

#### Application

| 04751 - 2016 Roadway Expansion                                 |                     |  |
|----------------------------------------------------------------|---------------------|--|
| 05251 - I-35 / TH 97 Interchange Reconstruction                |                     |  |
| Regional Solicitation - Roadways Including Multimodal Elements |                     |  |
| Status:                                                        | Submitted           |  |
| Submitted Date:                                                | 07/15/2016 12:29 PM |  |

### **Primary Contact**

| Name:*                                          | Salutation                           | Jack<br>First Name       | L<br>Middle Name | Forslund                             |
|-------------------------------------------------|--------------------------------------|--------------------------|------------------|--------------------------------------|
| Title:                                          | Multimodal Pla                       | inning Manager           |                  |                                      |
| Department:                                     | Anoka County Transportation Division |                          |                  |                                      |
| Email:                                          | jack.forslund@co.anoka.mn.us         |                          |                  |                                      |
| Address:                                        | 1440 Bunker Lake Boulevard NW        |                          |                  |                                      |
| *                                               | Andover<br><sub>City</sub>           | Minneso<br>State/Provinc |                  | <b>55304-4005</b><br>Postal Code/Zip |
| Phone:*                                         | 763-862-4230<br>Phone                |                          | Ext.             |                                      |
| Fax:                                            | 763-862-4201                         |                          |                  |                                      |
| What Grant Programs are you most interested in? | Regional Solici<br>Elements          | itation - Roadwa         | ays Includir     | ng Multimodal                        |

# **Organization Information**

Name:

 Jurisdictional Agency (if different):
 County Government

 Organization Type:
 County Government

 Address:
 1440 BUNKER LAKE BLVD

 \*
 ANDOVER
 Minnesota
 55304

 City
 State/Province
 Postal Code/Zip

County: Anoka
Phone:\* 763-862-4200
Fax:
PeopleSoft Vendor Number 0000003633A15

### **Project Information**

Project NameI-35 at TH 97/CSAH 23 InterchangePrimary County where the Project is LocatedAnokaJurisdictional Agency (If Different than the Applicant):

Brief Project Description (Limit 2,800 characters; approximately 400 words)

Anoka County seeks a federal grant of \$7 million to fund the reconstruction of the interchange at Interstate (I)-35 and Minnesota Trunk Highway (TH) 97/County State Aid Highway (CSAH) 23 in Columbus, Minnesota. This interchange is of critical importance to area businesses and over 50,000 residents in the Columbus and Forest Lake area.

This interchange is one of only two serving a large area of the northeastern region of the Twin Cities Metropolitan Area. Other than the I-35/ CSAH 2 (Broadway Avenue) interchange in Washington County, the nearest interchanges are several miles to the north or south.

The interchange is functionally obsolete and is an inhibition to the region's economic development and quality of life. During the afternoon peak travel times, the northbound I-35 traffic exiting at the interchange frequently backs up onto I-35. Similarly, in the morning it is common to see TH 97, east of I-35, with vehicle queues of over one mile that are waiting to enter southbound I-35. This back-up is due to insufficient capacity of the interchange, which also contributes to travel safety concerns. In addition to being functionally obsolete, the bridge portion of the interchange (TH 97), which was constructed in 1967 is facing deficiencies including "black bar" - bare reinforcing steel that is corroding and causing spalled concrete to fall onto I-35.

As proposed, the existing interchange will be reconstructed as a diverging diamond interchange. Project components include widening the existing two-lane TH 97 Bridge to a four-lane facility with shoulders, adding turn lanes, consolidating access points, and constructing a multiuse trail facility. This project is part of a larger vision for the interchange area which includes realigning CSAH 54 and Hornsby Street, which will be addressed as a separate project.

MnDOT has allocated \$3 million in funding to repair the structurally deficient TH 97 bridge over I-35, which is not sufficient to fund other vital improvements. The County seeks to leverage this investment by leading the effort to obtain the funding necessary to implement all critical improvements at the same time that the TH 97 bridge is closed for repair. Closure of the bridge during repair is anticipated to result in devastating impacts to local businesses, residents, and employers due to detours resulting in up to 20 additional minutes of travel time. With the proposed 4-lane bridge, traffic can be maintained during construction in lieu of the devastating affects of a bridge closure. Obtaining the funding to implement all improvements at once will prevent impacts from a future, additional construction phase.

Include location, road name/functional class, type of improvement, etc.

TIP Description Guidance (will be used in TIP if the project is selected for funding) **Project Length (Miles)** 

I-35 and TH 97/CSAH 23 Interchange, Columbus, Reconstruct existing interchange

0.8

#### **Project Funding**

| Are you applying for funds from another source(s) to implement this project?                     | Yes             |
|--------------------------------------------------------------------------------------------------|-----------------|
| If yes, please identify the source(s)                                                            | TIGER Grant     |
| Federal Amount                                                                                   | \$7,000,000.00  |
| Match Amount                                                                                     | \$3,280,000.00  |
| Minimum of 20% of project total                                                                  |                 |
| Project Total                                                                                    | \$10,280,000.00 |
| Match Percentage                                                                                 | 31.91%          |
| Minimum of 20%<br>Compute the match percentage by dividing the match amount by the project total | 1               |

age by np

| Source of Match Funds | \$3,000,000 MnDOT Funds for TH 97 bridge replacement, |
|-----------------------|-------------------------------------------------------|
|                       | \$280,000 County General Highway Funds                |

A minimum of 20% of the total project cost must come from non-federal sources; additional match funds over the 20% minimum can come from other federal sources

#### **Preferred Program Year**

Select one:

2020

For TDM projects, select 2018 or 2019. For Roadway, Transit, or Trail/Pedestrian projects, select 2020 or 2021.

#### Additional Program Years:

Select all years that are feasible if funding in an earlier year becomes available.

# Project Information: Roadway Projects

| County, City, or Lead Agency                                                                                                                                                   | Anoka County                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional Class of Road                                                                                                                                                       | A Minor Expander (TH 97) and A Minor Reliever (CSAH 23)                                                                                             |
| Road System                                                                                                                                                                    | TH (TH 97) and CSAH (CSAH 23)                                                                                                                       |
| TH, CSAH, MSAS, CO. RD., TWP. RD., CITY STREET                                                                                                                                 |                                                                                                                                                     |
| Road/Route No.                                                                                                                                                                 | 97                                                                                                                                                  |
| i.e., 53 for CSAH 53                                                                                                                                                           |                                                                                                                                                     |
| Name of Road                                                                                                                                                                   | Scandia Trail N and Lake Drive NE                                                                                                                   |
| Example; 1st ST., MAIN AVE                                                                                                                                                     |                                                                                                                                                     |
| Zip Code where Majority of Work is Being Performed                                                                                                                             | 55025                                                                                                                                               |
| (Approximate) Begin Construction Date                                                                                                                                          | 06/01/2020                                                                                                                                          |
| (Approximate) End Construction Date                                                                                                                                            | 10/01/2021                                                                                                                                          |
| TERMINI:(Termini listed must be within 0.3 miles of any wo                                                                                                                     | prk)                                                                                                                                                |
| From:<br>(Intersection or Address)                                                                                                                                             |                                                                                                                                                     |
| To:<br>(Intersection or Address)                                                                                                                                               |                                                                                                                                                     |
| DO NOT INCLUDE LEGAL DESCRIPTION                                                                                                                                               |                                                                                                                                                     |
| Or At                                                                                                                                                                          | Interchange at I-35 and TH 97/CSAH 23                                                                                                               |
| Primary Types of Work                                                                                                                                                          | Reconstruction of interchange to a Divergent Diamond<br>Interchange (DDI) design, Bridge,Grading, Agg Base, Bit Base,<br>sidewalk, trail, ped ramps |
| Examples: GRADE, AGG BASE, BIT BASE, BIT SURF,<br>SIDEWALK, CURB AND GUTTER,STORM SEWER,<br>SIGNALS, LIGHTING, GUARDRAIL, BIKE PATH, PED RAMPS,<br>BRIDGE, PARK AND RIDE, ETC. |                                                                                                                                                     |
| BRIDGE/CULVERT PROJECTS (IF APPLICABLE)                                                                                                                                        |                                                                                                                                                     |
| Old Bridge/Culvert No.:                                                                                                                                                        | 02806                                                                                                                                               |
| New Bridge/Culvert No.:                                                                                                                                                        | 02806                                                                                                                                               |
| Structure is Over/Under<br>(Bridge or culvert name):                                                                                                                           | I-35                                                                                                                                                |

# Specific Roadway Elements

| CONSTRUCTION PROJECT ELEMENTS/COST<br>ESTIMATES            | Cost           |
|------------------------------------------------------------|----------------|
| Mobilization (approx. 5% of total cost)                    | \$375,000.00   |
| Removals (approx. 5% of total cost)                        | \$200,000.00   |
| Roadway (grading, borrow, etc.)                            | \$360,000.00   |
| Roadway (aggregates and paving)                            | \$1,330,000.00 |
| Subgrade Correction (muck)                                 | \$175,000.00   |
| Storm Sewer                                                | \$600,000.00   |
| Ponds                                                      | \$0.00         |
| Concrete Items (curb & gutter, sidewalks, median barriers) | \$470,000.00   |
| Traffic Control                                            | \$230,000.00   |
| Striping                                                   | \$70,000.00    |
| Signing                                                    | \$20,000.00    |
| Lighting                                                   | \$0.00         |
| Turf - Erosion & Landscaping                               | \$250,000.00   |
| Bridge                                                     | \$3,300,000.00 |
| Retaining Walls                                            | \$0.00         |
| Noise Wall (do not include in cost effectiveness measure)  | \$0.00         |
| Traffic Signals                                            | \$850,000.00   |
| Wetland Mitigation                                         | \$0.00         |
| Other Natural and Cultural Resource Protection             | \$0.00         |
| RR Crossing                                                | \$0.00         |
| Roadway Contingencies                                      | \$1,000,000.00 |
| Other Roadway Elements                                     | \$750,000.00   |
| Totals                                                     | \$9,980,000.00 |

# Specific Bicycle and Pedestrian Elements

| CONSTRUCTION PROJECT ELEMENTS/COST<br>ESTIMATES | Cost         |
|-------------------------------------------------|--------------|
| Path/Trail Construction                         | \$210,000.00 |
| Sidewalk Construction                           | \$40,000.00  |
| On-Street Bicycle Facility Construction         | \$0.00       |
| Right-of-Way                                    | \$0.00       |

| Pedestrian Curb Ramps (ADA)                            | \$20,000.00  |
|--------------------------------------------------------|--------------|
| Crossing Aids (e.g., Audible Pedestrian Signals, HAWK) | \$0.00       |
| Pedestrian-scale Lighting                              | \$0.00       |
| Streetscaping                                          | \$0.00       |
| Wayfinding                                             | \$0.00       |
| Bicycle and Pedestrian Contingencies                   | \$30,000.00  |
| Other Bicycle and Pedestrian Elements                  | \$0.00       |
| Totals                                                 | \$300,000.00 |

# Specific Transit and TDM Elements

| CONSTRUCTION PROJECT ELEMENTS/COST<br>ESTIMATES                                 | Cost   |
|---------------------------------------------------------------------------------|--------|
| Fixed Guideway Elements                                                         | \$0.00 |
| Stations, Stops, and Terminals                                                  | \$0.00 |
| Support Facilities                                                              | \$0.00 |
| Transit Systems (e.g. communications, signals, controls, fare collection, etc.) | \$0.00 |
| Vehicles                                                                        | \$0.00 |
| Contingencies                                                                   | \$0.00 |
| Right-of-Way                                                                    | \$0.00 |
| Other Transit and TDM Elements                                                  | \$0.00 |
| Totals                                                                          | \$0.00 |

# Transit Operating Costs

| Number of Platform hours                    | 0      |
|---------------------------------------------|--------|
| Cost Per Platform hour (full loaded Cost)   | \$0.00 |
| Substotal                                   | \$0.00 |
| Other Costs - Administration, Overhead,etc. | \$0.00 |

### Totals

| Total Cost                   | \$10,280,000.00 |
|------------------------------|-----------------|
| Construction Cost Total      | \$10,280,000.00 |
| Transit Operating Cost Total | \$0.00          |

### **Requirements - All Projects**

#### **All Projects**

1. The project must be consistent with the goals and policies in these adopted regional plans: Thrive MSP 2040 (2014), the 2040 Transportation Policy Plan, the 2040 Regional Parks Policy Plan (2015), and the 2040 Water Resources Policy Plan (2015).

#### Check the box to indicate that the project meets this requirement. Yes

2. The project must be consistent with the 2040 Transportation Policy Plan. Reference the 2040 Transportation Plan objectives and strategies that relate to the project.

Goal B: Safety and Security (page 2.7)

Objectives:

- Reduce crashes and improve safety and security for all modes of passenger travel and freight transport. (page 2.7)

- Strategy B1: Regional transportation partners will incorporate safety and security considerations for all modes and users throughout the processes of planning, funding, construction, operation. (page 2.7)

Goal C: Access to Destinations (page 2.8)

Objectives:

 Increase the availability of multimodal travel options, especially in congested highway corridors. (page 2.8)

List the goals, objectives, strategies, and associated pages:

- Increase travel time reliability and predictability for travel on highway and transit systems. (page 2.8)

- Strategy C9: The Council will support investments in A-minor arterials that build, manage, or improve the system's ability to supplement the capacity of the principal arterial system and support access to the region's job, activity, and industrial and manufacturing concentrations. (page 2.9)

Goal D: Competitive Economy (page 2.11)

Objectives:

- Support the region's economic competitiveness through the efficient movement of freight. (page 2.11)

- Strategy D2: The Council will coordinate with other agencies planning and pursuing

transportation investments that strengthen connections to other regions in Minnesota and the Upper Midwest, the nation, and world including intercity bus and passenger rail, highway corridors, air service, and freight infrastructure. (page 2.11)

Goal E: Healthy Environment (page 2.12)

Objectives:

- Reduce transportation-related air emissions. (page 2.12)

- Strategy E1: Regional transportation partners recognize the role of transportation choices in reducing emissions and will support state and regional goals for reducing greenhouse gas and air pollutant emissions. The Council will provide information and technical assistance to local governments in measuring and reducing transportation-related emissions. (page 2.12)

Goal F: Leveraging Transportation Investments to Guide Land Use (page 2.14)

Objectives:

- Maintain adequate highway, riverfront, and railaccessible land to meet existing and future demand for freight movement. (page 2.14)

- Strategy F3: Metropolitan Council, MnDOT, and local governments will plan, build, operate, maintain, and rebuild an adequate system of interconnected highways and local roads. (page 2.14)

3. The project or the transportation problem/need that the project addresses must be in a local planning or programming document. Reference the name of the appropriate comprehensive plan, regional/statewide plan, capital improvement program, corridor study document [studies on trunk highway must be approved by the Minnesota Department of Transportation and the Metropolitan Council], or other official plan or program of the applicant agency [includes Safe Routes to School Plans] that the project is included in and/or a transportation problem/need that the project addresses.

# - City of Columbus 2030 Comprehensive Plan (page 38)

#### List the applicable documents and pages:

#### - Anoka County 2016-2020 Capital Improvements Plan (page 34)

4. The project must exclude costs for studies, preliminary engineering, design, or construction engineering. Right-of-way costs are only eligible as part of bicycle/pedestrian projects, transit stations/stops, transit terminals, park-and-ride facilities, or pool-and-ride lots. Noise barriers, drainage projects, fences, landscaping, etc., are not eligible for funding as a standalone project, but can be included as part of the larger submitted project, which is otherwise eligible.

#### Check the box to indicate that the project meets this requirement. Yes

5. Applicants that are not cities or counties in the seven-county metro area with populations over 5,000 must contact the MnDOT Metro State Aid Office prior to submitting their application to determine if a public agency sponsor is required.

#### Check the box to indicate that the project meets this requirement. Yes

6.Applicants must not submit an application for the same project elements in more than one funding application category.

#### Check the box to indicate that the project meets this requirement. Yes

7. The requested funding amount must be more than or equal to the minimum award and less than or equal to the maximum award. The cost of preparing a project for funding authorization can be substantial. For that reason, minimum federal amounts apply. Other federal funds may be combined with the requested funds for projects exceeding the maximum award, but the source(s) must be identified in the application. Funding amounts by application category are listed below.

Roadway Expansion: \$1,000,000 to \$7,000,000

Roadway Reconstruction/ Modernization: \$1,000,000 to \$7,000,000

Roadway System Management \$250,000 to \$7,000,000

Bridges Rehabilitation/ Replacement: \$1,000,000 to \$7,000,000

#### Check the box to indicate that the project meets this requirement. Yes

8. The project must comply with the Americans with Disabilities Act.

#### Check the box to indicate that the project meets this requirement. Yes

9. The project must be accessible and open to the general public.

#### Check the box to indicate that the project meets this requirement. Yes

10. The owner/operator of the facility must operate and maintain the project for the useful life of the improvement.

#### Check the box to indicate that the project meets this requirement. Yes

11. The project must represent a permanent improvement with independent utility. The term independent utility means the project provides benefits described in the application by itself and does not depend on any construction elements of the project being funded from other sources outside the regional solicitation, excluding the required non-federal match. Projects that include traffic management or transit operating funds as part of a construction project are exempt from this policy.

#### Check the box to indicate that the project meets this requirement. Yes

12. The project must not be a temporary construction project. A temporary construction project is defined as work that must be replaced within five years and is ineligible for funding. The project must also not be staged construction where the project will be replaced as part of future stages. Staged construction is eligible for funding as long as future stages build on, rather than replace, previous work.

#### Check the box to indicate that the project meets this requirement. Yes

13. The project applicant must send written notification regarding the proposed project to all affected state and local units of government prior to submitting the application.

Check the box to indicate that the project meets this requirement. Yes

#### **Roadways Including Multimodal Elements**

1.All roadway and bridge projects must be identified as a Principal Arterial (Non-Freeway facilities only) or A-Minor Arterial as shown on the latest TAB approved roadway functional classification map.

Check the box to indicate that the project meets this requirement. Yes

#### Roadway Expansion and Reconstruction/Modernization projects only:

2. The project must be designed to meet 10-ton load limit standards.

Check the box to indicate that the project meets this requirement. Yes

#### Bridge Rehabilitation/Replacement projects only:

3.Projects requiring a grade-separated crossing of a Principal Arterial freeway must be limited to the federal share of those project costs identified as local (non-MnDOT) cost responsibility using MnDOTs Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities manual. In the case of a federally funded trunk highway project, the policy guidelines should be read as if the funded trunk highway route is under local jurisdiction.

#### Check the box to indicate that the project meets this requirement. Yes

4. The bridge must carry vehicular traffic. Bridges can carry traffic from multiple modes. However, bridges that <u>are exclusively</u> for bicycle or pedestrian traffic must apply under one of the Bicycle and Pedestrian Facilities application categories. Rail-only bridges are ineligible for funding.

#### Check the box to indicate that the project meets this requirement. Yes

5. The length of the bridge must equal or exceed 20 feet.

#### Check the box to indicate that the project meets this requirement. Yes

6. The bridge must have a sufficiency rating less than 80 for rehabilitation projects and less than 50 for replacement projects. Additionally, the bridge must also be classified as structurally deficient or functionally obsolete.

Check the box to indicate that the project meets this requirement. Yes

#### **Requirements - Roadways Including Multimodal Elements**

#### Expander/Augmentor/Non-Freeway Principal Arterial

| Expander                              |
|---------------------------------------|
| 2.845                                 |
| 0.274                                 |
| 10.3832                               |
| 1474382845671_RAD05251I35AnokaREX.pdf |
|                                       |

#### Reliever: Relieves a Principle Arterial that is a Freeway Facility

Facility being relievedI-35Number of hours per day volume exceeds capacity (based on the<br/>Congestion Report)0

### Reliever: Relives a Principle Arterial that is a Non-Freeway Facility

Facility being relieved

Number of hours per day volume exceeds capacity (based on the table below) 0

### Non-Freeway Facility Volume/Capacity Table

| Hour              | NB/EB Volume | SB/WB Volume | Capacity | Volume exceeds<br>capacity |
|-------------------|--------------|--------------|----------|----------------------------|
| 12:00am - 1:00am  |              |              | 0        |                            |
| 1:00am - 2:00am   |              |              | 0        |                            |
| 2:00am - 3:00am   |              |              | 0        |                            |
| 3:00am - 4:00am   |              |              | 0        |                            |
| 4:00am - 5:00am   |              |              | 0        |                            |
| 5:00am - 6:00am   |              |              | 0        |                            |
| 6:00am - 7:00am   |              |              | 0        |                            |
| 7:00am - 8:00am   |              |              | 0        |                            |
| 8:00am - 9:00am   |              |              | 0        |                            |
| 9:00am - 10:00am  |              |              | 0        |                            |
| 10:00am - 11:00am |              |              | 0        |                            |
| 11:00am - 12:00pm |              |              | 0        |                            |
| 12:00pm - 1:00pm  |              |              | 0        |                            |
| 1:00pm - 2:00pm   |              |              | 0        |                            |
| 2:00pm - 3:00pm   |              |              | 0        |                            |
| 3:00pm - 4:00pm   |              |              | 0        |                            |
| 4:00pm - 5:00pm   |              |              | 0        |                            |
| 5:00pm - 6:00pm   |              |              | 0        |                            |
| 6:00pm - 7:00pm   |              |              | 0        |                            |
| 7:00pm - 8:00pm   |              |              | 0        |                            |
| 8:00pm - 9:00pm   |              |              | 0        |                            |
| 9:00pm - 10:00pm  |              |              | 0        |                            |
| 10:00pm - 11:00pm |              |              | 0        |                            |
| 11:00pm - 12:00am |              |              | 0        |                            |
|                   |              |              |          |                            |

### Measure B: Project Location Relative to Jobs, Manufacturing, and Education

| Existing Employment within 1 Mile:                                       | 2019                                                     |
|--------------------------------------------------------------------------|----------------------------------------------------------|
| Existing Manufacturing/Distribution-Related Employment within 1<br>Mile: | 316                                                      |
| Existing Students:                                                       | 0                                                        |
| Upload Map                                                               | 1468426537709_I35-<br>TH97_Regional_Economy_06212016.pdf |

### Measure C: Current Heavy Commercial Traffic

| Location:                                      | TH 97 (east of I-35) |
|------------------------------------------------|----------------------|
| Current daily heavy commercial traffic volume: | 875                  |
| Date heavy commercial count taken:             | 2015                 |

**Measure D: Freight Elements** 

The existing TH 97 Bridge over I-35 is unable to safely accommodate freight traffic. A large number of trucks use the bridge to access I-35, a major intermodal freight corridor, as well as industrial areas located on either side of the bridge. Additionally, the TH 97/CSAH 23 interchange provides access to the Daniel A. Deponti Airport, which has been identified by the Federal Aviation Administration as a potential reliever airport for the Twin Cities. As such, the airport is an important component in the movement of goods and products.

Response (Limit 1,400 characters; approximately 200 words) impediment to safe freight movement and makes it difficult for trucks to make their necessary wide turns. Widening the bridge will allow for safer passage and access for these freight trucks. There is also little time for these trucks to obtain necessary speeds when moving through the

interchange due to spacing issues.

The narrowness of the current bridge is an

The proposed divergent-diamond interchange design will reduce the risk of dangerous vehicle contact and therefore the possibility of hazardous material spills as well. Adding capacity and dedicated turn-lanes to accommodate the traffic movements are paramount to improving safety and mobility within the proposed project area.

#### Measure A: Current Daily Person Throughput

| Upload Transit Map                                                   | 1468426740376_I35-TH97_Transit_06212016.pdf |
|----------------------------------------------------------------------|---------------------------------------------|
| For New Roadways only, list transit routes that will be moved to the | new roadway                                 |
| Existing Transit Routes on the Project                               | 275, 288                                    |
| Current AADT Volume                                                  | 18400                                       |
| Location                                                             | TH 97 (east of I-35)                        |

#### **Response: Current Daily Person Throughput**

| Average Annual Daily Transit Ridership | 0       |
|----------------------------------------|---------|
| Current Daily Person Throughput        | 23920.0 |
|                                        |         |

### Measure B: 2040 Forecast ADT

| Use Metropolitan Council model to determine forecast (2040) ADT volume                           | No                               |
|--------------------------------------------------------------------------------------------------|----------------------------------|
| If checked, METC Staff will provide Forecast (2040) ADT volume                                   |                                  |
| OR                                                                                               |                                  |
| Identify the approved county or city travel demand model to determine forecast (2040) ADT volume | Anoka County Travel Demand Model |
| Forecast (2040) ADT volume                                                                       | 30000                            |

### Measure A: Project Location and Impact to Disadvantaged Populations

Select one:

Project located in Area of Concentrated Poverty with 50% or more of residents are people of color (ACP50):

Project located in Area of Concentrated Poverty:

Projects census tracts are above the regional average for population in poverty or population of color:

Project located in a census tract that is below the regional average for population in poverty or populations of color or includes children, people with disabilities, or the elderly:

Yes

Response (Limit 2,800 characters; approximately 400 words)

The reconstruction of the TH 97/CSAH 23 interchange will improve travel times and economic efficiencies for local, commuter, freight, and recreational travel on TH 97/CSAH 23 and the parallel I-35 corridor, all of which support the health and growth of northern Anoka County's local economy. These benefits help provide opportunities for job growth and stability for low-income households (10%) living around the project and immediately northeast of the project (15%) (above the County and seven-county average). The improved access to I-35 and the nearby Metro Transit Park and Ride will also enable efficient transit connections to job concentrations and manufacturing centers in and near Minneapolis and St. Paul for low-income populations taking advantage of the service.

The TH 97/CSAH 23 interchange coincides with additional improvements to realign local and county roads to better facilitate traffic movements/operations and provide a safer pedestrian environment within the project area. Figure 1 depicts these types of improvements. It also demonstrates the projects overall benefits in supporting future development opportunities that leverage existing industrial/commercial areas. The success and prosperity of these developments are subject to the proposed project. Completing this project will support new job opportunities.

The multiuse trail facility included in the proposed project will also improve access, increase livability around the project, improve local and regional connectivity, and expand transportation choice and recreation choice for all populations living in proximity to the project, including the elderly (10%) and children (22%), which are above and equal to county averages. Additionally, the multiuse trail facility will improve connectivity to the following

community resources:

- Forest Lake High School
- Century Junior High School
- Lamprey Pass Sate Wildlife Management Area
- Downtown Forest Lake
- Rice Greek Chain of Lakes Park Reserve
- Carlos Avery State Wildlife Management Area

Furthermore, right-of-way acquisition will not result in displacement or full takings from property owners. Project construction will incorporate proper noise, dust, and traffic mitigation and will not negatively impact the disadvantaged populations in the project area.

The response should address the benefits, impacts, and mitigation for the populations affected by the project.

**Upload Map** 

1468427500209\_I35-TH97\_Socio-Econ\_06212016.pdf

| City/Township                           | Segment Length in Miles (Population) |
|-----------------------------------------|--------------------------------------|
| City of Columbus                        | 0.8                                  |
|                                         | 1                                    |
| Total Project Length                    |                                      |
| Total Project Length (Total Population) | 0.8                                  |

Affordable Housing Scoring - To Be Completed By Metropolitan Council Staff

| City/Township                                                | Segment<br>Length (Miles  | Total Ler<br>s) (Miles)                                          | - Sco                            | ore I                                                         | Segment<br>Length/Total<br>Length          | Housing Score<br>Multiplied by<br>Segment<br>percent |  |
|--------------------------------------------------------------|---------------------------|------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|--|
|                                                              |                           |                                                                  | 0                                | 0                                                             | 0                                          | 0                                                    |  |
| Affordable                                                   | Housing Sc                | oring - To                                                       | Be Comple                        | eted By №                                                     | letropolitan                               | Council Staff                                        |  |
| Total Project Leng                                           | jth (Miles)               |                                                                  |                                  | 0.8                                                           |                                            |                                                      |  |
| Total Housing Sco                                            | re                        |                                                                  |                                  | 0                                                             |                                            |                                                      |  |
| Measure A:                                                   | Infrastruct               | ure Age                                                          |                                  |                                                               |                                            |                                                      |  |
| Year of Origi<br>Roadway Const<br>or Most Rec<br>Reconstruct | ruction<br>Segr           | ment Length                                                      | Calcu                            | ulation                                                       | Calculatio                                 | on 2                                                 |  |
|                                                              | 1978.0                    | 0                                                                | ).4                              | 791.2                                                         |                                            | 1978.0                                               |  |
|                                                              |                           |                                                                  | 0                                | 791                                                           |                                            | 1978                                                 |  |
| Weighted Year                                                |                           |                                                                  |                                  | 1978.0                                                        |                                            |                                                      |  |
| Total Segm                                                   | ent Length                | (Miles)                                                          |                                  |                                                               |                                            |                                                      |  |
| Total Segment Ler                                            | ıgth                      |                                                                  |                                  | 0.4                                                           |                                            |                                                      |  |
| Measure A:                                                   | Vehicle De                | lay Reduc                                                        | tion                             |                                                               |                                            |                                                      |  |
| -                                                            | Hour Delay<br>Per Vehicle | Total Peak<br>Hour Delay<br>Per Vehicle<br>Reduced by<br>Project | Volume<br>(Vehicles Per<br>Hour) | Total Pea<br>Hour Dela<br>Reduced I<br>the Projec<br>(Seconds | ay used to<br>by calculate<br>ect railroad | gy<br>Synchro or<br>HCM Reports                      |  |
|                                                              |                           |                                                                  |                                  |                                                               | applicable                                 | ):                                                   |  |

#### **Total Delay**

**Total Peak Hour Delay Reduced** 

#### 197248.0

Measure B:Roadway projects that do not include new roadway segments or railroad grade-separation elements

| Total (CO, NOX,<br>and VOC) Peak<br>Hour Emissions<br>Per Vehicle<br>without the Project<br>(Kilograms): | Total (CO, NOX,<br>and VOC) Peak<br>Hour Emissions<br>Per Vehicle with<br>the Project<br>(Kilograms): | and VOC) Peak<br>k<br>Hour Emissions<br>Is Reduced Per |                                     |         |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|---------|--|
| 9.97                                                                                                     | 2.02                                                                                                  | 7.95                                                   | 4288.0                              | 34089.6 |  |
| 10                                                                                                       | 2                                                                                                     |                                                        | 4288                                | 34090   |  |
| Total                                                                                                    |                                                                                                       |                                                        |                                     |         |  |
| Total Emissions Redu                                                                                     | ced:                                                                                                  |                                                        | 34089.6                             |         |  |
| Upload Synchro Repo                                                                                      | rt                                                                                                    |                                                        | 1468433919211_I-35_TH97_Synchro.pdf |         |  |

Measure B: Roadway projects that are constructing new roadway segments, but do not include railroad grade-separation elements (for Roadway Expansion applications only):

| 0                                                                                                        | 0                                                                                                     |                                                                                                                | 0                              | 0                                                                                               |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|--|
| Total (CO, NOX,<br>and VOC) Peak<br>Hour Emissions<br>Per Vehicle<br>without the Project<br>(Kilograms): | Total (CO, NOX,<br>and VOC) Peak<br>Hour Emissions<br>Per Vehicle with<br>the Project<br>(Kilograms): | Total (CO, NOX,<br>and VOC) Peak<br>Hour Emissions<br>Reduced Per<br>Vehicle by the<br>Project<br>(Kilograms): | Volume (Vehicles<br>Per Hour): | Total (CO, NOX,<br>and VOC) Peak<br>Hour Emissions<br>Reduced by the<br>Project<br>(Kilograms): |  |

### **Total Parallel Roadways**

Emissions Reduced on Parallel Roadways

0

**Upload Synchro Report** 

#### **New Roadway Portion:**

| Cruise speed in miles per hour with the project:                                                  | 0   |
|---------------------------------------------------------------------------------------------------|-----|
| Vehicle miles traveled with the project:                                                          | 0   |
| Total delay in hours with the project:                                                            | 0   |
| Total stops in vehicles per hour with the project:                                                | 0   |
| Fuel consumption in gallons:                                                                      | 0   |
| Total (CO, NOX, and VOC) Peak Hour Emissions Reduced or<br>Produced on New Roadway (Kilograms):   | 0   |
| EXPLANATION of methodology and assumptions used:(Limit 1,400 characters; approximately 200 words) |     |
| Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):                  | 0.0 |

### Measure B:Roadway projects that include railroad grade-separation elements

| Cruise speed in miles per hour without the project:                              | 0 |
|----------------------------------------------------------------------------------|---|
| Vehicle miles traveled without the project:                                      | 0 |
| Total delay in hours without the project:                                        | 0 |
| Total stops in vehicles per hour without the project:                            | 0 |
| Cruise speed in miles per hour with the project:                                 | 0 |
| Vehicle miles traveled with the project:                                         | 0 |
| Total delay in hours with the project:                                           | 0 |
| Total stops in vehicles per hour with the project:                               | 0 |
| Fuel consumption in gallons (F1)                                                 | 0 |
| Fuel consumption in gallons (F2)                                                 | 0 |
| Fuel consumption in gallons (F3)                                                 | 0 |
| Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms): | 0 |
| EXPLANATION of methodology and assumptions used:(Limit                           |   |

1,400 characters; approximately 200 words)

#### Measure A: Benefit of Crash Reduction

#### Crash Modification Factor Used:

(Limit 700 Characters; approximately 100 words)

#### **Rationale for Crash Modification Selected:**

(Limit 1400 Characters; approximately 200 words)

CR1: Increase pavement friction;

CR2: Convert interchange to diverging diamond

See Attached Crash Analysis

Worksheet Attachment

### Roadway projects that include railroad grade-separation elements:

| Current AADT volume:            | 0 |
|---------------------------------|---|
| Average daily trains:           | 0 |
| Crash Risk Exposure eliminated: | 0 |

Measure A: Multimodal Elements and Existing Connections

The proposed project addresses safety in multiple modes of transportation by adding capacity, shoulders, turn-lanes, and a multiuse trail within the TH 97/CSAH 23 corridor. The divergent diamond design will reduce the number of vehicle conflict points from 26 to 14, which are spread out throughout the interchange. Plus, the sight-distance at turns is much better due to better angles and the provision of simple or free right and left-turns from all directions at the intersection of TH 97 with the I-35 on/off-ramps. Recent data from interchanges that were converted to divergent-diamonds demonstrate crash reductions of over 45 percent.

Currently, there are no shoulders or sidewalks along the narrow TH 97 Bridge. The incorporation of bicyclist/pedestrian facilities with additional spacing and right-of-way access for trails and sidewalks provides users with a secure travel option. The proposed multiuse trail will enable bicyclists and pedestrians from Columbus, Forest Lake and other surrounding communities in Washington and Anoka Counties to more safely travel within the TH 97/CSAH 23 corridor and greater regional trail system.

The proposed multiuse trail will connect to the existing 9.5-mile Hardwood Creek Trail from TH 97. Additionally, the County intends to construct a multiuse trail along CSAH 54 as future separate project, which will connect to Running Aces Harness Park, a regional entertainment facility and major employer. The County envisions that a future trail extension will be constructed from CSAH 54 to provide a direct connection to the Cities of Lino Lakes, Centerville, and the Rice Creek Chain of Lakes Regional Park Reserve.

Furthermore, the proposed trail will expand access to transit service, including Metro Transit routes 285 and 288, which connects users to the entire

Response (Limit 2,800 characters; approximately 400 words)

Metro Transit service area. The interchange will also be a critical connection for accessing the proposed Rush Line Corridor transit service that would operate between downtown Saint Paul and Hinckley, representing a distance of approximately 80 miles. Anoka County is a member of the multiagency Rush Line Corridor Task Force that is overseeing this effort. The Task Force also is a strong advocate of the need for improving the I-35/TH 97 interchange as it is a critical access point for connecting people to existing and future transit service in the area.

### **Transit Projects Not Requiring Construction**

If the applicant is completing a transit or TDM application that is operations only, check the box and do not complete the remainder of the form. These projects will receive full points for the Risk Assessment.

Park-and-Ride and other transit construction projects require completion of the Risk Assessment below.

Check Here if Your Transit Project Does Not Require Construction

#### Measure A: Risk Assessment

| 1)Project Scope (5 Percent of Points)                |            |
|------------------------------------------------------|------------|
| Meetings or contacts with stakeholders have occurred | Yes        |
| 100%                                                 |            |
| Stakeholders have been identified                    |            |
| 40%                                                  |            |
| Stakeholders have not been identified or contacted   |            |
| 0%                                                   |            |
| 2)Layout or Preliminary Plan (5 Percent of Points)   |            |
| Layout or Preliminary Plan completed                 | Yes        |
| 100%                                                 |            |
| Layout or Preliminary Plan started                   |            |
| 50%                                                  |            |
| Layout or Preliminary Plan has not been started      |            |
| 0%                                                   |            |
| Anticipated date or date of completion               | 06/01/2016 |
| 3)Environmental Documentation (5 Percent of Points)  |            |

EIS

EA

PM

| Document Status:                                                                                                                                                                                                                                                                                                                                          |            |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| Document approved (include copy of signed cover sheet)                                                                                                                                                                                                                                                                                                    | 100%       |                |
| Document submitted to State Aid for review                                                                                                                                                                                                                                                                                                                | 75%        | date submitted |
| Document in progress; environmental impacts identified; review request letters sent                                                                                                                                                                                                                                                                       |            |                |
| 50%                                                                                                                                                                                                                                                                                                                                                       |            |                |
| Document not started                                                                                                                                                                                                                                                                                                                                      | Yes        |                |
| 0%                                                                                                                                                                                                                                                                                                                                                        |            |                |
| Anticipated date or date of completion/approval                                                                                                                                                                                                                                                                                                           | 01/01/2017 |                |
| 4)Review of Section 106 Historic Resources (10 Percent of                                                                                                                                                                                                                                                                                                 | Points)    |                |
| No known historic properties eligible for or listed in the National<br>Register of Historic Places are located in the project area, and<br>project is not located on an identified historic bridge                                                                                                                                                        |            |                |
| 100%                                                                                                                                                                                                                                                                                                                                                      |            |                |
| Historic/archeological review under way; determination of no historic properties affected or no adverse effect anticipated                                                                                                                                                                                                                                | Yes        |                |
| 80%                                                                                                                                                                                                                                                                                                                                                       |            |                |
| Historic/archaeological review under way; determination of<br>adverse effect anticipated                                                                                                                                                                                                                                                                  |            |                |
| 40%                                                                                                                                                                                                                                                                                                                                                       |            |                |
| Unsure if there are any historic/archaeological resources in the project area                                                                                                                                                                                                                                                                             |            |                |
| 0%                                                                                                                                                                                                                                                                                                                                                        |            |                |
| Anticipated date or date of completion of historic/archeological review:                                                                                                                                                                                                                                                                                  | 01/01/2017 |                |
| Project is located on an identified historic bridge                                                                                                                                                                                                                                                                                                       |            |                |
| 5)Review of Section 4f/6f Resources (10 Percent of Points)                                                                                                                                                                                                                                                                                                |            |                |
| 4(f) Does the project impacts any public parks, public wildlife refuges,<br>public golf courses, wild & scenic rivers or public private historic prope<br>6(f) Does the project impact any public parks, public wildlife refuges,<br>public golf courses, wild & scenic rivers or historic property that<br>was purchased or improved with federal funds? | rties?     |                |
| No Section 4f/6f resources located in the project area                                                                                                                                                                                                                                                                                                    | Yes        |                |

Yes

No impact to 4f property. The project is an independent bikeway/walkway project covered by the bikeway/walkway Negative Declaration statement; letter of support received

#### 100%

Section 4f resources present within the project area, but no known adverse effects 80% Project impacts to Section 4f/6f resources likely coordination/documentation has begun 50% Project impacts to Section 4f/6f resources likely coordination/documentation has not begun 30% Unsure if there are any impacts to Section 4f/6f resources in the project area 0% 6)Right-of-Way (15 Percent of Points) Right-of-way, permanent or temporary easements not required 100% Right-of-way, permanent or temporary easements has/have been acquired 100% Right-of-way, permanent or temporary easements required, offers made 75% Right-of-way, permanent or temporary easements required, appraisals made 50% Right-of-way, permanent or temporary easements required, Yes parcels identified 25% Right-of-way, permanent or temporary easements required, parcels not identified 0% Right-of-way, permanent or temporary easements identification has not been completed 0% Anticipated date or date of acquisition 01/01/2019 7)Railroad Involvement (25 Percent of Points) Yes No railroad involvement on project 100% Railroad Right-of-Way Agreement is executed (include signature page) 100% Railroad Right-of-Way Agreement required; Agreement has been initiated

#### 60%

| 6670                                                                                                                                                                          |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Railroad Right-of-Way Agreement required; negotiations have begun                                                                                                             |            |
| 40%                                                                                                                                                                           |            |
| Railroad Right-of-Way Agreement required; negotiations not begun                                                                                                              |            |
| 0%                                                                                                                                                                            |            |
| Anticipated date or date of executed Agreement                                                                                                                                |            |
| 8)Interchange Approval (15 Percent of Points)*                                                                                                                                |            |
| *Please contact Karen Scheffing at MnDOT (Karen.Scheffing@state.m<br>to determine if your project needs to go through the Metropolitan Coun<br>Interchange Request Committee. |            |
| Project does not involve construction of a new/expanded interchange or new interchange ramps                                                                                  |            |
| 100%                                                                                                                                                                          |            |
| Interchange project has been approved by the Metropolitan<br>Council/MnDOT Highway Interchange Request Committee                                                              | Yes        |
| 100%                                                                                                                                                                          |            |
| Interchange project has not been approved by the Metropolitan<br>Council/MnDOT Highway Interchange Request Committee                                                          |            |
| 0%                                                                                                                                                                            |            |
| 9)Construction Documents/Plan (10 Percent of Points)                                                                                                                          |            |
| Construction plans completed/approved (include signed title sheet)                                                                                                            |            |
| 100%                                                                                                                                                                          |            |
| Construction plans submitted to State Aid for review                                                                                                                          |            |
| 75%                                                                                                                                                                           |            |
| Construction plans in progress; at least 30% completion                                                                                                                       | Yes        |
| 50%                                                                                                                                                                           |            |
| Construction plans have not been started                                                                                                                                      |            |
| 0%                                                                                                                                                                            |            |
| Anticipated date or date of completion                                                                                                                                        | 01/01/2020 |
| 10)Letting                                                                                                                                                                    |            |
| Anticipated Letting Date                                                                                                                                                      | 03/01/2020 |

### Measure A: Cost Effectiveness

| Total Project Cost (entered in Project Cost Form):         | \$10,280,000.00 |
|------------------------------------------------------------|-----------------|
| Enter Amount of the Noise Walls:                           | \$0.00          |
| Total Project Cost subtract the amount of the noise walls: | \$10,280,000.00 |
| Points Awarded in Previous Criteria                        |                 |

### **Other Attachments**

| File Name                                                                                | Description                                                                                                          | File Size |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------|
| Anoka County Board Resolution in<br>Support of I-35 and TH 97 Interchange<br>Project.pdf | Anoka County Board Resolution of<br>Support for Project                                                              | 664 KB    |
| I-35_TH97 MnDOT Letter of Support.pdf                                                    | MnDOT Letter of Support                                                                                              | 109 KB    |
| I-35_TH97_All Figures.pdf                                                                | Proposed project layout, graphic of<br>existing conditions and issues, and all<br>required Metropolitan Council maps | 1.3 MB    |
| I-35_TH97_Existing Conditions<br>Photographs.pdf                                         | Photographs of existing conditions                                                                                   | 651 KB    |







Socio-Economic Conditions Roadway Expansion Project: I-35 at TH97/CSAH 23 Interchange | Map ID: 1466538506731

### Results

Project located in a census tract that is below the regional average for population in poverty or populations of color, or includes children, people with disabilities, or the elderly:

(0 to 12 Points)

2.75



### 120: SB I-35 On-Ramp/SB I-35 Off-Ramp & CSAH 23/TH 97

| Direction               | All  |  |
|-------------------------|------|--|
| Future Volume (vph)     | 2264 |  |
| Total Delay / Veh (s/v) | 53   |  |
| CO Emissions (kg)       | 4.02 |  |
| NOx Emissions (kg)      | 0.78 |  |
| VOC Emissions (kg)      | 0.93 |  |

### 125: NB I-35 Off-Ramp/NB I-35 On-Ramp & TH 97

| Direction               | All  |
|-------------------------|------|
| Future Volume (vph)     | 2024 |
| Total Delay / Veh (s/v) | 25   |
| CO Emissions (kg)       | 2.97 |
| NOx Emissions (kg)      | 0.58 |
| VOC Emissions (kg)      | 0.69 |

### 1: TH 97 West Int

| Direction               | All  |  |
|-------------------------|------|--|
| Future Volume (vph)     | 776  |  |
| Total Delay / Veh (s/v) | 9    |  |
| CO Emissions (kg)       | 0.35 |  |
| NOx Emissions (kg)      | 0.07 |  |
| VOC Emissions (kg)      | 0.08 |  |

### 2: TH 97 & 35 SBL Off Ramps

| Direction               | All  |
|-------------------------|------|
| Future Volume (vph)     | 356  |
| Total Delay / Veh (s/v) | 8    |
| CO Emissions (kg)       | 0.11 |
| NOx Emissions (kg)      | 0.02 |
| VOC Emissions (kg)      | 0.03 |

### 3: TH 97 East Int

| Direction               | All  |
|-------------------------|------|
| Future Volume (vph)     | 1412 |
| Total Delay / Veh (s/v) | 13   |
| CO Emissions (kg)       | 0.74 |
| NOx Emissions (kg)      | 0.14 |
| VOC Emissions (kg)      | 0.17 |

### 14: 35 NBR Off Ramps

| Direction               | All  |
|-------------------------|------|
| Future Volume (vph)     | 560  |
| Total Delay / Veh (s/v) | 0    |
| CO Emissions (kg)       | 0.06 |
| NOx Emissions (kg)      | 0.01 |
| VOC Emissions (kg)      | 0.01 |

### 17: 35 NBL Off Ramps

|                         | A 11 |
|-------------------------|------|
| Direction               | All  |
| Future Volume (vph)     | 1264 |
| Total Delay / Veh (s/v) | 2    |
| CO Emissions (kg)       | 0.16 |
| NOx Emissions (kg)      | 0.03 |
| VOC Emissions (kg)      | 0.04 |

### TH 97/I-35 Existing AM

| 4                                                                                    | **                                                                                                                                                        | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\forall$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3                                                                                    | 4                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| WBL                                                                                  | EBT                                                                                                                                                       | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WBTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                      | Lag                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Yes                                                                                  | Yes                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| None                                                                                 | C-Max                                                                                                                                                     | Мах                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 92                                                                                   | 31                                                                                                                                                        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 61.3%                                                                                | 20.7%                                                                                                                                                     | 18.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 8                                                                                    | 20                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 3.5                                                                                  | 3.5                                                                                                                                                       | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 0.5                                                                                  | 0.5                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 4                                                                                    | 4                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 3                                                                                    |                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 3                                                                                    | 3                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 0                                                                                    | 0                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 0                                                                                    | 0                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                      | 5                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                      | 11                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| No                                                                                   | Yes                                                                                                                                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Yes                                                                                  | Yes                                                                                                                                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 58                                                                                   | 0                                                                                                                                                         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 146                                                                                  | 27                                                                                                                                                        | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                      |                                                                                                                                                           | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 146                                                                                  | 16                                                                                                                                                        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                      | -                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                      |                                                                                                                                                           | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Δctu                                                                                 | ated_Coo                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Natural Cycle 90<br>Offset: 0 (0%), Referenced to phase 4:EBT and 8:WBTL, Start of C |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| to phase 4                                                                           | :EBI and                                                                                                                                                  | 8:WBII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Start of (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                      | WBL<br>Lead<br>Yes<br>None<br>92<br>61.3%<br>8<br>3.5<br>0.5<br>4<br>3<br>3<br>0<br>0<br>0<br>0<br>No<br>Yes<br>58<br>0<br>146<br>146<br>58<br>146<br>146 | WBL         EBT           Lead         Lag           Yes         Yes           None         C-Max           92         31           61.3%         20.7%           8         20           3.5         3.5           0.5         0.5           4         4           3         3           0         0           0         0           0         0           5         11           No         Yes           Yes         Yes           S8         0           0         31           146         27           146         27           146         27           146         16 | WBL         EBT         SBL           Lead         Lag            Yes         Yes         Yes           None         C-Max         Max           92         31         27           61.3%         20.7%         18.0%           8         20         20           3.5         3.5         3.5           0.5         0.5         0.5           4         4         4           3         3         3           0         0         0           0         0         0           0         0         0           0         0         0           11         11         11           No         Yes         Yes           Yes         Yes         Yes           Yes         Yes         Yes           Yes         Yes         Yes           S8         0         31           146         27         54           146         27         54 |  |  |

# Splits and Phases: 120: SB I-35 On-Ramp/SB I-35 Off-Ramp & CSAH 23/TH 97

|      | <b>√</b> Ø3 | ₩ 104 (R) |
|------|-------------|-----------|
|      | 92 s        | 31 s      |
| Ø6   | ✓ Ø8 (R)    |           |
| 27 s | 123 s       |           |

٦

### TH 97/I-35 Existing AM

|                              | *          | 4         | ≯        | *          |
|------------------------------|------------|-----------|----------|------------|
| Phase Number                 | 2          | 4         | 7        | 8          |
| Movement                     | NBL        | EBTL      | EBL      | WBT        |
| Lead/Lag                     |            |           | Lead     | Lag        |
| Lead-Lag Optimize            |            |           | Yes      | Yes        |
| Recall Mode                  | Max        | C-Max     | None     | C-Max      |
| Maximum Split (s)            | 20         | 100       | 9        | 91         |
| Maximum Split (%)            | 16.7%      | 83.3%     | 7.5%     | 75.8%      |
| Minimum Split (s)            | 20         | 20        | 8        | 20         |
| Yellow Time (s)              | 3.5        | 3.5       | 3.5      | 3.5        |
| All-Red Time (s)             | 0.5        | 0.5       | 0.5      | 0.5        |
| Minimum Initial (s)          | 4          | 4         | 4        | 4          |
| Vehicle Extension (s)        | 3          | 3         | 3        | 3          |
| Minimum Gap (s)              | 3          | 3         | 3        | 3          |
| Time Before Reduce (s)       | 0          | 0         | 0        | 0          |
| Time To Reduce (s)           | 0          | 0         | 0        | 0          |
| Walk Time (s)                | 5          | 5         |          | 5          |
| Flash Dont Walk (s)          | 11         | 11        |          | 11         |
| Dual Entry                   | Yes        | Yes       | No       | Yes        |
| Inhibit Max                  | Yes        | Yes       | Yes      | Yes        |
| Start Time (s)               | 91         | 111       | 111      | 0          |
| End Time (s)                 | 111        | 91        | 0        | 91         |
| Yield/Force Off (s)          | 107        | 87        | 116      | 87         |
| Yield/Force Off 170(s)       | 96         | 76        | 116      | 76         |
| Local Start Time (s)         | 91         | 111       | 111      | 0          |
| Local Yield (s)              | 107        | 87        | 116      | 87         |
| Local Yield 170(s)           | 96         | 76        | 116      | 76         |
| Intersection Summary         |            |           |          |            |
| Cycle Length                 |            |           | 120      |            |
| Control Type                 | Actu       | ated-Coor |          |            |
| Natural Cycle                | 90         |           |          |            |
| Offset: 0 (0%), Referenced t | to phase 4 | :EBTL and | d 8:WBT, | Start of C |
|                              |            |           |          |            |

| <b>™</b> ∕ø2 |             |
|--------------|-------------|
| 20 s         | 100 s       |
|              | Ø7 ♥ Ø8 (R) |
|              | 9s 91s      |
|                            |             | ×         | ×           |
|----------------------------|-------------|-----------|-------------|
| Phase Number               | 2           | 3         | 4           |
| Node Number                | 1           | 1         | 1           |
| Movement                   | EBT         | NWT       | NWT         |
| Lead/Lag                   |             | Lead      | Lag         |
| Lead-Lag Optimize          |             |           | 5           |
| Recall Mode                | C-Min       | None      | None        |
| Maximum Split (s)          | 28          | 6         | 21          |
| Maximum Split (%)          | 50.9%       | 10.9%     | 38.2%       |
| Minimum Split (s)          | 25.5        | 6         | 20          |
| Yellow Time (s)            | 3.5         | 3.5       | 3.5         |
| All-Red Time (s)           | 0.5         | 0.5       | 0.5         |
| Minimum Initial (s)        | 4           | 2         | 4           |
| Vehicle Extension (s)      | 3           | 3         | 3           |
| Minimum Gap (s)            | 3           | 3         | 3           |
| Time Before Reduce (s)     | 0           | 0         | 0           |
| Time To Reduce (s)         | 0           | 0         | 0           |
| Walk Time (s)              |             |           |             |
| Flash Dont Walk (s)        |             |           |             |
| Dual Entry                 | Yes         | Yes       | Yes         |
| Inhibit Max                | Yes         | Yes       | Yes         |
| Start Time (s)             | 0           | 28        | 34          |
| End Time (s)               | 28          | 34        | 0           |
| Yield/Force Off (s)        | 24          | 30        | 51          |
| Yield/Force Off 170(s)     | 24          | 30        | 51          |
| Local Start Time (s)       | 0           | 28        | 34          |
| Local Yield (s)            | 24          | 30        | 51          |
| Local Yield 170(s)         | 24          | 30        | 51          |
| Intersection Summary       |             |           |             |
| Cycle Length               |             |           | 55          |
| Control Type               | Actu        | ated-Coo  |             |
| Natural Cycle              | 710100      |           | 55          |
|                            | to phase 2  | EBT Sta   |             |
| Offset: 0 (0%), Referenced | to phase 2: | :EBT, Sta | irt of Gree |

#### Splits and Phases: 1: TH 97 West Int

| #1   | #1   | #1 #2 |
|------|------|-------|
|      | ×_Ø3 | × •04 |
| 28 s | 6s 🛛 | 21 s  |

|                              | ←     | $\mathbf{x}$ | X        |
|------------------------------|-------|--------------|----------|
| Phase Number                 | 2     | 3            | 4        |
| Node Number                  | 3     | 3            | 3        |
| Movement                     | WBT   | SET          | SET      |
| Lead/Lag                     |       | Lead         | Lag      |
| Lead-Lag Optimize            |       |              | 5        |
| Recall Mode                  | C-Min | Min          | None     |
| Maximum Split (s)            | 29    | 6            | 20       |
| Maximum Split (%)            | 52.7% | 10.9%        | 36.4%    |
| Minimum Split (s)            | 20    | 6            | 20       |
| Yellow Time (s)              | 3.5   | 3.5          | 3.5      |
| All-Red Time (s)             | 0.5   | 0.5          | 0.5      |
| Minimum Initial (s)          | 4     | 2            | 4        |
| Vehicle Extension (s)        | 3     | 3            | 3        |
| Minimum Gap (s)              | 3     | 3            | 3        |
| Time Before Reduce (s)       | 0     | 0            | 0        |
| Time To Reduce (s)           | 0     | 0            | 0        |
| Walk Time (s)                |       |              |          |
| Flash Dont Walk (s)          |       |              |          |
| Dual Entry                   | Yes   | Yes          | Yes      |
| Inhibit Max                  | Yes   | Yes          | Yes      |
| Start Time (s)               | 0     | 29           | 35       |
| End Time (s)                 | 29    | 35           | 0        |
| Yield/Force Off (s)          | 25    | 31           | 51       |
| Yield/Force Off 170(s)       | 25    | 31           | 51       |
| Local Start Time (s)         | 0     | 29           | 35       |
| Local Yield (s)              | 25    | 31           | 51       |
| Local Yield 170(s)           | 25    | 31           | 51       |
| Intersection Summary         |       |              |          |
| Cycle Length                 |       |              | 55       |
| Control Type                 | Actu  | ated-Coo     | rdinated |
| Natural Cycle                |       |              | 55       |
| Offset: 0 (0%), Referenced t |       | WDT OI       |          |

#### Splits and Phases: 3: TH 97 East Int

| #3 #14                    | #3         | #3 #17 |
|---------------------------|------------|--------|
| ↓ → <mark>→</mark> Ø2 (R) | <b>Ø</b> 3 | X 104  |
| 29 s                      | 6 s 🛛      | 20 s   |

### 120: SB I-35 On-Ramp/SB I-35 Off-Ramp & CSAH 23/TH 97

| Direction               | All  |  |
|-------------------------|------|--|
| Future Volume (vph)     | 2264 |  |
| Total Delay / Veh (s/v) | 53   |  |
| CO Emissions (kg)       | 4.02 |  |
| NOx Emissions (kg)      | 0.78 |  |
| VOC Emissions (kg)      | 0.93 |  |

### 125: NB I-35 Off-Ramp/NB I-35 On-Ramp & TH 97

| Direction               | All  |
|-------------------------|------|
| Future Volume (vph)     | 2024 |
| Total Delay / Veh (s/v) | 25   |
| CO Emissions (kg)       | 2.97 |
| NOx Emissions (kg)      | 0.58 |
| VOC Emissions (kg)      | 0.69 |

## 1: TH 97 West Int

| Direction               | All  |  |
|-------------------------|------|--|
| Future Volume (vph)     | 776  |  |
| Total Delay / Veh (s/v) | 9    |  |
| CO Emissions (kg)       | 0.35 |  |
| NOx Emissions (kg)      | 0.07 |  |
| VOC Emissions (kg)      | 0.08 |  |

#### 2: TH 97 & 35 SBL Off Ramps

| Direction               | All  |
|-------------------------|------|
| Future Volume (vph)     | 356  |
| Total Delay / Veh (s/v) | 8    |
| CO Emissions (kg)       | 0.11 |
| NOx Emissions (kg)      | 0.02 |
| VOC Emissions (kg)      | 0.03 |

#### 3: TH 97 East Int

| Direction               | All  |
|-------------------------|------|
| Future Volume (vph)     | 1412 |
| Total Delay / Veh (s/v) | 13   |
| CO Emissions (kg)       | 0.74 |
| NOx Emissions (kg)      | 0.14 |
| VOC Emissions (kg)      | 0.17 |

### 14: 35 NBR Off Ramps

| Direction               | All  |
|-------------------------|------|
| Future Volume (vph)     | 560  |
| Total Delay / Veh (s/v) | 0    |
| CO Emissions (kg)       | 0.06 |
| NOx Emissions (kg)      | 0.01 |
| VOC Emissions (kg)      | 0.01 |

### 17: 35 NBL Off Ramps

|                         | A 11 |
|-------------------------|------|
| Direction               | All  |
| Future Volume (vph)     | 1264 |
| Total Delay / Veh (s/v) | 2    |
| CO Emissions (kg)       | 0.16 |
| NOx Emissions (kg)      | 0.03 |
| VOC Emissions (kg)      | 0.04 |

## TH 97/I-35 Existing AM

|                            | 4          |           | $\mathcal{A}_{\mathbf{F}}$ | ¥          |
|----------------------------|------------|-----------|----------------------------|------------|
| Phase Number               | 3          | 4         | 6                          | 8          |
| Movement                   | WBL        | EBT       | SBL                        | WBTL       |
| Lead/Lag                   | Lead       | Lag       |                            |            |
| Lead-Lag Optimize          | Yes        | Yes       |                            |            |
| Recall Mode                | None       | C-Max     | Мах                        | C-Max      |
| Maximum Split (s)          | 92         | 31        | 27                         | 123        |
| Maximum Split (%)          | 61.3%      | 20.7%     | 18.0%                      | 82.0%      |
| Minimum Split (s)          | 8          | 20        | 20                         | 20         |
| Yellow Time (s)            | 3.5        | 3.5       | 3.5                        | 3.5        |
| All-Red Time (s)           | 0.5        | 0.5       | 0.5                        | 0.5        |
| Minimum Initial (s)        | 4          | 4         | 4                          | 4          |
| Vehicle Extension (s)      | 3          | 3         | 3                          | 3          |
| Minimum Gap (s)            | 3          | 3         | 3                          | 3          |
| Time Before Reduce (s)     | 0          | 0         | 0                          | 0          |
| Time To Reduce (s)         | 0          | 0         | 0                          | 0          |
| Walk Time (s)              |            | 5         | 5                          | 5          |
| Flash Dont Walk (s)        |            | 11        | 11                         | 11         |
| Dual Entry                 | No         | Yes       | Yes                        | Yes        |
| Inhibit Max                | Yes        | Yes       | Yes                        | Yes        |
| Start Time (s)             | 58         | 0         | 31                         | 58         |
| End Time (s)               | 0          | 31        | 58                         | 31         |
| Yield/Force Off (s)        | 146        | 27        | 54                         | 27         |
| Yield/Force Off 170(s)     | 146        | 16        | 43                         | 16         |
| Local Start Time (s)       | 58         | 0         | 31                         | 58         |
| Local Yield (s)            | 146        | 27        | 54                         | 27         |
| Local Yield 170(s)         | 146        | 16        | 43                         | 16         |
| Intersection Summary       |            |           |                            |            |
| Cycle Length               |            |           | 150                        |            |
| Control Type               | Actu       | ated-Coor |                            |            |
| Natural Cycle              |            |           | 90                         |            |
| Offset: 0 (0%), Referenced | to phase 4 | :EBT and  |                            | Start of ( |
|                            |            |           |                            |            |

# Splits and Phases: 120: SB I-35 On-Ramp/SB I-35 Off-Ramp & CSAH 23/TH 97

|      | <b>√</b> Ø3 | ₩ 104 (R) |
|------|-------------|-----------|
|      | 92 s        | 31 s      |
| Ø6   | ✓ Ø8 (R)    |           |
| 27 s | 123 s       |           |

٦

## TH 97/I-35 Existing AM

|                              | -          | 4         | ≯        | +          |
|------------------------------|------------|-----------|----------|------------|
| Phase Number                 | 2          | 4         | 7        | 8          |
| Movement                     | NBL        | EBTL      | EBL      | WBT        |
| Lead/Lag                     |            |           | Lead     | Lag        |
| Lead-Lag Optimize            |            |           | Yes      | Yes        |
| Recall Mode                  | Max        | C-Max     | None     | C-Max      |
| Maximum Split (s)            | 20         | 100       | 9        | 91         |
| Maximum Split (%)            | 16.7%      | 83.3%     | 7.5%     | 75.8%      |
| Minimum Split (s)            | 20         | 20        | 8        | 20         |
| Yellow Time (s)              | 3.5        | 3.5       | 3.5      | 3.5        |
| All-Red Time (s)             | 0.5        | 0.5       | 0.5      | 0.5        |
| Minimum Initial (s)          | 4          | 4         | 4        | 4          |
| Vehicle Extension (s)        | 3          | 3         | 3        | 3          |
| Minimum Gap (s)              | 3          | 3         | 3        | 3          |
| Time Before Reduce (s)       | 0          | 0         | 0        | 0          |
| Time To Reduce (s)           | 0          | 0         | 0        | 0          |
| Walk Time (s)                | 5          | 5         |          | 5          |
| Flash Dont Walk (s)          | 11         | 11        |          | 11         |
| Dual Entry                   | Yes        | Yes       | No       | Yes        |
| Inhibit Max                  | Yes        | Yes       | Yes      | Yes        |
| Start Time (s)               | 91         | 111       | 111      | 0          |
| End Time (s)                 | 111        | 91        | 0        | 91         |
| Yield/Force Off (s)          | 107        | 87        | 116      | 87         |
| Yield/Force Off 170(s)       | 96         | 76        | 116      | 76         |
| Local Start Time (s)         | 91         | 111       | 111      | 0          |
| Local Yield (s)              | 107        | 87        | 116      | 87         |
| Local Yield 170(s)           | 96         | 76        | 116      | 76         |
| Intersection Summary         |            |           |          |            |
| Cycle Length                 |            |           | 120      |            |
| Control Type                 | Actu       | ated-Coor |          |            |
| Natural Cycle                |            |           | 90       |            |
| Offset: 0 (0%), Referenced t | to phase 4 | :EBTL and | d 8:WBT. | Start of C |
| · · ·                        |            |           |          |            |

| <b>™</b> ∕ø2 |             |
|--------------|-------------|
| 20 s         | 100 s       |
|              | Ø7 ♥ Ø8 (R) |
|              | 9s 91s      |

|                            |             | ×         | ×           |
|----------------------------|-------------|-----------|-------------|
| Phase Number               | 2           | 3         | 4           |
| Node Number                | 1           | 1         | 1           |
| Movement                   | EBT         | NWT       | NWT         |
| Lead/Lag                   |             | Lead      | Lag         |
| Lead-Lag Optimize          |             |           | 5           |
| Recall Mode                | C-Min       | None      | None        |
| Maximum Split (s)          | 28          | 6         | 21          |
| Maximum Split (%)          | 50.9%       | 10.9%     | 38.2%       |
| Minimum Split (s)          | 25.5        | 6         | 20          |
| Yellow Time (s)            | 3.5         | 3.5       | 3.5         |
| All-Red Time (s)           | 0.5         | 0.5       | 0.5         |
| Minimum Initial (s)        | 4           | 2         | 4           |
| Vehicle Extension (s)      | 3           | 3         | 3           |
| Minimum Gap (s)            | 3           | 3         | 3           |
| Time Before Reduce (s)     | 0           | 0         | 0           |
| Time To Reduce (s)         | 0           | 0         | 0           |
| Walk Time (s)              |             |           |             |
| Flash Dont Walk (s)        |             |           |             |
| Dual Entry                 | Yes         | Yes       | Yes         |
| Inhibit Max                | Yes         | Yes       | Yes         |
| Start Time (s)             | 0           | 28        | 34          |
| End Time (s)               | 28          | 34        | 0           |
| Yield/Force Off (s)        | 24          | 30        | 51          |
| Yield/Force Off 170(s)     | 24          | 30        | 51          |
| Local Start Time (s)       | 0           | 28        | 34          |
| Local Yield (s)            | 24          | 30        | 51          |
| Local Yield 170(s)         | 24          | 30        | 51          |
| Intersection Summary       |             |           |             |
| Cycle Length               |             |           | 55          |
| Control Type               | Actu        | ated-Coo  |             |
| Natural Cycle              | 710100      |           | 55          |
|                            | to phase 2  | EBT Sta   |             |
| Offset: 0 (0%), Referenced | to phase 2: | :EBT, Sta | irt of Gree |

#### Splits and Phases: 1: TH 97 West Int

| #1   | #1   | #1 #2 |
|------|------|-------|
|      | ×_Ø3 | × •04 |
| 28 s | 6s 🛛 | 21 s  |

|                              | ←     | $\mathbf{x}$ | X        |
|------------------------------|-------|--------------|----------|
| Phase Number                 | 2     | 3            | 4        |
| Node Number                  | 3     | 3            | 3        |
| Movement                     | WBT   | SET          | SET      |
| Lead/Lag                     |       | Lead         | Lag      |
| Lead-Lag Optimize            |       |              | 5        |
| Recall Mode                  | C-Min | Min          | None     |
| Maximum Split (s)            | 29    | 6            | 20       |
| Maximum Split (%)            | 52.7% | 10.9%        | 36.4%    |
| Minimum Split (s)            | 20    | 6            | 20       |
| Yellow Time (s)              | 3.5   | 3.5          | 3.5      |
| All-Red Time (s)             | 0.5   | 0.5          | 0.5      |
| Minimum Initial (s)          | 4     | 2            | 4        |
| Vehicle Extension (s)        | 3     | 3            | 3        |
| Minimum Gap (s)              | 3     | 3            | 3        |
| Time Before Reduce (s)       | 0     | 0            | 0        |
| Time To Reduce (s)           | 0     | 0            | 0        |
| Walk Time (s)                |       |              |          |
| Flash Dont Walk (s)          |       |              |          |
| Dual Entry                   | Yes   | Yes          | Yes      |
| Inhibit Max                  | Yes   | Yes          | Yes      |
| Start Time (s)               | 0     | 29           | 35       |
| End Time (s)                 | 29    | 35           | 0        |
| Yield/Force Off (s)          | 25    | 31           | 51       |
| Yield/Force Off 170(s)       | 25    | 31           | 51       |
| Local Start Time (s)         | 0     | 29           | 35       |
| Local Yield (s)              | 25    | 31           | 51       |
| Local Yield 170(s)           | 25    | 31           | 51       |
| Intersection Summary         |       |              |          |
| Cycle Length                 |       |              | 55       |
| Control Type                 | Actu  | ated-Coo     | rdinated |
| Natural Cycle                |       |              | 55       |
| Offset: 0 (0%), Referenced t |       | WDT OI       |          |

#### Splits and Phases: 3: TH 97 East Int

| #3 #14                    | #3         | #3 #17 |
|---------------------------|------------|--------|
| ↓ → <mark>→</mark> Ø2 (R) | <b>Ø</b> 3 | X 104  |
| 29 s                      | 6 s 🛛      | 20 s   |

| HSIP                                              |                      |                | Control<br>Section    | T.H. /<br>Roadway |                                 | Location                                                            | 1         |                   | ] | Beginning<br>Ref. Pt. |                   | nding<br>ef. Pt. | State,<br>County,<br>City or<br>Township | Study<br>Period<br>Begins | Study Period<br>Ends |
|---------------------------------------------------|----------------------|----------------|-----------------------|-------------------|---------------------------------|---------------------------------------------------------------------|-----------|-------------------|---|-----------------------|-------------------|------------------|------------------------------------------|---------------------------|----------------------|
|                                                   |                      | -              |                       | TH 97             | Interchange Area                | with I-35                                                           |           |                   |   |                       |                   |                  | Anoka<br>County                          | 1/1/2013                  | 12/31/2015           |
|                                                   |                      |                | Descripti<br>Proposed |                   | Reconstruct interc              | Reconstruct interchange to a diverging diamond and improve pavement |           |                   |   |                       |                   |                  |                                          |                           |                      |
| Acció                                             | lent Di              | agram<br>Codes | 1 Rear End            |                   | 2 Sideswipe<br>Same Direction   |                                                                     |           |                   | - | Ran off Road          | 8,9 He<br>Sideswi |                  |                                          | 6, 90, 99                 |                      |
|                                                   |                      |                |                       |                   | <b>&gt;</b>                     | 4                                                                   | ← ]       |                   |   |                       | Opposite          | e Direction      | Pedestrian                               | Other                     | Total                |
|                                                   | al                   | $\overline{}$  | -                     |                   |                                 |                                                                     |           | <b>&gt;</b>       |   |                       |                   | ▶◀               |                                          |                           |                      |
|                                                   | T) Fatal             | F              |                       |                   |                                 |                                                                     |           |                   |   |                       |                   |                  |                                          |                           |                      |
| Study                                             | Personal Injury (PI) | A              |                       |                   |                                 |                                                                     |           |                   |   |                       |                   |                  |                                          |                           |                      |
| Period:<br>Number of                              | onal In              | В              |                       |                   |                                 |                                                                     |           |                   |   |                       |                   |                  |                                          |                           |                      |
| Crashes                                           |                      | С              |                       | 3                 |                                 |                                                                     |           | 2                 |   | 1                     |                   | 2                |                                          |                           | 8                    |
|                                                   | Property<br>Damage   | PD             |                       | 7                 | 5                               |                                                                     | 2         | 7                 |   | 1                     |                   | 1                |                                          | 3                         | 26                   |
| % Change                                          | Fatal                | F              |                       |                   |                                 |                                                                     |           |                   |   |                       |                   |                  |                                          |                           |                      |
| in Crashes                                        |                      | A              |                       |                   |                                 |                                                                     |           |                   |   |                       |                   |                  |                                          |                           |                      |
|                                                   | PI                   | В              |                       |                   |                                 |                                                                     |           |                   |   |                       |                   |                  |                                          |                           |                      |
| *Use Crash<br>Modification                        |                      | c              |                       | -79%              |                                 |                                                                     |           | -75%              |   | -81%                  |                   | -81%             |                                          |                           |                      |
| Factors<br>Clearinghouse                          | Property<br>Damage   |                |                       | -7770             |                                 |                                                                     |           |                   |   |                       |                   | -0170            |                                          |                           |                      |
|                                                   | 1                    | PD             |                       | -79%              | -72%                            |                                                                     | -100%     | -63%              |   | -72%                  |                   | -72%             |                                          | -72%                      |                      |
|                                                   | Fatal                | F              |                       |                   |                                 |                                                                     |           |                   |   |                       |                   |                  |                                          |                           |                      |
| ~ .                                               |                      | A              |                       |                   |                                 |                                                                     |           |                   |   |                       |                   |                  |                                          |                           |                      |
| Change in<br>Crashes                              | PI                   | В              |                       |                   |                                 |                                                                     |           |                   |   |                       |                   |                  |                                          |                           |                      |
| = No. of                                          |                      | С              |                       | -2.37             |                                 |                                                                     |           | -1.50             |   | -0.81                 |                   | -1.62            |                                          |                           | -6.30                |
| crashes <b>X</b><br>% change in                   | operty<br>amage      | 0              |                       |                   | 2.60                            |                                                                     | • • •     |                   |   |                       |                   |                  |                                          | • • •                     | 10.14                |
| crashes<br>Year (Safety                           |                      | PD             |                       | -5.53             |                                 |                                                                     | -2.00     | -4.41             |   | -0.72                 |                   | -0.72            |                                          | -2.16                     | -19.14               |
| Tear (Salety                                      | Improv               | vernen         | t Construct           | 1011)             | 2020                            |                                                                     | Study     |                   |   |                       |                   |                  |                                          |                           |                      |
| Project Cost (exclude Right of Way) \$ 10,280,000 |                      |                |                       | Type of<br>Crash  | Period:<br>Change in<br>Crashes | Annual<br>Change in<br>Crashes                                      |           | Cost per<br>Crash |   | nnual<br>enefit       |                   | B/C=             | 0.53                                     |                           |                      |
| Right of Way Costs (optional)                     |                      |                | F                     |                   |                                 | \$                                                                  | 1,400,000 |                   |   | Using present         | worth value       | 25.              |                                          |                           |                      |
| Traffic Growth Factor 3%                          |                      |                |                       | A                 |                                 |                                                                     | \$        | 570,000           |   |                       | B=                |                  | 5,467,121                                |                           |                      |
| Capital Recovery                                  |                      |                |                       | В                 |                                 |                                                                     | \$        | 170,000           |   |                       | <b>C</b> =        |                  | 0,280,000                                |                           |                      |
| 1. Discour                                        |                      | æ              |                       |                   | 4.5%                            | С                                                                   | -6.30     | -2.10             |   | 83,000                | \$                | 174,459          | See "Calculat<br>amortization.           | ions" sheet f             | or                   |
| 2. Project                                        |                      |                | fe (n)                |                   | 30                              | PD                                                                  | -19.14    | -6.39             |   | 7,600                 |                   | 48,532           |                                          |                           |                      |
|                                                   |                      |                |                       |                   |                                 | Total                                                               |           |                   | • | , .                   | \$                |                  | Office of Tra<br>Technology              |                           | and<br>mber 2014     |

Countermeasure: Improve pavement friction (increase skid resistance)

|   | CMF   | CRF(%) |                    | Crash<br>Type | Crash | Area | Reference                       | Comments |
|---|-------|--------|--------------------|---------------|-------|------|---------------------------------|----------|
|   | 0.799 | 20.1   | ****               | All           | All   | All  | Lyon and<br>Persaud,<br>2008    |          |
| • |       |        |                    |               |       |      |                                 |          |
|   | 0.667 | 33.3 🔶 | ***                | All           | All   | All  | Lyon<br>and<br>Persaud,<br>2008 |          |
| • |       |        |                    |               |       |      |                                 |          |
|   | 0.819 | 18.1 🔺 | ***                | All           | All   | All  | Lyon<br>and<br>Persaud,<br>2008 |          |
| • |       |        |                    |               |       |      |                                 |          |
|   | 0.797 | 20.3 🔶 | ***                | All           | All   | All  | Lyon<br>and<br>Persaud,<br>2008 |          |
| • |       |        |                    |               |       |      |                                 |          |
|   | 1.271 | 27.1   | <b>ninini</b> ni n | All           | All   | All  | Lyon<br>and<br>Persaud,<br>2008 |          |
| • |       |        |                    |               |       |      |                                 |          |
|   | 0.426 | 57.4 🔺 | ****               | Wet road      | All   | All  | Lyon<br>and<br>Persaud,<br>2008 |          |
| • |       |        |                    |               |       |      |                                 |          |
|   | 0.372 | 62.8 🔺 | ****               | Wet road      | All   | All  | Lyon<br>and<br>Persaud,         |          |

|           | 0.575 | 42.5 | **** | Rear end,Wet<br>road | All |     | Lyon<br>and<br>Persaud,<br>2008 |   |   |
|-----------|-------|------|------|----------------------|-----|-----|---------------------------------|---|---|
|           |       |      |      |                      |     |     |                                 |   |   |
|           | 0.59  | 41   | **** | All                  | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |   |
|           |       |      |      |                      |     |     |                                 |   |   |
|           |       |      |      |                      |     |     |                                 |   |   |
| $\langle$ | 0.589 | 41.1 | **** | All                  | All | All | Lyon<br>and<br>Persaud,<br>2008 |   | > |
|           |       |      |      |                      |     |     |                                 |   |   |
|           | 0.361 | 63.9 | **** | Wet road             | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |   |
|           |       |      |      |                      |     |     |                                 |   |   |
| $\langle$ | 0.304 | 69.6 | **** | Rear end             | All | All | Lyon<br>and<br>Persaud,<br>2008 | > |   |
|           |       |      |      |                      |     |     |                                 |   |   |
|           | 0.943 | 5.7  | **** | Rear end             | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |   |
|           |       |      |      |                      |     |     |                                 |   |   |
|           | 0.504 | 49.6 | **** | Rear end             | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |   |
|           |       |      |      |                      |     |     |                                 |   |   |
|           |       |      |      |                      |     |     |                                 |   |   |

|   | 0.221 | 77.9 | **** | Rear end,Wet<br>road | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |
|---|-------|------|------|----------------------|-----|-----|---------------------------------|---|
| • |       |      |      |                      |     |     |                                 |   |
| < | 0.787 | 21.3 | **** | Angle                | All | All | Lyon<br>and<br>Persaud,<br>2008 | > |
|   |       |      |      |                      |     |     |                                 |   |
|   | 0.828 | 17.2 | **** | Angle                | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |
| • |       |      |      |                      |     |     |                                 |   |
|   | 0.898 | 10.2 | **** | Angle                | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |
| • |       |      |      |                      |     |     |                                 |   |
|   | 0.799 | 20.1 | **** | Angle,Wet road       | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |
| • |       |      |      |                      |     |     |                                 |   |
|   | 0.47  | 53   | **** | Angle,Wet road       | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |
| • |       |      |      |                      |     |     |                                 |   |
|   | 0.828 | 17.2 | **** | Angle,Wet road       | All | All | Lyon<br>and<br>Persaud,<br>2008 |   |
| • |       |      |      |                      |     |     |                                 |   |

 Countermeasure: Convert diamond interchange to Diverging Diamond Interchange (DDI) or Double Crossover Diamond (DCD)

| Compare | СМБ   | CRF(9 | %) Quality      | Crash<br>Type | Crash<br>Severity                       | Агеа<br>Туре     | Reference                    | Comments                                                          |
|---------|-------|-------|-----------------|---------------|-----------------------------------------|------------------|------------------------------|-------------------------------------------------------------------|
|         | 0.374 | 62.0  | 5 ****          | 👻 All         | Fatal,Serious<br>injury,Minor<br>injury | Not<br>specified | Edara et<br>al., 2015        | This CMF<br>applies to<br>the [read<br>more]                      |
|         | 0.649 | 35.1  | *****           | All           | Property<br>damage<br>only (PDO)        | Not<br>specified | Edara et<br>al.,<br>2015     | This CMF<br>applies to the<br>[ <i>read more</i> ]                |
|         | 0.592 | 40.8  | *****           | All           | All                                     | Not<br>specified | Edara et<br>al., 2015        | This CMF<br>applies to the<br>[read more]                         |
|         | 0.322 | 67.8  |                 | All           | Fatal,Serious<br>injury,Minor<br>injury | Not<br>specified | Edara et<br>al.,<br>2015     | This CMF<br>applies to the<br>[read<br>more]                      |
|         | 0.466 | 53.4  | *****           | All           | Property<br>damage<br>only (PDO)        | Not<br>specified | Edara et<br>al.,<br>2015     | This CMF<br>applies to the<br>[read more]                         |
|         | 0.434 | 56.6  | *****           | All           | All                                     | Not<br>specified | Edara et<br>al., 2015        | This CMF<br>applies to the<br>[read more]                         |
|         | 0.54  | 46    | <b>**</b> 888   | All           | All                                     | Urban            | Chilukuri<br>et al.,<br>2011 | The authors<br>computed the<br>CMF [read<br>more]                 |
|         | 0.28  | 72    | <b>**</b> ***** | All           | Minor<br>injury                         | Urban            | Chilukuri<br>et al.,<br>2011 | The authors<br>computed the<br>CMF [ <i>read</i><br><i>more</i> ] |
|         | 0.63  | 37    | ******          | All           | Property<br>damage<br>only (PDO)        | Urban            | Chilukuri<br>et al.,<br>2011 | The authors<br>computed the<br>CMF [read<br>more]                 |
|         | 0.71  | 29    | *****           | Rear end      | All                                     | Urban            | Chilukuri<br>et al.,<br>2011 | The authors<br>computed the<br>CMF [ <i>read</i><br><i>more</i> ] |
|         | 0.81  | 19    | *****           | Not specified | All                                     | Urban            | Chilukuri<br>et al.,<br>2011 | The authors<br>computed the<br>CMF [read<br>more]                 |
|         | • (   | 100   | ******          | Left turn     | All                                     | Urban            | Chilukuri<br>et al.,<br>2011 | The authors<br>computed the<br>CMF [ <i>read</i><br><i>more</i> ] |

Dual CRF for TH 97 Diverging Diamond Interchange

Improvements include reconstructing the interchange to a diverging diamond and improving the pavement with the reconstruction

CR1=Increase pavement friction CR2=Convert interchange to diverging diamond

 $CR=1-(1-CR1)^{*}(1-CR2)$ 

Rear End (PDO):  $1 - (1-.70)^{*}(1-.29) = .79$ Read End (Injury):  $1 - (1-.70)^{*}(1-.29) = .79$ All Other (PDO):  $1 - (1-.41)^{*}(1-.53) = .72$ All Other (Injury):  $1 - (1-.41)^{*}(1-.68) = .81$ Angle Crashes (PDO):  $1 - (1-.21)^{*}(1-.53) = .63$ Angle (Injury):  $1 - (1-.21)^{*}(1-.68) = .75$ Left Turn: 1.0

| Crash da | ata is manage | d by the Mn/DOT  | Office of Traffic, S | afety, and Ope | rations. |      |      |     |     |
|----------|---------------|------------------|----------------------|----------------|----------|------|------|-----|-----|
| SYS      | NUM           | <b>REF_POINT</b> | GIS_ROUTE            | GIS_TM         | RD_DIR   | ELEM | RELY | INV | R_U |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | Ν        | J51  | А    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | Z        | J09  | А    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | Z        | J51  | А    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | E        | J52  | А    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | E        | J51  | Α    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | Z        | J51  | 1    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | W        | J09  | 2    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | E        | J52  | 1    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | Z        | J51  | 1    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | Z        | J51  | 1    | 1   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | W        | J51  | 1    | 1   | R   |
| 03       | 0000097       | 000+00.068       | 030000097            | 0.068          | Z        | J09  | 1    | 1   | R   |
| 03       | 0000097       | 000+00.068       | 030000097            | 0.068          | Z        | J52  | А    | 1   | U   |
| 03       | 0000097       | 000+00.068       | 030000097            | 0.068          | Z        | J51  | 2    | 2   | R   |
| 03       | 00000097      | 000+00.068       | 030000097            | 0.068          | Z        | J51  | 1    | 1   | R   |
| 03       | 0000097       | 000+00.078       | 030000097            | 0.078          | Z        |      | 1    | 0   | R   |
| 03       | 0000097       | 000+00.079       | 030000097            | 0.079          | Z        |      | В    | 3   | R   |
| 03       | 0000097       | 000+00.199       | 030000097            | 0.199          | E        |      | А    | 1   | R   |
| 03       | 0000097       | 000+00.199       | 030000097            | 0.199          | W        |      | 1    | 1   | R   |
| 03       | 0000097       | 000+00.199       | 030000097            | 0.199          | Z        |      | 1    | 1   | R   |
| 03       | 0000097       | 000+00.199       | 030000097            | 0.199          | Z        |      | 1    | 1   | R   |
| 03       | 0000097       | 000+00.199       | 030000097            | 0.199          | Z        |      | 1    | 1   | R   |
| 03       | 0000097       | 000+00.199       | 030000097            | 0.199          | Z        |      | 1    | 1   | R   |
| 03       | 0000097       | 000+00.199       | 030000097            | 0.199          | W        |      | 1    | 1   | R   |
| 03       | 0000097       | 000+00.206       | 030000097            | 0.206          | Z        |      | А    | 2   | R   |
| 03       | 0000097       | 000+00.209       | 030000097            | 0.209          | Z        |      | А    | 1   | R   |
| 03       | 0000097       | 000+00.234       | 030000097            | 0.234          | W        |      | 1    | 1   | R   |
| 03       | 0000097       | 000+00.241       | 030000097            | 0.241          | W        |      | А    | 1   | R   |
| 03       | 0000097       | 000+00.293       | 030000097            | 0.293          | E        |      | 2    | 1   | R   |
| 03       | 0000097       | 000+00.300       | 030000097            | 0.300          | E        |      | Α    | 1   | R   |
| 04       | 02000023      | 013+00.083       | 0402000023           | 13.083         | Z        |      | 1    | 2   | R   |
| 04       | 02000023      | 013+00.138       | 0402000023           | 13.138         | Z        | J52  | А    | 2   | R   |
| 04       | 02000023      | 013+00.138       | 0402000023           | 13.138         | E        |      | 1    | 2   | R   |
| 10       | 07920109      | 001+00.260       | 1007920109           | 1.260          | Z        |      | 1    | 2   | R   |

# TH 97 and CSAH 23 (Lake Drive ) from Holiday's west driveway to Hornsby Street (2013 -2015 Crash data is managed by the Mn/DOT Office of Traffic, Safety, and Operations.

# ) - created on 06-24-2016 by rile1che

| ΑΤΡ                                                                                                 | со | CITY | DOW   | MONTH | DAY | YE |
|-----------------------------------------------------------------------------------------------------|----|------|-------|-------|-----|----|
| DRIVER VEH 1 CLAIMED HE WAS NORTHBOUND ISTH 35W EX                                                  | 2  | 0792 | 3-Tue | 3     | 5   | 20 |
| V1 WAS STATIONARY ON MNTH 97 OVER ISTH 35, IN TRAF                                                  | 82 | 0792 | 2-Mon | 6     | 17  | 20 |
| VEH 1, VEH 2 WB HWY 97 AT 35. VEH 1 REAREND VEH 2                                                   | 82 | 0792 | 7-Sat | 6     | 29  | 20 |
| DRIVER OF VEHICLE 1 STATED HE CAME NORTH ON COUNTY                                                  | 82 | 0792 | 2-Mon | 7     | 1   | 20 |
| V1 AND V2 INVOLVED IN SIDESWIPE CRASH ON MNTH 97 A                                                  | 82 | 0792 | 4-Wed | 9     | 18  | 20 |
| BOTH VEHICLES EXITED NB 35 TO GO EAST ON 97. BOTH VEHICLES TURNING RIGHT, DRIVER OF UNIT 2 NOT FROM | 82 | 0792 | 6-Fri | 2     | 21  | 20 |
| BOTH VEHICLES WEST ON 97, VEHICLE 2 STOPPED IN TRAFFIC AND WAS REAR ENDED BY VEHICLE 1, BOTH PARTIE | 82 | 0792 | 4-Wed | 5     | 28  | 20 |
| VEH 1 HAD LEFT TURN GREEN ARROW TO GO S ON 35 RAMP. VEH 1 SLOW TO TURN, WAS HONKED AT BY WITNESS B  | 82 | 0792 | 6-Fri | 6     | 27  | 20 |
| BOTH VEHICLES WERE TURNING EASTBOUND FROM NORTHBOUND 135. DRIVER 1 STATED THAT VEHICLE 2 TURNED     | 82 | 0792 | 2-Mon | 6     | 30  | 20 |
| V1 WB 97 GOING STRAIGHT. V2 EAST ON 97 TURNING NORTH, LEFT, IN INTERSECTION. BOTH VEHICLES WITH YEL | 82 | 0792 | 4-Wed | 10    | 1   | 20 |
| VEH 1 EB MNTH 97 TO TURN LEFT TO GO NB ISTH 35. VEH 2 WB 97 AT 35 INTERCHANGE. VEH 2 WB WITH GREE   | 82 | 0792 | 3-Tue | 10    | 14  | 20 |
| VEH 1 WAS TRAVELING EB ON MNTH 97 OVER ISTH 35. VEH 1 LOST CONTROL AND HIT GUARDRAIL ON RIGHT. TH   | 82 | 0792 | 2-Mon | 10    | 27  | 20 |
| DRIVER OF VEHICLE ONE STATED HE WAS TRAVELING IN T                                                  | 13 | 2845 | 3-Tue | 11    | 4   | 20 |
| UNIT 1,2 AND 3 STOPPED AT A RED LIGHT. UNIT 4 CRASHED INTO THE BACK OF UNIT 1 CAUSING IT TO CRASH I | 82 | 0792 | 5-Thu | 9     | 24  | 20 |
| VEHICLE ONE WAS TRAVELING W/B ON HWY 97 AND WAS TAKING A RIGHT ONTO THE RAMP TO GO NORTH ON ISTH 3  | 82 | 0792 | 5-Thu | 10    | 22  | 20 |
|                                                                                                     | 82 | 0792 | 3-Tue | 2     | 4   | 20 |
| WHILE TRAVELING W/B ON SCANDIA TRL N DRIVER OBSERV                                                  | 82 | 0792 | 4-Wed | 12    | 18  | 20 |
| DRIVER #1 WAS MAKING A LEFT HAND TURN FROM HORNSBY                                                  | 82 | 0792 | 6-Fri | 4     | 19  | 20 |
| ALL VEHICLES WERE TRAVELING ON W/B HWY 97. VEHICLES WERE STOPPED FAR BACK FROM THE INTERSECTION TH  | 82 | 0792 | 3-Tue | 4     | 29  | 20 |
| VEHICLE 1 WAS TURNING LEFT FROM HORNSBY ST AND PULLED OUT IN FRONT OF VEHICLE 2 WHO WAS GOING WEST  | 82 | 0792 | 5-Thu | 6     | 26  | 20 |
| V#1 WAS WB 97 AT HORNSBY ST STOPPED IN TRAFFIC. V#2 WAS BEHIND V#1 AND COULD NOT STOP IN TIME AND S | 82 | 0792 | 3-Tue | 1     | 6   | 20 |
| VEH 1 WB MNTH 97 AT HORNSBY. VEH 2 SB HORNSBY AT MNTH 97. VEH 1 IN STOPPED TRAFFIC BACKUP FOR STO   | 82 | 0792 | 1-Sun | 1     | 18  | 20 |
| DRIVER OF VEHICLE ONE STATED TO THE TROOPER THAT HE WAS TRAVELING W/B ON HWY 97. HIS INTENDED DEST  | 82 | 0792 | 6-Fri | 10    | 9   | 20 |
| MN97 WAS WET FROM SNOW THAT HAD FALLEN EARLIER THAT DAY. BOTH VEHICLES WERE WEST ON MN97. D1 EXPLAI | 82 | 0792 | 3-Tue | 12    | 29  | 20 |
| UNIT 1 WAS STOPPED IN TRAFFIC AT THE RED LIGHT FOR                                                  | 82 | 0792 | 4-Wed | 10    | 9   | 20 |
| V#1 WAS EB 97 FROM 35. V#1 STATED THAT A VEHICLE                                                    | 82 | 0792 | 5-Thu | 5     | 2   | 20 |
| V #1 TRAVELING SOUTHBOUND HORNSBY ST. N.E. V #1 WAS STOPPED AT STOP SIGN PRIOR TO CRASH. V #2 TRA   | 82 | 0792 | 2-Mon | 5     | 12  | 20 |
| VEHICLE 1 AND VEHICLE 2 WESTBOUND 97 APPROACHING H                                                  | 82 | 0792 | 5-Thu | 10    | 24  | 20 |
| V2 HAD JUST MERGED INTO LANE EB MNTH 97 ACCORDING TO DRIVER OF V2 AND WITNESS WHALEY. BOTH SAID THA | 82 | 0792 | 4-Wed | 11    | 5   | 20 |
| ALL V`S WERE STOPPED FOR TRAFFIC. TRAFFIC STARTED                                                   | 82 | 0792 | 4-Wed | 7     | 31  | 20 |
| UNIT 1 WAS WB ON LAKE DR NE TRAFFIC WAS AT A STOP FOR EB LAKE DR BUT NOT BLOCKING THE INTERSECTION. | 2  | 0792 | 3-Tue | 9     | 8   | 20 |
| DRIVER #1 - WESTBOUND ON LAKE DRIVE, PREPARING TO                                                   | 2  | 0792 | 6-Fri | 2     | 22  | 20 |
| V1 IN LEFT TURN LANE TO GO WB ONTO LAKE DR. V2 WAS STATIONARY IN THE LEFT TURN LANE TO GO NB ON I35 | 2  | 0792 | 1-Sun | 6     | 15  | 20 |
| UNIT 1 WAS TRAVELING NORTHBOUND ON LAKE DR NE. UNIT 2 WAS HEADED SOUTHBOUND ON LAKE DR NE. UNIT 1 C | 2  | 0792 | 1-Sun | 9     | 27  | 20 |
|                                                                                                     |    |      |       |       |     |    |

| DAY | YEAR | TIME | SEV | NUM_KILLED |
|-----|------|------|-----|------------|
| 5   | 2013 | 1728 | С   | 0          |
| 17  | 2013 | 1724 | Ν   | 0          |
| 29  | 2013 | 1458 | С   | 0          |
| 1   | 2013 | 0823 | Ν   | 0          |
| 18  | 2013 | 1433 | Ν   | 0          |
| 21  | 2014 | 1221 | Ν   | 0          |
| 28  | 2014 | 0631 | Ν   | 0          |
| 27  | 2014 | 1342 | Ν   | 0          |
| 30  | 2014 | 1444 | Ν   | 0          |
| 1   | 2014 | 0837 | Ν   | 0          |
| 14  | 2014 | 1350 | С   | 0          |
| 27  | 2014 | 2322 | Ν   | 0          |
| 4   | 2014 | 0601 | Ν   | 0          |
| 24  | 2015 | 1651 | Ν   | 0          |
| 22  | 2015 | 1929 | Ν   | 0          |
| 4   | 2014 | 0700 | Ν   | 0          |
| 18  | 2013 | 1904 | Ν   | 0          |
| 19  | 2013 | 1407 | Ν   | 0          |
| 29  | 2014 | 1608 | Ν   | 0          |
| 26  | 2014 | 1919 | Ν   | 0          |
| 6   | 2015 | 0948 | Ν   | 0          |
| 18  | 2015 | 1324 | Ν   | 0          |
| 9   | 2015 | 1625 | Ν   | 0          |
| 29  | 2015 | 1213 | С   | 0          |
| 9   | 2013 | 1750 | Ν   | 0          |
| 2   | 2013 | 0539 | С   | 0          |
| 12  | 2014 | 0941 | Ν   | 0          |
| 24  | 2013 | 0655 | С   | 0          |
| 5   | 2014 | 1649 | Ν   | 0          |
| 31  | 2013 | 1712 | Ν   | 0          |
| 8   | 2015 | 1711 | Ν   | 0          |
| 22  | 2013 | 0657 | С   | 0          |
| 15  | 2014 | 0338 | Ν   | 0          |
| 27  | 2015 | 1740 | С   | 0          |

| NUM_VEH | JUNC | SL | ТҮРЕ | DIAG | LOC1 | TCD | LIT | WTHR1 | WTHR2 | SURF | CHAR | DESGN | ACC_NUM   |
|---------|------|----|------|------|------|-----|-----|-------|-------|------|------|-------|-----------|
| 2       | 4    | 70 | 1    | 5    | 1    | 1   | 1   | 2     | 0     | 2    | 2    | 2     | 130660232 |
| 2       | 7    | 50 | 1    | 90   | 1    | 1   | 1   | 1     | 0     | 1    | 1    | 8     | 131690246 |
| 2       | 4    | 55 | 1    | 1    | 1    | 1   | 1   | 1     | 2     | 1    | 1    | 8     | 131860173 |
| 1       | 4    | 55 | 22   | 90   | 1    | 1   | 1   | 1     | 0     | 1    | 1    | 3     | 131900280 |
| 2       | 7    | 55 | 1    | 2    | 1    | 1   | 1   | 1     | 0     | 1    | 6    | 2     | 132720147 |
| 2       | 4    | 70 | 1    | 2    | 1    | 1   | 1   | 1     | 0     | 5    | 1    | 2     | 140600353 |
| 2       | 1    | 55 | 1    | 1    | 1    | 98  | 1   | 1     | 0     | 1    | 1    | 3     | 141480188 |
| 2       | 4    | 50 | 1    | 2    | 1    | 1   | 1   | 2     | 0     | 1    | 1    | 5     | 141810186 |
| 2       | 4    | 70 | 1    | 2    | 1    | 1   | 1   | 2     | 0     | 1    | 1    | 2     | 141830208 |
| 2       | 7    | 55 | 1    | 3    | 1    | 1   | 1   | 3     | 0     | 2    | 2    | 8     | 142760282 |
| 2       | 4    | 55 | 1    | 8    | 1    | 1   | 1   | 1     | 0     | 1    | 2    | 3     | 142890287 |
| 1       | 1    | 45 | 34   | 7    | 4    | 98  | 4   | 1     | 0     | 1    | 1    | 8     | 143020266 |
| 2       | 7    | 35 | 1    | 3    | 1    | 1   | 2   | 1     | 0     | 1    | 1    | 5     | 143090269 |
| 3       | 1    | 45 | 1    | 1    | 1    | 1   | 1   | 1     | 1     | 1    | 2    | 8     | 152670184 |
| 2       | 7    | 55 | 1    | 5    | 1    | 1   | 4   | 3     | 0     | 1    | 2    | 6     | 152990176 |
| 2       | 0    | 55 | 1    | 1    | 0    | 1   | 1   | 1     | 0     | 2    | 0    | 0     | 140700069 |
| 1       | 1    | 55 | 8    | 90   | 1    | 98  | 6   | 1     | 1     | 1    | 1    | 8     | 133540060 |
| 2       | 7    | 55 | 1    | 5    | 1    | 4   | 1   | 1     | 0     | 1    | 1    | 8     | 131120200 |
| 3       | 7    | 55 | 1    | 1    | 1    | 1   | 1   | 3     | 4     | 2    | 2    | 3     | 141250144 |
| 2       | 2    | 55 | 1    | 5    | 1    | 4   | 1   | 2     | 0     | 1    | 1    | 1     | 141790273 |
| 2       | 2    | 55 | 1    | 1    | 1    | 98  | 1   | 2     | 0     | 2    | 1    | 8     | 150060481 |
| 2       | 2    | 55 | 1    | 5    | 1    | 98  | 1   | 1     | 0     | 1    | 1    | 3     | 150190160 |
| 2       | 7    | 55 | 1    | 5    | 1    | 98  | 1   | 1     | 0     | 1    | 1    | 90    | 153090201 |
| 2       | 7    | 55 | 1    | 1    | 1    | 98  | 1   | 2     | 0     | 2    | 1    | 3     | 153640288 |
| 1       | 1    | 55 | 1    | 1    | 1    | 1   | 1   | 1     | 0     | 1    | 1    | 8     | 132820171 |
| 1       | 2    | 55 | 37   | 7    | 4    | 98  | 1   | 2     | 0     | 1    | 1    | 8     | 131410219 |
| 2       | 7    | 55 | 1    | 5    | 1    | 4   | 1   | 2     | 0     | 1    | 1    | 3     | 141480185 |
| 2       | 1    | 55 | 1    | 1    | 1    | 98  | 6   | 2     | 0     | 1    | 1    | 8     | 133000141 |
| 2       | 1    | 55 | 1    | 2    | 1    | 98  | 6   | 3     | 2     | 2    | 90   | 8     | 143200303 |
| 2       | 1    | 55 | 1    | 1    | 1    | 98  | 1   | 1     | 0     | 1    | 1    | 8     | 132130300 |
| 2       | 7    | 40 | 1    | 5    | 2    | 4   | 1   | 1     | 1     | 1    | 1    | 8     | 152510130 |
| 2       | 4    | 45 | 1    | 5    | 1    | 1   | 1   | 4     | 2     | 5    | 1    | 8     | 130540022 |
| 2       | 4    | 50 | 2    | 8    | 1    | 1   | 4   | 3     | 0     | 2    | 2    | 8     | 141670016 |
| 2       | 1    | 55 | 1    | 9    | 1    | 98  | 1   | 2     | 99    | 1    | 1    | 99    | 152710122 |

| PERSON1 |     |     |      |      |
|---------|-----|-----|------|------|
| VTYPE   | DIR | ACT | FAC1 | FAC2 |
| 2       | Ν   | 6   | 2    | 0    |
| 11      | Е   | 11  | 1    | 0    |
| 1       | W   | 1   | 15   | 0    |
| 35      | Е   | 1   | 1    | 0    |
| 35      | NE  | 5   | 99   | 0    |
| 35      | Ν   | 1   | 10   | 0    |
| 2       | W   | 1   | 4    | 0    |
| 1       | S   | 6   | 8    | 0    |
| 1       | NE  | 5   | 1    | 0    |
| 4       | W   | 1   | 1    | 0    |
| 3       | Е   | 6   | 2    | 0    |
| 3       | Е   | 1   | 15   | 0    |
| 1       | Е   | 1   | 5    | 15   |
| 4       | W   | 11  | 1    | 1    |
| 1       | Е   | 6   | 2    | 0    |
| 1       | W   | 9   | 0    | 0    |
| 1       | W   | 1   | 1    | 1    |
| 1       | Ν   | 9   | 2    | 15   |
| 1       | W   | 11  | 1    | 0    |
| 2       | S   | 6   | 2    | 0    |
| 3       | W   | 11  | 1    | 0    |
| 1       | W   | 15  | 7    | 0    |
| 1       | Е   | 6   | 1    | 0    |
| 1       | W   | 1   | 15   | 0    |
| 1       | W   | 11  | 1    | 0    |
| 3       | E   | 1   | 16   | 3    |
| 2       | W   | 15  | 7    | 15   |
| 1       | W   | 1   | 1    | 0    |
| 2       | E   | 15  | 8    | 0    |
| 3       | Е   | 11  | 1    | 0    |
| 1       | E   | 1   | 7    | 99   |
| 1       | Е   | 1   | 1    | 1    |
| 3       | Е   | 90  | 90   | 0    |
| 1       | Ν   | 38  | 20   | 90   |

|      |     |     |      |     |     | PERSON2 |     |     |      |      |      |     |     |      |     |
|------|-----|-----|------|-----|-----|---------|-----|-----|------|------|------|-----|-----|------|-----|
| POSN | INJ | EQP | PHYS | AGE | SEX | VTYPE   | DIR | ACT | FAC1 | FAC2 | POSN | INJ | EQP | PHYS | AGE |
| 1    | Ν   | 4   | 1    | 43  | М   | 1       | Е   | 1   | 1    | 0    | 1    | С   | 4   | 1    | 18  |
| 1    | Ν   | 12  | 1    | 19  | М   | 3       | Е   | 17  | 11   | 15   | 1    | Ν   | 4   | 1    | 47  |
| 1    | Ν   | 4   | 1    | 46  | F   | 3       | W   | 11  | 1    | 0    | 1    | С   | 4   | 1    | 89  |
| 1    | Ν   | 4   | 1    | 44  | Μ   |         |     |     |      |      |      |     |     |      |     |
| 1    | Ν   | 4   | 1    | 79  | Μ   | 1       | NE  | 5   | 99   | 0    | 1    | Ν   | 4   | 1    | 62  |
| 1    | Ν   | 4   | 1    | 45  | Μ   | 2       | Ν   | 1   | 1    | 0    | 1    | Ν   | 4   | 1    | 42  |
| 1    | Ν   | 4   | 1    | 32  | Μ   | 2       | W   | 10  | 1    | 0    | 1    | Ν   | 4   | 1    | 23  |
| 1    | Ν   | 4   | 1    | 32  | F   | 1       | S   | 3   | 2    | 0    | 1    | Ν   | 4   | 1    | 79  |
| 1    | Ν   | 4   | 1    | 32  | Μ   | 4       | NE  | 5   | 1    | 0    | 1    | Ν   | 4   | 1    | 48  |
| 1    | Ν   | 4   | 1    | 39  | F   | 1       | Ν   | 6   | 10   | 0    | 1    | Ν   | 4   | 1    | 58  |
| 1    | С   | 4   | 1    | 75  | Μ   | 1       | W   | 1   | 1    | 0    | 1    | Ν   | 4   | 1    | 19  |
| 1    | Ν   | 4   | 99   | 55  | F   |         |     |     |      |      |      |     |     |      |     |
| 1    | Ν   | 4   | 1    | 19  | Μ   | 1       | S   | 6   | 1    | 0    | 1    | Ν   | 4   | 1    | 49  |
| 1    | Ν   | 4   | 1    | 45  | F   | 3       | W   | 9   | 1    | 1    | 1    | Ν   | 4   | 1    | 33  |
| 1    | Ν   | 4   | 1    | 59  | F   | 1       | W   | 5   | 1    | 0    | 1    | Ν   | 4   | 1    | 22  |
| 1    | Ν   | 4   | 0    | 56  | Μ   | 3       | W   | 11  | 0    | 0    | 1    | Ν   | 0   | 0    | 902 |
| 1    | Ν   | 4   | 1    | 29  | Μ   |         |     |     |      |      |      |     |     |      |     |
| 1    | Ν   | 4   | 1    | 44  | F   | 3       | E   | 1   | 1    | 0    | 1    | Ν   | 4   | 1    | 19  |
| 1    | Ν   | 4   | 1    | 27  | Μ   | 1       | W   | 11  | 1    | 0    | 1    | Ν   | 4   | 1    | 27  |
| 1    | Ν   | 4   | 1    | 63  | Μ   | 4       | W   | 1   | 1    | 0    | 1    | Ν   | 4   | 1    | 37  |
| 1    | Ν   | 4   | 1    | 33  | Μ   | 1       | W   | 1   | 4    | 3    | 1    | Ν   | 4   | 1    | 19  |
| 1    | Ν   | 4   | 1    | 44  | Μ   | 1       | S   | 6   | 1    | 0    | 1    | Ν   | 4   | 1    | 23  |
| 1    | Ν   | 4   | 1    | 78  | F   | 1       | W   | 15  | 8    | 7    | 1    | Ν   | 4   | 1    | 39  |
| 1    | С   | 4   | 1    | 23  | Μ   | 1       | W   | 11  | 1    | 0    | 1    | Ν   | 4   | 1    | 32  |
| 1    | Ν   | 4   | 1    | 70  | Μ   |         |     |     |      |      |      |     |     |      |     |
| 1    | С   | 4   | 1    | 16  | М   |         | _   | _   |      | _    |      |     |     |      |     |
| 1    | N   | 4   | 1    | 51  | Μ   | 1       | S   | 6   | 1    | 0    | 1    | N   | 4   | 1    | 18  |
| 1    | С   | 4   | 1    | 51  | F   | 1       | W   | 1   | 8    | 4    | 1    | Ν   | 4   | 1    | 60  |
| 1    | N   | 4   | 1    | 47  | M   | 4       | E   | 16  | 1    | 0    | 1    | N   | 4   | 1    | 42  |
| 1    | N   | 4   | 1    | 60  | F   | 2       | E   | 1   | 15   | 0    | 1    | N   | 4   | 1    | 26  |
| 1    | N   | 4   | 1    | 50  | М   | 1       | S   | 6   | 1    | 1    | 1    | N   | 4   | 1    | 23  |
| 1    | C   | 4   | 1    | 32  | М   | 1       | SW  | 37  | 2    | 15   | 1    | С   | 4   | 1    | 59  |
| 1    | N   | 4   | 1    | 34  | M   | 1       | W   | 6   | 10   | 0    | 1    | N   | 99  | 2    | 34  |
| 1    | С   | 98  | 3    | 46  | Μ   | 2       | S   | 1   | 1    | 1    | 1    | Ν   | 98  | 1    | 50  |

|        | PERSON3 |     |     |      |
|--------|---------|-----|-----|------|
| SEX    | VTYPE   | DIR | ACT | FAC1 |
| F      |         |     |     |      |
| Μ      |         |     |     |      |
| Μ      |         |     |     |      |
|        |         |     |     |      |
| Μ      |         |     |     |      |
| М      |         |     |     |      |
| М      |         |     |     |      |
| М      |         |     |     |      |
| М      |         |     |     |      |
| М      |         |     |     |      |
| М      |         |     |     |      |
|        |         |     |     |      |
| M      | 4       | 147 |     |      |
| F      | 1       | W   |     |      |
| M<br>M |         |     |     |      |
| IVI    |         |     |     |      |
| М      |         |     |     |      |
| F      | 3       | W   |     |      |
| F      |         |     |     |      |
| Μ      |         |     |     |      |
| F      |         |     |     |      |
| Μ      |         |     |     |      |
| Μ      |         |     |     |      |
|        |         |     |     |      |
| -      |         |     |     |      |
| F      |         |     |     |      |
| M      |         |     |     |      |
| M      |         |     |     |      |
| M      |         |     |     |      |
| M<br>F |         |     |     |      |
| г<br>М |         |     |     |      |
| M      |         |     |     |      |
| IVI    |         |     |     |      |

|      |      |     |     |      |     |     | PERSON4 |     |     |      |      |      |     |     |      |
|------|------|-----|-----|------|-----|-----|---------|-----|-----|------|------|------|-----|-----|------|
| FAC2 | POSN | INJ | EQP | PHYS | AGE | SEX | VTYPE   | DIR | ACT | FAC1 | FAC2 | POSN | INJ | EQP | PHYS |

| AGE | SEX |
|-----|-----|

# **BOARD OF COUNTY COMMISSIONERS**

Anoka County, Minnesota

DATE: July 12, 2016 OFFERED BY COMMISSIONER: Schulte **RESOLUTION #2016-94** 

#### RESOLUTION AUTHORIZING SUBMITTAL OF FEDERAL FUNDING APPLICATION FOR THE I-35 AND TH 97/CSAH 23 INTERCHANGE

WHEREAS, the interchange of I-35 and TH 97/CSAH 23 serves as an important regional access point to eastern Anoka County; and,

WHEREAS, Anoka County, the Minnesota Department of Transportation, and the cities of Columbus and Forest Lake have identified the need to improve the TH 97 bridge over I-35 serving the cities of Columbus and Forest Lake; and,

WHEREAS, Anoka County, the City of Columbus, and the Minnesota Department of Transportation have completed a study that identifies design options for improving the I-35 and TH 97/CSAH 23 interchange area through the reconstruction of the interchange; and,

WHEREAS, existing and future traffic volumes on CSAH 23, TH 97, and I-35 have been increasing and are projected to continue to increase as the area develops; and,

WHEREAS, existing travel safety is a concern at the interchange and adjacent intersections; and,

WHEREAS, proposed transportation improvements to the I-35 and TH 97/CSAH 23 interchange will improve the safety and mobility for all modes of travel:

NOW, THEREFORE, BE IT RESOLVED that the Anoka County Highway Department is hereby authorized to submit an application to the Transportation Advisory Board of the Metropolitan Council for 2019-2021 to receive federal transportation funds to make improvements to the I-35/TH 97/CSAH 23 interchange.

#### STATE OF MINNESOTA) COUNTY OF ANOKA ) <sup>SS</sup>

I, Jerry Soma, County Administrator, Anoka County, Minnesota, hereby certify that I have compared the foregoing copy of the resolution of the county board of said county with the original record thereof on file in the Administration Office, Anoka County, Minnesota, as stated in the minutes of the proceedings of said board at a meeting duly held on July 12, 2016, and that the same is a true and correct copy of said original record and of the whole thereof, and that said resolution was duly passed by said board at said meeting.

Witness my hand and seal this 12th day of

July 2016. JERRY SOMA COUNTY ADMINISTRATOR

|                         | YES | NO |
|-------------------------|-----|----|
| District #1 – Look      | Х   |    |
| District #2 – Braastad  | Х   |    |
| District #3 – West      | X   |    |
| District #4 – Kordiak   | Х   |    |
| District #5 – Gamache   | Х   |    |
| District #6 – Sivarajah | Х   |    |
| DISTRICT #7 – SCHULTE   | Х   |    |



Minnesota Department of Transportation Metro District 1500 West County Road B-2 Roseville, MN 5511

July 8, 2016

Jack Forslund, PTP Multimodal Planning Manager Anoka County Transportation Division Highway-Transit-Surveyor-GIS 1440 Bunker Lake Boulevard, NW Andover, MN 55304

RE: Regional Solicitation Application for I-35 at TH 97 Interchange Improvement

Dear Mr. Forslund:

Thank you for requesting a letter of support from MnDOT for the Metropolitan Council/Transportation Advisory Board (TAB) 2016 Regional Solicitation. Your application for the I-35 at TH 97 Interchange Improvement project impacts MnDOT right of way on I-35.

MnDOT, as the agency with jurisdiction over I-35, would allow the improvements included in the application for I-35 at TH 97 Interchange Improvement project. Details of a future maintenance agreement with the City would be determined during project development to define how the improvements will be maintained for the project's useful life.

Within the subject project area, there is a MnDOT bridge programmed to be replaced in 2018. The TH 97 Bridge (# 02806) over I-35 will be replaced as part of a larger bridge and pavement project led by MnDOT on I-35. The TH 97 Bridge is programmed with approximately \$3,500,000 to replace the bridge with existing bridge dimensions. While it is programmed project in the State Transportation Improvement Program (STIP), given the fluctuations in MnDOT funding, a project could move out of the programmed year or be modified in some other way. Please continue to work with MnDOT Area staff to coordinate project funding.

Sincerely,

2

Scott McBride, P.E. Metro District Engineer

Cc: Elaine Koustsoukos, Metropolitan Council Sheila Kauppi, MnDOT Metro District – North Area Manager Adam Josephson, MnDOT Metro District – East Area Manager





# **Project Layout**

I-35 at TH 97/CSAH 23 Interchange – Regional Solicitation Grant Application Anoka County



#### **Existing Conditions and Issues**

I-35 at TH 97/CSAH 23 Interchange – Regional Solicitation Grant Application Anoka County



#### Project Area Context and Issues

I-35 at TH 97/CSAH 23 Interchange – Regional Solicitation Grant Application Anoka County





Socio-Economic Conditions Roadway Expansion Project: I-35 at TH97/CSAH 23 Interchange | Map ID: 1466538506731

## Results

Project located in a census tract that is below the regional average for population in poverty or populations of color, or includes children, people with disabilities, or the elderly:

(0 to 12 Points)

2.75





# **Structurally Deficient (Bridge)**



# Existing Conditions and Issues Figure-Attachment 2 (continued)



# Functionally Obsolete (Bridge)



Existing Conditions and Issues Figure-Attachment 2 (continued)



# Safety (Interchange)

According to the Anoka County 2030 Transportation Plan and Minnesota Department of Public Safety Crash Records the project area is considered relatively high in crash incidents.

Intersection crash history indicates <u>crash rates exceeding the critical crash rate for the</u> <u>area</u>. Areas experiencing well above average crash rates include the intersections of the I-35 on/off-ramps with Highway 97

> During the morning, drivers of turning vehicles from westbound Highway 97 onto the I-35 southbound on-ramp often are faced with a potentially dangerous situation due to heavy traffic volumes.

> > Similarly, during the afternoon, drivers of turning vehicles from the northbound I-35 off-ramp onto Highway 97 must contend with heavy traffic volumes as well as limited sight-distance to the east and west.

**HWY 97** 

Existing Conditions and Issues Figure-Attachment 2 (continued)

© 2015 Google



# **Congestion (Interchange)**

Even while there are numerous concerns over congestion and mobility, it is projected that conditions for the interchange will become increasingly worse in the near future. For example, traffic on I-35 is projected to increase by up to 25,000 and could nearly double on both Highways 23 and 97.



# Existing Conditions and Issues Figure-Attachment 2 (continued)



# **Congestion (Interchange)**

Extreme congestion is a daily occurrence on the TH 97 bridge. As the area and region continue to grow, travel congestion and safety will worsen unless the bridge and interchange are reconstructed to provide additional capacity.



## Existing Conditions and Issues Figure-Attachment 2 (continued)

