Application

17063-2022 Roadway Modernization
17728 - TH 120 (Century Avenue) Reconstruction and Modernization
Regional Solicitation - Roadways Including Multimodal Elements

Status: Submitted
Submitted Date:
04/13/2022 1:39 PM

Primary Contact

Organization Information

Name:
WASHINGTON CTY
Jurisdictional Agency (if different):

Organization Type:
Organization Website:

Address:	PUBLIC WORKS
	11660 MYERON RD

*	STILLWATER	Minnesota	Coseral State/Province
County:	City		
Phone:*	Washington		

Fax:
PeopleSoft Vendor Number
0000028637A10

Project Information

Project Name
Primary County where the Project is Located
Cities or Townships where the Project is Located:
Jurisdictional Agency (If Different than the Applicant):

TH 120 (Century Avenue) Reconstruction and Modernization
Washington
White Bear Lake, Mahtomedi

The proposed project is a roadway reconstruction and modernization of TH 120 (Century Avenue) that includes updated intersection control methods and multimodal facility improvements between I694 and CSAH 12 (Old TH 244/Co Rd E) in the Cities of White Bear Lake and Mahtomedi.

The project area includes Century College, one of the largest, most diverse, and most affordable colleges in Minnesota, as well as several low income and affordable housing communities, FedEx ground distribution and employment center, and two community commercial centers.

TH 120 (Century Avenue) is a state trunk highway with a posted speed of 40 MPH through the project area and an average daily traffic volume of 31,000. It is primarily a one-lane divided roadway and experiences prolonged periods of delay both during peak and off-peak hours due to unique traffic patterns associated with FedEx and Century College. There are five intersections in the project area, one of which has limited stop control. This segment of Century Avenue has a crash rate 80\% greater than the average for a similar roadway segment, and every intersection has a crash rate greater than the MnDOT Metro average crash rate for a similar intersection with the limited-control intersection reaching as high as 6 times the average crash rate.

The project area currently has a sidewalk on the west side of Century Ave extending from CSAH 12 to Century College's West Campus and on the east side of Century Ave extending approximately 650 feet south from CSAH 12. No other sidewalk or trail facilities exist along the corridor, and pedestrians traveling along Century Ave must choose to either use a shoulder that fluctuates in width, the grass
boulevard, or choose to not walk at all.

The proposed roadway modernization project features a more pedestrian friendly and traffic calming design, with new ADA accessible multiuse trails extending along both sides of Century Ave; the replacement of one limited-control and one signalized intersection with two roundabouts featuring four-way crossings and pedestrian refuge islands; and raised medians and narrowed lanewidth between the roundabouts. The roadway improvements will calm traffic and reduce delay and conflict points throughout the corridor. Bicycle and pedestrian improvements will complete gaps within the existing network, connect to transit stops and Century College's facilities on both sides of Century Avenue, and create a safer environment for non-motorized users to travel along or across Century Avenue.
(Limit 2,800 characters; approximately 400 words)

TRANSPORTATION IMPROVEMENT PROGRAM (TIP)
DESCRIPTION - will be used in TIP if the project is selected for funding. See MnDOT's TIP description guidance.

MN 120, FROM N RAMP TERMINALS OF I694/MN120 INTERCHANGE TO JCT CSAH 12 IN WHITE BEAR LAKE AND MAHTOMEDI - MILL AND OVERLAY FROM N RAMP TERMINALS OF I694 TO LONG LAKE RD AND WOODLAND DR TO CSAH 12, RECONSTRUCTION FROM LONG LAKE RD TO WOODLAND DR, CONSTRUCT

Include both the CSAH/MSAS/TH references and their corresponding street names in the TIP Description (see Resources link on Regional Solicitation webpage for examples).
$\begin{array}{ll}\text { Project Length (Miles) } & 1.1\end{array}$
to the nearest one-tenth of a mile

Project Funding

Are you applying for competitive funds from another source(s) to implement this project?

If yes, please identify the source(s)
Federal Amount
\$7,000,000.00
Match Amount
\$1,972,428.80
Minimum of 20% of project total

For transit projects, the total cost for the application is total cost minus fare revenues.
Match Percentage 21.98\%
Minimum of 20\%
Compute the match percentage by dividing the match amount by the project total
Source of Match Funds
County Funds
A minimum of 20% of the total project cost must come from non-federal sources; additional match funds over the 20% minimum can come from other federal sources

Preferred Program Year
Select one:
2027
Select 2024 or 2025 for TDM and Unique projects only. For all other applications, select 2026 or 2027.
Additional Program Years:
Select all years that are feasible if funding in an earlier year becomes available.

Project Information-Roadways

County, City, or Lead Agency	Washington County
Functional Class of Road	Minor Arterial
Road System	TH
TH, CSAH, MSAS, CO. RD., TWP. RD., CITY STREET	
Road/Route No.	120
i.e., 53 for CSAH 53	
Name of Road	Century Avenue
Example; 1st ST., MAIN AVE	
Zip Code where Majority of Work is Being Performed	55115
(Approximate) Begin Construction Date	04/01/2027
(Approximate) End Construction Date	10/31/2027
TERMINI:(Termini listed must be within 0.3 miles of any work)	
From: (Intersection or Address)	I-694
To: (Intersection or Address)	CSAH 12 (Old TH 244/Wildwood Rd/Co Rd E)
DO NOT INCLUDE LEGAL DESCRIPTION	
Or At	
Miles of Sidewalk (nearest 0.1 miles)	0
Miles of Trail (nearest 0.1 miles)	1.5
Miles of Trail on the Regional Bicycle Transportation Network (nearest 0.1 miles)	0
Primary Types of Work	MILL AND OVERLAY, BITUMINOUS RECONSTRUCTION, ROUNDABOUT, PED RAMPS, AND TRAIL CONSTRUCTION

Examples: GRADE, AGG BASE, BIT BASE, BIT SURF,
SIDEWALK, CURB AND GUTTER,STORM SEWER,
SIGNALS, LIGHTING, GUARDRAIL, BIKE PATH, PED RAMPS,
BRIDGE, PARK AND RIDE, ETC.
BRIDGE/CULVERT PROJECTS (IF APPLICABLE)
Old Bridge/Culvert No.:
New Bridge/Culvert No.:
Structure is Over/Under
(Bridge or culvert name):

Requirements - All Projects

All Projects

1.The project must be consistent with the goals and policies in these adopted regional plans: Thrive MSP 2040 (2014), the 2040 Transportation Policy Plan (2018), the 2040 Regional Parks Policy Plan (2018), and the 2040 Water Resources Policy Plan (2015).

Check the box to indicate that the project meets this requirement. Yes
2.The project must be consistent with the 2040 Transportation Policy Plan. Reference the 2040 Transportation Plan goals, objectives, and strategies that relate to the project.

Briefly list the goals, objectives, strategies, and associated pages:

This project is compliant with the following goals, objectives, and strategies in the Metropolitan Council?s 2040 Transportation Policy Plan.

Goal: Transportation System Stewardship. Sustainable investments in the transportation system are protected by strategically preserving, maintaining, and operating system assets.

Objectives A. Efficiently preserve and maintain the regional transportation system in a state of good repair.
B. Operate the regional transportation system to efficiently and cost-effectively connect people and freight to destinations.

Strategies: Regional transportation partners will place the highest priority for transportation investments on strategically preserving, maintaining, and operating the transportation system.

Goal: Safety and Security. The regional transportation system is safe and secure for all users.

Objectives A. Reduce crashes and improve safety and security for all modes of passenger travel and freight transport.

Strategies: Regional transportation partners will incorporate safety and security considerations for all modes and users throughout the processes of planning, funding, construction, and operation.

Goal: Access to Destinations. A reliable, affordable, and efficient multimodal transportation system supports the prosperity of people and businesses
by connecting them to destinations throughout the region and beyond.

Objectives:

D. Increase the number and share of trips taken using transit, carpools, bicycling, and walking.
E. Improve the availability of and quality of multimodal travel options for people of all ages and abilities to connect to jobs and other opportunities, particularly for historically under-represented populations.

Strategies: Regional transportation partners will continue to work together to plan and implement
transportation systems that are multimodal and provide connections between modes.

Local units of government should provide a system of interconnected arterial roads, streets, bicycle facilities, and pedestrian facilities to meet local travel needs using Complete Streets principles.

List the applicable documents and pages: Unique projects are exempt from this qualifying requirement because of their innovative nature.

This project is compliant with the goals, policies, and strategies of the Washington County 2040 Comprehensive Plan.

Goal: Plan, build, and maintain an interconnected and accessible transportation system that considers all users and modes of travel. (Pg 3-8)

Policies: Coordinate transportation mobility and choice to meet a diversity of needs while considering appropriate system levels of service.

Work with partners to identify and coordinate transportation system improvements to accommodate new growth and development.

Pursue federal, state, regional, and local funding opportunities to preserve, maintain, expand, and modernize the transportation network.

Advocate and promote long-term investments in transit including METRO Gold Line, Red Rock Corridor, Rush Line Corridor Extension, and TH 36 Corridor to provide reliable and efficient transit services.

Strategies:

Support levels and types of transit service that match specific needs of the community based on ridership forecasts, development patterns, and mobility needs.

Integrate non-motorized accommodations into the design of roadway and transit facilities to increase access to destinations.

Identify gaps in trail network and prioritize investments to improve non-motorized access to destinations

Implement recommendations from county-led transportation and transit studies.

Goal: Preserve safety and efficiency for all users (Pg 3-10)

Policies: Support ongoing safety review process that promotes both proactive and reactive treatments to reduce crashes.

Use traffic management techniques to improve operations, safety, and useful life of the roadways.

Strategies:

Coordinate with partners to improve safety and usability of county roadways when developing safe, effective, and implementable strategies in key locations like near schools and at non-motorized crossings.

Develop roadway crossings and trail facilities within county roadway corridors to promote safety for all users.

This project is compliant with the related goals, policies, and strategies in the White Bear Lake and Mahtomedi 2040 comprehensive plans that were not included due to character limits.
4. The project must exclude costs for studies, preliminary engineering, design, or construction engineering. Right-of-way costs are only eligible as part of transit stations/stops, transit terminals, park-and-ride facilities, or pool-and-ride lots. Noise barriers, drainage projects, fences, landscaping, etc., are not eligible for funding as a standalone project, but can be included as part of the larger submitted project, which is otherwise eligible. Unique project costs are limited to those that are federally eligible.

Check the box to indicate that the project meets this requirement. Yes
5.Applicant is a public agency (e.g., county, city, tribal government, transit provider, etc.) or non-profit organization (TDM and Unique Projects applicants only). Applicants that are not State Aid cities or counties in the seven-county metro area with populations over 5,000 must contact the MnDOT Metro State Aid Office prior to submitting their application to determine if a public agency sponsor is required.

Check the box to indicate that the project meets this requirement. Yes
6.Applicants must not submit an application for the same project elements in more than one funding application category.

Check the box to indicate that the project meets this requirement. Yes
7.The requested funding amount must be more than or equal to the minimum award and less than or equal to the maximum award. The cost of preparing a project for funding authorization can be substantial. For that reason, minimum federal amounts apply. Other federal funds may be combined with the requested funds for projects exceeding the maximum award, but the source(s) must be identified in the application. Funding amounts by application category are listed below in Table 1. For unique projects, the minimum award is $\$ 500,000$ and the maximum award is the total amount available each funding cycle (approximately \$4,000,000 for the 2022 funding cycle).
Strategic Capacity (Roadway Expansion): \$1,000,000 to \$10,000,000
Roadway Reconstruction/Modernization: \$1,000,000 to \$7,000,000
Traffic Management Technologies (Roadway System Management): \$500,000 to \$3,500,000
Spot Mobility and Safety: \$1,000,000 to \$3,500,000
Bridges Rehabilitation/Replacement: \$1,000,000 to \$7,000,000
Check the box to indicate that the project meets this requirement. Yes
8.The project must comply with the Americans with Disabilities Act (ADA).

Check the box to indicate that the project meets this requirement. Yes
9.In order for a selected project to be included in the Transportation Improvement Program (TIP) and approved by USDOT, the public agency sponsor must either have a current Americans with Disabilities Act (ADA) self-evaluation or transition plan that covers the public right of way/transportation, as required under Title II of the ADA. The plan must be completed by the local agency before the Regional Solicitation application deadline. For the 2022 Regional Solicitation funding cycle, this requirement may include that the plan is updated within the past five years.

The applicant is a public agency that employs 50 or more people and has a completed ADA transition plan that covers the public right of way/transportation.
(TDM and Unique Project Applicants Only) The applicant is not a public agency subject to the self-evaluation requirements in Title II of the ADA.

Date plan completed:

Link to plan:

The applicant is a public agency that employs fewer than 50 people and has a completed ADA self-evaluation that covers the public right of way/transportation.

Date self-evaluation completed:
Link to plan:
Upload plan or self-evaluation if there is no link
Upload as PDF
10.The project must be accessible and open to the general public.

Check the box to indicate that the project meets this requirement. Yes
11.The owner/operator of the facility must operate and maintain the project year-round for the useful life of the improvement, per FHWA direction established 8/27/2008 and updated 6/27/2017. Unique projects are exempt from this qualifying requirement.

Check the box to indicate that the project meets this requirement. Yes
12. The project must represent a permanent improvement with independent utility. The term independent utility means the project provides benefits described in the application by itself and does not depend on any construction elements of the project being funded from other sources outside the regional solicitation, excluding the required non-federal match. Projects that include traffic management or transit operating funds as part of a construction project are exempt from this policy.

Check the box to indicate that the project meets this requirement. Yes
13. The project must not be a temporary construction project. A temporary construction project is defined as work that must be replaced within five years and is ineligible for funding. The project must also not be staged construction where the project will be replaced as part of future stages. Staged construction is eligible for funding as long as future stages build on, rather than replace, previous work.

Check the box to indicate that the project meets this requirement. Yes
14. The project applicant must send written notification regarding the proposed project to all affected state and local units of government prior to submitting the application.

Check the box to indicate that the project meets this requirement. Yes

Roadways Including Multimodal Elements

1.All roadway and bridge projects must be identified as a principal arterial (non-freeway facilities only) or A-minor arterial as shown on the latest TAB approved roadway functional classification map.

Check the box to indicate that the project meets this requirement. Yes
Roadway Strategic Capacity and Reconstruction/Modernization and Spot Mobility projects only:
2. The project must be designed to meet 10-ton load limit standards.

Check the box to indicate that the project meets this requirement. Yes
Bridge Rehabilitation/Replacement and Strategic Capacity projects only:
3.Projects requiring a grade-separated crossing of a principal arterial freeway must be limited to the federal share of those project costs identified as local (non-MnDOT) cost responsibility using MnDOTs Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities manual. In the case of a federally funded trunk highway project, the policy guidelines should be read as if the funded trunk highway route is under local jurisdiction.

Check the box to indicate that the project meets this requirement.
4. The bridge must carry vehicular traffic. Bridges can carry traffic from multiple modes. However, bridges that are exclusively for bicycle or pedestrian traffic must apply under one of the Bicycle and Pedestrian Facilities application categories. Rail-only bridges are ineligible for funding.

Check the box to indicate that the project meets this requirement.
Bridge Rehabilitation/Replacement projects only:
5.The length of the bridge clear span must exceed 20 feet.

Check the box to indicate that the project meets this requirement.
6. The bridge must have a National Bridge Inventory Rating of 6 or less for rehabilitation projects and 4 or less for replacement projects.

Check the box to indicate that the project meets this requirement.
Roadway Expansion, Reconstruction/Modernization, and Bridge Rehabilitation/Replacement projects only:
7. All roadway projects that involve the construction of a new/expanded interchange or new interchange ramps must have approval by the Metropolitan Council/MnDOT Interchange Planning Review Committee prior to application submittal. Please contact Michael Corbett at MnDOT (Michael.J.Corbett@state.mn.us or 651-234-7793) to determine whether your project needs to go through this process as described in Appendix F of the 2040 Transportation Policy Plan

Check the box to indicate that the project meets this requirement. Yes

Requirements - Roadways Including Multimodal Elements

Specific Roadway Elements

CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES
 Cost

\$355,000.00
Removals (approx. 5\% of total cost) \$211,965.00

Roadway (grading, borrow, etc.) \$342,000.00

Roadway (aggregates and paving) \$2,423,300.00

Subgrade Correction (muck) \$0.00
Storm Sewer \$1,059,825.00
Ponds \$0.00
Concrete Items (curb \& gutter, sidewalks, median barriers)
\$774,000.00
Traffic Control
\$423,930.00
Striping
\$211,965.00
Signing
\$211,965.00
Lighting
\$211,965.00
Turf - Erosion \& Landscaping $\quad \$ 551,109.00$
Bridge
$\$ 0.00$
Retaining Walls$\$ 0.00$

Noise Wall (not calculated in cost effectiveness measure) \$0.00
Traffic Signals
Wetland Mitigation \$0.00
Other Natural and Cultural Resource Protection \$0.00
RR Crossing \$0.00
Roadway Contingencies $\quad \$ 1,495,404.80$
Other Roadway Elements \$0.00
Totals
\$8,272,428.80
Specific Bicycle and Pedestrian Elements
CONSTRUCTION PROJECT ELEMENTS/COST
ESTIMATES

Cost
Path/Trail Construction \$632,000.00
Sidewalk Construction \$0.00
On-Street Bicycle Facility Construction \$0.00
Right-of-Way \$0.00
Pedestrian Curb Ramps (ADA) \$68,000.00
Crossing Aids (e.g., Audible Pedestrian Signals, HAWK) \$0.00
Pedestrian-scale Lighting \$0.00
Streetscaping \$0.00
Wayfinding \$0.00
Bicycle and Pedestrian Contingencies \$0.00
Other Bicycle and Pedestrian Elements \$0.00
$\begin{array}{ll}\text { Totals } & \$ 700,000.00\end{array}$

Specific Transit and TDM Elements
 CONSTRUCTION PROJECT ELEMENTS/COST
 ESTIMATES
 Cost

Fixed Guideway Elements \$0.00
Stations, Stops, and Terminals \$0.00
Support Facilities \$0.00
Transit Systems (e.g. communications, signals, controls, \$0.00 fare collection, etc.)

Vehicles \$0.00
Contingencies \$0.00
Right-of-Way \$0.00
Other Transit and TDM Elements \$0.00
Totals \$0.00

Transit Operating Costs

Number of Platform hours
Cost Per Platform hour (full loaded Cost)

Totals

Total Cost	$\$ 8,972,428.80$
Construction Cost Total	$\$ 8,972,428.80$
Transit Operating Cost Total	$\$ 0.00$

Measure B: Project Location Relative to Jobs, Manufacturing, and Education

Existing Employment within 1 Mile:
4495
Existing Manufacturing/Distribution-Related Employment within 1 Mile:

Existing Post-Secondary Students within 1 Mile:
8203
Upload Map
1649868050214_11 Regional Economy Map - TH120.pdf
Please upload attachment in PDF form.

Measure C: Current Heavy Commercial Traffic

RESPONSE: Select one for your project, based on the updated 2021 Regional Truck Corridor Study:
Along Tier 1:
Miles:
0
(to the nearest 0.1 miles)
Along Tier 2:
Miles:
0
(to the nearest 0.1 miles)
Along Tier 3
Yes
Miles:
0.1
(to the nearest 0.1 miles)
The project provides a direct and immediate connection (i.e., intersects) with either a Tier 1, Tier 2, or Tier 3 corridor:

Yes
None of the tiers:

Measure A: Current Daily Person Throughput

Location

Current AADT Volume
Existing Transit Routes on the Project

TH 120 (Century Ave)
31000
219

For New Roadways only, list transit routes that will likely be diverted to the new proposed roadway (if applicable).
Upload Transit Connections Map 1649868267180_12 Transit Connections Map - TH120.pdf
Please upload attachment in PDF form.

Response: Current Daily Person Throughput

Average Annual Daily Transit Ridership 0
Current Daily Person Throughput
40300.0

Measure B: 2040 Forecast ADT

Use Metropolitan Council model to determine forecast (2040) ADT volume

If checked, METC Staff will provide Forecast (2040) ADT volume

OR

Identify the approved county or city travel demand model to determine forecast (2040) ADT volume

Forecast (2040) ADT volume

Washington County Model ? 2040 Comprehensive Plan Met Council approved forecasts 39000

Measure A: Engagement

i.Describe any Black, Indigenous, and People of Color populations, low-income populations, disabled populations, youth, or older adults within a $1 / 2$ mile of the proposed project. Describe how these populations relate to regional context. Location of affordable housing will be addressed in Measure C.
ii.Describe how Black, Indigenous, and People of Color populations, low-income populations, persons with disabilities, youth, older adults, and residents in affordable housing were engaged, whether through community planning efforts, project needs identification, or during the project development process.
iii. Describe the progression of engagement activities in this project. A full response should answer these questions:

When compared to the region, the project area has a lower proportion of People of Color, comparable proportions of low-income and youth, and higher proportions of persons with a disability (12\%) and older adults over 65 (19\%). The regional transportation system should support the mobility of older and disabled populations as the region's population over 65 is set to increase dramatically. This demographic trend will be more pronounced in the project area as Washington County is projected to double its population of 65+ residents from 2015 to 2040.

The proposed project is directly adjacent to Century College, one of the largest and most affordable colleges in Minnesota with one of the most diverse student bodies. Century College was a key partner in the 2012 MnDOT-led Alternatives Analysis that analyzed Century Avenue between I-694 and
Response: CSAH 12 and originated the proposed project. Staff from the college, the adjacent cities, and counties have all played an ongoing role in needs identification and development for the proposed project.

In 2019, MnDOT launched a Planning and Environmental Linkages (PEL) study, a related planning effort that analyzed Century Ave between I-94 and I-694. Staff, community members, and elected officials within the proposed project area? including the Cities of Mahtomedi and White Bear Lake, Ramsey and Washington Counties, and Century College - were essential in identifying project needs and influencing the broad corridor vision, which extends into the project area.

PEL study community engagement included a preliminary survey, an online qualitative discussion board, Public Advisory Committee meetings, an elected officials briefing, a virtual open house, a
follow-up survey, outreach to businesses in the corridor, and a series of community engagement activities that specifically targeted BIPOC communities and businesses, including virtual listening sessions with BIPOC community members at Century College, questionnaires mailed to lowerincome apartment complexes, and phone interviews with BIPOC residents and organizations. Project materials were translated into Spanish and Hmong to increase accessibility to multicultural communities.

Consistent across all engagement were concerns about reckless traffic, unsafe bike/ped conditions, and the lack of bike/ped facilities. Participants envisioned a more complete streets approach in the corridor that calms traffic and makes bike/ped conditions safer. PEL study engagement results influenced the proposed project, which has evolved from a more auto-focused roadway expansion in 2012 to a more pedestrian-focused roadway modernization in 2022 that reflects the complete streets vision.

Measure B: Equity Population Benefits and Impacts

Describe the projects benefits to Black, Indigenous, and People of Color populations, low-income populations, children, people with disabilities, youth, and older adults. Benefits could relate to:
This is not an exhaustive list. A full response will support the benefits claimed, identify benefits specific to Equity populations residing or engaged in activities near the project area, identify benefits addressing a transportation issue affecting Equity populations specifically identified through engagement, and substantiate benefits with data.
Acknowledge and describe any negative project impacts to Black, Indigenous, and People of Color populations, low-income populations, children, people with disabilities, youth, and older adults. Describe measures to mitigate these impacts. Unidentified or unmitigated negative impacts may result in a reduction in points.
Below is a list of potential negative impacts. This is not an exhaustive list.

Response:
The project area includes Century College, one of the largest and most diverse and affordable colleges in Minnesota, as well as several low income and affordable housing communities ? including East Metro Place I and II, two housing communities with 34 multi-bedroom units that provide both transitional and permanent supportive housing for homeless families with an emphasis on homeless families with disabilities and with history of long-term homelessness.

Currently, sidewalk only exists along the west side of Century Avenue from CSAH 12/Co Rd E to Century College?s West Campus. No other sidewalk or trail facilities exist in the project area, and therefore safe travel to and from Century College's campuses and the surrounding communities by bike or foot is severely limited. During targeted community engagement for the Century Ave PEL study, the surrounding community consistently raised concerns about unsafe bike/ped conditions, lack of bike/ped facilities, and reckless traffic conditions.

The addition of multiuse trails as a key feature of this project ensures people of all ages, incomes, and abilities have safe travel options through the corridor by bike, foot, or other personal mobility device. The addition of trails also enhances transit in the corridor by making access to transit stops safer and more comfortable, ensuring that those without access to a personal vehicle have safe, quality options to reach destinations in the area across a variety of modes. The proposed project also converts an intersection with limited stop control and a signalized intersection into roundabouts with raised medians, reduced roadway widths, and pedestrian refuge islands. These changes, combined with the removal of another
existing signalized intersection, help control and slow traffic, and facilitate safer crossing of Century Ave for bike/ped users.

There is minimal delay anticipated in the Century Avenue corridor associated with the construction of the road improvements. The goal is to mitigate these delays by keeping Century Avenue open as much as possible. While construction delays are temporary, the project will result in long-lasting delay reduction through the corridor, among other benefits. There are no other known negative impacts to low-income populations, people of color, children, people with disabilities, or the elderly associated with the proposed roadway reconstruction, roundabouts, or addition of important ADA accessible trails.
(Limit 2,800 characters; approximately 400 words):

Measure C: Affordable Housing Access

Describe any affordable housing developmentsexisting, under construction, or plannedwithin $1 / 2$ mile of the proposed project. The applicant should note the number of existing subsidized units, which will be provided on the Socio-Economic Conditions map. Applicants can also describe other types of affordable housing (e.g., naturally-occurring affordable housing, manufactured housing) and under construction or planned affordable housing that is within a half mile of the project. If applicable, the applicant can provide self-generated PDF maps to support these additions. Applicants are encouraged to provide a self-generated PDF map describing how a project connects affordable housing residents to destinations (e.g., childcare, grocery stores, schools, places of worship).
Describe the projects benefits to current and future affordable housing residents within $1 / 2$ mile of the project. Benefits must relate to affordable housing residents. Examples may include:
This is not an exhaustive list. Since residents of affordable housing are more likely not to own a private vehicle, higher points will be provided to roadway projects that include other multimodal access improvements. A full response will support the benefits claimed, identify benefits specific to residents of affordable housing, identify benefits addressing a transportation issue affecting residents of affordable housing specifically identified through engagement, and substantiate benefits with data.

According to the Metropolitan Council?s SocioEconomic Conditions map, there are 1,520 publicly subsidized rental housing units within $1 / 2$ mile of the project area. Several low income and affordable housing communities are located directly adjacent to the project area along Century Avenue:
Woodland Townhomes (LIHTC; HCV accepted; fair housing plan in place) is an affordable housing development with 30 3-BR townhomes affordable at 60\% AMI; Century Hill Townhouses (LIHTC; fair housing plan in place) includes 55 units at 30% AMI; Century Commons features low-income student apartments that border Century College; and East Metro Place I and II housing communities offer 34 multi-bedroom units that provide both transitional and permanent supportive housing for homeless families with an emphasis on homeless families with disabilities and with history of longterm homelessness. Additionally, East Shore Place (202/8NC; fair housing plan in place) is located less than a quarter mile from the project area and features 61 units affordable at 30% AMI.

In addition to publicly subsidized units, the $1 / 2$ mile surrounding the project area also features a housing stock consisting primarily of townhomes, which are often a point of entry into the housing market for lower-income folks and can be characterized as Naturally Occurring Affordable Housing (NOAH).

The project area is also directly adjacent to Century College, one of the largest, most diverse, and most affordable colleges in Minnesota; FedEx, a large ground distribution center and employment hub; and community commercial centers featuring grocery stores, pharmacies, and a variety of other restaurants, businesses, and retail options. Metro Transit Route 219 has multiple stops in the project area, some of which are in the grass boulevard with no connecting sidewalk or pad for boarding or
alighting.

The multiuse trails and reduced crossing distances included as part of the proposed project support safe and affordable alternatives to driving and ensure that affordable housing residents, Century College students, staff, and faculty, and all nearby community members have safe, ADA accessible, equitable, and consistent access to transit and bike/ped travel options in the corridor. It also connects these users to regional trail networks and other important destinations. Auto users ? including freight bound for the adjacent FedEx distribution center - will also experience a safer, more efficient trip through the corridor as this project enhances mobility and safety across all modes by reducing delay at intersections and auto-conflict points.

Measure D: BONUS POINTS

Project is located in an Area of Concentrated Poverty:
Projects census tracts are above the regional average for population in poverty or population of color (Regional Environmental Justice Area):

Project located in a census tract that is below the regional average for population in poverty or populations of color (Regional Environmental Justice Area):

Upload the Socio-Economic Conditions map used for this measure.

Measure A: Year of Roadway Construction

Year of Original
Roadway Construction or Most Recent Reconstruction

Segment Length
Calculation ,

Calculation 2

Total Project Length

Average Construction Year

Weighted Year 1958

Total Segment Length (Miles)

Measure B: Geometric, Structural, or Infrastructure Improvements

Improved roadway to better accommodate freight movements:

Yes
The addition of the two new roundabouts is anticipated to improve delays due to existing signalized and stop-controlled intersections, which will be a positive to the significant amount of freight traffic along this corridor, specifically coming from the nearby FedEx facility. Per the large percentage of truck traffic along this corridor, the roundabouts will be designed to accommodate large trucks, utilizing truck aprons and conservative turning movements.

Yes
The proposed project will be designed to meet MnDOT State Aid standards, not only for the roadway/intersections, but also the pedestrian facilities and tie-ins to existing transit stops. The improved geometrics will be a net positive for all users of this corridor.

Yes

The new intersection control choices are designed with a significant emphasis on access management, which reflects projected traffic volumes of the users of this corridor. Not only is this true for vehicles, but the pedestrian facilities at intersections will also accommodate pedestrian access to nearby destinations.

Access management enhancements:
Response:
(Limit 700 characters; approximately 100 words)
Vertical/horizontal alignment improvements:
Response:
(Limit 700 characters; approximately 100 words)
Improved stormwater mitigation: Yes

Response:
The proposed project will mitigate additional pervious pavement along the corridor by adhering to local standards for stormwater management. The stormwater management strategies will have the opportunity to contribute to the experience of the newly-served pedestrians along the new multi-use trails.

Yes
The proposed reconstruction ? new multiuse trails; construction of roundabouts featuring four-way crossings and pedestrian refuge islands; and raised medians between the roundabouts - dramatically improves multimodal mobility and safety throughout the corridor. The roadway improvements will calm traffic and reduce delay and conflict points throughout the corridor. Bicycle and pedestrian improvements will complete gaps within the existing network, connect to transit stops and Century College?s facilities on both sides of Century Avenue, and create a safer environment for nonmotorized users to travel along or across Century Avenue and connect to transit stops.

Measure A: Congestion Reduction/Air Quality

Total Peak		
Hour	Total Peak	Total Peak
Delay Per	Hour	Hour
Vehicle	Delay Per	Delay Per
Without	Vehicle	Vehicle
The	With The	Reduced
Project	Project	by Project
(Seconds/	(Seconds/	(Seconds/
Vehicle)	Vehicle)	Vehicle)

EXPLANA
TION of

Vehicle Delay Reduced

Total Peak Hour Delay Reduced

Measure B:Roadway projects that do not include new roadway segments or railroad grade-separation elements

Total (CO, NOX, and VOC) Peak Hour Emissions without the Project (Kilograms):	Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms):	Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):
30.85	7.49	23.36
31	7	23

Total

Total Emissions Reduced:
Upload Synchro Report
23.36

1649874269564_14 Synchro Combined - TH120.pdf

Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

Measure B: Roadway projects that are constructing new roadway segments, but do not include railroad grade-separation elements (for Roadway Expansion applications only):

Total (CO, NOX, and VOC)	Total (CO, NOX, and VOC)	Total (CO, NOX, and VOC)
Peak Hour Emissions	Peak Hour Emissions with	Peak Hour Emissions
without the Project	the Project (Kilograms):	Reduced by the Project
(Kilograms):		(Kilograms):

0
0
0

Total Parallel Roadway

Emissions Reduced on Parallel Roadways
Upload Synchro Report
Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

New Roadway Portion:

Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons: 0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced or
Produced on New Roadway (Kilograms):
EXPLANATION of methodology and assumptions used:(Limit 1,400 characters; approximately 200 words)

Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):

Measure B:Roadway projects that include railroad grade-separation elements

Cruise speed in miles per hour without the project: 0
Vehicle miles traveled without the project: 0
Total delay in hours without the project: 0
Total stops in vehicles per hour without the project: 0
Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons (F1) 0
Fuel consumption in gallons (F2) 0
Fuel consumption in gallons (F3) 0

Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):

EXPLANATION of methodology and assumptions used:(Limit 1,400 characters; approximately 200 words)

Measure A: Roadway Projects that do not Include Railroad Grade-Separation Elements

Crash Modification Factor Used:
Convert Signalized Intersection to Modern Roundabout (CMF $=0.79$ for all crash and severity types): TH 120 and Woodland Avenue/ North Century Access Intersection, Install Raised Median (CMF = 0.29 for all crash and severity types): TH 120 and Middle Century Access, Convert Intersection with Minor-Road Stop Control to Modern Roundabout (CMF = 0.56 for all crash and severity types): TH 120 and South Century Access
(Limit 700 Characters; approximately 100 words)

Rationale for Crash Modification Selected:
(Limit 1400 Characters; approximately 200 words)
Project Benefit (\$) from B/C Ratio
\$6,201,899.00
Total Fatal (K) Crashes:
0
Total Serious Injury (A) Crashes: 0
Total Non-Motorized Fatal and Serious Injury Crashes: 0
Total Crashes: 24
Total Fatal (K) Crashes Reduced by Project: 0
Total Serious Injury (A) Crashes Reduced by Project: 0
Total Non-Motorized Fatal and Serious Injury Crashes Reduced by 0
Project:
Total Crashes Reduced by Project: 4
Worksheet Attachment
1649874537604_17 Crash Analysis - TH120.pdf

Roadway projects that include railroad grade-separation elements:

Current AADT volume:	0
Average daily trains:	0
Crash Risk Exposure eliminated:	0

Measure A: Pedestrian Safety

Determine if these measures do not apply to your project. Does the project match either of the following descriptions?
If either of the items are checked yes, then score for entire pedestrian safety measure is zero. Applicant does not need to respond to the sub-measures and can proceed to the next section.

Project is primarily a freeway (or transitioning to a freeway) and does not provide safe and comfortable pedestrian facilities and No crossings.

Existing location lacks any pedestrian facilities (e.g., sidewalks, marked crossings, wide shoulders in rural contexts) and project does not add pedestrian elements (e.g., reconstruction of a No roadway without sidewalks, that doesnt also add pedestrian crossings and sidewalk or sidepath on one or both sides).

SUB-MEASURE 1: Project-Based Pedestrian Safety Enhancements and Risk Elements
To receive maximum points in this category, pedestrian safety countermeasures selected for implementation in projects should be, to the greatest extent feasible, consistent with the countermeasure recommendations in the Regional Pedestrian Safety Action Plan and state and national best practices. Links to resources are provided on the Regional Solicitation Resources web page.
Please answer the following two questions with as much detail as possible based on the known attributes of the proposed design. If any aspect referenced in this section is not yet determined, describe the range of options being considered, to the greatest extent available. If there are project elements that may increase pedestrian risk, describe how these risks are being mitigated.

1. Describe how this project will address the safety needs of people crossing the street at signalized intersections, unsignalized intersections, midblock locations, and roundabouts.
Treatments and countermeasures should be well-matched to the roadways context (e.g., appropriate for the speed, volume, crossing distance, and other location attributes). Refer to the Regional Solicitation Resources web page for guidance links.

Response:
The project area currently has a sidewalk on the west side of TH 120/Century Ave extending from CSAH 12 to Century College?s West Campus and on the east side of Century Ave extending approximately 650 feet south from CSAH 12. Beyond these segments, there are no other sidewalk or trail facilities along the corridor, and pedestrians traveling along Century Ave must choose to either use a shoulder that fluctuates in width, the grass boulevard, or choose to not walk at all. The lack of pedestrian and bicycle facilities also discourages transit use as transit stops are located on the grass boulevard with little protection from vehicular traffic which is uncomfortable and inaccessible for riders.

The proposed project will construct a new multiuse trail on the west side of Century Ave, connecting the southern college entrance to the West Campus and beyond to CSAH 12/Co Rd E. A multiuse trail will also be constructed on the east side of Century Avenue for the entire length of the corridor. These trails will be accessible to all users and designed to meet ADA standards.

FHWA Proven Safety Countermeasures initiative (PSCi) indicates that trails provide a 65-89\% reduction in crashes involving pedestrians walking along roadways. Trail construction on the east and west sides of the proposed roadway modernization project will complete gaps within the existing pedestrian and bicycle network and create a safer environment for non-motorized users to travel along the corridor. With Century College?s facilities located on both sides of Century Ave, the additional trail and sidewalk will create a built environment in which all individuals ?children, adults, elderly, and people with disabilities? can feel comfortable and safe to walk and bike along the corridor.

There is currently an intersection with limited stopcontrol at the southern college entrance and signalized intersections at the central and northern college entrances. The central signalized intersection will be removed, and roundabouts will be constructed at the southern and northern entrance with a raised median in between these two roundabouts, which PSCi indicates provides a 46% reduction in pedestrian crashes. Both roundabouts will feature four-way crossings with pedestrian refuge islands to reduce the crossing distance in all directions and provide a dedicated protected area for individuals who need more time to cross. The PSCi indicate that pedestrian refuge islands support a reduction in pedestrian crashes of 56%. The elimination of the at grade crossing at the central college entrance is mitigated by an existing elevated, covered pedestrian bridge at that location, which connects Century College?s west and east campuses ? the sources of most pedestrians crossing at this location.
(Limit 2,800 characters; approximately 400 words)
Is the distance in between signalized intersections increasing (e.g., removing a signal)?
Select one:
Yes
If yes, describe what measures are being used to fill the gap between protected crossing opportunities for pedestrians (e.g., adding HighIntensity Activated Crosswalk beacons to help motorists yield and help pedestrians find a suitable gap for crossing, turning signal into a roundabout to slow motorist speed, etc.).

Response:

> The central signalized intersection and at-grade crossing will be removed, and roundabouts will be constructed at the southern and northern entrance with a raised median in between these two roundabouts. While the southern entrance, currently an intersection with limited stop control and no pedestrian crossing, will be gaining a roundabout and a four-way pedestrian crossing with pedestrian refuge islands, this does mean that there will be more distance between the removed central signalized intersection and the existing signalized intersection at the northern entrance that is to be replaced by a roundabout. The elimination of the at grade crossing at the central college entrance is mitigated by an existing elevated, covered pedestrian bridge at that location, which connects Century College?s west and east campuses ? the sources of most pedestrians crossing at this location.
(Limit 1,400 characters; approximately 200 words)
Will your design increase the crossing distance or crossing time across any leg of an intersection? (e.g., by adding turn or through lanes, widening lanes, using a multi-phase crossing, prohibiting crossing on any leg of an intersection, pedestrian bridge requiring length detour, etc.). This does not include any increases to crossing distances solely due to the addition of bike lanes (i.e., no other through or turn lanes being added or widened).

Select one: No
If yes,
How many intersections will likely be affected?
Response:
Describe what measures are being used to reduce exposure and delay for pedestrians (e.g., median crossing islands, curb bulb-outs, etc.)
Response:
(Limit 1,400 characters; approximately 200 words)
If grade separated pedestrian crossings are being added and increasing crossing time, describe any features that are included that will reduce the detour required of pedestrians and make the separated crossing a more appealing option (e.g., shallow tunnel that doesnt require much elevation change instead of pedestrian bridge with numerous switchbacks).

Response:
(Limit 1,400 characters; approximately 200 words)
If mid-block crossings are restricted or blocked, explain why this is necessary and how pedestrian crossing needs and safety are supported in other ways (e.g., nearest protected or enhanced crossing opportunity).

> Existing mid-block crossings are restricted by the continued usage of curb \& gutter and raised center medians in the proposed condition. These measures will continue to deter pedestrians from crossing the busy trunk highway at unsafe, uncontrolled locations. The new round-abouts, in combination with the existing pedestrian bridge connecting Century College?s east and west campus, will provide ample and safe crossing opportunities at controlled intersections or separated facilities. Response:
(Limit 1,400 characters; approximately 200 words)
2. Describe how motorist speed will be managed in the project design, both for through traffic and turning movements. Describe any project-related factors that may affect speed directly or indirectly, even if speed is not the intended outcome (e.g., wider lanes and turning radii to facilitate freight movements, adding turn lanes to alleviate peak hour congestion, etc.). Note any strategies or treatments being considered that are intended to help motorists drive slower (e.g., visual narrowing, narrow lanes, truck aprons to mitigate wide turning radii, etc.) or protect pedestrians if increasing motorist speed (e.g., buffers or other separation from moving vehicles, crossing treatments appropriate for higher speed roadways, etc.).

The proposed roadway modernization project features a more pedestrian friendly and traffic calming design, with new trails on both sides of Century Ave, roundabouts introduced at the southern and northern college entrances, and raised medians and narrowed lane-width between the roundabouts. The replacement of the limitedcontrol and signalized intersections with roundabouts streamlines turning movements throughout the project area while also having the effect of limiting speed, thereby calming the corridor. According to FHWA Proven Safety Countermeasures initiative (PSCi), roundabouts feature channelized, curved approaches that reduce vehicle speed, and counterclockwise flow around a central island that minimizes conflict points, resulting in lower speeds and reduced conflicts. This in contrast to the existing condition in which one can speed through the signaled intersections with green lights. The raised medians and new trails on either side of the roadway not only protect pedestrians throughout the corridor but also effectively reduce lane-width which according to Minnesota?s Best Practices for Pedestrian and Bicycle Safety further calms traffic speeds.

Century Avenue currently has a posted speed of 40
Response: MPH. The proposed design does not change the existing posted speed.
(Limit 1,400 characters; approximately 200 words)
SUB-MEASURE 2: Existing Location-Based Pedestrian Safety Risk Factors
These factors are based on based on trends and patterns observed in pedestrian crash analysis done for the Regional Pedestrian Safety Action Plan. Check off how many of the following factors are present. Applicants receive more points if more risk factors are present.
Existing road configuration is a One-way, $3+$ through lanes
or
Existing road configuration is a Two-way, 4+ through lanes
Existing road has a design speed, posted speed limit, or speed study/data showing 85th percentile travel speeds in excess of 30 MPH or more

Existing road has AADT of greater than 15,000 vehicles per day Yes

SUB-MEASURE 3: Existing Location-Based Pedestrian Safety Exposure Factors
These factors are based on based on trends and patterns observed in pedestrian crash analysis done for the Regional Pedestrian Safety Action Plan. Check off how many of the following existing location exposure factors are present. Applicants receive more points if more risk factors are present.

Existing road has transit running on or across it with 1+ transit stops in the project area (If flag-stop route with no fixed stops, then 1+ locations in the project area where roadside stops are allowed. Do not count portions of transit routes with no stops, such as non-stop freeway sections of express or limited-stop routes. If service was temporarily reduced for the pandemic but is expected to return to 2019 levels, consider 2019 service for this item.)

Existing road has high-frequency transit running on or across it and 1+ high-frequency stops in the project area (high-frequency defined as service at least every 15 minutes from 6am to 7pm weekdays and 9am to 6pm Saturdays. If service frequency was temporarily reduced for the pandemic but is expected to return to 2019 levels, consider 2019 frequency for this item.)

Existing road is within 500 of $1+$ shopping, dining, or entertainment destinations (e.g., grocery store, restaurant)

If checked, please describe:

Yes

The proposed project area connects and is directly adjacent to Century College, one of the largest, most diverse, and most affordable colleges in Minnesota, as well as several multifamily and student housing facilities including Century Commons affordable student housing. The project area also includes several publicly subsidized low income and affordable housing communities including Woodland Townhomes, Century Hill Townhomes, East Shore Place, and East Metro Place I and II - two housing developments with 34 multi-bedroom units that provide both transitional and permanent supportive housing for homeless families with an emphasis on homeless families with disabilities and with history of long-term homelessness.

Measure A: Multimodal Elements and Existing Connections

The proposed roadway reconstruction and modernization of TH 120 (Century Avenue) between I-694 and CSAH 12 featuring roundabouts and new trails on either side of Century Ave dramatically improves mobility and safety throughout this stretch of road across multiple modes of travel.

The project area currently has a sidewalk on the west side of TH 120/Century Avenue extending from CSAH 12 to Century College?s West Campus and on the east side of Century Ave extending approximately 650 feet south from CSAH 12. Beyond these segments, no other sidewalk or trail facilities currently exist along the corridor, and pedestrians traveling along Century Ave must choose to either use a shoulder that fluctuates in width, the grass boulevard, or choose to not walk at all. The lack of pedestrian and bicycle facilities also discourages transit use as transit stops are located on the grass boulevard with little protection from vehicular traffic which is uncomfortable and inaccessible for many riders.

The proposed project will construct a new multiuse trail on the west side of Century Ave, connecting the southern college entrance to the West Campus and beyond to CSAH 12/Co Rd E. A new multiuse trail will also be constructed on the east side of Century Avenue for the entire length of the corridor. These trails will be accessible to all users and designed to meet ADA standards.

Century Ave is identified as a Planned Bikeway in the Regional Bikeways Inventory, and the completion of this project would bring a significant bike/ped connection online along an important north-south travel corridor and connect two adjacent RBTN Tier 1 Corridors. The trail will
complete gaps within the existing network, connect to Century College?s facilities on both sides of Century Avenue from both north and south, and create a safer environment for non-motorized users to travel the corridor by reducing potential conflicts between pedestrians, bicyclists, and motorists.

The roadway reconstruction and new roundabouts are designed to increase safety across modes and reduce delay at intersections through the corridor, which benefits all users and enhances transit competitiveness. The proposed multiuse trails are crucial to the future success of transit in the corridor, as bike/ped connections to bus stops are an essential component of the transit experience. The project area is currently served by Metro Transit Route 219, and transit opportunities are expected to increase in and near the project area by 2040, including connecting service to the METRO Purple Line, potential future aBRT service along Century Ave, and potential connections to enhanced transit along TH 36.

Transit Projects Not Requiring Construction

If the applicant is completing a transit application that is operations only, check the box and do not complete the remainder of the form. These projects will receive full points for the Risk Assessment.
Park-and-Ride and other transit construction projects require completion of the Risk Assessment below.
Check Here if Your Transit Project Does Not Require Construction

Measure A: Risk Assessment - Construction Projects

1.Public Involvement (20 Percent of Points)

Projects that have been through a public process with residents and other interested public entities are more likely than others to be successful. The project applicant must indicate that events and/or targeted outreach (e.g., surveys and other web-based input) were held to help identify the transportation problem, how the potential solution was selected instead of other options, and the public involvement completed to date on the project. The focus of this section is on the opportunity for public input as opposed to the quality of input. NOTE: A written response is required and failure to respond will result in zero points.

Multiple types of targeted outreach efforts (such as meetings or online/mail outreach) specific to this project with the general public and partner agencies have been used to help identify the Yes project need.

100\%
At least one meeting specific to this project with the general public has been used to help identify the project need.

50\%
At least online/mail outreach effort specific to this project with the general public has been used to help identify the project need.
50\%
No meeting or outreach specific to this project was conducted, but the project was identified through meetings and/or outreach related to a larger planning effort.

25\%
No outreach has led to the selection of this project.
0\%
Describe the type(s) of outreach selected for this project (i.e., online or in-person meetings, surveys, demonstration projects), the method(s) used to announce outreach opportunities, and how many people participated. Include any public website links to outreach opportunities.

Response:
The proposed project is directly adjacent to Century College, one of the largest and most affordable colleges in Minnesota with one of the most diverse student bodies. Century College was a key partner in the 2012 MnDOT-led Alternatives Analysis that analyzed Century Avenue between I-694 and CSAH 12 and originated the proposed project. Staff from the college, the adjacent cities, and counties have all played an ongoing role in needs identification and development for the proposed project.

In 2019, MnDOT launched a Planning and Environmental Linkages (PEL) study, a related planning effort that analyzed Century Ave between I-94 and I-694. Staff, community members, and elected officials within the proposed project area? including the Cities of Mahtomedi and White Bear Lake, Ramsey and Washington Counties, and Century College - were essential in identifying project needs and influencing the broad corridor vision, which extends into the project area.

The PEL Study is still underway, but the engagement process has included a preliminary survey (1,328 participants), an online qualitative discussion board (37 participants), Public Advisory Committee (PAC) meetings (16 PAC members), an elected officials briefing (19 participants), a virtual open house (122 participants), a follow-up survey (477 participants), outreach to businesses in the corridor (72 businesses), a bicycling oriented focus group (8 participants), and a series of targeted community engagement activities that specifically targeted BIPOC communities and businesses with informational flyers inviting their participation in questionnaires and other activities, virtual listening sessions with BIPOC community members at Century College (5 participants), questionnaires mailed to lower-income apartment complexes (17 participants), and phone interviews with BIPOC

> residents and businesses/organizations (13 participants). Project materials and questionnaires were translated into Spanish and Hmong to increase accessibility to multicultural communities. Consistent across all engagement were concerns about reckless traffic, unsafe bike/ped conditions, and the lack of bike/ped facilities. Participants envisioned a more complete streets approach in the corridor that calms traffic and makes bike/ped conditions safer. PEL study engagement results influenced the proposed project, which has evolved from a more auto-focused roadway expansion in 2012 to a more pedestrian-focused roadway modernization in 2022 that reflects the emerging complete streets vision.
> http://www.dot.state.mn.us/metro/projects/hwy120st udy/index.html
(Limit 2,800 characters; approximately 400 words)
2.Layout (25 Percent of Points)

Layout includes proposed geometrics and existing and proposed right-of-way boundaries. A basic layout should include a base map (north arrow; scale; legend;* city and/or county limits; existing ROW, labeled; existing signals;* and bridge numbers*) and design data (proposed alignments; bike and/or roadway lane widths; shoulder width;* proposed signals;* and proposed ROW). An aerial photograph with a line showing the projects termini does not suffice and will be awarded zero points. *If applicable

Layout approved by the applicant and all impacted jurisdictions (i.e., cities/counties/MnDOT. If a MnDOT trunk highway is impacted, approval by MnDOT must have occurred to receive full points. A PDF of the layout must be attached along with letters from each jurisdiction to receive points.

100\%
A layout does not apply (signal replacement/signal timing, standalone streetscaping, minor intersection improvements). Applicants that are not certain whether a layout is required Yes should contact Colleen Brown at MnDOT Metro State Aid colleen.brown@state.mn.us.

100\%
For projects where MnDOT trunk highways are impacted and a MnDOT Staff Approved layout is required. Layout approved by the applicant and all impacted local jurisdictions (i.e., cities/counties), and layout review and approval by MnDOT is pending. A PDF of the layout must be attached along with letters from each jurisdiction to receive points.

Layout completed but not approved by all jurisdictions. A PDF of the layout must be attached to receive points.

Layout has been started but is not complete. A PDF of the layout must be attached to receive points.

25\%
Layout has not been started
0\%
Attach Layout
1649874820123_03 Concept Layout - TH120.pdf
Please upload attachment in PDF form.
Additional Attachments
Please upload attachment in PDF form.
3.Review of Section 106 Historic Resources (15 Percent of Points)

No known historic properties eligible for or listed in the National Register of Historic Places are located in the project area, and project is not located on an identified historic bridge
100\%
There are historical/archeological properties present but determination of no historic properties affected is anticipated. Yes

100\%
Historic/archeological property impacted; determination of no adverse effect anticipated

80\%
Historic/archeological property impacted; determination of adverse effect anticipated

40\%
Unsure if there are any historic/archaeological properties in the project area.

0\%
Project is located on an identified historic bridge
4.Right-of-Way (25 Percent of Points)

Right-of-way, permanent or temporary easements, and MnDOT agreement/limited-use permit either not required or all have been acquired

100\%
Right-of-way, permanent or temporary easements, and/or MnDOT agreement/limited-use permit required - plat, legal descriptions, or official map complete

50\%
Right-of-way, permanent or temporary easements, and/or MnDOT agreement/limited-use permit required - parcels identified

25\%
Right-of-way, permanent or temporary easements, and/or MnDOT agreement/limited-use permit required - parcels not all identified

5.Railroad Involvement (15 Percent of Points)

No railroad involvement on project or railroad Right-of-Way agreement is executed (include signature page, if applicable) Yes
100\%

Signature Page
Please upload attachment in PDF form.
Railroad Right-of-Way Agreement required; negotiations have begun

50\%
Railroad Right-of-Way Agreement required; negotiations have not begun.

0\%

Measure A: Cost Effectiveness

Total Project Cost (entered in Project Cost Form):	$\$ 8,972,428.80$
Enter Amount of the Noise Walls:	$\$ 0.00$
Total Project Cost subtract the amount of the noise walls:	$\$ 8,972,428.80$
Enter amount of any outside, competitive funding:	$\$ 0.00$
Attach documentation of award:	
Points Awarded in Previous Criteria	$\$ 0.00$

Other Attachments

File Name	Description	File Size
01 Summary Sheet - TH120.pdf	TH 120 Summary Sheet	435 KB
02 Existing Conditions - TH120.pdf	TH 120 Existing Conditions	525 KB
04 County Board Resolution - TH120.pdf	Washington County Board Resolution	239 KB
05 MnDOT LOS - TH120.pdf	TH 120 MnDOT Letter of Support	118 KB
06 Mahtomedi LOS - TH120.pdf	TH 120 Mahtomedi Letter of Support	606 KB
07 White Bear Lake LOS - TH120.pdf	White Bear Lake Letter of Support	599 KB
08 Ramsey County LOS - TH120.pdf	Ramsey County Letter of Support	189 KB
09 Century College LOS - TH120.pdf	TH 120 Century College Letter of	146 KB
10 Level of Congestion Map -TH120.pdf	TH 120 Level of Congestion	4.1 MB
13b Affordable Housing Map - TH120.pdf	TH 120 Affordable Housing	1.9 MB
22 MNCompass Demographic Data -	TH 120 MnCompass Demographics	678 KB
TH120.pdf		

Regional Economy
Results
WITHIN ONE MI of project:
Postsecondary Students: 8203
Totals by City:
Mahtomedi
Population: 5536
Employment: 1985
Mfg and Dist Employment: 1146
Maplewood
Population: 612
Employment: null
Mfg and Dist Employment: null
North St. Paul
Population: 2265
Employment: 13
Mfg and Dist Employment: 1
Oakdale
Population: 1307
Employment: 545
Mfg and Dist Employment: 138
White Bear Lake
Population: 4632
Employment: 1952
Mfg and Dist Employment: 16

Postsecondary Education Centers \square Job Concentration Centers

Manfacturing/Distribution Centers
For complete disclaimer of accuracy, please visit http://giswebsite.metc.state.mn.us/gissitenew/notice.aspx
METROPOLITAN

HCM 6th Signalized Intersection Summary
1: TH 120 \& North Access/Woodland Dr

	4	\rightarrow		7			4	4	p	(\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{1}$	\uparrow		${ }^{1}$	4	「	${ }^{*}$	4	7
Traffic Volume (veh/h)	25	0	16	22	1	22	3	668	47	25	379	13
Future Volume (veh/h)	25	0	16	22	1	22	3	668	47	25	379	13
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	29	0	18	25	1	25	3	768	54	29	436	15
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	186	0	134	194	5	130	675	1271	1077	595	1319	1117
Arrive On Green	0.08	0.00	0.08	0.08	0.08	0.08	0.01	1.00	1.00	0.03	0.70	0.70
Sat Flow, veh/h	1385	0	1585	1395	61	1533	1781	1870	1585	1781	1870	1585
Grp Volume(v), veh/h	29	0	18	25	0	26	3	768	54	29	436	15
Grp Sat Flow(s), veh/h/ln	1385	0	1585	1395	0	1594	1781	1870	1585	1781	1870	1585
Q Serve(g_s), s	1.6	0.0	0.8	1.4	0.0	1.2	0.0	0.0	0.0	0.4	7.2	0.2
Cycle Q Clear(g_c), s	2.8	0.0	0.8	2.2	0.0	1.2	0.0	0.0	0.0	0.4	7.2	0.2
Prop In Lane	1.00		1.00	1.00		0.96	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	186	0	134	194	0	135	675	1271	1077	595	1319	1117
V/C Ratio(X)	0.16	0.00	0.13	0.13	0.00	0.19	0.00	0.60	0.05	0.05	0.33	0.01
Avail Cap(c_a), veh/h	251	0	208	258	0	209	802	1271	1077	676	1319	1117
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	0.42	0.42	0.42	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.4	0.0	33.9	34.9	0.0	34.1	4.2	0.0	0.0	3.4	4.5	3.5
Incr Delay (d2), s/veh	0.4	0.0	0.4	0.3	0.0	0.7	0.0	0.9	0.0	0.0	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.5	0.0	0.3	0.5	0.0	0.5	0.0	0.3	0.0	0.1	2.1	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	35.8	0.0	34.3	35.2	0.0	34.7	4.2	0.9	0.0	3.5	5.2	3.5
LnGrp LOS	D	A	C	D	A	C	A	A	A	A	A	A
Approach Vol, veh/h		47			51			825			480	
Approach Delay, s/veh		35.2			35.0			0.9			5.1	
Approach LOS		D			C			A			A	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.3	62.4		12.3	7.4	60.3		12.3				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	5.0	6.0		5.5	5.0	6.0		5.5				
Max Green Setting (Gmax), s	6.0	47.0		10.5	6.0	47.0		10.5				
Max Q Clear Time (g_c+11), s	2.0	9.2		4.8	2.4	2.0		4.2				
Green Ext Time (p_c), s	0.0	6.9		0.0	0.0	16.2		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			4.7									
HCM 6th LOS			A									

HCM 6th Signalized Intersection Capacity Analysis
1: TH 120 \& North Access/Woodland Dr

	\rangle	\rightarrow	7	7		4	4	4	p		\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow		${ }^{*}$	\uparrow		${ }^{7}$	4	「	${ }^{*}$	4	7
Traffic Volume (veh/h)	25	0	16	22	1	22	3	668	47	25	379	13
Future Volume (veh/h)	25	0	16	22	1	22	3	668	47	25	379	13
Number	7	4	14	3	8	18	1	6	16	5	2	12
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone												
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	29	0	18	25	1	25	3	768	54	29	436	15
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	Yes			Yes			Yes			Yes		
Cap, veh/h	186	0	134	194	5	130	675	1271	1077	595	1319	1117
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Prop Arrive On Green	0.08	0.00	0.08	0.08	0.08	0.08	0.01	1.00	1.00	0.03	0.70	0.70
Unsig. Movement Delay												
Ln Grp Delay, s/veh	35.8	0.0	34.3	35.2	0.0	34.7	4.2	0.9	0.0	3.5	5.2	3.5
Ln Grp LOS	D	A	C	D	A	C	A	A	A	A	A	A
Approach Vol, veh/h		47			51			825			480	
Approach Delay, s/veh		35.2			35.0			0.9			5.1	
Approach LOS		D			C			A			A	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6		8			
Case No		1.1	3.0		6.0	1.1	3.0		6.0			
Phs Duration ($G+Y+R \mathrm{c}$), s		5.3	62.4		12.3	7.4	60.3		12.3			
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		5.0	6.0		5.5	5.0	6.0		5.5			
Max Green (Gmax), s		6.0	47.0		10.5	6.0	47.0		10.5			
Max Allow Headway (MAH), s		4.2	7.6		4.8	4.2	7.5		5.0			
Max Q Clear (g_c+11), s		2.0	9.2		4.8	2.4	2.0		4.2			
Green Ext Time (g_e), s		0.0	6.9		0.0	0.0	16.2		0.1			
Prob of Phs Call (p_c)		0.06	1.00		0.65	0.48	1.00		0.68			
Prob of Max Out (p - $)^{\text {) }}$		1.00	0.00		0.37	1.00	0.00		0.28			
Left-Turn Movement Data												
Assigned Mvmt		1			7	5			3			
Mvmt Sat Flow, veh/h		1781			1385	1781			1395			
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			1870		0		1870		61			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			1585		1585		1585		1533			
Left Lane Group Data												
Assigned Mvmt		1	0	0	7	5	0	0	3			
Lane Assignment		r/Pm)			U	Pr/Pm)			L			

HCM 6th Signalized Intersection Capacity Analysis
1: TH 120 \& North Access/Woodland Dr

Lanes in Grp	1	0	0	1	1	0	0	1
Grp Vol (v), veh/h	3	0	0	29	29	0	0	25
Grp Sat Flow (s), veh/h/ln	1781	0	0	1385	1781	0	0	1395
Q Serve Time (g_s), s	0.0	0.0	0.0	1.6	0.4	0.0	0.0	1.4
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	2.8	0.4	0.0	0.0	2.2
Perm LT Sat Flow (s_l), veh/h/ln	940	0	0	1385	666	0	0	1395
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0
Perm LT Eff Green (g_p), s	54.3	0.0	0.0	6.8	54.3	0.0	0.0	6.8
Perm LT Serve Time (g_u), s	49.2	0.0	0.0	5.6	54.3	0.0	0.0	5.9
Perm LT Q Serve Time (g_ps), s	0.0	0.0	0.0	1.6	0.0	0.0	0.0	1.4
Time to First Blk (g_f), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prop LT Inside Lane (P_L)	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00
Lane Grp Cap (c), veh/h	675	0	0	186	595	0	0	194
V/C Ratio (X)	0.00	0.00	0.00	0.16	0.05	0.00	0.00	0.13
Avail Cap (c_a), veh/h	802	0	0	251	676	0	0	258
Upstream Filter (I)	0.42	0.00	0.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d1), s/veh	4.2	0.0	0.0	35.4	3.4	0.0	0.0	34.9
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.3
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	4.2	0.0	0.0	35.8	3.5	0.0	0.0	35.2
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	0.5	0.1	0.0	0.0	0.5
2nd-Term Q (Q2), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3rd-Term Q (Q3), veh/In	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile Back of Q Factor (f_B\%)	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00
\%ile Back of Q (50\%), veh/ln	0.0	0.0	0.0	0.5	0.1	0.0	0.0	0.5
\%ile Storage Ratio (RQ\%)	0.00	0.00	0.00	0.05	0.02	0.00	0.00	0.09
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Middle Lane Group Data								
Assigned Mvmt	0	2	0	4	0	6	0	8
Lane Assignment		T				T		
Lanes in Grp	0	1	0	0	0	1	0	0
Grp Vol (v), veh/h	0	436	0	0	0	768	0	0
Grp Sat Flow (s), veh/h/ln	0	1870	0	0	0	1870	0	0
Q Serve Time (g_s), s	0.0	7.2	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear Time (g_c), s	0.0	7.2	0.0	0.0	0.0	0.0	0.0	0.0
Lane Grp Cap (c), veh/h	0	1319	0	0	0	1271	0	0
V/C Ratio (X)	0.00	0.33	0.00	0.00	0.00	0.60	0.00	0.00
Avail Cap (c_a), veh/h	0	1319	0	0	0	1271	0	0
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	0.42	0.00	0.00
Uniform Delay (d1), s/veh	0.0	4.5	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.7	0.0	0.0	0.0	0.9	0.0	0.0
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	0.0	5.2	0.0	0.0	0.0	0.9	0.0	0.0
1st-Term Q (Q1), veh/ln	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0
2nd-Term Q (Q2), veh/In	0.0	0.2	0.0	0.0	0.0	0.3	0.0	0.0

HCM 6th Signalized Intersection Capacity Analysis
1: TH 120 \& North Access/Woodland Dr

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile Back of Q Factor (f_B\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
\%ile Back of Q (50\%), veh/ln	0.0	2.1	0.0	0.0	0.0	0.3	0.0	0.0
\%ile Storage Ratio (RQ\%)	0.00	0.04	0.00	0.00	0.00	0.01	0.00	0.00
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Right Lane Group Data								
Assigned Mvmt	0	12	0	14	0	16	0	18
Lane Assignment	0	1	0	1	0	1	0	1
Lanes in Grp	0	15	0	18	0	54	0	26
Grp Vol (v), veh/h	0	1585	0	1585	0	1585	0	1594
Grp Sat Flow (s), veh/h/ln	0.0	0.2	0.0	0.8	0.0	0.0	0.0	1.2
Q Serve Time (g_s), s	0.0	0.2	0.0	0.8	0.0	0.0	0.0	1.2
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Eff Green (g_R), s	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.96
Prop RT Outside Lane (P_R)	0	1117	0	134	0	1077	0	135
Lane Grp Cap (c), veh/h	0.00	0.01	0.00	0.13	0.00	0.05	0.00	0.19
V/C Ratio (X)	0	1117	0	208	0	1077	0	209
Avail Cap (c_a), veh/h	0.00	1.00	0.00	1.00	0.00	0.42	0.00	1.00
Upstream Filter (I)	0.0	3.5	0.0	33.9	0.0	0.0	0.0	34.1
Uniform Delay (d1), s/veh	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.7
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay (d3), s/veh	0.0	3.5	0.0	34.3	0.0	0.0	0.0	34.7
Control Delay (d), s/veh	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.5
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2nd-Term Q (Q2), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3rd-Term Q (Q3), veh/ln	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
\%ile Back of Q Factor (f_B\%)	0.0	0.1	0.0	0.3	0.0	0.0	0.0	0.5
\%ile Back of Q (50\%), veh/ln	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01
\%ile Storage Ratio (RQ\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0	0	0	0	0	0	0	0
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Clear Time (tc), h								

Intersection Summary	
HCM 6th Ctrl Delay	4.7
HCM 6th LOS	A

HCM 6th Signalized Intersection Summary
2：TH 120 \＆Middle Access

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	「		\uparrow	「	${ }^{7}$	4	1	${ }^{*}$	4	「
Traffic Volume（veh／h） 3	5	193	135	11	36	88	685	22	12	452	2
Future Volume（veh／h） 3	5	193	135	11	36	88	685	22	12	452	2
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h 3	6	222	155	13	41	124	867	0	15	520	0
Peak Hour Factor 0.87	0.87	0.87	0.87	0.87	0.87	0.71	0.79	0.68	0.79	0.87	0.87
Percent Heavy Veh，\％ 2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h 73	146	188	191	16	184	410	859		134	752	
Arrive On Green 0.12	0.12	0.12	0.12	0.12	0.12	0.08	0.46	0.00	0.03	0.54	0.00
Sat Flow，veh／h 613	1226	1585	1650	138	1585	1781	1870	1585	1781	1870	1585
Grp Volume（v），veh／h 9	0	222	168	0	41	124	867	0	15	520	0
Grp Sat Flow（s），veh／h／ln1840	0	1585	1788	0	1585	1781	1870	1585	1781	1870	1585
Q Serve（g＿s），s 0．3	0.0	9.5	7.3	0.0	1.9	3.0	36.8	0.0	0.4	16.4	0.0
Cycle Q Clear（g＿c），s 0.3	0.0	9.5	7.3	0.0	1.9	3.0	36.8	0.0	0.4	16.4	0.0
Prop In Lane 0.33		1.00	0.92		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h 218	0	188	207	0	184	410	859		134	752	
V／C Ratio（X） 0.04	0.00	1.18	0.81	0.00	0.22	0.30	1.01		0.11	0.69	
Avail Cap（c＿a），veh／h 218	0	188	212	0	188	464	859		290	752	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33
Upstream Filter（I） 1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	0.97	0.97	0.00
Uniform Delay（d），s／veh 31.2	0.0	35.3	34.5	0.0	32.1	12.9	21.6	0.0	19.5	14.9	0.0
Incr Delay（d2），s／veh 0.1	0.0	122.3	20.3	0.0	0.6	0.4	32.9	0.0	0.4	5.0	0.0
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／lm0． 2	0.0	10.0	4.3	0.0	0.7	1.1	21.7	0.0	0.2	6.2	0.0
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 31.3	0.0	157.5	54.8	0.0	32.7	13.3	54.6	0.0	19.9	19.9	0.0
LnGrp LOS C	A	F	D	A	C	B	F		B	B	
Approach Vol，veh／h	231			209			991	A		535	A
Approach Delay，s／veh	152.6			50.5			49.4			19.9	
Approach LOS	F			D			D			B	

Timer－Assigned Phs	1	2	4	5	6
Phs Duration（G＋Y＋Rc），$\$ 1.6$	38.7	15.0	7.0	43.3	14.8
Change Period（Y＋Rc），s 5．0	6.5	5.5	5.0	6.5	5.5
Max Green Setting（Gmax9．8	29.5	9.5	9.0	29.5	9.5
Max Q Clear Time（g＿c＋｜15，© $\$$	18.4	11.5	2.4	38.8	9.3
Green Ext Time（p＿c），s	0.1	2.3	0.0	0.0	0.0
0.0					

Intersection Summary

HCM 6th Ctrl Delay	53.6
HCM 6th LOS	D

Notes

Unsignalized Delay for［NBR，SBR］is excluded from calculations of the approach delay and intersection delay．

HCM 6th Signalized Intersection Capacity Analysis
2：TH 120 \＆Middle Access

	4	\rightarrow		\checkmark		4	4	4	7	（	$\frac{1}{1}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow	T	${ }^{7}$	4	「	${ }^{*}$	4	「
Traffic Volume（veh／h）	3	5	193	135	11	36	88	685	22	12	452	2
Future Volume（veh／h）	3	5	193	135	11	36	88	685	22	12	452	2
Number	7	4	14	3	8	18	1	6	16	5	2	12
Initial Q，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone												
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	3	6	222	155	13	41	124	867	0	15	520	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.71	0.79	0.68	0.79	0.87	0.87
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	Yes			Yes			Yes			Yes		
Cap，veh／h	73	146	188	191	16	184	410	859		134	752	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33
Prop Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.08	0.46	0.00	0.03	0.54	0.00
Unsig．Movement Delay												
Ln Grp Delay，s／veh	31.3	0.0	157.5	54.8	0.0	32.7	13.3	54.6	0.0	19.9	19.9	0.0
Ln Grp LOS	C	A	F	D	A	C	B	F		B	B	
Approach Vol，veh／h		231			209			991			535	
Approach Delay，s／veh		152.6			50.5			49.4			19.9	
Approach LOS		F			D			D			B	
Timer：		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	8	4	5	6					
Case No		1.1	3.0	11.0	11.0	1.1	3.0					
Phs Duration（ $G+Y+R \mathrm{c}$ ），s		11.6	38.7	14.8	15.0	7.0	43.3					
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s		5.0	6.5	5.5	5.5	5.0	6.5					
Max Green（Gmax），s		9.0	29.5	9.5	9.5	9.0	29.5					
Max Allow Headway（MAH），s		3.7	5.0	5.1	4.1	3.7	5.0					
Max Q Clear（g＿c＋l1），s		5.0	18.4	9.3	11.5	2.4	38.8					
Green Ext Time（g＿e），s		0.1	2.3	0.0	0.0	0.0	0.0					
Prob of Phs Call（p＿c）		0.94	1.00	0.99	0.99	0.28	1.00					
Prob of Max Out（p＿x）		0.74	0.00	1.00	1.00	0.00	0.00					
Left－Turn Movement Data												
Assigned Mvmt		1		3	7	5						
Mvmt Sat Flow，veh／h		1781		1650	613	1781						

Through Movement Data								
Assigned Mvmt		2	8	4		6		
Mvmt Sat Flow，veh／h		1870	138	1226		70		
Right－Turn Movement Data								
Assigned Mvmt		12	18	14		16		
Mvmt Sat Flow，veh／h		1585	1585	1585		85		
Left Lane Group Data								
Assigned Mvmt	1	0	3	7	5	0	0	0
Lane Assignment	L（Pr／Pm）		L＋T	L＋7L				

HCM 6th Signalized Intersection Capacity Analysis
2: TH 120 \& Middle Access

			0	1	1	1	0	0

HCM 6th Signalized Intersection Capacity Analysis
2: TH 120 \& Middle Access

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile Back of Q Factor (f_B\%)	0.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00
\%ile Back of Q (50\%), veh/ln	0.0	6.2	0.0	0.0	0.0	21.7	0.0	0.0
\%ile Storage Ratio (RQ\%)	0.00	0.12	0.00	0.00	0.00	0.51	0.00	0.00
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0

Right Lane Group Data

Assigned Mvmt	0	12	18	14	0	16	0	0
Lane Assignment	0	R	R	R		R		
Lanes in Grp	0	0	1	1	0	1	0	0
Grp Vol (v), veh/h	0	1585	1585	1585	0	1585	0	0
Grp Sat Flow (s), veh/h/ln	0.0	0.0	1.9	9.5	0.0	0.0	0.0	0.0
Q Serve Time (g_s), s	0.0	0.0	1.9	9.5	0.0	0.0	0.0	0.0
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Eff Green (g_R), s	0.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00
Prop RT Outside Lane (P_R)	0	638	184	188	0	728	0	0
Lane Grp Cap (c), veh/h	0.00	0.00	0.22	1.18	0.00	0.00	0.00	0.00
V/C Ratio (X)	0	638	188	188	0	728	0	0
Avail Cap (c_a), veh/h	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00
Upstream Filter (I)	0.0	0.0	32.1	35.3	0.0	0.0	0.0	0.0
Uniform Delay (d1), s/veh	0.0	0.0	0.6	122.3	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay (d3), s/veh	0.0	0.0	32.7	157.5	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	0.0	0.0	0.7	3.6	0.0	0.0	0.0	0.0
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	6.4	0.0	0.0	0.0	0.0
2nd-Term Q (Q2), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3rd-Term Q (Q3), veh/ln	0.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00
\%ile Back of Q Factor (f_B\%)	0.0	0.0	0.7	10.0	0.0	0.0	0.0	0.0
\%ile Back of Q (50\%), veh/ln	0.00	0.00	0.09	2.53	0.00	0.00	0.00	0.00
\%ile Storage Ratio (RQ\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q (Qb), veh	0.0	0.0	0.0	8.4	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0	0	0	0	0	0	0	0
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0
Initial Q Clear Time (tc), h								

Intersection Summary	
HCM 6th Ctrl Delay	53.6

HCM 6th LOS
D

Notes

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	39.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	T	\mathbf{F}	个			
Traffic Vol, veh/h	98	21	828	47	6	861
Future Vol, veh/h	98	21	828	47	6	861
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	Yield	-	None
Storage Length	0	200	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	77	69	87	87
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	113	24	1075	68	7	990

Measures of Effectiveness

Network Totals

Number of Intersections	3
Total Delay (hr)	346
Stops (\#)	1455
Average Speed (mph)	3
Total Travel Time (hr)	376
Distance Traveled (mi)	1185
Fuel Consumed (gal)	309
Fuel Economy (mpg)	3.8
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	144
Performance Index	349.7

1: TH 120 \& North Access/Woodland Dr

Direction	EB	WB	NB	SB	All
Future Volume (vph)	41	45	718	417	1221
Control Delay / Veh (s/v)	21	24	6	5	7
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	21	24	6	5	7
Total Delay (hr)	0	0	1	1	2
Stops / Veh	0.59	0.69	0.15	0.28	0.23
Stops (\#)	24	31	107	116	278
Average Speed (mph)	15	17	32	33	30
Total Travel Time (hr)	0	1	6	3	10
Distance Traveled (mi)	7	12	195	97	311
Fuel Consumed (gal)	1	1	9	5	15
Fuel Economy (mpg)	NA	NA	21.8	19.4	20.1
CO Emissions (kg)	0.04	0.06	0.62	0.35	1.08
NOx Emissions (kg)	0.01	0.01	0.12	0.07	0.21
VOC Emissions (kg)	0.01	0.01	0.14	0.08	0.25
Unserved Vehicles (\#)	0	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	49	17	66

2: TH 120 \& Middle Access

Direction	EB	WB	NB	SB	All
Future Volume (vph)	201	182	795	466	1644
Control Delay / Veh (s/v)	14	51	28	25	28
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	14	51	28	25	28
Total Delay (hr)	1	3	6	3	13
Stops / Veh	0.21	0.70	0.66	0.65	0.61
Stops (\#)	42	128	524	303	997
Average Speed (mph)	19	12	16	20	17
Total Travel Time (hr)	2	4	10	6	23
Distance Traveled (mi)	42	53	173	126	393
Fuel Consumed (gal)	3	5	16	10	33
Fuel Economy (mpg)	16.6	11.0	10.9	12.8	11.9
CO Emissions (kg)	0.18	0.33	1.11	0.69	2.31
NOx Emissions (kg)	0.03	0.06	0.22	0.13	0.45
VOC Emissions (kg)	0.04	0.08	0.26	0.16	0.53
Unserved Vehicles (\#)	0	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	39	39	78

3: TH 120 \& South Access

Direction	WB	NB	SB	All
Future Volume (vph)	119	875	867	1861
Control Delay / Veh (s/v)	9999	0	0	640
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	9999	0	0	640
Total Delay (hr)	331	0	0	331
Stops / Veh	1.00	0.00	0.07	0.10
Stops (\#)	119	0	61	180
Average Speed (mph)	0	40	39	1
Total Travel Time (hr)	331	7	5	343
Distance Traveled (mi)	25	268	188	481
Fuel Consumed (gal)	244	10	7	261
Fuel Economy (mpg)	0.1	27.9	25.4	1.8
CO Emissions (kg)	17.05	0.67	0.52	18.24
NOx Emissions (kg)	3.32	0.13	0.10	3.55
VOC Emissions (kg)	3.95	0.16	0.12	4.23
Unserved Vehicles (\#)	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	0	0

Network Totals

Number of Intersections	3
Control Delay / Veh (s/v)	263
Queue Delay / Veh (s/v)	0
Total Delay / Veh (s/v)	263
Total Delay (hr)	346
Stops / Veh	0.31
Stops (\#)	1455
Average Speed (mph)	3
Total Travel Time (hr)	376
Distance Traveled (mi)	1185
Fuel Consumed (gal)	309
Fuel Economy (mpg)	3.8
CO Emissions (kg)	21.62
NOx Emissions (kg)	4.21
VOC Emissions (kg)	5.01
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	144
Performance Index	349.7

HCM 6th Roundabout
1: TH 120 \& North Access/Woodland Dr

Intersection								
Intersection Delay, s/veh	11.4							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		50		51		935		480
Demand Flow Rate, veh/h		51		53		953		490
Vehicles Circulating, veh/h		500		931		63		145
Vehicles Exiting, veh/h		135		85		488		837
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		5.0		8.3		14.0		7.3
Approach LOS		A		A		B		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Follow-Up Headway, s	2.609		2.609		2.609		2.609	
Critical Headway, s	4.976		4.976		4.976		4.976	
Entry Flow, veh/h	51		53		953		490	
Cap Entry Lane, veh/h	829		534		1294		1190	
Entry HV Adj Factor	0.980		0.962		0.981		0.980	
Flow Entry, veh/h	50		51		935		480	
Cap Entry, veh/h	812		514		1269		1167	
V/C Ratio	0.062		0.099		0.736		0.412	
Control Delay, s/veh	5.0		8.3		14.0		7.3	
LOS	A		A		B		A	
95th \%tile Queue, veh	0		0		7		2	

HCM 6th TWSC
2: TH 120 \& Middle Access

Network Totals

Number of Intersections	3
Total Delay (hr)	1
Stops (\#)	3441
Average Speed (mph)	37
Total Travel Time (hr)	32
Distance Traveled (mi)	1175
Fuel Consumed (gal)	75
Fuel Economy (mpg)	15.7
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	0
Performance Index	10.7

1: TH 120 \& North Access/Woodland Dr

Direction	EB	WB	NB	SB	All
Future Volume (vph)	44	44	813	418	1319
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	1.00	1.00	1.00	1.00	1.00
Stops (\#)	44	44	813	418	1319
Average Speed (mph)	30	30	40	40	39
Total Travel Time (hr)	0	0	6	2	9
Distance Traveled (mi)	8	11	220	97	337
Fuel Consumed (gal)	1	1	16	8	25
Fuel Economy (mpg)	NA	NA	13.9	12.8	13.6
CO Emissions (kg)	0.04	0.05	1.11	0.53	1.73
NOx Emissions (kg)	0.01	0.01	0.22	0.10	0.34
VOC Emissions (kg)	0.01	0.01	0.26	0.12	0.40
Unserved Vehicles (\#)	0	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	0	0	0

2: TH 120 \& Middle Access

Direction	EB	WB	NB	SB	All
Future Volume (vph)	198	47	795	466	1506
Control Delay / Veh (s/v)	16	19	0	0	3
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	16	19	0	0	3
Total Delay (hr)	1	0	0	0	1
Stops / Veh	1.00	1.00	0.00	0.00	0.16
Stops (\#)	198	47	0	0	245
Average Speed (mph)	18	19	40	40	34
Total Travel Time (hr)	2	1	4	3	10
Distance Traveled (mi)	41	14	173	126	354
Fuel Consumed (gal)	3	1	6	5	15
Fuel Economy (mpg)	12.0	13.5	27.9	27.9	23.3
CO Emissions (kg)	0.24	0.07	0.43	0.32	1.06
NOx Emissions (kg)	0.05	0.01	0.08	0.06	0.21
VOC Emissions (kg)	0.06	0.02	0.10	0.07	0.25
Unserved Vehicles (\#)	0	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	0	0	0

3: TH 120 \& South Access

Direction	WB	NB	SB	All
Future Volume (vph)	254	875	748	1877
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	1.00	1.00	1.00	1.00
Stops (\#)	254	875	748	1877
Average Speed (mph)	30	40	40	39
Total Travel Time (hr)	2	7	4	13
Distance Traveled (mi)	54	268	162	484
Fuel Consumed (gal)	4	18	13	35
Fuel Economy (mpg)	14.9	14.7	12.3	13.8
CO Emissions (kg)	0.25	1.27	0.92	2.45
NOx Emissions (kg)	0.05	0.25	0.18	0.48
VOC Emissions (kg)	0.06	0.29	0.21	0.57
Unserved Vehicles (\#)	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	0	0

Network Totals

Number of Intersections	3
Control Delay / Veh (s/v)	1
Queue Delay / Veh (s/v)	0
Total Delay / Veh (s/v)	1
Total Delay (hr)	1
Stops / Veh	0.73
Stops (\#)	3441
Average Speed (mph)	37
Total Travel Time (hr)	32
Distance Traveled (mi)	1175
Fuel Consumed (gal)	75
Fuel Economy (mpg)	15.7
CO Emissions (kg)	5.24
NOx Emissions (kg)	1.02
VOC Emissions (kg)	1.21
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	0
Performance Index	10.7

Timings

1: TH 120 \& North Access/Woodland Dr

Timings
2: TH 120 \& Middle Access

	\rightarrow	\cdots	4	4	4	\dagger	p	\pm	\downarrow	\pm
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	F	\uparrow	F	${ }^{1}$	4	F	${ }^{7}$	4	「
Traffic Volume (vph)	5	193	11	36	88	685	22	12	452	2
Future Volume (vph)	5	193	11	36	88	685	22	12	452	2
Turn Type	NA	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	4		8		1	6		5	2	
Permitted Phases		4		8	6		6	2		2
Detector Phase	4	4	8	8	1	6	6	5	2	2
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	7.0	15.0	15.0	7.0	15.0	15.0
Minimum Split (s)	15.0	15.0	15.0	15.0	14.0	22.0	22.0	14.0	22.0	22.0
Total Split (s)	15.0	15.0	15.0	15.0	14.0	36.0	36.0	14.0	36.0	36.0
Total Split (\%)	18.8\%	18.8\%	18.8\%	18.8\%	17.5\%	45.0\%	45.0\%	17.5\%	45.0\%	45.0\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.0	4.5	4.5	3.0	4.5	4.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.0	6.5	6.5	5.0	6.5	6.5
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	8.4	8.4	9.4	9.4	45.6	42.3	42.3	41.2	34.1	34.1
Actuated g/C Ratio	0.10	0.10	0.12	0.12	0.57	0.53	0.53	0.52	0.43	0.43
v/c Ratio	0.05	0.61	0.80	0.12	0.31	0.88	0.03	0.06	0.65	0.00
Control Delay	32.5	12.9	63.8	0.7	10.1	31.0	0.1	10.7	25.5	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.5	12.9	63.8	0.7	10.1	31.0	0.1	10.7	25.5	0.0
LOS	C	B	E	A	B	C	A	B	C	A
Approach Delay	13.7		51.4			27.5			25.0	
Approach LOS	B		D			C			C	
Intersection Summary										

Cycle Length: 80
Actuated Cycle Length: 80
Offset: $0(0 \%)$, Referenced to phase 2:SBTL and 6:NBTL, Start of 1st Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.88
Intersection Signal Delay: $27.7 \quad$ Intersection LOS: C
Intersection Capacity Utilization 70.8\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 2: TH 120 \& Middle Access

HCM 6th Signalized Intersection Summary
1: TH 120 \& North Access/Woodland Dr

	4	\rightarrow		7			4	4	p	(\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{1}$	\uparrow		${ }^{1}$	4	「	${ }^{*}$	4	7
Traffic Volume (veh/h)	25	0	16	22	1	22	3	668	47	25	379	13
Future Volume (veh/h)	25	0	16	22	1	22	3	668	47	25	379	13
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	29	0	18	25	1	25	3	768	54	29	436	15
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	186	0	134	194	5	130	675	1271	1077	595	1319	1117
Arrive On Green	0.08	0.00	0.08	0.08	0.08	0.08	0.01	1.00	1.00	0.03	0.70	0.70
Sat Flow, veh/h	1385	0	1585	1395	61	1533	1781	1870	1585	1781	1870	1585
Grp Volume(v), veh/h	29	0	18	25	0	26	3	768	54	29	436	15
Grp Sat Flow(s), veh/h/ln	1385	0	1585	1395	0	1594	1781	1870	1585	1781	1870	1585
Q Serve(g_s), s	1.6	0.0	0.8	1.4	0.0	1.2	0.0	0.0	0.0	0.4	7.2	0.2
Cycle Q Clear(g_c), s	2.8	0.0	0.8	2.2	0.0	1.2	0.0	0.0	0.0	0.4	7.2	0.2
Prop In Lane	1.00		1.00	1.00		0.96	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	186	0	134	194	0	135	675	1271	1077	595	1319	1117
V/C Ratio(X)	0.16	0.00	0.13	0.13	0.00	0.19	0.00	0.60	0.05	0.05	0.33	0.01
Avail Cap(c_a), veh/h	251	0	208	258	0	209	802	1271	1077	676	1319	1117
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	0.42	0.42	0.42	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.4	0.0	33.9	34.9	0.0	34.1	4.2	0.0	0.0	3.4	4.5	3.5
Incr Delay (d2), s/veh	0.4	0.0	0.4	0.3	0.0	0.7	0.0	0.9	0.0	0.0	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.5	0.0	0.3	0.5	0.0	0.5	0.0	0.3	0.0	0.1	2.1	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	35.8	0.0	34.3	35.2	0.0	34.7	4.2	0.9	0.0	3.5	5.2	3.5
LnGrp LOS	D	A	C	D	A	C	A	A	A	A	A	A
Approach Vol, veh/h		47			51			825			480	
Approach Delay, s/veh		35.2			35.0			0.9			5.1	
Approach LOS		D			C			A			A	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.3	62.4		12.3	7.4	60.3		12.3				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	5.0	6.0		5.5	5.0	6.0		5.5				
Max Green Setting (Gmax), s	6.0	47.0		10.5	6.0	47.0		10.5				
Max Q Clear Time (g_c+11), s	2.0	9.2		4.8	2.4	2.0		4.2				
Green Ext Time (p_c), s	0.0	6.9		0.0	0.0	16.2		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			4.7									
HCM 6th LOS			A									

HCM 6th Signalized Intersection Capacity Analysis
1: TH 120 \& North Access/Woodland Dr

	\rangle	\rightarrow	7	7		4	4	4	p		\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow		${ }^{*}$	\uparrow		${ }^{7}$	4	「	${ }^{*}$	4	7
Traffic Volume (veh/h)	25	0	16	22	1	22	3	668	47	25	379	13
Future Volume (veh/h)	25	0	16	22	1	22	3	668	47	25	379	13
Number	7	4	14	3	8	18	1	6	16	5	2	12
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone												
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	29	0	18	25	1	25	3	768	54	29	436	15
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	Yes			Yes			Yes			Yes		
Cap, veh/h	186	0	134	194	5	130	675	1271	1077	595	1319	1117
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.00
Prop Arrive On Green	0.08	0.00	0.08	0.08	0.08	0.08	0.01	1.00	1.00	0.03	0.70	0.70
Unsig. Movement Delay												
Ln Grp Delay, s/veh	35.8	0.0	34.3	35.2	0.0	34.7	4.2	0.9	0.0	3.5	5.2	3.5
Ln Grp LOS	D	A	C	D	A	C	A	A	A	A	A	A
Approach Vol, veh/h		47			51			825			480	
Approach Delay, s/veh		35.2			35.0			0.9			5.1	
Approach LOS		D			C			A			A	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6		8			
Case No		1.1	3.0		6.0	1.1	3.0		6.0			
Phs Duration ($G+Y+R \mathrm{c}$), s		5.3	62.4		12.3	7.4	60.3		12.3			
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		5.0	6.0		5.5	5.0	6.0		5.5			
Max Green (Gmax), s		6.0	47.0		10.5	6.0	47.0		10.5			
Max Allow Headway (MAH), s		4.2	7.6		4.8	4.2	7.5		5.0			
Max Q Clear (g_c+11), s		2.0	9.2		4.8	2.4	2.0		4.2			
Green Ext Time (g_e), s		0.0	6.9		0.0	0.0	16.2		0.1			
Prob of Phs Call (p_c)		0.06	1.00		0.65	0.48	1.00		0.68			
Prob of Max Out (p - $)^{\text {) }}$		1.00	0.00		0.37	1.00	0.00		0.28			
Left-Turn Movement Data												
Assigned Mvmt		1			7	5			3			
Mvmt Sat Flow, veh/h		1781			1385	1781			1395			
Through Movement Data												
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			1870		0		1870		61			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Flow, veh/h			1585		1585		1585		1533			
Left Lane Group Data												
Assigned Mvmt		1	0	0	7	5	0	0	3			
Lane Assignment		r/Pm)			U	Pr/Pm)			L			

HCM 6th Signalized Intersection Capacity Analysis
1: TH 120 \& North Access/Woodland Dr

Lanes in Grp	1	0	0	1	1	0	0	1
Grp Vol (v), veh/h	3	0	0	29	29	0	0	25
Grp Sat Flow (s), veh/h/ln	1781	0	0	1385	1781	0	0	1395
Q Serve Time (g_s), s	0.0	0.0	0.0	1.6	0.4	0.0	0.0	1.4
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	2.8	0.4	0.0	0.0	2.2
Perm LT Sat Flow (s_l), veh/h/ln	940	0	0	1385	666	0	0	1395
Shared LT Sat Flow (s_sh), veh/h/ln	0	0	0	0	0	0	0	0
Perm LT Eff Green (g_p), s	54.3	0.0	0.0	6.8	54.3	0.0	0.0	6.8
Perm LT Serve Time (g_u), s	49.2	0.0	0.0	5.6	54.3	0.0	0.0	5.9
Perm LT Q Serve Time (g_ps), s	0.0	0.0	0.0	1.6	0.0	0.0	0.0	1.4
Time to First Blk (g_f), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Serve Time pre Blk (g_fs), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prop LT Inside Lane (P_L)	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00
Lane Grp Cap (c), veh/h	675	0	0	186	595	0	0	194
V/C Ratio (X)	0.00	0.00	0.00	0.16	0.05	0.00	0.00	0.13
Avail Cap (c_a), veh/h	802	0	0	251	676	0	0	258
Upstream Filter (I)	0.42	0.00	0.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d1), s/veh	4.2	0.0	0.0	35.4	3.4	0.0	0.0	34.9
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.3
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	4.2	0.0	0.0	35.8	3.5	0.0	0.0	35.2
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	0.5	0.1	0.0	0.0	0.5
2nd-Term Q (Q2), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3rd-Term Q (Q3), veh/In	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile Back of Q Factor (f_B\%)	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00
\%ile Back of Q (50\%), veh/ln	0.0	0.0	0.0	0.5	0.1	0.0	0.0	0.5
\%ile Storage Ratio (RQ\%)	0.00	0.00	0.00	0.05	0.02	0.00	0.00	0.09
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Middle Lane Group Data								
Assigned Mvmt	0	2	0	4	0	6	0	8
Lane Assignment		T				T		
Lanes in Grp	0	1	0	0	0	1	0	0
Grp Vol (v), veh/h	0	436	0	0	0	768	0	0
Grp Sat Flow (s), veh/h/ln	0	1870	0	0	0	1870	0	0
Q Serve Time (g_s), s	0.0	7.2	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear Time (g_c), s	0.0	7.2	0.0	0.0	0.0	0.0	0.0	0.0
Lane Grp Cap (c), veh/h	0	1319	0	0	0	1271	0	0
V/C Ratio (X)	0.00	0.33	0.00	0.00	0.00	0.60	0.00	0.00
Avail Cap (c_a), veh/h	0	1319	0	0	0	1271	0	0
Upstream Filter (I)	0.00	1.00	0.00	0.00	0.00	0.42	0.00	0.00
Uniform Delay (d1), s/veh	0.0	4.5	0.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.7	0.0	0.0	0.0	0.9	0.0	0.0
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	0.0	5.2	0.0	0.0	0.0	0.9	0.0	0.0
1st-Term Q (Q1), veh/ln	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0
2nd-Term Q (Q2), veh/In	0.0	0.2	0.0	0.0	0.0	0.3	0.0	0.0

HCM 6th Signalized Intersection Capacity Analysis
1: TH 120 \& North Access/Woodland Dr

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile Back of Q Factor (f_B\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
\%ile Back of Q (50\%), veh/ln	0.0	2.1	0.0	0.0	0.0	0.3	0.0	0.0
\%ile Storage Ratio (RQ\%)	0.00	0.04	0.00	0.00	0.00	0.01	0.00	0.00
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Right Lane Group Data								
Assigned Mvmt	0	12	0	14	0	16	0	18
Lane Assignment	0	1	0	1	0	1	0	1
Lanes in Grp	0	15	0	18	0	54	0	26
Grp Vol (v), veh/h	0	1585	0	1585	0	1585	0	1594
Grp Sat Flow (s), veh/h/ln	0.0	0.2	0.0	0.8	0.0	0.0	0.0	1.2
Q Serve Time (g_s), s	0.0	0.2	0.0	0.8	0.0	0.0	0.0	1.2
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Eff Green (g_R), s	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.96
Prop RT Outside Lane (P_R)	0	1117	0	134	0	1077	0	135
Lane Grp Cap (c), veh/h	0.00	0.01	0.00	0.13	0.00	0.05	0.00	0.19
V/C Ratio (X)	0	1117	0	208	0	1077	0	209
Avail Cap (c_a), veh/h	0.00	1.00	0.00	1.00	0.00	0.42	0.00	1.00
Upstream Filter (I)	0.0	3.5	0.0	33.9	0.0	0.0	0.0	34.1
Uniform Delay (d1), s/veh	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.7
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay (d3), s/veh	0.0	3.5	0.0	34.3	0.0	0.0	0.0	34.7
Control Delay (d), s/veh	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.5
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2nd-Term Q (Q2), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3rd-Term Q (Q3), veh/ln	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
\%ile Back of Q Factor (f_B\%)	0.0	0.1	0.0	0.3	0.0	0.0	0.0	0.5
\%ile Back of Q (50\%), veh/ln	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01
\%ile Storage Ratio (RQ\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0	0	0	0	0	0	0	0
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Clear Time (tc), h								

Intersection Summary	
HCM 6th Ctrl Delay	4.7
HCM 6th LOS	A

HCM 6th Signalized Intersection Summary
2：TH 120 \＆Middle Access

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	「		\uparrow	「	${ }^{7}$	4	1	${ }^{*}$	4	「
Traffic Volume（veh／h） 3	5	193	135	11	36	88	685	22	12	452	2
Future Volume（veh／h） 3	5	193	135	11	36	88	685	22	12	452	2
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h 3	6	222	155	13	41	124	867	0	15	520	0
Peak Hour Factor 0.87	0.87	0.87	0.87	0.87	0.87	0.71	0.79	0.68	0.79	0.87	0.87
Percent Heavy Veh，\％ 2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h 73	146	188	191	16	184	410	859		134	752	
Arrive On Green 0.12	0.12	0.12	0.12	0.12	0.12	0.08	0.46	0.00	0.03	0.54	0.00
Sat Flow，veh／h 613	1226	1585	1650	138	1585	1781	1870	1585	1781	1870	1585
Grp Volume（v），veh／h 9	0	222	168	0	41	124	867	0	15	520	0
Grp Sat Flow（s），veh／h／ln1840	0	1585	1788	0	1585	1781	1870	1585	1781	1870	1585
Q Serve（g＿s），s 0．3	0.0	9.5	7.3	0.0	1.9	3.0	36.8	0.0	0.4	16.4	0.0
Cycle Q Clear（g＿c），s 0.3	0.0	9.5	7.3	0.0	1.9	3.0	36.8	0.0	0.4	16.4	0.0
Prop In Lane 0.33		1.00	0.92		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h 218	0	188	207	0	184	410	859		134	752	
V／C Ratio（X） 0.04	0.00	1.18	0.81	0.00	0.22	0.30	1.01		0.11	0.69	
Avail Cap（c＿a），veh／h 218	0	188	212	0	188	464	859		290	752	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33
Upstream Filter（I） 1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	0.97	0.97	0.00
Uniform Delay（d），s／veh 31.2	0.0	35.3	34.5	0.0	32.1	12.9	21.6	0.0	19.5	14.9	0.0
Incr Delay（d2），s／veh 0.1	0.0	122.3	20.3	0.0	0.6	0.4	32.9	0.0	0.4	5.0	0.0
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／lm0． 2	0.0	10.0	4.3	0.0	0.7	1.1	21.7	0.0	0.2	6.2	0.0
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 31.3	0.0	157.5	54.8	0.0	32.7	13.3	54.6	0.0	19.9	19.9	0.0
LnGrp LOS C	A	F	D	A	C	B	F		B	B	
Approach Vol，veh／h	231			209			991	A		535	A
Approach Delay，s／veh	152.6			50.5			49.4			19.9	
Approach LOS	F			D			D			B	

Timer－Assigned Phs	1	2	4	5	6
Phs Duration（G＋Y＋Rc），$\$ 1.6$	38.7	15.0	7.0	43.3	14.8
Change Period（Y＋Rc），s 5．0	6.5	5.5	5.0	6.5	5.5
Max Green Setting（Gmax9．8	29.5	9.5	9.0	29.5	9.5
Max Q Clear Time（g＿c＋｜15，© $\$$	18.4	11.5	2.4	38.8	9.3
Green Ext Time（p＿c），s	0.1	2.3	0.0	0.0	0.0
0.0					

Intersection Summary

HCM 6th Ctrl Delay	53.6
HCM 6th LOS	D

Notes

Unsignalized Delay for［NBR，SBR］is excluded from calculations of the approach delay and intersection delay．

HCM 6th Signalized Intersection Capacity Analysis
2：TH 120 \＆Middle Access

	4	\rightarrow		\checkmark		4	4	4	7	（	$\frac{1}{1}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow	T	${ }^{7}$	4	「	${ }^{*}$	4	「
Traffic Volume（veh／h）	3	5	193	135	11	36	88	685	22	12	452	2
Future Volume（veh／h）	3	5	193	135	11	36	88	685	22	12	452	2
Number	7	4	14	3	8	18	1	6	16	5	2	12
Initial Q，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Lanes Open During Work Zone												
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	3	6	222	155	13	41	124	867	0	15	520	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.71	0.79	0.68	0.79	0.87	0.87
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Opposing Right Turn Influence	Yes			Yes			Yes			Yes		
Cap，veh／h	73	146	188	191	16	184	410	859		134	752	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33
Prop Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.08	0.46	0.00	0.03	0.54	0.00
Unsig．Movement Delay												
Ln Grp Delay，s／veh	31.3	0.0	157.5	54.8	0.0	32.7	13.3	54.6	0.0	19.9	19.9	0.0
Ln Grp LOS	C	A	F	D	A	C	B	F		B	B	
Approach Vol，veh／h		231			209			991			535	
Approach Delay，s／veh		152.6			50.5			49.4			19.9	
Approach LOS		F			D			D			B	
Timer：		1	2	3	4	5	6	7	8			
Assigned Phs		1	2	8	4	5	6					
Case No		1.1	3.0	11.0	11.0	1.1	3.0					
Phs Duration（ $G+Y+R \mathrm{c}$ ），s		11.6	38.7	14.8	15.0	7.0	43.3					
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s		5.0	6.5	5.5	5.5	5.0	6.5					
Max Green（Gmax），s		9.0	29.5	9.5	9.5	9.0	29.5					
Max Allow Headway（MAH），s		3.7	5.0	5.1	4.1	3.7	5.0					
Max Q Clear（g＿c＋l1），s		5.0	18.4	9.3	11.5	2.4	38.8					
Green Ext Time（g＿e），s		0.1	2.3	0.0	0.0	0.0	0.0					
Prob of Phs Call（p＿c）		0.94	1.00	0.99	0.99	0.28	1.00					
Prob of Max Out（p＿x）		0.74	0.00	1.00	1.00	0.00	0.00					
Left－Turn Movement Data												
Assigned Mvmt		1		3	7	5						
Mvmt Sat Flow，veh／h		1781		1650	613	1781						

Through Movement Data								
Assigned Mvmt		2	8	4		6		
Mvmt Sat Flow，veh／h		1870	138	1226		70		
Right－Turn Movement Data								
Assigned Mvmt		12	18	14		16		
Mvmt Sat Flow，veh／h		1585	1585	1585		85		
Left Lane Group Data								
Assigned Mvmt	1	0	3	7	5	0	0	0
Lane Assignment	L（Pr／Pm）		L＋T	L＋7L				

HCM 6th Signalized Intersection Capacity Analysis
2: TH 120 \& Middle Access

			0	1	1	1	0	0

HCM 6th Signalized Intersection Capacity Analysis
2: TH 120 \& Middle Access

3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile Back of Q Factor (f_B\%)	0.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00
\%ile Back of Q (50\%), veh/ln	0.0	6.2	0.0	0.0	0.0	21.7	0.0	0.0
\%ile Storage Ratio (RQ\%)	0.00	0.12	0.00	0.00	0.00	0.51	0.00	0.00
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0

Right Lane Group Data

Assigned Mvmt	0	12	18	14	0	16	0	0
Lane Assignment	0	R	R	R		R		
Lanes in Grp	0	0	1	1	0	1	0	0
Grp Vol (v), veh/h	0	1585	1585	1585	0	1585	0	0
Grp Sat Flow (s), veh/h/ln	0.0	0.0	1.9	9.5	0.0	0.0	0.0	0.0
Q Serve Time (g_s), s	0.0	0.0	1.9	9.5	0.0	0.0	0.0	0.0
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Eff Green (g_R), s	0.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00
Prop RT Outside Lane (P_R)	0	638	184	188	0	728	0	0
Lane Grp Cap (c), veh/h	0.00	0.00	0.22	1.18	0.00	0.00	0.00	0.00
V/C Ratio (X)	0	638	188	188	0	728	0	0
Avail Cap (c_a), veh/h	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00
Upstream Filter (I)	0.0	0.0	32.1	35.3	0.0	0.0	0.0	0.0
Uniform Delay (d1), s/veh	0.0	0.0	0.6	122.3	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay (d3), s/veh	0.0	0.0	32.7	157.5	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	0.0	0.0	0.7	3.6	0.0	0.0	0.0	0.0
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	6.4	0.0	0.0	0.0	0.0
2nd-Term Q (Q2), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3rd-Term Q (Q3), veh/ln	0.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00
\%ile Back of Q Factor (f_B\%)	0.0	0.0	0.7	10.0	0.0	0.0	0.0	0.0
\%ile Back of Q (50\%), veh/ln	0.00	0.00	0.09	2.53	0.00	0.00	0.00	0.00
\%ile Storage Ratio (RQ\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q (Qb), veh	0.0	0.0	0.0	8.4	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), veh	0	0	0	0	0	0	0	0
Sat Cap (cs), veh/h	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0
Initial Q Clear Time (tc), h								

Intersection Summary	
HCM 6th Ctrl Delay	53.6

HCM 6th LOS
D

Notes

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	39.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	T	\mathbf{F}	个			
Traffic Vol, veh/h	98	21	828	47	6	861
Future Vol, veh/h	98	21	828	47	6	861
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	Yield	-	None
Storage Length	0	200	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	77	69	87	87
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	113	24	1075	68	7	990

Measures of Effectiveness

Network Totals

Number of Intersections	3
Total Delay (hr)	346
Stops (\#)	1455
Average Speed (mph)	3
Total Travel Time (hr)	376
Distance Traveled (mi)	1185
Fuel Consumed (gal)	309
Fuel Economy (mpg)	3.8
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	144
Performance Index	349.7

1: TH 120 \& North Access/Woodland Dr

Direction	EB	WB	NB	SB	All
Future Volume (vph)	41	45	718	417	1221
Control Delay / Veh (s/v)	21	24	6	5	7
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	21	24	6	5	7
Total Delay (hr)	0	0	1	1	2
Stops / Veh	0.59	0.69	0.15	0.28	0.23
Stops (\#)	24	31	107	116	278
Average Speed (mph)	15	17	32	33	30
Total Travel Time (hr)	0	1	6	3	10
Distance Traveled (mi)	7	12	195	97	311
Fuel Consumed (gal)	1	1	9	5	15
Fuel Economy (mpg)	NA	NA	21.8	19.4	20.1
CO Emissions (kg)	0.04	0.06	0.62	0.35	1.08
NOx Emissions (kg)	0.01	0.01	0.12	0.07	0.21
VOC Emissions (kg)	0.01	0.01	0.14	0.08	0.25
Unserved Vehicles (\#)	0	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	49	17	66

2: TH 120 \& Middle Access

Direction	EB	WB	NB	SB	All
Future Volume (vph)	201	182	795	466	1644
Control Delay / Veh (s/v)	14	51	28	25	28
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	14	51	28	25	28
Total Delay (hr)	1	3	6	3	13
Stops / Veh	0.21	0.70	0.66	0.65	0.61
Stops (\#)	42	128	524	303	997
Average Speed (mph)	19	12	16	20	17
Total Travel Time (hr)	2	4	10	6	23
Distance Traveled (mi)	42	53	173	126	393
Fuel Consumed (gal)	3	5	16	10	33
Fuel Economy (mpg)	16.6	11.0	10.9	12.8	11.9
CO Emissions (kg)	0.18	0.33	1.11	0.69	2.31
NOx Emissions (kg)	0.03	0.06	0.22	0.13	0.45
VOC Emissions (kg)	0.04	0.08	0.26	0.16	0.53
Unserved Vehicles (\#)	0	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	39	39	78

3: TH 120 \& South Access

Direction	WB	NB	SB	All
Future Volume (vph)	119	875	867	1861
Control Delay / Veh (s/v)	9999	0	0	640
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	9999	0	0	640
Total Delay (hr)	331	0	0	331
Stops / Veh	1.00	0.00	0.07	0.10
Stops (\#)	119	0	61	180
Average Speed (mph)	0	40	39	1
Total Travel Time (hr)	331	7	5	343
Distance Traveled (mi)	25	268	188	481
Fuel Consumed (gal)	244	10	7	261
Fuel Economy (mpg)	0.1	27.9	25.4	1.8
CO Emissions (kg)	17.05	0.67	0.52	18.24
NOx Emissions (kg)	3.32	0.13	0.10	3.55
VOC Emissions (kg)	3.95	0.16	0.12	4.23
Unserved Vehicles (\#)	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	0	0

Network Totals

Number of Intersections	3
Control Delay / Veh (s/v)	263
Queue Delay / Veh (s/v)	0
Total Delay / Veh (s/v)	263
Total Delay (hr)	346
Stops / Veh	0.31
Stops (\#)	1455
Average Speed (mph)	3
Total Travel Time (hr)	376
Distance Traveled (mi)	1185
Fuel Consumed (gal)	309
Fuel Economy (mpg)	3.8
CO Emissions (kg)	21.62
NOx Emissions (kg)	4.21
VOC Emissions (kg)	5.01
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	144
Performance Index	349.7

HCM 6th Roundabout
1: TH 120 \& North Access/Woodland Dr

Intersection								
Intersection Delay, s/veh	11.4							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		50		51		935		480
Demand Flow Rate, veh/h		51		53		953		490
Vehicles Circulating, veh/h		500		931		63		145
Vehicles Exiting, veh/h		135		85		488		837
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		5.0		8.3		14.0		7.3
Approach LOS		A		A		B		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Follow-Up Headway, s	2.609		2.609		2.609		2.609	
Critical Headway, s	4.976		4.976		4.976		4.976	
Entry Flow, veh/h	51		53		953		490	
Cap Entry Lane, veh/h	829		534		1294		1190	
Entry HV Adj Factor	0.980		0.962		0.981		0.980	
Flow Entry, veh/h	50		51		935		480	
Cap Entry, veh/h	812		514		1269		1167	
V/C Ratio	0.062		0.099		0.736		0.412	
Control Delay, s/veh	5.0		8.3		14.0		7.3	
LOS	A		A		B		A	
95th \%tile Queue, veh	0		0		7		2	

HCM 6th TWSC
2: TH 120 \& Middle Access

Network Totals

Number of Intersections	3
Total Delay (hr)	1
Stops (\#)	3441
Average Speed (mph)	37
Total Travel Time (hr)	32
Distance Traveled (mi)	1175
Fuel Consumed (gal)	75
Fuel Economy (mpg)	15.7
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	0
Performance Index	10.7

1: TH 120 \& North Access/Woodland Dr

Direction	EB	WB	NB	SB	All
Future Volume (vph)	44	44	813	418	1319
Control Delay / Veh (s/v)	0	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0	0
Total Delay (hr)	0	0	0	0	0
Stops / Veh	1.00	1.00	1.00	1.00	1.00
Stops (\#)	44	44	813	418	1319
Average Speed (mph)	30	30	40	40	39
Total Travel Time (hr)	0	0	6	2	9
Distance Traveled (mi)	8	11	220	97	337
Fuel Consumed (gal)	1	1	16	8	25
Fuel Economy (mpg)	NA	NA	13.9	12.8	13.6
CO Emissions (kg)	0.04	0.05	1.11	0.53	1.73
NOx Emissions (kg)	0.01	0.01	0.22	0.10	0.34
VOC Emissions (kg)	0.01	0.01	0.26	0.12	0.40
Unserved Vehicles (\#)	0	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	0	0	0

2: TH 120 \& Middle Access

Direction	EB	WB	NB	SB	All
Future Volume (vph)	198	47	795	466	1506
Control Delay / Veh (s/v)	16	19	0	0	3
Queue Delay / Veh (s/v)	0	0	0	0	0
Total Delay / Veh (s/v)	16	19	0	0	3
Total Delay (hr)	1	0	0	0	1
Stops / Veh	1.00	1.00	0.00	0.00	0.16
Stops (\#)	198	47	0	0	245
Average Speed (mph)	18	19	40	40	34
Total Travel Time (hr)	2	1	4	3	10
Distance Traveled (mi)	41	14	173	126	354
Fuel Consumed (gal)	3	1	6	5	15
Fuel Economy (mpg)	12.0	13.5	27.9	27.9	23.3
CO Emissions (kg)	0.24	0.07	0.43	0.32	1.06
NOx Emissions (kg)	0.05	0.01	0.08	0.06	0.21
VOC Emissions (kg)	0.06	0.02	0.10	0.07	0.25
Unserved Vehicles (\#)	0	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	0	0	0

3: TH 120 \& South Access

Direction	WB	NB	SB	All
Future Volume (vph)	254	875	748	1877
Control Delay / Veh (s/v)	0	0	0	0
Queue Delay / Veh (s/v)	0	0	0	0
Total Delay / Veh (s/v)	0	0	0	0
Total Delay (hr)	0	0	0	0
Stops / Veh	1.00	1.00	1.00	1.00
Stops (\#)	254	875	748	1877
Average Speed (mph)	30	40	40	39
Total Travel Time (hr)	2	7	4	13
Distance Traveled (mi)	54	268	162	484
Fuel Consumed (gal)	4	18	13	35
Fuel Economy (mpg)	14.9	14.7	12.3	13.8
CO Emissions (kg)	0.25	1.27	0.92	2.45
NOx Emissions (kg)	0.05	0.25	0.18	0.48
VOC Emissions (kg)	0.06	0.29	0.21	0.57
Unserved Vehicles (\#)	0	0	0	0
Vehicles in dilemma zone (\#)	0	0	0	0

Network Totals

Number of Intersections	3
Control Delay / Veh (s/v)	1
Queue Delay / Veh (s/v)	0
Total Delay / Veh (s/v)	1
Total Delay (hr)	1
Stops / Veh	0.73
Stops (\#)	3441
Average Speed (mph)	37
Total Travel Time (hr)	32
Distance Traveled (mi)	1175
Fuel Consumed (gal)	75
Fuel Economy (mpg)	15.7
CO Emissions (kg)	5.24
NOx Emissions (kg)	1.02
VOC Emissions (kg)	1.21
Unserved Vehicles (\#)	0
Vehicles in dilemma zone (\#)	0
Performance Index	10.7

Timings

1: TH 120 \& North Access/Woodland Dr

Timings
2: TH 120 \& Middle Access

	\rightarrow	\cdots	4	4	4	\dagger	p	\pm	\downarrow	\pm
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	F	\uparrow	F	${ }^{1}$	4	F	${ }^{7}$	4	「
Traffic Volume (vph)	5	193	11	36	88	685	22	12	452	2
Future Volume (vph)	5	193	11	36	88	685	22	12	452	2
Turn Type	NA	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	4		8		1	6		5	2	
Permitted Phases		4		8	6		6	2		2
Detector Phase	4	4	8	8	1	6	6	5	2	2
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	7.0	15.0	15.0	7.0	15.0	15.0
Minimum Split (s)	15.0	15.0	15.0	15.0	14.0	22.0	22.0	14.0	22.0	22.0
Total Split (s)	15.0	15.0	15.0	15.0	14.0	36.0	36.0	14.0	36.0	36.0
Total Split (\%)	18.8\%	18.8\%	18.8\%	18.8\%	17.5\%	45.0\%	45.0\%	17.5\%	45.0\%	45.0\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.0	4.5	4.5	3.0	4.5	4.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.0	6.5	6.5	5.0	6.5	6.5
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	8.4	8.4	9.4	9.4	45.6	42.3	42.3	41.2	34.1	34.1
Actuated g/C Ratio	0.10	0.10	0.12	0.12	0.57	0.53	0.53	0.52	0.43	0.43
v/c Ratio	0.05	0.61	0.80	0.12	0.31	0.88	0.03	0.06	0.65	0.00
Control Delay	32.5	12.9	63.8	0.7	10.1	31.0	0.1	10.7	25.5	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.5	12.9	63.8	0.7	10.1	31.0	0.1	10.7	25.5	0.0
LOS	C	B	E	A	B	C	A	B	C	A
Approach Delay	13.7		51.4			27.5			25.0	
Approach LOS	B		D			C			C	
Intersection Summary										

Cycle Length: 80
Actuated Cycle Length: 80
Offset: $0(0 \%)$, Referenced to phase 2:SBTL and 6:NBTL, Start of 1st Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.88
Intersection Signal Delay: $27.7 \quad$ Intersection LOS: C
Intersection Capacity Utilization 70.8\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 2: TH 120 \& Middle Access

Traffic Safety Benefit-Cost Calculation
Highway Safety Improvement Program (HSIP) Reactive Project

M
DEPARTMENT OF TRANSPORTATION

A. Roadway Description

Route	TH 120	District	Metro	County	Wash
Begin RP	008+00.184	End RP	009+00.233	Miles	1.049
Location	TH 120 \& Sou	Access In	ersection		

B. Project Description

Proposed Work Project Cost*	Convert traffic signal to roundabout		
	\$8,972,429	Installation Year	2027
Project Service Life	20 years	Traffic Growth Factor	1.0\%
* exclude Right of Way from Project Cost			

C. Crash Modification Factor

0.56	Fatal (K) Crashes	Reference	
0.56	Serious Injury (A) Crashes		
0.56	Moderate Injury (B) Crashes	Crash Type All	
0.56	Possible Injury (C) Crashes		
0.56	Property Damage Only Crashes		

D. Crash Modification Factor (optional second CMF)

	Fatal (K) Crashes	Reference
	Serious Injury (A) Crashes	
	Moderate Injury (B) Crashes	Crash Type

F. Analysis Assumptions

Crash Severity	
K crashes	$\$ 1,500,000$
A crashes	$\$ 750,000$
B crashes	$\$ 230,000$
C crashes	$\$ 120,000$
PDO crashes	$\$ 13,000$

Link: mndot.gov/planning/program/appendix_a.html

Real Discount Rate:	0.7%	Revised
Traffic Growth Rate:	1.0%	Revised
Project Service Life:	20 years	Revised

G. Annual Benefit

Crash Severity	Crash Reduction	Annual Reduction	Annual Benefit
K crashes	0.00	0.00	$\$ 0$
A crashes	0.00	0.00	$\$ 0$
B crashes	0.00	0.00	$\$ 0$
C crashes	0.44	0.15	$\$ 17,600$
PDO crashes	0.88	0.29	$\$ 3,813$

H. Amortized Benefit			
Year	Crash Benefits	Present Value	
2027	\$21,413	\$21,413	Total $=$ \$440,607
2028	\$21,627	\$21,477	
2029	\$21,844	\$21,541	
2030	\$22,062	\$21,605	
2031	\$22,283	\$21,670	
2032	\$22,506	\$21,734	
2033	\$22,731	\$21,799	
2034	\$22,958	\$21,864	
2035	\$23,188	\$21,929	
2036	\$23,419	\$21,994	
2037	\$23,654	\$22,060	
2038	\$23,890	\$22,126	
2039	\$24,129	\$22,192	
2040	\$24,370	\$22,258	
2041	\$24,614	\$22,324	
2042	\$24,860	\$22,390	
2043	\$25,109	\$22,457	
2044	\$25,360	\$22,524	
2045	\$25,614	\$22,591	
2046	\$25,870	\$22,658	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	NOTE:
-	\$0	\$0	This calculation relies on the real discount rate, which accounts
0	\$0	\$0	for inflation. No further discounting is necessary.
0	\$0	\$0	

Traffic Safety Benefit-Cost Calculation
Highway Safety Improvement Program (HSIP) Reactive Project

A. Roadway Description

Route	TH 120	District	Metro	County	Washington
Begin RP	008+00.184	End RP	009+00.233	Miles	1.049
Location	TH 120 \& Middle Century Access Intersection				

B. Project Description

Proposed Work Project Cost*	Install median on TH 120, restricting movements to right-in, right-out		
	\$8,972,429	Installation Year	2027
Project Service Life	20 years	Traffic Growth Factor	1.0\%
* exclude Right of Way from Project Cost			

C. Crash Modification Factor

0.29	Fatal (K) Crashes	Reference Install raised median	
0.29	Serious Injury (A) Crashes		
0.29	Moderate Injury (B) Crashes	Crash Type All	
0.29	Possible Injury (C) Crashes		
0.29	Property Damage Only Crashes		WWW.CMFclearinghouse.org

D. Crash Modification Factor (optional second CMF)

	Fatal (K) Crashes	Reference	
	Serious Injury (A) Crashes		
	Moderate Injury (B) Crashes	Crash Type	
			www.CMFclearinghouse.org

F. Analysis Assumptions

Crash Severity

K crashes	$\$ 1,500,000$
A crashes	$\$ 750,000$
B crashes	$\$ 230,000$
C crashes	$\$ 120,000$
PDO crashes	$\$ 13,000$

Link: mndot.gov/planning/program/appendix_a.html
Real Discount Rate: 0.7% Revised
Traffic Growth Rate: 1.0\% Revised

G. Annual Benefit

Crash Severity	Crash Reduction	Annual Reduction	Annual Benefit
K crashes	0.00	0.00	$\$ 0$
A crashes	0.00	0.00	$\$ 0$
B crashes	2.13	0.71	$\$ 163,300$
C crashes	1.42	0.47	$\$ 56,800$
PDO crashes	4.97	1.66	$\$ 21,537$

\$241,637

H. Amortized Benefit			
Year	Crash Benefits	Present Value	
2027	\$241,637	\$241,637	Total $=$ \$4,971,985
2028	\$244,053	\$242,357	
2029	\$246,494	\$243,079	
2030	\$248,958	\$243,803	
2031	\$251,448	\$244,529	
2032	\$253,963	\$245,258	
2033	\$256,502	\$245,988	
2034	\$259,067	\$246,721	
2035	\$261,658	\$247,456	
2036	\$264,274	\$248,193	
2037	\$266,917	\$248,933	
2038	\$269,586	\$249,674	
2039	\$272,282	\$250,418	
2040	\$275,005	\$251,164	
2041	\$277,755	\$251,912	
2042	\$280,533	\$252,663	
2043	\$283,338	\$253,416	
2044	\$286,171	\$254,71	
2045	\$289,033	\$254,928	
2046	\$291,923	\$255,687	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	so	
0	\$0	\$0	
0	\$0	\$0	NOTE:
0	\$0	\$0	This calculation relies on the real discount rate, which accounts
0	\$0	\$0	for inflation. No further discounting is necessary.
0	\$0	\$0	

Traffic Safety Benefit-Cost Calculation
Highway Safety Improvement Program (HSIP) Reactive Project

A. Roadway Description

Route	TH 120	District	Metro	County	Washington
Begin RP	008+00.184	End RP	009+00.233	Miles	1.049
Location	TH 120 \& Woodland Drive/ North Century Access Intersection				

B. Project Description

Proposed Work Project Cost*	Convert traffic signal to roundabout		
	\$8,972,429	Installation Year	2027
Project Service Life	20 years	Traffic Growth Factor	1.0\%
* exclude Right of Way from Project Cost			

C. Crash Modification Factor

0.79	Fatal (K) Crashes	Reference	Convert Signalized Intersection to Modern Roundabout	
0.79	Serious Injury (A) Crashes			
0.79	Moderate Injury (B) Crashes	Crash Type	All	
0.79	Possible Injury (C) Crashes			
0.79	Property Damage Only Crashes			www.CMFclearinghouse.org

D. Crash Modification Factor (optional second CMF)

	Fatal (K) Crashes	Reference	
	Serious Injury (A) Crashes		
	Moderate Injury (B) Crashes	Crash Type	
			www.CMFclearinghouse.org

E. Crash Data				
Begin Date Data Source	1/1/2	End Date	12/31/2021	3 years
	MnC			
	Crash Severity	All	< optional 2nd CMF >	
	K crashes	0		
	A crashes	0		
	B crashes	1		
	C crashes	2		
	PDO crashes	6		

F. Benefit-Cost Calculation		
\$789,307	Benefit (present value)	
\$8,972,429	Cost	(io $=0.09$
Proposed project expected to reduce 1 crashes annually, o of which involving fatality or serious injury.		

F. Analysis Assumptions

Crash Severity

K crashes	$\$ 1,500,000$
A crashes	$\$ 750,000$
B crashes	$\$ 230,000$
C crashes	$\$ 120,000$
PDO crashes	$\$ 13,000$

Link: mndot.gov/planning/program/appendix_a.html

Real Discount Rate:	0.7%	Revised
Traffic Growth Rate:	1.0%	Revised
Project Service Life:	20 years	Revised

G. Annual Benefit

Crash Severity	Crash Reduction	Annual Reduction	Annual Benefit
K crashes	0.00	0.00	$\$ 0$
A crashes	0.00	0.00	$\$ 0$
B crashes	0.21	0.07	$\$ 16,100$
C crashes	0.42	0.14	$\$ 16,800$
PDO crashes	1.26	0.42	$\$ 5,460$

$\$ 38,360$

H. Amortized Benefit			
Year	Crash Benefits	Present Value	
2027	\$38,360	\$38,360	Total $=$ \$789,307
2028	\$38,744	\$38,474	
2029	\$39,131	\$38,589	
2030	\$39,522	\$38,704	
2031	\$39,918	\$38,819	
2032	\$40,317	\$38,935	
2033	\$40,720	\$39,051	
2034	\$41,127	\$39,167	
2035	\$41,538	\$39,284	
2036	\$41,954	\$39,401	
2037	\$42,373	\$39,518	
2038	\$42,797	\$39,636	
2039	\$43,225	\$39,754	
2040	\$43,657	\$39,872	
2041	\$44,094	\$39,991	
2042	\$44,535	\$40,110	
2043	\$44,980	\$40,230	
2044	\$45,430	\$40,350	
2045	\$45,884	\$40,470	
2046	\$46,343	\$40,591	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	so	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	
0	\$0	\$0	NOTE:
0	\$0	\$0	This calculation relies on the real discount rate, which accounts
0	\$0	\$0	for inflation. No further discounting is necessary.
0	\$0	\$0	

CMF / CRF Details

CMF ID: 227
Convert intersection with minor-road stop control to modern roundabout
Description:
Prior Condition: No Prior Condition(s)
Category: Intersection geometry
Study: NCHRP Report 572: Applying Roundabouts in the United States, Rodegerdts et al., 2007

| Star Quality Rating: | Crash Modification Factor (CMF) |
| ---: | :--- | :--- |
| Value: | 0.56 |
| Adjusted Standard Error: | 0.05 |
| Unadjusted Standard Error: | 0.04 |

Crash Reduction Factor (CRF)

Value: 44 (This value indicates a decrease in crashes)

Adjusted Standard Error: 5

Unadjusted Standard Error: 4

	Applicability
Crash Type:	All
Crash Severity:	All
Roadway Types:	Not Specified
Number of Lanes:	1 or 2
Road Division Type:	
Speed Limit:	
Area Type:	All
Traffic Volume:	
Time of Day:	
If	untermeasure is intersection-based
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Development Details

Other Details

Included in Highway Safety

 Manual?
Date Added to Clearinghouse:

Comments:

Yes. HSM lists this CMF in bold font to indicate that it has the highest reliability since it has an adjusted standard error of 0.1 or less.

Dec-01-2009

Countermeasure name changed from "convert two-way stop-controlled intersection to roundabout" to match HSM

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 2219

Install raised median
Description:
Prior Condition: No Prior Condition(s)
Category: Access management
Study: Correlating Access Management to Crash Rate, Severity, and Collision Type, Schultz et al., 2008

| Star Quality Rating: | Crash Modification Factor (CMF) |
| ---: | :--- | :--- |
| Value: | 0.29 |
| Adjusted Standard Error: | |
| Unadjusted Standard Error: | 0.184 |

| | Crash Reduction Factor (CRF) |
| :---: | :---: | :---: |
| Value: | 70.77 (This value indicates a decrease in crashes) |
| Adjusted Standard Error: | |
| Unadjusted Standard Error: | 18.37 |

	Applicability
Crash Type:	All
Crash Severity:	All
Roadway Types:	Principal Arterial Other
Number of Lanes:	
Road Division Type:	
Speed Limit:	
Area Type:	Urban
Traffic Volume:	1390 to 51200 Average Daily Traffic (ADT)
Time of Day:	All
If countermeasure is intersection-based	
Intersection Type:	
Intersection Geometry:	
Traffic Control:	
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

| | Development Details |
| ---: | :--- | :--- |
| Date Range of Data Used: | 2002 to 2004 |
| Municipality: | |
| State: | UT |
| Country: | |
| Type of Methodology Used: | 7 |

Sample Size Used:	525	
Included in Highway Safety		
Manual?	No	
Date Added to Clearinghouse:	Dec-01-2009	
Comments:		

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 4252
Convert signalized intersection to modern roundabout
Description:
Prior Condition: Signalized intersection
Category: Intersection geometry
Study: Evaluation of Safety Strategies at Signalized Intersections, Srinivasan, et al., $\underline{2011}$

| Crash Modification Factor (CMF) | |
| :---: | :---: | :---: |
| Value: | 0.792 |
| Adjusted Standard Error: | |
| Unadjusted Standard Error: | 0.05 |

| | Crash Reduction Factor (CRF) |
| :---: | :---: | :---: |
| Value: | 20.8 (This value indicates a decrease in crashes) |
| Adjusted Standard Error: | |
| Unadjusted Standard Error: | 5 |

	Applicability
Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Number of Lanes:	1 to 2
Road Division Type:	
Speed Limit:	
Area Type:	Urban and suburban
Traffic Volume:	
Time of Day:	Not specified
If countermeasure is intersection-based	
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	3-leg,4-leg
Traffic Control:	Roundabout
Major Road Traffic Volume:	5322 to 43123 Annual Average Daily Traffic (AADT)
Minor Road Traffic Volume:	

Development Details

Date Range of Data Used:	1999 to 2009	
Municipality:		
State:	CO, FL, IN, MD, MI, NY, NC, SC, VT, WA	
Country:	USA	
Type of Methodology Used:	2	

| Sample Size Used: | Sites |
| ---: | :--- | :--- |
| Before Sample Size Used: | 28 Sites |
| After Sample Size Used: | 28 Sites |
| Included in Highway Safety | No |
| Manual? | Other Details |
| Comments: | Countermeasure name has been slightly modified for consistency
 across Clearinghouse |

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

TH 120 (Century Avenue)

Project Location

TH 120 (Century Ave) between I-694 and CSAH 12 (Old TH 244/Co Rd E) in the cities of White Bear Lake and Mahtomedi.

Funding Request
Federal: \$7,000,000
Local Match: \$ 1,972,428 (22\%)
Project Total: \$8,972,428

Project Goals

- Traffic calming and crash reduction
- Reduce traffic delay through corridor
- Fill gaps in bike/ped network
- Improve safety for non-motorized users
- Make multimodal connections to transit and regional destinations

Project Summary

TH 120 (Century Avenue) currently experiences extended periods of delay and above average crash rates compared to similar roads. Bike/ped facilities in the project area are limited to non-existent, leading to unsafe conditions and discouraging healthy and affordable travel modes like walking, biking, and transit.

The proposed project features a more pedestrian friendly and traffic calming design, with new ADA accessible multiuse trails extending along both sides of Century Ave; the replacement of one limited-control and one signalized intersection with two roundabouts featuring four-way crossings and pedestrian refuge islands; and raised medians and narrowed lanewidth between the roundabouts.

Summary of Project Benefits

\Rightarrow Calms traffic and reduces delay and conflict points throughout the corridor
\Rightarrow Creates safer environment for non-motorized users to travel along or across Century Avenue
\Rightarrow Completes gaps within the existing bike/ped network
\Rightarrow Improve bike/ped connections to Century College, transit stops, and other community destinations
\Rightarrow Responds to a community-identified need

TH 120 (Century Avenue)

Roadway Reconstruction \& Modernization

Existing Conditions Photographs

Image 1. Northbound Century Avenue at Woodland Dr.

- Future roundabout
- No pedestrian facilities

Image 2. Northbound Century Avenue at South Century College Entrance.

- Future roundabout
- No pedestrian facilities

Image 3. Northbound Century Avenue at Long Lake Road

- No pedestrian facilities
- Bus Stop in boulevard

Image 4. Northbound Century Avenue at I-694

- No pedestrian facilities
- Goat path from heavy pedestrian use

RESOLUTION AUTHORIZING SUBMITTAL OF APPLICATIONS TO THE METROPOLITAN COUNCIL FOR FUNDING UNDER THE 2022 REGIONAL SOLICITATION PROGRAM

WHEREAS, the Regional Solicitation process started with the passage of the Intermodal Surface Transportation Efficiency Act (ISTEA) in 1991; and

WHEREAS, as authorized by the most recent federal surface transportation funding act, FAST ACT, projects will be selected for funding as part of three federal programs: Surface Transportation Program (STP), Congestion Mitigation and Air Quality Improvement (CMAQ) Program, and Transportation Alternatives Program (TAP); and

WHEREAS, pursuant to the Regional Solicitation and the regulations promulgated thereunder, eligible project sponsors wishing to receive federal grants for a project shall submit an application first with the appropriate metropolitan planning organization (MPO) for review and inclusion in the MPO's Transportation Improvement Program (TIP); and

WHEREAS, the Metropolitan Council and the Transportation Advisory Board (TAB) act as the MPO for the seven county Twin Cities region and have released the Regional Solicitation for federal transportation funds for 2026 and 2027; and

WHEREAS, Washington County is an eligible project sponsor for Regional Solicitation funds; and
WHEREAS, Washington County is proposing to submit grant applications to Metropolitan Council as part of the 2022 Regional Solicitation for the following projects:

1. Reconstruction of Trunk Highway (TH) 120 with multimodal improvements between Interstate 694 and TH 244 in the City of Mahtomedi.
2. County Road 19A/ $100^{\text {th }}$ Street realignment between Innovation Road and Jamaica Avenue in the City of Cottage Grove.
3. Hardwood Creek Regional Trail Extension from Falcon Court to $130^{\text {th }}$ Street in the City of Hugo.
4. County State Aid Highway (CSAH) 5 Pedestrian Facility: Addition of a pedestrian facility along CSAH 5 between Owens Avenue and Pine Tree Trail in the City of Stillwater.
5. I-494 Park and Ride Parking Structure: Construction of shared parking structure west of the Woodbury Theatre in the City of Woodbury.

WHEREAS, the projects will be of mutual benefit to the Metropolitan Council, Washington County, Ramsey County, and the cities of Cottage Grove, Hugo, Mahtomedi, Stillwater, and Woodbury; and

WHEREAS, Washington County is committed to providing the county share of the costs if the projects are selected as part of the 2022 Regional Solicitation; and

WHEREAS, Washington County is committed to completing the project, if selected, and funding is provided as part of the 2022 Regional Solicitation.

NOW, THEREFORE, BE IT RESOLVED, that Washington County is requesting funding from the federal government through the Metropolitan Council's 2022 Regional Solicitation and the county is committed to completing the projects identified above and providing the county share of funding.

ATTEST:

YES
NO

MnDOT Metro District
1500 West County Road B-2
Roseville, MN 55113

April 12, 2022

Joe Ayers-Johnson
Washington County Public Works
11660 Myeron Road North
Stillwater, MN 55082

Re: MnDOT Letter for Washington County
 Metropolitan Council/Transportation Advisory Board 2020 Regional Solicitation Funding Request for TH 120 between I-694 and TH 244

Joe Ayers-Johnson,

This letter documents MnDOT Metro District's recognition for Washington County to pursue funding for the Metropolitan Council/Transportation Advisory Board's (TAB) 2022 Regional Solicitation for TH 120 between I-694 and TH 244.

As proposed, this project impacts MnDOT right-of-way on TH 120. As the agency with jurisdiction over 120 and I-694, MnDOT will allow Washington County to seek improvements proposed in the application for reconstruction and modernization including updated intersection control elements and multimodal facility improvements. If funded, details of any future maintenance agreement with Washington County will need to be determined during project development to define how the improvements will be maintained for the project's useful life.

There is no funding from MnDOT currently planned or programmed for this project. If your project receives funding, continue to work with MnDOT Area staff to coordinate project development and to periodically review needs and opportunities for cooperation.

MnDOT Metro District looks forward to continued cooperation with Washington County as this project moves forward and as we work together to improve safety and travel options within the Metro Area.

If you have questions or require additional information at this time, please reach out to Adam Josephson, East Area Manager, at adam.josephson@state.mn.us or 651-234-7719.

Sincerely,

Digitally signed by Michael
 Michael Barnes
 Barnes Date: 2022.04.12 10:02:22 -05'00'
 Michael Barnes, PE Metro District Engineer

CC: Adam Josephson, Metro District East Area Manager Molly McCartney, Metro Program Director Dan Erickson, Metro State Aid Engineer

March 15, 2022

Wayne Sandberg
Public Works Director/County Engineer
Washington County Public Works
11660 Myeron Road
Stillwater, MN 55082

RE: Support for Washington County's Regional Solicitation application for roadway reconstruction and modernization on Trunk Highway (TH) 120 (Century Ave) in the City of Mahtomedi.

Dear Mr. Sandberg,

The purpose of this letter is to express the City of Mahtomedi's support for Washington County's 2022 solicitation of Federal funds through the Metropolitan Council's Regional Solicitation program for roadway reconstruction and modernization on Trunk Highway (TH) 120 (Century Avenue) in the City of Mahtomedi.

The proposed project is a reconstruction of Century Avenue between TH 244 (County Road E) and I-694, including updated intersection control elements and multimodal facility improvements. These improvements will enhance safety and mobility along Century Avenue for all users and add important bike and pedestrian connections along the corridor. The proposed project was identified during MnDOT's 2012 Century Avenue Alternatives Analysis as well as subsequent community engagement, and is consistent with both the City's and the County's 2040 comprehensive plans.

The City of Mahtomedi will continue to support Washington County's efforts to improve the County transportation system as identified in the 2040 Washington County Comprehensive Plan.

Thank you for your consideration. If you have any questions, please contact me at 651-426-3344 or sneilson@ci.mahtomedi.mn.us.

City of White Bear Lake

4701 Highway 61 • White Bear Lake, Minnesota 55110
Phone (651) 429-8526 • Fax (651) 429-8500
www.whitebearlake.org

March 23, 2022
Wayne Sandberg
Public Works Director/County Engineer
Washington County Public Works
11660 Myeron Road
Stillwater, MN 55082

RE: Support for Washington County's Regional Solicitation application for roadway

 reconstruction and modernization on Trunk Highway (TH) 120 (Century Ave) in the City of White Bear Lake.Dear Mr. Sandberg,

The purpose of this letter is to express the City of White Bear Lake's support for Washington County's 2022 solicitation of Federal funds through the Metropolitan Council's Regional Solicitation program for roadway reconstruction and modernization on Trunk Highway (TH) 120 (Century Avenue) in the City of White Bear Lake.

The proposed project is a reconstruction of Century Avenue between TH 244 (County Road E) and I-694, including updated intersection control elements and multimodal facility improvements. These improvements will enhance safety and mobility along Century Avenue for all users and add important bike and pedestrian connections along the corridor. The proposed project was identified during MnDOT's 2012 Century Avenue Alternatives Analysis as well as subsequent community engagement, and is consistent with both the City's and the County's 2040 comprehensive plans.

Thank you for your consideration. If you have any questions, please contact me at Icrawford@whitebearlake.org, or call 651-429-8516.

Sincerely,

Lindy Crawford, City Manager
City of White Bear Lake

RESOLUTION NO. 12953

RESOLUTION AUTHORIZING THE CITY MANAGER TO SUBMIT A LETTER OF SUPPORT FOR THE WASHINGTON COUNTY REGIONAL SOLICITATION FUNDING APPLICATION FOR TRUNK HIGHWAY 120 IN THE CITY OF WHITE BEAR LAKE, MINNESOTA

WHEREAS, Washington County has requested a letter of support for its Regional Solicitation Funding application for roadway reconstruction and modernization on Trunk Highway (TH) 120 (Century Avenue); and

WHEREAS, the proposed project is a reconstruction of Century Avenue between TH 244 (County Road E) and I-694, including updated intersection control elements and multimodal facility improvements; and

WHEREAS, these improvements will enhance safety and mobility along Century Avenue for all users and add important bike and pedestrian connections along the corridor; and

NOW, THEREFORE, BE IT RESOLVED by the City Council of the City of White Bear Lake hereby authorizes the City Manager to submit a letter of support to Washington County for its 2022 Regional Solicitation Application for roadway reconstruction and modernization on Trunk Highway (TH) 120 (Century Avenue.

The foregoing resolution, offered by Councilmember Walsh and supported by Councilmember Hughes, was declared carried on the following vote:

Ayes: Edberg, Hughes, Jones, Walsh
Absent: Engstran
Nays: None
Passed: March 22, 2022

ATTEST:

RAMSEY COUNTY

Public Works

March 14, 2022

Wayne Sandberg
Public Works Director/County Engineer
Washington County Public Works
11660 Myeron Road
Stillwater, MN 55082

RE: Support for Washington County's Regional Solicitation application for roadway reconstruction and modernization on Trunk Highway (TH) 120 (Century Ave) in the Cities of White Bear Lake and Mahtomedi.

Dear Mr. Sandberg,
The purpose of this letter is to express Ramsey County's support for Washington County's 2022 solicitation of Federal funds through the Metropolitan Council's Regional Solicitation program for roadway reconstruction and modernization on Trunk Highway (TH) 120 (Century Avenue) in the Cities of White Bear Lake and Mahtomedi.

The proposed project is a reconstruction of Century Avenue between TH 244 (County Road E) and I-694, including updated intersection control elements and multimodal facility improvements. These improvements will enhance safety and mobility along Century Avenue for all users and add important bike and pedestrian connections along the corridor. The proposed project was identified during MnDOT's 2012 Century Avenue Alternatives Analysis as well as subsequent community engagement, and is consistent with the 2040 comprehensive plans of the cities of White Bear Lake and Mahtomedi as well as both Ramsey and Washington Counties.

Thank you for your consideration. If you have any questions, please contact me at 651-266-7116 or at Ted.Schoenecker@ramseycounty.us.

Sincerely,

Ted Schoenecker
Ramsey County Public Works Director / County Engineer

March 16, 2022

Wayne Sandberg
County Engineer
Washington County Public Works
11660 Myeron Road, Stillwater, MN 55082

RE: Support for Washington County's Regional Solicitation application for roadway reconstruction and modernization on Trunk Highway (TH) 120 (Century Ave) in the Cities of White Bear Lake and Mahtomedi

Dear Mr. Sandberg,
The purpose of this letter is to express Century College's support for Washington County's 2022 solicitation of Federal funds through the Metropolitan Council's Regional Solicitation program for roadway reconstruction and modernization on Trunk Highway (TH) 120 (Century Avenue) in the Cities of White Bear Lake and Mahtomedi.

The proposed project is a reconstruction of Century Avenue between TH 244 (County Road E) and I-694, including updated intersection control elements and multimodal facility improvements. These improvements will enhance safety and mobility along Century Avenue for all users and add important bike and pedestrian connections along the corridor. The proposed project was identified during MnDOT's 2012 Century Avenue Alternatives Analysis as well as subsequent community engagement and is consistent with the 2040 comprehensive plans of the cities of White Bear Lake and Mahtomedi as well as both Ramsey and Washington Counties. Century College shares these values and has been an active partner in the planning for these improvements.

Thank you for your consideration. If you have any questions, please contact me at angelia.millender@century.edu.

Sincerely,

Angelia Millender, President

HousingLink

Property Detail

About Streams

Woodland Townhomes
 Multiple addresses listed at bottom of page

Funding Categories
Subsidized-Other
Tax Credit (LIHTC 4\%)
Tax Credit (LIHTC 9\%)
Property Information
Year Built:
Building Type: Townhome
Groups Served:
Total Units: 30
Affordable Units: 30
Affordable Units by Bedroom
3 BR: 30
Units by Area Median Income * 60\%: 30

* AMI units are estimated because they were not provided, and have been set to the least restrictive AMI for the largest number of units

Known Property Addresses

1	845 Woodland Ct	Mahtomedi
2	855 Woodland Dr	Mahtomedi
3	857 Woodland Dr	Mahtomedi
4	867 Woodland Dr	Mahtomedi
5	869 Woodland Dr	Mahtomedi
6	879 Woodland Dr	Mahtomedi
7	951 Woodland Dr	Mahtomedi
8	971 Woodland Dr	Mahtomedi
9	975 Woodland Dr	Mahtomedi
10	995 Woodland Dr	Mahtomedi

Funding Dates \& Programs
First known closing: 1/1/1998
Most recent closing: 4/13/1999
Earliest expiration: 1/1/2020
Last Activity: New Construction

MHFA: Housing Tax Credits 9\%

Private: HPET
Close Date: 4/13/1999
Expiration: 1/1/2020
MHFA: Housing Tax Credits 4\%
Close Date: 1/1/1998
Expiration: 1/1/2028
MHFA: ARIF
Close Date: 4/13/1999
Expiration: 4/13/2029
Known Property Identifiers
HousingLink: 4907
MHFA: D2472
HUDLIHTC9: MNB19989005
HUDLIHTC4: MNB19989005

HousingLink

Property Detail

Century Hills
 Multiple addresses listed at bottom of page

Funding Categories
Subsidized-Other
Tax Credit (LIHTC 4\%)
Property Information
Year Built:
Building Type:
Groups Served:
Total Units: 55
Affordable Units: 54
Affordable Units by Bedroom
2 BR: 29
3 BR: 23
4 BR: 2
Units by Area Median Income 60\%: 54

About Streams

Known Property Addresses

1	3525 Century Ave N	White Bear Lake
2	3535 Century Ave N	White Bear Lake
3	3545 Century Ave N	White Bear Lake

Funding Dates \& Programs
First known closing: 1/1/2020
Most recent closing: 11/25/2020
Earliest expiration: 1/1/2050
Last Activity: Preservation

MHFA: Housing Tax Credits 4\%
Close Date: 1/1/2020
Estimated Expiration: 1/1/2050
MHFA: ARIF

Close Date: 11/25/2020
Expiration: 11/25/2050
Known Property Identifiers
HousingLink: 14633
MHFA: D1753

HousingLink

Return to main site

Property Detail

Known Property Addresses

1	3521 Century Ave N	White Bear Lake

[^0]FHF: FHF
Close Date: 4/20/2005
MHFA: Housing Tax Credits

HUDPBV: HUDPBV

Expiration: 1/1/2020
MHFA: HTF
Close Date: 4/20/2005
Expiration: 10/6/2023
MHFA: Housing Tax Credits 9\%
Close Date: 1/1/2003
Estimated Expiration: 1/1/2033
MHFA: Housing Tax Credits
Close Date: 1/1/2003
Estimated Expiration: 1/1/2033
MHFA: ARIF
Close Date: 4/20/2005
Expiration: 4/18/2035
MHFA: Housing Tax Credits 4\%
Close Date: 1/1/2013
Expiration: 1/1/2043
Known Property Identifiers
HousingLink: 5261
MHFA: D3661
HUDLIHTC4: MNA2013003
HUDLIHTC9: MNA2013003
HUDPBV: 1058179

Property Detail

East Shore Place
805 Wildwood Rd Mahtomedi, MN 55115

Funding Categories
Project-Based Subsidy
Tax Credit (LIHTC 4\%)
Property Information
Year Built: 1984
Building Type: Apartment
Groups Served: Elderly
Total Units: 61
Affordable Units: 61
Affordable Units by Bedroom
1 BR: 61
Units by Area Median Income 60\%: 61

About Streams

Known Property Addresses
1805 Wildwood Rd
Mahtomedi
Funding Dates \& Programs
First known closing: 1/1/2005
Most recent closing: 4/1/2010
Earliest expiration: 3/31/2030
Last Activity: Preservation

HUD: Section 202
Close Date: 4/1/2010
Expiration: 3/31/2030
MHFA: Housing Tax Credits 4\%
Close Date: 1/1/2005
Estimated Expiration: 1/1/2035
Known Property Identifiers
HousingLink: 9577
HUD: 800010884

HUDLIHTC4: MNA2005038
MHFATC4: D3347

Saved Profile

Custom Geographic Profile

At-a-glance facts about residents, households, and workforce. Data are largely derived from the U.S. Census Bureau. When a data point is missing or considered unreliable, it will not display or be labeled suppressed. See information about geographic profile sources.

Selected Geography (Custom): Custom area

Age

Age (2015-2019)

Total population	4,839	100.0\%
Under 5 years	309	6.4\%
5-9 years	338	7.0\%
10-14 years	321	6.6\%
15-17 years	217	4.5\%
18-24 years	207	4.3\%
25-34 years	583	12.0\%
35-44 years	459	9.5\%
45-54 years	565	11.7\%
55-64 years	910	18.8\%
65-74 years	544	11.2\%
75-84 years	264	5.5\%
85 years and older	120	2.5\%

Male

Race \& Ethnicity

Race \& Ethnicity (2015-2019)

White
Of Color
Black or African American alone
American Indian and Alaskan Native alone
Asian or Pacific Islander alone
Other alone
Two or more races alone
Hispanic or Latino (of any race)

Custom area
4,130
suppressed
suppressed
164
suppressed
suppressed
suppressed

Language

Language spoken (2015-2019)

Population (5 years and older)
English only
Language other than English
Speaks English less than "very well"

Custom area

Disability

Disability status (2015-2019)

Total population for whom disability status is determined	4,838
Population with a disability	566

Nativity

Nativity (2015-2019)

Residence one year ago (2015-2019)
Population (1 year and over in US)
Same residence

Different residence in the U.S.

Different residence outside the U.S.

Income \& Poverty

Household income (2019 dollars) (2015-2019)

Total households
Less than \$35,000
$\$ 35,000-\$ 49,999$ 218 299 220 892 $\$ 62,352$ Custom area
\$50,000-\$74,999
\$75,000-\$99,999
$\$ 100,000$ or more
Median household income (2019 dollars)

Poverty (2015-2019)

All people for whom poverty status is determined
With income below poverty
With income 100-149 of poverty
With income 150-199 of poverty

With income 200 of poverty or higher

17 years and younger (percent of people under age 18)

18-24 (percent of people age 18-24)
25-34 (percent of people age 25-34)
35-44 (percent of people age 35-44)
45-54 (percent of people age 45-54)

55-64 (percent of people age 55-64)
18-64 (percent of people 18-64)
65 years and older (percent of people age 65+)

Custom area

4,825
suppressed
suppressed
259
3,989
suppressed
suppressed
suppressed
suppressed
suppressed
suppressed
120
4.4\%
suppressed

Health Coverage

Health coverage (2015-2019)

Custom area
80.8\%

Total population age 65 and under for whom health insurance coverage status is determined

Housing

Total housing units (2015-2019)
Custom area

Total housing units
2,026
100.0\%

Owned and Rental Housing (2015-2019)

Vacant housing units (seasonal units included)

Occupied housing units	1,967	97.1%
Average household size	2.4	100.0%
Owner-occupied	1,503	74.2%
Average household size	2.6	100.0%
Renter-occupied	464	22.9%
Average household size	2.0	100.0%

Year built (2015-2019)	Custom area	
2000 or later	240	11.9%
$1970-1999$	1,172	57.8%
$1940-1969$	536	26.5%
1939 or earlier	78	3.8%

Households (2015-2019)
Total households

Households by type (2015-2019)

Family households	1,371	69.7\%
With children under 18 years	572	29.1\%
Married-couple family households	1,117	56.8\%
With children under 18 years	413	21.0\%
Single-person family households	254	12.9\%
With children under 18 years	159	8.1\%
Nonfamily households	596	30.3\%
Householder living alone	525	26.7\%
65 years and over	317	16.1\%
Households with one or more children under 18 years	577	29.3\%
Households with one or more people 65 years and over	690	35.1\%

Moved in 2000-2009	360	18.3%
Moved in 1990-1999	355	18.0%
Moved in 1989 or earlier	437	22.2%
Cost-burdened households (2015-2019)	Custom area	
All households for which cost burden is calculated	1,957	100.0%
Cost-burdened households	470	24.0%
Owner households for which cost burden is calculated	1,503	100.0%
Cost-burdened owner households	211	14.1%
Renter households for which cost burden is calculated	454	100.0%
Cost-burdened renter households	259	57.1%

Rent paid (2015-2019)	Custom area	
Households paying rent	455	100.0%
Median rent paid (2019 dollars)	$\$ 954$	100.0%

Transportation

Vehicles per household (2015-2019)	Custom area	
No vehicles	107	5.4%
1 vehicle available	555	28.2%
2 vehicles available	917	46.6%
3 or more vehicles available	388	19.7%

Transportation to work (2015-2019)

Workers (16 years and older)	2,380
Car, truck, or van (including passengers)	2,154
Public transportation	suppressed
Walked, biked, worked at home, or other	179

Travel time to work (2015-2019)

Total workers age 16+ (not home based)

Less than 10 minutes	187	8.3%
$10-19$ minutes	587	25.9%
$20-29$ minutes	635	28.1%
30 minutes or longer	855	37.7%

Custom area

Population (25 years and older)

$3,446 \quad 100.0 \%$
Less than high school
suppressed

High school diploma or GED	638	18.5%
Some college or associate's degree	1,092	31.7%
Bachelor's Degree	967	18.2%
Graduate or professional degree	627	3,324
High school graduate or higher	1,594	46.5%
Bachelor's degree or higher		40.3%

Working Adults (2015-2019)

Custom area

Total civilian non-institutionalized population, age 18-64	2,724
Working age adults who are employed	2,195
Civilian labor force	2,283
Unemployed	80.6%

Total employed workers (LEHD) (2018)	Custom area
Total employed workers	2,055
Worker age (2018)	Custom area
Age 29 or younger	480.0%
Age 30 to 54	1,012

Workers by earnings (2018)

Custom area

$\$ 15,000$ per year or less	373	18.1%
$\$ 15,001$ to $\$ 39,999$ per year	476	23.2%
$\$ 40,000$ or more per year	1,206	58.7%

Workers by industry of employment (2018)

Administration \& support, waste management, and remediation
Agriculture, forestry, fishing and hunting
Arts, entertainment, and recreation
Construction
Educational services 61
Finance and insurance 126
Health care and social assistance 352
Information

Custom area

164
8.0\%
suppressed
110
5.3\%
1.4\%
4.4\%
3.0\%
6.1\%
17.1\%
2.4\%

Management of companies and enterprises	147	7.2\%
Manufacturing	225	10.9\%
Mining, quarrying, and oil and gas extraction	suppressed	
Other services (excluding public administration)	81	3.9\%
Professional, scientific, and technical services	167	8.1\%
Public administration	suppressed	
Real estate and rental and leasing	29	1.4\%
Retail trade	224	10.9\%
Transportation and warehousing	61	3.0\%
Utilities	suppressed	
Wholesale trade	120	5.8\%
Workers by race (2018)	Custom	
White alone	1,803	87.7\%
Black or African American alone	105	5.1\%
American Indian or Alaska Native alone	suppressed	
Asian alone	105	5.1\%
Native Hawaiian or Other Pacific Islander alone	suppressed	
Two or more race groups	35	1.7\%
Hispanic or Latino (of any race)	65	3.2\%

Workers by educational attainment (2018)	Custom area	
Less than high school	115	5.6%
High school or equivalent, no college	382	18.6%
Some college or associate degree	532	25.9%
Bachelor's degree or advanced degree	543	26.4%

Minnesota Compass is a project of Wilder Research
Contact | Partners | Privacy Policy

[^0]: Funding Dates \& Programs
 First known closing: 1/1/2003
 Most recent closing: 1/1/2013
 Earliest expiration: 1/1/2020
 Last Activity: New Construction

