2014	2014	2014	2014	2014	2014	2015	2014	2014	2015	2015	2014	2014	2013	YEAR
1149	9761	1000	1426	7060	2016	1748	0756	0919	1018	1150	9804	0836	8580	1752	1828	1326	<u>1933</u>	1708	1410	<u>1629</u>	1408	1126	0914	1123	0956	8890	0746	0636	1433	0635	1544	0751	1645	1733	0454	0631	1849	0633	995,2	1031	0722	0829	0804	1054	TIME
Þ	ſ	n :	Þ	₽	Þ	Þ	Þ	Þ	Ð	Þ	Þ	Þ	Þ	₽	₽	Ф	Þ	≱	Ф	Ð	Ð	Þ	Þ	Þ	₽	₽	ф	₽	₽	ф	Ф	₽	Ð	≱	₽	Þ	Þ	₽	₽	₽	₽	Þ	Þ	Þ	SEV
Ф	Œ	o 1	Ф	Ф	Đ	Ф	Ф	Ф	Ф	Ф	Ф	Ф	Ф	Ф	Ф	Ф	Đ	Ф	Ф	Ð	Ф	Đ	Ф	Þ	Đ	Ф	Ф	Ф	Đ	Ф	Ф	Đ	Đ	Ф	Ф	Đ	Ф	Ф	Ф	Ф	Ф	Ф	Ф	Ф	NUM_KILLED

೧೯೭	1330 1000 1018	2014 2014 2014	12 15	558	4-Wed 5-Thu 5-Thu	2430 2430 2430	27 27 27	#NAME? VEHICLE 1 SLOWED AND THEN STOPPED ON THE ENTRANCE RAMP TO 94 WEST-BOUND FROM MAPLE GROVE PARKWAY, B
z	0727	2014	4	ъ	7-Sat	2430	27	#NAME?
z	2015	2014	25	11	3-Tue	2430	27	
z	1139	2013	24	12	3-Tue	2430	27	ALL FOUR VEHICLE WERE WESTBOUND ON MAPLE GROVE PKWY ON THE BRIDGE OVER 194. ALL VEHICLES WERE IN T
z	1642	2013	26	7	6-Fri	2430	27	DRIVER ONE BELIEVED TO HAVE SUFFERED UNKNOWN MEDICAL CONDITION WHILE DRIVING. HE WENT OFF THE ROAD
z	1712	2015	23	7	5-Thu	2430	27	VEH 2 AND 3 WERE BOTH STOPPED IN TRAFFIC THAT WAS BACKED UP DUE TO CONSTRUCTION FURTHER DOWN THE RO
z	1240	2015	26	2	5-Thu	2430	27	- UNIT 2 WAS WAITING AT A RED LIGHT TO TURN RIGHT FROM THE TOP OF THE WESTBOUND 1-94 RAMP TO NORTHB
С	1528	2014	19	∞	3-Tue	2430	27	AND STRUCK HER. DRIVER 2 STATES ALL TRAFFIC WAS STOPPED AT THE LIGHT, EVERYONE, INCLUDING HIM AND
С	1853	2013	7	12	7-Sat	2430	27	VEHICLE ONE WAS ON THE ONRAMP TO EASTBOUND 94 FROM MAPLE GROVE PARKWAY. DRIVER ONE STATED THAT WHI
z	1005	2014	12	10	1-Sun	2430	27	
z	0751	2015	∞	7	4-Wed	2430	27	UNIT1 WAS NORTH ON THE EXIT RAMP FROM EB 194 TO MAPLE GROVE PARKWAY TO GO STRAIGHT ONTO GROVE CIRCL
z	1208	2013	9	ω	7-Sat	2430	27	VEHICLE 2 WAS TRAVELING SOUTHBOUND, AND STOPPED WITH TRAFFIC FOR THE SIGNAL ON THE SOUTH SIDE OF TH
z	1723	2013	18	2	2-Mon	2430	27	DRIVER EXITING WB 194 TO SB MAPLE GROVE PARKWAY. DRIVER STATED AS HE TURNED SOUTHBOUND ON A GREEN
þ	<u>1940</u>	2015	Ħ	ŧ	7-Sat	2430	22	AFTER THE FACT AND WENT TO A DOCTOR TO BE SEEN. THE ACCOUNTS OF BOTH DRIVERS WERE TAKEN VIA PHONE
₽	0645	2015	r)	ŧ	4-Wed	2430	11	V1 AND V2 WERE TRAVELING WB ON 91 NEAR MAPLE GROVE PARKWAY. V2 WAS IN FRONT OF V1 IN THE LEFT LANE
₽	1226	2015	#	Ф	2-Mon	2430	11	UPON ARRIVAL BOTH VEHICLES WERE ON THE RIGHT SHOULDER. THE DRIVER OF V1 STATED THAT SHE WAS IN THE
¥	1913	2015	55	Ф	S T lu	2430	#	UPON ARRIVAL BOTH VEHICLES WERE ON THE LEFT SHOULDER. THE DRIVER OF V1 STATED THAT SHE HAD STOPPED
Ф	0619	2015	#	ħ	1 Sun	2430	#	BOTH VEHICLES WERE E/B ON ISTH 94 APPROACHING MAPLE GROVE PARKWAX IN THE RIGHT LANE OF THREE. THE
ф	0537	2013	#	2	S-II	2430	11	VEHICLE 1 WAS TRAVELING EAST BOUND ON 194 IN THE FAR LEFT LANE, VEHICLE 2 WAS IN FRONT OF VEHICLE
₽	2224	2015	#	#	4-Wed	2430	22	DRIVER OF V1 STATED THAT SHE WAS DRIVING IN THE LEFT LANE GOING EAST ON 94 AT MAPLE GROVE PARKWAY.
Þ	2138	2015	₽	ぉ	1-Sun	2430	#	WITNESS STATED VEH EB 194 AND FOR NO APPARENT REASON CROSSED LANES AND HIT THE GUARDRAIL ON THE INS
Þ	0837	2015	19	фо	4-Wed	2430	27	DRIVER OF V1 STATED SHE WAS IN THE CENTER LANE GOING EAST ON 94 AT MAPLE GROVE PARKWAY. D1 ADMITTE

ъ	t)	ψu	ηb	η	rL)	rl.	2	4	다	ηb	п	4	rb Ch	η	ιb	η	η	rb Ch	ψυ	止	4	44	r).	r L	η	r l a	ηb	止	4	ψu	2	r	ηJ	44	ψı	rL)	44	ηb	44	ψ	rL)	l)	44	NUM_VEH
₽	4	4	44	4	7	4	4	44	44	44	4	Ð	4	44	44	4	44	44	4	44	26	#	4	₽	44	44	æ	44	4	4	4	44	44	44	22	4	11	44	Ħ	44	44	4	21	JUNC
70	4	#	#	70	#	#	75	75	\$	#	76	\$	45	#	#	75	75	#	70	70	#	#	8	6	#	\$	#	15	#	4	#	#	#	#	Ħ	8	#	#	45	₽;	#	70	#	ST.
4	44	44	44	44	中	44	4	#2	4	44	4	4	4	44	44	44	44	4	44	#	32	26	4-	4	44	44	44	4	44	中	4	4	4	22	4	中	26	4	#2	44	42	4	4	ТҮРЕ
4	44	44	ψп	ıL)	中	44	4	7	ħ	ιþ	4	4	4	44	44	ħ	44	4	44	8	4	4	rL)	4	44	44	44	12	44	中	4	4	ιþ	4	4	中	7	μ	8	44	42	4	7	DIAG
4	44	44	44	44	4	44	4	4	4	ъ	4	Đ	44	44	44	44	44	44	44	44	44	4	4	₽	44	44	44	44	44	44	44	44	4	ψ	44	4	4	44	4	4	44	4	4	L0C1
82	98	98	38	\$	32	38	\$	32	32	38	8	38	44	86	38	98	38	98	\$	32	32	98	8	32	38	38	98	\$2	38	中	32	\$	9 8	98	8	32	98	98	82	82	9 8	\$	32	TCD
4	4	44	44	4	4	44	4	44	4	44	4	4	4	Ф	44	₩	44	44	44	44	44	44	4	₽	4	44	4	44	ıΝ	44	44	44	4	4	Ф	4	44	44	4	4	44	4	4	5
4	ιþ	₽	4	4	r).	₽	2	ħ	4	ħ	₽	₽	4	ψ	ħ	r <u>P</u>	44	#	4	₽	4	ъ	₽	4	44	44	ħ	12	#	#	2	₽	4	4	ħ	₽	₽	ψ	4	ħ	₽	4	4	WTHR1
4	Φ	Ф	ħ	Φ	Ф	Ф	Þ	Φ	Φ	Φ	Đ	₽	4	ħ	Φ	₽	Φ	Φ	Đ	Φ	Φ	Φ	Đ	₽	Φ	Φ	Φ	Ф	Φ	Φ	Ф	Ф	Φ	Φ	Φ	Ф	Ф	Ф	Φ	Φ	Φ	Đ	Φ	WTHR2
4	44	4	ψ	4	4	ψπ	ψ	4	#	44	4	#	#	ħ	44	12	44	4	4	2	ψ	44	中	ψι	19	44	#	4	44	4	44	4	4	ψ	4	4	4	t)	4	4	44	4	ψυ	SURF
4	4	中	44	4	4	4	4	ψ	44	44	4	₽	4	44	44	4	4	4	4	4	44	Ф	4-	4	44	ıμ	44	ψп	44	ħ	4	4	4	44	ψι	4	ψη	4	4	ψ	4-	4	4	CHAR
4	ψт	₽	44	4	ψп	4	₽	4	4	44	4	Þ	ħ	44	44	4	4	4	4	4	4	ъ	4	4	4	44	44	₽	4	ψп	₽	4	4	44	4	₽	₽	4	ψ	4	4	4	4	DESGN
152070071	<u>153030081</u>	152050234	150630357	<u>142400221</u>	141140124	140540322	140190240	133600223	132930177	132900164	132810317	130990082	<u>153510194</u>	153220243	152830155	152650182	152280142	151990174	<u>141160135</u>	140170252	140160305	143180301	142930217	<u>140180123</u>	140090454	133450406	133220211	<u>153110155</u>	152770192	150320040	<u>143590103</u>	142220142	142180180	141060285	<u>140380322</u>	152300275	141260179	141140196	151750197	<u>150270215</u>	141910186	141910185	<u>131050190</u>	ACC_NUM
4	4	中	44	ψ	ψ	r <u>P</u>	₩	4	ιþ	44	₽	₽	4	ιþ	ıμ	 -	44	ψ	12	#	4	4-	P.	Þ	44	44	44	4	ψ	ψ	₩	2	ψ	44	4	₽	中	35	¥	4	ψ	 -	₽	PERSON1 VTYPE
ψп	ψι	Ф	4	ψ	ф	7	ψ	ψ	ψ	ψ	ψ	ψ	ψ	4	4	7	4	7	7	ψ	ψ	4	ψ	ψυ	ψ	ψ	ψ	ψ	ψ	4	ψ	7	7	4	4	ψ	4	ψ	ψ	4	ψυ	ψu	7	DIR
4	#	44	44	#	#	#	4	4	#	#	H	4	#	#	#	₽	#	#	Ħ	₽	#	#-	#	#	#	#	#	44	#	#	4	#	4	44	¥	44	44	44	#	#	44	₽	₽	ACT
4	4	4	ф	фо	₽	₽	ti	ħ	ф	4	ħ	Đ	#	#	#	#	44	₽	₽	фо	ψ	#	фо	₽	4	#	#	#	#	4	₽	₽	4	ψ	4	4	#	4	44	t	4	4	ψυ	FAC1
4	Ф	ψυ	£ 2	ti	Ф	Φ	ψ	#	4	Φ	Đ	Đ	Ф	Φ	Φ	Đ	Φ	Φ	Đ	ψ	£	()(0	#	Φ	Φ	Φ	Φ	Ф	Ф	#	Đ	Ф	Φ	4	Þ	#	#	Φ	Φ	Φ	#	Đ	Φ	FAC2
4	44	₽	44	#	₽	₽	₽	44	#	44	#	₽	4	44	44	#	44	₽	#	#	#	44	₽	₽	#	#	44	₽	44	#	₽	₽	4	44	₽	₽	₽	4	44	4	4	4	4	POSN
Þ	Ф	Ż	Ż	Þ	Þ	Ż	Þ	þ	Þ	Ż	Þ	Þ	Þ	Ż	Ż	Þ	Ż	Ф	Þ	Ф	Ż	Ż	Þ	Þ	Ż	ф	Ż	Þ	ф	Þ	Þ	Ф	Ż	Ż	Þ	Þ	Ż	Þ	₩	Þ	Ż	Þ	Þ	Ξ

2	2	_	_	2	+	_	ω	2	.5	2	2	2	2		2	2	ž	2	ī	ī	-	_	_
1	0	21	1	0	_	21	ь	4	4	Ь	0	4	1	4	4	4	4	44	44	4	4	44	44
70	25	35	35	30	45	70	70	70	45	70	0	40	40	40	45	£	70	#	#	\$	70	7 6	#
ь	_	26	26	ъ	ш	64	ь	Ь	1	ъ	ъ	_	ᆸ	51	中	44	44	44	44-	44	32	32	32
1	┙	4	5	9	1	7	₽	ь	₽	4	ш	5	₽	ω	44	44	44	44	44	44	4	4	4
1	0	1	4	0	_	1	ъ	1	1	1	0	_	1	1	44	#	#	44	44	#	#	44	44
98	98	98	98	0	98	98	98	Ъ	Ь	98	98	Ь	1	1	44	32	32	32	38	32	32	98	8 2
1	1	1	₽	4	₽	1	₽	Ь	Ь	4	1	1	1	ω	4	r)	4	44	4	4	ψп	4	44
2	2	_	2	1	2	1	⊢	1	Ь	4	1	_	ω	2	99	#	#	44	#	F2	ψ	#	ψ
0	0	0	2	0	0	0	1	0	0	0	0	0	2	7	\$	Ф	Ф	Φ	Φ	2	Ф	Φ	þ
Ь	₽	₽	ъ	Ь	5	Ь	ъ	Ъ	Ь	ъ	Ь	Ь	2	ב	44	2	₽	44	44	ψ	12	#	ΙÞ
6	0	6	6	0	Ь	Ь	ъ	Ъ	2	∞	0	₽	1	ב	44	₽	₽	44	4	₽	#	#	44
2	0	2	2	0	5	1	ב	2	2	2	0	ъ	7	ъ	фn	₽	₽	44	44	₽	#	#	4
141840169	141640092	140430121	140040051	143630135	133580197	132200183	152040142	150570103	142310146	133420150	143170090	151890085	130680074	130490108	<u>153510217</u>	<u>153360290</u>	<u>152600267</u>	151850129	150330225	130450271	153160273	152910144	<u>152320273</u>
ш	↦	ω	₽	ω	<u> </u>	32	ь	ω	4	₽	ω	_	ω	35	₩	ħ	₽	ψυ	#	₽	₽	#	#
∞	7	ω	ъ	4	7	ω	7	œ	Ь	ω	ω	₽	7	7	₽	7	ψ	4	ψ	ψ	ψ	ψ	ψ
10	10	10	Ь	0	Ь	Ь	₽	5	11	Ь	5	₽	Ľ	6	₽	#	#	#	#	₽	₽	#	44
4	0	∞	61	0	15	90	15	15	Ь	46	0	₽	Ľ	50	11	4	₽	44	#	ψ	ψ	99	24
0	0	0	46	0	ω	0	0	0	0	61	0	0	0	0	Ð	Ф	Ф	Φ	ψ	ψ	#1	Ф	Þ
1	₽	₽	⊣	₽	₽	⊢	⊣	ь	₽	1	₽	₽	₽	ш	44	₽	₽	44	#	₽	#	#	#
С	В	z	z	z	z	z	z	z	С	z	z	z	z	z	Þ	Þ	Þ	Ż	Ф	ф	z	Þ	Þ

4 4	4	4	4	4	4	4	4	4	4	4	Đ	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	#	4	4	4	4	ę	
44 44	₩ 1	44	4	4	4	4	4	4	#	4	P	4	44	#	4	44	4	₽	4	4	8	中	₽	4	44	#	₽	4	4	4	4	44	4	4	4	4	#	4	4	4	4	₽	PHYS	
‡ ‡	19	<u>3</u>	4	19	4	87	#	\$	21	20	42	22	#	25	25	3 2	4 6	5 9	32	19	39	\$6	#	29	2	27	4	38	4	£1	4	‡	4 6	24	#6	₽5	32	4	33	#	3 2	4	AGE	
# ≵	≵ :	≵	tn	≵	≵	≵	≵	₺	tn.	Ł	₺	tn	t n	≴	₺	≵	≵	Z	ŧπ	t n	tn.	Ł	₺	tn.	≴	'n	tn	t n	tn.	₺	≵	tn.	to.	Ł	₺	₺	≵	₺	≵	≵	tn	₺	SEX	
																																												PE
##	+	₩	4	4	} 5	₽ 5		#	#	#	₽	#	ιþ	ψ	₽	#	#	ψ	#			ψ	₽	₽	ιþ	#	<u>11</u>	4	ħ	₽	₽	4		₽	ψ	#	#		4	#	#		VTYPE2	RSON2
ψıψι	(100 ·	7	₩	t o	7	ψu		ψ	₩	₩	ψ	₩	4	4	4	4	4	4	₩			ψu	ψι	ψ	₩	ψ	₩	ψ	4	ψu	4	4		4	₩	4	ψ		4	ψ	₩		DIR3	
# #	#	tt	4	#	4	#		₽	#	₽	ŧ	4	44	#	#	ŧ	ŧ	#	4			#	4	t	44	#	4	4	#	#	#	#		t	₽	4	#		#	#	4		ACT4	
± ±	4	4	4	4	ψυ	4		4	4	₽	Ф	21	4	4	¢ο	4	盐	盐	4			4	ψ	4	4	盐	4	盐	4	2	盐	\$ 0		4	4	12	다		4	4	4		FAC15	
•												•						•								Ť		•			•													
₽ Φ	Ф	Ф	Đ	Þ	46	Þ		Ф	Ф	Đ	Đ	Ф	Φ	Φ	Đ	Ф	Φ	4	Đ			Đ	Ф	Ф	t	Ф	Ф	Ф	Φ	Þ	4	#		Þ	Đ	t	Ф		Ф	Φ	t		FAC26	
44	4	44	44	4	44	₽		4	#	H	4	44	44	44	4	44	44	4	44			4	₽	4	44	44	4	44	44	4	4	4		4	4	₩	44		4	44	4		POSN7	
2 Z	≱ :	Þ	Þ	Þ	Þ	Þ		Þ	Þ	Þ	Þ	Þ	z	Ф	Þ	Þ	z	Þ	Ð			Þ	Þ	z	z	z	Þ	Þ	Ф	Þ	Þ	Þ		Þ	Þ	Þ	z		Þ	Þ	₽		BLNI	
4 4	4	4	4	4	4	4		4	4	4	4	4	4	4	99	4	4	4	4			4	4	4	4	4	4	4	4	4	4	4		4	4	4	4		4	4	4		EQP9	
da da	احلا	d.s.	d-s	ıLs	ıl.s	d.s.		d s	ds	d.s.	•	ds	ıl s	ds	d.s.	ds	ds	d.s.	d s			حاه	d.s.	ıl s	44	44	4	ıl s	ds	d s	4	ıl s		4	ıl x	99	ıls		d.s.	4	داء) PHYS10	
	-	_	_	_	_	_		_	_	_	•	_	_	_	_	_	_	_	_			_	_	_	_	_	"	_	_	_	_	_		_	_	Ф	<u>"</u>		_	_	Ī		S10	
28	##	3 2	\$3	#	30	£		37	₽	39	\$	20	4	#	25	20	#	2	\$			8	27	#	#	\$	28	##	4	4	#2	30		\$5	36	902	#		29	32	20		AGE11	
tn tn	≵ '	tn.	Z	ß	₺	ß		tn	tn	ß	ŧπ	₺	₺	≵	₺	₺	₺	tn	tn			₺	₺	ŧπ	₺	ŧn	₺	₺	ŧn	tn	tn	tn		tn	tn	12	₺		tn.	tn	tn		SEX12	
4 4	ψυ			ψ				44	44	#	4		rL)	ψυ	44	44	44	44					r)		44			44	ψ		44			4			4		44	44	4		VTYPE13	PERSON3
ψιψι	Φo			₩				ψ	ψ	ψ	ψ		4	4	7	7	7	7					ψ		ψ			ψ	7		4			4			ψ		4	ф	ψ		B DIR14	w
																																											ACT15	
																																											FAC116	
																																											FAC217	
																																											POSN18	

4	ω	44	44	4	4	4	4	4	4	4	4	4	4	9	Φ	4	4	4	4	4	4	Φ	4
Ь	0	1	1	0	1	99	ь	1	1	1	0	1	1	⊢	4	#	4	44	ψυ	4	44	99	7
50	26	72	31	29	43	48	46	47	40	32	66	30	41	59	4	36	30	11	23	11	멅	26	18
TI	≤	TI	≤	П	≤	≤	≤	≤	П	П	≤	П	TI	≤	to	₺	tn	tn	≵	≵	tn.	≵	to
ᆸ	ω			99	4		ω	1	2	1	ω	4	1		4	r ₂	4	r)	4	뫒			
∞	7			0	7		∞	∞	1	ω	ω	7	7		4	7	ψ	7	ψ	ψ			
13	0			0	9		11	٦.	1	_	0	1	1		#	#5	#	4	4	4			
∞	0			0	1		ь	Ľ	15	_	0	ر.	4		4	₽	4	4	4	4			
0	0			0	0		0	0	0	0	0	0	0		Þ	Ф	t	#	Ф	4			
1	1			1	1		ь	Ľ	1	_	1	1	1		4	₽	4	4	4	4			
z	z			z	z		z	z	z	z	z	z	z		Þ	Þ	¥	Ł	Ф	Þ			
4	0			98	4		4	4	4	4	0	4	4		99	4	4	4	4	4			
ь	0			0	ь		₽	1	₽	1	0	Ľ	ь		44	₽	44	44	#	4			
26	50			25	40		45	64	60	41	64	38	46		27	37	32	#	52	\$			
≤	T			П	П		П	П	≤	≤	≤	≤	≤		to	Ł	₺	≵	10	Z			
ᆸ	1				1		L		4	1	ω	4			₽			r).	4				
8	7				7		∞		1	ω	ω	7			4			7	ψυ				

1	,	2	
FAC127 FAC228	Sod	POSN29 INJ30 EQP3:	INJ30

Sys	Route Ref_Point Co	City	/ Dist	Trib	Crash_Num Month	Day	Year	r DyWk	Time Rd_Dir	Elem	Rely	Invest	igat Sev	NumKilled Diag	Nu	3
	24300106 005+00.099	27	2430	0	142170125	∞	ъ	2014 TUE	1210 Z	Z		1	3 C	0	1	
	24300106 005+00.098	27	2430	0	140450033	2	13	2014 THU	1508 W	2		1	3 C	0	1	
	24300106 005+00.098	27	2430	0	142020144	7	10	2014 THU	1510 Z	2		1	1 C	0	ь	
	24300106 005+00.097	27	2430	0	131720287	6	22	2013 SAT	1714 W	Z		Ľ	3 B	0	5	
05-MSAS	24300106 005+00.097	27	2430	0	132890085	10	16	2013 WED	1300 W	Z		ב	ω Z	0	2	
	24300106 005+00.097	27	2430	0	140370227	2	6	2014 THU	1511 Z	2		1	3 Z	0	1	
	24300106 005+00.097	27	2430	0	140420215	2	11	2014 TUE	1431 E	Z		1	3 Z	0	1	
	24300106 005+00.097	27	2430	0	143510151	12	16	2014 TUE	1510 Z	2		1	3 Z	0	1	
	24301247 000+00.437	27	2430	0	152810115	10	∞	2015 THU	1142 Z	2		_	3 C	0	_	

									Junc
2	4	4	2	7	4	7	↦	2	SL
30	40	40	40	40	40	35	40	40	Туре
ר	L	ь	ь	_	6	⊢	┙	1	Loc1
1	1	_	1	1	1	Н	1	<u> </u>	TC
1	1	1	1	1	1	98	98	Н	듸
1	1	Ц	1	1	┙	₽	1	Н	Wthr1
2	2	ш	ш	1 1 0	↦	↦	↦	ш	Wthr2
0	0	0	1	0	0	0	0	1	Surf
ш	ω	ш	↦	1 1 3	⊢	⊢	↦	ш	Char
1	Ь	ь	1	1	_	⊢	2	ь	Desgn
5	5	5	5	ω	5	₅	₅	90	WZ
98	98	98	98	98 4	98	98	98	98	V1Type
ω	ω	<u>~</u>	4	4	ω	1	1	Н	e V1Dir
∞	7	ω	4	7	∞	<u> </u>	7	2	V1Act
11	11	11	5	14	6	↦	11	10	V1Fac1
1	1	1	4	2	2	15	1	1	l V1Fac2
0	0	0	4	0	0	0	0	_	2 V1Phys
1	<u> </u>	ш	1	1	1	1	1	1	s V1Age
34 F	30 F	85 M	51 M	68 F	56 F	22 F	59 F	67 F	V1Sex
Ь	Ľ	1	1	35	53	ω	Ľ	ר	V2Type

		VZUIT
7	2	VZACI
10	11	V2+3
41	1	CT VZFa
4	1	CZ VZPN
Ь	⊣	ys VZAE
23 M	28 F	VZDIF VZACE VZFACI VZFACZ VZPNYS VZAGE VZSEX
		vsType
	1	VSUIT
	2	VSACE
	11	VSFac
	┙	T V3Fac
	<u> </u>	vsType vsuir vsact vsract vsracz vsrnys vsage
	₽	ys vaag
	31 M	e vasex
		V4Type V4DIR
		V4ACT
		V4Fact
		V4Fac ₂
		V4Fac1 V4Fac2 V4Fnys
	41 4 1	1 1 1 28F 1 2 11 1 1 1 41 4 1 23 M

									V4Age
									V4Sex
0.437	5.097	5.097	5.097	5.097	5.097	5.098	5.098	5.099	True_Miles
1024301247	524300106	524300106	524300106	524300106	524300106	524300106	524300106	524300106	True_MilesRoute_Code POINT_X POINT_Y
462229.1	462229.1	462229.1	462229.1	462229.1	462229.1	462230.7	462230.7	462232	POINT_X
4997491	4997491	4997491	4997491	4997491	4997491	4997493	4997493	4997494	POINT_Y

S 24300106 005+00.49(27	24300106 005+00.49(24300106 005+00	24300106 (24300	24	24	2	2	æ	<
+00.49(27	+00.49(00	905	106 005	301902 000	1301902 000	4301902 000	4301902 000	oute Ref_	e Pkwy at Grov
27		.49(+00.50!	+00.50	+00.40	+00.40	+00.40	+00.40	Point Co	e Circle - creat
	27	27	27	27	27	27	27	27	City	ed on 6/2/
2430	2430	2430	2430	2430	2430	2430	2430	2430	Dist	18 by I sacr
0	0	0	0	0	0	0	0	0	Trib	=
153200	151040	131550	151960	150060:	152810	153470	153570	143220	Crash_Nu	
170	154	165	123	274	149)79	166)51	m Month	
11	4	6	7	1	10	12	12	11	Day	
16	14	4	15	6	8	13	23	18	Year	
2015 MON	2015 TUE	2013 TUE	2015 WED	2015 TUE	2015 THU	2015 SUN	2015 WED	2014 TUE	DyWk	
	_	N	_	_	_	_	_		Time	
.710 Z	.920 W	030 E	.812 S	.305 W	.410 Z	.156 W	.639 Z	854 N	Rd_Dir	
2	Z	Z	2	Z	Z	Z	Z	Z	Elem	
									Rely	
1	1	1	1	1	1	1	1	1	Investi	
3 C	3 C	3 N	3 C	3 N	3 N	3 N	3 N	ω Ζ	gat Sev	
0	0	0	0	0	0	0	0	0	NumKilled Diag	
ъ	5	5	┙	1	1	↦	5	2	Num\	
2	2	2	2	2	2	2	2	2	/eh	
	0 153200170 11 16 2015 MON	0 151040154 4 14 2015 TUE 0 153200170 11 16 2015 MON	0 131550165 6 4 2013 TUE 0 151040154 4 14 2015 TUE 0 153200170 11 16 2015 MON	0 151960423 7 15 2015 WED 0 131550165 6 4 2013 TUE 0 151040154 4 14 2015 TUE 0 153200170 11 16 2015 MON	0 150060274 1 6 2015 TUE 0 151960423 7 15 2015 WED 0 131550165 6 4 2013 TUE 0 151040154 4 14 2015 TUE 0 153200170 11 16 2015 MON	0 152810149 10 8 2015 THU 0 150060274 1 6 2015 TUE 0 151960423 7 15 2015 WED 0 131550165 6 4 2013 TUE 0 151040154 4 14 2015 TUE 0 153200170 11 16 2015 MON	0 153470079 12 13 2015 SUN 0 152810149 10 8 2015 THU 0 150060274 1 6 2015 TUE 0 151960423 7 15 2015 WED 0 131550165 6 4 2013 TUE 0 151040154 4 14 2015 TUE 0 153200170 11 16 2015 MON	0 153570166 12 23 2015 WED 0 153470079 12 13 2015 SUN 0 152810149 10 8 2015 THU 0 150060274 1 6 2015 TUE 0 151960423 7 15 2015 WED 0 131550165 6 4 2013 TUE 0 151040154 4 14 2015 TUE 0 153200170 11 16 2015 MON	0 14322051 11 18 2014 TUE 0 153570166 12 23 2015 WED 0 153470079 12 13 2015 SUN 0 152810149 10 8 2015 THU 0 150060274 1 6 2015 TUE 0 151960423 7 15 2015 WED 0 151040154 4 14 2015 TUE 0 153200170 11 16 2015 MON	Dist Trib Crash_Num Month Day Year DyWk Time Rd_Dir 2430 0 143220051 11 18 2014 TUE 854 N 2430 0 153570166 12 23 2015 WED 1639 Z 2430 0 153470079 12 13 2015 SUN 1156 W 2430 0 152810149 10 8 2015 THU 1410 Z 2430 0 15060274 1 6 2015 TUE 1305 W 2430 0 151960423 7 15 2015 WED 1812 S 2430 0 151960423 7 15 2015 WED 1812 S 2430 0 151960423 6 4 2013 TUE 2030 E 2430 0 151040154 4 2015 TUE 1920 W 2430 0 151040154 4 2015 TUE 1920 W

										Junc
		4								
40	40	40	40	40	40	40	40	45	40	Type
1	1	1	_	1	1	1	₽	1	1	Loc1
↦	Ь	₽	ш	₽	↦	⊣	⊢	↦	1	TCD
98	1	1 1 1	_	₽	1	1	1	1	1	득
1	4	1 1 1	4	ь	1	ם	ם	4	ם	Wthr1
Ь	ω	₽	2	2	2	2	ω	2	Н	Wthr2
⊢	ω	₽	ω	0	0	0	0	0	Н	Surf
1	2	1	2	1	5	1	2	2	5	웃
Ь	1	1 5	ь	Ъ	1	6	1	1	ъ	Desg
5	90	5	ь	ω	5	5	5	5	5	n WZ
98	98	98 1	98	98	98	98	98	98	98	V1Typ
1	1	₽	1	ω	2	ω	1	1	4	e V1Dir
7	6	Ľ	ω	5	7	2	7	6	_	V1Act
ᆫ	6	6	4	9	1	11	₽	6	1	V1Fac1
15	1	2	5	15	46	1	4	2	∞	1 V1Fac2
0	1	ω	ω	4	0	0	15	0	33	c2 V1Phy
<u> </u>	1	ш	ь	ш	1	1	₽	1	┙	ys V1Ago
62 M	40 F	50 F	23 F	22 M	35 M	63 F	38 M	40 F	71 M	ge V1Sex
1	3	1	ь	3	ъ	ш	4	₽	1	V2Type

										V2Dir
7	ω	7	ω	ъ	7	2	7	ω	Н	V2Act
10	1	1	1	11	11	1	11	1	1	V2Fac1 V2Fac2
₽	1	1	L	1	1	4	₽	Н	Н	L V2Fac2
0	<u>~</u>	_	ш	0	0	0	0	0	ш	. V2Phys
₽	₽	⊢	ь	1	Ь	⊢	₽	Ь	Ь	V2Age
67 F	62 F	24 F	18 M	34 F	23 M	60 M	48 F	33 M	39 F	V2Phys V2Age V2Sex
										V3Type
1										V3Dir
7										V3Act
10										V3Fac1 V3Fac2
ב										V3Fac2
0										V3Phys
1										V3Age
33 F										V3Sex
										V4Type
										V4Dir
										V4Act
										V4Fac1
										V4Fac2
										V4Phys

										V4Age V4Sex Tru
	5.49	5.49	5.49	5.505	5.507	0.407	0.407	0.407	0.407	ıe_Miles
0000000	524300106 462731.6 4997984	524300106	524300106	524300106	524300106	1024301902	1024301902	1024301902	1024301902	True_Miles Route_Code POINT_X POINT_Y
	462731.6	462731.6	462731.6	462743	462744.4	462731.6	462731.6	462731.6	462731.6 4997984	POINT_X
.00,00.	4997984	4997984	4997984	4998003	4998006	4997984	4997984	4997984	4997984	POINT_Y

05-MSAS	05-MSAS	05-MSAS	05-MSAS	05-MSAS	10-M	Sys	Maple
24300106 005+00.259	24300106 005+00.259	24300106 005+00.259	VISAS 24300106 005+00.259	24300106 005+00.259	24301903 000+00.015	ys Route Ref_Point Co City Dist	Wo Barkway at Bospital Lapo
27		27	27	27	27	City	rottod or
2430	2430	2430	2430	2430	2430	/ Dist	6/77/10 hu T
0	0	0	0	0	0	Trib	<u>.</u>
153280097	140570432	142250138	143530061 12	142490117	143350137	Crash_Num Montl	
11	2	8	12	9	12	h Day	
23	26	12	19	6	1		
2015 MON	2014 WED	2014 TUE	2014 FRI	2014 SAT	2014 MON	Year DyWk	
1824 N	2053 Z	1900 Z	1006 Z	1610 Z	1545 Z	Time Rd_Dir	
Z	Z	Z	Z	Z	Z	Elem	
						Rely	
1	1	1	1	1	1	Inves	
3 Z	3 C	ω Ζ	3 Z	3 C	ω Ζ	Investigat Sev	
0	0	0	0	0	0	NumKilled Diag	
∞	∞	₽	₽	5	₽	NumVel	
_	2	2	ω	_	2	Veh	

						Junc
_	4	4	4	4	4	SL
40	40	40	45	30	40	Тур
∞	1	L	₽	6	1	Loc1
Ц	1	Ľ	₽	1	₽	TCD
98	1	1	1	1	1	Ę
4	4	ш	ш	1 1 0	ш	Wthr1
1	₽	⊣	2	₽	2	Wthr2
0	0	-	0	0	0	Surf
ш	υı	ш	ш	ш	ш	
Ь	1	1	1	1 3	1	Desgn
ű	5	90	90	ω	5	VΖ
98	98	98	98	3 98 1	98	V1Typ
1	ш	↦	4	↦	ш	e V1Dir
1	5	6	↦	4	5	V1Act
₽	1	10	₽	ω	5	: V1Fac1
1	₽	ь	15	2	15	:1 V1Fac2
0	0	₽	0	0	0	:2 V1Phys
₽	1	₽	₽	1	1	/s V1Age
48 M	32 F	17 F	35 F	43 F	56 F	e V1Sex
	L	Ь	4	53	3	V2Type

		MC		V2Dir
6	₽		5	V2Act
10	11	31	5	V2Fac1
Ц	⊣	₽	2	1 V2Fac2
₽	0	0	0	2 V2Phys
₽	<u> </u>	⊢	_	s V2Age
19 F	46 F	15 F	26 F	V2Sex
				V3Type
	₽			V3Dir
	1			V3Act
	11			V3Fac1
	₽			V3Fac2
	0			V3Phys
	⊢			V3Age
	58 M			V3Sex
				V4Type
				V4Dir
				V4Act
				V4Fac1
				V4Fac2
				V4Phys

ω

46

21 M

						V4Age
						V4Sex
5.259	5.259	5.259	5.259	5.259	0.015	True_Miles
524300106	524300106	524300106	524300106	524300106	1024301903	True_Miles Route_Code POINT_X POINT_
462442.8	462442.8	462442.8	462442.8	462442.8	462424	POINT_X
4997690	4997690	4997690	4997690	4997690	462424 4997707	POINT_Y

)	\subseteq
	ᄍ
	ă
	<u>a</u>
	3
	Ξ
)	9
	₫
	0
	웃
	Г
,	E
,	ï
	5
	ea
	6
,	6
	1
	1
	K
	9
)	_
•	Sac
	C
	2
,	

04-CSAH	Sys	CR 81 and																																	
27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000081 013+00.923	27000081 013+00.939	27000121 001+00.131	27000121 001+00.150	27000121 001+00.150	27000121 001+00.150	27000121 001+00.150	27000121 001+00.150	27000121 001+00.150	27000121 001+00.150	27000121 001+00.150	27000121 001+00.150	27000081 013+00.921	27000081 013+00.921	27000081 013+00.921	27000121 001+00.151	27000121 001+00.140	27000121 001+00.140	Route Ref_Point Co	CR 81 and Fernbrook Lane - Created 6/27/18 by Tsachi
27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	City	18 by Tsac
2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	Dist	₽:
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Trib	
152180006	131730027	131030083	152610005	153650134	153540135	142690136	141300058	152510106	153100168	153420091	141850086	133050045	132940011	131390109	131090046	132320226	143420161	131220094	132060065	153260026	153230068	153360105	151240113	143020052	133470079	132470167	130140026	151390147	143500154	142740027	152860132	133300105	130600136	Crash_Num Month	
∞	6	4	9	12	12	9	5	9	11	12	7	11	10	5	4	∞	12	σ	7	11	11	11	5	10	12	9	ш	₅	12	10	10	11		th Day	
6	20	13	17	31	20	26	10	∞	6	∞	4	1	20	19	19	20	∞	2	25	21	19	30	4	29	13	4	14	19	16	Ь	13	26	1	Year	
2015 THU	2013 THU	2013 SAT	2015 THU	2015 THU	2015 SUN	2014 FRI	2014 SAT	2015 TUE	2015 FRI	2015 TUE	2014 FRI	2013 FRI	2013 SUN	2013 SUN	2013 FRI	2013 TUE	2014 MON	2013 THU	2013 THU	2015 SAT	2015 THU	2015 MON	2015 MON	2014 WED	2013 FRI	2013 WED	2013 MON	2015 TUE	2014 TUE	2014 WED	2015 TUE	2013 TUE	2013 FRI	DyWk	
	2059 Z	1255 W		1130 Z	1903 Z		1343 Z		1448 E			612 W			429 Z		1751 W	1342 Z		2145 S											1655 Z	1116 S	1400 S	Time Rd_Dir	
Z	2	7	Z	2	2	Z	Z	2	2	Z	2	2	Z	2	Z	Z	Z	2	7	Z	7	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	2	2	Elem	
																																		Rely	
1	L	1	1	1	1	1	1	1	1	2	1	1	1	⊢	1	ω	1	1	1	1	1	2	1	⊢	Ľ	_	₽	┙	1	Ь	Ь	1	1	Investi	
		3 C																															3 B	Investigat Sev	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NumKilled Diag	
1 2	1 2	1 2	1 2	2 2	1 2	1 3	1 2														1 2							1 2	1 2	1 2	5 2	1 2	1 2	NumVeh	

																																	Junc
2	7	1	1	7	4	4	4	4	1	4	4	₽	4	4	4	2	₽	4	4	4	₽	4	7	4	4	4	4	4	₽	4	4	4	JS
55	3 55	40	55	45	50	55	55	55	55	55	55	55	55	55	55	55	45	45	55	55	55	45	45	45	45	40	55	55	50	55	45	45	Туре
	ч с	ь	1	1	ר	₽	1	1	1	6	₽	∞	₽	1	₽	₽	₽	₽	37	₽	₽	1	₽	1	1	ь	₽	_	₽	₽	_	Ь	Loc1
ь н	ч -	1	1	1	1	1	1	1	ь	1	1	₽	1	₽	1	⊢	1	1	1	1	_	1	1	1	1	1	1	1	1	ь	1	Ь	TCD
98	. —	₽	98	1	1	1	1	1	98	1	1	98	₽	ω	₽	₽	13	1	1	1	98	1	5	1	1	Ь	1	_	1	4	13	Ь	드
μu	, њ	Ь	₽	6	ר	Ľ	1	1	2	₽	4	6	₽	4	ω	4	₽	1	4	Ľ	⊣	1	1	4	1	щ	₽	Ц	2	ш	_	1	Wthr1
1	- د	2	2	2	1	1	2	2	2	ב	1	₽	ω	4	₽	⊢	1	1	1	1	4	1	2	1	1	Н	ב	4	ω	ь	1	1	Wthr2
0 0	0	ω	0	0	Ь	0	0	0	2	ь	0	0	ω	4	0	₽	0	0	0	0	0	0	0	0	Ь	0	0	0	2	ь	0	0	2 Surf
<u> </u>	ч -	2	Н	ᆫ	Ъ	₽	ъ	Ь	ш	ь	₽	_	2	ω	↦	_	ᆫ	ㅂ	ㅂ	₽	ω	ш	₽	2	Ľ	₽	₽	ω	2	1	1	Ь	Char
н н	. —	↦	ш	2	ш	↦	ь	₽	ш	ш	ь	↦	ш	↦	⊣	↦	ь	⊢	6	ш		ш	5	5	5	5	ь	₽	ш	<u></u>	↦	ш	Desgn
ωυ	ıω	ω	90	5	ω	ω	ω	ω	ω	ر.	5	ω	ω	5	5	5	∞	ω	ω	ω	5	5	90	5	∞	ω	∞	ر.	5	∞	∞		WZ
98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	V1Tyr
2	ם נ	ъ	ω	Ь	ω	2	ω	Ь	ь	2	₽	⊢	ь	ω	34	2	ь	ㅂ	ㅂ	Ь	<u> </u>	Ь	ь	ш	ь	1	ω	1	ь	ь	∞	∞	oe V1Dir
μ ω	7	2	4	6	1	8	ω	ω	4	∞	∞	5	ر.	ω	7	7	ъ	ъ	ъ	7	ω	1	1	1	5	ω	ъ	7	4	7	ъ	ъ	· V1Act
11	, 1	ω	13	5	Ц	ב	Ц	11	14	ω	1	↦	ъ	ь	9	<u> </u>	6	11	5	10	ы	5	5	11	5	11	11	11	10	1	11	11	ct V1Fac1
₽ ⊢	4 4	15	∞	4	15	15	99	1	7	2	15	┙	G	ω	9	ω	4	1	ω	2	16	₽	15	1	1	Ь	Ľ	1	1	2	1	1	ac1 V1Fac2
0 0	0	0	90	0	15	0	0	0	∞	ъ	0	0	15	ω	21	4	15	0	46	41	0	0	0	0	1	0	0	0	ь	0	0	0	ac2 V1Phys
₽ ⊢		ъ	ш	ш	ш	Ц	Ľ	1	ъ	ь	ь	ь	ь	ь	<u> </u>	<u> </u>	Ь	ь	ш	ב	_	ш	Ц	ᆸ	1	1	98	1	ь	1	1	1	hys V1Age
45 M	16 F	38 F	31 F	41 M	39 M	34 F	63 F	24 F	20 F	31 M	30 M	19 F	19 M	35 M	31 M	45 M	18 M	26 F	18 M	39 F	16 M	18 F	28 M	51 M	55 F	38 F	72 M	63 M	22 F	17 M	55 F	4	Age V1Sex
1 1	ω ,	1	2	Ľ	1	4	ц	ω	35	53	35		ω	2	ω	ω	∞	31		ω	2	ш	1	1	2	1	ω	1	2	1	2	1	V2Type

					V2Dir
2 4 4 6 1	n 12 00 00 01	w v w v 4 c	5 7 5 5	5 3 1 1 1 1 7	
10 1 3 11 16 10	9 1 11 10	1 1 35 1	9 10 11 11	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 6 1 10
445111	15 99 1	17 17 17	15 1 1	15 15 15 15 1 1	V2Fac1 V; 9 15 1 4 3
00000	1000) 1 1 0 1 1	5 0 0	0 0 1 0 0	V2Fac2 V2Phys 15 4 0 15
(J 4 12 (J (J) (J)			4 (3 2) 2		V2Age
35 F S	29 M 46 M 41 F 57 F	23 M 54 M 58 M 46 F 49 M	26 M 28 M 38 F 41 M	37 F 20 M 40 M 17 M 52 F 52 F 118 F 31 M 31 M	V2Sex 52 F 68 M 38 F 48 M 17 F
					VЗТуре
	2	4	ω		V3Dir
	12	00	7		V3Act
	10	н	11		t V3Fac1
	1	ь	1		
	1	ъ	1		V3Fac2 V
	1	ш	1		V3Phys
	3.	<u>6</u>	4.		V3Age
	38 M	63 M	44 M		V3Sex
					V4Туре
		Þ	1		V4Type V4Dir
		∞	7		V4Act
		ш	11		
		н	1		V4Fac1 V4Fac2
		н	1		
		н	1		V4Phys

			V4Age
	51 M	27 K	V4Sex
13.921 13.921 13.921 13.921 13.921 13.921 13.921 13.921 13.921	13.923 13.921 13.921 13.921 13.921 13.921 13.921	13.921 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.	True_Miles F 1.14 1.14 1.151 13.921 13.921
42700081 427000081 427000081 427000081 427000081 427000081 427000081 427000081 427000081 427000081	427000081 427000081 427000081 427000081 427000081 427000081 427000081 427000081	42700081 427000121 427000121 427000121 427000121 427000121 427000121 427000121 427000121 427000121 427000121 427000121 427000121	MilesRoute_Code 1.1.4 427000121 1.1.4 427000121 1.1.5 427000121 1.1.5 427000021 1.921 427000081 1.921 427000081
463668.4 463668.4 463668.4 463668.4 463668.4 463668.4 463668.4 463668.4	463668.4 463668.4 463668.4 463668.4 463668.4 463668.4 463668.4	463668.4 463668.6 463668.6 463668.6 463668.6 463668.6 463668.6 463668.6 463668.6 463668.6 463668.6	POINT_X 463668.2 463668.2 463668.7 463668.4 463668.4
4998626 4998626 4998626 4998626 4998626 4998626 4998626 4998626 4998626 4998626	4998628 4998626 4998626 4998626 4998626 4998626 4998626	4998625 4998625 4998625 4998625 4998625 4998625 4998625 4998625 4998625 4998625 4998625 4998625	POINT_Y 4998609 4998609 4998627 4998626 4998626

04-CSAH	04-CSAH	04-CSAH	05-MSAS	04-CSAH	05-MSAS	04-CSAH	05-MSAS	04-CSAH	05-MSAS	Maple Gro Sys																																	
27000081 014+00.181	27000081 014+00.181	27000081 014+00.173	24300106 006+00.211	24300106 006+00.211	24300106 006+00.211	24300106 006+00.211	24300106 006+00.211	24300106 006+00.211	24300106 006+00.211	24300106 006+00.211	27000081 014+00.209	24300106 006+00.200	27000081 014+00.115	24300106 006+00.210	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.153	27000081 014+00.171	27000081 014+00.171	27000081 014+00.125	27000081 014+00.154	27000081 014+00.190	27000081 014+00.190	24300106 006+00.192	Maple Grove Parkway and CR 81 - Created on 6/27/2018 by Tsachi Sys Route Ref_Point Co City Dist
27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	d on 6/27/; City
2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	'2018 by Tsach ' Dist
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	າi Trib
150090110	143600116	132210115	152680069	143130102	152120092	150640082	143060081	141270038	140550248	133120136	132680115	133590089	152310224	152750293	152930028	153370177	153040147	141280143	140440047	140410148	132970039	132800064	131470077	131160129	150550023	143030151	142540053	142500005	152930155	151310096	150360008	140550022	152470050	142490132	152310079	132610093	150790063	133400390	153210193	141530073	131980156	143170029	Crash_Num Month
ב	12	∞	9	11	7	ω	11	4	2	11	9	12	8	10	10	12	10	5	2	2	10	10	۲	4	2	10	9	9	10	5	2	2	7	9	8	9	ω	12	11	6	7	11	nth Day
9	26	9	24	9	31	ъ	2	ъ	24	∞	25	25	17	2	20	ω	31	8	13	10	24	6	27	26	24	30	11	6	20	11	4	22	30	6	19	16	20	6	17	1	17	13	Year
2015 FRI	2014 FRI	2013 FRI	2015 THU	2014 SUN	2015 FRI	2015 THU	2014 SUN	2014 SAT	2014 MON	2013 FRI	2013 WED	2013 WED	2015 MON	2015 FRI	2015 TUE	2015 THU	2015 SAT	2014 THU	2014 THU	2014 MON	2013 THU	2013 SUN	2013 MON	2013 FRI	2015 TUE	2014 THU	2014 THU	2014 SAT	2015 TUE	2015 MON	2015 WED	2014 SAT	2015 THU	2014 SAT	2015 WED	2013 MON	2015 FRI	2013 FRI	2015 TUE	2014 SUN	2013 WED	2014 THU	DyWk
855 S	1554 Z	1612 Z	739 Z	1941 N		1023 N	1430 Z	1315 Z		1740 Z		1304 Z		1752 N	635 W	1818 N	1716 N	2005 W	903 Z	1643 Z						1821 Z			1854 Z					1629 Z							1700 W		Time Rd_Dir
Z	Z	Z	Z	Z	Z	Z	2	Z	Z	2	Z	Z	2	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Elem
																																											Rely
1	2	1	1	1	₽	₽	₽	1	₽	₽	2	1	₽	₽	₽	1	₽	1	1	2	1	₽	₽	1	₽	ㅂ	₽	₽	2	₽	₽	1	₽	₽	┙	2	2	₽	1	2	2	₽	Inves
3 Z	3 K	3 Z																																					3 C			ω N	Investigat Sev
0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NumKilled Diag
ь	∞	1	⊣	1	1	₽	1	1	⊢	₽	₽	<u></u>	_	1	2	Ľ	1	_	98	_	₽	₽	₽	1	1	∞	₽	1	2	₽	₽	<u></u>	↦	₽	₽	⊣	ъ	₽	1	⊢	1	90	NumVel
2	4	ω	2	2	2	2	2	2	2	2	2	2	2	ω	2	2	2	2	2	2	2	2	2	2	2	₽	2	2	2	2	ω	2	2	2	2	2	Ь	2	2	2	2	2	/eh

																																									Junc
р р		2	2	2	2	0	2	2	2	2	_	4	2	4	1	2	7	ш	ш	2	2	2	2	_	2	2	2	2	4	2	0	2	7	↦	1	2	1	ш	7	<u></u>	SL
55 50	5 5	40	55	45	45		40	45	50	45	55	50	55	40	40	55	55	55	55	45	45	55	45	55	55	55	55	55	45	45		40	55	50	55	55	55	55	55		Type
י בו בו		1	1	₽	Ь	1	↦	↦	₽	<u> </u>	\vdash	_	1	<u> </u>	₽	ᆸ	₽	ш	ш	_	\vdash	ш	Ь	∞	<u></u>	_	<u> </u>	ㅂ	↦	1	₽	₽	₽	↦	∞	1	1	Н	н н	<u></u>	Loc1
р р		1	L	↦	Ь	0	<u> </u>	₽	ω	<u> </u>	_	↦	1	<u>~</u>	₽	₽	₽	ш	ш	⊣	⊣	₽	Ь	↦	⊢	₽	ь	Ь	↦	_	0	₽	ㅂ	↦	↦	↦	<u>ц</u>	ш	н н	<u></u>	TCD
98	98	1	1	1	Ь	1	98	Ь	1	_	98	_	_	_	ъ	1	<u> </u>	98	Ь	₽	Ь	Ь	1	98	1	⊢	ר	1	₽	_	Ь	1	1	98	98	_	98	Ь	ъ ;	98	드
יםם	1	4	1	1	Ь	1	Ь	4	1	1	1	1	4	4	1	1	Ц	ω	4	1	Ь	ъ	1	6	1	4	4	1	4	4	Ц	1	1	1	ב	4	4	1	1	ه	Wthr1
1	2	1	1	1	Ь	1	↦	2	₽	2	₽	Ь	1	Ь	2	ω	2	Ц	Д	1	2	Ь	4	₽	1	₽	₽	2	₽	Ц	Ц	₽	ω	1	2	2	ω	2	1	_	ır1 Wthr2
7	0 0	0	0	₽	0	0	0	0	0	0	0	0	0	1	0	ω	2	0	0	1	2	₽	0	0	0	₽	₽	0	₽	0	0	0	2	0	0	2	0	0	0	0	nr2 Surf
5 Р	2	1	_	ъ	Ь	2	ъ	ᆫ	_	3	1	ᆫ	1	<u> </u>	2	2	_	1	1	1	ш	ш	2	_	\vdash	_	\vdash	2	₽	5	1	1	2	1	1	ъ	2	1	1	_	rf Char
р р		2	ь	6	Ь	0	_	6	1		<u>~</u>	ᆫ	1	<u> </u>	2	₽	1	ш	ш	5	5	ш	5	<u> </u>	ь	<u>~</u>	<u> </u>	ᆫ	ᆫ	₽	0	1	ᆫ	2	₽	₽	ь	щ	1	_	
∞ ∞	∞ ω	s	ω	5		0	90	5	ω	5	5	5	5	5	ω	ω	7	∞	ω	5	ω	ω	5	∞	5	5	5	5	ω	ω	0	ω	5	ω	5	5	ω	ω	ω	ω	Desgn
98	98 98	98	98	98		Z	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	WZ
																31																									V1Tvpe
2	2	1	3	1	4	1	4	ω	1	1	ω	1	1	1	ω	1	ω	Ц	ω	_	1	3	ω	_	_	1	ω	1	1	1	4		4	_	1	ω	ω	4	ω	-	V1Dir
7	- ∞	1	1	2	<u> —</u>	2	↦	ω	7	L	5	L	7		_	7	7	∞	∞	ω	⊣	2	2	ω	∞	ω	∞	ω	7	_	_	₽	7	7	ω	8	_	∞	7		V1Act
2		5	11	ъ	11	ω	L	ω	11	1	<u> </u>	14	14	1	₽	6	6	ш	ш	5	5	5	11	<u> </u>	10	<u> </u>	ш	ω	11	5	ω	5	11	10	1	11	0	10	1	<u>-</u>	V1Fac1
1	4 &	15	1	1	ь	0	46	1	ᆫ	15	ω	4	<u> </u>	15	15	15	<u> </u>	15	15	<u> </u>	ь	ь	1	<u> </u>	4	ω	1	9	1	46	0	15	1	2	1	1	0	2	15		1 V1Fac2
1 0	46 4	0	0	₽	0	0	0	0	0	0	15	5	0	0	0	0	₽	0	0	₽	₽	₽	0	₽	0	4	₽	0	0	0	0	0	0	0	0	0	0	0	0	_	2 V1Phvs
99		1	₽	1	ъ	0	₽	1	99	₽	₽	₽	1	┙	1	1	1	Ь	ъ	┙	₽	1	1	⊣	₽	₽	₽	1	₽	_	0	₽	1	1	1	1	0	ᆫ	1		ivs V1Age
54 M 25 F	36 F	63 M	34 F	63 F	42 M	40 M	31 F	31 F	44 F	60 F	29 M	27 M	34 M	37 F	39 M	35 M	25 M	18 M	36 M	41 F	43 F	53 F	37 F	40 F	71 F	19 M	28 F	40 M	64 F	23 F	36 F	61 M	45 F	17 F	55 F	48 F	65 F	36 F	55 M	30	ige V1Sex
р р	3 7	1	1	₽	4	4	∞	ω	₽	1	4	ω	1	1	1	ω	ω	ω	ω	ω	ω	4	ω		ω	1	₽	ω	₽	┙	ω	1	L	2		₽	2	ω	ω		V2Tvpe

		MC C	V2Dir
4 3 1 8 1 1 2 1 2 1 3 7 1 5	1 7 1 1 7 7 8 8 8 3 1 2 2	8 3 8 3 7 1 1 7 8 8 8	V2Act 5 7
11 11 11 11 11 11	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11 10 10 11 10 5 5 4 3 3 11	
1 9 90 1 1 0 15 2 15 1 1 1 1 1 1	15 15 4 4 2 2 1 1 1 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 15
500000000000000000000000000000000000000	1 0 0 0 1 1 0 0 4 1 0 0	15 16 0 0 41 0 0 0 0 15 15	c2 V2Phys 1 0
			ıys V2Age 1 1
48 44 44 44 44 44 44 44 44 44 45 45 45 45	37 M M 29 F M 33 M M 33 M M 36 M M 36 M M 36 M M 41 M M 36 M M 41 M M M M M M M M M M M M M M M M	32 M 33 M 23 F 119 F 117 F 26 M 37 F 17 F 27 M 38 M 46 F	
2	Þ	L ,	V3Type V3Dir
3 L	н	7	
11	ц	5 4	V3Act V:
н н	50	L	V3Fac1 V
0 0	-1	⊢	V3Fac2
1. 1.	ц	L)	V3Phys
39 F	49	27	V3Age
T T	49 K	27 M	V3Sex
			V4Type
Þ			V4Dir
7			V4Act
ı			V4Fac1
ı			V4Fac2
0			V4Phys
ь			Š

6																																									V4Age
66 M																																									V4Sex
14.181 14.181	14.173	6.211	6.211	6.211	6.211	6.211	6.211	6.211	14.209	6.2	14.115	6.21	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.153	14.171	14.171	14.125	14.154	14.19	14.19	6.192	True_Miles F
427000081 427000081	427000081	524300106	524300106	524300106	524300106	524300106	524300106	524300106	427000081	524300106	427000081	524300106	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	427000081	524300106	Route_Code
463188.6 463188.6	463198	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463155.5	463215.5	463296.1	463221.1	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463221.7	463200.4	463200.4	463277.1	463220.4	463177.9	463177.9	463211	POINT_X
4998941 4998941	4998936	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998959	4998910	4998878	4998922	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998923	4998935	4998935	4998891	4998924	4998947	4998947	4998900	POINT_Y

Elm Creek Blvd @ Weaver Lake Road (2013 - 2015) Crash data is managed by the Mn/DOT Office of Traffic, Safety, and Opera

Crach da	ta ic manage	d hv the Mn/D	T Office of Trai	Hir Safety	and Operati	200			
SYS	MON	REF_POINT	GIS_ROUTE	GIS_TM	RD_DIR	ELEM	RELY	N/	R
04	27000130	001+00.292	0427000130	1.292	2		1	0	C
04	27000130	001+00.297	0427000130	1.297	Z		1	ω	C
04	27000130	001+00.298	0427000130	1.298	2		1	ω	C
04	_	001+00.300	0427000130	1.300	Z		1	ω	C
04	_	001+00.300	0427000130	1.300	z		1	ω	_
04	27000130	001+00.300	0427000130	1.300	2		1	ω	_
04	27000130	001+00.300	0427000130	1.300	z		L	ω	_
04	27000130	001+00.300	0427000130	1.300	Z		1	ω	C
04	27000130	001+00.300	0427000130	1.300	Z		1	ω	_
04	27000130	001+00.300	0427000130	1.300	Z		1	ω	_
04	27000130	001+00.301	0427000130	1.301	S		L	ω	_
04	27000130	001+00.368	0427000130	1.368	z		2	ω	⊂

UNIT 1 WAS NORTHBOUND ON CSAH 130 MOVING FROM LEFT LANE TO RIGHT IN FRONT OF UNIT 2. TRAFFIC AHEAD	UNIT #1 CAME TO A STOP IN THE NORTH BOUND LANE OF ELM CREEK BLVD. AT WEAVER LAKE ROAD. THE DRIVER O	DRIVER 1 AND INDEPENDENT WITNESS SAID THAT VEH 2 SWERVED SUDDENLY FROM THE LANE TO GO STRAIGHT AND	VEHICLE #1 SB ELM CREEK BLVD ENTERED THE INTERSECTION OF WEAVER LAKE RD ON THE GREEN LIGHT AND WAS	VEHICLE #1 EAST ON WEAVER LAKE ROAD TO TURN SOUTH ON ELM CREEK BOULEVARD. DRIVER OF VEHICLE #1 STA	DRIVER 1 WAS STOPPED IN THE LEFT TURN LANE WAITING FOR TRAFFIC TO PASS. DRIVER 2 MOVED INTO THE	DV1 STATED SHE WAS E/B WEAVER LAKE RD STOPPED IN TRAFFIC AT THE RED LIGHT AT ELM CREEK BLVD. V2 RAN	DRIVER #1 WAS TRAVELLING NORTHBOUND ON ELM CREEK BLVD. DRIVER #2 WAS STOPPED FOR A RED LIGHT AT TH	BOTH UNITS WERE IN THE LEFT TURN LANE STOPPED. DR 1 SAID THE LIGHT TURNED GREEN BUT SHE AND DR 2 HA	BOTH VEHICLES WERE IN THE INSIDE TURN LANE ON NORTHBOUND CO 130 TO GO WEST ON CO 109. BOTH DRIVE	UNIT1 WAS STOPPED DUE TO THE RED LIGHT IN THE LEFT TURN LANE OF SOUTHBOUND ELM CREEK BOULEVARD TO T		АТР
27	27	27	27	27	27	27	27	27	27	27	27	6
2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	CITY
6-Fri	7-Sat	3-Tue	2-Mon	3-Tue	6-Fri	7-Sat	3-Tue	4-Wed	6-Fri	3-Tue	1-Sun	DOW
10	12	6	6	6	2	1	8	4	1	12	12	MONTH
23	6	30	22	16	20	10	26	17	25	10	∞	DAY
2015	2014	2015	2015	2015	2015	2015	2014	2013	2013	2013	2013	YEAR
1912	2233	1410	0624	1220	0758	1105	0003	1147	1728	0841	1400	TIME
С	z	z	z	z	z	z	z	z	z	z	z	SEV

														PERSON1				
M_VEH	JUNC	ST	TYPE	DIAG	LOC1	TCD	5	WTHR1	WTHR2	SURF	CHAR	DESGN	ACC_NUM	VTYPE	DR	ACT	FAC1	FAC
2	0	40	₽	ь	0	_	_	2	0	ъ	0	0	140100096	Ь	5	11	0	_
2	4	40	₽	ш	Ь	ш	ш	₽	0	5	Ь	5	133470072	ω	5	11	1	_
2	4	40	₽	ь	Ь	ь	ь	2	0	ь	ь	ω	130250261	Ь	Ц	┙	4	_
2	4	40	₽	<u> </u>	↦	_	<u> </u>	2	0	_	_	ω	131070078	4	┙	┙	1	
2	4	45	2	ш	₽	↦	4	1	1	_	_	5	142380179	_	1	Ľ	15	
2	4	40	₽	Ь	ㅂ	Ц	ㅂ	2	0	ъ	ᆸ	ω	150100086	ω	ω	11	1	
2	4	40	₽	Ь	Ь	ь	ь	2	0	ъ	ь	5	150510127	ω	Ц	11	ц	_
2	4	40	₽	1	1	ᆫ	1	1	1	ь	ь	ω	151670097	ω	ω	11	1	_
2	4	40	⊢	5	Ь	ㅂ	ㅂ	ω	0	2	_	ω	151730091	Ь	ω	ω	2	_
2	4	40	₽	2	1	1	1	1	0	1	1	5	151810134	Ľ	7	₽	₽	_
2	4	40	₽	5	1	ш	4	₽	90	ь	ь	5	143410026	Ь	7	1		
ω	_	40	₽	1	۷.	1	4	3	0	2	_	5	152960248	ω			<u> </u>	0
	IM_VEH	_	JUNC 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 JUNC SI 0 40 4 40 4 40 4 40 4 40 4 40 4 40	4 JUNC SL TYPE 0 40 1 4 40 1 4 40 1 4 45 2 4 40 1	H JUNC SI TYPE DIAG 0 40 1 1 4 40 1 1 4 40 1 1 4 40 1 1 4 40 1 1 4 40 1 1 4 40 1 1 4 40 1 1 4 40 1 1 5 4 40 1 5 4 40 1 5 4 40 1 5 4 40 1 5 4 40 1 5 4 40 1 5 4 40 1 5 4 40 1 5	JUNC St TYPE DIAG LOC1	H JUNC SI TYPE DIAG LOC1 TCD 0 40 1 1 0 1 4 40 1 1 1 1 1 4 40 1 1 1 1 1 4 40 1 1 1 1 1 4 45 2 1 1 1 1 4 40 1 1 1 1 1 4 40 1 1 1 1 1 4 40 1 1 1 1 1 4 40 1 1 5 1 1 4 40 1 1 5 1 1 1 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUM_VEH JUNC SL TYPE DIAG LOC1 TCD LIT WTHR1 2 0 40 11 1 0 1 1 2 2 4 40 11 1 1 1 1 1 2 2 2 4 40 11 1 1 1 1 1 2 2 4 45 2 1 1 1 1 1 2 2 4 40 11 1 1 1 1 1 2 2 4 40 11 1 1 1 1 1 2 2 4 40 11 1 1 1 1 1 2 2 4 40 11 1 1 1 1 1 2 2 4 40 1 1 1 1 1 1 1 2 2 4 40 1 1 1 1 1 1 1 1 2 2 4 40 1 1 1 1 1 1 1 1 1 2 3 1 40 1 1 5 1 1 1 1 1 1 1 3 3 1 40 1 1 1 1 1 1 1 4 3	JUNC St TYPE DIAG LOC1 TCD LIT WTHR1	JUNC St TYPE DIAG LOC1 TCD LIT WTHR1 WTHR2 ST	INDIC St Type DIAG LOC1 TCD LIT WTHR1 WTHR2 SURF CHA	JUNC SL TYPE DIAG LOC1 TCD LIT WTHR1 WTHR2 SURF CHA	JUNC St. TYPE DIAG LOC1 TCD LIT WTHR1 WTHR2 SURF CHAR DESGN	H JUNC SL TYPE DIAG LOC1 TCD LIT WTHR1 WTHR2 SURF CHAR DESGN 0 40 40 1 1 0 1 1 2 0 5 0 0 0 0 1 1 2 0 5 0 0 0 0 1 1 5 1 0 5 1 0 5 1 0 0 5 1 0 0 5 1 1 3 1	JUNC St Type DIAG LOC1 TCD LIT WTHR1 WTHR2 SURF CHAR DESGN ACC_NUM	H JUNC SI TYPE DIAG LOCI TCD LIT WTHRI WTHRZ SURF CHAR DESGN ACC_NUM VTYPE 0 40 1 1 0 1 1 2 0 5 0 0 140100096 1 4 40 1 1 1 1 1 1 2 0 5 1 33470072 3 4 40 1 1 1 1 1 1 2 0 1 1 3 130250261 1 4 40 1 1 1 1 1 1 2 0 1 1 1 3 130250261 1 4 40 1 1 1 1 1 1 2 0 5 1 1 3 13070078 4 4 40 1 1 1 1 1 1 2 0 5 1 1 3 13070078 4 4 40 1 1 1 1 1 1 2 0 5 1 1 3 13070078 4 4 40 1 1 1 1 1 1 2 0 5 1 1 3 15010006 3 4 40 1 1 1 1 1 1 1 2 0 5 1 1 3 15010006 3 4 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A JUNC St TYPE DIAG LOC1 TCD LIT WTHR1 WTHR2 SURF CHAR DESGN ACC_NUM VTYPE DIR

₽	Ь	↦	₽	₽	ш	↦	_	↦	ш	ш	<u> </u>	POSN	
z	z	z	z	z	z	z	z	z	z	z	z	Ξ	
4	4	4	ω	4	4	4	4	4	4	4	4	ę	
₽	1	1	_	1	1	1	1	₽	1	1	0	PHYS	
42	42	16	69	47	42	41	18	73	55	48	70	AGE	
≤	≤	≤	П	TI	TI	П	П	TI	≤	П	≤	SEX	
2	1	4	1	Ľ	ц	4	1	ω	Ľ	L	ω	VTYPE2	PERSON2
Ь	5	7	5	З	ш	ω	<u> </u>	ь	Ь	5	5	DIR3	
ь	ь	ъ	_	₽	10	_	11	<u> </u>	10	10	10	ACT4	
Ь	2	2	↦	15	61	15	_	_	1	61	0	FAC15	
0	0	8	0	0	46	4	_	0	0	0	0	FAC26	
ь	ь	↦	₽	₽	ь	┙	1	↦	ь	┙	<u> </u>	POSN7	
С	z	z	z	z	z	z	z	z	z	z	z	NJ8	
4	4	4	4	4	4	4	4	4	4	4	0	EQP9	
Ь	ω	↦	↦	↦	ь	\vdash	ш	<u> </u>	ь	ш	0	PHYS10	
58	58	26	60	23	30	46	18	30	30	35	65	AGE11	
Ζ	≤	≤	ŦI	TI	TI	TI	TI	TI	TI	TI	≤	SEX12	
2		4			ц	ω					ω	VTYPE13	PERSON3
₽		7			<u> </u>	ω					5	DIR14	
												ACT15	
												FAC116	

FAC217	
POSN18	
INJ19	
EQP20	
PHYS21	
AGE22	
SEX23	
VTYPE24	PERSON4
DIR25	
ACT26	
FAC127	
FAC228	
POSN29	
OETNI	
EQP31	
PHYS32	
AGE33	
SEX34	

TH 94 @ Weaver Lake Road East and West Ramps (2013 - 2015)

Crash data SYS North Ramp	ata is manage NUM mp 00000094	A by the Mn/Do REF_POINT 215+00.579	rash data is managed by the Mn/DOT Office of Traffic, Safety SYS NUM REF_POINT GIS_ROUTE GIS_TM orth Ramp 01 00000094 215+00.579 0100000094 216.236 01 00000094 215-00.579 0100000094 216.236	ffic, Safety, GIS_TM 216.236	and Operations RD_DIR E	ELEM A04	RELY	ı ı N	= ⊂
01	00000094	215+00.579 215+00.579	0100000094	216.236 216.236	N €	A04 A04		ωц	c c
01	00000094	215+00.579	0100000094	216.236	\$	A04	1	1	_
01	00000094	215+00.579	0100000094	216.236	8	A04	1	ω	_
01	00000094	215+00.579	0100000094	216.236	Z	A04	1	ω	C
01	00000094	215+00.579	0100000094	216.236	ш	A04	1	ω	_
01	00000094	215+00.579	0100000094	216.236	2	A04	1	ω	_
01	00000094	215+00.579	0100000094	216.236	<	A04	2	Ц	_
01	00000094	215+00.579	0100000094	216.236	Z	A04	2	ω	C
01	00000094	215+00.579	0100000094	216.236	2	A05	1	0	_
01	00000094	215+00.579	0100000094	216.236	<	A05	┙	ω	_
South Ramp	mp								
01	00000094	215+00.579	0100000094	216.236	m	B03	2	ω	_
01	00000094	215+00.579	0100000094	216.236	т	B04	1	_	_
01	00000094	215+00.579	0100000094	216.236	2	B04	1	ω	_
01	00000094	215+00.579	0100000094	216.236	ш	B04	2	1	_
01	00000094	215+00.579	0100000094	216.236	<	B05	1	ω	_
01	00000094	215+00.579	0100000094	216.236	т	B05	2	ω	_
01	00000094	215+00.579	0100000094	216.236	П	B15	1	ᆫ	_
01	00000094	215+00.579	0100000094	216.236	ш	B15	1	3	_

Α.
₽

BOTH VEHICLES WERE ENTERING EASTBOUND I 694 FROM WEAVER LAKE RD. BOTH VEHICLES, AS WELL AS SEVERAL	UPON ARRIVAL V1 WAS IN THE APEX OF 94 EASTBOUND FROM WEAVER LAKE RD. THE DRIVER MAY HAVE HAD SOME	KIDD ADVISED SHE WAS WALKING E/B WEAVER LAKE RD AND WALKED OVER THE 194 BRIDGE ON THE SOUTH SIDE. S	SIGN ON THE OFF RAMP INDICATING TO TRAFFIC THAT IS ATTEMPTING TO EXIT ONTO WEAVER LAKE RD EB THEY	V1 WAS STOPPED ON THE RAMP FROM EB ISTH94 TO WEAVER LAKE ROAD IN THE CENTER LANE. DV1 STATED HE WA	#1 SAID SHE WAS GOING SLOWLY THINKING SHE HAD TO MERGE AND NOT REALIZING SHE HAD HER OWN LANE AFTER	BOTH VEHICLES WERE ON THE RAMP FROM E/B 94 TO WEAVER LAKE ROAD. THE DRIVER OF VEH.#1 STATED THAT H	DRIVER 1 WAS ON THE ENTRANCE RAMP TO EASTBOUND I 94 FROM WEAVER LAKE RD. AS HE WAS GOING AROUND TH	VEH 1 AND VEH 2 BOTH EXITED WESTBOUND I 94 ON THE WEAVER LAKE RD EXIT. THEY WERE BOTH TAKING THE DE		DRIVER VEHICLE #1 SAID HE HAD EXITED WESTBOUND I-94 EXIT RAMP AT WEAVER LKRD. HE WAS SLOWING DOWN A	UPON ARRIVAL BOTH VEHICLES WERE OFF THE ROADWAY IN A PARKING LOT. THE DRIVER OF V1 STATED THAT HE	#NAME?	D1 WAS DRIVING V1 BEHIND D2 WHO WAS DRIVING V2. BOTH D1 AND D2 WERE EXITING 194 AT WEAVER LAKE RD T	UNIT 2 WAS STOPPED AT THE TOP OF THE RAMP FROM WB 1-94 TO EB CO RD 109. UNIT 1 WAS FOLLOWING AND DR	UNITS 1 AND 2 EXITING FROM WB 194 TO EAST WEAVER. UNIT 2 STOPPED FOR TRAFFIC AND UNIT 1 DID NOT SEE	DRIVER TWO WAS STOPPED AT THE STOP LIGHT WHEN HE WAS REAR ENDED BY VEHICLE ONE. DRIVER ONE SAID S	I SPOKE WITH THE DRIVERS INVOLVED IN THIS VEHICLE PROPERTY DAMAGE ACCIDENT AND I OBTAINED SOME OF T	V1 (MNDOT SNOWPLOW) STOPPED AT TOP OF RAMP. DRIVER OF V2 TRAVELING TOO FAST FOR ROAD CONDITIONS CO	BOTH DRIVER EXITED FROM WEST 94 TO WEAVER LAKE RD. AT THE TOP OF THE RAMP, BOTH VEHICLES WERE GOIN	ATP
27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	8
2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	2430	CITY
4-Wed	3-Tue	5-Thu	6-Fri	5-Thu	4-Wed	3-Tue	1-Sun	4-Wed	1-Sun	4-Wed	3-Tue	6-Fri	4-Wed	7-Sat	4-Wed	5-Thu	3-Tue	1-Sun	1-Sun	DOW
12	ω	10	9	12	ω	2	12	7	ω	∞	2	ᆫ	12	9	12	11	6	1	₽	MONTH
25	12	∞	26	31	13	12	13	15	31	19	24	24	24	13	11	21	18	27	20	DAY
2013	2013	2015	2014	2015	2013	2013	2015	2015	2013	2015	2015	2014	2014	2014	2013	2013	2013	2013	2013	YEAR
0903	2007	0946	1145	1043	1344	1238	0907	1706	1300	0850	1855	1200	1614	0924	1341	2026	1153	1455	1802	TIME
z	z	С	z	z	С	z	z	С	z	z	z	z	z	z	z	z	z	z	z	SEV
_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NUM_KILLED

2	1	1	2	2	2	2	1	ı)	2	2	2	2	2	2	2	2	2	2	2	NUM_VEH
1	20	21	21	2	7	7	20	•	4	0	4	Ь	21	2	21	21	4	21	Ь	4	JUNC
60	60	40	45	30	40	60	60	č	40	30	40	60	60	40	40	40	60	60	30	35	SF
ב	22	7	1	₽	1	₽	1	,	_	1	1	1	1	1	1	_	1	1	1	1	TYPE
G	4	90	1	1	1	2	7	ı	_	1	1	1	_	1	1	1	1	1	2	1	DIAG
1	ь	1	ь	ъ	Ц	↦	1	,	_	0	ь	Ь	1	1	Ц	Ц	Ц	1	ъ	1	LOC1
98	98	90	90	Ь	98	98	98	,	_	σ	1	Ь	90	σ	98	σı	1	1	Ь	1	TCD
1	4	┙	₽	1	1	₽	1	,	_	┙	₽	4	₽	₽	1	1	4	1	1	4	5
4	_	<u>~</u>	↦	2	_	<u>~</u>	ω	,	_	<u>~</u>	ω	ъ	2	↦	ь	ш	2	ь	4	ъ	WTHR1
0	0	0	1	0	_	0	0	Ó	0	0	0	0	2	1	0	0	0	0	0	0	WTHR2
4	2	↦	ь	Ь	ъ	↦	2	,	_	↦	2	Ь	↦	₽	Ь	ъ	Ь	_	ω	1	SURF
6	_	7	5	2	_	_	6	(л	0	7	5	7	↦	5	6	_	2	2	5	CHAR
2	1	2	2	2	ω	2	2	1	2	0	2	2	2	5	2	2	2	2	2	2	DESGN
133590043	130880166	152810076	142690091	153650280	130720142	130450337	153470031		151960405	131230062	152310065	150680193	150240122	143580152	142560064	133450177	133260222	131690099	130310215	130250242	ACC_NUM
2	ω	54	4	2	ω	31	2	(u	4	4	ω	ω	ω	1	₽	₽	ω	90	ω	PERSON1 VTYPE
ω	ω	98	7	3	ω	5	ω	(J.	₽	7	7	2	ω	ω	7	7	7	7	∞	DIR
Ь	_	35	<u>~</u>	11	57	6	1	;		5	10	11	5	↦	5	11	_	9	11	10	ACT
61	∞	<u>~</u>	<u>~</u>	_	∞	_	46	!	14	0	<u>~</u>	ш	_	<u>~</u>	15	<u>~</u>	18	15	ш	ъ	FAC1
46	90	0	<u>~</u>	0	<u>~</u>	0	16	Ó	0	0	0	0	_	<u>~</u>	0	0	0	0	0	0	FAC2
ь	₽	35	1	1	1	₽	1	,	_	₽	₽	1	₽	₽	₽	₽	₽	₽	₽	1	POSN
z	z	С	z	z	С	z	z	Ó	C	z	z	z	z	z	z	z	z	z	z	z	Z

	m						"												10		
	EQP	4	4	4	4	4	99	4	4	4	4	4	4	4	4	4	4	4	8	•	99
	PHYS	ш	ь	₽	2	1	1	₽	₽	₽	1	0	Ь	1	₽	1	₽	₽	₽	90	
	AGE	42	56	58	40	30	58	33	17	45	34	65	34	17	37	52	55	22	33	52	
	SEX	TI	T	T	TI	п	≤	≤	П	≤	≤	≤	ŦI	≤	Ζ	П	≤	≤	П	TI	
PERSONZ	VTYPE2	1	Ľ	4	ᆫ	ᆸ	Ь	↦	ω	1	ω	↦	ω	2	2	4	3	↦	<u> </u>		
	DIR3	∞	7	7	7	7	ω	ω	2	7	7	1	ω	ω	ъ	ω	ω	7	1		
	ACT4	10	Ц	11	11	5	5	₽	5	₽	10	5	11	1	ъ	57	1	11	5		
	FAC15	4	15	ь	ь	4	ъ	ω	4	4	15	0	14	46	15	15	4	₅	99		
	FAC26	15	ω	₽	0	46	0	4	4	15	9	0	0	16	0	1	15	9	0		
	POSN7	1	Ц	₽	ב	1	1	₽	₽	₽	1	1	₽	15	₽	1	1	1	┙		
	NJ8	z	z	z	z	z	z	z	z	z	z	z	С	z	z	z	z	z	z		
	EQP9	4	4	4	4	4	99	4	4	4	4	0	4	0	4	4	4	4	0		
	PHYS10	ы	1	1	1	1	Ľ	↦	Ľ	1	ь	0	Н	98	ь	1	ъ	₽	0		
	AGE11	42	26	44	20	31	27	23	39	58	23	901	61	904	50	38	32	39	903		
	SEX12	П	П	≤	≤	П	т	≤	TI	≤	т	≤	TI	Z	≤	П	T	т	TI		
PERSONS	VTYPE13	Ь	1				↦		ω	ω	ω	↦			31		ω	4			
	DIR14	∞	7				ω		2	7	7	⊢			5		ω	7			
i	ACT15																				
	FAC116																				
	16																				

FAC217 POSN18

FAC127	FAC127 FAC228	FAC127 FAC228 POSN29 INI30	FAC127 FAC228 POSN29 INI30	FAC127 FAC228 POSN29 INI30 FOP31	FAC127 FAC228 POSN29 INI30 FOP31 PHYS32
4 1 DIR25 ACT26 FAC127	4 DIR25 ACT26 FAC127 FAC228	4 DIR25 ACT26 FAC127 FAC228 POSN29 INJ30	4 1 DIR25 ACT26 FAC127 FAC228 POSN29 INJ30	6 ACT26 FAC127 FAC228 POSN29 I	4 DIR25 ACT26 FAC127 FAC228 POSN29 INJ30 EOP31
ACT26 FAC127	S ACT26 FAC127 FAC228	S ACT26 FAC127 FAC228 POSN29 INJ30	S ACT26 FAC127 FAC228 POSN29 INJ30	S ACT26 FAC127 FAC228 POSN29 INI30 EOP31 I	S ACT26 FAC127 FAC228 POSN29 INI30 FOD31 PHYS32
EAC127	EAC127 FAC228	FAC127 FAC228 POSN29 INI30	FAC127 FAC228 POSN29 INI30	EAC127 EAC228 POSN29 INI30 FOP31	FAC127 FAC228 POSN29 INI30 FOP31 PHYS32
FAC228	~	POSN29 INJ30	POSN29 INJ30	3 POSN29 INJ30 EQP31 I	3 POSNZ9 INJ30 EOP31 PHYS32 /
	POSN29	9 INJ30	9 INJ30	9 INJ30 EQP31 I	9 INJ30 EOP31 PHYS32

Weaver Lake Road from approx. 300' east and west of Fish Lake Road (2013- 2015) Crash data is managed by the Mn/DOT Office of Traffic, Safety, and Operations.

05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	SYS
24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	24300102	NUM
003+00.135	003+00.092	003+00.074	003+00.063	003+00.054	003+00.048	003+00.039	003+00.039	003+00.039	003+00.039	003+00.039	003+00.039	003+00.039	003+00.039	003+00.039	003+00.030	003+00.030	003+00.020	003+00.019	002+00.859	002+00.813	REF_POINT
0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	0524300102	GIS_ROUTE
3.135	3.092	3.074	3.063	3.054	3.048	3.039	3.039	3.039	3.039	3.039	3.039	3.039	3.039	3.039	3.030	3.030	3.020	3.019	2.859	2.813	GIS_TM
Z	Z	<	Z	2	2	2	ш	2	2	Z	z	2	8	Z	2	ш	m	2	П	8	RD_DIR
																					ELEM
1	2	₽	1	1	1	1	2	1	1	1	1	1	₽	1	1	1	1	1	2	ω	RELY
ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	2	N
C	_	C	_	_	_	_	C	_	_	_	C	_	C	_	C	_	_	_	_	_	R_U

CO CITY DOW MONTH DAY YEAR TIME 27 2430 1-Sun 10 27 2013 2117 27 2430 6-Fri 4 26 2013 1235 27 2430 2-Mon 12 23 2013 1628 27 2430 2-Mon 12 23 2013 1023 27 2430 5-Thu 11 21 2013 1250 27 2430 5-Thu 11 21 2013 1250 27 2430 5-Thu 11 21 2013 1250 27 2430 5-Thu 12 5 2013 1832 27 2430 5-Thu 12 5 2013 1832 27 2430 5-Thu 12 5 2013 1832 27 2430 3-Tue 2 2 2 2015 1758
DOW MONTH DAY YEAR 1-Sun 10 27 2013 6-Fri 4 26 2013 2-Mon 11 7 2013 2-Mon 12 23 2013 7-Sat 3 16 2013 5-Thu 11 21 2013 5-Thu 11 21 2013 5-Thu 12 5 2013 5-Thu 12 20 2014 4-Wed 5 20 2015 6-Fri 12 18 2015 2-Mon 1 20
MONTH DAY YEAR 10 27 2013 4 26 2013 1 7 2013 12 23 2013 11 21 2013 11 21 2013 11 21 2013 12 5 2013 12 5 2013 12 5 2013 12 5 2013 2 25 2013 2 25 2014 5 20 2015 8 17 2015 12 18 2015 12 29 2015 1 12 2015 1 12 2014 1 20 2014 1 20 2014 1 20 2015 1 20 2014 20 2015 2015 2
H DAY YEAR 27 2013 26 2013 7 2013 16 2013 21 2013 21 2013 21 2013 5 2013 5 2013 5 2013 5 2013 15 2013 15 2013 25 2014 20 2015 17 2015 18 2015 18 2015 19 2015 19 2015 20 2014 20 2015 20 2014 20 2015 20 2014 20 2015 20 2014 20 2015 20 2014 20 2015 20 2014 20 2015 20 2014 20 2015 20 2014 20 2015 20 2014
YEAR 2013 2013 2013 2013 2013 2013 2013 2013
TIME 2217 1235 0721 1628 1102 1250 0634 1647 1808 1832 1416 1758 1832 1446 1758 1904 2238 1040 2238 11554 1167 11769 2045

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NUM_KILLED	
2	2	2	2	2	2	2	2	2	2	4	2	2	ω	2	2	2	2	2	2	2	NUM_VEH	
7	2	₽	┙	4	₽	7	2	4	4	₽	4	4	4	4	21	4	7	1	7	┙	JUNC	
40	40	40	40	40	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	ST	
⊣	_	<u>~</u>	1	_	↦	ш	ш	_	₽	ь	_	<u>~</u>	₽	↦	<u> </u>	<u> </u>	⊢	↦	ь	2	TYPE	
⊣	_	<u>~</u>	1	_	↦	ш	ш	_	₽	ь	_	<u>~</u>	₽	2	5	<u> </u>	⊢	↦	ь	90	DIAG	
₽	1	1	1	1	₽	₽	ш	1	₽	₽	1	₽	₽	₽	1	₽	₽	₽	ь	2	LOC1	
98	1	98	98	98	98	₽	ш	1	₽	98	1	₽	₽	₽	1	₽	₽	98	ь	98	TCD	
₽	4	1	4	1	₽	₽	4	1	₽	₽	4	4	4	4	Ľ	₽	ω	2	ь	4	5	
2	1	Ь	2	2	1	2	1	1	1	1	4	1	2	2	2	1	2	1	1	1	WTHR1	
2	1	0	0	0	₽	0	Ц	0	1	0	0	₽	0	0	0	1	0	0	0	₽	WTHR2	
₽	₽	₽	2	2	₽	4	ъ	_	₽	5	ω	5	ъ	1	2	ъ	5	1	1	₽	SURF	
1	₽	Ь	₽	ъ	ь	2	2	_	2	∞	2	2	2	1	Ľ	6	4	1	1	2	CHAR	
ω	ω	ъ	5	5	4	ъ	ω	5	ω	5	90	5	ω	ω	5	5	ω	90	5	5	DESGN	
151460090	153550316	152870173	140210199	140200110	150120165	153630099	153530027	152300080	151400160	140560360	133470218	133390367	133390357	133250035	133250107	130750180	133580228	130070031	131170049	133010030	ACC_NUM	
2	2	ь	Ь	ω	ω	Ь	Ц	2	4	ь	Ь	↦	4	ь	2	↦	ω	Ь	1	↦	VTYPE	PERSON1
ω	7	7	7	ω	7	ω	ω	ω	7	ω	7	7	7	7	7	2	ω	3	98	7	DIR	
1	↦	↦	Ь	Ь	11	11	ы	11	11	ь	4	10	11	ь	Ь	5	11	↦	ъ	∞	ACT	
1	15	15	4	9	ь	1	15	₽	1	ω	ь	61	1	Ľ	ъ	2	21	1	1	9	FAC1	
ш	15	4	0	0	↦	0	0	0	┙	46	0	0	0	0	0	4	2	0	0	9	FAC2	

1	1	⊢	1	₽	↦	↦	Ъ	↦	↦	ь	Ь	↦	↦	ь	Ь	₽	↦	Ь	Ь	Ь	POSN	
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	
4	4	4	4	4	4	4	99	4	4	4	4	4	4	99	4	4	4	4	4	4	ę	
1	1	1	1	1	₽	1	1	_	₽	Ь	_	_	1	1	_	1	1	1	1	⊣	PHYS	
30	42	18	20	34	48	64	58	44	37	23	52	29	30	34	51	30	59	44	45	25	AGE	
≤	≤	т	≤	≤	т	П	≤	≤	П	TI	П	≤	П	т	≤	т	П	≤	≤	TI	SEX	
1	1	ω	1	1	1	1	ω	_	1	1	1	ω	1	1	1	1	ω	1	2		VTYPE2	PERSON2
ω	7	7	7	ω	7	ω	ω	ω	7	з	7	7	7	7	ω	2	З	3	98		DIR3	
1	11	11	10	Ь	ь	11	ъ	9	ь	Ь	4	11	10	14	6	5	11	14	ш		ACT4	
_	┙	1	1	15	15	15	1	15	15	46	ω	₽	61	8	2	1	1	1	4		FAC15	
ᆸ	┙	₽	0	0	4	0	0	0	18	ω	61	0	46	0	21	┙	0	0	0		FAC26	
1	1	Ľ	1	1	<u> </u>	1	1	_	_	1	_	_	<u> </u>	1	₽	_	_	ъ	Ь		POSN7	
С	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z		NJ8	
4	4	4	4	4	4	4	99	4	99	4	4	4	4	4	99	4	4	4	4		EQP9	
ב	1	₽	1	1	₽	1	1	₽	2	Ь	1	₽	₽	1	90	1	₽	Ц	1		PHYS10	
33	38	22	20	19	23	60	35	50	28	50	29	43	55	31	81	23	67	33	29		AGE11	
F	T	T	≤	≤	≤	П	≤	т	П	≤	F	F	П	≤	FI	П	≤	≤	≤		SEX12	
₽		₽					ω			₽		ω	₽	ъ		1	ω				VTYPE13	PERSON3
ω		7					ω			ω		7	7	7		2	ω				DIR14	
																					ACT15	
																					FAC116	

Fish Lake Road approx. 150' south of Weaver Lake Road (2013 -2015)
Crash data is managed by the Mn/DOT Office of Traffic, Safety, and Operations.

Crash da	ta is manage	d by the Mn/DC	I Office of I rat	tic, Satety,	and Operation	ons.			
SYS	NOM	REF_POINT	GIS_ROUTE	GIS_TM	RD_DIR	ELEM	RELY	N	R _∪
05	24300107	_	0524300107	2.790	Z		₽	ω	C
05	24300107	002+00.790	0524300107	2.790	Z		Ь	ω	_
05	24300107	002+00.790	0524300107	2.790	Z		ь	ω	C
05	24300107	002+00.820	0524300107	2.820	Z		ь	ω	C
05	24300107	002+00.871	0524300107	2.871	ш		ь	ω	C
05	24300107	002+00.878	0524300107	2.878	Z		1	ω	_
05	24300107	002+00.890	0524300107	2.890	z		1	ω	C
05	7	002+00.890	0524300107	2.890	Z	↦	₽	ω	C
05	7	002+00.890	0524300107	2.890	Е		Ь	ω	_

VEH 1 WAS EB ON WEAVER LAKE RD IN TRAFFIC. VEH 2 APPROACHED VEH 1 FROM BEHIND. VEH 2 APPLIED BRAKES	UNIT1 WAS STOPPED IN THE RIGHT TURN LANE, DUE TO THE RED LIGHT, TO GO EAST ONTO WEAVER LAKE ROAD FR	WHILE ON ROUTINE PATROL IN THE AREA OF WEAVER LAKE RD AND W FISH LAKE RD, I OBSERVED TWO VEHICLES S	UNIT #2 MADE TURN FROM WB WEAVER TO SB EAST FISH LAKE RD. DRIVER OF UNIT #1 NB EAST FISH, UNABLE T	BOTH VEHICLES WERE EASTBOUND ON WEAVER LAKE RD. DRIVER 1 STOPPED FOR OTHER TRAFFIC. DRIVER 2 WAS	#1 SAID SHE WAS SLOWING WHEN #2 IN FRONT OF HER BEGAN TO START SKIDDING, #1 APPLIED HER BRAKES BUT	DRIVER WAS TRAVELING NORTH ON EAST FISH LAKE RD APPROACHING THE CURVE WEST BY MAPLE LA WHEN SHE HIT	PROPERTY DAMAGE CRASH ONLY, NO INJURIES. D1 OF V1 SAID HE WAS TURNING FROM EB MAPLE LANE TO NB EAS	* DRIVER CONTACTED US COMPLAINING OF NECK PAIN FROM OUR MC DONALDS AT 2307. * HE IS UNSURE OF WH	ATP
27	27	27	27	27	27	27	27	27	8
2430	2430	2430	2430	2430	2430	2430	2430	2430	CITY
6-Fri	2-Mon	6-Fri	1-Sun	1-Sun	3-Tue	7-Sat	7-Sat	5-Thu	DOW
12	10	7	₽	ω	2	12	11	ъ	MONTH
18	13	26	5	1	25	27	1	∞	DAY
2015	2014	2013	2014	2015	2014	2014	2014	2014	YEAR
1721	1538	1857	2155	1034	0700	1121	2154	2200	TIME

0 0	0	0	0	0	0	0	0	NUM_KILLED		
5 ~	2	2	2	ω	ъ	2	₽	NUM_VEH		
4 4	4 4	7	2	⊣	ш	2	2	JUNC		
40	45	40	40	40	45	40	40	S		
р н	ч н	1	_	1	13	_	37	TYPE		
1 5	1 1	ъ	_	1	98	5	7	DIAG		
р н	ч —	1	_	1	1	₽	1	1001		
- Н	. р	1	_	98	90	4	98	TCD		
4 1	. р	4	_	1	1	4	4	득		
μu	, 1	1	Ц	_	4	ш	ω	WTHR1		
1 0) 	0	0	_	Ц	0	0	WTHR2		
1	, L	5	<u> </u>	5	з	ш	2	SURF		
1 6	, <u>1</u>	6	₽	5	5	5	5	CHAR		
vī v	ı Uı	∞	5	∞	99	∞	∞	DESGN		
153520290	132100008	150060002	150600042	140560115	143610196	143070164	141290001	ACC_NUM		
ıω	, 1	ר	4	1	2	Ь	₽	VTYPE	PERSON1	
ω μ	7	∞	ω	1	0	ω	1	DIR		
1	<u>,</u> 1	1	11	10	0	6	1	ACT		
	15	ω	1	46	ω	2	0	FAC1		
0 0	0	46	0	61	0	0	0	FAC2		

Ь	1	ь	1	1	1	1	1	1	POSN	
С	z	z	z	z	z	z	z	С	Ξ	
4	4	4	4	4	4	ω	4	ω	ĘQ	
↦	⊢	ш	ᆫ	Ь	Ь	ш	ь	<u> </u>	PHYS	
54	64	66	20	41	18	19	25	18	AGE	
≤	≤	≤	≤	т	711	т	≤	≤	SEX	
⊢	₽	1	ω	ω	₽		ω		VTYPE2	PERSON2
ω	σ	98	6	ω	ᆸ		ر.		DIR3	
Ь	σ	ш	6	ב	ᆫ		ш		ACT4	
90	16	0	1	4	46		ר		FAC15	
0	0	0	0	0	61		0		FAC26	
Ь	ь	ш	Ь	Ь	ь		ш		POSN7	
z	z	z	z	z	z		z		BINI8	
4	4	4	4	4	4		4		EQP9	
Ь	₽	1	1	ר	₽		ר		PHYS10	
22	16	41	19	44	30		54		AGE11	
≤	≤	≤	≤	TI	Τη		TI		SEX12	
1				4	1		ω		VTYPE13	PERSON3
ω				ω	₽		5		DIR14	

Minnesota Department of Transportation

Metropolitan District Waters Edge Building 1500 County Road B2 West Roseville, MN 55113

July 7, 2016

John Hagen, P.E., PTOE Transportation Operations Engineer City of Maple Grove 12800 Arbor Lakes Parkway PO Box 1180 Maple Grove, MN 55311

Dear Mr. Hagen,

This letter is to serve as your notification that the Interchange Review Committee has determined that the proposed CR 610 Extension to I-94 and MN 610 as shown in your July 5, 2016 memo is consistent with the qualifying criteria found in Appendix F of the Council's Transportation Policy Plan and no additional documentation is necessary.

Please note that this evaluation concerns itself only with appropriate location of access to the trunk highway system's Twin Cities freeways. We do have safety concerns with the specifics of how the movement from westbound TH 610 to eastbound I-94 is proposed and we look forward to later stages in the process where we can consider a wide range of alternatives to improve upon how this might be accomplished.

As the project layout and design progresses, please continue to work with MnDOT, FHWA and Met Council to assure the technical and design criteria of Appendix F continue to be met and that appropriate steps are taken to complete the Metropolitan Council's Controlled Access Approval (contact Steve Peterson at 651-602-1819) and FHWA's Interchange Access Request (IAR) (including a PM peak hour analysis) when needed.

We appreciate your efforts to work with the Interchange Review Committee in our effort to understand this project.

If you have any questions concerning this letter, please contact me at (651) 234-7784. Sincerely,

Karen Scheffing Principal Planner

CC:

Lynne Bly, MnDOT Tony Fischer, MnDOT John Griffith, MnDOT Ramankutty Kanankutty, MnDOT Steve Peterson, Met Council Ryan Hickson, FHWA Cyrus Knutson, MnDOT

Proposed Improvements

CSAH 610

Maple Grove - CSAH 610 Expansion

399: CR 30 and	d Lawndale	
Existing Volume	1936	vehicles
Existing Delay	36	sec/veh
Existing Total Delay	69696	seconds
Future Volume	737	vehicles
Future Delay	28	sec/veh
Future Total Delay	20636	seconds
Total Delay Reduction	49060	seconds

40:. CR 30 and	Garland Ln	
Existing Volume	2134	vehicles
Existing Delay	19	sec/veh
Existing Total Delay	40546	seconds
Future Volume	935	vehicles
Future Delay	15	sec/veh
Future Total Delay	14025	seconds
Total Delay Reduction	26521	seconds

401:CR 30 and Dunkirk/Maple Grove Parkway			
Existing Volume	vehicles		
Existing Delay	37	sec/veh	
Existing Total Delay	145595	seconds	
Future Volume	2751	vehicles	
Future Delay	26	sec/veh	
Future Total Delay	71526	seconds	
Total Delay Reduction	74069	seconds	

402: Maple Grove Parkway/West 94 Ramps				
Existing Volume 3549 vehicles				
Existing Delay	37	sec/veh		
Existing Total Delay	131313	seconds		
Future Volume	2591	vehicles		
Future Delay	30	sec/veh		
Future Total Delay 77730 seconds				
Total Delay Reduction 53583 seconds				

403: Maple Grove Parkway/East 94 Ramps					
Existing Volume 3164 vehicles					
Existing Delay	39	sec/veh			
Existing Total Delay	123396	seconds			
Future Volume	2398	vehicles			
Future Delay	29	sec/veh			
Future Total Delay	69542	seconds			
Total Delay Reduction	53854	seconds			

404: Maple Grove Parkway/Upland Ln					
Existing Volume 2601 vehicle					
Existing Delay	19	sec/veh			
Existing Total Delay	49419	seconds			
Future Volume	2061	vehicles			
Future Delay	16	sec/veh			
Future Total Delay	32976	seconds			
Total Delay Reduction	16443	seconds			

405: Maple Grove Parkway/Hospital Drive				
Existing Volume 2209 vehicles				
Existing Delay	28	sec/veh		
Existing Total Delay	61852	seconds		
Future Volume	1750	vehicles		
Future Delay	22	sec/veh		
Future Total Delay	38500	seconds		
Total Delay Reduction	23352	seconds		

406: Maple Grove Parkway/Grove Circle					
Existing Volume 2369 vehicles					
Existing Delay	17	sec/veh			
Existing Total Delay	40273	seconds			
Future Volume	1839	vehicles			
Future Delay	16	sec/veh			
Future Total Delay	29424	seconds			
Total Delay Reduction 10849 seconds					

407: Maple Grove Parkway/South 610 Ramps			
Existing Volume 1901 vehicles			
Existing Delay	4	sec/veh	
Existing Total Delay	7604	seconds	
Future Volume	1274	vehicles	
Future Delay	4	sec/veh	
Future Total Delay	5096	seconds	
Total Delay Reduction	2508	seconds	

408: Maple Grove Parkway/North 610 Ramps				
Existing Volume 1390 vehicles				
Existing Delay	17	sec/veh		
Existing Total Delay	23630	seconds		
Future Volume	975	vehicles		
Future Delay	13	sec/veh		
Future Total Delay	12675	seconds		
Total Delay Reduction	10955	seconds		

409: Maple Grove Parkway/CR 81				
Existing Volume 2431 vehicles				
Existing Delay	16	sec/veh		
Existing Total Delay	38896	seconds		
Future Volume	2331	vehicles		
Future Delay	16	sec/veh		
Future Total Delay	37296	seconds		
Total Delay Reduction 1600 seconds				

410: CR 81/Fernbrook Lane			
Existing Volume	3355	vehicles	
Existing Delay	60	sec/veh	
Existing Total Delay	201300	seconds	
Future Volume	3255	vehicles	
Future Delay	51	sec/veh	
Future Total Delay	166005	seconds	
Total Delay Reduction	35295	seconds	

Total Network Dela	y Reduction	358089	seconds

Existing Conditions within Project Area

CSAH 610 Expansion City of Maple Grove

HENNEPIN COUNTY

MINNESOTA

June 7, 2018

Elaine Koutsoukos, TAB Coordinator Metropolitan Council 390 North Robert Street St. Paul, MN 55101

Re: Support for Regional Solicitation Application CSAH 610 Roadway Expansion Project From 93rd Avenue (CSAH 30) to I-94/TH 610

Dear Ms. Koutsoukos,

Hennepin County has been notified that the City of Maple Grove is submitting an application for funding as part of the Regional Solicitation through the Metropolitan Council. The project is the CSAH 610 Roadway Expansion Project as identified in the TH 610 Corridor Study.

The project will provide various mobility improvements in the Maple Grove area that include: additional access to I-94, an extension of TH 610 to the west, and connections to the local roadway system. Hennepin County supports this funding application and acknowledges that the county will have jurisdictional authority over the roadway. At this time, Hennepin County has no funding programmed in its 2018-2022 Transportation Capital Improvement Program (CIP) for this project. Additionally, Hennepin County will operate and maintain the CSAH 610 roadway facilities for the useful life of the improvements.

Hennepin County looks forward to working with the City of Maple Grove on this project, if the city is successful in securing funding.

Sincerely,

Carla Stueve, P.E., P.T.O.E.

County Engineer

Hennepin County Transportation Project Delivery

cc: Chad Ellos, Transportation Planning Division Manger

MnDOT Metro District 1500 West County Road B-2 Roseville, MN 55113

June 20, 2018

John Hagen, P.E., PTOE Transportation Operations Engineer City of Maple Grove 12800 Arbor Lakes Parkway Maple Grove, MN 55369-7064

Re: Letter of Support for City of Maple Grove
Metro Council/Transportation Advisory Board 2018 Regional Soli

Metro Council/Transportation Advisory Board 2018 Regional Solicitation Funding Request for CSAH 610 project from CSAH 30 to I-94

Dear Mr. Hagen,

This letter documents MnDOT Metro District's support for the City of Maple Grove's funding request to the Metro Council for the 2018 regional solicitation for 2022-23 funding for its proposed CSAH 610 project from CSAH 30 to I-94.

As proposed, this project would impact MnDOT right-of-way on both MN 610 and Interstate I-94. As the agency with jurisdiction over MN 610 and I-94, MnDOT will support Maple Grove and will allow the improvements proposed in the application for the CSAH 610 project from CSAH 30 to I-94. Details of a future maintenance agreement with the City of Maple Grove will need to be determined during project development to define how the project improvements on MN 65 will be maintained for the project's useful life.

No funding from MnDOT is currently programmed for this project, and no discretionary funding in years 2022-23 is currently anticipated. However Metro District does have other roadway investments planned to occur nearby. I would request that you coordinate project development with MnDOT Area staff so that our agencies can work together to best leverage our respective efforts.

MnDOT Metro District looks forward to continued cooperation with the City of Maple Grove as this project moves forward and as we work together to improve safety and travel options within the Metro Area.

If you have questions or require additional information at this time, please reach out to your Area Manager at April Crockett@state.mn.us or 651-234-7728.

Sincerely,

Scott McBride

Metro District Engineer

CC: April Crockett, Metro District West Area Manager

woth 2

Lynne Bly, Metro Program Director Dan Erickson, Metro State Aid Engineer

2018 Metropolitan Council Regional Solicitation CSAH 610 Expansion – Project Summary

Project Name: CSAH 610 Expansion

Applicant: City of Maple Grove Contact: John Hagen, PE, PTOE,

Transportation Operations Engineer

Email/Phone: jhagen@maplegrovemn.gov

(763) 494-6364

Project Details:

- Total Project Cost = \$20,477,000
- Requested Award Amount = \$7,000,000
- Construction Dates: Begin by June 2020
- Consistent with local & regional plans
- Preliminary plans completed
- State environmental documents completed
- Technical analysis complete for interstate access (update required)
- Right of way needs identified & ready for acquisition

Location Map:

Project Description:

The CSAH 610 project includes construction of a new four-lane divided A-Minor Arterial Expander roadway between CSAH 30 and TH 610. The project will complete the missing roadway movements in the I-94 interchange area, including a westbound I-94 to westbound CSAH 610 loop and an I-94 bridge on CSAH 610 connecting CSAH 30 to TH 610. CSAH 30 will be realigned to form a new signalized intersection with CSAH 610, and a traffic signal will be installed at the proposed CSAH 610/Eastbound I-94 on-ramp intersection. The project will also construct a multiuse trail along the south side of CSAH 610 that will connect to existing multiuse trails on CSAH 30 and Maple Grove Parkway and provide a safe, convenient, and grade-separated pedestrian and bicycle crossing of I-94. The project is the next phase of the MnDOT TH 610 project that was recently constructed with Corridors of Commerce funding and is one of the few remaining A-Minor Arterial Expander roadways in the Met Council's 2040 Transportation Policy Plan that are planned, but not constructed.

Project Benefits:

- Improvements in regional accessibility and mobility by relieving congestion and travel delays on CSAH 30 and Maple Grove Parkway will promote growth and increase business demand, freight operations, and employment opportunities in the surrounding corridor.
- Reduction of existing traffic volumes on CSAH 30 and Maple Grove Parkway will provide the needed capacity for improving transit services and increasing access and mobility to nearby schools, employment centers, healthcare facilities, commercial areas, and the Blue Line LRT.
- Provides an additional pedestrian and bicycle route and serves as a connection between CSAH 30 and the Medicine Lake Regional Trail and will provide the missing RBTN connection between existing RBTN Corridors and Alignments west and east of I-94 making it easier and safer for Maple Grove residents to cross I-94 connect to the regional bicycle system.
- Will fulfill regional plans for expansion, while supporting infrastructure investments that are currently being made by MnDOT in the area.