

DRAFT Geotechnical Evaluation West Segment 2

August 29, 2014

Revision 0

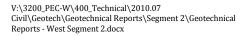
Southwest LRT Project Technical Report

This page intentionally blank.

Contents

Executive Summary.....i

List of Appendices


Appendix A Nine Mile Creek Bridge
Appendix B Golden Triangle Area
Appendix C Bridge over Shady Oak Road and TH 212
Appendix D Retaining Walls W206, W207 and W209
Appendix E Retaining Walls W207D, W209, W210 and W211
Appendix F TH 62 Tunnel Crossing
Appendix G Opus Area
Appendix H Opus Station

Executive Summary

This technical memorandum presents the *Geotechnical Evaluation of West Segment 2* of the Southwest Light Rail Transit (SWLRT) project in Hennepin County. This document combines eight separate memorandums, included in the appendices, under one cover. They provide the details of the geotechnical findings and recommendations for the following areas:

- Nine Mile Creek Bridge This preliminary report provides the results of the initial soil borings along the alignment of the proposed Nine Mile Creek Bridge from approximate STA 2216+94 to STA 2230+45 and to provide preliminary recommendations for the bridge foundation and approach embankment supports. A final geotechnical report will be prepared after final geotechnical borings are completed. See Appendix A.
- **Golden Triangle Area** This preliminary report provides general construction comments and recommendations between STA 2230+50 to STA 2253+91 for the proposed construction of the track, Golden Triangle Station, parking lot construction, retaining walls RTW-W205, RTW-W215 and a land bridge extending from the north end of the station platform to the south abutment of the Bridge over Shady Oak Road/TH 212. A discussion of general civil and roadway discussion is also included. A final geotechnical report will be prepared when the full scope of the field investigation program has been completed. See Appendix B
- **Bridge over Shady Oak Road and TH 212** This Foundation Analysis Design Recommendation (FADR) report addresses the geotechnical evaluation for the proposed light rail bridge over Shady Oak Road and TH 212 in Eden Prairie. It includes the recommendations for the design and construction of bridge foundations and associated embankments. See Appendix C
- **Retaining Walls W206, W207 and W209** This purpose of this letter is to provide you and the design team with a summary of our gathered historical soil boring information in the area of retaining walls RTW-W206, RTW-W207, and RTW-W209 and to provide preliminary retaining wall closing design information. A final geotechnical report should be prepared after final geotechnical design borings are completed. See Appendix D
- **Retaining Walls W207D, W209, W210 and W211** This design report addresses the design and construction of four retaining walls RTW-W207D, RTW-W209, RTW-W210 and RTW-W211 that will support the track embankment near the 62 Tunnel segment in Eden Prairie and Minnetonka. See Appendix E
- **TH 62 Tunnel Crossing** This FADR report addresses the geotechnical evaluation for the design of the tunnel to be constructed under Highway 62 in Eden Prairie and Minnetonka. See Appendix F
- **Opus Area** This FADR report addresses the preliminary geotechnical evaluation for the proposed Opus Area construction between STA 2314+00 to STA 2362+00. The following sections provide our recommendations for the design and construction of the five pedestrian underpasses, retaining walls RTW-W212 and RTW-W213 and general track construction. See Appendix G

• **Opus Station** – This Geotechnical Evaluation Report addresses the proposed Opus Station Platform, from STA 2325+92 to STA 2328+62 in Minnetonka. The site of the proposed platform station is located east of Bren Road East and approximately 338 feet south of Bren Road West. See Appendix G

This information was used in other elements of the project development including preliminary site plans, station plans, roadway improvements and traffic analysis.

Appendix A

Nine Mile Creek Bridge

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Results of Field Exploration and Preliminary Bridge Recommendations – 30% Design 9 Mile Creek Bridge STA 2216+94 to STA 2230+45 Southwest LRT, West Segment 2 Eden Prairie, Minnesota

Dear Mr. Demers:

This purpose of this letter is to provide you and the design team with the results of our initial soil borings along the alignment of the proposed 9 Mile Creek Bridge from approximate Track STA 2216+94 to STA 2230+45 and to provide preliminary recommendations for the bridge foundation and approach embankment supports. A final geotechnical report should be prepared after final geotechnical borings are completed.

This preliminary report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for general track construction and pole foundations for the Overhead Contact System (OCS) will be addressed in separate reports.

A. Subsurface Investigation Summary

A.1. Summary of Borings Taken

The Southwest Light Rail Transit Project Office (SPO) requested preliminary subsurface soil and groundwater information in the area of the proposed 9 Mile Creek Bridge. Six (6) standard penetration soil borings were performed in the general area. The table below provides information on the borings including numbering, track stationing, and the ground surface elevation at the boring location:

		-	
Boring	Bridge Structure	Approximate Track Station	Surface Elevation at Boring Location (ft)
2012SB	West Abutment Embankment	2214+00	856.7
2027SB	West Bridge Abutment	2216+54	859.3
2028SB	Pier 1 and Pier 2	2218+69	850.6
2092SB	Pier 7	2225+50	855.2
2029SB	Pier 8	2226+84	844.6
2030SB	Pier 9	2227+92	846.2

Table 1. Soil Boring Information for 9 Mile Creek Bridge

A.2. Description of Foundation Soil Conditions

The description of soil conditions provided below is divided into two major areas including the west abutment and pier locations.

West Abutment Borings:

The borings performed near the west abutment include Borings 2012SB and 2027SB.

Fill and topsoil were encountered in the upper 12 to 20 feet of the borings, consisting of poorly graded sand with silt, silty sand, clayey sand, and lean clay.

Swamp deposits consisting of slightly organic to organic peat, clays, silty sands, and silts were encountered at Boring 2027SB starting at a depth of 20 feet, or elevation 839, and extending to a depth of 54 feet, or elevation 805.

Beneath the fill and swamp deposits, the borings encountered glacially deposited soils to the termination depth of the borings. The glacial soils consisted of interbedded clays and sands with varying amounts of gravel. The majority of the soils consisted of silty sand, sandy lean clay, poorly graded sand and clayey sand.

Penetration resistances in the fill soils and swamp deposits were variable and ranged from 2 to 23 blows per foot (BPF). The glacially deposited soils had penetration resistances ranging from 10 to 79 BPF, indicating rather stiff to hard conditions in the clays, and loose to very dense conditions in the sandy soils.

Pier Borings:

The general soil profile at the pier locations where borings were performed consist of 7 to 15 feet of topsoil and fill at the surface consisting of lean clay, sandy lean clay, organic clay, silty sand, and poorly graded sand.

Below the fill, all of the borings, with the exception of Boring 2030SB, encountered swamp deposits to depths of 16 to 29 feet. The swamp deposits consisted of peat, organic clay, lean clay, and silt with varying amounts of organics.

Beneath the swamp deposits, alternating layers of glacially deposited clays and sands were encountered to termination depths of the borings, with the exception of Boring 2028SB, which encountered a layer of alluvial silts at a depth of 29 feet. The glacial deposits generally consisted of poorly graded sand with silt, lean clay, sandy lean clay, poorly graded sand, clayey sand and silty sand.

The penetration resistances recorded in the fill ranged from 3 to 46 BPF, indicating the soils were likely variably compacted and portions of the fill were placed in an uncontrolled manner. The native sands and clays had penetration resistance values ranging from 6 to 60 BPF, indicating loose to very dense consistencies in the sandy soils and medium to hard consistencies in the clayey soils. Isolated layers of loose sand or medium consistency clays were encountered within the profiles. It appears the loose sands were a product of a "blow up" condition that commonly occurs when the auger encounters groundwater at depth and the difference in pressures locally loosens the saturated sands. The medium consistency clays were likely a result of a saturated sand seam that loosened the surrounding clay soils.

A.3. Groundwater

Groundwater was encountered at all boring locations at depths ranging from 10 to 22 ½ feet beneath the surface, or elevations ranging from 823 ½ to 846 ½ feet. We anticipate groundwater levels will fluctuate but will generally be encountered between elevations 840 and 844, based on the elevation of the culvert crossing beneath Flying Cloud Drive, related to 9 Mile Creek. The variation in groundwater levels was likely due to the borehole not being left open long enough for water to reach its hydrostatic level.

Piezometers may be valuable to more accurately determine the groundwater elevation along the proposed bridge alignment. Seasonal and annual fluctuations in groundwater levels should also be expected.

B. Design and Construction Considerations

Based on the preliminary engineering plans provided by AECOM, it appears the west abutment will begin at STA 2216+94, and the east abutment will be at STA 2230+45. It is anticipated there will be 10 piers with bridge spans ranging from 105 to 125 feet. The entire length of the bridge will be about 1,355 feet.

The following design and construction items were considered and will be addressed in our preliminary evaluation. We recommend a final geotechnical program be established and performed upon final design of the bridge:

- Axial loads for the bridge were not known at the time of this report. We have provided baseline recommendations for 12.0-inch and 16.0-inch closed end pipe piles using factored loads of 120 tons and 140 tons.
- Lateral loads at the bridge piers are also unknown at the time of this report. We will provide recommended maximum lateral loads for 12.0-inch piles and 16.0-inch piles, assuming a 1/4-inch wall thickness and a one-inch limit for lateral movement.
- We anticipate that embankments on the order of 16 to 20 feet will be constructed at the abutments. At this time, we anticipate the bridge approaches will be constructed of soil embankments, however, alternative design recommendations for construction and support of the embankments will be discussed.
- Due to the presence of highly compressible swamp deposits and variably compacted fill materials, it is our opinion the use of spread footing foundations will not be feasible for this structure to control settlement. Our recommendations are based on the assumption that the bridge will consist of pile-supported foundations.

C. Preliminary Recommendations

New approach embankments are anticipated as part of the proposed 9-Mile Creek bridge construction. Retaining walls RTW-W201, RTW-202C, RTW-W203, and RTW-W204 will abut the bridge and act as wing walls for the approach embankments. RTW-W201 extends to the south approximately 500 feet past the approach embankment.

Based on the borings performed in the area of the west abutment and retaining walls RTW-W201 and RTW-W202C, we anticipate these walls will be pile supported. Based on the anticipated soils near the east abutment and retaining walls RTW-W203 and RTW-W204, we anticipate these walls will likely be supported on spread footing foundations. However, due to the existing site terrain, we were unable to perform borings in this area and a final boring program should be completed in this area to confirm our assumptions prior to final design.

Based on the AECOM plans, we anticipate finished grade at the piers will be near or at existing grades, and fills on the order of 16 to 20 feet will be needed at the abutments. We have assumed the moist unit weight of the anticipated fill soils is 120 pounds per cubic foot (pcf).

Below in this report, you will find our preliminary recommendations regarding pile supported foundations.

C.1. East Approach Embankment

C.1.a. Embankment Settlement

The service limit state (settlement) of one-inch will control design of the east abutment. Based on the anticipated fill heights of up to 15 feet for the embankment approaches, total settlement magnitudes are expected to exceed one-inch, and we are anticipating the settlement to be between 1 ½ and 2 inches.

Due to the anticipated settlements and the varying composition of the underlying soils at the east embankment location, preliminary estimates for the time rate of consolidation under the full embankment height indicate that it could take up to 3 months to reduce the long-term settlement of the embankment to under 1 inch under a preloading condition.

C.2. West Approach Embankment

C.2.a. Embankment Settlement

Boring 2027SB at the west abutment encountered 20 feet of fill overlying 27 feet of peat overlying organic clay. If 20 feet of new fill was placed at the west abutment location, further consolidation of the organic soils at depth will occur. We estimate new settlements on the order of 2 feet could occur. The first 1 1/2 feet will occur in the first 6 months and the remaining 1/2-foot of secondary consolidation over 30 years under a preload condition.

C.2.b. Waiting Period and Downdrag

A 6-month waiting period after preloading the embankment would be required to reduce postconstruction settlement from 2 feet to 1/2-foot for the west approach. Long-term re-ballasting of the track would be required if this approach is used.

Retaining wall piling and the west abutment piling will be subject to downdrag due to the embankment settlement. Some of the piles could be driven with no downdrag if they are out of the influence of the embankment load such as the piles constructed at the toe of the retaining walls opposite the fill side (high side) of the walls.

Based on the proposed embankment fill height at the west bridge abutment, the estimated unfactored downdrag (negative skin friction) for design of the bridge abutment is provided in the table below.

Boring	Substructure	Pile Size, Outside Diameter (Inches)	Approximate Embankment Increase (feet)	Estimated Downdrag Load (tons) ¹	Downdrag Influence Elevation (feet)
2027SB	West Bridge	12.0	17.20	42	805
202758	Abutment	16.0	17-20	62	805

Table 2. Downdrag Load and Influence Elevation – 12.0-inch & 16.0-inch Closed End Pipe Piles, Top ofPile Elevation = 853

¹The estimated downdrag (negative skin friction) values given are unfactored

No raise in grade is anticipated in the area of the proposed piers, therefore, we do not anticipate downdrag forces contributing additional load to the piles.

C.2.c. Lightweight Fill

An alternative to limit settlement to less than 1-inch for the west embankment is to use of Expanded Polystyrene (EPS) foam blocks. EPS blocks would be used to within 5 to 6 feet from the tracks. Also, to balance the stresses from the 5 to 6 feet of sand on top of the EPS block, the EPS blocks would have to extend into the existing fill. The extent of the lightweight fill would have to be determined by additional soil borings. We recommend keeping all of the EPS foam blocks above the high water table to prevent the potential for buoyancy during high water conditions.

Based on our calculations, by replacing 6 feet or more of conventional granular fill material weighing 120 pcf with blocks of Expanded Polystyrene (commonly known as Geofoam) weighing 1.5 pcf in the approach embankments, the long term settlements would be reduced significantly (approaching 1 inch).

C.2.d. Alternate Bridge Design

A third option to reduce settlement of the approach west embankment would include adding length to the bridge structure and moving the abutments to better ground. By adding 200 to 300 feet of bridge structure to the west, the approach embankments will be founded on more suitable soils and embankment heights will be reduced. The exact additional length of bridge necessary to reduce settlement problems would need to be determined by future borings for the purpose of estimating construction costs. At this time, we recommend assuming the new abutment would be near Station 2215+00.

C.3. Pile Supported Bridge

We understand there will be two abutments and 10 piers with bridge spans of 105 to 125 feet to support the bridge. For preliminary design recommendations, we analyzed subsurface conditions for pile support at the abutments and piers using Borings 2012SB, 2027SB, 2028SB, 2029SB, 2030SB, and 2092SB.

C.3.a. Design Methodologies

We used the computer program UniPile, version 5.0.0.33, to estimate the static nominal geotechnical resistance (R_n) of the 12.0- and 16.0-inch outside-diameter, 1/4-inch thick wall, closed-ended pipe piles for support of the bridge abutments and piers. UniPile software was developed by UniSoft Geotechnical Solutions Ltd. and can calculate pile resistance using a variety of methods.

For our analysis, we utilized the Beta-method, an effective stress method, to estimate the static geotechnical resistance for these pile. This method determines shaft resistance using Bjerrum-Burland beta coefficients (β), which are based on soil type and effective friction angle. We estimated the β values for each layer using Figure 9.20 from the Federal Highway Administration (FHWA) Publication No. NHI-05-042, Design and Construction of Driven Pile Foundations, April 2006. The Beta-method determines end bearing resistance using toe bearing capacity factors (N_t), which are also based on soil type and effective friction angle. We estimated the N_t values from Table 9-6 of the April 2006 FHWA publication identified previously.

C.3.b. Nominal Bearing Capacities and Associated Resistance Factors

For situations where subsurface exploration and static calculations have been completed, we recommend that the following ϕ_{dyn} factors be used.

Specified Construction Control	φ _{dyn}
MnDOT Pile Formula 2012 (MPF12) for Pipe Pile Sections	0.50
Wave Equation and Pile Driving Analyzer (PDA)	0.65

Table 3. Recommended Pile Driving Resistance Factors (ϕ_{dvn})

We calculated the nominal resistance of the piles in compression. The following tables summarize the anticipated pile depths based on the factored load ($\Sigma\gamma Q_n$) for 12.0-inch and 16.0-inch pipe pile sections based on the maximum vertical loads provided by AECOM. The following tables summarize the anticipated pile depths based on the factored load ($\Sigma\gamma Q_n$) for 12.0- and 16.0-inch, outside-diameter pipe pile with a wall thickness of 1/4 inch. The tables provide a PDA length (i.e., ϕ_{dyn} of 0.65) and a MPF12 formula length (i.e., ϕ_{dyn} of 0.50) for each location. We assumed a cutoff elevation of about 1 foot above the anticipated bottom-of-pile-cap elevation. Please refer to the attached nominal bearing resistance graphs for a detailed profile of pile resistances as a function of depth. We also wish to note that if pile capacities were not met within the depth of our borings, we extended the soil profile within *UniPile* version 5.0.0.33, under the assumption that the soils encountered at termination depth of the borings extended to deeper depths.

As you review the tables below, you will notice several pier locations as well as the east abutment were not analyzed. Borings were not performed at these locations during our preliminary analysis, so pile length estimates are not possible. Pile length estimates for the remaining pier and abutment locations will be performed during the final design program.

Boring/Substructure	Anticipated Cutoff Elevation (feet)	ΣγQ _n (tons)	R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
				12.0	807	49
2012SB (West		120	185 [370 kips]	16.0	812	44
Abutment	856			12.0	806	50
Embankment)		140	215 [430 kips]	16.0	808	48
		100		12.0	776	76
2027SB (West		120	185 [370 kips]	16.0	789	63
Bridge Abutment)	852			12.0	772	80
		140	215 [430 kips]	16.0	782	70
		100		12.0	779	65
	844	120	185 [370 kips]	16.0	787	57
2028SB (Pier 1)		110	245 (422) 1	12.0	775	69
		140	215 [430 kips]	16.0	784	60
	840	120	105 [270 kina]	12.0	777	63
2028SB (Pier 2)		120	185 [370 kips]	16.0	785	55
20283B (Piel 2)	840	140	215 [430 kips]	12.0	773	67
		140	213 [430 kip3]	16.0	782	58
	839	120	185 [370 kips]	12.0	787	52
2092SB (Pier 7)		120	192 [210 kib3]	16.0	795	44
20923B (FIEL 7)		140	215 [430 kips]	12.0	785	54
		140		16.0	790	49
2029SB (Pier 8)		120	405 [270 kin]	12.0	784*	55
	820	120	185 [370 kips]	16.0	792*	47
	839	140	215 [420 king]	12.0	780*	59
		140	215 [430 kips]	16.0	789*	50
		120	105 [270 kir -]	12.0	799	46
		120	185 [370 kips]	16.0	811	34
2030SB (Pier 9)	845			12.0	797	48
		140	215 [430 kips]	16.0	809	36

Table 4. Summary of Anticipated Pile Lengths - PDA

*-Note: The estimated tip elevation and approximate length exceed the depth of exploration at these locations. We extrapolated the soil properties below the depth of exploration.

Boring/Substructure	Anticipated Cutoff Elevation (feet)	ΣγQ _n (tons)	R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
				12.0	801	55
2012SB (West		120	240 [480 kips]	16.0	807	49
Abutment Embankment)	856			12.0	800	56
Embankment)		140	280 [560 kips]	16.0	806	50
		120	240 [400 17]	12.0	766	86
2027SB (West	050	120	240 [480 kips]	16.0	779	74
Bridge Abutment)	852	1.10		12.0	758	94
		140	280 [560 kips]	16.0	775	77
	844	120	240 [480 kips]	12.0	771	73
		120		16.0	781	63
2028SB (Pier 1)		110		12.0	766	78
		140	280 [560 kips]	16.0	777	67
2028SB (Pier 2)	840	120	240 [480 kips]	12.0	769	71
		120	240 [480 kips]	16.0	779	61
	640	140	280 [560 kips]	12.0	764	76
		140	280 [300 Kips]	16.0	775	65
		120	240 [480 kips]	12.0	785	54
2092SB (Pier 7)	839	120	240 [480 Kip3]	16.0	788	51
20923B (Piel 7)		140	280 [560 kips]	12.0	777	62
		140		16.0	787	52
2029SB (Pier 8)		120	240 [480 kips]	12.0	777*	62
	839	120	240 [460 Kip3]	16.0	787*	52
	635	140	280 [560 kips]	12.0	772*	67
		140	200 [300 kips]	16.0	782*	57
		120	240 [480 kips]	12.0	796	49
202050 (Diar 0)	045	120	240 [400 kips]	16.0	808	37
2030SB (Pier 9)	845	110		12.0	788	57
		140	280 [560 kips]	16.0	798	47

Table 5. Summary of Anticipated Pile Lengths – MPF12

*-Note: The estimated tip elevation and approximate length exceed the depth of exploration at these locations. We extrapolated the soil properties below the depth of exploration.

C.3.c. Uplift Capacities

Currently, a tension resistance line is not provided on the Nominal Bearing Graphs attached to this report. If piles will experience tension loads, please let us know and we'll revise our recommendations accordingly.

C.4. Pile Spacing and Group Effect

In our opinion, the working capacities of piles spaced at least 3 pile diameters apart need not be reduced due to group effects. If a closer spacing is ultimately selected, we recommend having a geotechnical engineer evaluate the magnitude of the group effect, and the extent to which the working capacities should be reduced.

The lateral capacity for each pile should be reduced, depending on the actual spacing and the location of the pile within the pile cap. We recommend using pile spacing reductions (group action) for the various pile spacing's as identified in the table below.

Table 6. Pile Spacing

Pile CTC Spacing (in the direction of loading)	Row 1	Row 2	Row 3 and Higher
3D	0.8	0.4	0.3
4D	0.9	0.63	0.5
5D	1.0	0.85	0.7

Linearly interpolated from AASHTO 2012 6th Edition, Table 10.7.2.4-1.

C.5. Lateral Pile Analyses

The following table provides the soil parameters used for the lateral pile analyses and p-y curve generation, which was performed the computer program LPILE (2013). Based on the soils encountered in the borings, we used the default lateral modulus of subgrade reaction values included in LPILE. For the purposes of our preliminary evaluation, we used the soil parameters encountered in Boring 2027SB, which in our opinion represents the worst case soil conditions for lateral pile resistance

Lavor	Layer Bottom	Effective Unit	Internal	Undrained Shear	
Layer Top Depth	Depth	Weight	Angle of Friction	Strength	
(feet)	(feet)	(pcf)	(degrees)	(psf)	Material Type
0	7.5	125	NA	750	Soft Clay
7.5	13.5	58	28	NA	Sand (Reese)
13.5	20.5	11	NA	150	Soft Clay
20.5	40.5	16	NA	350	Soft Clay
40.5	47.5	38	27	NA	Sand (Reese)
47.5	57.5	63	32	NA	Sand (Reese)
57.5	62.5	63	NA	5875	Stiff Clay w/o Free Water
62.5	67.5	58	38	NA	Sand (Reese)
67.5	77.5	68	NA	3225	Stiff Clay w/o Free Water
77.5	102.5	68	NA	2700	Stiff Clay w/o Free Water
102.5	114.5	63	35	NA	Sand (Reese)

Table 7. Soil Parameters used for the Lateral Pile Analyses and P-Y Curve Generation

For our lateral analyses, we assumed a pile top located 5 feet below the ground surface. The maximum lateral load in our analyses is for a loading condition assuming 1-inch of deflection at the pile top with a fixed-head condition. We assumed a pile wall thickness of 1/4-inch, a steel yield strength of 45 ksi, and concrete infill with a compressive strength of 3 ksi for our analyses. Please refer to the attachments for the shear force and bending moments within the pile at service loads of 120 tons for the 12.0-inch and 140 tons for the 16.0-inch closed-end pipe pile.

C.6. Pile Driving System and Installation

Using an under- or over-sized pile-driving hammer can be detrimental to the successful installation of piling. Prior to system acceptance, we therefore recommend performing a wave equation analysis modeling prospective contractors' pile installation systems. The wave equation analysis is used to estimate probable driving stresses and pile penetration resistance based on the type of hammer proposed, the specified pile type/size and the site-specific material conditions which, when combined, help evaluate system suitability. Our firm can discuss the requirements and limitations of wave equation analyses and, if needed, perform them.

C.7. Subcut and Dewatering Recommendations and Backfill Requirements for Pile Supported Structures

The pile caps for the abutments and piers will be excavated down to proposed bottom of foundation elevations. We expect fill soils at the bottom of pile caps at all locations except for the most easterly pier or abutment where they could extend into the glacial till soils. We expect the soils to be stable at most locations. The exception may be where pile caps extend below elevation 845 where groundwater may be encountered. If groundwater is at or near the bottom of the pile cap, we recommend the pile cap area be subcut 2 feet and replaced with clean 1-inch crushed rock to provide a construction platform for placing the pile cap concrete.

C.8. Retaining Wall Construction

At this time, we assume the retaining walls adjacent to the west bridge abutment will be pile supported and based on the anticipated soils near the east abutment we assumed the retaining walls abutting the east bridge abutment will be supported on spread footing foundations. However, final design borings should be completed to confirm the soils conditions and foundation alternatives for the retaining walls. Please refer to the tables above in section C.2.b and the axial capacity graphs located in the Appendix for pile capacities at the boring locations.

We recommend using Select Granular Modified 10% for Structure Backfill. Select Granular Modified 10% shall comply with Specification 3149.2B2, modified to 10% or less passing the 0.075 mm (#200) sieve. Compaction specifications should meet the requirements of MnDOT 2105.3F.

We recommend backfill material be placed in uniform layers approximately parallel to the profile, extending the full width of the retaining structures. We recommend backfill material be placed in lift thicknesses less than 12 inches. A waiting period may be needed prior to the placement of the track or any concrete to allow for settlement of embankment. We recommend installing geotechnical instrumentation and monitoring the settlement of the embankment. Once the geotechnical engineer is comfortable with the rate of settlement, construction may proceed.

C.9. Recommended Design Soil Parameters (e.g. Coefficient of Friction, Lateral Earth Pressure Coefficients, etc.)

The recommended soil parameters to be used for design are as follows:

Soil Type	Angle of Internal Friction (degrees)	Effective unit Weight (pcf)	Coefficient of Sliding Friction Rough Concrete	Active Earth Pressure Coefficient	At-Rest Earth Pressure Coefficient	
Select Granular Borrow	35	120	0.6	0.27	0.43	
Granular Borrow	30	120	0.5	0.33	0.50	
Fill: Sands	30	120	0.5	0.33	0.50	
Fill: Lean Clay	22	115	0.4	0.45	0.63	
Fill: Clayey Sand	28	130	0.4	.036	0.53	
Native Sands	32	130	0.5	0.31	0.47	
Native Lean Clay	27	130	0.35	0.38	0.55	
Native Clayey Sand	28	135	0.4	0.36	0.53	

Table 8. Recommended Soil Parameters

D. Procedures

D.1. Penetration Test Borings

The penetration test borings were drilled with an ATV-mounted core and auger drill equipped with hollow-stem auger. The borings were performed in accordance with ASTM D 1586. Penetration test samples were taken at 2 1/2- or 5-foot intervals. Actual sample intervals and corresponding depths are shown on the boring logs.

Penetration test boreholes that met the Minnesota Department of Health (MDH) Environmental Borehole criteria were sealed with an MDH-approved grout.

D.2. Material Classification and Testing

D.2.a. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars, bags or thin wall tubes and returned to our facility for review, storage and laboratory testing.

D.2.b. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures.

D.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced, and again after auger withdrawal. The boreholes were then backfilled with a bentonite grout.

E. Qualifications

E.1. Variations in Subsurface Conditions

E.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

E.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

E.2. Continuity of Professional Responsibility

E.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

E.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

E.3. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

F. General

This report should be considered preliminary in nature and may be revised upon final design parameters and the completion of the full geotechnical program. In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If you have any questions about this Report, please contact Josh Kirk at 952.995.2222 or jkirk@braunintertec.com or Ray Huber at 952.995.2260 or rhuber@braunintertec.com or Ray Huber at 952.995.2260 or rhuber@braunintertec.com.

Sincerely,

BRAUN INTERTEC CORPORATION

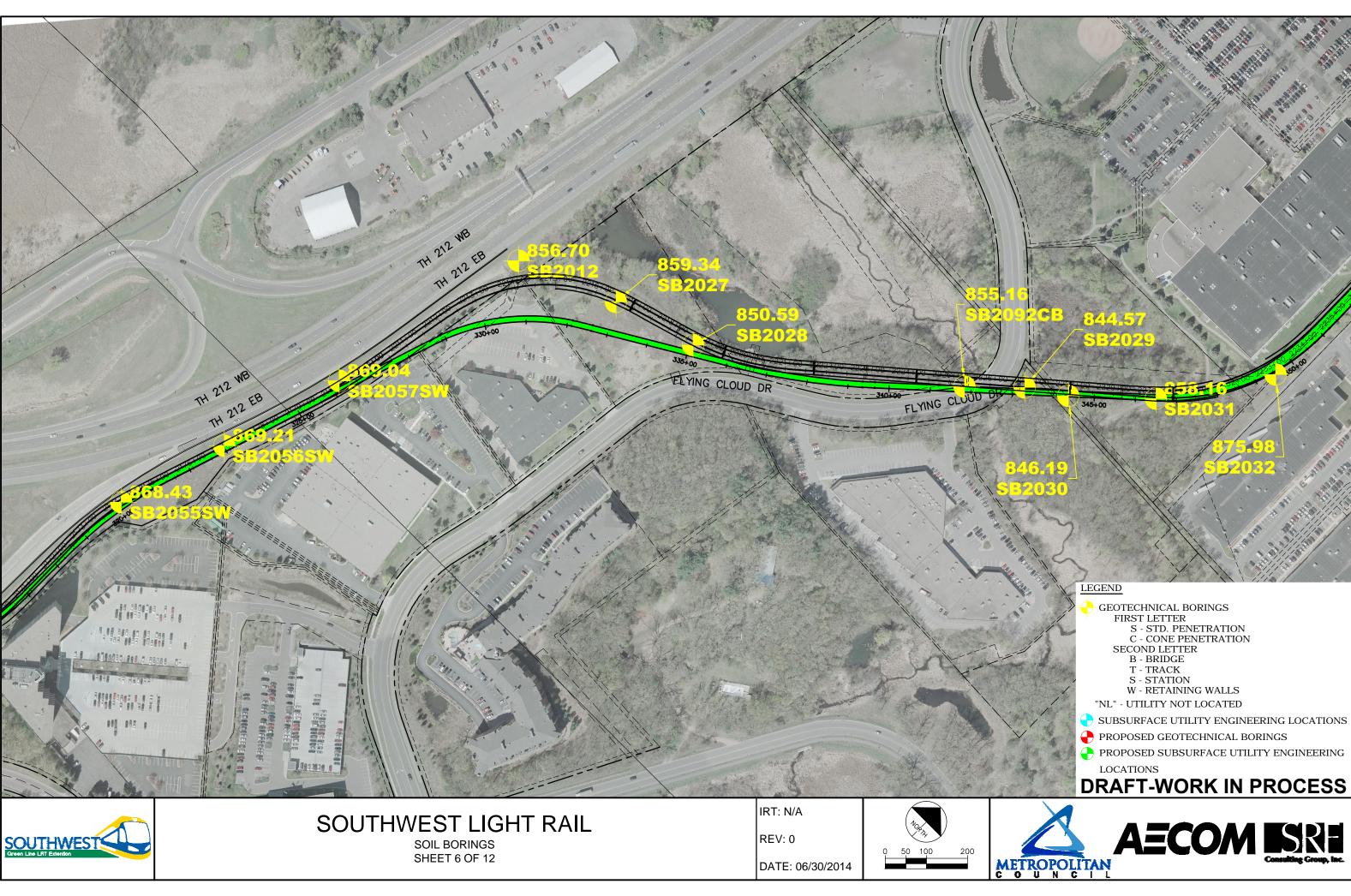
Professional Certification:

I hereby certify that this plan, specification or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

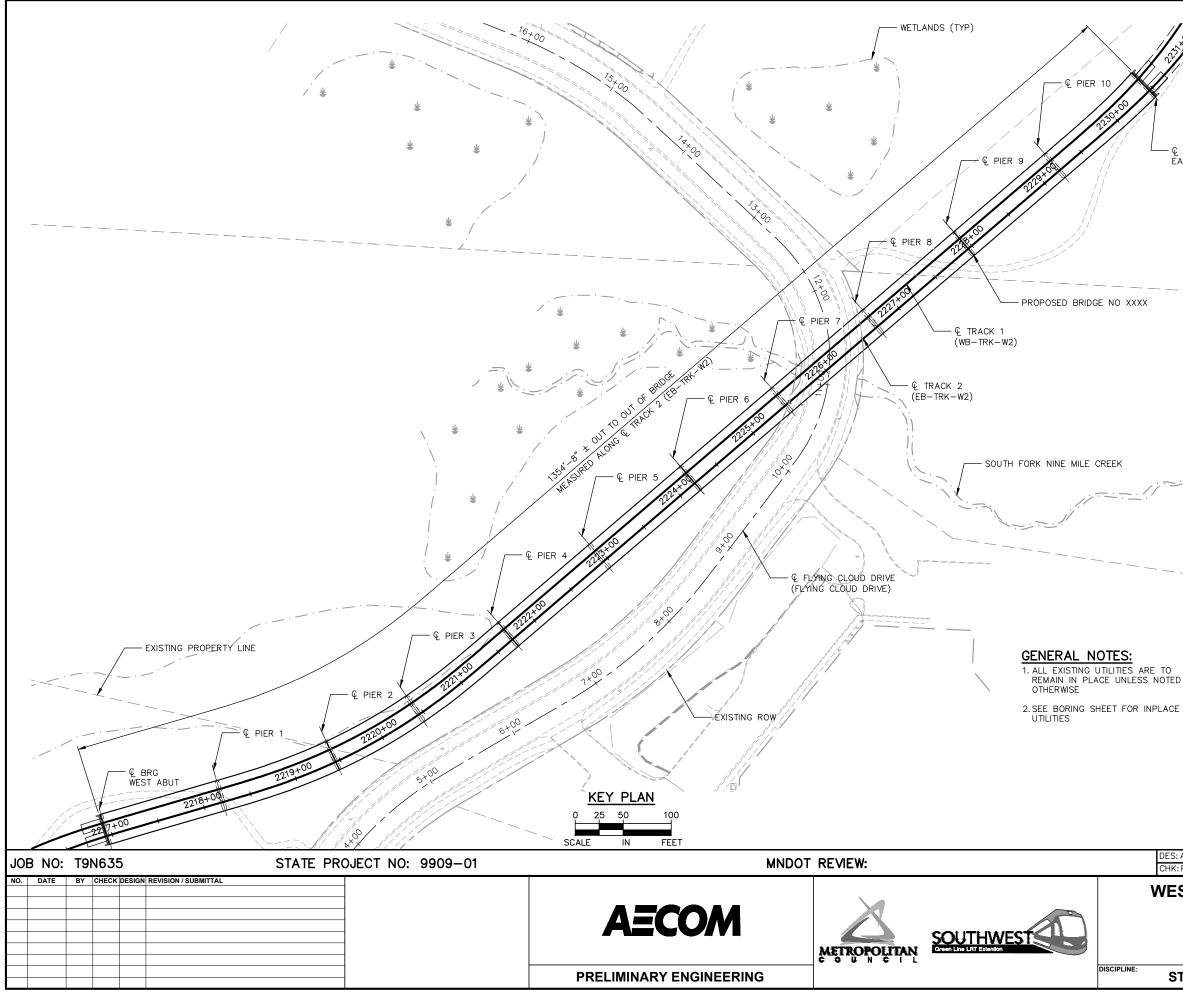
Joshua L. Kirk, PE Associate Principal-Project Engineer License Number: 45005

Reviewed by:

Ray A. Huber, PE Vice President-Principal Engineer


Reviewed by:

Matthew P. Ruble, PE Principal Engineer


Appendix:

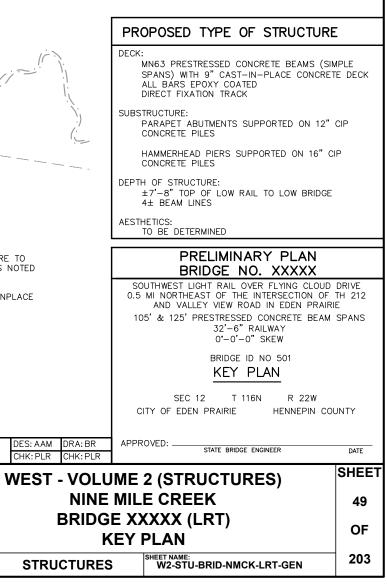
Boring Location Sketch Preliminary Engineering Plan and Profile Pages - Nine Mile Creek Bridge Standard Penetration Test Borings 2012SB, 2027SB, 2028SB, 2029SB, 2030SB and 2092SB Nominal Bearing Resistance Graphs Lateral Analysis Results Descriptive Terminology of Soil

APPENDIX

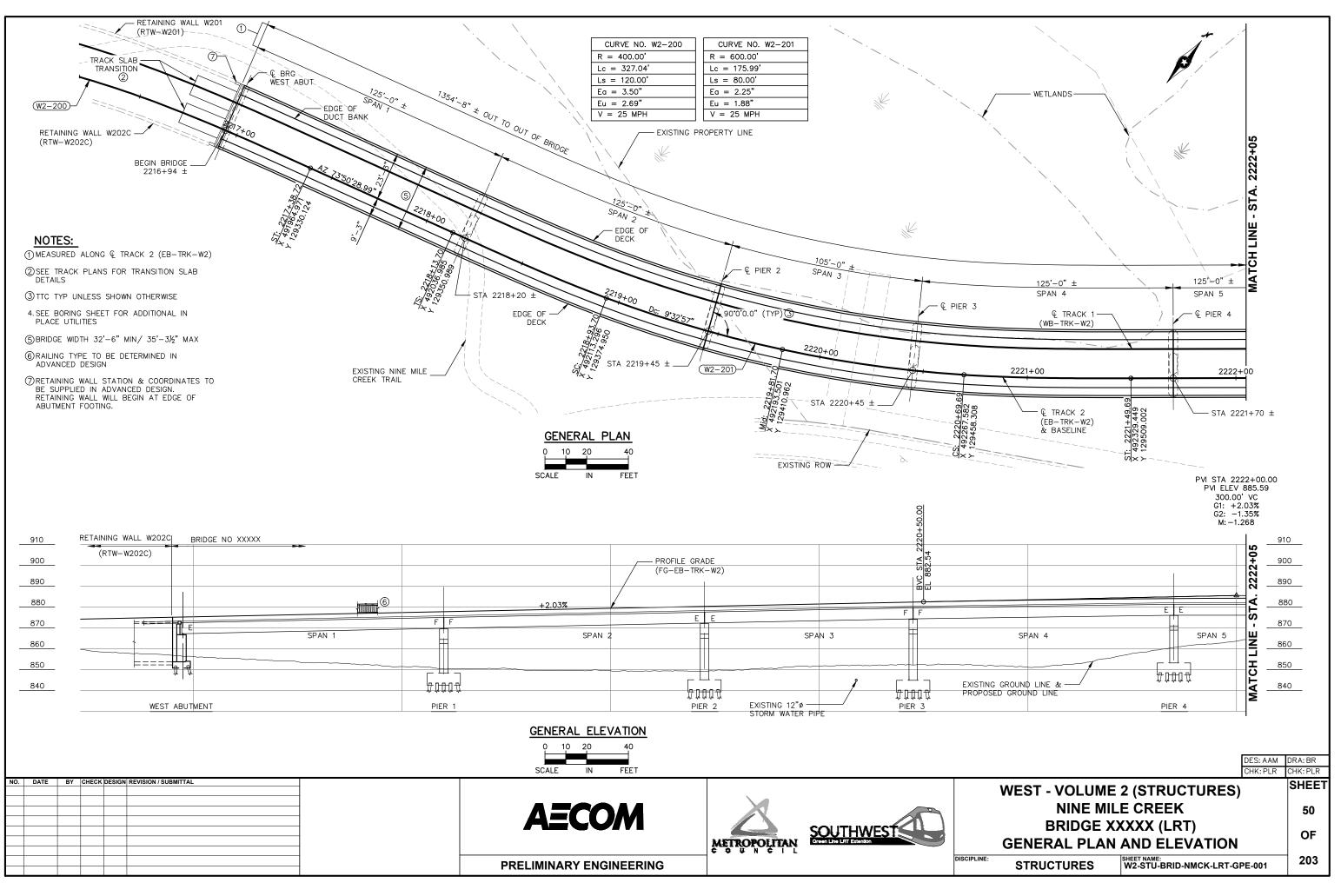
DESIGN DATA

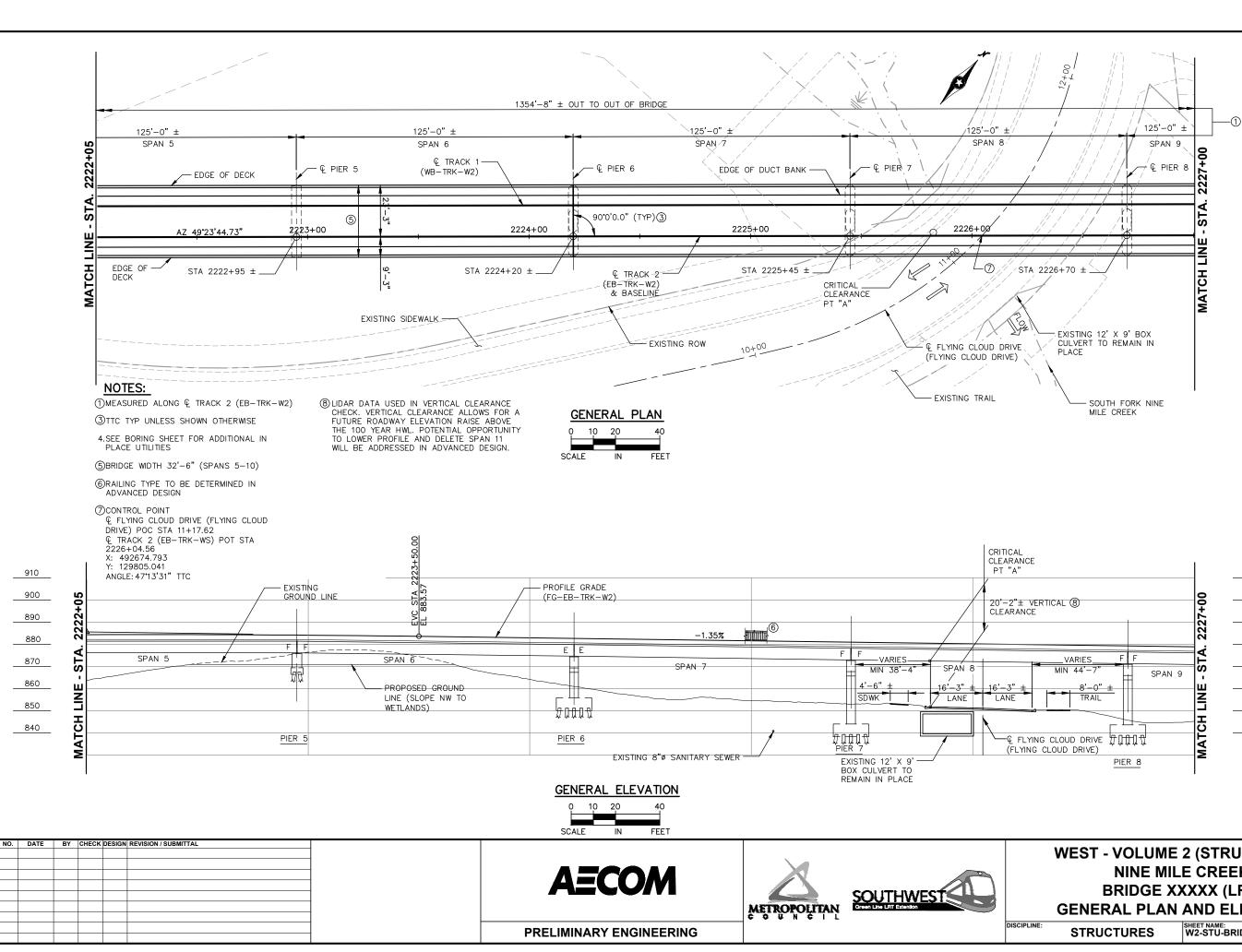
2012 AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS 6TH EDITION AND CURRENT INTERIMS SOUTHWEST LIGHT RAIL TRANSIT DESIGN CRITERIA (REVISION 2.0) LOAD AND RESISTANCE FACTOR DESIGN METHOD LRV & MV LOAD DIAGRAM SHOWN ON SHEET 54

MATERIAL DESIGN PROPERTIES: REINFORCED CONCRETE: f'c = 4000 PSI, n = 8 fy = 60000 PSIPRESTRESSED CONCRETE: f'c = 9000 PSI, n = 1

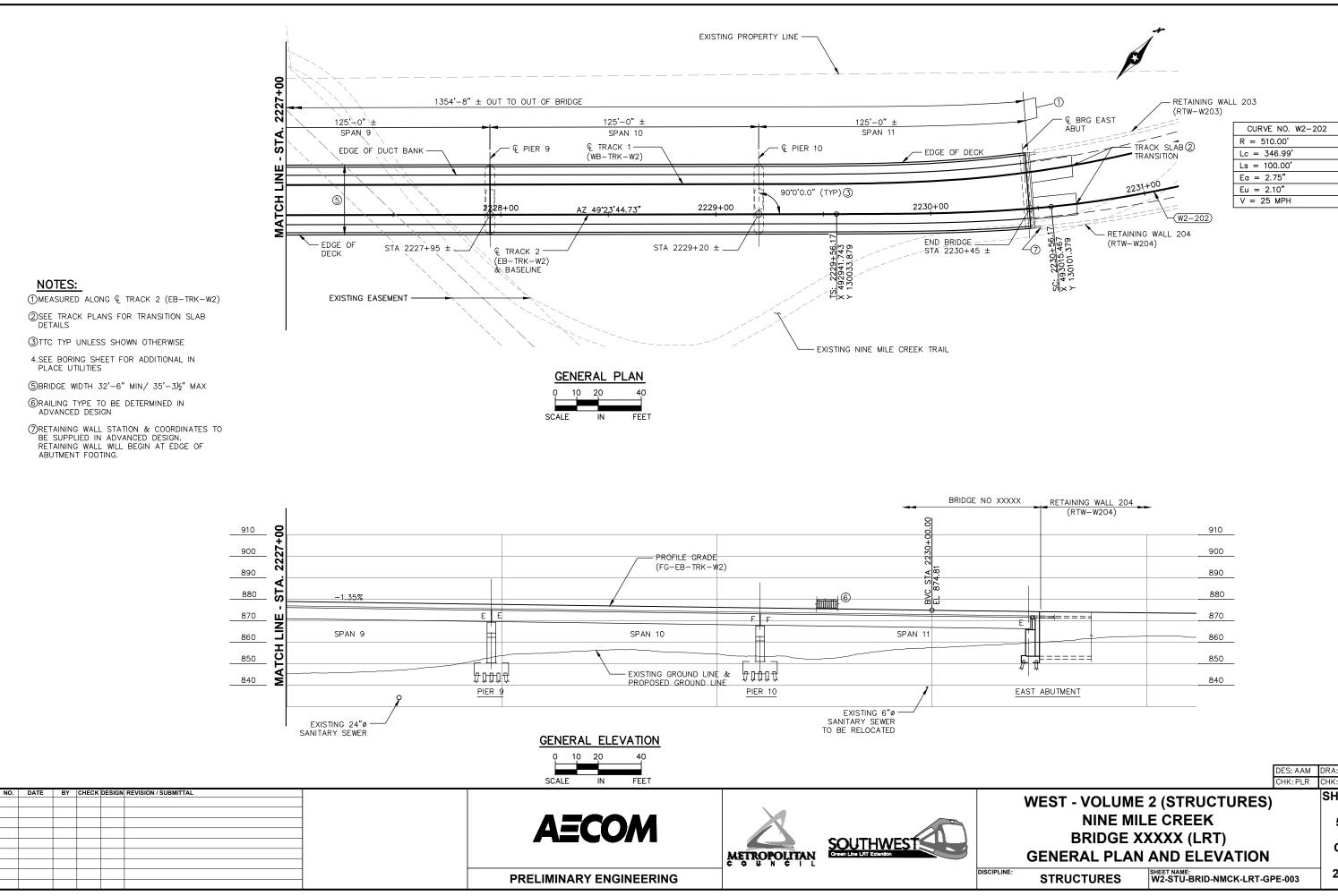

fpu = 270 KSI 0.6" DIAMETER LOW RELAXATION STRANDS 0.75 fpu FOR INITIAL PRESTRESS

DESIGN SPEED: OVER = 25/55 MPH (LRT) UNDER = 30 MPH


APPROXIMATE DECK AREA: 44,000 SQ FT


LIST OF SHEETS

SHEET NO.	DESCRIPTION
49	KEY PLAN
50-52	GENERAL PLAN AND ELEVATION
53	BRIDGE SURVEY
54	TRANSVERSE SECTION & LOADING DIAGRAMS
55-59	BORINGS
60	BRIDGE DETAILS
61	AESTHETICS


-€ BRG EAST ABUT

DES: AAM DRA: BR CHK: PLR CHK: PLR WEST - VOLUME 2 (STRUCTURES) SHEE NINE MILE CREEK 51 BRIDGE XXXXX (LRT) OF
WEST - VOLUME 2 (STRUCTURES) NINE MILE CREEK BRIDGE XXXXX (LRT)
WEST - VOLOME 2 (STRUCTURES) 51 NINE MILE CREEK 51 BRIDGE XXXXX (LRT) 05
BRIDGE XXXXX (LRT)
NE: STRUCTURES SHEET NAME: W2-STU-BRID-NMCK-LRT-GPE-002 203

910
900
890
880
870
860
850
840

	DES: AAM	DRA: BR
	CHK: PLR	CHK: PLR
WEST - VOLUME 2 (STRUCTURES)		SHEET
NINE MILE CREEK		52
BRIDGE XXXXX (LRT)		OF
GENERAL PLAN AND ELEVATION		
E STRUCTURES SHEET NAME: W2-STU-BRID-NMCK-LRT-GP	PE-003	203

State F	Project		Bridge No. or Job Desc. Trunk Highway/Location SWLRT						Boring I 2012			Ground Elevation 856.7 (Surveyed)		
Locatio	n Hor	noni	n Co. Coordinate: X=49164		(ft.)	Drill	Machine	9 7507	2012	00		SHEET 1 of 3		
		•	(North)= Longitude (West)=						natic Ca	librated		Drilling	7/19/13	
			Offset Information Available									Completed		
						-	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other T Or Rem		
DEPTH	Depth	olog				ig ation	DEO							
DE	Elev.	Lithology	Classification			Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Forma or Men		
		7 <u>11</u>	CLAYEY SAND, trace roots, dark brown, moist, (SC),			Ħ		000000000000000	1.3					
]	1.5 855.2		_ topsoil fill SILTX SAND fine- to medium	topsoil fill SILTY SAND, fine- to medium-grained, trace Gravel, with				12						
-	4.0	\bigotimes	Clay inclusions, dark gray and				12	11						
5-	852.7		CLAYEY SAND, trace Gravel,	dark brown and g	av wet	R		-						
-	7.0		(SC), fill	ay, wet,	X	8.	_ 14							
	849.7					-41		İ.						
	-	\bigotimes	SILTY SAND, fine- to medium	-grained, trace Gra	vel, dark	Å	4	18						
Z ₁₀ -	_	\bigotimes	brown, moist to 10 feet then w			<u></u>	10	16						
1	12.0	\bigotimes				मि								
-	844.7	× . *.*.×					10	20						
15	-	× . ×	SILTY SAND, fine- to coarse-	arained, trace Gravel, with	रि		+							
15-	- - -	'x ' . · · ×	Clay lenses and seams, brown				16	25						
-		·× · . · · · ×	medium dense, (SM) till			Æ		+						
	19.0	× .				X	16	11						
20-	837.7					ł		-			an	=2 tsf		
-	-					A	18 .	_ 10			90	-2 (3)		
-	-					۲ ۲	13	16			qp	=2 tsf		
-	-					मि		- 10						
25-	-		SANDY LEAN CLAY, trace G	avel aray wet sti	ff to hard		20	12			qp	=1 1/2 tsf		
-			(CL), till	navel, gray, wet, still to hard,	R		_							
-	-						32	16			qp	e=2 1/2 tsf		
30-	-					R	-	-						
-	-					X	15 .	_ 11						
						51		- 10			an)=1 1/2 tsf		
-	34.0 822.7					\square	20	18			96			
35-						ואר איך	15	15						
-	-					िसि		ļ						
+			POORLY GRADED SAND, fir Gravel, gray, waterbearing, me			\square	15*	15						
40-	-			-/ (/		PD		+				lo sample rec		
-01-	40.0						20	12				vitched to mu illing method		
+	42.0 814.7					- PD		t			sa	mple.		
+	-		SANDY LEAN CLAY, trace G (CL), till	avel, gray, wet, ve	ry stiff,	\mid	21	16			qp	e=1 1/2 tsf		
45	Index She					PD		∟		L	L_ ock (

State F	Project	I	Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2012			Ground Elevation 356.7 (Surveyed)		
н	Depth	Лbс			uc	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks		
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member		
	-		SANDY LEAN CLAY, trace (CL), till <i>(continued)</i>	Gravel, gray, wet, very stiff,	PD	23	_ 14			qp=2	2 tsf		
-	49.0 807.7	//// 				20	17						
50-	-				PD	32	12						
-	-			fine- to medium-grained, trace medium dense to dense, (SP),	PD		+						
55- - -	-	· · · · · · · · · · · · · · · · · · ·	outwash			38 .	12						
-	59.0 797.7	· · · · · · · ·					-						
60-	 	· · · × ·× · · · · · ×	SILTY SAND, fine- to medium-grained, trace Gravel, gray, waterbearing, dense, (SM), till			48	13						
-	64.0 792.7	· · · ×			PD		-						
65 - -		· · · × ·× · · · · · ×	CLAYEY SAND, trace Grav	ا, gray, wet, hard, (SC), till		47	9			qp=4	qp=4 tsf		
-	69.0 787.7	· · · ×			PD		+						
70-	-	`.`.X `×``. `.`.X	SILTY SAND, fine- to media waterbearing, dense, (SM),	um-grained, trace Gravel, gray, till	\mid	54	- 11						
-	74.0	× . · . · .× · . ·	.				+						
75-	782.7	× . × 				41 .	12						
-	-	· · · · · · · · · · · · · × · · · · ×	CLAYEY SAND, trace Grav	rel, gray, wet, hard, (SC), till	PD		+						
80-	-	· · · × ·× · . · . · .×				46	14						
-	84.0	'× ' . ' . ' .× '× ' .			PD		+						
85 -	772.7					45	17						
-	-		SANDY LEAN CLAY, trace	Gravel, gray, wet hard, (CL), till	PD		+ + +						

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring No. 2012SB			Ground Elevation 856.7 (Surveyed)		
г	Depth	ду			Drilling Operation	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks		
DEPTH	Elev.	Lithology	Classification			REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member		
	SANDY LEAN CLAY, trace Gravel, gray, wet hard, (CL), til (continued)				PD	44 _	_ 17 - -						
	96.0 760.7		Bottom of Hole - 96 feet. Water observed at 10 feet w auger in the ground. Boring then sealed with ben	vith 9 1/2 feet of hollow-stem tonite grout.									

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation				Boring 2027				Ground Elevation 859.3 (Surveyed)	
Locatio		nonir	Co. Coordinate: X=49188		(ft.)	Drill	Machin	e 7504	2021			-		
Localit					()	Drill Machine 7504 Hammer CME Automatic Calibra					Drilling			
			North)= Long Offset Information Available	itude (West)=								Completed		
			Onset information Available			-	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other 1 Or Rem		
DEPTH	Depth	Lithology				Drilling Operation								
DEF	Elev.	Lithe	Classification		pera	REC (%)	RQD	ACL (ft)	Core Breaks	Rock	5 Formation or Member			
	0.5		LEAN CLAY, brown, moist, (C			군	(70)	1,209	(14)	Dicane			ושכו	
-	858.8				H		1							
-	-	\bigotimes	LEAN CLAY, brown, moist, (C	CL), fill			23	+						
_	5.0	\bigotimes				मि	20	+						
5-	854.3		CLAYEY SAND, fine- to medium-grained, with Gravel,			\mathbf{X}	11	†						
-	7.0 852.3	\bigotimes	brown, moist to wet, (SC), fill					+						
-							6	13						
10-	-					सि	-	Ļ						
-	-		CLAYEY SAND, trace Gravel	, brown, wet, (SC), f	111		10	_ 12			P	200=31%		
-		\bigotimes				47		Ì			Sa	and lenses at	12 feet.	
_	14.0	\bigotimes				$\left \right\rangle$	2	Į						
▼ 15-	845.3	\bigotimes				E	4	+						
-		\bigotimes	POORLY GRADED SAND wi medium-grained, with Lean C		arav		4	+						
-		waterbearing, (SP-SM), fill			ienees at to leet, gray,		2	+						
-	20.0					िस्टि	_	+						
20-	839.3					\mathbf{X}	3	‡						
-	-							+						
-	_		PEAT, with fibers and roots, t	olack, wet, (PT), swa	imp		ΤW	+						
25-	-		deposit				-	Ļ			-		05 6 4	
-	27.0					X	5	+				race fibers at : ccasional Sar		
-	832.3					-41		† 			26	6 feet.		
-	-						6	68			0	C=7%		
30-	_					L	6	+						
-	-					F	0	‡						
-	-					H		+						
25	_					F		+						
35-	-		LEAN CLAY, with fibers and	shells, black, wet, (C	L), swamp		5	ļ						
-	-		deposit.					+						
-							ΤW	Ţ			S	u=1,545 psf; \	VD=79 pcf	
40-	-					रि		+				C=140/.11=0	1. DI -00	
-	-					X	6	_ 94				C=14%; LL=9 I=9	Π, PL=82,	
-	-					51	3	Ŧ				oppointed low	ore of Deet a	
4-	-					िसि	5	+				ccasional laye 4 feet.	ers of Peat a	
45-	Index She	et Cod	de 3.0 (Continu	ed Next Page)					il Class:	J. Kirk Ro	ck	Class: Edit: L	 Date: 7/18/1	

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2027			Ground Elevation 859.3 (Surveyed)
н	Depth	ду			u u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
				d shells, black, wet, (CL), swamp		5	(70)	(11)	Dicane		or member
-	_ 47.0 812.3	//// × .	deposit. (continued)	um-grained, trace Gravel, gray,	- 22		-				
-	49.0		waterbearing, (SM), swamp		13	+					
50 - -	_ 810.3 - -		SILT, trace roots and organ swamp deposit	ics, gray, waterbearing, (ML),		7.	+			dri	vitched to mud rotary Iling method after 50-foo mple.
-	54.0				PD		-				
55-	805.3	× . * . * .× *× * . * . * .×			\ge	22	+				
-	-	× 60 feet then brown, waterbe		um-grained, with Gravel, gray to earing, medium dense to very	PD		-				
60 - - -	-	· · · · · · · · · · · · · · · · · · ·	dense, (SM), till			71	12			P2	00=13%
-	64.0	· . · .× ·× · .	~			-	-				
65-	_ 795.3 -		SILTY CLAY, with Silt layer	s, gray, wet, hard, (CL-ML), till	\ge	47	23			LL	=26; PL=20; PI=6
-	69.0				PD	-	-				
70-	790.3	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND, Gravel, gray, waterbearing,	fine- to coarse-grained, with		79	+ + +				
-	- 74.0	· · · · · · · · · · · · · · · · · · ·	Glavel, glay, waterbearing,	very dense, (SP), outwash	PD	-	-				
- 75- -	_ 785.3 _					- 19 -	+ +- +			qp	=2 tsf
-	-		SANDY LEAN CLAY, trace (CLS), till	Gravel, gray, wet, very stiff,	PD	-	+ + +				
80-	-		(),			24	+ + +			qp	=1 1/2 tsf
85-	84.0 775.3	× .			_PD		+				
- CO	-	· · · × · × · ·		lenses from 85 to 95 feet, gray,		27	12			P2	00=36%
-	-	`× ` . ` . ` .× `× ` .	wet, very stiff to hard, (SC), till		PD	-	+				

BRAUN[®] INTERTEC

UNIQUE NUMBER U.S. Customary Units

SHEET 3 of 3 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Trunk Highway/Location Boring No. Ground Elevation State Project Bridge No. or Job Desc. 859.3 (Surveyed) SWLRT 2027SB γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH RQD Core REC ACL Core ୪ Breaks ଝ Formation Classification Elev. (ft) or Member (%) (%) x 51 PD 95 20 PD CLAYEY SAND, with Sand lenses from 85 to 95 feet, gray, x wet, very stiff to hard, (SC), till (continued) 100 18 105 PD 109.0 ĺΧ, 750.3 110 36 SILTY SAND, fine- to medium-grained, with Gravel, brown, 115 waterbearing, medium dense to dense, (SM), till PD 120 121.0 Bottom of Hole - 121 feet. 738.3 Water observed at 15 feet with 15 feet of hollow-stem auger in the around. Boring immediately backfilled with bentonite grout.

Soil Class: J. Kirk Rock Class: Edit: Date: 7/18/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ

State F	Project		Bridge No. or Job Desc. Trunk Highway/Location SWLRT						Boring No. 2028SB			Ground Elevation 850.6 (Surveyed)		
Locatio	on Her	nepir	n Co. Coordinate: X=49209	3 Y=129359	(ft.)	Drill	Machine	9 7506				SHEET 1 of 3		
	Latit	ude ((North)= Longitude (West)=			Han	nmer CN	IE Autor	matic Ca	librated		Drilling 9/1*		
	No S	tation-	Offset Information Available	· · · · ·			SPT	МС	сон	γ		Other 7	Tosts	
+	Depth	2					N60	(%)	(psf)	(pcf)	Soil	Or Ren		
DEPTH		Lithology				ng ratio	REC	RQD	ACL	Core	×	Forma	tion	
DE	Elev.	Litt	Classification			Drilling Operation	(%)	(%)	(ft)	Core Break:	Roc	or Men		
	0.6 850.0	N Internet	LEAN CLAY, dark brown, moist, (CL), topsoil fill			7	-	_						
-	-	\bigotimes				H		-						
-	-	\bigotimes	SANDY LEAN CLAY, trace G	ravel. brown. wet. (0	CLS), fill		15	-						
5-	_			,,,, (,,	ł	-	-						
-	7.0	\bigotimes				Image: A start in the start in	9.	-						
-	843.6						4	41			oc	C=7%		
-	-	\bigotimes	ORGANIC CLAY, with Peat la		ers, dark	F	-							
10	_	\bigotimes	brown and black, wet, (OL), fi	II			4	-						
-	_ 12.0 838.6	\bigotimes				-सि		+						
-	- 030.0		LEAN CLAY, with Silty Sand	lenses, gray, wet, (C	CL), fill	\mathbf{X}	9	-						
15-	15.0		, ,			Æ	-	-						
	835.6						12 .	+						
-	-							+						
-	-		PEAT, with fibers, black, wet,	(PT), swamp depos	sit		TW -	-						
20-	_					51	6*	-			*No	o sample rec	covery.	
	22.0	•				<u>₽</u>	0.	+				•	5	
-	828.6						2	183				00=78%		
25	-						-	-			OC	C=20%		
25-	-		ORGANIC CLAY, with fibers swamp deposit	and shells, gray, we	t, (OL),		TW -	-						
-	-		Peat and Sand layers at 27 fe	eet.		1		-						
	29.0	•				K	1	+						
30-	821.6		ELASTIC SILT, gray, wet, loo	se (MH) alluvium		41		+						
	32.0					Å	7.	ŧ						
-	818.6						15	Ļ						
~-	-		POORLY GRADED SAND wi medium-grained, with Gravel,		medium	िसि		+						
35	-		dense, (SP-SM), outwash				16	+						
+	_ 37.0 813.6					<u> </u>		÷						
	-						22	+						
40-	_		POORLY GRADED SAND wi			ł	-	-			רם	00=6%		
+	-		coarse-grained, with Gravel, I dense to dense, (SP-SM), our	prown, waterbearing	, medium	Ķ	23	_ 15				00-0 /0		
	-		10 10 10 10 10 10 10 10 10 10 10 10 10 1	1990311		5	20	ļ						
+	-						20	ł						
45	Index She	i≞ ⊥⊥ et Cor	de 3.0 (Continu				I	⊥ .So	⊥ oil Class:	J. Kirk R	⊥ ock 0	Class: Edit: I	 Date: 7/18	

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2028			Ground Elevation 850.6 (Surveyed)
т	Depth	gy				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Class	ification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
-	-	· · · · · · · · · · · · · · · · · · ·				31 _	-				
-	-	· · · · · · · · · · · · · · · · · · ·			ł	- 25 ⁻	+				
- 50 -	-	· · · · · · · ·	POORLY GRADED SAND with		R	-	-				
-	-	· · · · · ·	coarse-grained, with Gravel, br dense to dense, (SP-SM), outw	ash (continued)		21 _	-			dr	witched to mud rotary iling method after 50-fo
-	54.0	· · · · · ·	Fine grained at 50 feet with occ	asional Lean Clay lenses.	PD	-	+			sa	ample.
- 55-	796.6						+				
-	-		LEAN CLAY, gray, wet, very st	ff, (CL), till		25	-				
-	59.0				PD	-	-				
60-	791.6					12	-				
-	-				\square	- 12	+				
-	-					-	-				
65-	_				 PD	-	_				
-	-					-	-				
-	-					-	+				
70-	-					19 _	-				
-	-					-	-				
-	-		SANDY LEAN CLAY, trace Gra	avel, gray, wet, rather stiff to	PD	-	-				
/5-	-		very stiff, (CLS), till			19	-				
-	-				PD	-	+				
- 80-	-		Waterbearing Sand layer at 80	feet.			-				
-	-		<u> </u>		X	32 _	Ļ				'aterbearing Sand layer) feet.
-	-				PD	-	+				
- 85 -	_		Silty Sand layer from 84 to 86 f	eet.		-	-			Si	It Sand layer from 84 to
-	+				\bowtie	23 -	+ +				6 feet.
-	-				PD	-	Ļ				
90-	L						\lfloor	l		1_	Class: Edit: Date: 7/18 APOLIS\2013\00213-MNDOT.

Lepth Image: Second	Depth Solution Neo (%) (ps) (pc) Solution Solution Elev. Classification Image: Solution Image:	tate l	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2028			Ground Elevation 850.6 (Surveyed)
95 100 100 105 SANDY LEAN CLAY, trace Gravel, gray, wet, rather stiff to very stiff, (CLS), till (continued) 110 110 X 23* No sample recover	Silly Sand layer at 94 feet. Silly Sand layer at 94 feet. Solution of Hole - 121 feet. Soluti	Ĥ	Depth	ogy			ion	Maa				Soil	Other Tests Or Remarks
95 Silty Sand layer at 94 feet. PD Silty Sand layer at 94 feet. 100 In In PD In 100 In In In PD In 100 In In In In In In 100 In In In In In In In 100 In	Silty Sand layer at 94 feet. PD 10 PD 17	DEP1	Elev.	Lithol	Cla	assification	Drilling Operati	REC (%)		ACL (ft)	Core Breaks	Rock	Formation or Member
95 100 100 105 105 105 105 105 10	SANDY LEAN CLAY, trace Gravel, gray, wet, rather stiff to very stiff, (CLS), till (continued) 23* PD 4 No sample recovery.	-	-					30 .	+				
95 100 100 105 105 105 107 107 107 107 107 107 107 107 107 107	SANDY LEAN CLAY, trace Gravel, gray, wet, rather stiff to very stiff, (CLS), till (continued) PD 4 23* PD 4 23* PD 4 729.6 Bottom of Hole - 121 feet.	-	-		Silty Sand layer at 94 feet.		PD	-	+			Sil	lty Sand laver at 94 fee
00 17 05 17 05 PD 10 23* 10 23*	SANDY LEAN CLAY, trace Gravel, gray, wet, rather stiff to very stiff, (CLS), till (continued) 23* + + + + + + + + + + + + + + + + + + +	95 -	-				\square	10	+				
05 SANDY LEAN CLAY, trace Gravel, gray, wet, rather stiff to 05 PD 10 PD 10 23* 15 No sample recover	SANDY LEAN CLAY, trace Gravel, gray, wet, rather stiff to very stiff, (CLS), till (continued) 23* PD 23* PD 11 No sample recovery.	-	-				PD	-	+				
10 10 10 10 15 15 15 15 15 15 15 15 15 15	very stiff, (CLS), till (continued) I I I *No sample recovery. 23* I PD I I I 121.0 Bottom of Hole - 121 feet. I1 I I	00-	-					17	+				
10 - SANDY LEAN CLAY, trace Gravel, gray, wet, rather stiff to very stiff, (CLS), till (continued)	very stiff, (CLS), till (continued) Image: Classical state in the state in t	-	+ -					. .	+ +				
10 + 23* + No sample recover	very sun, (CLS), un (continued) *No sample recovery. 23* *No sample recovery. PD - 121.0 Bottom of Hole - 121 feet.	- 05	-		SANDY LEAN CLAY, trace	Gravel, gray, wet, rather stiff to		-	+				
	PD 1 121.0 729.6 Bottom of Hole - 121 feet.	-	-		very stiff, (CLS), till (continu	ed)			+				
	PD 1 121.0 729.6 Bottom of Hole - 121 feet.	- 10-	-						-			*N	lo sample recovery.
	121.0 729.6 Bottom of Hole - 121 feet.	-	-					23	+				,
	121.0 729.6 Bottom of Hole - 121 feet.	- 15-	-					-	-				
	729.6 Bottom of Hole - 121 feet.	-	-				PD		+				
	729.6 Bottom of Hole - 121 feet.	-	-					-	+				
729.6 Bottom of Hole - 121 feet.	Boring immediately backfilled with bentonite grout.	20-						11					
												 ck (Class: Edit: Date: 7/18

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loca	ation				Boring			Ground Ele	
				SWLRT		1			2029	SR		844.6 (
Locatio			n Co. Coordinate: X=492736		(ft.)		Machin					SHEE Drilling	T 1 of 2
			, .	ude (West)=		Han	nmer Cl	VE Auto	matic Ca	alibrated		Completed	9/16/13
	No St	tation-	Offset Information Available			-	SPT	МС	СОН		ji	Other	
F	Depth	ogy				uo	Neo	(%)	(psf)	(pcf)	Soil	Or Ren	narks
DEPTH		Lithology	Olas	- ifi ti		Drilling Operation	REC		ACL	Core Break	сk	Forma	
0	<i>Elev.</i> 0.5	L		sification		δŐ	(%)	(%)	(ft)	Break	ЯŘ	or Mer	nber
-	- 844.1		LEAN CLAY, dark brown, mois	it, (CL), topsoil fill	/	Į.		+					
	_	\bigotimes				Ł		+					
-	-		LEAN CLAY, with Gravel, brow	/n, moist, (CL), fill		Å	23	+					
5-	-					<u></u>	46	+					
	7.0	\bigotimes				A	40	1					
-	837.6	\bigotimes					26	7			P2	200=13%	
40	-	\bigotimes				मि		+					
10-	-	\bigotimes	SILTY SAND, fine- to medium- moist, (SM), fill	-grained, with Grave	el, brown,	\square	26	Ť.					
-	-	\bigotimes				Æ		+					
-	- 14.0	\bigotimes					13	+					
Z ₁₅	830.6		LEAN CLAY, with fibers, gray,	wet, (CL), swamp o	leposit	R		Ļ					
-	_ 16.0 828.6	//// 	· · · · · · · · · · · · · · · · · · ·		•	-X	6	+					
		· · · · ·				5		+					
-	-	· · ·				ł		+					
20-	_		POORLY GRADED SAND, fin Gravel, brown, waterbearing, lo			R C	8	+					
	-		-			मि	0	‡					
-						ł		+					
~	_ 24.0 820.6					łł		+					
25-	-		SANDY LEAN CLAY, trace Gr	avel. grav. wet. rath	er stiff.	\mathbf{X}	9	Ţ					
-	-		(CL), till	,,	,	रि	1	+					
	29.0					F		+					
30	815.6	`×`. `.`.×				Ł	, -	+				200-569/	
-	-	'x '. ' ' x	CLAYEY SAND, trace of Grave	el, brown, wet, rathe	er stiff,	Ķ	11	_ 11			P4	200=56%	
	-	× .	(SC), till			17		ļ					
+	_ 34.0 810.6					岱		+					
35-	_ 010.0	· · · · · · · · · · · · · · · · · · ·					12	+					
-	-					F		Į					
+	-		POORLY GRADED SAND, fin	e- to coarse-grained	d with	岱		+					
40-	-		Gravel, brown, waterbearing, n	nedium dense, (SP), outwash	R		Ţ					
+0-	-	· · · · · · · · · · · · · · · · · · ·				\mathbb{N}	17	+					
+	-					रि]	+					
	44.0					F		‡					
45	800.6		de 3.0 (Continue			4		\perp	\perp	.	\perp		

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2029			Ground Elevation 844.6 (Surveyed)
т	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	-		SANDY LEAN CLAY, trace stiff, (CL), till <i>(continued)</i>	Gravel, brown, wet, stiff to very	XXXX	25 _ - -	-				
	51.0 793.6		Bottom of Hole - 51 feet. Water observed at 15 feet v in the ground. Boring immediately backfill	with 15 feet of hollow-stem auger ed with bentonite grout.		16 -					

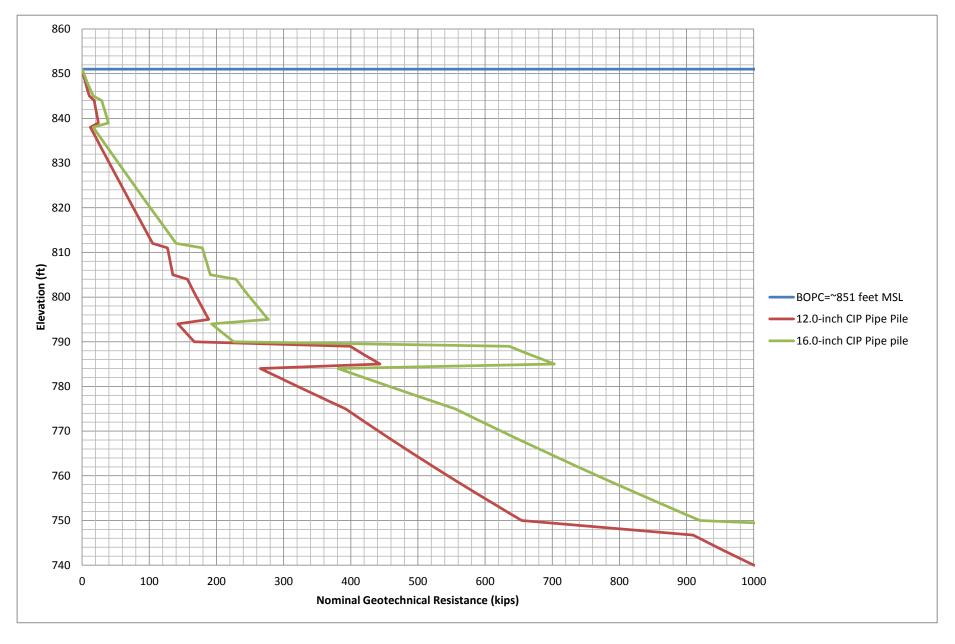
State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation				Boring I 2030			Ground Ele 846.2 (
					(5)				2030	30			
ocatic			n Co. Coordinate: X=49282		(ft.)		Machine					Drilling	T 1 of 3
	-		, .	tude (West)=		Han	nmer CN	IE Autor	matic Ca	alibrated	1	Completed	9/12/1
	No Si	tation-	Offset Information Available				SPT	МС	СОН	γ	il	Other	Tests
I	Depth	2g				5	N60	(%)	(psf)	(pcf)	Soil	Or Rer	marks
DEPTH		Lithology				ing ratio	REC	RQD	ACL	Core	×	Forma	ation
DE	Elev.	Lĩ	Clas	sification		Drilling	(%)	(%)	(ft)	Core Breaks	Rog	or Me	
	0.8	<u>x1 1// x</u>	SILTY SAND, fine- to medium	-grained, dark brow	'n, dry,	-{{							
+	845.4	\bigotimes	\(SM), topsoil fill		/	5		+					
+		\bigotimes	POORLY GRADED SAND, fin	e- to medium-grain	ed with		10	+					
_ †		\bigotimes	Gravel, brown, moist, (SP), fill		ou, mar	रि		+					
5		\bigotimes				\square	14	-					
+	7.0 839.2	¥¥}				-[7]		-					
+	039.2					\mathbf{X}	11	+			db	o=1 3/4 tsf	
10-	_					रि		Ĺ					
10						$\left \right\rangle$	10 .	+			db	o=2 1/2 tsf	
+						रि		+					
+						\mathbb{N}	14	-					
15-	_		SANDY LEAN CLAY, trace Gr	aval aray wat rat	oor atiff to	रि		_					
''			stiff, (CL), till	avei, gray, wei, rai		\mathbb{N}	9.	+					
+						\square		÷					
+							TW	-					
20-	-					R		Ĺ					
						$\left \right>$	11 .	+					
+						स		-					
†	24.0					रि		+				lo sample re ushed rock.	covery.
25-	822.2	× . ×				5) blows per 6	inch set.
-		× .					22	-					
+		· · · · · · · · · · · · · · · · · · ·				ł		-					
1		· . · × · . · .				X	39	Ļ					
30 -	-	:×	CLAYEY SAND, fine- to mediu	um-grained, with Gr	avel, gray	41		+					
+		× . · . · .×	and brown, wet, medium dens			K	38 .	ł					
ļ		× .				K		†					
ļ		× .				K	38	Ļ			_		<u> </u>
35	-	× ×				41		+				ccasional Le Ity lenses at	
+	37.0	X				K	41.	ŧ				.,	
1	809.2					KT.	40	Į					
+						A}	48	Ļ					
40-	-		POORLY GRADED SAND wit medium-grained, with occasion		h Gravel	5	40	+					
+			brown, medium dense to very				43	t					
1						E.	20	Į			P	200=12%	
+	44.0 802.2	× .					30	ł					
45	ndex She					15 6	J	L	⊥			 Class: Edit:	

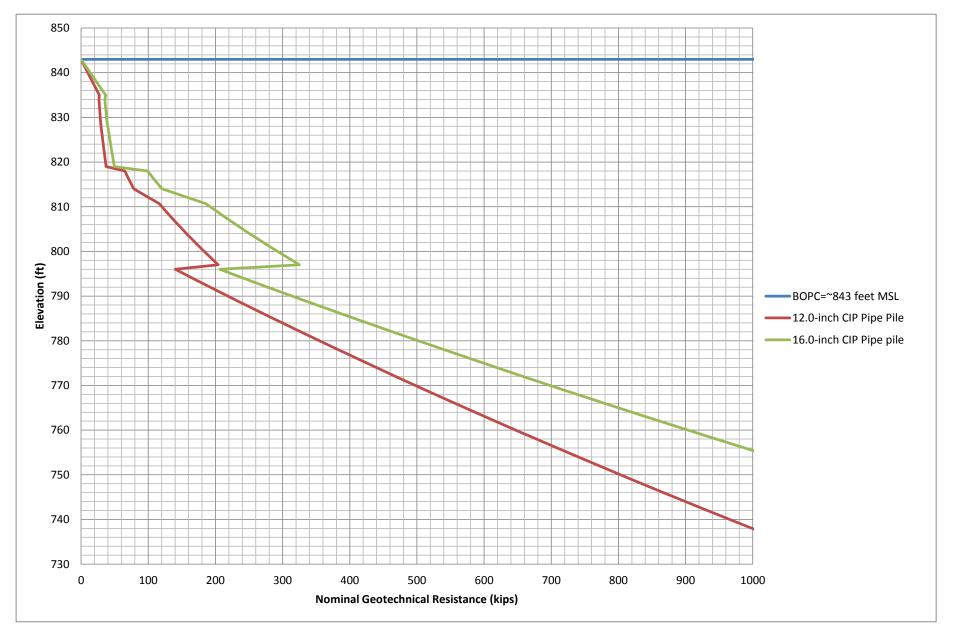
	Mn/D	от о	GEOTECHNICAL SECT	ION - LOG & TEST RESL	ILTS					SHEET 2 of 3
State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2030		Ground Elevation 846.2 (Surveyed)
+	Depth	gy			5	SPT N60	MC (%)	COH (psf)	γ (pcf)	Other Tests
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	ະ ອີ Formation or Member
-	47.0	× . × 	CLAYEY SAND, fine- to me brown, waterbearing, very de	dium-grained, with Gravel, ense, (SC), till <i>(continued)</i>	X	60				P200=39%
-	799.2	× . × .× .				34	-			
50-	-	· · · × · × · ·			\mathbf{x}	36 .	-			Switched to mud rotary drilling method after 50-foo
-	-	× . × .× .			PD	-	+			sample.
55-	-	· · · · · · · · · · · · · · · · · · ·				30 .	-			
-	-	× . × 	SILTY SAND, fine- to mediu waterbearing, medium dens	m-grained, with Gravel, brown, e to dense, (SM), till	PD	-	-			
60-	-	× · . · ×				21	-			
-	-	· · · × ·× · .			PD	-	+			
65-	-	·× · . · . · .× ·× · .				42	+ +			Sandy Silty layers at 65
-	- - 69.0	`.`.X `x``. ``.X			PD	-	+			feet.
70-	777.2	× . × . × .×				21	+			
-		* . * .× *× * . * . * .×		dium grained with Cravel	PD		-			
75-	-	`× ` . ` . ` .× `× ` .	CLAYEY SAND, fine- to me brown, waterbearing, mediu			32	-			P200=31%
-	-	* . * .× *× * . * . * .×			PD	-				
80-	_ 79.0 _ 767.2					29	-			
-	-					-	+			
85-	-		SANDY LEAN CLAY, trace (CLS), till	Gravel, gray, wet, very stiff,	PD	-	+			
-	-					21 .	+			
90	90.0				PD					
			(Contir	ued Next Page)				Soil N:\GINT\PF	Class: Ro ROJECTS\M	ock Class: Edit: Date: 7/18/14 INNEAPOLIS\2013\00213-MNDOT.GP

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2030			Ground Elevation 846.2 (Surveyed)
т	Depth	gy			n	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Clá	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
95	756.2		POORLY GRADED SAND, Gravel, brown and gray, wat dense, (SP), outwash	fine- to medium-grained, with terbearing, medium dense to		21 -	-				
	101.0 745.2		Bottom of Hole - 101 feet. Water obseved at 22 1/2 feet	et while drilling.		41					
			Boring immediately backfille	ed with bentonite grout.							
				-							

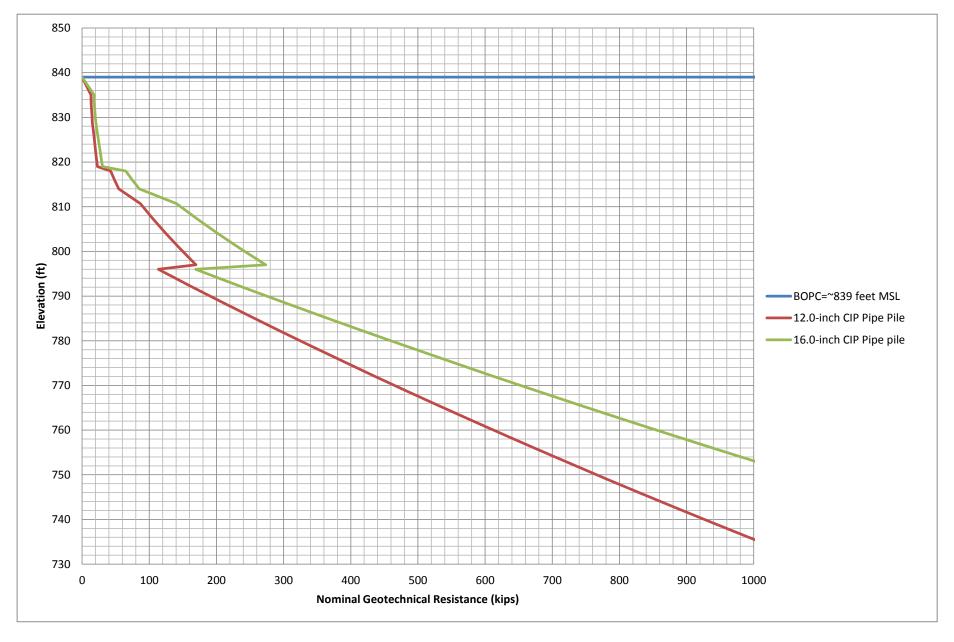
State F	Project		Bridge No. or Job Desc. 9 Mile Creek Bridge	Trunk Highway/Location				Boring 1 2092			Ground Elevation 855.2 (Surveyed)
Locatio	on Her	nepii	n Co. Coordinate: X=49263	I Y=129755 (ft.) <i>Dril</i>	l Machin	e 7504				SHEET 1 of 3
				tude (West)=	Hai	nmer Cl	ME Auto	matic Ca	librated		Drilling Completed 5/7/1
	No S	tation-	Offset Information Available		_	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Depth Elev.	Lithology	Clas	sification	Drilling Oneration	REC			Core Breaks	8	- - -
_	- 1.5	<u>×17</u>	Silty Sand, trace roots, dark b	rown, moist. (SM), topsoil f		•	-				
5-	- 853.7 - -		Poorly Graded Sand with Silt, Gravel, with frequent lenses or (SP-SM), fill		/ith	16	+ + 6 +				
-	6.0 849.2					30	- 8 - - 10				
10-	-		Silty Sand, fine- to medium-gr gray, moist. (SM), fill	ained, with Gravel, brown a		20	- 10 - 7				
_	12.0 843.2	\bigotimes	Sandy Lean Clay, trace Grave fill	l, gray and black, moist. (C	, L),	3	- - 18 -				
▼15-	_ 15.0 _ 840.2 _ 17.5		Highly Organic Silt, wtih fibers swamp deposit	, trace shells, black. (OH),		6	98 			Sv dri	C = 23% vitched to mud rotary Iling method after 15-fo
20-	- 837.7 - - - 23.0	× . 	SILTY SAND, fine- to coarse-(gray, wet to waterbearing, me			17 22	+ 12 + + + 11 +				mple.
25-	- 23.0 832.2 - - - 27.5		POORLY GRADED SAND, fin Gravel, light gray, waterbearin outwash		PD PD PD	21	+ + - - 21 +			*N fee	o sample taken at 22 ⁻ et.
- 30-	- 827.7 -				PD	9	+ 14 +				
-	-		SANDY LEAN CLAY, trace Grather stiff. (CL), till	avel, gray, wet, medium to		6 10	12 - 13			D	D = 124 pcf
35-	- - - 37.0				PD	11	+ 13				
40-	818.2	× . × 			PD PD PD	16	- - 13				
-	-	·× · . · . · .× ·× · . · . · .× ·× · .	CLAYEY SAND, with Gravel, I stiff to very stiff. (SC), till	prownish gray to gray, wet,		18 24	_ 12 _ _ _ 11			D	D = 128 pcf
45	 Index She				PD]	İ	l	J. Kirk Ro	\lfloor	

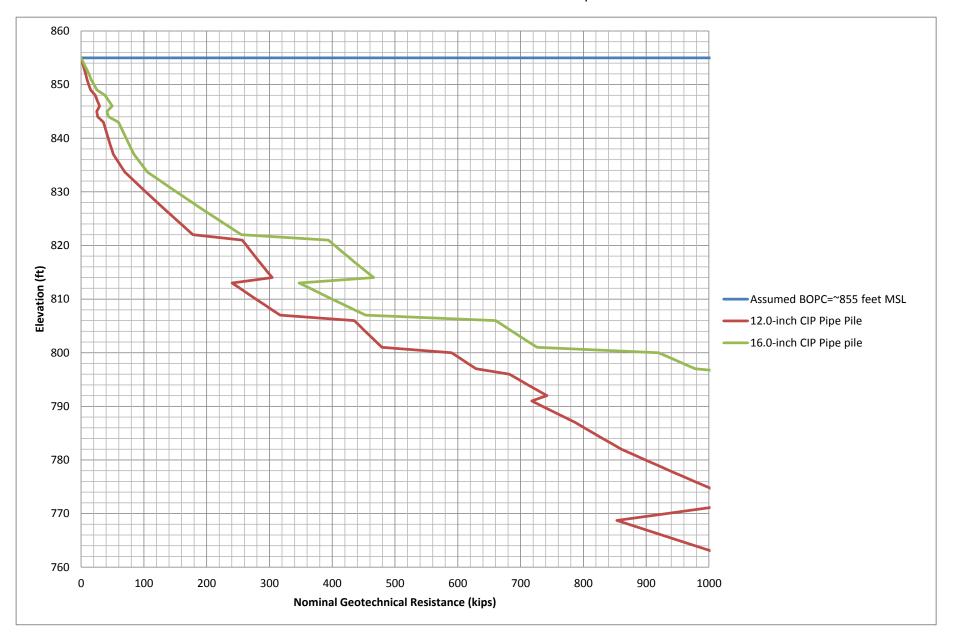
State I	Project		Bridge No. or Job Desc. 9 Mile Creek Bridge	Trunk Highway/Location SWLRT				Boring I 2092			Ground Elevation 855.2 (Surveyed)
DEPTH	Depth	Lithology	Clas	ssification	Drilling Operation	SPT N60 REC	MC (%) RQD	COH (psf) ACL	γ _(pcf) Core Breaks	ock Soil	
	Elev.	L × , ` `	Clas CLAYEY SAND, with Gravel,		DD	(%) 23 .	(%)	(ft)	Breaks	Ř	or Member
-	47.0	· . · .× · . · . /////	stiff to very stiff. (SC), till (con	tinued)	- PD	23	_ 14 _				
-	808.2				\square	23	14				
50-	-		SANDY LEAN CLAY, trace G (CL), till	ravel, gray, wet, very stiff.	PD	26	12				
-	-				\square	20	- 12				
-	53.0 802.2	× . × . ×			PD		+				
55-	-	′× ′ . ′ . ′ .×			\square	-	-				
-	-	`×``. ``.×				-	-				
_	-	× . * . * .× *× * .	CLAYEY SAND, with Gravel,	with frequent layers of Lean	PD		F				
60-	-	· . · .× ·× · .	Clay, brownish gray, wet, very	stiff to hard. (CL), till		31 .	13			D	D = 126 pcf
-	-	`.`.× `×`.					+				
65 -	-	× .			PD		_				
- 00	67.0	·× · .				33	12				
-	788.2	í× í . í . í .×			PD	-	+				
- 70-	-	`×``. ``.×				-	+				
-	-	× . · . · .× · . · .			\square	37	18				
-	-	· . · .× ·× · .			PD		-				
75-	_	· · · × ·× · ·				39	19				
-	-	· · · * ·× · . · . · .×			\square	. 60	- 19				
-	-	· · · · · × · . · . · .×	SILTY SAND, fine- to mediun dense. (SM), till	n-grained, reddish brown, wet,	PD	.	+				
80-	-	'× ' . ' . ' .× 				34 .	17				
-	-	`× ` . ` . ` .× `× ` .					l				
-	-	· · × · × · ×			PD						
85-	-	`.`.× `×`.				47 .	18				
-	-	`,`,× `×`,				.	Ļ				
90 -	-	· .× `× ` .			PD	.	ł				

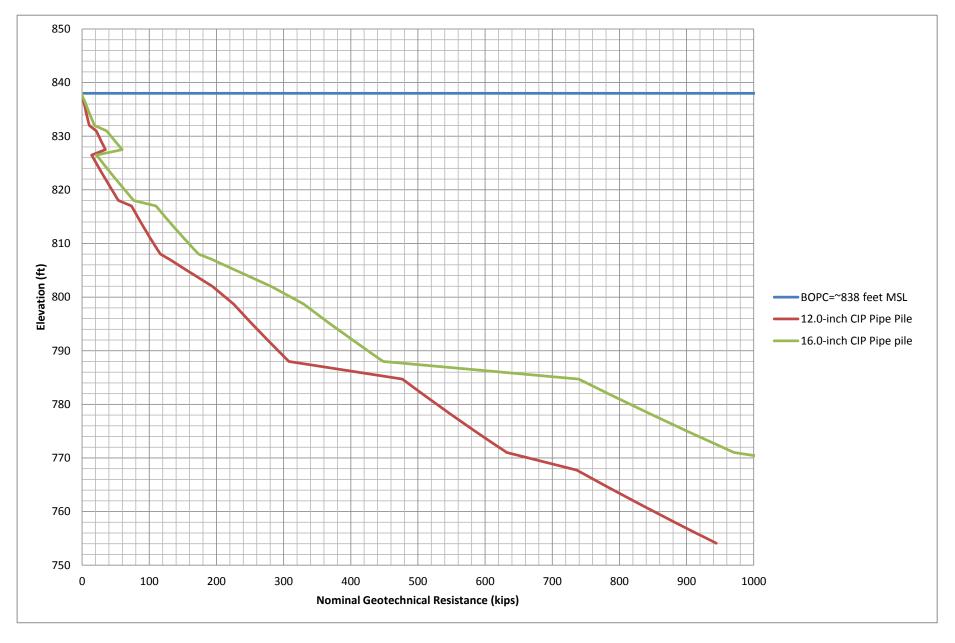


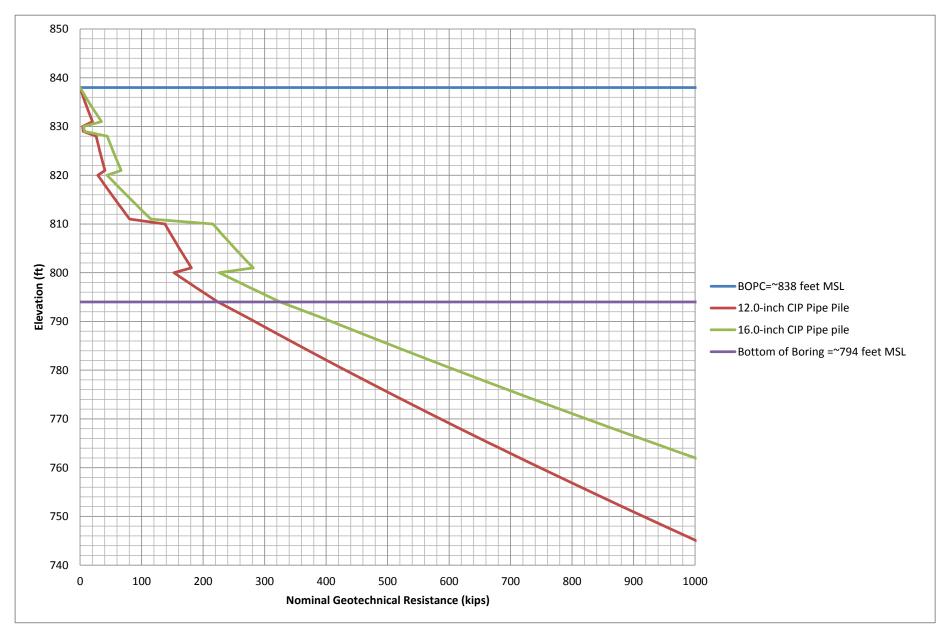


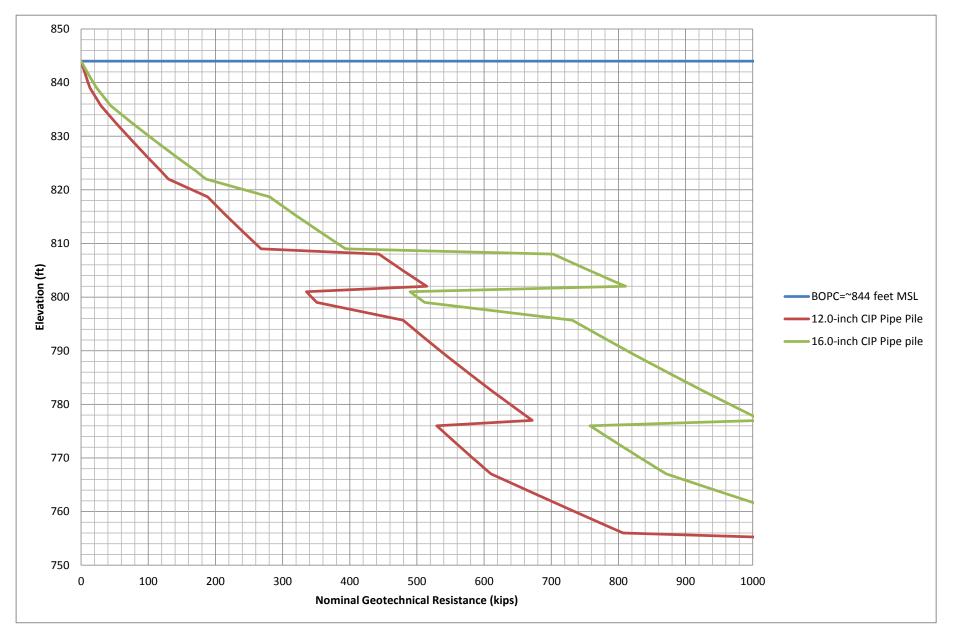
	Project		Bridge No. or Job Desc. 9 Mile Creek Bridge	Trunk Highway/Location SWLRT				Boring I 2092			Ground Elevation 855.2 (Surveyed)
DEPTH	Depth Elev.	Lithology	Clas	ssification	Drilling Operation	SPT N60 REC	MC (%) RQD	COH (psf) ACL	γ _(pcf) Core Breaks	tock Soil	
-	93.0	× · . · . · .× ·× · .		n-grained, reddish brown, wet,		(%) 41 .	(%) _ 17 _	(ft)	DICAR		or Member
- 95 - - - - -	762.2	· · · · · · · · · · · · · · · · · · ·	SILTY SAND, fine- to mediun of Silt, reddish brown, wet, de	n-grained, with frequent layers ense. (SM), till	PD X PD	48 .	- - - - -				
00-		· · ×	Bottom of Hole - 101 feet.			48	19			DE	D = 119 pcf


9-Mile Creek Bridge - West Abutment Boring: 2027SB 12.0 and 16.0-inch Closed Ended Pipe Pile

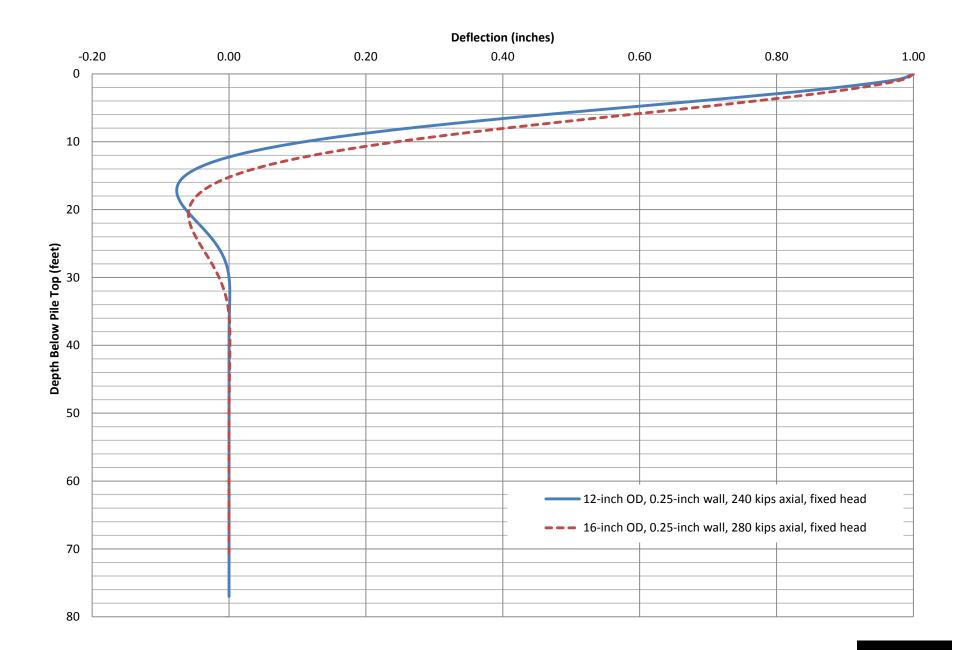

9-Mile Creek Bridge - Pier 1 Boring: 2028SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile


9-Mile Creek Bridge - Pier 2 Boring: 2028SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile


9-Mile Creek Bridge - West Abutment Embankment Boring: 2012SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile


9-Mile Creek Bridge - Pier 7 Boring: 2092SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

9-Mile Creek Bridge - Pier 8 Boring: 2029SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile



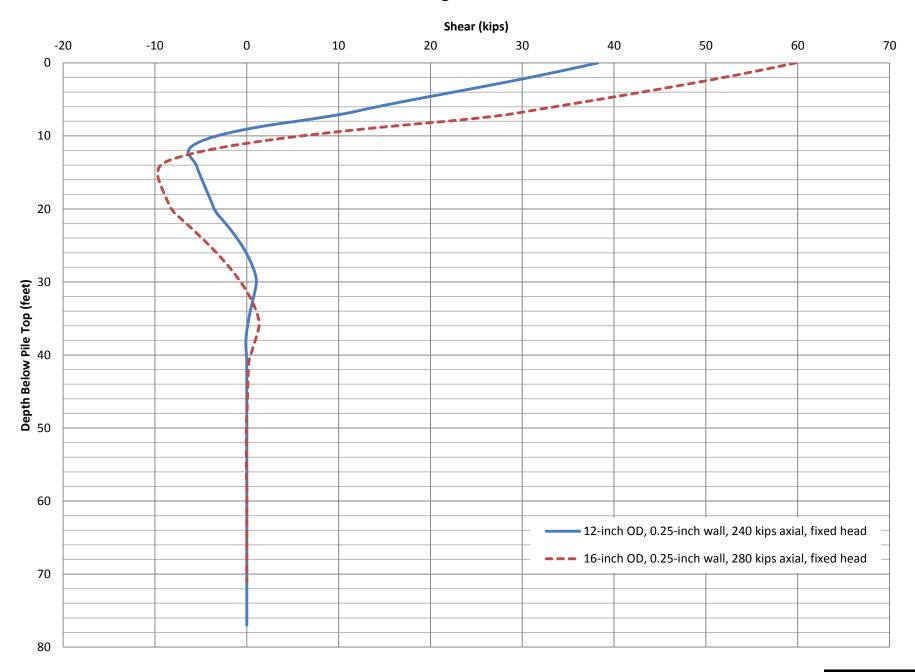
9-Mile Creek Bridge - Pier 9 Boring: 2030SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

Lateral Analysis Results - Deflection

Boring: 2027SB

BRAUN INTERTEC

Lateral Analysis Results - Moment


Boring: 2027SB

BRAUN INTERTEC

Lateral Analysis Results - Shear

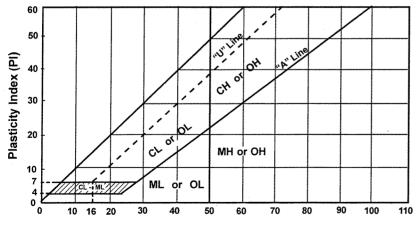
Boring: 2027SB

BRAUN

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Critor	ia for Accient	ing Group	Symbols and	So	ils Classification	Particle Size Identification
		up Names Us			Group Symbol		Boulders over 12" Cobbles 3" to 12"
" E	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^c$	GW	Well-graded gravel ^d	Gravel Coarse
grained Soils 50% retained c 200 sieve	More than 50% of coarse fraction	5% or less	s fines ^e	$C_u < 4$ and/or $1 > C_c > 3^{\circ}$	GP	Poorly graded gravel d	Fine
etair eve	retained on	Gravels wit	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand
aine % re 0 si	No. 4 sieve	More than 12	2% fines *	Fines classify as CL or CH	GC	Clayey gravel dtg	CoarseNo. 4 to No. 10 MediumNo. 10 to No. 4
20.50	Sands	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3^{c}$	SW	Well-graded sand h	Fine
arse- than No.	50% or more of coarse fraction	5% or less	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^{c}$	SP	Poorly graded sand h	Silt
Coarse- more than No.	passes	Sands with	h Fines	Fines classify as ML or MH	SM	Silty sand ^{fg h}	below "A" line Clay< No. 200, Pl≥
	No. 4 sieve	More than	12% ⁱ	Fines classify as CL or CH	SC	Clayey sand ^{fg h}	on or above "A"
led Soils passed the sieve	Silts and Clave	Inorganic	PI > 7 ai	nd plots on or above "A" line ^j	CL	Lean clay ^{kim}	
ed t	Silts and Clays Liquid limit		PI < 4 oi	plots below "A" line ^j	ML	Silt ^{k m}	Relative Density of
d S ass ievi	less than 50	Organic		nit - oven dried < 0.75	OL	Organic clay ^{k m n}	Cohesionless Soils
raine Iore p 200 s			+	nit - not dried	OL	Organic silt k 1 m o	Very loose 0 to 4 BPF Loose
	Silts and clays	Inorganic		on or above "A" line	СН	Fat clay k I m	Medium dense 11 to 30 BPF
jé b Ž	Liquid limit			elow "A" line	MH	Elastic silt k I m	Dense
Fine 50% or N	50 or more	Organic		nit - oven dried < 0.75	ОН	Organic clay k 1 m p	Very dense over 50 BPF
		<u> </u>		nit - not dried	OH	Organic silt k 1 m q	4
Highly	Organic Soils	Primarily orga	anic matte	r, dark in color and organic odor	PT	Peat	Consistency of Cohesive Soils


Based on the material passing the 3-in (75mm) sieve.

If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name. h

 $C_u = D_{60} / D_{10} C_c = (D_{30})^2$

C.

- If soil contains≥15% sand, add "with sand" to group name d е
 - Gravels with 5 to 12% fines require dual symbols
 - GW-GM well-graded gravel with silt
 - GW-GC well-graded gravel with clay
 - GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- f If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains ≥ 15% gravel, add "with gravel" to group name. h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC
- SP-SC poorly graded sand with clay If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.
- If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant.
- If soil contains > 30% plus No. 200, predominantly sand, add "sandy" to group name 1
- If soil contains≥ 30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- PI ≥ 4 and plots on or above "A" line. n.
- Pl <4 or plots below "A" line 0
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

Dry density, pcf	oc
Wet density, pcf	S
Natural moisture content, %	SG
Liqiuid limit, %	Ċ
Plastic limit, %	Ø
Plasticity index, %	qu
% passing 200 sieve	qp
	Wet density, pcf Natural moisture content, % Liqiuid limit, % Plastic limit, % Plasticity index, %

- Percent of saturation, %
- Specific gravity
- Cohesion, psf
- Angle of internal friction

Organic content, %

- Unconfined compressive strength, psf
 - Pocket penetrometer strength, tsf

..... over 12" No. 4 to 3/4" No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200 < No. 200, PI < 4 or below "A" line< No. 200, PI≥4 and on or above "A" line

elative Density of hesionless Soils

Very loose	
Medium dense	11 to 30 BPF
Dense	31 to 50 BPF
Very dense	over 50 BPF

tency of Cohesive Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "Н.

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards.

Appendix B

Golden Triangle Area

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Results of Field Exploration and Preliminary Recommendations Proposed Golden Triangle Station Area and Land Bridge – 30% Design STA 2231+50 to STA 2253+91 Southwest LRT, West Segment 2 Eden Prairie, Minnesota

Dear Mr. Demers:

This purpose of this letter is to provide you and the design team with our soil boring results and preliminary discussions and recommendations regarding the construction between the Nine Mile Creek Bridge and the Shady Oak/TH 212 Bridge in the area we describe in this report as the Golden Triangle Station Area.

The following preliminary report provides general construction comments and recommendations between STA 2230+50 and STA 2253+91 for the proposed construction of the track, Golden Triangle station platform, parking lot construction, retaining walls RTW-W205 and RTW-W215, and a land bridge extending from the north end of the station platform to the south abutment of the Bridge over Shady Oak Road/TH 212. A discussion of general civil and roadway discussion is also included. A final geotechnical report should be prepared when the full scope of the field investigation program has been completed.

This preliminary report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for pole foundations for the Overhead Contact System, (OCS) will be addressed in separate reports.

A. Results

A.1. Exploration Logs

A.1.a. Log of Boring Sheets

Log of Boring sheets for our penetration test borings are included in the Appendix. The logs identify and describe the geologic materials that were penetrated. They also present the results of penetration resistance, laboratory tests performed on penetration test samples retrieved from them, and groundwater measurements.

Strata boundaries were inferred from changes in the penetration test samples and the auger cuttings. Because sampling was not performed continuously, the strata boundary depths are only approximate. The boundary depths likely vary away from the boring locations, and the boundaries themselves may also occur as gradual rather than abrupt transitions.

A.1.b. Geologic Origins

Geologic origins assigned to the materials shown on the logs and referenced within this report were based on visual classification of the various geologic material samples retrieved during the course of our subsurface exploration, penetration resistance testing performed for the project, laboratory test results, and available common knowledge of the geologic processes and environments that have impacted the site and surrounding area in the past.

A.2. Geologic Profile

The Southwest Light Rail Transit Project Office (SPO) requested subsurface soil and groundwater information between the Nine Mile Creek Bridge and the Bridge over Shady Oak Road/TH212 in the area of the proposed Golden Triangle station platform. Nine (9) standard penetration soil borings were performed in this area. Logs of the borings are included in the Appendix. A Boring Location Sketch is also included.

A.2.a. Topsoil

Borings 2032ST and 2034ST initially encountered one to three feet of topsoil overlying fill soils. The topsoil consisted of sandy lean clay and silty sand that was black and moist to wet. A layer of buried topsoil consisting of slightly organic clayey sand was encountered 14 to 17 feet below the surface at boring 2034ST.

A.2.b. Aggregate Base and Bituminous

Four borings (2035CSS, 2036SS, 2037SS, and 2025SB) encountered aggregate at the surface and one boring (2037SS) encountered bituminous at the surface. The bituminous appeared to be three inches in thickness with an underlying aggregate base about six inches thick. The surface aggregate encountered at the other boring locations varied from 12 to 24 inches in thickness.

A.2.c. Fill

Fill was encountered at the majority of the boring locations and consisted of poorly graded sand (SP), poorly graded sand with silt (SP-SM), silty sand (SM), silty clay (CL-ML), clayey sand (SC), lean clay (CL), sandy lean clay (CL), and peat (PT). Table 1 below illustrates the depth and type of fill material encountered.

Boring No.	Boring Elevation (ft)	Approximate Depth of Fill (ft)	Elevation at Bottom of Fill (ft)	Fill Composition
2032ST	876.0	12	864	SC, CLS (topsoil)
2033ST	878.2	12	866	SP-SM,SM
2034ST	880.1	19	861	CLS, SC, SM (topsoil)
2035CSS	867.7	12	856	SM, SC, Aggregate
203655	863.8	12	852	CLS, CL, Aggregate
203755	863.3	12	851	CLS, Bituminous
2025SB	880.7	27	854	SP, CLS, SC, Aggregate
2026SB	879.5	22	857	SP-SM, SM, SC, CLS, Aggregate

Table 1. Fill Depths

Penetration resistances varied from 4 blows per foot (BPF) to 56 blows per six inches although, some of the higher penetration resistances were likely influenced by encountering rock or debris in the sampler.

A.2.d. Swamp Deposits

Borings 2036SS, 2037SS, 2083ST, and 2026SB encountered swamp deposited soils to depths of 24, 19, 14, and 24 feet, respectively. The swamp deposited soils consisted of peat (PT), lean clay (CL), organic fat clay (OH), organic silt (OH), and organic clay (OL) that was gray, dark brown and black, containing various amounts of fibers or shells.

A.2.e. Alluvium

Alluvium was encountered 19 to 22 feet below the surface at boring 2037SS and 14 to 17 feet below the surface at boring 2083ST. The alluvial deposits consisted of silt (ML) that was gray and wet. Penetration resistances varied from 3 to 7 blows per foot (BPF), indicating the alluvial silts were very loose to loose.

A.2.f. Glacial Till

Glacial till soils were encountered throughout the soil profile beneath the fill, swamp deposits and alluvial soils. The tills consisted of silty sand (SM), clayey sand (SC), and sandy lean clay (CLS). The till soils contained a trace of gravel to gravel with cobbles and were moist to wet or waterbearing and were brown to gray. Penetration resistances varied from 9 BPF to 90 blows per six inches, indicating the sands were generally medium dense to very dense and the cohesive soils were generally rather stiff to hard. The higher blow counts may have been due to gravel and cobbles encountered by the sampler.

A.2.g. Glacial Outwash

Glacial outwash soils were also frequently encountered throughout the soil profile. The glacial outwash soils consisted of poorly graded sand (SP) and poorly graded sand with silt (SP-SM). The sands generally contained some gravel. Penetration resistances varied from 2 BPF to 50 blows per 5 inches, indicating the soil was very loose to very dense. The lower blow counts may have been due to hydrostatic pressures causing a "blow up" condition within the auger, artificially loosening the soils, while the higher blow counts may have been due to gravel and cobbles encountered by the sampler.

A.2.h. Sandstone Bedrock

Boring 2083ST encountered the St. Peter sandstone at a depth of 84 feet, extending to 96 feet, the termination depth of the boring. Rock coring was not performed to obtain undisturbed samples of the sandstone.

A.3. Groundwater

Due to the impermeable nature of the clayey soils, and mud rotary drilling techniques, the depth of the static groundwater level was difficult to determine and the boring logs likely do not reflect the actual groundwater levels. It appears that water is perched on top of and between clayey soils and within sandy soil layers at depth. Piezometers may be needed to determine more accurate groundwater levels. Groundwater was measured or estimated to be located at the depths shown below in Table 2.

Location	Surface Elevation	Measured or Estimated Depth to Groundwater (ft)	Corresponding Groundwater Elevation (ft)
2032ST	876.0	22	854
			034
2033ST	878.2	NE	NE
2034ST	880.1	32	848
2035CSS	867.7	12	856
2036SS	863.8	24	840
203755	863.3	22	841
2083ST	856.7	15	842
2024SB	880.7	20	861
2026SB	879.5	15	864 1/2

Table 2. Groundwater Summary

The highly variable groundwater elevations may be due to lack of time for water to rise to its hydrostatic pressure in the borehole. Organic soils were encountered as high as elevation 857 at the ground surface. It is possible the groundwater is as high as this elevation. Piezometers would be needed to verify the actual groundwater levels.

B. Golden Triangle Area General Recommendations

B.1. Site History

The area surrounding the Golden Triangle Station is known to contain deep deposits of organic soils. Past construction in the area has generally included the excavation and removal of these organic soils, and replacement with either imported sand or nearby non-organic soils. The parking lots and landscaped areas; however, have not always been corrected. Based on our past experience in the area, we understand the existing parking lot east of the station, where a new parking lot is being proposed, has settled around six feet since the fill was placed over the organic soils more than 10 years ago. The depth of the organic soils may be underrepresented by our borings in some areas as the borings that have been performed were performed in areas that were most easily accessible. The transition area between the deep organic deposits appears to be near STA 2241+00, or the existing W 70th Street Cul De Sac. We anticipate glacial deposits generally be encountered beneath shallow fill deposits south of this location.

The project team should be aware that any raises in grade in the area of the organic soils will result in settlement of the underlying soil and could cause collateral damage of existing structures, utilities and surface features.

B.2. Pile Foundations

We recommend the use of driven pile foundations to support the station platform and land bridge north of the station to the abutment of the Bridge over Shady Oak Road/TH 212 due to the deep fill and swamp deposits. The following subsections provide preliminary estimates of pile lengths based on our preliminary boring program. We recommend a final boring program be performed to investigate the subsurface conditions at pertinent structure locations.

B.2.a. Design Methodologies – Pile-Supported Structures

B.2.a.1. Pile Capacity – LRFD (Land Bridge)

We used the computer program UniPile, version 5.0.0.33, to estimate the static nominal geotechnical resistance (R_n) of the 12.75- and 16.0-inch outside-diameter, 1/4-inch thick wall, closed-ended pipe piles for support of the proposed land bridge. UniPile software was developed by UniSoft Geotechnical Solutions Ltd. and can calculate pile resistance using a variety of methods.

For our analysis, we utilized the Beta-method, an effective stress method, to estimate the static geotechnical resistance for these pile. This method determines shaft resistance using Bjerrum-Burland beta coefficients (β), which are based on soil type and effective friction angle. We estimated the β values for each layer using Figure 9.20 from the Federal Highway Administration (FHWA) Publication No. NHI-05-042, Design and Construction of Driven Pile Foundations, April 2006. The Beta-method determines end bearing resistance using toe bearing capacity factors (N_t), which are also based on soil type and effective friction angle. We estimated the N_t values from Table 9-6 of the April 2006 FHWA publication identified previously.

B.2.a.2. Downdrag

We do not expect downdrag will act on the piling, as no raise in grade anticipated in the area of the proposed land bridge. It appears a raise in grade of approximately 5 feet is proposed on the north end of the station platform. Downdrag will impact the pile length in this area, the magnitude of which will be determined upon final design of the structure.

B.2.b. Nominal Bearing Capacities and Associated Resistance Factors

For situations where subsurface exploration and static calculations have been completed, we recommend that the following φ_{dyn} factors be used.

Table 3. Recommended Pile Driving Resistance Factors (ϕ_{dyn})

Specified Construction Control	ϕ_{dyn}
MnDOT Pile Formula 2012 (MPF12) for Pipe Pile Sections	0.50
Wave Equation and Pile Driving Analyzer (PDA)	0.65

We have constructed two tables which summarize the anticipated pile depths based on the factored load ($\Sigma\gamma Q_n$) for 12.75- and 16.0-inch, outside-diameter pipe pile with a wall thickness of 1/4 inch. The tables provide a PDA length (i.e., ϕ_{dyn} of 0.65) and a MPF12 formula length (i.e., ϕ_{dyn} of 0.50) for each location. We assumed a cutoff elevation of about 1 foot above the existing ground surface. Please refer to the nominal bearing resistance graphs in the Appendix and the anticipated pile length tables below, using PDA Analysis and the MPF 12 for a detailed profile of pile resistances and anticipated pile lengths.

Boring	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons)	Nominal Resistance R _n (tons)	Outside Diameter of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)	
		120	185 [370 kips]	12.75	809	60	
2025.055	869	120	102 [210 Kib2]	16.0	814	55	
2035CSS	809	140	215 [420 kina]	12.75	804	65	
		140	140 215 [430 k	215 [430 kips]	16.0	814	55
		120	185 [370 kips]	12.75	800	65	
2036SS	865	120	185 [370 kips]	16.0	810	55	
203033	805	140	1/0	140 215 [430 kips]	12.75	795	70
		140	215 [450 Kips]	16.0	805	60	
		120	185 [370kips]	12.75	783	75	
2083ST 858	050			16.0	793	65	
	858	140	215 [420 kina]	12.75	783	75	
			215 [430 kips]	16.0	788	70	

 Table 4. Summary of Anticipated Pile Lengths – PDA Analysis

Table 5. Summary of Anticipated Pile Lengths – MPF12 Analysis

Boring	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons)	Nominal Resistance R _n (tons)	Outside Diameter of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
		120	240 [480 king]	12.75	799	70
2025.055	860	120	240 [480 kips]	16.0	814	55
2035CSS	869	140 280	280 [[(0 king]	12.75	794	75
			280 [560 kips]	16.0	809	60
		120	240 [480 kips]	12.75	790	75
2036SS	865			16.0	800	65
203033	803			12.75	785	80
		140	280 [300 kips]	16.0	795	70
		430	240 [480 kips]	12.75	778	80
	050	120		16.0	783	75
2083ST	858		280 [560 kips]	12.75	778	80
		140		16.0	783	75

B.2.c. Uplift Capacities

Currently, a tension resistance line is not provided on the Nominal Bearing Graphs attached to this report. If piles will experience tension loads, please let us know and we'll revise our recommendations accordingly.

B.2.d. Pile Spacing and Group Effect

In our opinion, the working capacities of piles spaced at least 3 pile diameters apart need not be reduced due to group effects. If a closer spacing is ultimately selected, we recommend having a geotechnical engineer evaluate the magnitude of the group effect, and the extent to which the working capacities should be reduced.

The lateral capacity for each pile should be reduced, depending on the actual spacing and the location of the pile within the pile cap. We recommend using pile spacing reductions (group action) for the various pile spacing's as identified in the table below.

Pile CTC Spacing (in the direction of loading)	Row 1	Row 2	Row 3 and Higher
3D	0.8	0.4	0.3
4D	0.9	0.63	0.5
5D	1.0	0.85	0.7

Table 6. Pile Spacing

Linearly interpolated from Table 10.7.2.4-1 of the AASHTO LRFD Bridge Design Manual, 6th Edition.

B.3. Lateral Pile Analyses

The following table provides the soil parameters used for the lateral pile analyses and p-y curve generation, which was performed using the computer program LPILE (2013). Based on the soils encountered in the borings, we used the default lateral modulus of subgrade reaction values included in LPILE. For the purposes of our preliminary evaluation, we used the soil parameters encountered in Boring 2083ST.

Layer Top Depth (feet)	Layer Bottom Depth (feet)	Effective Unit Weight (pcf)	Internal Angle of Friction (degrees)	Undrained Shear Strength (psf)	Material Type
0	2.5	NA	NA	NA	Air
2.5	9.5	18	NA	150	Soft Clay
9.5	16.5	28	NA	100	Soft Clay
16.5	21.5	43	26	NA	Sand (Reese)
21.5	24.5	53	32	NA	Sand (Reese)
24.5	33.5	50	32	NA	Sand (Reese)
33.5	39.5	55	33	NA	Sand (Reese)
39.5	44.5	63	NA	3000	Stiff Clay w/o Free Water
44.5	54.5	55	NA	1500	Stiff Clay w/o Free Water
54.5	71.5	56	NA	1800	Stiff Clay w/o Free Water
71.5	76.5	63	NA	2400	Stiff Clay w/o Free Water
76.5	86.5	58	35	NA	Sand (Reese)
83.0	101.0	65	40	NA	Sand (Reese)

Table 7. Soil parameters used for the lateral pile analyses and p-y curve generation

For our lateral analyses, we assumed a pile top located 2 1/2 feet above the existing ground surface. The maximum lateral load in our analyses is for a loading condition assuming 1-inch of deflection at the pile top with a fixed-head condition. We assumed a pile wall thickness of 1/4-inch, a steel yield strength of 45 ksi, and concrete infill with a compressive strength of 3 ksi for our analyses. Please refer to the attachments for the deflection, shear force and bending moments within the pile at service loads of 120 and 140 tons for the 12.75-inch and 16.0-inch closed-end pipe pile, respectively.

B.4. Golden Triangle Station Platform

As mentioned previously, we estimate the transition area between the organic soils and the native glacial soils in the area of the station is West 70th Street. To provide uniform settlement across the platform station, we recommend pile supporting the entire platform rather than soil correcting just the south end of the platform and pile supporting the north end of the platform.

B.5. Retaining Wall Construction

B.5.a. Retaining Wall RTW-W205

Retaining wall RTW-W205 is proposed to be a cast-in-place (CIP) walls extending from station 2233+00 to 2238+00. It has an exposed height of up 10 feet and a stem height up to about 15 feet. The wall will largely be cut into an existing berm supporting a walking trail.

Spread footings are proposed to be used for the wall. The soil conditions in the area of the wall appear to be suitable to support the wall after the removal of any fill and organic soil. The borings in this area, 2032ST and 2033ST encountered fill 12 feet below the surface at both boring locations corresponding to elevations 864 to 866. It appears the bottom of footings for the wall will be near elevation 861 so the footings should bear on competent natural soil. The fill below the tracks should be removed and replaced or recompacted.

B.5.b. Retaining Wall RTW-W215

Retaining wall RTW-W215 is proposed to be a soldier pile retaining wall extending from about STA 2249+00 to about STA 2251+00. The tracks along the walls will be supported by driven pile. The wall appears to be designed to retain the existing embankment of the ShopHQ parking lot, with approximately 10 feet of exposed height. The wall is currently proposed to be supported by driven piles. We anticipate the embedment depth of the soldier pile wall will be near 35 feet, however, the embedment depth may change based on final design.

There is a possibility the wall may be located in an area of predominantly good soil, or in an area that was previous soil corrected, and there is the possibility spread footing could be used to support the wall instead of soldier piles. Without cross sections and more borings it is difficult for us to determine if it is feasible to excavate any unsuitable soils in the area of the wall, if present at all, and use spread footings to support the wall.

B.5.c. Retaining Wall Backfill Recommendations

We recommend the foundation soils for the CIP walls be surface compacted with a vibratory sheepsfoot compactor prior to filling to proposed footing elevations. The excavation should then be backfilled with Select Granular Modified 10% or crushed rock to re-establish grade. If groundwater is encountered, temporary dewatering is recommend with sumps and pumps to control groundwater.

Abutment and retaining wall backfill shall meet the material and compaction specifications noted below in Table 8.

Material	Material Specification	Compaction Specification
Fill placed beneath Footings	3149.2B2	2105.3F
Leveling Pad Beneath Footings	3138.2B	2211.3C
Retaining Wall Backfill	3149.2B2*	21053.3F

Table 8. Material and Compaction Specifications for Backfill and Fill

*We recommend backfill material used against retaining structures shall consist of Select Granular Modified 10%. Select Granular Modified 10% shall comply with Specification 3149.2B2, modified to 10% or less passing the 0.075 mm (#200) sieve.

B.5.d. General Soldier Pile Wall Recommendations

Based on the plan and profile drawings, we anticipate the majority of the soil being retained by the soldier pile wall will consist of fill (either imported sand or on-site sands or clays) over existing soils. We anticipate soldier piles will be embedded into native glacial soils at depth.

Preliminary lateral earth parameters to be used in wall design are provided in Table 9 below. The parameters shown have not been reduced by safety factors. This table will be updated once the final boring program is complete.

Saturated unit weights are recommended to account for the potential build up of hydrostatic pressure behind undrained support structures. We recommend that saturated unit weights be reduced by 62.4 pounds per cubic foot for strata or portions of a stratum extending below the groundwater levels at the structure location or as noted on the borings

Geologic Material	Saturated Unit Weight (pcf)	Friction Angle (deg)	K _A	Кo	K _P
Select Granular Borrow	120	35	.28	.42	3.69
Sand Fill (SP, SP-SM)	120	30	.33	.50	3.00
Sand Fill (SM, SC)	125	28	.36	.53	2.76
Clay Fill (CL)	125	26	.39	.56	2.56
Swamp Deposit Soils (PT)	75	14	.61	.76	1.63
Swamp Deposit Soils (OL, ML)	90	22	.46	.62	2.20
Glacial Sands (SP, SP-SM)	120	32	.31	.47	3.25
Glacial Lean Clay (CL)	130	28	.36	.53	2.76

Table 9. Parameters for Sheet Pile Wall Design

We recommend installing draintile along the entire length on the inside of the proposed retaining wall. We anticipate on-site clays and sands will be used to backfill behind the soldier pile retaining wall. We recommend free-draining sand with less than 5 percent particles passing a 200 sieve and less than 50 percent passing a 40 sieve should be used as backfill within 2 feet of the soldier pile wall so that infiltrating water can drain down to the perimeter drainage system. Draintile should be placed within the provided sand section to remove any excess water build up behind the wall.

B.6. Guideway Subgrade Preparation (between Nine Mile Creek Bridge and West 70th Street)

A five-foot section below the proposed top of rail is anticipated for construction of the Guideway. The following subsections provide preliminary recommendations to prepare the ground supported track subgrades between the north abutment of the Nine Mile Creek Bridge and West 70th Street. Additional borings will be required for final design recommendations.

B.6.a. Excavations

B.6.a.1. Track Construction

We recommend excavating the soils down to the proposed bottom of subgrade elevation. We expect a combination of fill and native soils will be encountered. If fill is encountered at the track subgrade, we recommend evaluating the condition of the fill during construction. Additional subcuts may be necessary and should be determined in the field at the time of construction.

We recommend removing all vegetation, topsoil, and any soft or wet soils encountered at the surface, including topsoil fill or fill containing organics. If soft or otherwise unsuitable soils are encountered at subgrade elevations, additional excavations may be necessary. This should be evaluated in the field on a case by case basis. Table 8 below provides our recommended excavation depths at the boring locations performed between STA 2035+00 and STA 2051+00.

Boring	Boring Elevation (ft)	Guideway Subgrade Elevation (ft)	Recommended Excavation Depth Below Subgrade (ft)	Excavation Bottom Elevation (ft)
2032ST	876.0	867	3	864
2033ST	878.2	865		865
2034ST	880.1	863	0-2	861-863

Table 10. Recommended Guideway Subgrade Correction Depths

Excavation depths will vary away from the boring locations and could be deeper. We recommend a geotechnical engineer or experienced technician working under the supervision of a geotechnical engineer observe the subgrade soils prior to the placement of fill. If pockets of unsuitable fill or soft native soils are encountered, the excavations may extend beyond the depths noted in the table above.

B.6.b. Selecting Excavation Backfill and Additional Required Fill

B.6.b.1. General Subgrade Fill

We initially recommend backfilling over wet or submerged excavation bottoms with at least 2 feet of coarse sand having less than 70 percent of the particles by weight passing a #40 sieve, and less than 10 percent of the particles passing a #200 sieve. We anticipate that this material will need to be imported.

On-site soils free of organic soil and debris can be considered for reuse as subgrade backfill and fill. The clays, however, being fine-grained, will be more difficult to compact if wet or allowed to become wet, or if spread and compacted over wet surfaces.

Imported material needed to replace excavation spoils or balance cut and fill quantities, may consist of sand, silty sand, clayey sand, sandy lean clay or lean clay. We recommend, however, that the plastic index of these materials not exceed 20.

B.6.b.2. Guideway Fill

Based on the proposed design sections, the Guideway will be composed of 40-inch thick layer of granular material, under a minimum of 12-inches of subballast material. We recommend specifying Guideway fill to meet the requirements of the Minnesota Department of Transportation (MnDOT) 3149.2B2 (Select Granular Borrow) for the granular material, and 3138 (Aggregate Base) for the subballast.

B.6.c. Placement and Compaction of Backfill and Fill

We recommend spreading backfill and fill in loose lifts of approximately 6 to 12 inches. We recommend compacting backfill and fill in accordance with the criteria presented below in Table 11. The relative compaction of utility backfill should be evaluated based on the structure below which it is installed, and vertical proximity to that structure.

Material	Material Specification	Compaction Specification
Subgrade Fill	Onsite Material Free of Debris and Organic Material or Imported Soil	100% of standard Proctor Density (ASTM D698)
Retaining Wall Backfill	MnDOT 3149.2D2	MnDOT 2105.3F
Guideway Select Granular Layer	MnDOT 3149.2B2	100% of standard Proctor Density (ASTM D698)
Guideway Subballast	MnDOT 3138	MnDOT 2211.3C

Table 11. Material and Compaction Specification for Backfill and Fill

B.7. Land Bridge

Land bridges will be used to support the tracks from STA 2245+16 to STA 2253+91, where the bridge over Prairie Center Drive begins. The land bridge will be supported by driven pile due to the deep fill and organic deposits and we are assuming spacing between pile caps is approximately 50 feet. Refer to section B.2 above for the anticipated pile lengths based on assumed loads.

B.8. General Civil/Roadway Construction

Surface feature improvements including parking lots, curb and gutter, sidewalk, utilities and light posts will be constructed at the Golden Triangle station platform.

The soil conditions in the area are extremely susceptible to consolidation and settlement from new loads and raises in grade. For the parking lot areas, lightweight fill in the form of tire chips or expanded polystyrene (EPS) foam blocks may be an option to raise grade with minimal stress increase, however, this may be an obstacle for the installation of utilities or light pole bases. Once final design parameters are known, additional measures such as surcharges can be explored to increase the rate of consolidation. Regardless of the methods mentioned above, long term consolidation and settlement of the soil will occur, and may vary in magnitude from one inch to upwards of several feet.

We recommend all structures, including light pole bases be supported on deep foundation systems.

We also recommend supporting all deep utilities (sanitary sewer, water main, and storm sewer) on driven piles.

It should be noted differential settlement will occur between the pile-supported platform that will not settle and surface features around the platform that will realize settlement roughly proportional to the amount of new fill placed. Lightweight fill or pile supported transition slabs could be used to accommodate the differential settlement.

C. Procedures

C.1. Penetration Test Borings

The penetration test borings were drilled with core and auger drill equipped with hollow-stem auger mounted on an off-road carrier. The borings were performed in accordance with ASTM D 1586. Penetration test samples were taken at 2 1/2- or 5-foot intervals. Actual sample intervals and corresponding depths are shown on the boring logs.

Penetration test boreholes that met the Minnesota Department of Health (MDH) Environmental Borehole criteria were sealed with an MDH-approved grout.

C.2. Material Classification and Testing

C.2.a. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars or bags and returned to our facility for review and storage.

C.2.b. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures.

C.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced, and again after auger withdrawal. The boreholes were then backfilled or allowed to remain open for an extended period of observation as noted on the boring logs.

D. Qualifications

D.1. Variations in Subsurface Conditions

D.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

D.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

D.2. Continuity of Professional Responsibility

D.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

D.3. Use of Report

This preliminary report is for the exclusive use of the parties to which it has been addressed. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects. Upon completion of final design, we recommend a final boring program be completed to investigate those areas not observed during our preliminary work.

D.4. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

> BRAUN INTERTEC

If there are questions regarding these recommendations, please call Josh Kirk at 952.995.2222 jkirk@braunintertec.com or Ray Huber at 952.995.2260 rhuber@braunintertec.com at your convenience.

Sincerely,

BRAUN INTERTEC CORPORATION

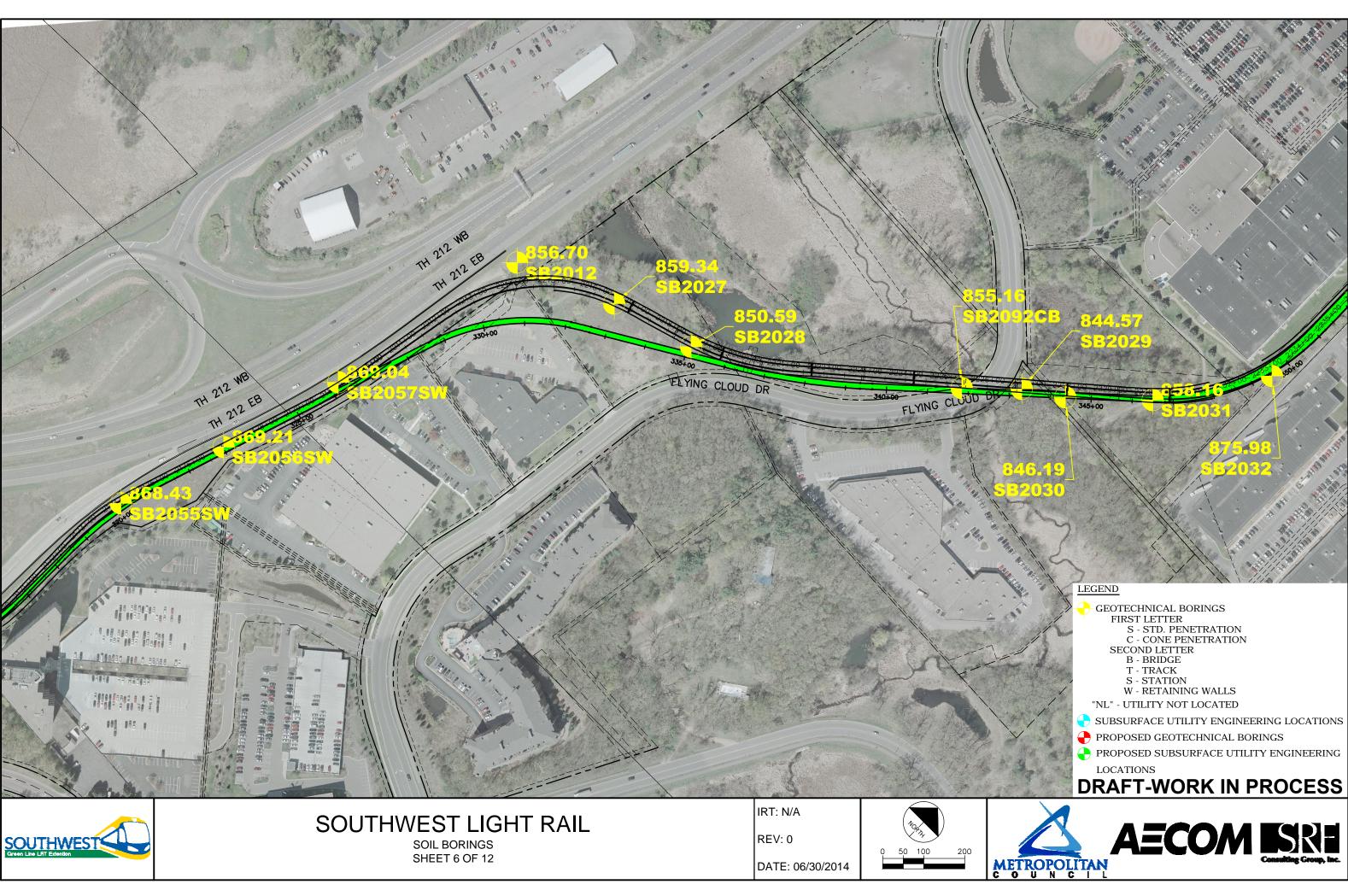
Professional Certification:

I hereby certify that this plan, specification or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

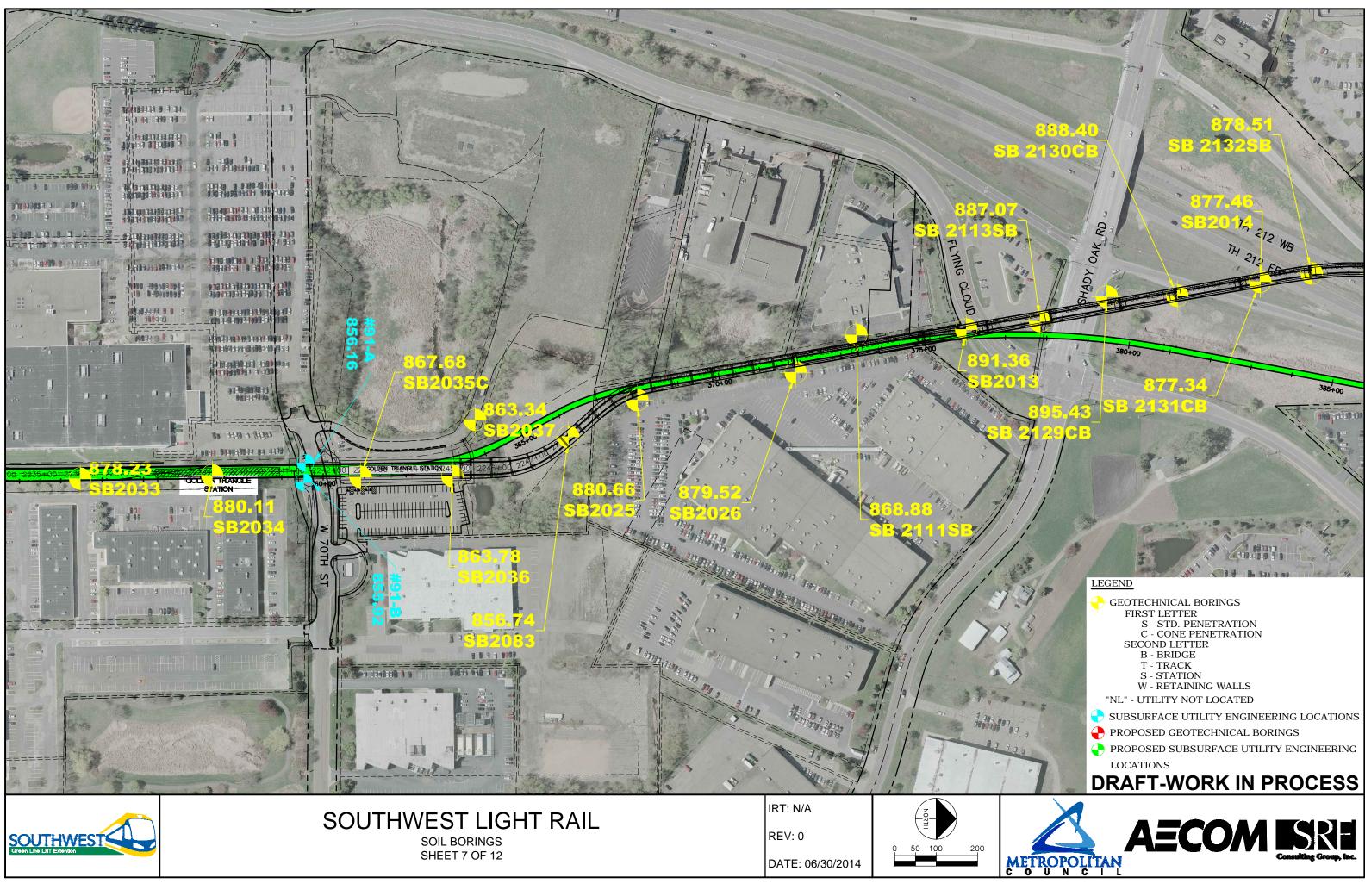
Joshua L. Kirk, PE Associate-Project Engineer License Number: 45005

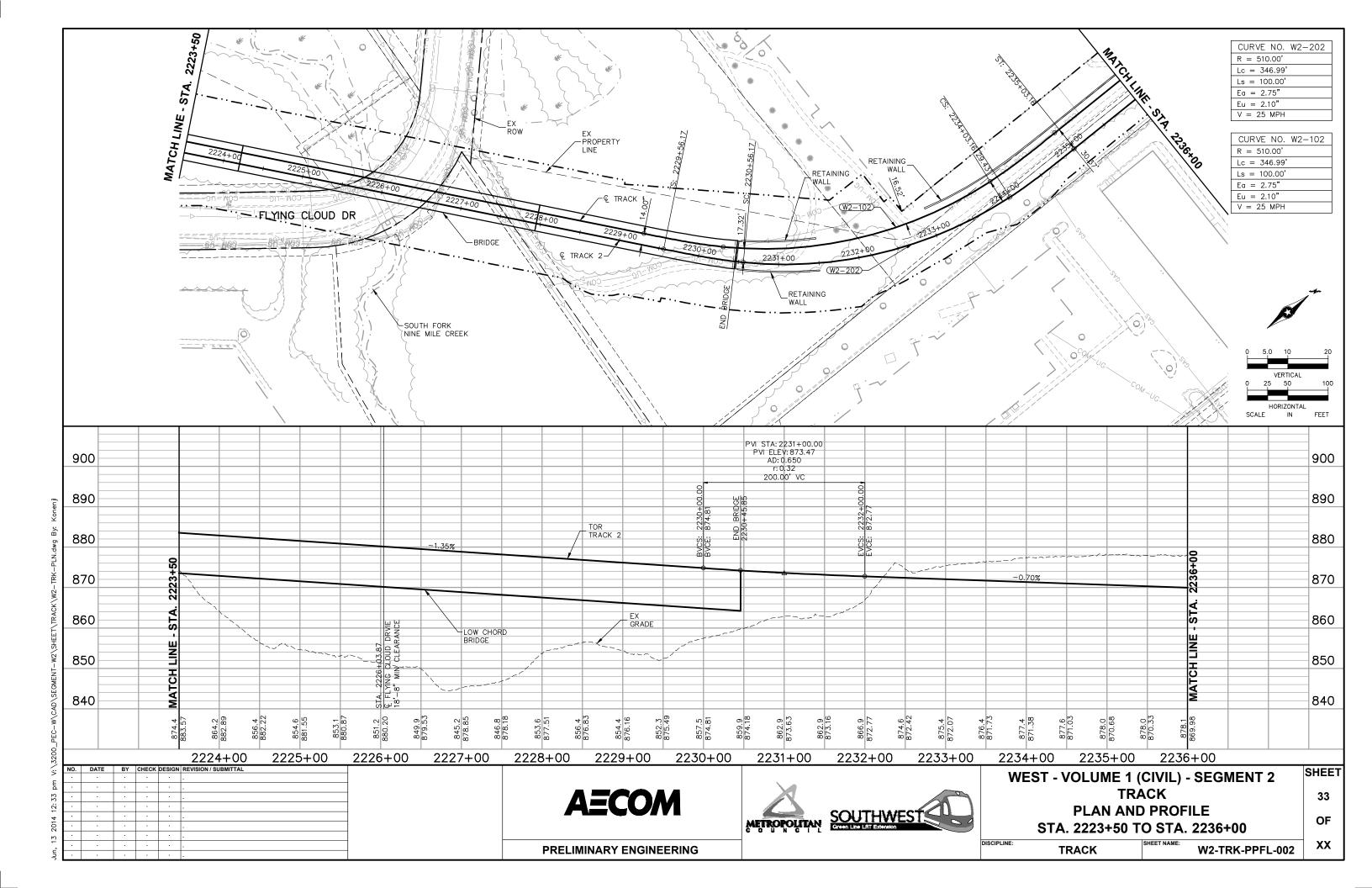
Reviewed by:

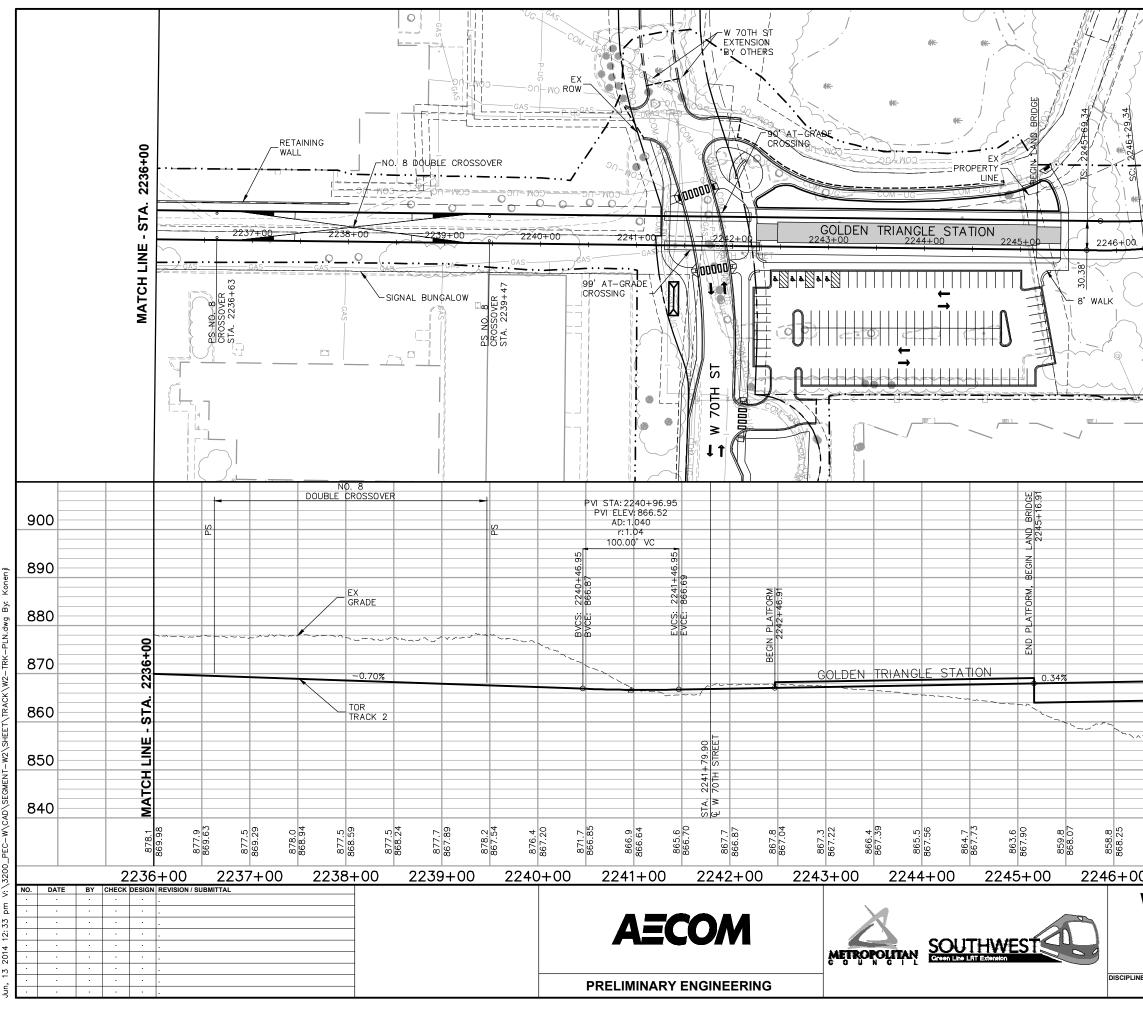
Ray A. Huber, PE Vice President-Principal Engineer

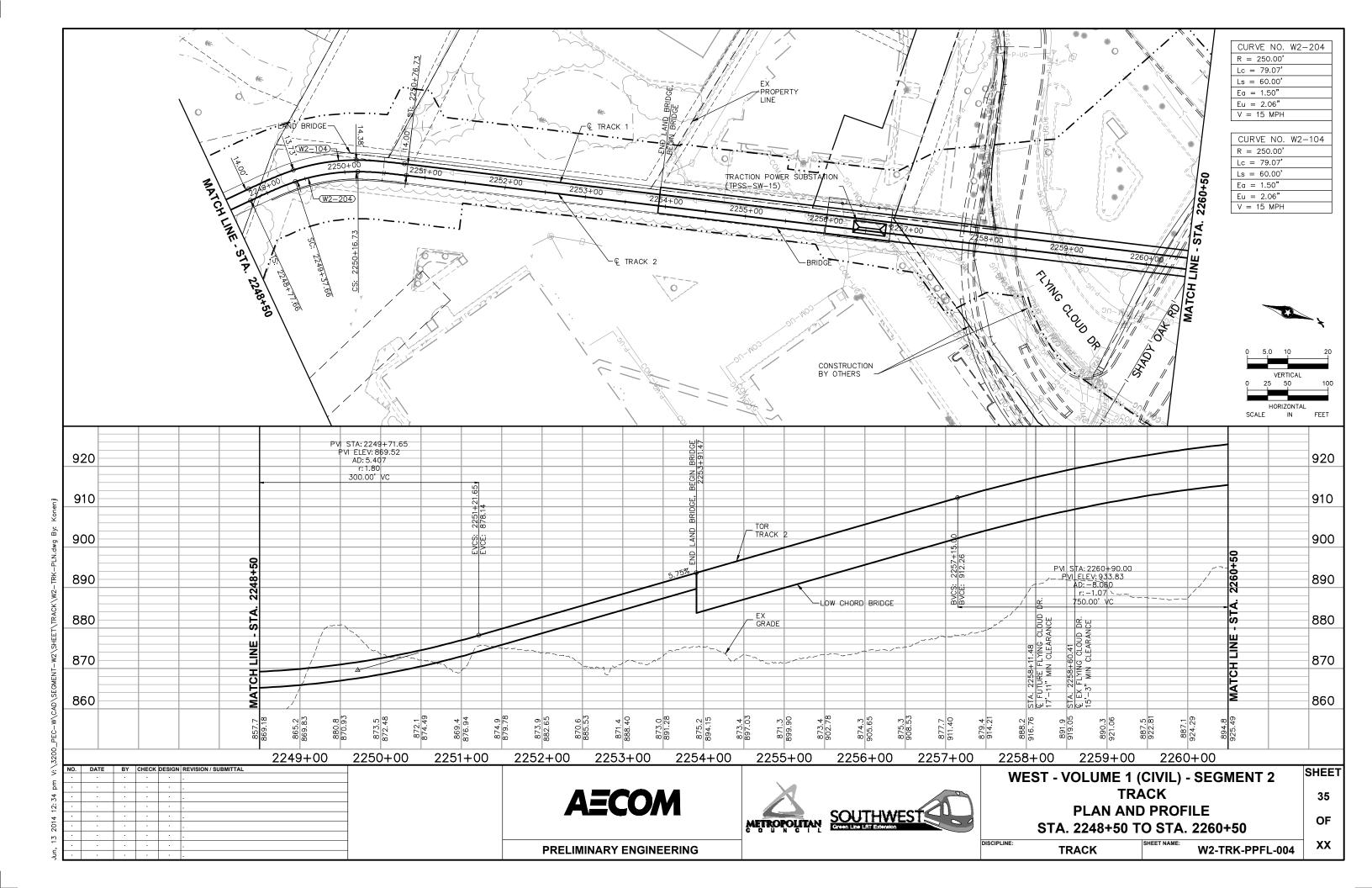

Reviewed by:

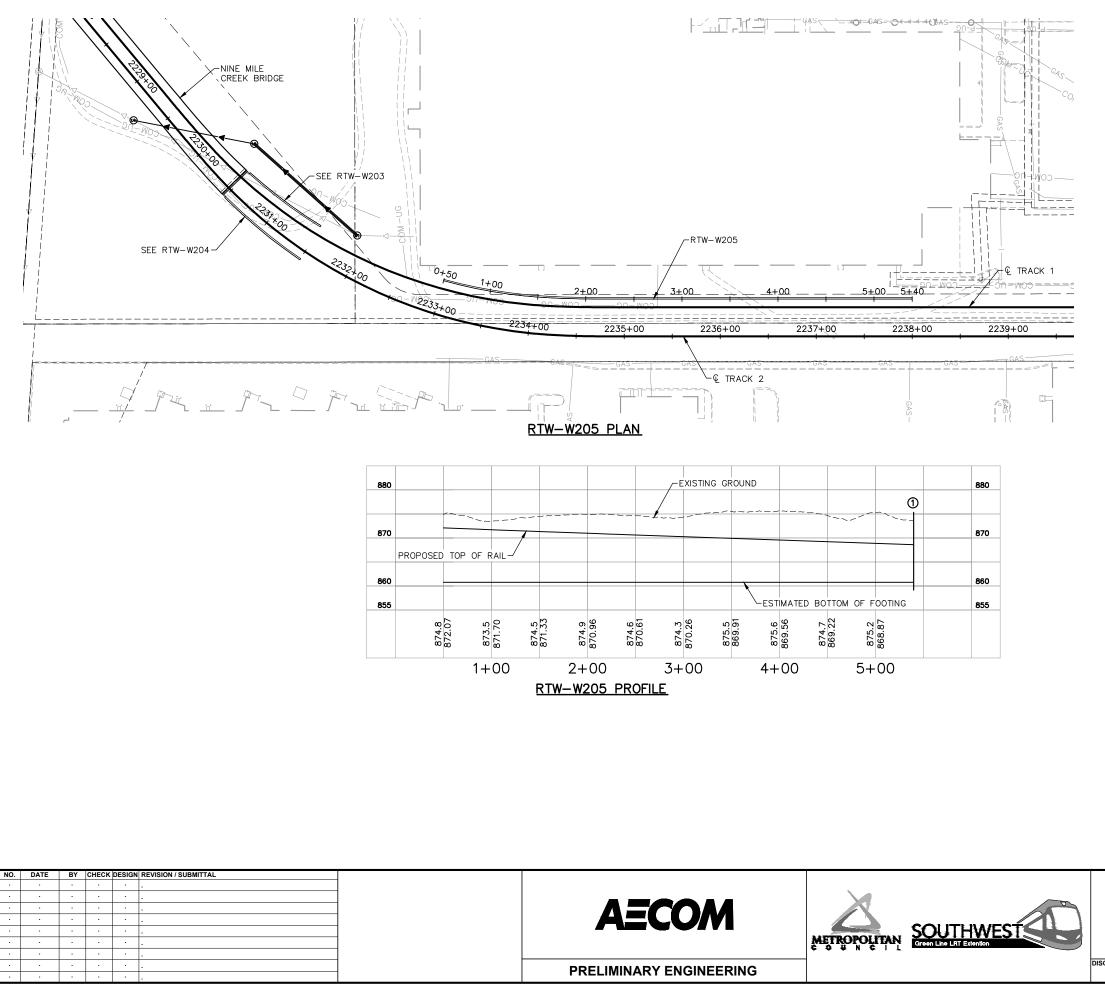
Matthew P. Ruble, PE Principal Engineer


Appendix:

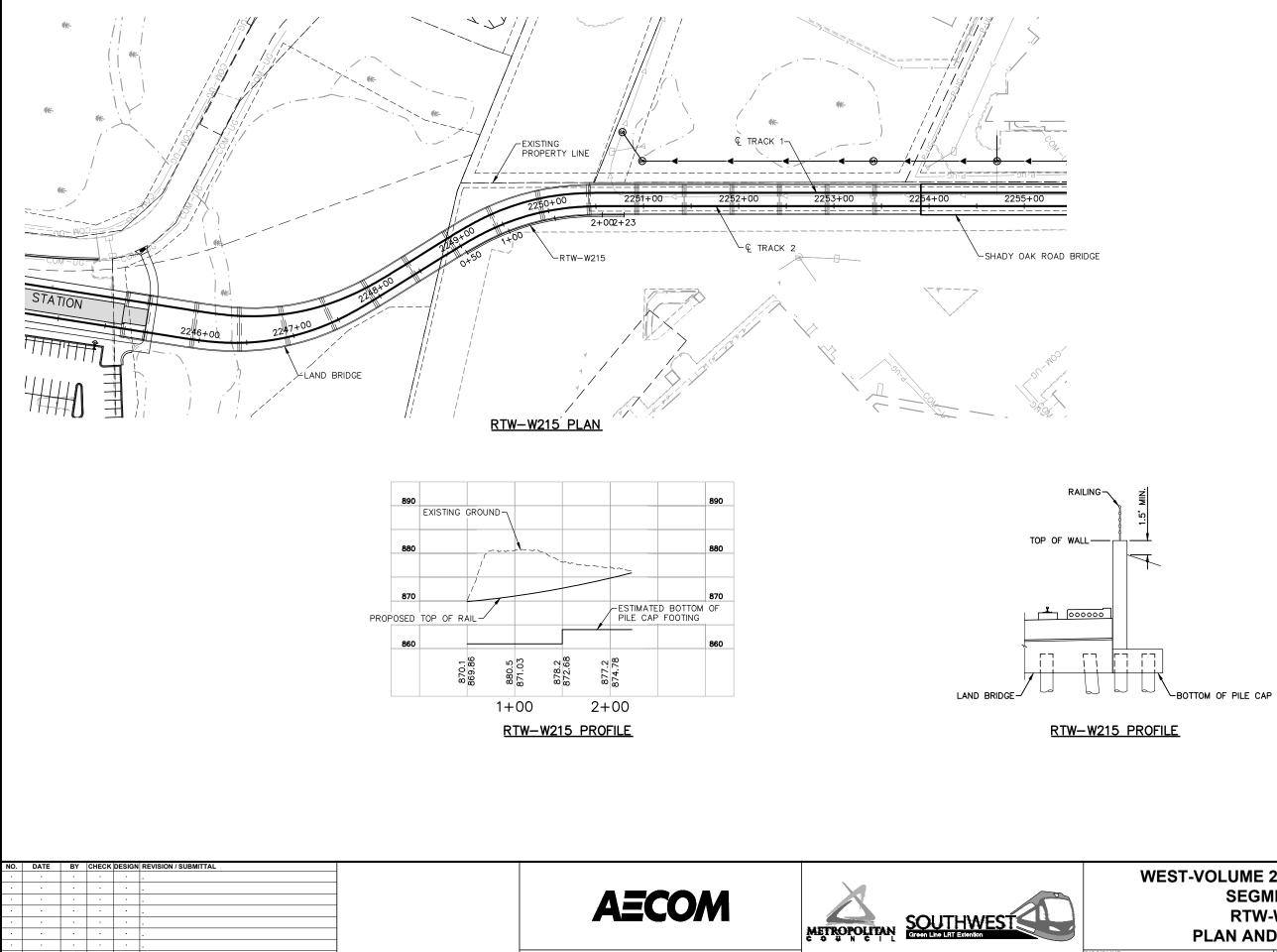

Boring Location Sketch Preliminary Plan and Profile Pages W2-STU-RTW-PPFL-004 and 005 Preliminary Plans and Profile Pages – Walls RTW-W205 and RTW-W215 Standard Penetration Borings (2032ST, 2033ST, 2034ST, 2035CSS, 2036SS, 2037SS, 2083ST, 2025SB, 2026SB) Nominal Geotechnical Resistance Graphs Lateral Pile Analysis Results SPT Descriptive Terminology


APPENDIX





STA. 2236+00 TO STA. 2248+50 TRACK W2-TRK-PPFL-003											
		-50	OF								
TRACI PLAN AND P			34								
WEST - VOLUME 1 (CIN		IENT 2	SHEET								
0 2247+00 2248+			011557								
	857.7 869.18										
857.5 868.42 858.42 859.9 868.59 868.59 868.76 868.93 868.93	1.18										
	M M		840								
	МАТСН										
· I I I I I I I I I I I I I I I I I I			850								
			860								
	STA.		000								
	2248		870								
	2248+50 2248+50										
			880								
	2248+2 869.01		_								
	- 21.65		890								
3	r: 1.80 300.00' VC										
PVI	TA: 2249+71.65 ELEV: 869.52 AD: 5.407		900								
	 		-								
		HORIZONTA SCALE IN	L								
		VERTICAL 0 25 50	100								
		0 5.0 10	20								
			<u> </u>								
C TRACK 1											
2 TRACK 2											
22471+00	l.	Eu = 2.06" V = 15 MPH									
W2-103		Ls = 60.00 $Ea = 1.50^{"}$ $Eu = 2.06^{"}$									
LAND BRIDGE	505 505	Lc = 118.12' Ls = 60.00'									
		CURVE NO. W2 R = 250.00'	-103								
	_ _	V = 15 MPH									
A LAR IN		Ea = 1.50" Eu = 2.06"									
A THIN		Lc = 118.12' Ls = 60.00'									
∑ \ ^x ,c		R = 250.00'									
		CURVE NO. W2									

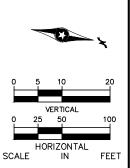


DISCIPLINE:

\mathbf{t}	100
WEST-VOLUME 2 (STRUCTURES) SEGMENT 2 BTW W205	SHEET 183
RTW-W205 PLAN AND PROFILE	OF
STRUCTURES STRUCTURES W2-STU-RTW-PPFL-004	204

NOTE: RTW-W205 IS ANTICIPATED TO BE A CAST-IN-PLACE RETAINING WALL ON SPREAD FOOTINGS.

PROPOSED GROUND LINE AT 2H:1V MAXIMUM SLOPE AT WALL TERMINATION NOT SHOWN.



14 2014 04:50 pm V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-RETW.dw

PRELIMINARY ENGINEERING

DISCIPLINE:

	WEST-VOLUME 2	2 (STRUCTURES)	SHEET								
	SEGMENT 2										
		W215	OF								
) PROFILE	•								
:	STRUCTURES	W2-STU-RTW-PPFL-005	204								

Braur	n Proje	ect BL-13	3-00213	BORING	:		20	32ST	
	Г	AL EVALU Minnesot		LOCATIC See attac			0310.		145
DRILLE	R: M.	Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	8/3	0/13		SCALE:	1" = 4'
Elev. feet 876.0	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	10-1-2908)	BPF	WL	MC %	Tests	or Notes
Minne Minne DRILLE Elev. feet 876.0 873.0 873.0 873.0 873.0 873.0	3.0	CL FILL	SANDY LEAN CLAY, black, moist to wet. (Topsoil) FILL: Clayey Sand, fine- to medium-grained, Gravel, gray, moist.	- trace 	7				
	9.0	FILL	FILL: Clayey Sand, fine- to medium-grained, Gravel, black and brown, moist.		24		9		
864.0 	12.0	SC	CLAYEY SAND, fine- to medium-grained, trac gray, moist, medium to hard. (Glacial Till)	ce Gravel, 	7		10	P200=35%	
	22.0				32*			*Little recov Gravel. *No recove	
		SM	SILTY SAND, fine- to medium-grained, with G with Lean Clay lenses, brown, wet, medium d (Glacial Till)		18		10	P200=21%	
 	29.0	SC	Silt and Sand layers from 26 to 28 feet. CLAYEY SAND, fine- to medium-grained, with	- - n Gravel	19				
BL-13-0021	2		brown to 30 feet then gray, moist, very stiff. (Glacial Till) Braun Intertec Corporation		21				32ST page 1 of

ſ			ect BL-13						BORING	3:		203	32S	T (co	nt.)			
	GEOTE SWLR1		AL EVALU	ΑΤΙΟΙ	N		LOCATI See atta	10	N: N:	13(0310	.4; E: 4	493145					
ions)			Minnesot	а					See alla	ICH	ed sk	etch	-					
eviat																		
abbr	DRILLE		Takada		METHOD:	3 1/4" H	ISA, Autohamm	er	DATE:	_	8/3	0/13		SCALE:	1'	' = 4'		
on of	Elev. feet	Depth feet			De	escription	of Materials				BPF	WL	мс	Tes	sts or No	otes		
anati	844.0	32.0	Symbol				Rock-USACE						%					
expl	_			CLA brow	n to 30 feet t	hen gray,	edium-grained , moist, very st	iff.	Gravel,		23							
et for	_				(0	Blacial Til	I) (continued)											
/ she									_									
ology	840.0	36.0								X	27							
emin	_				OF BORING													
ptive Te	_				er not observe er in the grour		4 1/2 feet of h	ollow-9	stem	_								
See Descriptive Terminology sheet for explanation of abbreviations)	_			Wate imm	er not observe ediately after	ed to cave withdraw	e-in depth of 2 al of auger.	2 feet	t									
(Se	_			Borii	ng immediate	ly backfill	led with bento	nite gr	out.									
	_																	
	_																	
	_																	
	_																	
16	_																	
8/13/14 15:16																		
8/13/																		
ENT.GDT																		
CURREN																		
	_																	
BRAUN_V8	_								-									
	_																	
0213.	_																	
2013\C																		
	_																	
NNEAF	-																	
N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213.GPJ	-																	
ROJEC	-																	
SINT\P																		
	-																	
OF BORING	-									+								
G OF E	-									$\left \right $								
LOG	BL-13-0021	3				Br	aun Intertec Corpo	ration							2032ST	page 2 of 2		

				-00213	BORING	6:		20	335	T
SWLRT	CHNICA Tonka,				LOCATION: N: 130606.8; E: 4931 See attached sketch.					
DRILLE	R: M.	Takada		METHOD: 3 1/4" HSA, Autohammer	DATE:	8/3	0/13		SCA	LE: 1" = 4'
Elev. feet 878.2	Depth feet 0.0	,	bol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	10-1-2908)	BPF	WL	MC %	qp tsf	Tests or Notes
871.2	7.0	FILL		FILL: Poorly Graded Sand with Silt, fine- to coarse-grained, with Gravel, brown, moist. FILL: Silty Sand, fine- to medium-grained, w reddish brown, moist. LEAN CLAY with SAND, with Poorly Graded lenses, brown to 17 feet then gray, wet, rather very stiff. (Glacial Till)	- Sand	10 15 21 50/6" 12 23 9 9 9 9 9 11 12 12 12		2	3 1/2 2 1/2 2 1/2	
847.2	31.0	F - F	////	END OF BORING.*					1	backfilled.

Brau		ect BL-13	8-00213	BORING	:		20	34ST	
	ECHNIČ/ T	AL EVALU Minnesot	ATION	LOCATIO See attac	DN: N)925.	143.8	
	R: M.	Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	8/3	0/13		SCALE:	1'' = 4'
Elev. feet 880.1	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	10-1-2908)	BPF	WL	MC %	Tests c	or Notes
007 Sheet for expla	1.1	FILL	FILL: Silty Sand, fine-grained, black, moist. (Topsoil Fill) FILL: Sandy Lean Clay, trace Gravel, brown moist.	and black, _ _	19				
Csee Descriptive Leminology sheet for explanation of the sect of explanation of the sect of					9		11		
 	14.0				23				
%)13/14 13:17 	17.0	FILL	FILL: Slightly Organic Clayey Sand, fine- to medium-grained, black, moist. (Buried Topsoil)		8		18	OC=4%	
	19.0	FILL	FILL: Sandy Lean Clay, trace Gravel, gray, v	-	16				
		SM	SILTY SAND, fine- to medium-grained, with c Lean Clay lenses, brown, moist, medium den dense. (Glacial Till)	occasional se to	14				
			Gravel from 25 to 30 feet.	- 	13		8	P200=19%	
				- - 	40			indicates the which groun	(WL) column e depth at idwater was
6 – 6 848.1 BL-13-0021	32.0		Braun Intertec Corporation	_	M	∇		which grour observed w	idwater w

ſ			ect BL-1					BORING		20:	34S	T (cor	nt.)	
	GEOTE SWLR		AL EVALI	JATIO	N			LOCATIC See attac	DN: N	13(0925.	5; E: 4	93143.8	
ions)			Minnesc	ta						eich				
eviat					1						i			
abbr	DRILLE		Takada		METHOD:	3 1/4" HSA, Autohar	nmer	DATE:	8/3	0/13		SCALE:	1" =	= 4'
on of	Elev. feet	Depth feet			De	scription of Material	s		BPF	WL	мс	Test	s or Note	es
anati	848.1	32.0	Symbol			or D2487, Rock-USAC		0-1-2908)			%			
explá	_		SP- SM	coai	rse-grained, w	D SAND with SILT, ith Gravel, brown, w		ng, _	12					
et for	_			med	lium dense.	(Glacial Outwash)		_						
she						· · · · · ·								
ology	844.1	36.0							12					
amin	_				OF BORING			_						
See Descriptive Terminology sheet for explanation of abbreviations)	_				er observed a er in the groun	t 32 feet with 32 fee id.	t of hollow	w-stem 						
e Descri	_			Bori	ng immediatel	y backfilled with ber	ntonite gr	out. –						
(See	_							_						
	_							_						
	_							_						
	_							_						
	_							_						
16	_							_						
14 15:	_							_						
8/13/								_						
ENT.GDT 8/13/14 15:16														
CURREN								_						
								_						
RAUN								_						
.GPJ B								_						
N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213.GPJ BRAUN_V8								_						
\2013\														
POLIS	_							_						
INNEA	_							_						
CTS/M	_							_						
PROJE	_							_						
(GINT)														
N:N DN	_							_						
OF BORING	_							_						
LOG OF	_							_						
ΞL	BL-13-0021	3				Braun Intertec Co	orporation			1	1	1	2034ST	page 2 of

BRAUN [®]	M
INTERTEC	

			3-00213	BORING			203	35CSS
SWLR	т	AL EVALU Minnesot	-	LOCATIO See attac				5; E: 493147.9
DRILLI	ER: M.	M. Belch METHOD: 3 1/4" HSA, Autohammer DATE:						SCALE: 1" = 4'
Elev. feet 867.7	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	WL	MC %	Tests or Notes		
866.7	1.0	AGG	12 inches of Aggregate Base.	,				
_		FILL	FILL: Silty Sand, fine- to medium-grained, tra Gravel, black, moist.	ce	17			
<u>863.7</u>	4.0	FILL	FILL: Silty Sand, fine- to medium-grained, tra Gravel, with black Silty Sand lenses, brown, n	ce noist	44			
860.7	7.0	FILL	FILL: Clayey Sand, fine- to medium-grained, Gravel, with Sand lenses, brown, moist.	trace	/ 			
_					18			An open triangle in the water level (WL) colun
<u>855.7</u> 	12.0	SP- SM	POORLY GRADED SAND with SILT, fine- to medium-grained, trace Gravel, brown, waterb very loose to loose. (Glacial Outwash)	earing, _	8	Ā		indicates the depth at which groundwater wa observed while drilling
 					7		15	Slogged augers with mud from 15 to 40 fee P200=8%
- 			Lean Clay lenses at 20 feet.		6			
-			Fine-grained at 25 feet.		2			
- -					7			

Braun P								BORING: 2035CSS (cont.)							
GEOTECHNICAL EVALUATION LOCATION: N: 131284.5; SWLRT Minnetonka, Minnesota Minnetonka, Minnesota METHOD: 3 1/4" HSA, Autohammer DRILLER: M. Belch												5; E: 493	147.9		
DRILLER:	M.	Belch			METHOD:	3 1/4" HSA, A	Autohammer	DATE:	9/5	/13		SCALE:	1'' = 4'		
5 Elev. De feet fe 835.7	epth eet 32.0	Sym	bol	(Sc		escription of N or D2487, Rocl	laterials <-USACE EM1110	0-1-2908)	BPF	WL	MC %	Tests c	or Notes		
	<u>34.0</u> 49.0	SM		SIL lens med Coa SIL with	TY SAND, fine ses at 35 feet, dium dense to arse Sand laye	e- to medium- trace Gravel, dense. (Glacial T e- to medium- yers of Sand, dium dense. (Glacial T	grained, with Le brown, waterbe 'ill) grained, with Gr Silt and Clay, b	an Clay aring, - - - - - - - - - - - - - - - - -	 12 15 39 24 21 26 		9	P200=22%	CSS page 2 of 3		

	n Proje						BORING	2	203	5CS	SS (con	t.)
	ECHNICA T etonka, I			N			LOCATIC See attac				5; E: 493	147.9
	ER: M.	Belch		METHOD:	3 1/4" HSA, Autoham	mer	DATE:	9/5	/13		SCALE:	1'' = 4'
b Elev. offeet 803.7	Depth feet 64.0	Symbol	(So		scription of Materials or D2487, Rock-USACE		0-1-2908)	BPF	WL	MC %	Tests o	or Notes
	79.0	SP-SM	ENE Aug Wat holk	D OF BORING er met refusal er observed a ow-stem auger	D SAND with SILT, f with Gravel, with occa n, Waterbearing, med (Glacial Outwash) (Glacial Outwash) at the 79-foot depth. t 12 1/2 feet with 12 ⁻ r in the ground. y backfilled with bent	asional L dium der	nse to 	 23 24 45 				

	-		3-00213				BORING			20	36S	S
SWLR	Г	AL EVALU Minneso ⁻				-	LOCATIC See attac				5; E	E: 493146.1
DRILLE	R: M.	Belch	METH	OD:	3 1/4" HSA, Autohamm	er	DATE:	9/4	/13		SCA	LE: 1" = 4'
Elev. feet 863.8	Depth feet 0.0	Symbol	(Soil-ASTM I		escription of Materials or D2487, Rock-USACE I	EM1110	-1-2908)	BPF	WL	MC %	qp tsf	Tests or Notes
- 861.8	2.0	AGG) - -		egate Base. n Clay, trace Gravel, gr	ay and	brown, –	9 TW				
			Sand lense	at 7 fe	eet.			6		18	1/4	
851.8	12.0		Black Lean	Clay I	enses at 10 feet.			5			3/4	
		PT 200 200 200 200 200 200 200 200 200 200		us, da	irk brown, moist. (Swamp Deposit)		- - - -	8				OC=85%
844.8	19.0			′, sligł	ntly Organic, gray, wet. (Swamp Deposit)			4				OC=2%
839.8	24.0						_					LL=34, PL=20, PI=14
		SP	POORLY G with Gravel, dense.	RADE gray,	ED SAND, fine- to medi waterbearing, loose to (Glacial Outwash)	um-gra mediu	ined, m	9	Ţ	17		P200=2% Switched to muc rotary drilling method after 25-foot sample.
								8				An open triangle the water level (WL) column indicates the de at which groundwater wa observed while

				3-00213	BORING	:	203	86S	S (cont.)
SWLR	ECHNICA F etonka,				LOCATIO See attao				5; I	E: 493146.1
DRILLE	:R: м.	Belch		METHOD: 3 1/4" HSA, Autohammer	DATE:	ATE: 9/4 /			SCA	LE: 1" = 4'
Elev. feet 831.8	Depth feet 32.0	Sym	ıbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	10-1-2908)	BPF	WL	MC %	qp tsf	Tests or Notes
_		POORLY GRADED SAND, fine- to medium-g with Gravel, gray, waterbearing, loose to med dense. (Glacial Outwash) <i>(continued)</i> Coarse-grained at 35 feet.		12				drilling.		
824.8	39.0	SM		SILTY SAND, fine- to medium-grained, with L lenses at 40 feet, brown, waterbearing, mediu to dense. (Glacial Till)		42				
- 814.8	49.0				-	24				
		SC		CLAYEY SAND, trace Gravel, brown, wet, ha (Glacial Till)	rd	32				
809.8	54.0	SP- SM		POORLY GRADED SAND with SILT, fine- to medium-grained, with Gravel, brown, waterbe dense. (Glacial Outwash)	aring,	39		13		P200=9%
804.8	59.0	SC		CLAYEY SAND, trace Gravel, brown, waterbe hard to very stiff. (Glacial Till)	earing, 	36			3	

		ct BL-13		BORING	i:	203	86S	S (co	ont.)
SWLRT	Г	AL EVALU Minnesot		LOCATIO See attao				5; E:	493146.1
DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	9/4	/13		SCALE	: 1" = 4'
Elev. feet 799.8	Depth feet 64.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	110-1-2908)	BPF	WL	MC %	qp tsf	Tests or Notes
			CLAYEY SAND, trace Gravel, brown, waterb hard to very stiff. (Glacial Till) <i>(continued)</i> Waterbearing Sand lense at 65 feet.	earing,	36				
			Sand layer at 70 feet.		30		12	Ρ	200=37%
789.8	74.0	SM	SILTY SAND, fine- to medium-grained, with brown, waterbearing, medium dense to dens (Glacial Till)	Gravel, e	33				
				- 	45				
_			Clayey Sand lenses at 85 feet.	- - - -	20				
					22				
769.8	94.0			-					
_		CL	SANDY LEAN CLAY, trace Gravel, gray, we hard. (Glacial Till)	t, stiff to	15				

GEOTE SWLR1	CHNICA	AL EVALUA Minnesot		BORING LOCATIO See attac	BORING: 2036SS (COR LOCATION: N: 131506.5; E: 4 See attached sketch.					
DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	9/4	/13		SCAL	.E: 1" = 4 '	
Elev. feet 767.8	Depth feet 96.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1		BPF	WL	MC %	qp tsf	Tests or Note	
767.8	96.0	Symbol	(Soil-ASTM D2488 or D2487, Rock-USACE EM1 SANDY LEAN CLAY, trace Gravel, gray, we hard. (Glacial Till) (continued) END OF BORING. Water observed at 25 feet with 25 feet of hol auger in the ground. Boring immediately backfilled with bentonite	t, stiff to - - - - - - - -	50		%			
_				_						
_				-						

٦	Brau		ect BL-13	8-00213	BORING			20	2766	٦
			AL EVALU		LOCATIO		12		37SS 2; E: 493009.7	-
s)	SWLR	Г			See attac				Z, E. 493009.7	
iation	Minne	etonka,	Minnesot	а						
abbrev	DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	9/6	/13		SCALE: 1" = 4'	_
See Descriptive Terminology sheet for explanation of abbreviations)	Elev. feet	Depth feet		Description of Materials		BPF	WL		Tests or Notes	
olana	863.3 862.6	0.0 0.8	Symbol PAV	(Soil-ASTM D2488 or D2487, Rock-USACE EM1 3 inches of Bituminous over 6 inches of Agg				%		-
r exp		0.8	FILL 💥	∖Base.	F					
set fo	_			FILL: Sandy Lean Clay, trace Gravel, brown	i, wet. –					
y she	_				_	17				
olog	_				_					
amin										
/e Te				Organics and debris at 5 feet.		14			Apparent geotextile fabric at 5 feet.	
riptiv	 856.3	7.0			-					
Desc		1.0	FILL 💥	FILL: Sandy Lean Clay, trace Gravel and ro	ots, black,	тw			DD=122 pcf	
See	_			wet.	-	-			MC=13% Su=1000 psf	
	_				-					
						5				
	_				-	А				
	851.3	12.0	PT 🖄	PEAT, fibrous, with shells, black, wet.						
	_		<u>1, vi</u> ,	(Swamp Deposit)	-	3		298	OC=59%	
	_		<u>v 1</u>		-					
18			1/ 1/1/ 1/2 1/2			ΤW				
14 15:			<u> </u>							
8/13/14 15:18		17.0	<u> 17</u>		_					
.GDT			OL	ORGANIC CLAY, trace fibers, gray, wet.		3		65	OC=9%	
RENT	_ 844.3	19.0		(Swamp Deposit)	-	Щ З		05	00-9%	
8_CUF	044.3	19.0	ML	SILT, gray, wet, very loose.		1				
N_V				(Alluvium)		3				
I BRA	-				-	Ĥ				
13.GP.	841.3	22.0	SP	POORLY GRADED SAND, fine- to coarse-o	rained	$\left\{ \right\}$	I⊥			
3\002:	_			with Gravel, gray, waterbearing, very loose t		2	<u> </u>		An open triangle in the	
s\2013	_			(Glacial Outwash)	-	H .			water level (WL) colum indicates the depth at	
APOLIS						ļ			which groundwater was observed while drilling.	5
IINNE,						6				
CTS/N					_					
ROJEC	_				-	∬ ∬ 10				
3INT/F	-				-	Щ Ю				
)/:N 5	-				-	1				
ORING						10		14	P200=5%	
OG OF BORING N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213.GPJ BRAUN_V8_CURRENT.	-				-	А				
	BL-13-0021	3		Braun Intertec Corporatio	n				2037SS page 1 c	of 4
									page 10	

LOCATION: N: 131561.2; E: 493009.7 See attached sketch. ammer DATE: 9/6/13 SCALE: 1" = 4' als BPF ACE EM1110-1-2908) BPF Coarse-grained, y loose to dense. 9 9 9 9 9
als BPF WL MC Tests or Notes ACE EM1110-1-2908) Coarse-grained, y loose to dense. 9 tinued) 9
ACE EM1110-1-2908) % coarse-grained, y loose to dense. 9 tinued) 9
y loose to dense. 9 tinued)
19 15 7 15 40 20 15 15 15 15 15 15 15 16 17 10 15 16 17 10 15 17 10 15 15 15 16 17 10 15 15 15 15 15 15 15 15 15 15

			3-00213	BORING	:	203	37S	S (con	t.)
SWLRT	7	AL EVALU Minnesot		LOCATIO See attac				2; E: 49	3009.7
DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohamme	r DATE:	9/6	/13		SCALE:	1'' = 4'
Elev. feet 799.3	Depth feet 64.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE E	W1110-1-2908)	BPF	WL	MC %	Tests	or Notes
_		CL	LEAN CLAY, brown to gray, wet, very stift (Glacial Till)		28				
794.3	69.0	SM	SILTY SAND, fine- to medium-grained, tra with occasional Lean Clay lenses, brown, medium dense to dense. (Glacial Till)	ace Gravel, waterbearing,	30				
-					32				
				-	36				
774.3	89.0			-	19				
		CL	SANDY LEAN CLAY, trace Gravel, gray a wet, hard. (Glacial Till)	ind brown, 	41				
-					76				

		ect BL-1					BORING		203	37S	S (con	t.)	
SWLR	Г	AL EVALU Minneso		N			LOCATION: N: 131561.2; E: 493009 See attached sketch.						
DRILLE	R: M.	Belch		METHOD:	3 1/4" HSA, Aut	ohammer	DATE:	9/6	6/13		SCALE:	1'' = 4'	
Elev. feet 767.3	Depth feet 96.0	Symbol	SAN	il-ASTM D2488 NDY LEAN CL , hard.	escription of Mat or D2487, Rock-L AY, trace Grave Glacial Till) <i>(cont</i>	ISACE EM1110 el, gray and b		BPF	WL	MC %	Tests	or Notes	
- 762.3	101.0		Wat		6. at 22 1/2 feet wit r in the ground.	h 22 1/2 feet		*			*95 blows	for 10 inche	
-				-	ly backfilled with	i bentonite gr	out						
_ 													
- - 													
- - -							-						
— — BL-13-00213	2					tec Corporation	_					037SS page 4	

			3-00213	BORING	:		20	83ST
SWLR	Г	AL EVALU	-	LOCATIC See attac				.6; E: 493050.6;
DRILLE	:R: м.	Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	3/27	7/14		SCALE: 1" = 4'
Elev. feet 856.7	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11		BPF	WL	MC %	Tests or Notes
-		PT <u>2000</u> 2000 2000 2000 2000 2000 2000 200	WELL DECOMPOSED PEAT, dark brown ar wet. (Swamp Deposit)	id black, – – –	WH			WH=Weight of hamme
849.7	7.0		Roots and shells at 5 feet. ORGANIC SILT, with roots and shells, black,		Wн			
_			(Swamp Deposit)	-	Wн Wwн			OC=8%
- - 842.7	14.0			-	х Х WH			PL=36 PI=35 A solid triangle indicate the groundwater level i the boring on the date
	14.0	ML	SILT, gray, wet, loose. (Alluvium) Poorly Graded Sand layer at 16 feet.		5	Ţ		indicated. Groundwate levels fluctuate. Switched to mud rotary drilling at 15 feet, switched back to auge boring at 25 feet.
_ 837.7	19.0			_	7*			*No sample recovery.
		GP	POORLY GRADED GRAVEL, gray, waterbea loose. (Glacial Outwash)	aring, 	9			
834.7 	22.0	SP 0	POORLY GRADED SAND, medium- to coarse-grained, with frequent Gravel layers, g waterbearing, loose to dense. (Glacial Outwash)	gray, _	10			
					13			
_					37*		14	P200=5% *Jetted auger from 27 30 feet.
825.7	31.0	SP-			41			

	n Proje						BORING:		208	33S ⁻	T (cont	:.)	
SWLR	ECHNIC/ F etonka,			ON			LOCATIC See attac						
DRILLE	R: M.	Takada		METHOD:	3 1/4" HSA, Autor	nammer	DATE:	3/27	7/14		SCALE:	1'' = 4'	
Elev. feet 824.7	Depth feet 32.0			oil-ASTM D2488	scription of Mater or D2487, Rock-US	ACE EM111	0-1-2908)	BPF	WL	MC %	Tests	or Notes	
_		SM	me me	edium-grained, v edium dense.	D SAND with SIL vith Gravel, gray, ial Outwash) <i>(cor</i>	waterbeari	ng,	23					
819.7	37.0	SC-			AND, fine- to med	dium graina							
_		SM	Gra	avel, brown, wa nse.	terbearing, medic (Glacial Till)	im dense to	very _	51		9			
-								53					
-							_	17					
-								13					
			Po	orly Graded Sa	nd layer at 47 fee	t.		15					
								16					
-													
								23					
-													
								12					
-							_						
L-13-0021	3		ЯШ		Braun Interted	Corporation					20	83ST page	

	n Proje						BORING:		208	33S	T (cont	.)	
SWLRT	CHNICA T tonka, I			ON		-	LOCATIC See attac				6.6; E: 493050.6;		
DRILLE	R: M.	Takada	ikada METHOD: 3 1/4" HSA, Autohammer DATE:				DATE:	3/27	7/14		SCALE:	1" = 4'	
Elev. feet 792.7	Depth feet 64.0	Symb		oil-ASTM D2488	escription of Materials or D2487, Rock-USACE		,	BPF	WL	MC %	Tests	or Notes	
_			Gr	avel, brown, wa nse.	AND, fine- to medium aterbearing, medium d Blacial Till) <i>(continued)</i>	ense to		18		13	DD=126.5	pcf	
787.7	69.0	CL	SA	NDY LEAN CL	AY, trace Gravel, gray (Glacial Till)	v, wet, s	tiff	16					
782.7	74.0	SP	PC	OORLY GRADE terbearing, med	ED SAND, fine-grained dium dense to dense. (Glacial Outwash)	, gray,		17					
								44					
772.7	84.0	SS	SA ligi	ht brown, water	e- to medium-grained, bearing, very dense. (St. Peter Formation)	brown		67/11'					
								50/5"					
		:						50/2"					

State Project			Bridge No. or Job Desc. Trunk Highway/Location SWLRT						Boring No. 2025SB			Ground Elevation 880.7 (Surveyed)		
Locatio	<i>n</i> Her	nepir	Co. Coordinate: X=492962 Y=131954 (ft.) Dr.					e 7507				SHEET	• •	
	-	-	North)= Longitude (West)=						omatic Calibrated			Drilling 8/26 Completed		
			Offset Information Available				SPT	МС	сон	γ		Other T	Tooto	
_	Depth	2			- -	Neo	(%)	(psf)	(pcf)	Soil	Or Rem			
DEPTH	Depin	Lithology				חקר atiol	REC				*			
DE	Elev.	Lith	Classification			Drilling Operation	(%)	(%)	ACL (ft)	Core Breaks	Roci	Forma or Men		
	1.0	8663	12 inches of Aggregate Base.			Ħ					<u> </u>			
-	879.7		POORLY GRADED SAND with SILT, fine- to medium-grained, trace Gravel, with occasional Lean Clay lenses, brown, moist, (SP-SM), fill			5		Ţ						
+	-						13	+						
5-	-					R		İ.						
-	- 7.0	\bigotimes					18	-						
+	7.0 873.7							+						
-	-	\bigotimes			K	6	Į							
10	_	\bigotimes				51	8*	+			*N	o sample rec	overv.	
-	-	\bigotimes					0	Ţ						
-	ļ	\bigotimes	SANDY LEAN CLAY, trace Gr (CL), fill	avel, brown to gray	, wet,		6	+						
	-	\bigotimes	(CL), IIII			िसि		-						
15-	-						6	Ţ						
+	+					Æ		+						
+	- 19.0	\bigotimes				\mathbb{X}	4	+						
Z ₂₀	861.7			arey waterboaring (CS) fill		R		Ŧ			C	itabad ta mu		
-	22.0	\bigotimes	CLAYEY SAND, trace Gravel,	gray, waterbearing	, (CS), fill		4	+				vitched to mu		
1	858.7				- PD		Ţ				mple. C=2%			
+	-		SLIGHTLY ORGANIC SANDY LEAN CLAY, trace Gravel,				8	-				J-Z 70		
25-	_		black, wet, (CL), fill			PD	11	+						
]	27.0					\vdash		Ţ						
-	853.7					PD		-						
30-	-		SANDY I FAN CLAY trace Cr	aval brown wat w	on chiff			-						
50	-		SANDY LEAN CLAY, trace Gra (CL), till	avel, blown, wel, ve	ery Sun,		20	+						
+	-					PD		+			*N	o sample rec	overv	
1	34.0					\mid	19*	Ţ				o oup.o 100	o : o. j.	
35-	846.7	× . ×				PD		+						
-	-	í× í . í . í .×					21	1						
-	-	'× ' . ' . ' .×				PD	22	+			P2	00=23%		
-	-	× .	SILTY SAND, fine- to medium-grained, with Gravel, with occasional Poorly Graded Sand lenses, brown, wet,			PD		+						
40-	-		medium dense to dense, (SM)		<i>,</i>		26	Ţ						
+	-	× .				PD		+						
-	-	`.'.X ×'.					21	+						
45	-	<u> </u>				PD		Ť						

State I	Project		Bridge No. or Job Desc. Trunk Highway/Location SWLRT			Boring No. 2025SB			Ground Elevation 880.7 (Surveyed)		
Т	Depth	gy			и	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
Depit Depit Elev		Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
	-	× . ×					-				
-	-	× . × 			PD	26	+				
50-	-	· · · × ·× · ·			PD 31						
-	-	·× · . · . · .× ·× · .	~ *			-	+				
55-	-	· · · × · · · ×			PD	-	+				
	-	· · · × ·× · · · · · ×	occasional Poorly Graded S	um-grained, with Gravel, with Sand lenses, brown, wet,	X	42	+				
-	-	× . · × .	medium dense to dense, (S	SM), till <i>(continued)</i>	PD		-				
60-	-	· · · × ·× · . · · · ×				26	-				
-	-	× . 			PD	-	+				
65 -	-	× . × .				- 14	_				
-	-	· · · × · × · ·			PD	-	-				
- 70 -	69.0 811.7	× · .				-	-				
-	-	· · · · · · · · · · · · · · · · · · ·				18 - -	-				
-	-	· · ·			PD	-	-				
75-	-					20	-				
-	-	· · · · · ·	POORLY GRADED SAND with	with SILT, fine- to	PD	-	-				
80-	-		medium-grained, trace Grave medium dense to very dense	vel, brown, waterbearing, se, (SP-SM), outwash		15	+			P2	200=6%
-	-				PD	-	+ +				
- 85 -	-					- - 18 -	+				
-	-	· · ·				-	-				
90 -	-				PD	-	ŀ				

State Project			Bridge No. or Job Desc. Trunk Highway/Location SWLRT					Boring 1 2025			Ground Elevation 880.7 (Surveyed	
E	Depth	gy			ис	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks	
עדיד	Elev.	Lithology	Ci	lassification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member	
-	-	· · · · · ·										
-	-	· · · · · ·			PD		+					
95			POORLY GRADED SAND	\geq	* -	-			*50 blows per 50-inch			
			medium-grained, trace Gra medium dense to very dens (continued)	vei, brown, waterbearing, se, (SP-SM), outwash	PD	PD -						
- 0-0	- 100.6	· · · · · ·					+			*50 blows per 6-inch se		

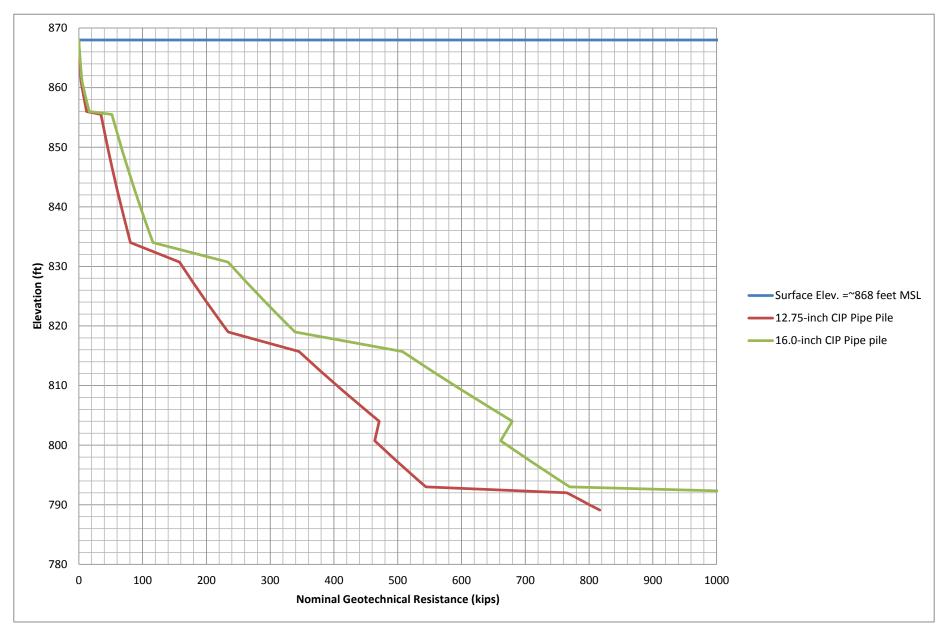
State Project			Bridge No. or Job Desc. Trunk Highway/Location SWLRT					Boring 2026			Ground Elevation 879.5 (Surveyed)		
Locatio	ocation Hennepin Co. Coordinate: X=492895 Y=132336					Machine	9 7507				SHEET 1 of 3		
	Latitude (North)= Longitude (West)=				Han	nmer CN	IE Auto	matic Ca	alibrated		Drilling Completed	8/27/13	
			Offset Information Available			SPT	МС	сон	γ		Other 7	Tests	
_	Depth	7				Maa	(%)	(psf)	(pcf)	Soil	Or Rem		
DEPTH	200	Lithology			Drilling Operation	REC	RQD	ACL	Core	×	Forma	tion	
DE	Elev.	Litl	Classification			(%)	(%)	(ft)	Core Breaks	Roc	or Men		
_	1.0	2223	12 inches of Aggregate Base.		3		-						
-	878.5	\bigotimes	POORLY GRADED SAND with SILT, fine- to				÷						
-	4.0	\bigotimes	medium-grained, with Gravel,	brown, moist, (SP-SM), fill	n, moist, (SP-SM), fill		+						
5-	875.5		SILTY SAND, fine- to medium-grained, with bituminous pieces, black, moist, (SM), fill		R		-						
-	7.0					20	ł						
	872.5	XX	CLAYEY SAND, with Gravel,	brown moist (SC) fill	-41		Ì						
-	9.0 870.5	\bigotimes				14	+						
10-	_ 070.5	\bigotimes	SILTY SAND, fine- to medium bricks and bituminous, brown,		S I	8.							
-	12.0	\bigotimes	blicks and bituminous, brown,		- 47		ļ						
-	867.5	\bigotimes				4	-						
▼ 15	_	\bigotimes			Æ		-						
	-	\bigotimes	SANDY LEAN CLAY, trace G	ravel, brown, wet, (CL), fill		9.	+				witched to mu illing method		
-	-	\bigotimes			PD		+				imple.		
-	-	\bigotimes				9	ļ						
20-	_ 20.0 859.5	\bigotimes			PD	-	-						
-	22.0	\bigotimes	SANDY LEAN CLAY, trace ro	ots, black, wet, (CL), fill		15	<u> </u>						
-	857.5		ORGANIC CLAY, with roots a swamp deposit.	nd fibers, black, wet, (OL),		6	Ļ			0	C=7%		
	_ 24.0 855.5				PD		+						
25-	-		LEAN CLAY with SAND, sligh fibers, gray, wet, (CL), swamp		\mathbf{X}	7.	Į.			0	C=2%		
-	_ 27.0 852.5			'	- PD		+						
-		0 0				23	Ì						
30	_	0	WELL-GRADED GRAVEL wit		PD	-	ļ.						
+	-	0	coarse-grained, gray, waterbe dense, (GW-GM), outwash	anny, meulum dense to		25	t						
1	-	0 0			PD	35	ļ						
+	34.0 845.5	0			PD		+						
35						30	+						
-	-				PD		ļ						
+	-		POORLY GRADED SAND wit	h SILT, fine- to	\square	24*	+			*N	lo sample rec	overy.	
40-	-		medium-grained, with Gravel,	brown, waterbearing, medium		1 -	Ļ			_			
-	-		dense to dense, (SP-SM), out	wasn			+			P2	200=7%		
+	-				PD		t			N	o sampling fro	om 42 to 50	
-	-						Ļ				et due to cobl		
45	Index She				_		L	⊥ \\		\perp			
	Index She	et Coo	de 3.0 (Continu	ed Next Page)							Class: Edit: L APOLIS\2013\002		

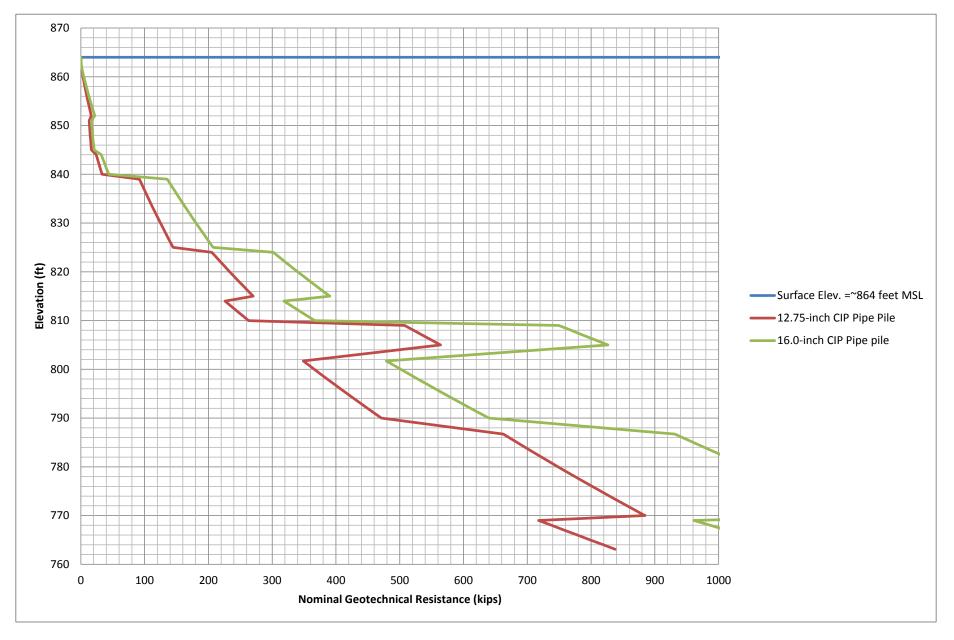
UNIQUE NUMBER

U.S. Customary Units

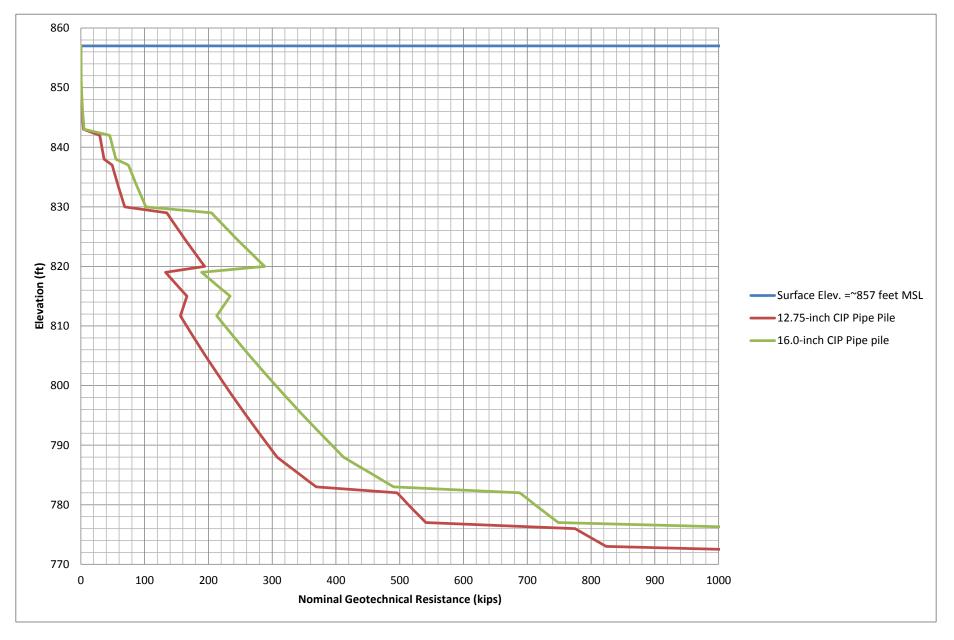
State Project			Bridge No. or Job Desc.	lge No. or Job Desc. Trunk Highway/Location SWLRT						1	Ground Elevation 879.5 (Surveyed)
I	Depth	Лbс			и	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
+	49.0		POORLY GRADED SAND medium-grained, with Grav dense to dense, (SP-SM),	el, brown, waterbearing, medium	PD	-	-				
50 - - -	830.5		SANDY LEAN CLAY, trace till	Gravel, brown, wet, hard, (CL),	\square	53	+				
55+	54.0 825.5	//// . · . ·				- -	+				
		· · · · · · · · ·				22	-				
60 +		· · · · · · · · · · · · · · · · · · ·			PD	28	+				
+		· · · · · ·			PD	-	-				
65 + -		· · · · · · · · · · · · · · · · · · ·					+ + +				
+		· · · · · · · · · · · · · · · · · · ·			PD	-	-				
70+ + +		· · · · · · · · · · · · · · · · · · ·	Gravel, brown, waterbearin	fine- to coarse-grained, with g, medium dense to very dense,		20* .	-			*N	lo sample recovery.
ļ			(SP), outwash		PD	-	+				
75+ +		· · · · · · · ·				25	-				
ļ		· · ·			PD	-	+ +				
30+						33 .	+				
+					PD	-	+				
35+						22	+				
+	89.0					-	+				
90⊥	790.5		(Cont				L	⊥			

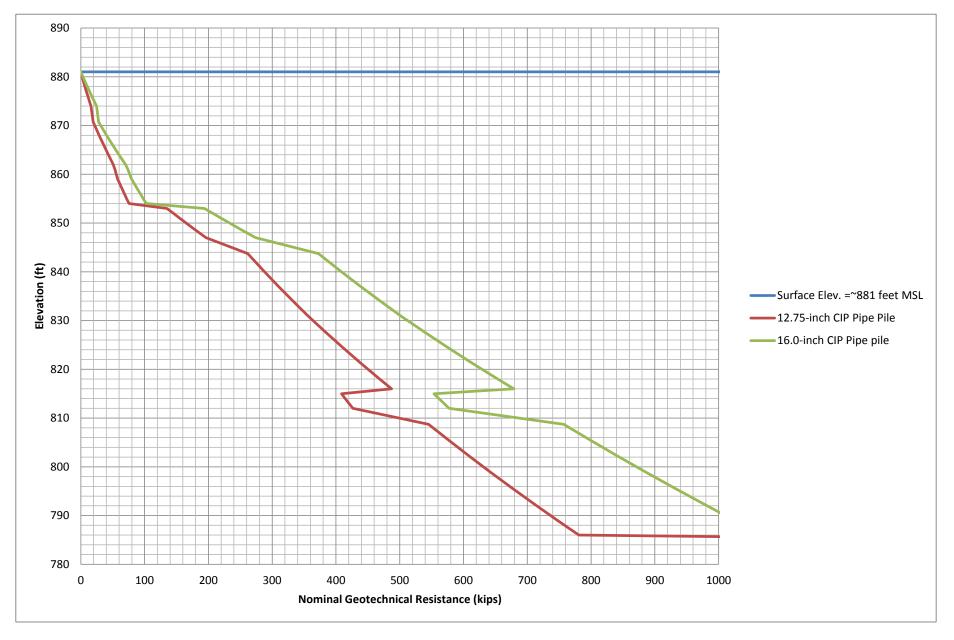
UNIQUE NUMBER

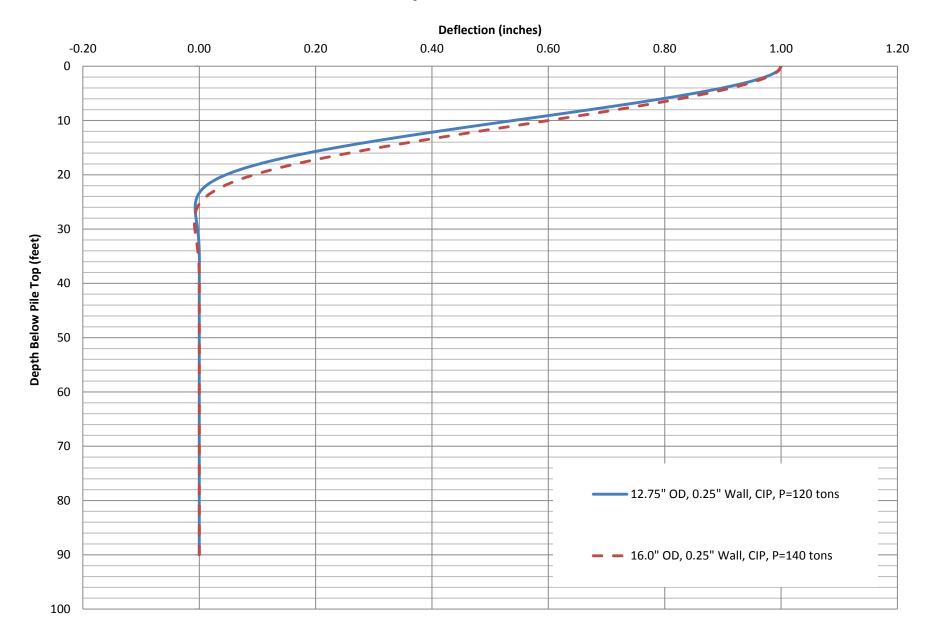



U.S. Customary Units

State Project			Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring No. 2026SB			Ground Elevation 879.5 (Surveyed)	
т	Depth	gy				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks	
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member	
- - - 95 -	- - - -		SANDY LEAN CLAY, trace	PD X	25 -	- - - -						
- - - 100-	- - - - 101.0		hard, (CL), till <i>(continued)</i>				-					
			Water observed at 15 feet win the ground. Boring immediately backfille	vith 15 feet of hollow-stem auge	r							

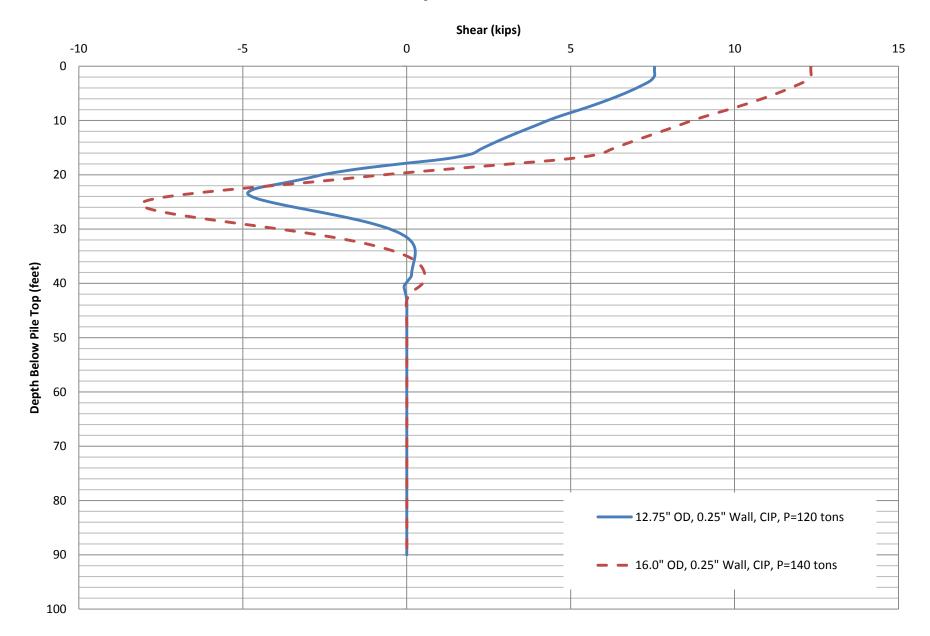

Golden Triangle Station Area Boring: 2035CSS 12.75-inch and 16.0-inch Closed Ended Pipe Pile


Golden Triangle Station Area Borinig: 2036SS 12.75-inch and 16.0-inch Closed Ended Pipe Pile


Golden Triangle Station Area Boring: 2083ST 12.75-inch and 16.0-inch Closed Ended Pipe Pile

Golden Triangle Station Area Boring: 2025SB 12.75-inch and 16.0-inch Closed Ended Pipe Pile

Lateral Analysis Results - Deflection



Moment (inch-kips) -2,000 -500 -1,500 -1,000 0 500 1,000 0 10 20 30 Depth Below Pile Top (feet) 40 50 60 70 80 - 12.75" OD, 0.25" Wall, CIP, P=120 tons - 16.0" OD, 0.25" Wall, CIP, P=140 tons 90 100

Lateral Analysis Results - Moment

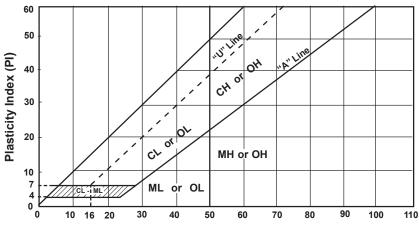
Lateral Analysis Results - Shear

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Criter	ia for Assigni	ng Group	Symbols and	So	Is Classification	Particle S	ize Identification
	Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^a				Group Symbol	Group Name ^b	Boulders Cobbles	
" uo	Gravels	Clean Gravels		$C_u \ge 4$ and $1 \le C_c \le 3^{c}$	GW	Well-graded gravel ^d	Gravel Coarse	2/4" to 2"
grained Soils 50% retained c 200 sieve	More than 50% of coarse fraction	5% or less	fines e	$C_u < 4$ and/or $1 > C_c > 3^c$	GP	Poorly graded gravel d	Fine	
d S etair eve	retained on	Gravels wi	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand	
grained 50% reta 200 siev	No. 4 sieve	More than 12	2% fines ^e	Fines classify as CL or CH	GC	Clayey gravel dfg		
-9ra	Sands	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3^{c}$	SW	Well-graded sand ^h		
oarse- e than No.	50% or more of coarse fraction	0/001103	fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^c$	SP	Poorly graded sand h	Silt	
Coa more t	passes	Sands with Fines More than 12% ⁱ		Fines classify as ML or MH	SM	Silty sand fgh	Clav	below "A" line $<$ No. 200, PI \ge 4 and on or above "A" line
U DE	No. 4 sieve			Fines classify as CL or CH	SC	Clayey sand fgh		
he	Silte and Clave	Inorganic	PI > 7 ar	nd plots on or above "A" line ^j	CL	Lean clay k 1 m		
Soils issed the eve	Silts and Clays Liquid limit	literganie	PI < 4 oi	I < 4 or plots below "A" line ^j		Silt ^{k I m}	Relative Density of	
ed So Dasse sieve	less than 50	Organic	· ·	$\frac{\text{nit} - \text{oven dried}}{1} < 0.75$	OL	Organic clay k I m n	Conesioni	nless Soils
grained more pat			Liquid lin	nit - not dried	OL	Organic silt ^{k I m o}	Very loose	
graine more p 0. 200	Silts and clays	Inorganic	PI plots of	on or above "A" line	СН	Fat clay k I m	Loose	5 to 10 BPF
1.0	Liquid limit	gamo	PI plots b	pelow "A" line	MH	Elastic silt k I m		31 to 50 BPF
Fine 50% or N	50 or more	Organic	Liquid lin	nit - oven dried < 0.75	ОН	Organic clay k I m p	Very dense 0	
20				nit - not dried	ОН	Organic silt k I m q		
Highly	Highly Organic Soils Primarily organic matter, dark in color and			r, dark in color and organic odor	PT	Peat	Consistency o	f Cohesive Soils

Based on the material passing the 3-in (75mm) sieve a.


b. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name $C_u = D_{6i}$

$$D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$$

- d. If soil contains>15% sand, add "with sand" to group name
- Gravels with 5 to 12% fines require dual symbols: e
- GW-GM well-graded gravel with silt

C.

- GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with silt GP-GC
- poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains \geq 15% gravel, add "with gravel" to group name.
- h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt SW-SC
- well-graded sand with clay SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant. k.
- If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- If soil contains≥30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- $PI \ge 4$ and plots on or above "A" line. n.
- PI <4 or plots below "A" line. о.
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

DD	Dry density, pcf	oc	Organic content, %
WD	Wet density, pcf	S	Percent of saturation, %
MC	Natural moisture content, %	SG	Specific gravity
LL	Liqiuid limit, %	С	Cohesion, psf
PL	Plastic limit, %	\oslash	Angle of internal friction
PI	Plasticity index, %	qu	Unconfined compressive strength, psf
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf

	Loose	5 to 10 BPF
-	Medium dense	11 to 30 BPF
_	Dense	31 to 50 BPF
	Very dense	
_		
	Consistency of Coh	esive Soils
	Consistency of Coh Very soft	
		0 to 1 BPF
	Very soft	0 to 1 BPF 2 to 3 BPF

	0 10 0 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.'

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards

Appendix C

Bridge over Shady Oak Road and TH 212

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Foundation Analysis Design Recommendation Report Bridge over Shady Oak Road and TH 212 – 90% Design STA 2253+91 to STA 2275+41 Southwest LRT, West Segment 2 Eden Prairie, Minnesota

Dear Mr. Demers:

Braun Intertec has completed the geotechnical evaluation for the proposed light rail bridge over Shady Oak Road and TH 212 in Eden Prairie, Minnesota. The following sections provide our recommendations for the design and construction of bridge foundations and associated embankments.

This report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for retaining walls (RTW-W206 and RTW-W207), land bridges, general track construction, and pole foundations for the Overhead Contact System (OCS) will be addressed in separate reports.

A. Project information

The west segment of the SWLRT project is proposing to construct a light rail transit line through Hopkins, Minnetonka, and Eden Prairie, Minnesota. This portion of the project considers the design and construction of a multiple span bridge carrying the SWLRT alignment over TH 212, Shady Oak Road, and Flying Cloud Drive in Eden Prairie, Minnesota. The light rail bridge will consist of two abutments and 13 piers. Prestressed concrete beams are proposed to support a cast-in-place concrete deck.

A.1. Type of Structures

This design report provides recommendations for bridge foundations and approach embankment support for the bridge carrying light rail vehicles over TH 212, Shady Oak Road, and Flying Cloud Drive. The abutments and piers are anticipated to be supported on cast-in-place concrete pipe piles. The north approach will consist of an earth embankment with sides supported by retaining walls RTW-W206 and RTW-W207. The south approach will consist of a land bridge that will be supported on cast-in-place concrete pipe piles. Design recommendations for the retaining walls and land bridge will be covered under separate reports.

A.2. Location of Bridge

The bridge is proposed to carry the LRT tracks over TH 212 near the junction of Shady Oak Road and TH 212 in Eden Prairie, Minnesota. The north bridge abutment will be located on the west side of TH 212 approximately 0.25 miles south of TH 62 and the south abutment on the east side of TH 212 approximately 0.1 miles south of Shady Oak Road. A series of 13 bridge piers will be located between the abutments, with span lengths ranging from approximately 135 to 171 feet. The overall length of the bridge is approximately 2,150 feet between the abutments.

A.3. Other Information

The design team discussed the use of spread footing foundations to support the new structure. While the soils at some boring locations appear suitable to support the anticipated vertical loads, the anticipated lateral loads and large footing size needed to resist the loads make spread footings a less viable option. Therefore, pile supported foundations are being considered for structure support.

To construct the bridge, embankment grade increases of 15 to 20 feet for the north bridge abutment will be necessary. Grade raises of this magnitude will influence the design and construction of the proposed bridge foundation types. The effects of the embankment stresses are accounted for in our foundation design recommendations.

B. Subsurface Investigation Summary

B.1. Summary of Borings Taken

Braun Intertec completed standard penetration test (SPT) borings and cone penetration test (CPT) soundings near the proposed bridge structures on the project. Further details of the structure location and corresponding SPT borings and CPT soundings performed are as follows:

	Approximate Track		
Structure	Stationing	Corresponding SPT Borings	Corresponding CPT Soundings
South	2253+91	2026SB	
Abutment	2233+31	202030	
Pier 1	2255+48	2111SB	-
Pier 2	2257+13	2013SB	-
Pier 3	2258+68	2112SB	-
Pier 4	2260+23	2113SB	-
Pier 5	2261+94	2129SB	-
Pier 6	2263+29	-	2130CB
Pier 7	2264+89	2014SB	2131CB
Pier 8	2266+59	2132SB	-
Pier 9	2268+09	2133SB	2133CB
Pier 10	2269+59	2015SB	-
Pier 11	2271+09	-	2134CB
Pier 12	2272+59	-	2135CB
Pier 13	2273+99	-	2136CB
North Abutment	2275+41	2016SB	-

Table 1. Structure Location and Corresponding SPT Boring and CPT Soundings

The Appendix includes copies of the SPT and CPT logs, a generalized soil profile and a boring layout sketch.

B.2. Description of Foundation Soil and Rock Conditions

The borings conducted for the bridge piers and abutments generally revealed a surficial layer of topsoil fill underlain by additional fill over mixed layers of glacial soils (outwash and tills). Swamp deposits were noted in Borings 2026SB (South Abutment), 2112SB (Pier 3), 2113SB (Pier 4), and 2133SB (Pier 9), between the fill and underlying glacial soils. The following paragraphs discuss the encountered soils in more detail at each substructure location.

B.2.a. Pavements

Borings 2026SB, 2111SB, and S113SB were located within or near existing parking lot areas. The borings encountered various amounts of bituminous pavement and/or aggregate base. A summary of the encountered pavement section is provided in the following table.

Boring	Approximate Track Stationing	Bituminous Thickness (inches)	Aggregate Base Thickness (inches)
2026SB	2253+91	-	12
2111SB	2255+48	4	8
2113SB	2260+23	4	-

Table 2. Encountered Pavement Section

B.2.b. Topsoil Fill

A surficial layer of topsoil fill was encountered at all boring locations, with the exception of Borings 2026SB, 2111SB, and 2113SB. The topsoil fill ranged in thickness from a few inches to 2 feet and consisted of silty sand (SM), clayey sand (SC), sandy lean clay (CL), and organic clay (OL).

B.2.c. Fill

Immediately below the topsoil fill or pavements, the borings encountered fill soils consisting of a mixture of poorly graded sand with silt (SP-SM), silty sand, clayey sand, sandy lean clay, lean clay with sand (CL), and organic clay to varying depths ranging from approximately 7 to 58 feet below existing grade, corresponding to elevations 887 to 823 feet.

B.2.d. Swamp Deposits

Swamp deposits were encountered directly beneath the fill near the intersection of Shady Oak Road and Flying Cloud Drive (Borings 2026SB, 2112SB, and 2113SB) and between the southbound TH 212 offramp to Shady Oak Road (Boring 2133SB). Swamp deposits consisted of peat (PT), organic clay, and slightly organic lean clay with sand. The swamp deposits extended to variable depths ranging from 19 to 63 feet below existing grade, corresponding to elevations 864 to 818.

B.2.e. Glacial Soils

Glacial soils were encountered below the fill and swamp deposits to boring termination depths, except where weathered bedrock was encountered below the glacial soils. The glacial soils consisted of till and outwash with classifications including sandy lean clay, lean clay, sandy silt, silt with sand, clayey sand, silty sand, poorly graded sand, poorly graded sand with silt, and well graded gravel with silt. Glacial soils have the potential to contain cobbles and boulders.

B.2.f. Weathered Bedrock

Weathered sandstone bedrock was encountered at Borings 2111SB and 2016SB below the glacial soils at depths of 96 and 109 feet below existing grade, respectively. The recovered sandstone samples classified as poorly graded sand.

B.2.g. Penetration Resistance Testing

The results of our penetration resistance testing from the borings are summarized below. Comments are provided to qualify the significance of the results.

Geologic Material	Classification	Range of Penetration Resistances*	Comments
Fill	SP-SM, SM, SC, CL	3 to 34 BPF	Variable compaction
Swamp Deposits	OL, OH, CL, PT	4 to 18 BPF	Slightly to moderately consolidated
	GW-GM, SP-SM,	5 to 50+ BPF	Locally loose to very dense, generally
Glacial Soils	SP, SM, ML	5 to 30+ BPF	medium dense to dense
	CL, SC	4 to 53 BPF	Locally rather soft to hard, generally
	CL, 3C	4 to 55 BFT	stiff to hard

Table 3. Penetration Resistance Data

*BPF-Blows per Foot

B.2.h. CPT Sounding Results

Where the retaining wall CPT soundings penetrated into the underlying glacial soils, we recorded tip resistances generally ranging from less than 100 to over 5,000 psi. These tip resistances also indicate soils are generally loose to very dense and appear consistent to the SPT borings performed concurrently on the project

B.3. Summary of Water Level Measurements

Groundwater elevations were noted on the boring logs between elevations of about 851 1/2 and 876 1/2 feet above Mean Sea Level (MSL). Seasonal and annual fluctuations of groundwater, however, should be anticipated.

B.4. Interpretation of Water Level

The water level measurements in the borings indicated groundwater elevations between 851 1/2 and 876 1/2 feet, however, the boreholes were only open for a short period of time and it is likely that insufficient time was available for groundwater rise to its hydrostatic level. Based on the anticipated bottom-of-footing/pile-cap elevations for the bridge substructures and the recorded water levels, groundwater may influence foundation construction of the pile caps. The estimated water level and anticipated design may require the placement of 1 to 2 feet of crushed rock to aid in controlling groundwater seepage with sumps and pumps and provision of a working platform for construction of the pile caps.

C. Foundation Analysis

Based on the soil conditions encountered in the borings and soundings, and the loads anticipated on the bridge, we recommend the proposed bridge abutments and piers be supported on pile foundations.

C.1. Embankments and Slopes

The proposed bridge will require the construction of an approach embankment at the north abutment. The south abutment will transition to a land bridge, thus no embankment construction is anticipated on the south end of the proposed bridge. The northern approach embankment will be approximately 15 to 20 feet tall and will utilize two walls, RTW-W206 and RTW-W207, to retain embankment backfill material (walls covered under separate report).

Foundation preparation will include removal of topsoil and topsoil fill. After removals, the foundation preparation will consist of surface compacting the underlying subsurface soils and the placement of engineered fill to provide competent foundation soils, as needed.

C.1.a. Settlement

Based on the anticipated fill heights of up to 15 to 20 feet for the north embankment, total settlement magnitudes up to 1 to 1 1/2 inches are estimated using imported granular fill.

C.1.b. Time Rate of Settlement

Due to the embankment raise in grade at the north bridge approach, we recommend a waiting period to allow settlement of the underling soils to occur prior to foundation construction. Details of the preload waiting period are discussed in Section D.5.

C.2. Pile Foundations

C.2.a. Nominal Resistance at Given Tip Elevations (Compression)

For bridge support, we calculated the nominal resistance of the piles in compression. Please refer to the Nominal Resistance Graphs and Section C.3.c.1 for the calculation method.

C.2.b. Calculate and Consider Downdrag and Lateral Squeeze

The new fill being placed for the north approach embankment will result in settlement of the existing soils. Therefore, we recommend constructing the embankment to the proposed finished grade elevation, waiting for a period of 2 to 6 weeks to allow the underlying foundation soils to consolidate, then excavate the embankment material to the bottom of foundation elevation and install the bridge and retaining wall foundations. This waiting period will allow the foundation design of the bridge to utilize battered pile.

Based on the recommended preloading of the north approach embankment and no raise in grade anticipated in the area of the south abutment and bridge piers, we do not anticipate downdrag forces will contribute additional load to the piles.

Lateral squeeze can occur if the unit weight of the fill multiplied by the fill height is greater than three times the undrained shear strength of the subgrade soils. Due to the general granular nature of the soil encountered at the north embankment, we do not anticipate that lateral squeeze will be an issue.

C.2.c. Lateral Earth Pressure Calculations for P-Y Curves and Lateral Earth Forces

The following tables provide the soil parameters used for the lateral pile analyses and p-y curve generation, which was performed using the computer program LPILE (2013). Based on the soils encountered in the borings, we used the default lateral modulus of subgrade reaction values included in LPILE. For the purposes of our analyses, we used the soil parameters from Borings 2014SB and 2133SB.

Layer Top Depth Below BOPC Elevation (feet)	Layer Bottom Depth Below BOPC Elevation (feet)	Effective Unit Weight (pounds per cubic foot)	Internal Angle of Friction (degrees)	Undrained Shear Strength (pounds per square foot)	Material Type
0	9	125	28	NA	Sand (Reese)
9	17	130	33	NA	Sand (Reese)
17	34	63	32	NA	Sand (Reese)
34	47	63	NA	2,500	Stiff Clay w/out Freewater
47	64	68	NA	1,200	Stiff Clay w/out Freewater
64	69	63	33	NA	Sand (Reese)
69	74	68	NA	4,000	Stiff Clay w/out Freewater
74	100	68	34	NA	Sand (Reese)

Table 4. Soil Parameters for p-y Curve Generation – Boring 2014SB (Pier 7)

Table 5. Soil Parameters for p-y Curve Generation – Boring 2133SB (Pier 9)

Layer Top Depth Below BOPC Elevation (feet)	Layer Bottom Depth Below BOPC Elevation (feet)	Effective Unit Weight (pounds per cubic foot)	Internal Angle of Friction (degrees)	Undrained Shear Strength (pounds per square foot)	Material Type
0	13	120	NA	900	Stiff Clay w/out Freewater
13	30	58	NA	900	Stiff Clay w/out Freewater
30	37	23	NA	250	Soft Clay
37	50	63	NA	2375	Stiff Clay w/out Freewater
50	55	43	NA	350	Soft Clay
55	70	68	NA	2750	Stiff Clay w/out Freewater
70	85	58	36	NA	Sand (Reese)
85	95	60	38	NA	Sand (Reese)

C.2.d. Tip Elevation

We recommend driving the proposed pipe pile sections to the elevations shown in Section D.4 and the attached resistance graphs for driven pile. The table below shows approximate bottom-of-pile-cap elevations based on plans provided by SPO.

Substructure	Anticipated Bottom-of-Pile-Cap Elevation (feet)
South Abutment	857.75
Pier 1	859.00
Pier 2	864.25
Pier 3	883.75
Pier 4	880.50
Pier 5	876.50
Pier 6	876.75
Pier 7	870.50
Pier 8	870.25
Pier 9	872.75
Pier 10	866.00
Pier 11	865.50
Pier 12	867.75
Pier 13	870.75
North Abutment	873.50

Table 6. Approximate Bottom-of-pile-cap Elevations

C.3. Summarize Design Assumptions

C.3.a. Embankment Heights, Unit Weights, and Walls

Based on the preliminary design information, finished grade at the north bridge abutment will be about 15 to 20 feet above existing grades. We have assumed the anticipated fill soils will have a moist unit weight of 120 pounds per cubic foot (pcf) and will meet MnDOT Specification 3149.2B2 for Granular Borrow. The earth embankment will have sides supported by walls, RTW-W206 and RTW-W207, and the end of the embankment will be supported by the bridge abutment.

C.3.b. Bridge Loading Information (Axial and Horizontal)

Please refer to Section D.1 and D.4 for anticipated pile loads and resistances.

C.3.c. Design Methodologies – Pile-Supported Structures

C.3.c.1. Pile Capacity – LRFD (212 Bridge)

We used the computer program UniPile, version 5.0.0.33, to estimate the static nominal geotechnical resistance (R_n) of the 12- and 16-inch outside-diameter, 1/4-inch thick wall, closed-ended pipe piles for support of the bridge abutments and piers. UniPile software was developed by UniSoft Geotechnical Solutions Ltd. and can calculate pile resistance using a variety of methods.

For our analysis, we utilized the Beta-method, an effective stress method, to estimate the static geotechnical resistance for these piles. This method determines shaft resistance using Bjerrum-Burland beta coefficients (β), which are based on soil type and effective friction angle. We estimated the β values for each layer using Figure 9.20 from the Federal Highway Administration (FHWA) Publication No. NHI-05-042, Design and Construction of Driven Pile Foundations, April 2006. The Beta-method determines end bearing resistance using toe bearing capacity factors (N_t), which are also based on soil type and effective friction angle. We estimated the N_t values from Table 9-6 of the April 2006 FHWA publication identified previously.

C.3.c.2. Downdrag

We do not expect downdrag will act on the piling based on the anticipated north embankment construction method and the anticipated lack of grade raise in the areas of the south abutment and the proposed piers.

C.4. Construction Considerations

C.4.a. Design of Temporary and Permanent Slopes

The existing foundation/embankment soils consist of a mixture of cohesive soils and sand with angles of internal friction of 28 degrees or greater. The permanent slopes can match the existing slopes, except they must be not steeper than 1V:2H. The granular borrow is anticipated have an angle of internal friction of approximately 30 degrees. This soil could be temporarily placed at a slope of 1V:1.5H, but must be limited to 1V:2H or flatter for the permanent condition.

C.4.b. Subcut Recommendations and Backfill Requirements

C.4.b.1. Bridge over Shady Oak Road

We recommend removing the topsoil fill along the north approach embankment. The excavations to remove these soils are anticipated to be limited and are estimated to be about 1 to 2 feet below grade at the north embankment. The extent of the excavation should extend horizontally beyond the embankment limits a distance equal to the depth of the subcut, or 1 foot, whichever is greater. As the bridge piers are to be constructed within a cut, we do not anticipate a need for subcutting below the substructure since a driven-pile foundation system will support the structure.

Based on the anticipated bottom-of-pile-cap substructure elevations, groundwater may be encountered within the bottom excavations. If encountered, temporary dewatering may be needed along with the placement of crushed rock to help control groundwater seepage with sumps and allow for the provision of a stable working platform during construction.

We recommend backfilling below the substructures and constructing embankment fills with Granular Borrow or Select Granular borrow. We also recommend compacting the soils to meet the requirements from MnDOT Specifications 2451 or 2105, as appropriate for backfill and fill, respectively. The compaction should be evaluated using the Specified Density Method defined in MnDOT Specification 2105.3 F1. Soils placed as backfill may not be saturated or frozen at time of placement. Do not place new backfill material on frozen soil.

We recommend using Select Granular Modified 10 percent for Structure Backfill. Select Granular Modified 10% shall comply with Specification 3149.2B2, modified to 10 percent or less passing the 0.075 mm (#200) sieve.

C.4.b.2. Construction Staging Requirements

Based on the soil borings and estimated settlements of up to 1 1/2 inches at the north abutment, we recommend a construction delay at this location to allow settlement in the underlying soils to occur prior to foundation construction. Further, a waiting period of 2 to 6 weeks will allow the designing of abutments to utilize battered pile to resist lateral loads. Details of the preload waiting period are discussed in Section D.5.

Due to the anticipated cuts at the pier substructure locations, a waiting period is not necessary at these substructure locations.

C.4.c. Demolition

All existing pavement, structures, and associated deleterious material where proposed structures and oversize areas are to be located should be fully removed and replaced with suitable engineered fill.

E. Foundation Recommendations – Deep Foundations

E.1. Bearing Resistances and Associated Resistance/Safety Factors

Please refer to the Appendix for nominal bearing resistances for driven pile for bridge abutment and pier support. For situations where subsurface exploration and static calculations have been completed, we recommend that the following φ_{dyn} factors be used for LRFD Design.

Table 7. Recommended Pile Driving Resistance Factors (ϕ_{dyn})

Specified Construction Control	ф _{dyn}
MnDOT Pile Formula 2012 (MPF12) for Pipe Pile Sections	0.50
Wave Equation and Pile Driving Analyzer (PDA)	0.65

We also recommend evaluating the factored resistance against the structural capacity of the pile per the AASHTO LRFD Bridge Design Specifications, Third Addition.

E.2. Uplift Capacity/Resistance

Currently, a tension resistance line is not provided on the Nominal Bearing Resistance Graphs attached to this report. If piles will experience tension loads, we will revise our recommendations accordingly.

E.3. Recommended Design Soil Parameters (e.g., Coefficient of Friction, Lateral Earth Pressure Coefficients, etc.)

We recommend soil parameters to be used for design are as follows:

Soil Type	Angle of Internal Friction (degrees)	Effective unit Weight (pcf)	Coefficient of Sliding Friction Rough Concrete	Active Earth Pressure Coefficient	At-Rest Earth Pressure Coefficient
Select Granular Borrow	35	120	0.6	0.27	0.43
Granular Borrow	30	120	0.5	0.33	0.50
Existing Non-organic Granular Fill	30	125	0.5	0.33	0.50
Existing Clay Fill	28	130	0.4	0.36	0.53

Table 8. Soil Parameter for Design

E.4. Recommended Pile Size, Length, and Tip Elevation

E.4.a. Bridge Abutments and Piers

We have constructed two tables , located in the Appendix, which summarize the anticipated pile depths based on the factored load ($\Sigma\gamma Q_n$) for 12.0- and 16.0-inch, outside-diameter pipe pile with a wall thickness of 1/4 inch. The tables provide a PDA length (i.e., ϕ_{dyn} of 0.65) and a MPF12 formula length (i.e., ϕ_{dyn} of 0.50) for each location. We assumed a cutoff elevation of about 1 foot above the anticipated bottom-of-pile-cap elevation. Please refer to the nominal bearing resistance graphs and the anticipated pile length tables using PDA Analysis and the MPF 12 for a detailed profile of pile resistances and anticipated pile lengths.

As you review the anticipated pile length tables, you will notice the anticipated pile lengths for Boring 2030CB are relatively shallow in comparison to the adjacent structure locations. While the CPT Sounding results show favorable soil conditions, we recommend either performing additional analysis at this location to confirm the soil conditions or be prepared to drive the piles to elevations similar to the adjacent piers.

For our lateral analyses, we assumed a pile top located 5 feet below the ground surface. The maximum lateral loads in our analyses are for a loading condition assuming 1-inch of deflection at the pile top with a fixed-head condition. We assumed a pile wall thickness of 1/4-inch, a steel yield strength of 45 ksi, and concrete infill with a compressive strength of 3 ksi for our analyses. Please refer to the attachments for the shear force and bending moments within the pile at service loads of 120 tons for the 12.0-inch closed-end pipe pile and 140 tons for the 16.0-inch closed-end pipe pile.

E.5. Waiting Periods for Embankments

Since the north abutment will require fill up to a height of 15 to 20 feet, we recommend incorporating a preload into the design to reduce the overall estimated settlement to allow the pile design to utilize battered pile to resist lateral loads.

Foundation soils supporting the north embankment are generally granular and consolidation of these soils should occur rather quickly. However, some layers of cohesive soils encountered near the north abutment may require a longer period of time to consolidate. The embankment preload should be constructed with, at a minimum, the dimensions identified on MnDOT plan sheet 5-297.233. We are including a copy of this sheet in Appendix C. Preload material should be compacted in accordance with the Quality Density Method. Soils placed for the preload shall not be saturated or frozen at the time of placement. Do not place new preload material on frozen soil.

At the north abutment, we recommend placing the preload to the proposed finished grade of the guideway (approximate elevation 900 feet) and allowing the preload to sit for a period of 2 to 6 weeks or until settlement has essentially ceased. A minimum of three settlement plates shall be installed near the abutment within the preload embankment and monitored to evaluate the rate and amount of settlement. The geotechnical engineer will review the monitoring data and make the determination of when the end of the waiting period will be. The settlement plates should be surveyed (at a minimum) as shown in the table below. This approach will allow the north abutment pile to be designed with a batter for lateral load support.

•	Table 5. Recommended Settlement Plate Monitoring Schedule							
	Preload Area	First Week	Second Week	Beyond Second Week				
	North Abutment	Every other day	Twice weekly	Once per week				

Table 9. Re	comm	ended Sett	eme	nt Plate	• Mr	nitoring	Schedule
Table 5. Re	COMIN	enueu Jett	CITE	πι Γιαι		Juntoning	Julieuule

If the material is to be used within the final constructed embankment, the preload should consist of a material meeting the specification for granular borrow; unless it is in the zone of structural backfill required for the bridge abutment and/or retaining walls. Preload material that will remain as permanent material within the zone of structural backfill should consist of structural backfill as specified in section 3149.2D2.

E.6. Surcharge Systems Recommendations

Based on the soil borings, the soils supporting the north embankment primarily contain granular soils, with some layers of cohesive soils. We anticipate settlement in these soils will occur within a short period of time following construction of the preload and final bridge embankments. Therefore, we do not anticipate a surcharge is necessary.

E.7. Temporary Slopes and Shoring Limits

Temporary slopes in the Granular Borrow or Select Granular Borrow backfill are recommended to be constructed at 1V:1.5H or shallower. Temporary slopes constructed in natural material are recommended to be constructed at 1V:2H or shallower. In a temporary condition; these slopes have a Factor of Safety against global failure in excess of 1.3.

F. Material Classification and Testing

F.1. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars or bags and returned to our facility for review and storage.

F.2. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures and follow MnDOT guidelines.

F.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced. The boreholes were then backfilled or sealed with bentonite grout.

G. Qualifications

G.1. Variations in Subsurface Conditions

G.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore, strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

G.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

G.2. Continuity of Professional Responsibility

G.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

G.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

G.3. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

H. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If there are questions regarding these bridge foundation recommendations, please call Josh Kirk at 952.995.2222 or <u>jkirk@braunintertec.com</u> or Ray Huber at 952.995.2260 or <u>rhuber@braunintertec.com</u>.

Sincerely,

BRAUN INTERTEC CORPORATION

Professional Certification:

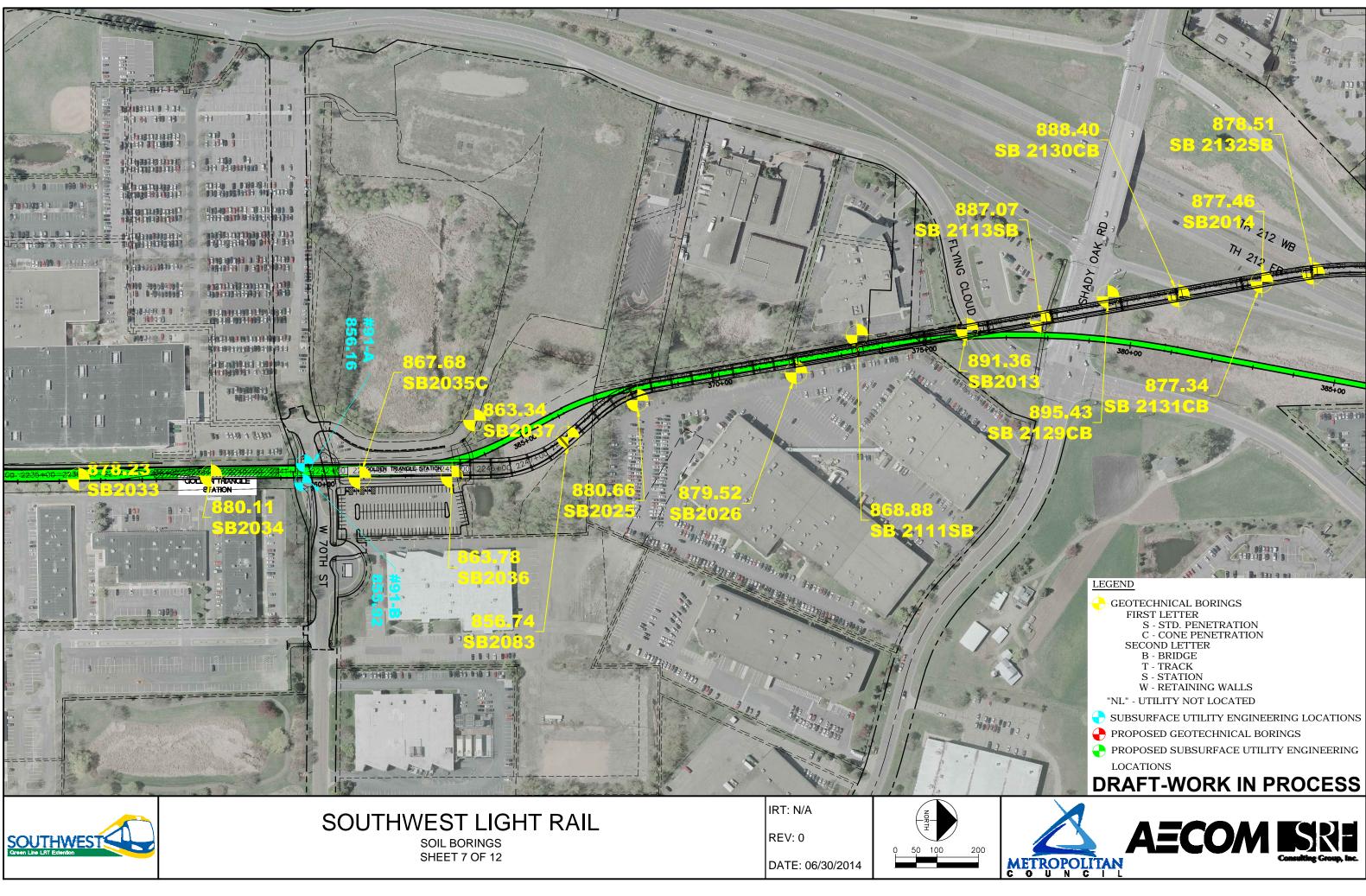
I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

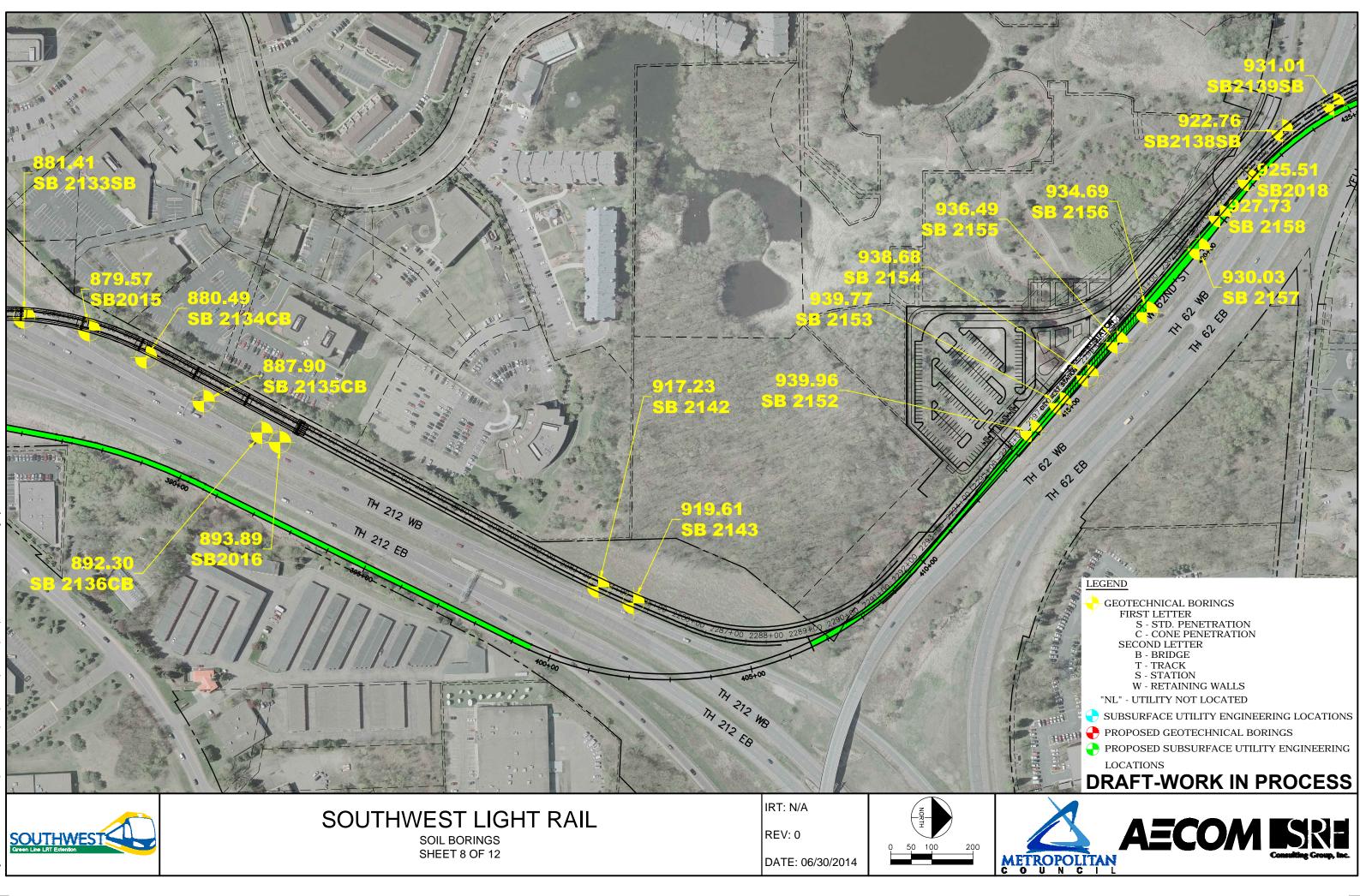
Joshua L. Kirk, PE Associate Principal - Project Engineer License Number: 45005

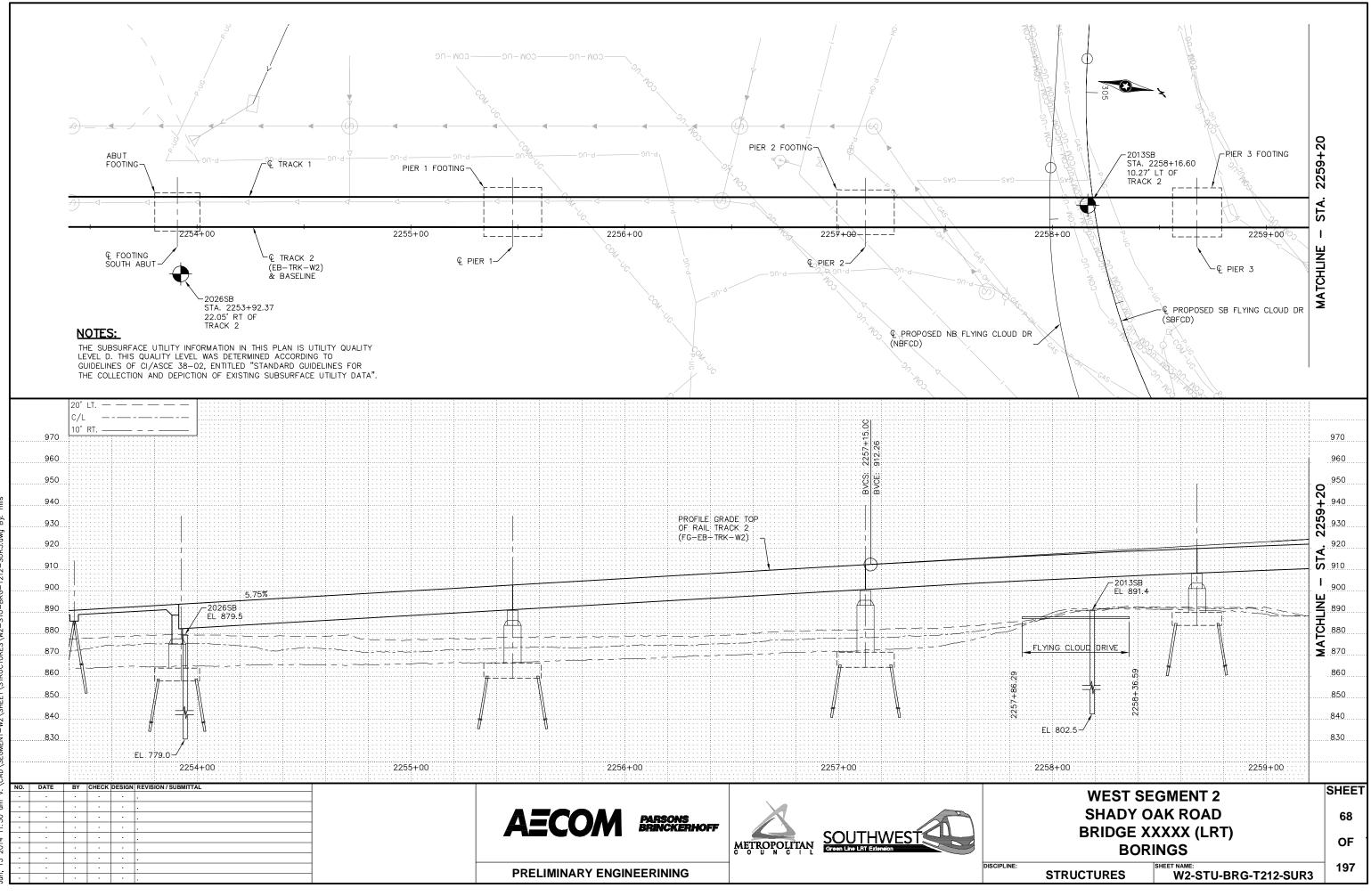
Reviewed by:

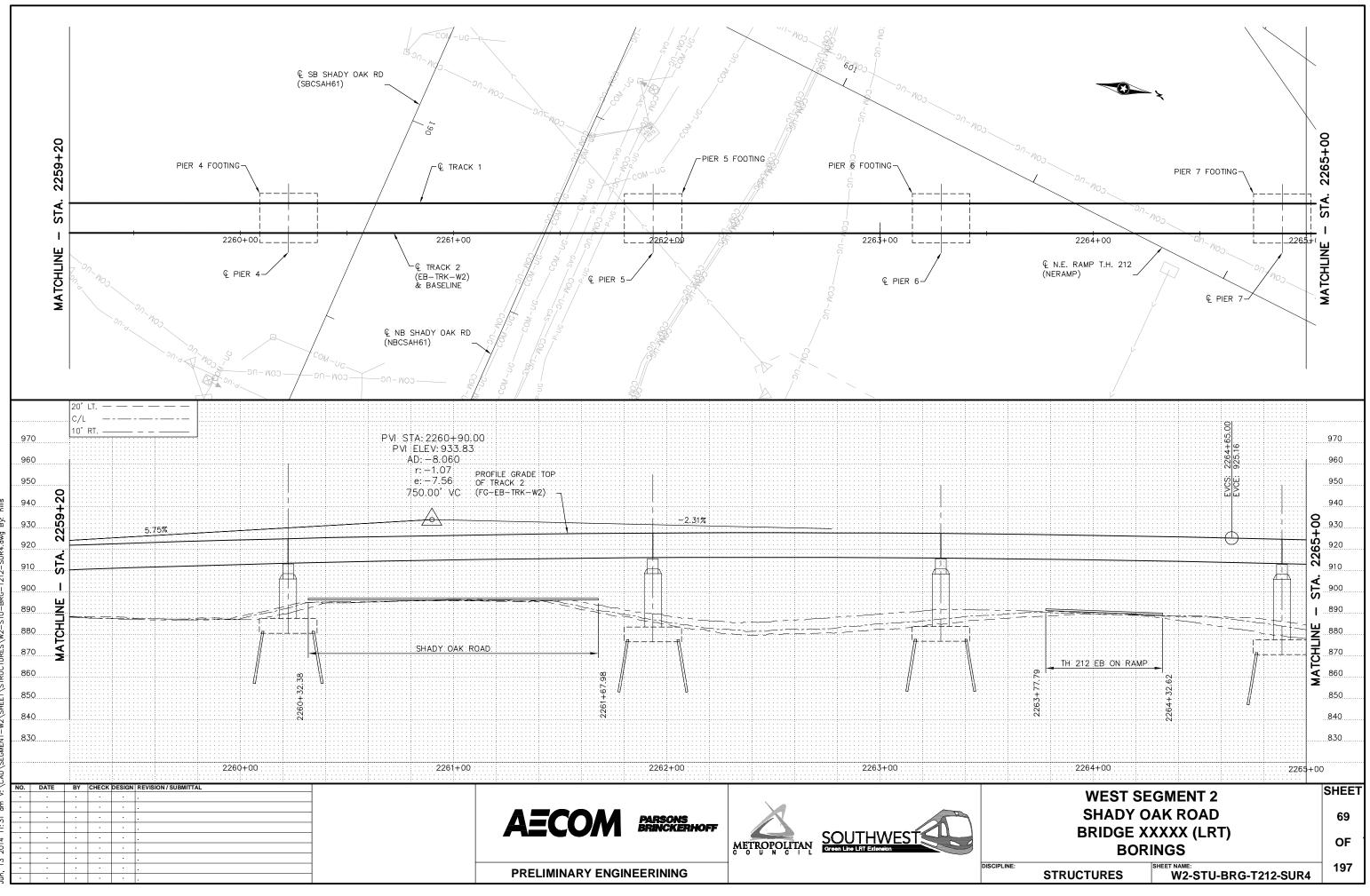
Ray A. Huber, PE Vice President-Principal Engineer

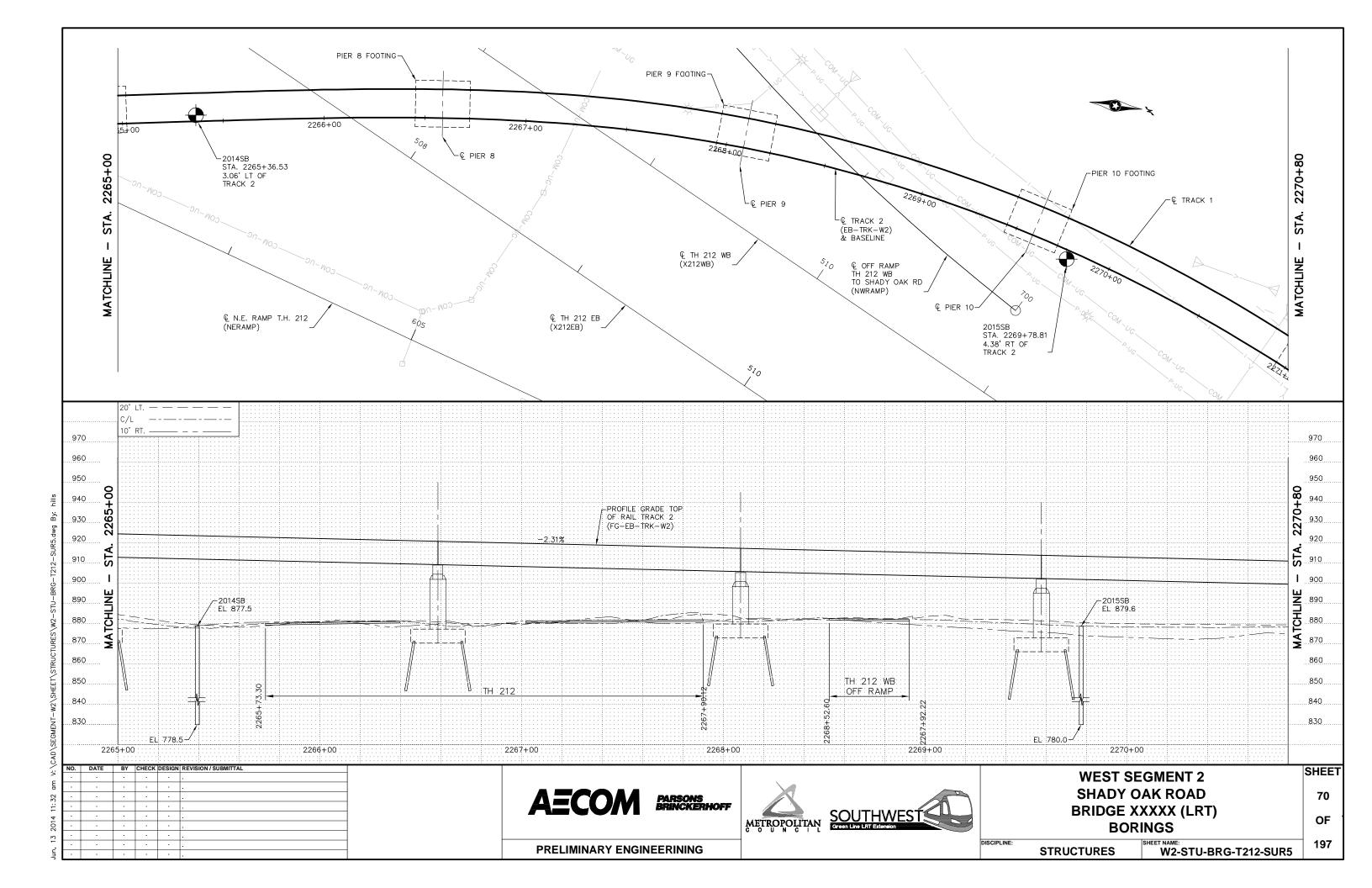
Reviewed by:

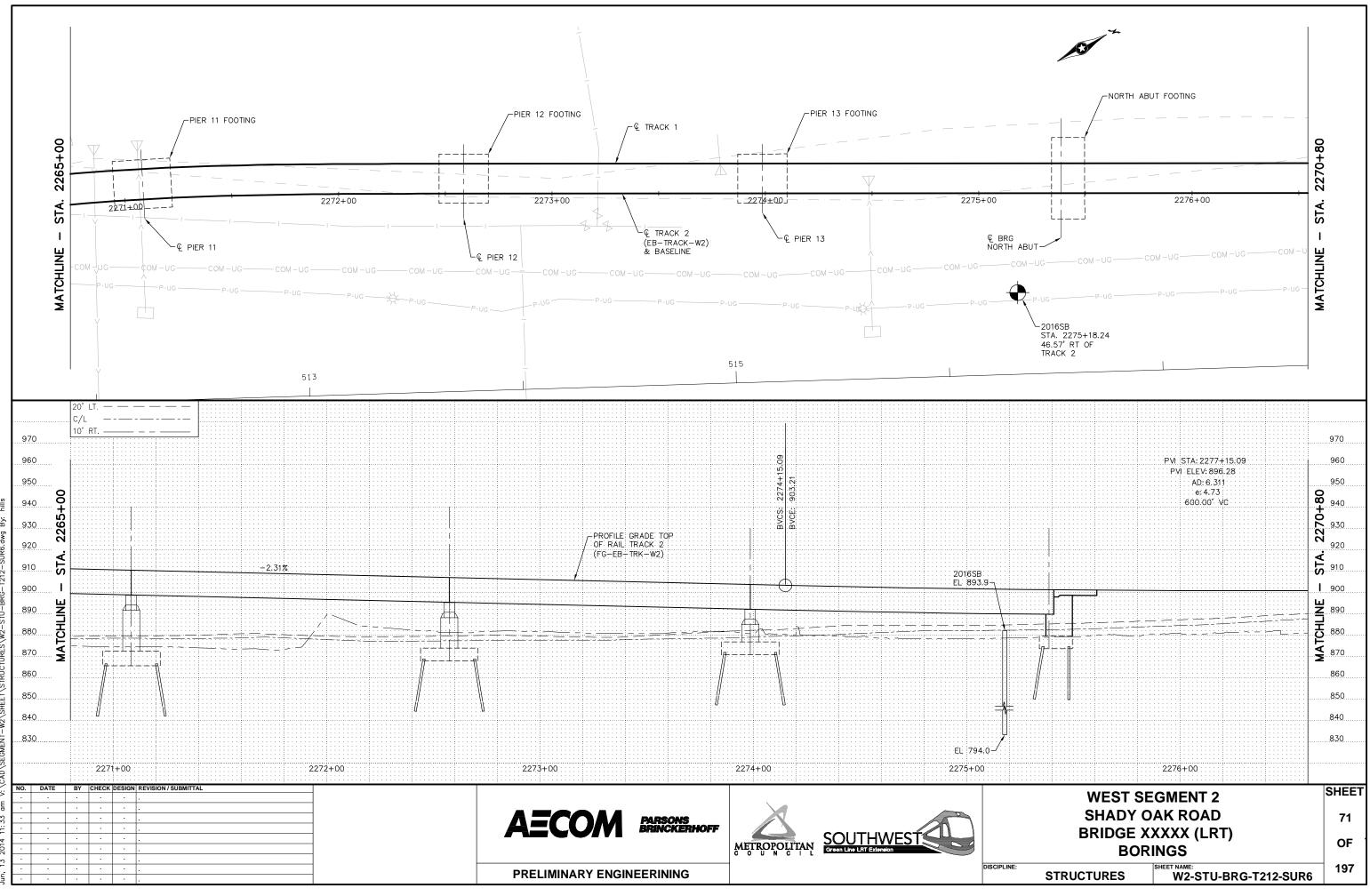

Matthew P. Ruble, PE Principal Engineer


Appendix:


Boring Location Sketch Preliminary Engineering Plan and Profile Sheets – Bridge over Shady Oak Road SPT Logs 2026SB, 2111SB, 2013SB, 2112SB, 2113SB, 2129SB, 2014SB, 2132SB, 2133SB, 2015SB, 2016SB CPT Logs 2130CB, 2131CB, 2133CB, 2134CB, 2135CB, 2136CB Summary of Anticipated Pile Lengths – PDA Analysis Summary of anticipated Pile Lengths – MPF12 Analysis Nominal Bearing Graphs Lateral Pile Analysis Results - Borings 2014SB and 2033SB SPT Descriptive Terminology CPT Descriptive Terminology


APPENDIX





Jun, 13 2014 11:30 am V:\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-BRG-T212-SL

i, 13 2014 11;31 am V; \CaD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-BRG-T212-

13 2014 11:33 am v:\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-BRG-T212-SU

879.5	15 brown, moist. 10 VFILL: Silty Sand, fine- to medium-grained, trace Gravel, brown,	20145
	29 moist.	Elevat
AND; fine— to medium—grained, with Gravel, dark brown, moist. Poorly Graded Sand with Silt, fine— to medium—grained, with brown, moist.	28 POORLY GRADED SAND with SILT, fine- to medium-grained, trace 28 Gravel, brown, moist, medium dense. 37 SILTY SAND, fine- to medium-grained, with Gravel, brown, moist, 42 Emedium dense to very dense.	Fill
Silty Sand, fine-: to: medium-grained, with bituminous pieces, molst. Clayey Sand, fine-: to: medium-grained, with Gravel, brown,	SAND, fine- to medium-grained, with Clayey Sand layers and 10 Seams at 18 feet, frace Gravel, brown, moist, dense. 79 SILTY SAND, fine- to medium-grained, with Gravel and Cobbles, 58 SECTION FOR THE COMPARENCE ST	9 <u>88</u> - 3 POC
and bituminous, brawn, moist. Sandy Lean Clay, trace Gravel, brown, wet.	10 SILTY SAND, fine- to medium-grained, with occasional Clay lenses 12 20 and seams, trace Gravel, brown, moist, loose to very dense. 9 18 9 9 23 POORLY GRADED SAND with SILT, fine- to medium-grained, trace 5	2 9 - PO(5 - Gro
LAY with SAND, slightly organic, with roots and fibers, gray, wet. * SRADED GRAVEL with SILT, fine— to coarse—grained, gray,	18 Gravel, brown, moist, medium dense. 22 18 POORLY GRADED SAND with SILT, fine - to coarse - grained, trace Gravel, 12 52 brown, moist to 40 feet then waterbearing, medium dense to dense. 22 17 SANDY LEAN CLAY, trace Gravel, gray, wet, very stiff to hard. 15	2 Gro 2 SAN
GRADED SAND with SILT, fine- to medium-grained, with	94 Cravel layer encountered at 46 feet. 23 94 SILTY SAND, fine- to medium-grained, trace Gravel, brown, 21 49 waterbearing, dense to very dense. 17	3 <u>- wat</u> 1 - SAN 7 -
LEAN CLAY, frace Gravel, brown, wet hard.	28 POORLY GRADED SAND with SILT, fine- to medium-grained, trace 17 Gravel, gray, waterbearing, medium dense. 12 21 5	
′ GRADED SAND, fine- to coarse-grained, with Gravel, brown, aaring, medium dense to very denseWith Silty Sand layer	15 16 CLAYEY SAND, frace Gravel, brown, wet, medium dense to dense. 6	5
	32 18 46 POORLY GRADED SAND with SiLT, fine- to coarse-grained, trace 26 46 Gravel, brown, waterbearing, dense. 28	5 - PO(- gro
	 SILTY SAND, fine - to medium-grained, trace Gravel, brown, 31 waterbearing, very dense. END OF BORING, Water observed at 40 feet with 39 1/2 feet of 	1 1 - - - - - - - - - - - - - - - - - -
LEAN CLAY, trace Gravel, gray, wet, very stiff to hard.	43	
DADIMA	50/6"	
sserved at 15 feet with 15 feet v-stem auger in the ground. mmediately backfilled with		END Wate 1/2 grou
of Borehole: at 101 ft		grou Borir bent Botte
ARE CLASSIFIED ACCORDING TO THE UNIFIED SOIL AILS ON THE SYSTEM CAN BE FOUND IN THE FADR		
		·····
	DOWN, moist. molat	Bit Sold, How to medium-grained, with Dirandus piese. Start Salt, How to medium-grained, with Oravel, Brown, Castan, How to medium-grained, with Carvel, Brown, Castan, How to medium-grained, with Carvel, How to Market Castan, How to Market, Castan, How to Market, With How to medium-grained, with Carvel, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market, With Start, How to Market,
Clayey Sand, trace Gravel, dark brown, wel. Sith Sond, there to medium-grached, trace Gravel, brown, With Gravel and Cabbles at 7 1/2 feet. Y GRADED SAND with SILT, tine= to medium-grached, with Gravel, brown, molitic medium dense to very dense. Y GRADED SAND with SILT, tine= to medium-grached, with and Cabbles, gray, welterband, medium dense. Y GRADED SAND, tine= to coarse-grached, with and Cabbles, gray, welterband, medium dense. LEAN CLAY, trace Gravel, gray, wet, medium to very sitf. Y GRADED SAND, tine= to coarse-grached, with and Cabbles, gray, welterband, medium to very sitf. BAO, trace Gravel, gray, wet, medium to very sitf. Y GRADED SAND, tine= to medium-grached, trace Gravel, gray, welterband, medium dense. Y GRADED SAND, tine= to medium-grached, trace Gravel, welterband, dense, to very dense. Y GRADED SAND, tine= to medium-grached, trace Gravel, welterband, dense, to very dense. Y GRADED SAND, tine= to medium-grached, trace Gravel, welterband, dense, to very dense. Y GRADED SAND, tine= to medium-grached, trace Gravel, welterband, dense, to very dense. Solo Welterband, dense, to very dense. BORNG. BORNG. BORNG. BURGE WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS		
--	---	----------
990 990 n 877.5 880 Clayey Sand, frace to medium-grained, trace Gravel, brown, With Gravel, and Cobles at 7 1/2 feet 870 Y GRADED SAND with Sitt, fine- to medium-grained, with Gravel, brown, molet, medium, dense to vary dense. 860 Y GRADED SAND with Sitt, fine- to medium-grained, with ond Cobles, gray, work way with Y or a cobrate, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way way way way way way way way way way		
990 990 n 877.5 880 Clayey Sand, frace to medium-grained, trace Gravel, brown, With Gravel, and Cobles at 7 1/2 feet 870 Y GRADED SAND with Sitt, fine- to medium-grained, with Gravel, brown, molet, medium, dense to vary dense. 860 Y GRADED SAND with Sitt, fine- to medium-grained, with ond Cobles, gray, work way with Y or a cobrate, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way with Y or a cobret, gray, work way way way way way way way way way way		900
Image: Strain		
Image: Strain		000
Clayey Sand, trace Grovel, dark brown, wel. 880 Clayey Sand, trace Grovel, dark brown, wel. 870 With Grovel and Cabbles at 7 1/2 feet. 870 Y GRADED SAND with SUT, fine- to medium-grained, with Gravel, brown, moist-medium dense to very dense. 860 Y GRADED SAND with SUT, fine- to medium-grained, with Gravel, brown, moist-medium dense to very dense. 860 Y GRADED SAND with SUT, fine- to corrse-grained, with Gravel, gray, welt-perform, locase, gray, welt-perform, dense. 850 Y GRADED SAND, fine- to coorse-grained, trace Gravel, gray, searcharding, medium dense. 850 Y GRADED SAND, fine- to coorse-grained, trace Gravel, gray, searcharding, medium dense. 830 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, welt-welt-searching, medium dense. 830 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, welt-welt-searching, medium dense. 830 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, welt-welt-searching, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, welt-welt-searching, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, dense, to welt-searching, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, dense, to welt-searching, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, dense to very dense. 760 Y GRADED SAND, fine- to medium-grained,		890
Clayey Sand, trace Gravel, dark brown, wel. 870 Sith Stand, fine- to medium-grained, trace Gravel, brown, 870 Y GRADED SAND with SLT, fine- to medium-grained, with Gravel, brown, moist, medium dense to very dense. 860 Y GRADED SAND with SLT, fine- to medium-grained, with and cabbles, gray, weterbedring, medium dense. 860 Y GRADED SAND with SLT, fine- to coarse-grained, with and fine- to coarse-grained, with and the set of very sith? 860 Y GRADED SAND, fine- to coarse-grained, trace Gravel, gray, weterbedring, medium dense. 840 Y GRADED SAND, fine- to coarse-grained, trace Gravel, gray, weterbedring, medium dense. 840 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, weterbedring, medium dense. 840 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, weterbedring, medium dense. 810 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbedring, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbedring, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, well waterbedring, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbedring, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, dense to very dense. 760 F SAND, State to very dense. 760	n 877.5	
Sithy Sand, fine+ to medium-grained, trace forwel, brown, with Grovel and Cobbles of 7 1/2 feet. 870. Y GRADED SAND with SiLT, fine- to medium-grained, with Grovel, brown, moist, medium dense to very dense. 860 Y GRADED SAND with SiLT, fine- to medium-grained, with and Cobbles, gray, weterbeering, incese, row, weterbeering, medium dense. 860 Y GRADED SAND, fine- to coarse-grained, with and force forwel, gray, weterbeering, medium dense. 850 Y GRADED SAND, fine- to coarse-grained, trace forwel, gray, medium dense. 850 Y GRADED SAND, fine- to coarse-grained, trace forwel, gray, medium dense. 830 Y GRADED SAND, fine- to medium-grained, trace forwel, gray, medium dense. 830 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wetrebaring, medium dense. 830 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wetrebaring, dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wetrebaring, dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wetrebaring, dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wetrebaring, dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wetrebaring, dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wetrebaring, dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, g		880
With Oravel and Cobles at 7.1/2 feet. 870 Y GRADED SAND with SILT, fine- to medium-grained, with gravel, brown, molal, medium dense to very dense. 860 Y GRADED SAND with SILT, fine- to medium-grained, with and Cobles, gray, waterbearing, medium dense. 850 Y GRADED SAND, fine- to coarse-grained, with early gray, wetrebearing, medium dense. 850 Y GRADED SAND, with SILT, fine- to coarse-grained, with early gray, wetrebearing, medium dense. 850 Y GRADED SAND, fine- to coarse-grained, trace Gravel, gray, wetwerker, medium dense. 840 Y GRADED SAND, fine- to coarse-grained, trace Gravel, gray, wetwerker fine- to medium dense. 820 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wetwaterbearing, dense. 810 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense. 810 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 810 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, waterbearing, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, waterbearing, dense to very dense. 800 Y GRADED SAND, fine- to medium dense. 70	Clayey Sand, trace Gravel, dark brown, wet.	
Gravel, brown, molet, medium dense to very dense. 860 Y GRADED SAND with SILT, fine- to medium-grained, frace, grav, waterbearing, loose. 860 Y GRADED SAND with SILT, fine- to coarse-grained, with and Cobbles, gray, waterbearing, medium dense. 850 LEAN CLAY, frace Gravel, gray, wel, wel, very stiff. 840 Y GRADED SAND, fine- to coarse-grained, frace Gravel, gray, weit, medium to very stiff. 840 Y GRADED SAND, fine- to medium-grained, frace Gravel, gray, weit, medium dense. 830 Y SAND, frace Gravel, gray, weit, very loose to medium dense. 810 Y SAND, frace Gravel, gray, weit, medium dense. 810 Y SAND, frace Gravel, gray, weit, medium dense. 700 Y CRADED SAND, fine- to medium-grained, frace Gravel, waterbearing, medium dense. 800 Y CRADED SAND, fine- to medium-grained, frace Gravel, waterbearing, dense to very dense. 700 Y SAND, frace Gravel, gray, weit, medium dense. 720 Y GRADED SAND, fine- to medium-grained, frace Gravel, dense to very dense. 730 Y GRADED SAND, fine- to medium-grained, frace Gravel, dense to very dense. 740 Y GRADED SAND, fine- to medium-grained, frace Gravel, dense to very dense. 740 BORING 740 740	With Gravel and Cobbles at 7 1/2 feet.	870
Y GRADED SAND with SULT, fine- to medium-groined, frace. gray, workpearing, losse. Y GRADED SAND with SULT, fine- to coarse-groined, with and Cobbles, gray, waterbearing, medium dense. LEAN CLAY, trace Gravel, gray, wet, very stiff. SAND, trace Gravel, gray, wet, wery losse for medium dense. Y GRADED SAND, fine- to medium-groined, trace Gravel, gray, waterbearing, medium dense. Y GRADED SAND, fine- to medium-groined, trace Gravel, gray, waterbearing, medium dense. Y GRADED SAND, fine- to medium-groined, trace Gravel, gray, waterbearing, medium dense. Y GRADED SAND, fine- to medium-groined, trace Gravel, gray, waterbearing, dense to very dense. BORNIG. BORNIG. BORNIG. BORNIG. BUILDEE SANDY of the WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS E BUILDEE XXXXX (LRT) BORINGS E BUILDEE XXXXX (LRT) BORINGS E BUILDEE XXXXX (LRT) BORINGS E BUILDEE XXXXX (LRT) BORINGS	LY GRADED SAND with SILT, fine— to medium—grained, with Gravel, brown, moist, medium dense to very dense.	
<pre>i grov, wdierbearing, loose.</pre>		860
and Cobbles, gray, waterbearing, medium dense. LEAN CLAY, trace Gravel, gray, wet, very stiff. Y GRADED SAND, fine - to coorse-grained, trace Gravel, gray, searing, medium dense. LEAN CLAY, trace Gravel, gray, wet, medium to very stiff. Y SAND, trace Gravel, gray, wet, very losse to medium dense. Y SAND, trace Gravel, gray, wet, very losse to medium dense. Y SAND, trace Gravel, gray, wet, trace Gravel, gravel, gray, medium dense. Y SAND, trace Gravel, gray, wet, medium dense. Y SAND, trace Gravel, gray, wet, medium dense. Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, gray, dense. Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, gray, dense. Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, gray, dense. Y GRADED SAND, fine- to medium-grained, trace Gravel, gray, gray, dense. 790 790 790 790 790 790 790 790	i, gray, waterbearing, loose.	
LEAN CLAY, trace Gravel, gray, wei, very stiff.	1 and Cobbles, gray, waterbearing, medium dense.	850
JEAN CLAY, trace Gravel, gray, weit, medium to very stiff. 840 Y SAND, trace Gravel, gray, weit, very losse to medium dense. 830 Y SAND, trace Gravel, gray, weit, very losse to medium dense. 820 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, medium, dense. 810 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, g	Y LEAN CLAY, trace Gravel, gray, wet, very stiff. LY GRADED SAND, fine- to coarse-grained, trace Gravel, gray,	
Y GRADED SAND, fine- to medium-grained, frace Gravel, workerbearing, medium-dense. Y GRADED SAND, fine- to medium-grained, frace Gravel, workerbearing, dense to very dense. Y GRADED SAND, fine- to medium-grained, frace Gravel, workerbearing, dense to very dense. Y GRADED SAND, fine- to medium-grained, frace Gravel, workerbearing, dense to very dense. 790 800 800 800 790 790 780 780 780 780 780 780 780 780 780 78	bearing, medium dense. Y LEAN CLAY, trace Gravel, gray, wet, medium to very stiff.	040
Y SAND, frace Gravel, gray, wet, very loose to medium dense. Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, medium, dense. 810 Y SAND, frace Gravel, gray, wet, medium dense. 810 Y SAND, frace Gravel, gray, wet, medium dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 780 790 BORING. 780 Trace Gravel, with 17 770 to hollow-stem auger in the 780 Trace Gravel, with 2 780 Trace Gravel, with 39.8.11 780 WEST SEGMENT 2 780 Trace Gravel, 39.8.11 780 Trace Gravel, 39.8.11 720 BORINGS 72 OF 107		040
Y SAND, frace Gravel, gray, wet, very loose to medium dense. Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, medium, dense. 810 Y SAND, frace Gravel, gray, wet, medium dense. 810 Y SAND, frace Gravel, gray, wet, medium dense. 800 Y GRADED SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 780 790 BORING. 780 Trace Gravel, with 17 770 to hollow-stem auger in the 780 Trace Gravel, with 2 780 Trace Gravel, with 39.8.11 780 WEST SEGMENT 2 780 Trace Gravel, 39.8.11 780 Trace Gravel, 39.8.11 720 BORINGS 72 OF 107		
Y. GRADED: SAND, fine- to medium-grained, trace Gravel, waterbearing, medium dense. 810 Y. GRADED: SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 Y. GRADED: SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 Y. GRADED: SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 900RNG. 780 BORING. 780 900RNG. 770 900RNG. 770 900RNG. 770 900RNG. 780 900RNG. 760 900RNG. 760 900RNG. 750 900RNG. 740 900RNG. 740 900RNG. 72 900RNG. 72 900RNG. 98.6 900RNG. 72 900RNG. 98.7 900RNG. 72	Y. SAND, trace. Gravel, .gray, .wet, .very. loose to medium .dense.	830
Y. GRADED: SAND, fine- to medium-grained, trace Gravel, waterbearing, medium dense. 810 Y. GRADED: SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 Y. GRADED: SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 Y. GRADED: SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense. 800 900RNG. 780 BORING. 780 900RNG. 770 900RNG. 770 900RNG. 770 900RNG. 780 900RNG. 760 900RNG. 760 900RNG. 750 900RNG. 740 900RNG. 740 900RNG. 72 900RNG. 72 900RNG. 98.6 900RNG. 72 900RNG. 98.7 900RNG. 72		
wdterbearing, medium.dense. 610 Y SAND, frace. Gravel, gray, wet, medium.dense. 800 Y GRADED SAND, fine- to medium-groined, frace. Gravel, waterbearing, dense to very dense. 800 90RNG. 790 BORNG. 780 Borned at 17 1/2 feel with 17 770 to fi hollow-stem auger in the 760 minediately backfilled with 760 graut. 750 KEST SEGMENT 2 740 SHADY OAK ROAD 72 BRIDGE XXXXX (LRT) 0F BORINGS 0F		820
wdterbearing, medium.dense. 610 Y SAND, frace. Gravel, gray, wet, medium.dense. 800 Y GRADED SAND, fine- to medium-groined, frace. Gravel, waterbearing, dense to very dense. 800 90RNG. 790 BORNG. 780 Borned at 17 1/2 feel with 17 770 to fi hollow-stem auger in the 760 minediately backfilled with 760 graut. 750 KEST SEGMENT 2 740 SHADY OAK ROAD 72 BRIDGE XXXXX (LRT) 0F BORINGS 0F		
Y GRADED: SAND, fine- to medium-grained, frace Gravel, 800 790 790 780 BORING. Beerved at 17 1/2 feet with 17 to cholow-stem auger in the mmediately backfilled with e grout. d Borehole at 99.8 ft 750 750 750 750 750 750 750 750 750 750	LY GRADED SAND, fine- to medium-grained, trace Gravel,	810
woterbearing, dense to very dense. 800 790 790 780 780 BORING. 780 bserved of 17 1/2 feet with 17 770 t of hollow-stem auger in the 770 mmediately backfilled with e grout. 760 of Borehole at 99.8.ft 760 WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS SHEET NAME:	Y SAND, trace Gravel, gray, wet, medium dense.	
BORING. 780 BORING. 780 beerved at 17 1/2: feet with 17. 770 t of hollow-stem auger in the 770 minediately. backfilled with e grout. 760 of Borehole at 99.8.ft 760 WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS SHEET NAME:	LY GRADED: SAND, fine- to medium-grained, trace Gravel, waterbearing, dense to very dense.	800
BORING. beserved of 17 1/2 feel with 17 of follow-stem auger in the grout. of Bolewois at 99.8 ft Television of Borehole at 99.8 ft Television of Bore		
BORING. beserved of 17 1/2 feel with 17 of follow-stem auger in the grout. of Bolewois at 99.8 ft Television of Borehole at 99.8 ft Television of Bore		790
BORING: 770 bserved at 17 1/2; feet with 17. 770 t of hollow-istem auger in the 770 mmediately: backfilled with 760 e grout. 760 of Borehole at 99.8 ft 760 VEST SEGMENT 2 740 SHADY OAK ROAD 72 BRIDGE XXXXX (LRT) 0F BORINGS 197		
BORING: 770 bserved at 17 1/2; feet with 17. 770 t of hollow-istem auger in the 770 mmediately: backfilled with 760 e grout. 760 of Borehole at 99.8 ft 760 VEST SEGMENT 2 740 SHADY OAK ROAD 72 BRIDGE XXXXX (LRT) 0F BORINGS 197		780
bserved at 17 1/2 feet with 17 770 mmediately backfilled with e grout. at 99.8 ft 760 750 750 740 WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS E ISHEET NAME:		/60
t of hollow-stem euger in the 770 mimediately, backfilled with e grout. of Borehole at 99.8 ft 760 750 740 WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS E	BORING.	
e grout. of Borehole at 99.8 ft 760 750 740 WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS E. ISHEET NAME: 197	observed at 17.7 teer win 17. et of hollow-stem auger in the	770
of Borehole at 99.8 ff 750 750 740 WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS E: SHEET NAME: 197	immediately backfilled with	
WEST SEGMENT 2 SHEET SHADY OAK ROAD 72 BRIDGE XXXXX (LRT) OF BORINGS 197	te grout. of Borehole at 99.8 ft	760
WEST SEGMENT 2 SHEET SHADY OAK ROAD 72 BRIDGE XXXXX (LRT) OF BORINGS 197		
WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS		750
WEST SEGMENT 2 SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS		
SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS E: ISHEET NAME: 197	* * * * * * * * * * * * * * * * * * * *	740
SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS E: ISHEET NAME: 197		
SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS E: ISHEET NAME: 197		
SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS E: ISHEET NAME: 197		
BRIDGE XXXXX (LRT) BORINGS E: ISHEET NAME: 197		SHEET
E: SHEET NAME: 197		SHEET
E: SHEET NAME: 107	SHADY OAK ROAD	
STRUCTURES W2-STU-BRG-T212-SUR7-BOR1	SHADY OAK ROAD BRIDGE XXXXX (LRT)	72
	SHADY OAK ROAD BRIDGE XXXXX (LRT) BORINGS	72 OF

910					
900					2016SB Elevation 893.9
800			<u></u>	<u>Coh N60</u>	↓ FILL: Silty Sand, fine- to medium-grained, t
890		· · · · · · · · · · · · · · · · · · ·	2015SB	25 22	FILL: Silty Sand, fine- to coarse-grained, tr
880			Elevation 879.6	15 13*	CLAYEY SAND, trace Gravel, brown, wet, medi
000		Coh: N60	FILL: Silty Sand, fine-grained, trace Gravel, black, wet.	19 32 ¥ 10	PORLY GRADED SAND with SILT, fine- to coa Gravel, brown, moist to 17 1/2 feet then wa
870		15		8	Stills: SAND, fine- to medium-grained, trace
0,0		¥	SILTY SAND, fine— to medium—grained, trace Gravel, brown, moist - to 12 1/2 feet then waterbearing, loose to medium dense.	9 5	
860		6 1:0		т. т.	With occasional Sand layers and seams begin
		11	POORLY GRADED SAND with SILT, fine- to coarse-grained, trace	12 16	
850		18 14	H-Gravel, brown, waterbearing, medium dense. - SILTY SAND, fine- to medium-grained, with some Gravel, brown, - waterbearing, medium dense.	13 13 20	
		1.6 1.0		20 24 31	
840		11* 10*		35	
040		8	CLAYEY SAND, trace Gravel, gray, wet, loose.	43	CLAYEY SAND, with Gravel, brown, wet, dense
830		18 22	2 LEAN CLAY, gray, wet, rather stiff. 1 - POORLY GRADED SAND with SILT, fine+ to coarse+grained, trace	:51	
		24		39	
880		31	- SILTY SAND, fine- to medium-grained, trace Gravel, brown,	26	- CLAYEY SAND, trace Gravel, gray, wet, mediun
820				24	
		48*		30	SILTY SAND, fine— to coarse—grained, trace G waterbearing, medium dense.
810		35	POORLY GRADED SAND with SILT, fine→ to medium→grained, trace T Gravel, brown, waterbearing, medium dense to very dense.	38	- CLAYEY SAND, trace Gravel, gray, wet, medium
		30		23	
800		35			SILTY SAND, fine- to medium-grained, trace
		27		44	S ≥ L waterbearing, medium dense to dense.
790		20			
		40		50/6"	SANDSTONE, light yellow and white,
780		54	- - With occasional Clovey Sand inclusions - beginning at 100 feet.		S) well
			- beginning at 100 feet.	*	
770		50/5"	With Gravel and Cobbles at 110 feet.		Water observed at 17 1/2 feet with 17 feet of hollow-stem auger in the ground.
			END OF BORING. Water observed at 12 1/2 feet with 12 feet of hollow-stem auger in the ground.		Boring immediately backfilled with bentonite grout. Bottam af Borehole at 119.3 ft
760			Boring immediately backfilled with bentonite grout.		
	NOTES:		Bottom of Borehole at 110:5 ft		
750	THE MATERIAL DESCRIPTIONS ARE	CLASSIFIED ACCORDING ON THE SYSTEM CAN R	TO THE UNIFIED SOIL		
	AND IN ASTM: D2488.				
740					
NO. DATE	BY CHECK DESIGN REVISION / SUBMITTAL				
				PARSONS	
			AECOM		
			PRELIMINARY ENGIN	IEERINING	DISCIPLINE:

	· · · · · · · · · · · · · · · · · · ·	910
		900
, trace Gravel, brown,		890
trace Gravel, brown,		
dium dense.		880
oarse—grained, trace vaterbearing, loose to		000
e Gravel, with		
waterbearing, loose.		870
rather soft to hard; jinning at 45 feet.		
		860
		850
		840
se to very dense.		
		870
		830
um dense.		
		820
Gravel, gray,		
um dense to dense.		810
um dense to dense.		
		800
e Gravel, gray,		
		790
		/ 30
		780
·····		
		770
		760
		750
		0115-55
	SEGMENT 2	SHEET
		73
	XXXXX (LRT)	OF
BC	RINGS	
1 7	SHEET NAME:	197
	W2-STU-BRG-T212-SUR7-BOR2	197

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2026			Ground Eleva 879.5 (Su	
Locatio	<i>n</i> Her	nepi	n Co. Coordinate: X=492895	Y=132336 (ft.)	Drill	Machine	9 7507				SHEET	1 of 3
		· ·		ude (West)=	Han	nmer CN	IE Autor	natic Ca	alibrated		Drilling Completed	8/27/13
			Offset Information Available		_	SPT	МС	сон		Soil	Other Te	
DEPTH	Depth Elev.	Lithology	Class	sification	Drilling Operation	N60 REC (%)	(%) RQD (%)	(psf) ACL (ft)	^(pcf) Core Breaks		Or Rema Formati or Memi	on
	1.0	2003	12 inches of Aggregate Base.		Ŕ		_					
+	878.5		POORLY GRADED SAND with medium-grained, with Gravel, I			8	-					
5-	4.0 875.5 7.0	X	SILTY SAND, fine- to medium- pieces, black, moist, (SM), fill	grained, with bituminous	R	20	+ + +					
	872.5 9.0	X	CLAYEY SAND, with Gravel, b	rown, moist, (SC), fill		14	+					
10-	870.5	\bigotimes	SILTY SAND, fine- to medium- bricks and bituminous, brown,			8.	+					
▼ ₁₅ 	867.5 - - - 20.0		SANDY LEAN CLAY, trace Gr	avel, brown, wet, (CL), fill		9	+ + + + + + + + + + + +			dri	vitched to mud lling method ai mple.	
	859.5 22.0 857.5		SANDY LEAN CLAY, trace roo		PD	15	-					
+	24.0 855.5		ORGANIC CLAY, with roots ar swamp deposit.	Id fibers, black, wet, (OL),	PD	6	+			00	C=7%	
25-	27.0		LEAN CLAY with SAND, slight fibers, gray, wet, (CL), swamp			7	+			00	C=2%	
30-	852.5	0 0 0	WELL-GRADED GRAVEL with	I SILT, fine- to	PD	23	-					
-	34.0		coarse-grained, gray, waterbea dense, (GW-GM), outwash	rring, medium dense to	PD	25 35	+ + +					
35-	845.5				PD PD	30	+					
40-			POORLY GRADED SAND with medium-grained, with Gravel, I	prown, waterbearing, medium		24*	+				o sample reco	very.
-			dense to dense, (SP-SM), outv	vasn	PD	34	+				200=7%	
45					PD	- -	+			No fee	o sampling fron et.	n 42 to 5

METROPOLITAN

BRAUN^{®®®} INTERTEC

UNIQUE NUMBER

state I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2026			Ground Elevation 879.5 (Surveyed)
Ŧ	Depth	gy			Ę	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	, Elev.	Lithology	Ci	lassification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
- - 50 -	49.0 830.5		dense to dense, (SP-SM),	el, brown, waterbearing, medium outwash <i>(continued)</i>			- - - -				<u> </u>
-	- - 54.0		SANDY LEAN CLAY, trace till	e Gravel, brown, wet, hard, (CL),	PD	53 _ -	-				
55-	825.5	· · · · · · · · ·				22	+				
60 -	-				PD		-				
65 -	-				PD	- - - 51 -	- - -				
- - 70-	-		POORLY GRADED SAND	, fine- to coarse-grained, with	PD	- - - 20* -	-			*N	lo sample recovery.
-	-		Gravel, brown, waterbearin (SP), outwash	g, medium dense to very dense,	PD	-	-				
75-	-					25	 - - -				
- - 80 -	-				PD		- - -				
-	-				PD	33 -	+				
85 -	-					22	+ +- +				
-	- - 89.0 790.5	· · · · · · · · · · · ·			PD		+ + +				

Depth Bottom SPT MC COH Y g Other Tests Image: Second structure Image: Second strucu	State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2026			Ground Elevation 879.5 (Surveyed)
95 95 100 101.0 778.5 Bottom of Hole - 101 feet. Water observed at 15 feet with 15 feet of hollow-stem auger in the ground.	H	Depth	лдо			on	N/				Soil	
95 95 100 101.0 T78.5 Bottom of Hole - 101 feet. Water observed at 15 feet with 15 feet of hollow-stem auger in the ground.	DEP1	Elev.	Lithol	Cl	assification	Drilling Operati	REC (%)		ACL (ft)	Core Breaks	Rock	Formation or Member
100 - 101.0 778.5 Bottom of Hole - 101 feet. Water observed at 15 feet with 15 feet of hollow-stem auger in the ground.	- - - 95 - -	-		SANDY LEAN CLAY, trace hard, (CL), till <i>(continued)</i>	Gravel, gray, wet, very stiff to	PD	25 -	-				
778.5 Bottom of Hole - 101 feet. Water observed at 15 feet with 15 feet of hollow-stem auger in the ground.	- - 100-	-					- - 41 -	+				

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Loca	tion				Boring I			Ground Elevation
				SWLRT					2111	SB		868.9 (Surveyed)
Locatio	on Her	nepir	n Co. Coordinate: X=49280	5 Y=132483	(ft.)		Machine					SHEET 1 of 3
	Latit	ude (North)= Long	itude (West)=		Ham	nmer CN	IE Auto	matic Ca	alibrated		Completed 6/28/14
	No S	tation-	Offset Information Available				SPT	МС	СОН	γ	il	Other Tests
н	Depth	Уĝ				ио	N 60	(%)	(psf)	(pcf)	Soil	Or Remarks
DEPTH		Lithology				Drilling Operation	REC	RQD	ACL	Core	ç	Formation
Δ	Elev.	Ľ		sification		Dril	(%)	(%)	(ft)	Core Breaks	s R	or Member
-	_ 1.0 867.9		4 inches of Bituminous over 8	inches of Aggregate	Base.	5		_				
-	_ 007.9		SILTY SAND, fine- to medium	n-grained, trace Grav	el, dark	ł		Ŧ				
-	4.0		brown, moist, (SM), fill			K	34	7				
5-	864.9		SANDY LEAN CLAY, slightly	organic black moist	(CL) fill	41	-	+ 10				
-	7.0	\bigotimes			., (OE), iii	\square	8	_ 16				
-	861.9	\boxtimes	POORLY GRADED SAND wi	th SILT fine- to		<u>د ر</u>	7	8				
_	-	\bigotimes	coarse-grained, with Gravel, w	vith occasional layers		ि	· ·	- 0				
₹ ₁₀ -	_	\bigotimes	Lean Clay, brown and dark br waterbearing, (SP-SM), fill	own, moist to 10 feet	then		17	14				
-	_ 12.0 856.9					सि		+				
-	_ 000.9					\mathbf{X}	17	18				
15-	_		SANDY LEAN CLAY, trace G wet, very stiff, (CL), till	ravel, bluish gray, mo	oist to	R		Ĺ				
-	- 47.0		, (02),			\mathbb{X}	24	13				and layer encountered a 5 feet.
-	_ 17.0 851.9	<u>, , ,</u>	POORLY GRADED SAND, fir	ne- to medium-graine	d with	<u></u>		t				
_	-		Lean Clay lenses, brown, wat			\square	23	12				witched to mud rotary illing method after 17
20-	_ 20.0 848.9	· · · . · · · .	(SP), outwash SILTY SAND, fine- to medium	arained trace Grav	ol brown	PD	-	+			1/	2-foot sample.
-	22.0	· . · .× · . · .×	waterbearing, medium dense,		ei, Diowii,	PD	23	_ 11				
_	846.9						22	17				
-	-	· · · · · · · · · · · · · · · · · · ·				PD		- ''				
25-	_					$\mathbf{\nabla}$	24	16			*N	lo sample recovery.
-	-					PD		÷				
-	-					\mathbf{X}	23	15				
30-	-					PD	-	Ļ				
-	-					\mid	25	22				
-	-		POORLY GRADED SAND, fir	ne- to coarse-grained	l, trace to	PD		<u>+</u>				
-	-		with Gravel, gray, waterbearin outwash				26	18 -				
35-	_		ouwasii			PD	24	24				
-	-					PD	24	4				
-	-						24	16				
-	-					PD		+				
40-	-					$\left \right\rangle$	24	22				
-	-					PD		ł				
-	-					\mathbf{X}	27	22				
45-	-					PD		Ĺ	$\lfloor ___$		$\lfloor _$	
-0	Index She	et Coo	de 3.0 (Continu	ed Next Page)								Class: Edit: Date: 7/15

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2111			Ground Elevation 868.9 (Surveyed)
н.	Depth	Лbс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND, with Gravel, gray, waterbea outwash (continued)	fine- to coarse-grained, trace to ring, medium dense, (SP),	PD X	24 24	23				
50	_ 50.0 _ 818.9 -	× . × . × × ×	SILTY SAND, fine- to mediu wet, medium dense, (SM), t	um-grained, trace Gravel, brown, ill	PD PD	22	11 1				
55-	_ 55.0 _ 813.9 _		SANDY LEAN CLAY, trace (CL), till	Gravel, brown, wet, very stiff,	PD	20	- _ 15 -			D	D=124 pcf
60-	- 60.0 808.9	× . 			X	18	- - - 13 -				
65 -	-	×	SILTY SAND, trace Gravel, dense, (SM), till	brown, wet, medium dense to	PD X	40	- - 14				ock fragments icountered at 65 feet.
70-	_ 70.0 _ 798.9	× · · × · · · × · × · · · × · · · · × · · · ·			PD	15	- - - 12			D	D=129 pcf
75-	- - -	·× · · · · · · · × · · · · × · · · · × · · · ·	CLAYEY SAND, trace Grav	el, gray, wet, stiff to rather stiff,	PD	11*	+ + +			*N	lo sample recovery.
- - 80- -	- - -	· × · · . · · · · × · × · . · × · . · × · .	(SC), till		PD	11	- - - 14				
- - 85-	- - - 85.0 783.9	· · · × · × · · · · × · × · · · × · × · · ·			PD	15	- - - - 22				
-	- - -	· · · × ·× · · · · · · × ·× · ·	CLAYEY SAND, trace Grav (SC), till	el, gray, wet, stiff to rather stiff,	PD		+ 22				

	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2111			Ground Elevation 868.9 (Surveyed)
Ļ	Depth	Лbc			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	× · . · . · .× · . · .×	CLAYEY SAND, trace Grav (SC), till <i>(continued)</i>	vel, gray, wet, stiff to rather stiff,	PD	15 _ -	23				
- 95 -	- 96.0 772.9	· · · × ·× · ·				5	20				
-	-		SANDSTONE, yellow to lig weathered bedrock	ht brown, waterbearing, (SS),	PD	-	-				
00-	100.9				\succ	6*	18			60	blows per 11-inch set
			Boring immediately backhin	ed with bentonite grout.							
			Boring immediately backhin	ed with bentonite grout.							
			Boring immediately backhin	ed with bentonite grout.							
			Boring immediately backhin	ed with bentonite grout.							
			Boring immediately backhin	ed with bentonite grout.							
			Boring immediately backhin	ed with bentonite grout.							

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loca SWLRT	ation				Boring I			Ground Elevation 891.4 (Surveye	ed)
					(54.)	Duill			2015	50		SHEET 1 of 3	-
.ocatio			n Co. Coordinate: X=492791		(ft.)		Machine					Duilling of	
			, .	ude (West)=		пап		IE Autor	natic Ca	librated		Completed 7/1	1/1.
T	No Si Depth		Offset Information Available			6	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks	
DEPTH	Elev.	Lithology		sification		Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member	
-	0.2 891.2	× . × .× .	SILTY SAND, fine- to medium- brown, moist, (SM), topsoil fill SILTY SAND, fine- to medium-		/		-	5					
5	4.0 887.4	× . × .	moist, (SM), fill	dork brown and bla	ak maiat	X स	15	- 3					
5	7.0	· · · · · · · · · · · · · · · · · · ·	CLAYEY SAND, trace Gravel, (SC), fill		ck, moist,	F	10 .	10					
+	884.4 9.0 882.4	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND with medium-grained, trace Gravel, \dense, (SP), outwash	brown, moist, med	ium ⁄	K	29	3					
10	_ 002.4	· · · × ·× · . · . · .×					* -	+			Pu	0 blows per 6-inch s ished rock, minimal	
+		`x ` . ` . ` .X `x ` .	SILTY SAND, fine- to medium moist, medium dense to very o		el, brown,		28	8			sa	mple recovery.	
15-	17.0	· · · × ·× · . · · · ×					37	_ 5					
-	874.4 19.0 872.4	× · . · . · .× · . · .×	SILTY SAND, fine- to medum- layers and seams at 18 feet, tr \dense, (SM), till				42	5					
20-	072.4	· . · .× ·× · . · . · .×	SILTY SAND, fine- to medium Cobbles, brown, moist, very de		el and		* -	+ + +				0 blows per 5-inch s mple recovery.	set.
	24.0 867.4	× · · · × · · ·				Ŧ		+			*5	0 blows per 5-inch s	set.
25-	-	· · · × ·× · · · · · ×				R	52	4					
30-		· · · × · × · .	SILTY SAND, fine- to medium- lenses and seams, trace Grave dense, (SM), till			R R	10	14					
		`× ` . ` . ` .× `× ` .				X	20	8					
35-	34.0 857.4	× · . × · .	POORLY GRADED SAND with	n SILT, fine- to		X F1	18	10					
	37.0 854.4		medium-grained, trace Gravel, dense, (SP-SM), outwash	brown, moist, med	ium	R	23	11					
40-			POORLY GRADED SAND with coarse-grained, trace Gravel, b	prown, moist to 40 f		PD	18	9					
	42.0 849.4	· · · · · · · · · · · ·	waterbearing, medium dense t	o dense, (SP-SM),	outwash		32 .	12			dri	vitched to mud rotar Iling method after 4 mple.	,
45	049.4		SANDY LEAN CLAY, trace Gr hard, (CL), till	avel, gray, wet, very	/ stiff to	PD	17	15				=1 1/2 tsf	

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2013			Ground Elevation 891.4 (Surveyed)
т	Depth	gy			u	SPT N60	- MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQL	ACL	Core Breaks	Rock	Formation or Member
	47.0		SANDY LEAN CLAY, trace hard, (CL), till <i>(continued)</i>	Gravel, gray, wet, very stiff to	- PD	*	9			*72 Gr	2 blows for 11-inch set. avel encountered at 46
50 -	_ 844.4 - -	× . 	SILTY SAND, fine- to medi waterbearing, dense to very	um-grained, trace Gravel, brown		94	9 			fee	21.
-	- - 54.0 837.4	· · · .× ·× · . · × · .× ·× · .	waterbearing, dense to very		_PD						
55-		· · · · · · · · ·				28	+ - 13 -				
- 60 -	-	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND		PD	21	+ 15 + +				
65-	-	· · · · · · · · · · · · · · · · · · ·	dense, (SP-SM), outwash	vel, gray, waterbearing, medium	PD		+ + +				
-	- - - 69.0				PD	15	_ 16 _ _				
70-	_ 822.4 - -	× . 				16	- - - - - -				
75-	-		CLAYEY SAND, trace Grav hard, (CS), till	el, brown, wet, rather stiff to	PD	32	- - - 10				
- 80-	79.0 812.4	× ' . ' . ' .× '× ' . '			_PD	7	+ + +				
-	-	· · · · · · · · ·		with SILT, fine- to el, brown, waterbearing, dense,	PD	46	12 + +				
85 -	- - - 88.0		(SP-SM), outwash	-		32	- - 16				
90	_ 88.0 _ 803.4 _ 90.0	· · · `× · . ` . ` .×	SILTY SAND, fine- to medi waterbearing, very dense, (um-grained, trace Gravel, brown	, PD	*	+ + 10			*5(0 blows per 6-inch set.

te Project	Bridge No. or Job Desc.								
		Trunk Highway/Location SWLRT		1		Boring No.		Ground Elev 891.4 (S	
Depth බු			5	SPT N60	MC (%)	COH (psf)	γ (pcf) S	Other T Or Rem	ests arks
Depth Aboouting Aboouting Elev.	Clá	assification	Drilling Operation	REC	RQD	ACL	Core ର reaks ଝ	Forma	tion
801.4	Bottom of Hole - 90 feet.	vith 39 1/2 feet of hollow-stem		(%)	(%)	(n) B	<i>reaks</i> ic	or Men	<i>IDER</i>

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2112			Ground Ele	vation Surveyed)
Locatio	n Hen	nepir	Co. Coordinate: X= Y=	(ft.)	Drill	Machine	9 7514 ⁹					T 1 of 3
	Latit	ude (l	North)= Long	itude (West)=	Han	nmer CN	/IE Autor	matic Ca	librated		Drilling Completed	5/20/14
	No Si	tation-	Offset Information Available			SPT	МС	сон	γ		Other	Tests
I	Depth	gy			5	Maa	(%)	(psf)	(pcf)	Soil	Or Ren	
DEPTH	Elev.	Lithology	Clas	sification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Forma or Mer	
-	2.0	<u>17</u>	SILTY SAND, fine- to medium Gravel, black, moist. (SM), to	psoil fill	R		21					
-	4.0	×	SILTY SAND, fine- to mediun moist. (SM), fill	n-grained, with Gravel, brown,		27	8					
5-	-					8	24					
-			LEAN CLAY with SAND, sligh moist. (CL), fill	tly organic, gray and black,		9	29				D=93 pcf C=3%	
10-	- 12.0					4	23					
-	•					7	48				D=68 pcf C=13%	
15-	-		ORGANIC CLAY, decompose (OL), swamp deposit	ed, trace fibers, black, moist.		4	32					
-	19.0					10	32				D=89 pcf C=4%	
20-	-	· · · × ·× · .			$\left \right\rangle$	11	8			mı	illers Note: S ud rotary drill	ing metho
-	•	'× ' . ' . ' .× '× ' .			PD	26	8			aft	er 20-foot sa	imple.
25-	-	· . · .× ·× · . · . · .×	SILTY SAND, fine- to mediun moist to 30 feet then waterbe	n-grained, trace Gravel, brown aring, very dense to loose.		63	7					
		× . × .×	(SM), till		PD	48	9					
₹ <u>30</u> -	-	× * *			PD	6	9					
-	34.0	· . · .× ·× · . ·/////			PD	5	13					
35-	37.0		LEAN CLAY, with lenses of S	ilt, gray, wet, loose. (CL), till	PD	6	30				.=31, PL=22,	PI=9
+		· · · · · · · · ·			PD	16	9					
40-	-		POORLY GRADED SAND wi coarse-grained, trace Gravel, dense. (SP-SM), outwash	th SILT, fine- to gray, waterbearing, medium	PD PD	19	10					
-	45.0		. 7		PD	16	22				layer of Lear	
45	Index She	et Coc	de 3.0 (Continu	ed Next Page)		J					Class: Edit:	

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I			Ground Elevation (Surveyed)
Ŧ	Depth	λ				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	CI	assification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
-	-	· · · · · ·			X	33* _	-			*N	lo sample recovery.
-	-	· · · · · · · · · · · · · · · · · · ·			PD	-	-				
-	-	· · · · · ·	POORLY GRADED SAND coarse-grained, with Grave	with SILT, fine- to I, gray to brown, waterbearing,		38	18				
50-	-		dense to medium dense. (S	SP-SM), outwash	PD	22	18			P2	200=10%
-	-	· · · · · ·			\square		- 10				
-	53.0	<u>, , ,</u> X ,			PD	-	-				
- 55-	-	'.'.X 'x'.				-	-				
-	-	' . ' .× '× ' .				25 _	15				
-	-	· . · .× · . · .×				-	-				
-	-				PD	-	-				
60-	_	^×				38 _	9				
-	-	× . ×			\square	-	-				
-		× . ×			PD	-					
65-	_	`×``. `.`.×				_	-				
-	-	′× ′ . ′ . ′ .×			X	40 _	_ 14				
-	-	'× ' . ' . ' .×		um-grained, trace Gravel, brown,	PD	-	+				
-	-	'× ' . ' . ' ×	waterbearing, medium dens	se to dense. (SIVI), till		-	-				
70-	-	× .			\square	26	12				
-	-	× .				-	-				
-	-				PD	-	-				
75-	_	· · · *			$\left \right\rangle$		- 10				
-	-	·× `× ` .			\square	20 -	16				
-	-	· . · .× ·× · .			PD	-	-				
- - 80	-	`.`.X `x`.				-	-				
-	-	' . ' .× '× ' .				20 _	11				
-	83.0	· . · .× · . · .×				-	ţ				
-	-				7PD	-	ŀ				
85 -	-		SANDY LEAN CLAY, trace very stiff. (CL), till	Gravel, brown and gray, wet,	\bigtriangledown	- 19 -	16				
-					\vdash	-	+				
-	88.0	V///// . · . ·	POORLY GRADED SAND		PD	-	ł				
- 90 -			medium-grained, trace Gra	vel, brown, waterbearing,		-	T				

				SWLRT				2112	SB	_	(Surveyed)
	Depth	Лbс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
	Elev.	Lithology		assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	93.0	· · · · · · · · · · · · · · · · · · ·	medium dense, (SP-SM), o POORLY GRADED SAND medium-grained, trace Gra medium dense, (SP-SM), o	with SILT, fine- to vel, brown, waterbearing,	- PD	19 .	20				
95 + + +		· · · × ·× · · · · · × ·× · ×				13	- - - 11			DE	D=136 pcf
00+		· · · · · · · · · · · · · · · · · · ·	CLAYEY SAND, trace Grav (SC), till	el, brown, wet, stiff to rather sti	ff. PD	- 12 -	- - - 11				
+	103.0	· . · .× ·× · .			-PD	-	+				
05+			POORLY GRADED SAND, Gravel, brown, waterbearin	fine- to medium-grained, trace g, medium dense. (SP), outwas	ih pd	, 14 ⁻ -	- 14 -				
10+	111.0	· · ·				17	- 18 -			P2	200=4%
15+++++++++++++++++++++++++++++++++++++			POORLY GRADED SAND medium-grained, trace Gra (SP-SM), outwash	with SILT, fine- to vel, brown, waterbearing, loose	PD . X PD	12	- - - - -				
20	121.0		Bottom of Hole - 121 feet. Water observed at a depth	of 30 feet while drilling.		9 -	24				

Eddard	Latitu No St Depth Elev. 0.3 886.8 6.0 881.1	ude (l	Offset Information Available	<i>tude (West)=</i> sification h SILT, fine- to	(ft.)		Machine Imer CN SPT N60 REC	9 7506	2113 matic Ca COH (psf)	librated γ (pcf)	Soil	887.1 (SHEE Drilling Completed Other Or Rer	T 1 of 3 5/19/1 Tests
HLdJO E - - - - - - - - - - - - - - - - - -	Latitu No St Depth Elev. 0.3 886.8 6.0 881.1	ude (l tation-	North)= Longi Offset Information Available Clas 4 inches of bituminous. POORLY GRADED SAND wit medium-grained, with Gravel,	<i>tude (West)=</i> sification h SILT, fine- to		Harr	nmer CN SPT N60	IE Autor MC (%)	COH (psf)	γ (pcf)		Drilling Completed Other	5/19 /1 Tests
Ed 30	No St Depth Elev. 0.3 886.8 6.0 881.1	tation-	Offset Information Available Clas 4 inches of bituminous. POORLY GRADED SAND wit medium-grained, with Gravel,	sification			SPT N60	MC (%)	COH (psf)	γ (pcf)		Completed Other	Tests
Ed 30	Depth Elev. 0.3 886.8 6.0 881.1		Clas 4 inches of bituminous. POORLY GRADED SAND wit medium-grained, with Gravel,	h SILT, fine- to	/	Drilling Dperation	N 60	(%)	(psf)	(pcf)			
Ed 30	Elev. 0.3 886.8 6.0 881.1	Lithology	4 inches of bituminous. POORLY GRADED SAND wit medium-grained, with Gravel,	h SILT, fine- to		Drilling Dperation						Or Rer	narks
- 8 - 8 - 4 - 7 - 8 - 8 - 7 - 8 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 7 - 8 - 7 - 7 - 8 - 7 - 7 - 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	0.3 886.8 6.0 881.1	Titholo	4 inches of bituminous. POORLY GRADED SAND wit medium-grained, with Gravel,	h SILT, fine- to		Drilling	REC	BUD	101				
- 8 - 8 - 4 - 7 - 8 - 8 - 7 - 8 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 7 - 8 - 7 - 7 - 8 - 7 - 7 - 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	0.3 886.8 6.0 881.1		4 inches of bituminous. POORLY GRADED SAND wit medium-grained, with Gravel,	h SILT, fine- to		i d		LINGU	ACL	Core	5	Forma	ation
+ 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	6.0 881.1		POORLY GRADED SAND wit medium-grained, with Gravel,			90	(%)	(%)	(ft)	Breaks	Å	or Mei	
5 8 10 10 8 10 8 8 9 10 8 8 9 10 10 8 8 9 10 10 10 10 10 10 10 10 10 10	6.0 881.1		medium-grained, with Gravel,			1	-	- 5					
10- 8 10- 8 15- 8 8 9 8	881.1			brown, moist to 5 feet th		۱L	-	-					
10- 8 10- 8 15- 8 8 9 8	881.1		wet. (SP-SM), fill		en	$\left \times\right $	11 -	7					
10- 10- 8 10- 8 15- 8 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	881.1	×				Æ	_	-					
		\bigotimes				X	6.	_ 11					
L + 8 + 8 15 + 8 + 8 + 8		[XX]				ł	-	-				D=94 pcf	
L + 8 + 8 15 + 8 + 8 + 8		\mathbb{X}	ORGANIC CLAY, with Sand s	eams, black, wet, (OL) f	fill	ľД	4	29			00	C=4%	
15 - 8 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9			,	,,,,,,,,,,,,,,,,,,		47	-					illers Note: S ud rotary dril	
15 + 8 15 + 8	12.0					\square	3 .	_ 14				er 10-foot sa	
	875.1		SANDY LEAN CLAY, trace G	ravel, brownish gray, wet	t.	51	-					D=127 pcf	
	14.0 873.1	\bigotimes	(CL), fill				14	14				=1 1/4 tsf	
A	073.1					<u>د ر</u>	7	11			Pu	illed out of h	ole at 17 [.]
Τa			ORGANIC CLAY and SANDY brown, gray and black, wet. (C		vel,	F	· ·	- ''				et. Blind drill	
Τa	10.0			, , , , , , , , , , , , , , , , , , ,		\searrow	8 -	18				en sample, t mud rotary o	
20 + 1	19.0 868.1	X				PD	-				me	ethod after 2	
20			SANDY LEAN CLAY, trace Gi wet. (CL), fill	ravel, brown and dark gra	ay,	$\overline{\mathbf{X}}$	15	18				mple. D=109 pcf	
	22.0	X				PD	-	-					
+	865.1 24.0		ORGANIC SILT, black, wet. (OH), swamp deposit		\square	18 -	52			00	C=10%	
+	863.1			rough light group and brow	2	PD	-						
+			SANDY LEAN CLAY, trace G wet, very stiff, (CL), till	ravel, light gray and brow	vri,	\boxtimes	20 .	-					
	27.0 860.1	//// × .				PD	-	-					
Ī		· . · .× · . · .	OU TV CAND find to medium	anained with Cravel by		\boxtimes	29	15					
30+			SILTY SAND, fine- to medium waterbearing, medium dense.		OWI1,	PD		-					
+	32.0	· · · ×				\bowtie	21 .	22				D=105 pcf	
+	855.1		LEAN CLAY, trace Gravel, gra	ay and brown, wet, very s	stiff.	PD	-				LL	=16	
+	34.0		(CL), till				22	23			PL Pl=	_=11 =5	
35+8	853.1		POORLY GRADED SAND wit medium-grained, trace Gravel		arina.	PD	19	15				-	
+	37.0		medium dense. (SP-SM), out		3,	PD	19 .	- 13					
8	850.1			modium donas (ML) 411		\searrow	24	18			DD	D=124 pcf	
+	40.0		SILT with SAND, brown, wet,	meaium dense. (ML), till		PD							
	40.0 847.1	· · ·				Ň	27	13			P2	200=11%	
+			POORLY GRADED SAND wit medium-grained, with Gravel			PD	-	-					
+			brown, waterbearing, medium			\boxtimes	31 -	17					
45 -			outwash			K PD		+	1 1	1	1		

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I			Ground Elevation 887.1 (Surveyed)
г	Depth	gy				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
	- 47.0	· · · · · · ·				33 .	_ 15				
+	47.0 840.1				- PD	- 48	25				
50	-		LEAN CLAY, with frequent	layers of Silt and Fat Clay,	PD	40					
50-			brown, wet, hard. (CL), till			31	26				0=100 pcf =24
+	53.0 834.1					-	+				.=17 =12
55-	- 034.1						-				
	-	· · · · · ·				29 .	16				
-	-	· · · · · · · · · · · · · · · · · · ·			PD	-	+				
60+	-	· · · · · ·					-			*N	o sample recovery. Roo
+	-	· · · ·	SILTY SAND, fine- to media waterbearing, medium dens	um-grained, with Gravel, brown,	X	36* _	-			in	tip of sampler.
+			waterbearing, meaning ach		PD	-	-				
65 -	-	· · · · · · · ·				-	+			D2	200=15%
+	-				\mid	19 .	14			12	.00-1370
+	-	· · · · · · · ·			PD	-					
70-	70.0 817.1				\rightarrow	15*	-			*N	o sample recovery.
+					\square	15 .	+				
+	-			f Lean Clay, gray, wet, medium	PD	-	-				
75	-		dense. (ML), till			25					
	78.0										
+	809.1				PD	-	+				
80	-					20	14			qp	=1/2 tsf
+	-		SANDY LEAN CLAY. trace	Gravel, gray, wet, very stiff to	\square	-	ł				
+	-		stiff. (CL), till		PD	-					
85-	-				$\left \right\rangle$	16 .	11			DE	D=139 pcf
+	88.0					-	ļ				
90	799.1	× . ×	CLAYEY SAND, with Grave	el, gray, wet, stiff. (SC), till	7PD	-	ŀ				

U.S. Customary Units

SHEET 3 of 3 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Trunk Highway/Location Boring No. Ground Elevation State Project Bridge No. or Job Desc. 887.1 (Surveyed) SWLRT 2113SB γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core ୪ Breaks ଝ Core Formation Classification Elev. (%) (ft) or Member (%) x CLAYEY SAND, with Gravel, gray, wet, stiff. (SC), till 15 (continued) 93.0 PD 794.1 95 25 12 PD 100 17 35 POORLY GRADED SAND, fine- to medium-grained, with frequent layers of Lean Clay, gray, waterbearing, medium dense to very dense. (SP), outwash 105 PD 110 63 21 111.0 Bottom of Hole - 111 feet. 776.1 Water observed at a depth of 12 feet while drilling. Boring immediately backfilled with bentonite grout. Soil Class: J. Kirk Rock Class: Edit: Date: 7/15/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ

State F	Project		-	ink Highway/Loc	ation				Boring			Ground Ele	
				SWLRT					2129	SB		895.4 (S	
Locatio	n Her	nepi	n Co. Coordinate: X=492712	Y=133089	(ft.)	Drill	Machin	e 7506					T 1 of 3
	Latit	ude (North)= Longitud	e (West)=		Han	nmer CI	VE Auto	matic Ca	alibrated		Drilling Completed	6/25/14
	No S	tation	Offset Information Available				SPT	МС	сон	γ		Other	Tests
-	Depth	7				5	Neo	(%)	(psf)	(pcf)	Soil	Or Ren	
DEPTH	- 1	Lithology				ng atio	REC	RQD	ACL	Core	×	Forma	tion
DE	Elev.	Litt	Classifi	ication		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Roc	or Mer	
	0.2		SILTY SAND, fine- to medium-gra	ained, black, mo	ist, (SM), /	रि	000000000000000000000000000000000000000	1	000000000000000			•	
-	895.2	\bigotimes	topsoil fill SILTY SAND, fine- to medium-gra	ained. with Grav	/ el. dark	5		+					
-	4.0	\bigotimes	brown and black, moist, (SM), fill			\mathbf{N}	16	+					
5-	891.4	X				रि		+					
5	-	\bigotimes	SANDY LEAN CLAY, trace Grave	el, brown, wet, (C	CL), fill	\square	9	Ţ					
-	7.0 888.4	\bigotimes				Æ		+					
-	9.0	\bigotimes	LEAN CLAY, black and gray, wet	, (CL), fill		\mathbb{X}	12	+					
10-	886.4					Æ	, -	Ţ					
-	-					X	12	+					
-	-					Ł	-	+					
1	-	\bigotimes	CLAYEY SAND, trace Gravel, wit		Sand and	K	28	Į					
15-	_	\bigotimes	Lean Clay, brown and dark brown	i, wet, (SC), fill		Ł	, -	+					
-	-	\bigotimes				K	16	+					
	-	\bigotimes				41		†				ark brown Le	an Clay lay
-	19.0					$\left \right\rangle$	9	+			at	17 feet.	
20-	876.4		SANDY LEAN CLAY, trace Grave	el, brown, wet, m	edium,	5		+					
	22.0		(CL), till				6	ļ					
-	873.4	× . ×					12	+					
-	-	ⁱ x ⁱ . · · ×				मि		+					
25	-	× .	SILTY SAND, fine- to medium-gra moist, medium dense, (SM), till	ained, with Grave	el, brown,	嵜	* *	İ				00+ blows fo	
-		· · .× ·× · .				ł		+			Ro	ock encounte	ered
-	29.0	· . · .× · . · .×				\square	20	+			No	o recovery sa	mple.
Z ₃₀	866.4					रि		+					
30	-					\mathbb{N}	5	Ļ				vitched to mu ethod after 3	
-	-					PD		+				mple.	0-1001
+	-		POORY GRADED SAND, fine - to Gravel, with occasional Silt lense			\mathbb{X}	20	Ţ					
35-	_		then waterbearing, loose to medi			PD		+					
+	-					X	28	+					
+	-	· · · · · ·				PD	-	+					
1	39.0					ert	21	Ţ					
40-	856.4	× . ×	SILTY SAND, fine- to medium-gra and Lean Clay lenses, brown and	· · ·		PD		+					
+	42.0	× . . ×	medium dense, (SM), till	gray, waterbear	my,		22	+					
	853.4		POORLY GRADED SAND, fine-g		nd gray,			Į					
+	44.0		waterbearing, medium dense, (SI		+ill		28	+					
45	851.4 Index She	ЦЦЦ	<u>SANDY SILT, brown, waterbearin</u> de 3.0 (Continued I		<u> </u>	PD	J	⊥	L	_ Class: Ro	<u> </u>		

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2129			Ground Elevation 895.4 (Surveyed)
F	Depth	Лbс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	ssification	Drilling Operation	REC	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
	47.0		SANDY SILT, brown, waterb	earing, dense, (ML), till		34	-				
-	848.4				- PD	27	+				
50-	-				PD	22	+				
-	-		SANDY LEAN CLAY, trace C	Gravel, with Silty Sand layer at			+				
55-	-		48 feet, gray, wet, very stiff to	o hard, (CL), till	PD						
55	-					33	+				
-	59.0				PD		-				
60	_ 836.4	^ · · × · × · .		n-grained, with Gravel, brown,		40	+				
-	- - 64.0	· · · .× ·× · . · . · .×	waterbearing, dense, (SM), ti		PD		+				
65 -	_ 04.0 _ 831.4	· · · · · · · · · · · · · · · · · · ·				32	+				
-	-	· · · · · · · · ·	POORLY GRADED SAND, fi Gravel, gray, waterbearing, d	ne- to medium-grained, with lense, (SP), outwash			+				
70-	69.0 826.4	· · · · · · · · · · · · · · · · · · ·					_				
-	-	× .			X	29	-				
-	-	× . * . * .× *× * .			PD		+				
75-	-	· . · .× ·× · . · . · .×	CLAYEY SAND, trace Grave			26	+				
-	-	′× ′ . ′ . ′ .× · . ∕	layers, gray, wet, very stiff, (\$	SC), till	 PD		+				
80-	-	· · · × · × · ·				19	+				
-	-	· · · × ·× · . · . · .×					Ī				
85-	84.0 811.4	× · .					+				
	-		POORLY GRADED SAND, fi	ine- to medium-grained, gray,	×	27	+				
-	-		waterbearing, medium dense	to very dense, (SP), outwash	PD		+				
90			(Contin]	L	 Soil	Class: Ro	⊥_ bck (Class: Edit: Date: 7/

METROPOLITAN

BRAUN^{®®®} INTERTEC

UNIQUE NUMBER

		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2129			Ground Elevation 895.4 (Surveyed)
Depth	Lithology	Cl	assification	Drilling Operation	SPT N60 REC (%)	MC (%) RQD (%)	COH (psf) ACL (ft)	γ _(pcf) Core Breaks	Rock Soil	Other Tests Or Remarks Formation or Member
95 95 100 105 110 1110 111.0 784.4		POORLY GRADED SAND	, fine- to medium-grained, gray, se to very dense, (SP), outwash with 30 feet of hollow-stem	PD PD PD						

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loca	ation				Boring			Ground Ele	
				SWLRT					2014	SB		877.5	(Surveyed)
Locatio	on Hen	inepii	n Co. Coordinate: X=49267	6 Y=133459	(ft.)	Drill	Machin	9 7507					ET 1 of 3
	Latit	ude (North)= Longi	tude (West)=		Han	nmer CI	IE Auto	matic Ca	alibrated		Drilling Completed	7/15/13
	No Si	tation-	Offset Information Available				SPT	МС	сон	γ		Other	
_	Depth	2					Maa	(%)	(psf)	(pcf)	Soil	Or Re	
DEPTH	Bopin	Lithology				ng atio	REC	RQD	ACL	Core	×	F arma	ation
DE	Elev.	Lit	Clas	sification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Roc	Form or Me	
	0.3	X ,	CLAYEY SAND, trace Gravel	, dark brown, wet, (S	C), topsoil /	रि		000000000000000000000000000000000000000					
-	- 877.2 -	' . ' .× '× ' .	\fill		/	5		41					
-	-	' , ' ,× ', ' ,×				\mathbf{X}	17	9					
5-	-	: 	SILTY SAND, fine- to medium moist, (SM), fill	-grained, trace Grav	/el, brown,	Æ]	İ.					
-	-	× . `.`.×					18	10					
+	-	× . ×				ł	-	Ť					
]	9.0	′× ′. ; ; ;				K	79	6					
10-	868.5					5	58	7					
-	-	· · · · · ·					00	_ ′					
-	-	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND with medium-grained, with some G		medium		57	6					
	-	· · · ·	dense to very dense, (SP-SM			मि		-					
15-	-					\square	12	6					
V	17.5	· · · · · ·				रि]	-					
-	- 860.0		POORLY GRADED SAND wit	h SILT fine to		\mathbb{X}	9	20					
20-	-		medium-grained, trace Grave		, loose,	यि	-	<u> </u>			0.1		
-	22.0	· · · ·	(SP-SM), outwash			\mid	5	18				vitched to m illing after 20	0-foot sample
1	855.5	· · ·						+					
-	-		POORLY GRADED SAND wit coarse-grained, with Gravel a			PD	22	† 12					
25-	_	· · ·	waterbearing, medium dense,			\square	12*	-			*N	lo sample re	ecovery.
]	27.0	· · · · · · · ·				PD		Ţ					
-	850.5 29.0		SANDY LEAN CLAY, trace G (CL), till	ravel, gray, wet, very	y stiff,	\square	22	21					
30-	848.5	<u>,,,,,</u>				PD		Ļ					
-	-		POORLY GRADED SAND, fir			\mathbb{X}	15	26					
-	-	· · · · · ·	Gravel, gray, waterbearing, m	edium dense, (SP),	outwash	PD	1	t					
]	34.0	· · · · · · · ·					23	18					
35-	843.5					PD		10					
-	-					PD	21	19					
-	-						17	22					
40	-		SANDY LEAN CLAY, trace G	ravel, gray, wet, me	dium to	(PD		+					
40-	-		very stiff, (CL), till			\square	17	21					
+	-					PD]	+					
+	-					\mathbb{X}	12	19					
45						PD]	L	\perp		⊥		
	Index She	et Co	de 3.0 (Continu	ed Next Page)									Date: 7/15/1

State	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2014			Ground Elevation 877.5 (Surveyed)
т	Depth	gy			4	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH		Lithology	Cla	ssification	Drilling Operation	REC		ACL	Core Breaks	ock	Formation
	Elev.		SANDY LEAN CLAY, trace (δŏ	(%) 6	(%) _ 19	(ft)	Breaks	Ŕ	or Member
-	47.0 830.5		very stiff, (CL), till (continued)			+ 19				
-	- 050.5	* . * .× *× * .				5	12				
50-	-				PD	4	10				
-	-	· · · · · · · · · · · · · · · · · · ·					+				
-	-	·× · . · . · .×			PD		Ŧ				
55- -	-	í× ′. ×	CLAYEY SAND, trace Grave stiff, (CS), till	l, gray, wet, rather soft to very		6	_ 11				
-	-	× · · · · ·× ·× · ·			PD		+				
- 60-	-	' . ' .× '× ' .				,	+				
-	-	· · · × ·× · ·				18	14				
-	64.0	· · · · · · · · · · · · · · · · · · ·			PD		+				
65-	813.5	· · · · · · ·				26	 14				
-	-	· · ·	POORLY GRADED SAND, f Gravel, gray, waterbearing, r	ine- to medium-grained, trace nedium dense, (SP), outwash	\square	20	+ 14				
-	69.0 808.5	· · · ·			_PD		+				
70-	- 000.5	· . · .× ·× · .				28	12				
-	-	· · · × ·× · ·	CLAYEY SAND, trace Grave	el, gray, wet, very stiff, (SC), till			+				
75	74.0 803.5						+				
75-	-	 				31	_ 17				
-	+	· · · · · · · · · · · · · · · · · · ·			PD		+				
- 80-	+ -	· · · · · · · · · · · · · · · · · · ·				,	+				
-	-	· · · · · · ·	POORLY GRADED SAND, f Gravel, gray, waterbearing, c	ine- to medium-grained, trace lense to very dense, (SP),	×	41	_ 21 _				
-		· · · · · · · · · · · · · · · · · · ·	outwash		PD		Ŧ				
85-	-	· · · · · · · · · · · · · · · · · · ·				43	19				
-					\vdash						
-	+	· · · · · · · · · · · · · · · · · · ·			PD		‡				
90-	Ll	<u>· · </u>				J	⊥ S	⊥ oil Class		\perp _	 Class: Edit: Date: 7/15

Soil Class: J. kirk Rock Class: Edit: Date: 7/15/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MINDOT.GPJ

	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2014			Ground Elevation 877.5 (Surveyed)
DEPTH	Depth	Lithology			ig ation	SPT N60	MC (%)	COH (psf)	γ (pcf)	k Soil	Other Tests Or Remarks
	Elev.	Lith	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	-	· · · · · · · · ·				58 -	12				
	-	· · · · · · · · ·			PD	-	-				
95-	+		Gravel, gray, waterbearing,	fine- to medium-grained, trace dense to very dense, (SP),	\geq	* -	15			*50) blows per 6-inch set
	+	· · · · · · · · ·	outwash (continued)		PD	-	-				
	99.8 777.7	· · · · · ·	Bottom of Hole - 99.8 feet.		\times	*	_			*50) blows per 4-inch se

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc	ation				Boring			Ground Ele	
				SWLRT	(5)	- ·"			2132	2B		878.5 (
Locatio	-		Co. Coordinate: X=492656		(ft.)		Machine			libuatad		Drilling	T 1 of 2 5/20/14
	-		· · · · ·	ude (West)=		Tan				alibrated		Completed	5/20/14
н Ц	Depth		Offset Information Available			ио	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Or Rer	
DEPTH	Elev.	Lithology	Clas	sification		Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Forma or Mei	
-	0.5 878.0		SANDY LEAN CLAY, trace roo (CLS), topsoil fill	ots and Gravel, blac	ck, moist,	R	-	_					
5- - - - - -	-		CLAYEY SAND, trace Gravel, (SC), fill	gray and brown, m	oist to wet,		4	- - - - - -			C.,	vitched to m	ud roton (
-	13.0 865.5	X				PD 	-	+ + +			dri	lling method mple.	l after 10-fo
15-	-		CLAYEY SAND, trace Gravel, outwash	brown, wet, mediur	m, (SC),		7	+ + + + + + + + + + + + + + + + + + + +					
20	20.0 858.5	· × · · · × · · · × · · · ×	SILTY SAND, fine- to medium waterbearing, loose, (SM), out		el, brown,		5						
30- 35- 40-			CLAYEY SAND, with Gravel, t soft to stiff, (SC), outwash	prown, waterbearing	g, rather	$\mathbb{A}^{\mathbb{R}} \mathbb{A}^{\mathbb{R}} \mathbb{R} \mathbb{A}^{\mathbb{R}} \mathbb{A}^{\mathbb{R}} \mathbb{A}^{\mathbb{R}} \mathbb{A}^{\mathbb{R}} \mathbb{A}^{\mathbb{R}}$	8 -	- - - - - - - - - - - - - - - - - - -					
45		∟ et Coo	de 3.0 (Continue	 ed Next Page)		×	!			J. Kirk Ro		Class: Edit:	 Date: 7/15/

BRAUN[®] INTERTEC

UNIQUE NUMBER U.S. Customary Units

State	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2132			Ground Elevation 878.5 (Surveyed)
Ĩ	Depth	Лbс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
- - - 50 - -			CLAYEY SAND, with Grave soft to stiff, (SC), outwash	el, brown, waterbearing, rather (continued)	A PD PD	20	- - - - - -				
- - - - - - -	825.5		POORLY GRADED SAND medium-grained, with Grav dense, (SP-SM), outwash	with SILT, fine- to el, gray, waterbearing, medium	PD	34 -	+ + + +				
60-	61.0 817.5		Bottom of Hole - 61 feet.			34 -					
			Boring immediately backfill	ea with bentonite grout.							

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc	ation				Boring			Ground Elev	
	••			SWLRT	15.	D ""			2133	9B		881.2 (S	
Locatio		-	Co. Coordinate: X=49265		(ft.)		Machine			11hur.4- 1		Drilling	T 1 of 2 5/21/14
				itude (West)=		Пап				alibrated		Completed	5/21/14
			Offset Information Available			-	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other T Or Ren	
F	Depth	Lithology				g ation	1400				8		
DEPTH	Elev.	Litho	Clas	sification		Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Break:	Sock	Forma or Mer	ntion
	0.5	· 1 1/2 · 1	ORGANIC CLAY, trace roots,		topsoil fill	P	(70)	1707	(14)	Dican			
1	880.7	\bigotimes				ł		-					
-	-	\bigotimes				X	19	+					
5-	-					<u></u>	· ·	1					
J	-	\bigotimes	CLAYEY SAND, trace Gravel	gray and brown m	oist (SC)			+					
-	-	\bigotimes	fill	, gray and brown, m	0.01, (00),	R C		+					
1	-	\bigotimes				मि		Į					
10	-	\bigotimes					20 -	+			Sv	vitched to mu	ld rotary
	-	\bigotimes				PD		ļ			dr	illing method	after 10-fc
-	13.0 868.2	\bigotimes				\mathbb{N}		+			sa	imple.	
45	000.2					PD		+					
15-	-						24	Ť.					
-	-					PD		+					
	-	\bigotimes				PD		İ					
20-	_	\bigotimes					4 -	+					
-	-	\bigotimes				PD		+					
-	-	\bigotimes				\square	1	ļ					
-	-	\bigotimes				PD		+					
25	-	\bigotimes	CLAYEY SAND, with Gravel, (SC), fill	brown, wet to water	bearing,		6	Ť					
-	-		(00), iii			PD		+					
-	-	\bigotimes						+					
30-	-	\bigotimes					7 -	Ļ					
-	-	\bigotimes						+					
	-	\bigotimes						Ţ					
+	-	\bigotimes				PD		+					
35-	-	\bigotimes				\mathbf{X}	12 -	+					
1	-	\bigotimes				PD] .	Į					
+	38.0 843.2	X				-12		+					
40-	-					PD		1					
-	-		PEAT, trace fibers, black, we	(PT) ewome door	seit		6	+					
+	-		FLAT, TACE IDEIS, DIACK, WE	, (Fi), swamp depo	้อาเ	PD		†					
1	-					PD		Į					
45	45.0 Index She		la 0.0 (Continu	ed Next Page)		×	1	⊥	⊥		⊥_	 Class: Edit: I	

METROPOLITAN

BRAUN[®] INTERTEC

UNIQUE NUMBER

	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2133			Ground Elevation 881.2 (Surveyed)
г	Depth	gy			L L	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	836.2				X PD	19 -	-				
-	-				PD	-	-				
- 50 - -	-		CLAYEY SAND, with Grave	el, brown, wet, (SC), fill	\mid	32 -	-				
-	-				PD	-	-				
55-	-					19 -	+				
-	58.0 823.2				-PD	-	-				
60 - -	-		ORGANIC CLAY, trace fibe deposit	ers, black, wet, (OL), swamp		5 -	-				
-	63.0 818.2		CLAYEY SAND, with Grave	al brown wat stiff (SC)	— PD	-	-				
65 - -		· · · · · · · · · · · · · · · · · · ·	outwash Bottom of Hole - 66 feet.	a, brown, wet, stin, (SC),	\square	16	_				

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation				Boring 2015			ound Ele 79.6 (vation Surveyed)
ocatio	<i>n</i> Hen	inepir	Co. Coordinate: X=49268	7 Y=133897	(ft.)	Drill	Machine	9 7507					T 1 of 3
	Latit	ude (l	North)= Longi	tude (West)=		Han	nmer CN	IE Auto	natic Ca	librated	Dri Co	illing mpleted	7/16/13
	No Si	tation-	Offset Information Available				SPT	МС	сон	γ		Other [·]	Tests
DEPTH	Depth	Lithology	Clas	sification		Drilling Operation	N60 REC	(%) RQD	(psf) ACL	^(pcf) Core Breaks		Or Ren Forma	ation
	Elev.		SILTY SAND, fine-grained, tra		/et. (SM).	δŏ	(%)	(%)	(ft)	Breaks	۲.	or Mer	nber
+	1.5 878.1	×	_fill			-}}	· ·	40					
-						X R	13	10					
5-		\bigotimes	CLAYEY SAND, trace Gravel	, brown and gray, w	et, (SC), fill	R	15	11					
10-	9.0 870.6	× . 				R	18	9					
Z +		× · . · . · .× ·× · .	SILTY SAND, fine- to medium	n-grained trace Gra	vel brown	R	14	_ 7 					
15-	-	× . × . × . ×	moist to 12 1/2 feet then wate dense, (SM), till	rbearing, loose to n	nedium	R	6	9					ud rotary
-	19.0	· · · × ·× · · · · · ×				PD	10	9			drilling sampl		after 15-f
20-	860.6	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND wit coarse-grained, trace Gravel, dense, (SP), outwash		g, medium	PD	11	22					
-	857.6	· · · ·× · . · . · .× ·× · .				PD	17	10					
25-	-	· · · · × · × · · ·				PD PD	18	6					
30-		· . · .× ·× · . · . · .×			- 0l	PD	14	9					
		× . × ×	SILTY SAND, fine- to medium brown, waterbearing, medium	dense, (SM), till	e Gravel,	PD	16	9					
35-	_	·× · . · . · .× ·× · .				PD	10	† 11 -			*No or	moloro	covor:
+		· · · · · · · · · · · · · · · · · · ·				PD	11* .	+ + +				ample rea	-
40	39.0 840.6	× . × . · . · .×	CLAYEY SAND, trace Gravel	, gray, wet, medium	ı, (SC), till	PD	8	18					
-	42.0 837.6 44.0		LEAN CLAY, gray, wet, rather	stiff, (CL), till		PD	11	27			LL=25	, PL=17,	PI=8
45	835.6 Index She					PD]	İ					 Date: 7/15/

tate F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT		1		Boring 2015			Ground Elevation 879.6 (Surveyed)
г	Depth	βŊ			5	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	50 - 54.0 55 - 54.0 56 - 54.0 56 - 54.0 57 - 54.0 5825.6 50 - 54.0 50 - 55.0 50 - 54.0 50 - 55.0	Litholo	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Break:	Rock	Formation or Member
	-	Depth Boog Classification Elev. Classification 54.0 POORLY GRADED SAND with SILT, fin coarse-grained, trace Gravel, gray, wate dense, (SP-SM), outwash (continued) 54.0 SILTY SAND, fine- to medium-grained, t waterbearing, dense, (SM), till		PD	18 .	12					
-	54.0 SILTY SAND, fine- to medium-grained, trace Gravel, waterbearing, dense, (SP-SM), till	vith SILT, fine- to		22	12						
50-		l, gray, waterbearing, medium	PD	24	_ 14						
-			PD		+						
55				31	12						
-	-	· . · .× ·× · . · . · .×			PD	-	+				
60		:.:X	SILTY SAND find to modiu	m grained trace Cravel brown		38	19				
	· · · × ·× · . · . · .×	waterbearing, dense, (SM), t	till	PD	-	-					
65 -	65	:.:X				48*	+			*N	No sample recovery.
-	-	* . * .×				40	+				
70-		× .					-				
-	-				×	35 .	_ 16 _				
75-	-				PD	-	+				
-	-				X	30 .	_ 18 _				
-	-		POORLY GRADED SAND v medium-grained, trace Grav		PD	-	+				
80-	-		medium dense to very dense			35	14				
-	-				PD	-	+				
85-	5					27	16				
-	-				PD	-	ļ				
90		<u> </u>					L	⊥ Soil	 Class: Ro		Class: Edit: Date: 7/1

METROPOLITAN

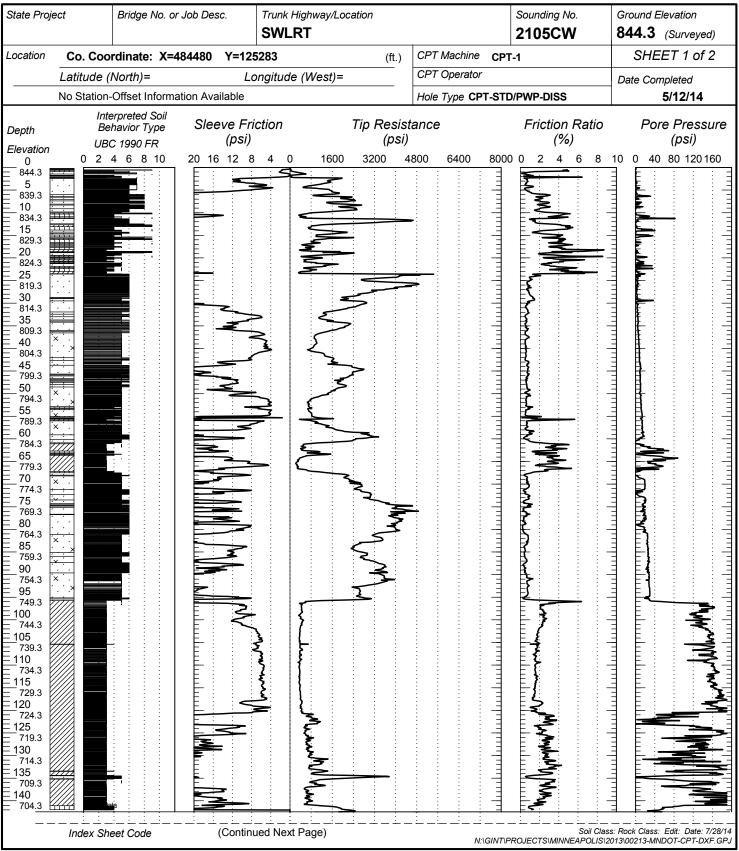
BRAUN[®] INTERTEC

UNIQUE NUMBER

tate I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2015			Ground Elevation 879.6 (Surveyed)
Н	Depth	gy			и	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	· · · · · · · · ·				20 -	18				
-	-				PD	-	-				
95-	-	· · ·				40	19				
-	-	· · · · · · · · ·			PD	-	-				
- 00 - -	-		POORLY GRADED SAND medium-grained, trace Grav medium dense to very dens (continued)	vel, brown, waterbearing,		54	16 				ccasional Clayey Sand clusions beginning at 1 et.
- 05 - -	-				PD	-	-				
- - 10-	- - - 110.5	· · · · · · · · · · · · · · · · · · ·				-	- 5			Gr	avel and Cobbles at 1
	769.1		Bottom of Hole - 100.5 feet. Water observed at 12 1/2 fe auger in the ground. Boring then sealed with ber	eet with 12 feet of hollow-sten	n					*5(0 blows per 5-inch set.

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Loo	cation				Boring I			Ground Elev	
				SWLRT					2016	2B		893.9 (S	
Locatio		-	n Co. Coordinate: X=49259	Y=134360	(ft.)		Machine					Drilling	Γ 1 of 3
			· · · · · · · · · · · · · · · · · · ·	tude (West)=		Han	nmer CN	IE Autor	natic Ca	librated		Completed	7/18/13
	No Si	tation-	Offset Information Available			-	SPT	МС	СОН	γ	Soil	Other T	
F	Depth	ogy				ion	N 60	(%)	(psf)	(pcf)	Ň	Or Rem	narks
DEPTH	_,	Lithology	Clas	sification		Drilling Operation	REC	RQD	ACL	Core Breaks	sсk	Forma	
7	<i>Elev.</i> 0.8	I	SILTY SAND, fine- to medium		wel brown	δŏ	(%)	(%)	(ft)	Breaks	Ŕ	or Men	nber
-	0.8 893.1	$\overline{\mathbb{X}}$	\moist, (SM), topsoil fill					8					
-	-	\bigotimes	SILTY SAND, fine- to coarse- moist, (SM), fill	grained, trace Grav	el, brown,	मि	25	6					
5-	-	\bigotimes				\square	22 .	12					
-	_ 7.0 886.9	XX × ·				Æ	-	-					
-		* . * .× *× * .					15	12					
10-	_		CLAYEY SAND, trace Gravel,	brown, wet, stiff to	very stiff,	ł		-			*N	la comple rea	overv
-	-	î.: X	(CS), till		-	K	13* .	_ 11				lo sample rec	overy.
-	-	× . `.`.×				51	19 ⁻	11					
-	_ 14.0 879.9	× .					19	- 11					
15-	_ 0/0.0	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND wit	h SILT, fine- to			32	8					
V	-		coarse-grained, trace Gravel, then waterbearing, loose to de			सि		-					
-	19.0	· · · · · ·	then waterbearing, loose to de		wash	\square	10	10					
20-	874.9	× . ×				Æ	-	-					
-	-	′× ′ . · · ×	SILTY SAND, fine- to medium	-grained trace Gra	with	K	8.	10					
-	-	íx í .	occasional Clay lenses and se			51		-					
-	-	×	loose, (SM), till				6	15					
25-	26.0	· .× `× ` .				Ň	9.	11					
-	867.9					सि							
-	-					Ķ	5	- 18					
30-	-						TW -	- 17				4400 6	
-	-					Þ		+				I=1480 psf D=115 pcf	
-	-					R						·	
-	-					\square	10	16					
35-	-		SANDY LEAN CLAY, trace Gr hard, (CL), till	avel, gray, wet, rat	her soft to	۲ ۲	12	16			qp	=1 1/2 tsf	
-	-		naid, (OL <i>)</i> , III			िस							
-	-					\square	16	16			qp	=2 tsf	
40-	-					Æ	-	+					
-	-						13 .	11			db	=1 3/4 tsf	
-	-					Æ	-	ł			~~	-2 1/2 +of	
-	-					K	20	10			0	=2 1/2 tsf ccasional Sar	
45	Index She			ed Next Page)		51]	L			se	ams beginnir <i>Class: Edit: L</i>	ng at 45 fe
				curventir aye				30	V:\GINT\PF	ROJECTS		APOLIS\2013\002	213-MNDOT.

State	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2016			Ground Elevation 893.9 (Surveyed)
Ξ	Depth	gy			u c	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	lassification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-				X	24	_ 11				5=2 1/4 tsf
-	-			Croupl group wat rather off to		31	13			dt	o=2 tsf
50-	-		hard, (CL), till (continued)	Gravel, gray, wet, rather soft to	≤ 1	35 .	10			SI	o=3 tsf witched to mud rotary
-	54.0				PD		-			dr sa	illing method after 50-fo ample.
55-	839.9	× · . · . · .× ·× · .				43	10				
-					PD		+				
60-		× · · · · × ·× · ·			\mathbf{X}	51	10				
-		× . • × .	CLAYEY SAND, with Grave	el, brown, wet, hard, (SC), till	PD	- -	-				
65-		^ · · × `× · ·				39	13				
-	-	· · · · · × · . · . · .× · . · .×			PD	-	+				
- 70 -	69.0 824.9	· · · · · · · · · · · · · · · · · · ·				26	- - - 11				
-	-	~ · · × ·× · . · · · ×			PD	-	-				
- 75-	-	· · · · · · · × · · · ×	CLAYEY SAND, trace Grav	vel, gray, wet, very stiff, (SC), till			-				
-	-	· · · × ·× · . · . · .×				24	+				
- 80 -		·× · . ·× · . · . · .×			_PD		-				
-		′× ′ . ′ . ′ .× ′× ′ .	SILTY SAND, fine- to coars waterbearing, medium dens	se-grained, trace Gravel, gray, se, (SM), till		30 .	_ 13 _				
- 85	84.0 809.9	· · · × · <u>· ·</u> · ·× ·			_PD		-				
-	-	·× · . · . · .× ·× · .	CLAYEY SAND, trace Grav (SC), till	vel, gray, wet, hard to very stiff,	X	38 .	_ 13 _				
-	-	· . · .× ·× · .	(PD	·	+				

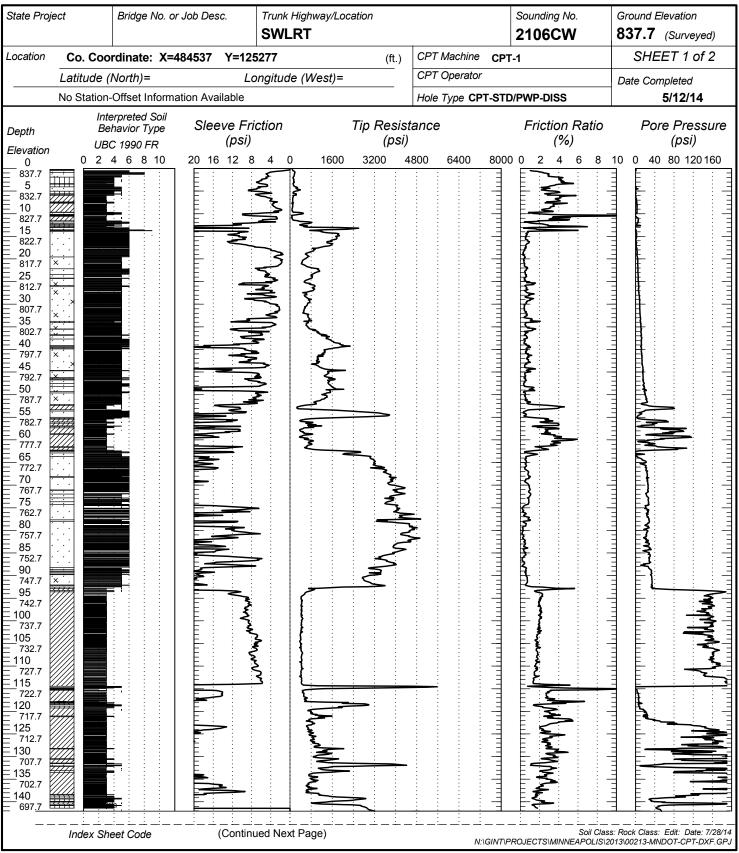

ne i	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2016			Ground Elev 893.9 (S	
	Depth	уу			ис	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other T Or Rem	
חודםט	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Forma or Men	
-	-	·× · . · . · .× ·× · . · . · .× ·× · .	CLAYEY SAND, trace Grav (SC), till <i>(continued)</i>	el, gray, wet, hard to very stiff,	PD	23	_ 12 					
- 95 - -	_ 94.0 _ 799.9 _	× · · × · · · · · × · × · ·				21	- - - 10					
-	-	·× · . · . · .× ·× · .			PD	-	+					
- 0C - -	-		SILTY SAND, fine- to mediu waterbearing, medium dens	ım-grained, trace Gravel, gray, e to dense, (SM), till		44 -	+ + +					
-)5 - - -	- - - -				PD		- - -					
- 0- -	_ 109.0 _ 784.9 _					* -	16				T. PETER FO 0 blows per 6	
- - - -	- - -		SANDSTONE, light yellow a bedrock	and white, wet, (SS), weathered	PD	-	-					
-	- - 119.3				\times	-	-			*5	0 blows per 4	-inch set
	774.6		Bottom of Hole - 119.3 feet. Water observed at 17 1/2 fe auger in the ground. Boring immediately backfille	et with 17 feet of hollow-stem								

CONE PENETRATION TEST RESULTS

UNIQUE NUMBER

CONE PENETRATION TEST RESULTS

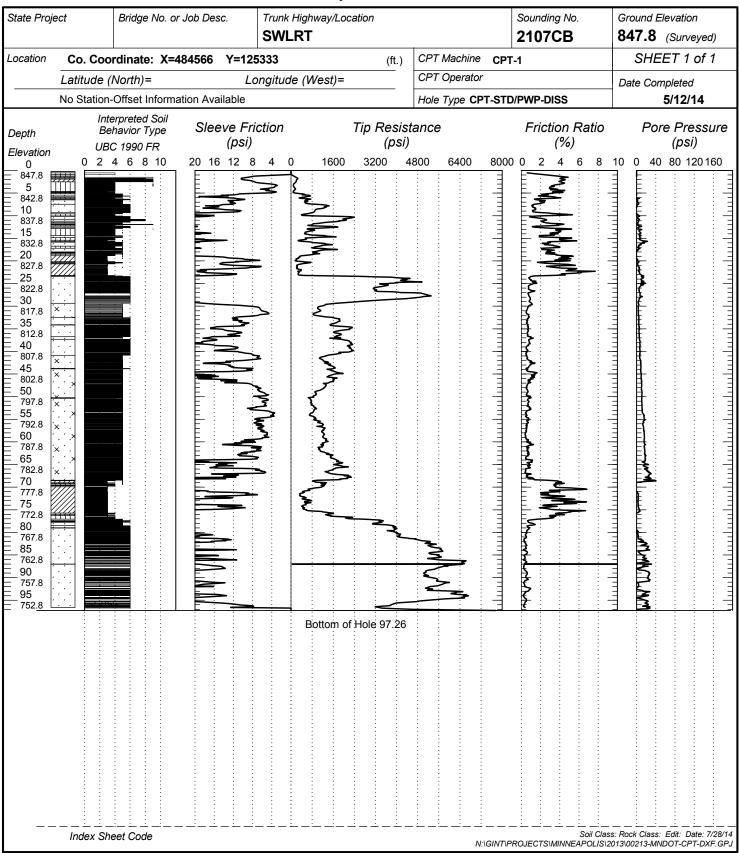
UNIQUE NUMBER


tate Project			Bric	dge	No. or	r Job	Des	SC.		Trunk SWL		hway/Loo	cation							nding)5C				ound E		on veyed)
	I	Мn,	/D(от	GEC	OTE	СН	INIC	CAL	SEC	TIC	DN - C0	ONE	PEN	IETR/	ATIO	ON T	TEST	RES	SUL	TS		S	SHEE	T 2	of 2
epth		nterj Beha BC			Soil ype	S	lee	eve (p:		tion			Tip I	Resi (ps	stanc i)	е			Fr		n Ra %)	atio		Poi	re Pr (ps	essur si)
levation	0 2					20	16	12		4 ()	1600	320		, 4800	64	400	8000	0		¥ 6	8	10	0 40		, 120 160
	: :	:	:	:	:		:	:	:	÷		Bottom o				:			:	:		:				: :
	: :	÷	÷	÷	÷	÷	÷	÷	÷	÷				142.4	• •	÷	:		:	:	÷	:		: :	÷	: :
	: :	÷	÷	÷	÷	-	÷	÷	÷	÷		: :	÷ ÷	-	÷	÷	:		÷	:		÷		: :	÷	: :
	: :	÷	÷	÷	÷	÷	÷	÷	÷	÷		: :		÷	÷	÷	:		÷	: :	÷	÷		÷ ÷	÷	÷ ÷
	: :	÷	÷	÷	-	-	÷	-	-	:		-	-		-	:	:		÷	:		-		-		
	: :	÷	÷	:		÷	÷	÷	-			: :								: :		÷		÷ ÷	÷	: :
	: ;	÷	÷	÷		-	÷	÷	÷	÷		: :	: :		-	-	-	:	:	: :		÷		-	÷	
	: :	÷	÷	÷	÷	-	÷	÷	÷	÷		: :	: :	÷		÷	:	:	:	: :		÷		: :	÷	÷
	: :	÷	÷	÷	÷	-	÷	÷	÷	÷		: :	-	-	:	:		:	:	:		÷		-	÷	: :
	1	÷	:	:	÷		:	:	:	÷				:	÷	:	-	-	÷	:	÷	:		: :	÷	
	: :	÷	÷	÷	÷	-	÷	÷	÷	÷		: :		÷	÷	:	-		÷	: :		÷		:	÷	: :
	: :		÷	÷	÷	:	:	:		÷	:	: :	÷ :		÷	÷	:	:	:	: :		÷		÷ ÷	÷	: :
		÷	÷	÷		÷	÷	÷	÷			: :		-		:		:	÷			÷		-	-	
	: :	÷	÷	÷	÷	÷	÷	÷	÷	÷		÷ ÷	÷ ÷	÷	:	÷	: :	:	:	: :	÷	÷		÷ ÷	÷	÷ ÷
	: :	-	÷	÷			÷	÷	÷							-			÷			÷		÷ ÷		
	: :	÷	÷	÷	÷	÷	÷	÷	÷	:		÷ ÷	÷ ÷	:	:	:	: :	÷	:	: :	÷	÷		÷ ÷	÷	÷ ÷
	: :	÷	÷	÷			÷	÷	÷			: :		÷		÷			÷	:		÷		÷ ÷		
	: :	÷	÷	÷	÷	÷	÷	÷	÷	÷		÷ ÷	: :	÷	÷	÷	: :	÷	÷	: :	÷	÷		÷ ÷	÷	: :
	÷ ÷	÷	÷	÷	÷	÷	÷	÷	÷	÷		÷ ÷				:			÷	:		÷		÷ ÷	÷	: :
	: :	÷	-	÷	-	÷	÷	÷	÷	÷		-	-	-	:	:	:		÷	:		÷		: :		
	: :	÷	÷	÷	÷	÷	÷	÷	:	÷		: :	: :	÷	:	÷	:		÷	: :	÷	÷		÷ ÷	÷	: :
	: :	-	÷	÷			÷	÷	÷							÷			÷			÷		÷ ÷		
	: :	÷	÷	÷	÷	÷	÷	÷	÷	:		: :	: :	:	:	:	:		÷	: :	÷	÷		: :	-	: :
	÷ ÷		-	÷		÷	÷	-		÷			-			÷			-			-		÷ ÷	÷	
	: :	÷	÷	÷	-	÷	÷	÷	÷	÷		-		-	:	÷	:	-	-	: :	÷	÷		: :	÷	
	÷ :	-	-			÷	÷	-		÷			-			÷			-	:		-		÷ ÷	÷	
	: :	÷	-	÷	-	÷	÷	÷	÷	÷		-	-	-	:	:	:		÷	:		÷		: :		
	: :	÷	÷	÷	÷	÷	÷	÷	:	÷		÷ ÷	: :	÷	:	÷	:		÷	: :	÷	÷		÷ ÷	÷	: :
	: :	÷	÷	÷	-	÷	÷	÷	-	÷		-	-	-	-	÷	-		÷	:	÷	÷		÷ ÷	÷	
	: :	÷	÷	÷	÷	÷	÷	÷	÷	:		÷	1	÷	÷	:	-	-	÷	:	÷	÷		: :	÷	
	: :	÷	÷	÷	÷	÷	÷	÷	÷	÷		: :			:	:	:		÷	: :		÷		÷ ÷	÷	: :
	: :	÷	÷	÷	÷	÷	÷	÷	:	÷		: :	-	÷	÷	:		:	÷	-	÷	÷		: :	÷	
	: :	÷	÷	÷		÷	÷	÷	÷	÷		: :		÷	÷	÷	-		÷	:	÷	÷		÷ ÷	÷	: :
	: :	÷	÷	÷	-	÷	÷	÷	÷	:		÷ ÷	-	÷	:	-			÷	:	÷	÷		÷ ÷	÷	: :
	÷ ÷	÷	÷	÷	÷	÷	÷	÷	÷	÷		: :		÷	:	÷			÷	:	÷	÷		÷ ÷	÷	: :
	: :	÷	÷	÷	÷	÷	÷	÷	:	:		: :	1	÷	:		-	-	:	: :	÷	÷		: :	÷	
	: :	-	:	÷		-	÷	÷	÷	:		: :		÷		:		÷	:	: :		÷		: :	÷	
	: :	÷	÷	÷	÷	÷	÷	÷	÷	÷		: :	: :	:	-	÷	:	-	÷	: :	÷	÷		: :	÷	: :
	: :	÷	÷	÷	:		÷	÷	÷	:		: :				:		÷	:	:		÷		: :	÷	
	: :	÷	÷	:	÷	÷	÷	÷	÷	:			: :		÷	:	-	-	÷	: :	÷	:		-	÷	: :
	: :	÷	÷	÷		÷	÷	÷	÷	÷		: :		÷	÷	÷	-		÷	:	÷	÷		÷ ÷	÷	÷
	: :	÷	÷	÷	-	÷	÷	÷	÷	:		÷ ÷	-	÷	÷	:		-	÷	-	÷	÷		÷ ÷	÷	
	: :	÷	÷	÷	÷	-	÷	÷	÷	:		: :		÷	÷	:	-		÷	: :	-	÷		: :	÷	: :
	÷÷	-	÷	:	÷		÷	÷	-	:		: :			:	:		÷	:	: :				: :		: :
	: :	-	-	÷	-	-	÷	÷	-	:		: :	-	-	-	:			÷	-		÷		÷ ÷	÷	
	: :	-	-	÷	÷	-	÷	÷	-	:		: :	: :			:		÷	:	:		÷		: :		: :
	: :	÷	÷	÷	-	:	÷	÷	-	÷		: :	1	:	-	÷	-	-	÷	: :	÷	÷		÷ ÷	÷	: :
	: :	÷	÷	÷	÷	-	÷	÷	÷	:		: :	-	÷		:	:	:	:	:		÷		: :	÷	÷ ÷

CONE PENETRATION TEST RESULTS

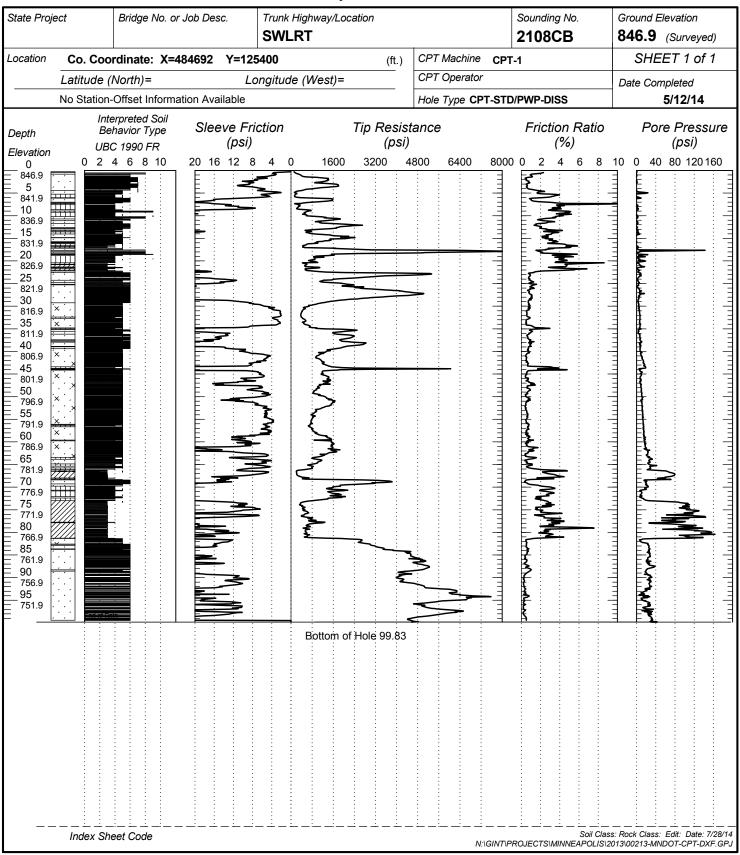
UNIQUE NUMBER

UNIQUE NUMBER

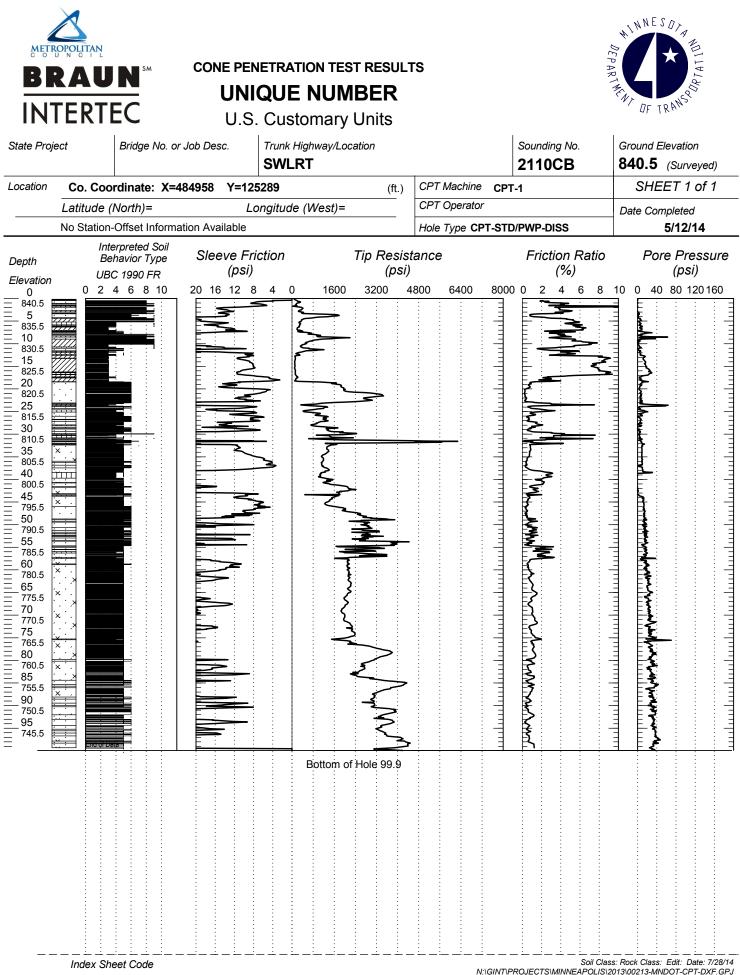


$(psi) \qquad (psi) \qquad (psi) \qquad (psi)$	tate Project			Br	idge	e Nc	o. or J	ob E	Des	с.		Trunk SWI		hway/Loc Г	ation					Sог 21	ındir 06					ound E 37.7		tion rveyed)
Behavior Type Sleeve Friction Tip Resistance Friction Ratio Pore Press evation UBC 1990 FR (psi) (psi) (psi) (%) (psi) 0 2 4 6 10 20 16 12 8 4 1600 3200 4800 6400 8000 0 2 4 6 8 10 40 80 120			Mr	٦/D	007	ΓG	SEO 1	ΓEC	СН	NICA	۹L -	SEC	TIC	DN - CC	NE PE	NET	rr <i>A</i>	TION	TEST	RE	้รบ	LTS	S		3	SHEE	ET 2	of 2
evation 0 2 4 6 8 10 20 16 12 8 4 0 1600 3200 4800 6400 8000 0 2 4 6 8 10 0 40 80 120	Depth		Beh	av	ior 7	Гуре	е	SI	lee	ve F	rict	tion					nce	9		F	rict			tio	Pore Pressure			
· · · · · · · · · · · · · · · · · · ·	Elevation							20	16			1	0	1600			00	6400	8000	0	2			8	10	0 40		
Bottom of Hole 142.08		:	: :		: :	:	<u> </u>	20	:	:	:	-	÷				00	0400	: 0000	:	2		:	:		: :	:	: :
		÷			: :	-		÷	÷	÷	÷	÷	÷	Bottom of	Hole 14	2.08			:	÷	÷	÷	÷	÷		: :	÷	
						-		÷		-	-	-												÷				
		÷	: :		: :	÷		÷	÷	÷		:			: :	: :			:	÷	÷	÷	-	÷		: :		
		-	: :		: :	÷		÷	÷	÷	÷	:	÷						:	÷	÷	÷	-	÷		÷ ÷	-	
		÷	-		: :	-		÷	÷	÷	÷	:	÷	: :	: :	: :				÷	÷	÷	÷	÷		: :	÷	: :
		-	: :		: :	÷		÷	÷	÷	÷	:			÷÷	: :			:	÷	÷	÷	÷	÷		: :		
		÷	: :		: :	÷		÷	÷	÷	÷	÷	:			-			-	÷	÷	÷	-	÷		÷ ÷		
		÷	: :		: :	÷		÷	÷	:	÷	:	:	: :	: :	: :			:	:	÷	:	÷	÷		: :		
		÷	: :		: :	-		÷	÷	÷	÷	:	-	: :	: :	-			:	÷	÷	÷		÷		: :	-	
			-		: :	÷		÷	÷				:	: :	: :	: :			:	:	÷	:	-	÷		: :		
		÷	-		-	÷		÷	÷	÷	÷	÷	÷	: :	: :	: :			:	÷	÷	÷	÷	÷		-	-	-
		-	: :		: :	:		-		÷		:	÷	: :	: :	: :					-	÷		÷		: :	÷	
		-	: :		: :	-			÷	÷	-	÷	÷			: :				÷	-	÷	-	÷		-	÷	
		÷	: :		: :	:		÷	÷	÷	÷	÷	÷	: :	: :	: :				÷	-	÷	-	÷		÷ ÷	÷	: :
		÷	: :		: :	÷		÷	÷	÷	÷	-	÷			-				÷	÷	÷	-	÷		-	-	
		-	: :		: :					÷	-	-	÷	: :	: :					-	-	÷				÷ :		
		-	-		: :	÷		÷	÷	÷	÷	-	:			-			-	÷	-	÷	-	÷		-		
			: :		: :			1			-		:	: :	: :	: :			-	-	-		-			: :		
		÷	: :		: :	-		÷	÷	÷	-	÷	÷	: :		: :			-	÷	÷	÷	÷	÷		: :	÷	
		-	: :		: :	:		-		÷		:	÷	: :		: :					-			:		: :	÷	
		-	: :		: :	-			÷	÷	-	÷	÷			: :				÷	÷	÷	-	÷		: :	÷	
		-	: :		: :	-		-	÷	÷	-		÷							÷	-	÷		÷		÷ ÷		
		-	-		: :	-		÷	÷	÷	÷	÷	:			-			-	÷	-	÷	-	-		-		
		-	: :		: :					÷	-		÷		: :					-	-	÷				÷ :		
		÷	: :		: :	÷		-	÷	÷	÷	:	÷	: :	: :	: :				÷	÷	÷	÷	÷		: :	÷	
						-		÷	÷	÷	-		÷							-		÷		÷				
		÷	: :		: :	÷		÷	÷	÷	-	÷	÷	: :		: :			-	÷	÷	÷	÷	÷		: :	÷	
		-	: :						÷	÷	-		÷							÷		÷		÷		1		
		-	: :		: :	-			÷	÷	÷	÷	÷			: :				÷	÷	÷	-	÷		: :	÷	
		÷	: :		: :	÷		÷	:	÷	:	÷	÷	: :	: :	: :				:		÷	-	÷		÷ ÷		
		-	-		-	-		-	÷	-	-	÷	÷			-				÷	-	-	-	-		-	-	
		÷	: :		: :	:		÷	÷	÷	÷	÷	:	: :	: :	: :			-	÷	÷	÷	÷	÷		÷ ÷	÷	: :
		÷	: :		:	-		÷	÷	÷	-	:			: :	-			-	÷	÷	÷	-	÷		: :	-	
		:	: :		: :	÷		÷	:		:	÷	:	: :	: :	: :			:	÷	÷	:	÷	÷		: :		: :
		÷	: :		: ;	÷		÷	÷	÷	÷	:	-			-			:	÷	÷	÷	-	÷		: :	-	
		:	: :		: :	÷		÷	:		÷	÷	:	: :		: :			÷	÷	÷	÷	÷	÷		: :		: :
		÷	: :		: :	÷		÷	÷	÷	÷	÷	-			: :			-	÷	÷	÷	-	÷			-	
		÷	: :		: :	÷		÷	÷	:	÷	:	:	: :	: :	: :			:	:	÷	÷		÷		: :		
		-	-			-		÷	÷	÷	÷	-		: :	: :	-			:	÷	÷	÷	-	÷		-	-	
		÷	:		: :	÷		÷	÷	÷	÷	÷	:	: :	: :	: :			÷	÷	÷	÷	:	÷		: :		: :
		÷	: :		: :	÷		÷	÷	÷	÷	÷	÷			-				÷	÷	÷	÷	÷		-		
					: :	-		-	÷		:		:	: :	: :	: :			:	:	÷	:	-	÷		: :	-	
		÷	: :		: :	:		÷	÷		-	:	-	-		: :				:	÷	÷	-	÷		: :	÷	
		÷	: :		: :	-		-	÷	÷	-	:	-			:			-	÷	÷	÷	-	÷		: :	-	
		÷	: :		: :	÷		÷	:	÷	÷	÷	÷	: :	: :	: :			÷	÷	÷	÷	÷	÷		÷ ÷		: :
		÷	-		: :	-		÷	÷	÷	÷	÷	÷	: :	: :	: :			:	÷	÷	÷	÷	÷		÷ ÷	÷	: :
		-	: :			÷		÷	÷		÷	:			÷	: :				÷	÷	:	-	÷		÷ ÷	-	
Soil Class: Rock Class: Edit: Date:		<u> </u>	<u> </u>		<u>:</u> :	:		_:	÷	_ :	<u> </u>	<u> </u>	<u>:</u>		::	<u>: _ :</u>			<u> </u>	_ <u>:</u>	_:_	<u> </u>	<u> </u>	_:		<u> </u>	<u> </u>	

UNIQUE NUMBER



UNIQUE NUMBER



UNIQUE NUMBER

State Project	Bridge No. or		k Highway/Location		Sounding No.	Ground Elevation
			LRT	0.000	2109CB	840.9 (Surveyed)
		184758 Y=125406	(ft.)			SHEET 1 of 1
-	tude (North)=		de (West)=	CPT Operator		Date Completed
NO S	Station-Offset Informa	ation Available		Hole Type CH	PT-STD/PWP-DISS	5/12/14
Depth Elevation	Behavior Type UBC 1990 FR	Sleeve Friction (psi)	Tip Resi (ps		Friction Ratic (%)	Pore Pressure (psi)
0	0 2 4 6 8 10	20 16 12 8 4	0 1600 3200	4800 6400	8000 0 2 4 6 8	
840.9 5 835.9 10 10 830.9 15 825.9 20 20 820.9 25 815.9 30 805.9 40 40 800.9 45 795.9 790.9 55 780.9 55 780.9 225 770.9 75 765.9 225 755.9 225 755.9 225 760.9 225 755.9 225 755.9 225 755.9 225 755.9 225 755.9 225 755.9 225 750.9 25 755.9 25 755.9 25 755.9 25 755.9 25 740.9 25			Bottom of Hole 100.0	1 12		
	dex Sheet Code					

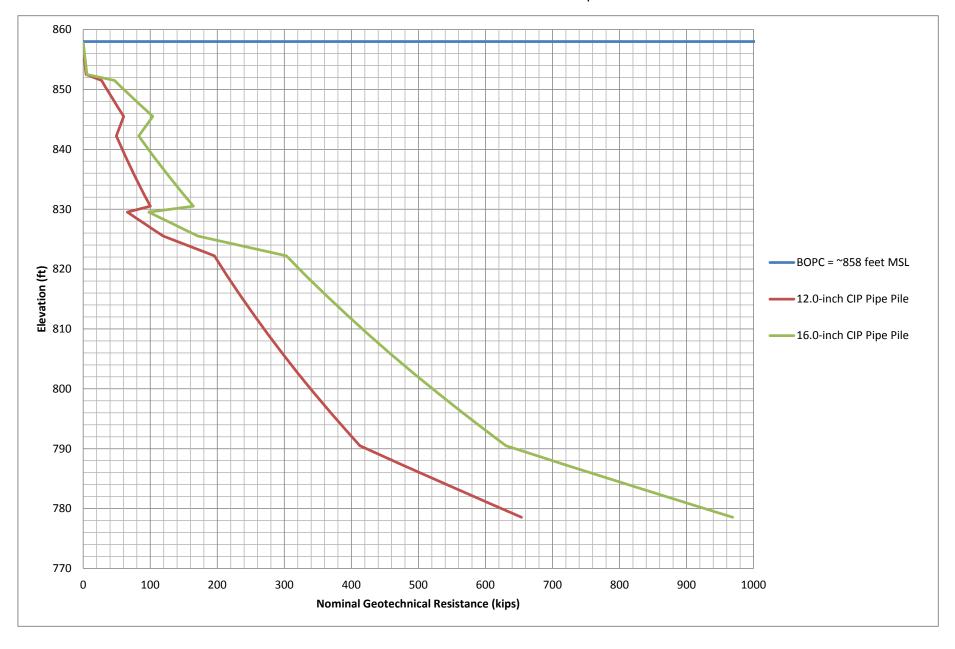
Boring/Substructure	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons)	Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
		120	185 [370 kips]	12.0	796	63
2026SB (South	859	120	192 [210 kib2]	16.0	815	44
Abutment)	629	140	215 [430 kips]	12.0	789	70
		140	215 [430 KIPS]	16.0	809	50
		120	105 [270 kina]	12.0	792	68
2111CD (Diam 1)	960	120	185 [370 kips]	16.0	809	51
2111SB (Pier 1)	860	140	245 [420 kin a]	12.0	785	75
		140	215 [430 kips]	16.0	806	54
		420		12.0	811	54
	065	120	185 [370 kips]	16.0	830-815*	35-50*
2013SB (Pier 2)	865	140	245 [420 kin a]	12.0	810	55
		140	215 [430 kips]	16.0	812	53
		100		12.0	823	62
	005	120	185 [370 kips]	16.0	843	42
2112SB (Pier 3)	885	140	245 (420 1	12.0	815-803*	70-82*
		140	215 [430 kips]	16.0	836	49
		420	405 (270)	12.0	831-812*	52-71*
	000	120	185 [370 kips]	16.0	833	50
2113SB (Pier 4)	883	1.10	215 [120 kin a]	12.0	827-804*	56-79*
		140	215 [430 kips]	16.0	833	50
				12.0	834-822*	45-57*
	879	120	185 [370 kips]	16.0	837	42
2129 SB (Pier 5)		1.10		12.0	815	64
		140	215 [430 kips]	16.0	836	43
		400	405 (270)	12.0	841	37
	070	120	185 [370 kips]	16.0	850	28
2130 CB (Pier 6)	878	140	215 [420 birs]	12.0	831	47
		140	215 [430 kips]	16.0	847	31
		400	405 (270)	12.0	813-807	59-65
	072	120	185 [370 kips]	16.0	815	57
2014SB (Pier 7)	872	140	215 [420 kins]	12.0	803	69
		140	215 [430 kips]	16.0	813*	59
		120	105 [270 birs]	12.0	813**	58**
	074	120	185 [370 kips]	16.0	828	43
2132SB (Pier 8)	871	140	215 [420 1:1-1	12.0	806**	65**
		140	215 [430 kips]	16.0	825	46

Summary of Anticipated Pile Lengths - PDA Analysis

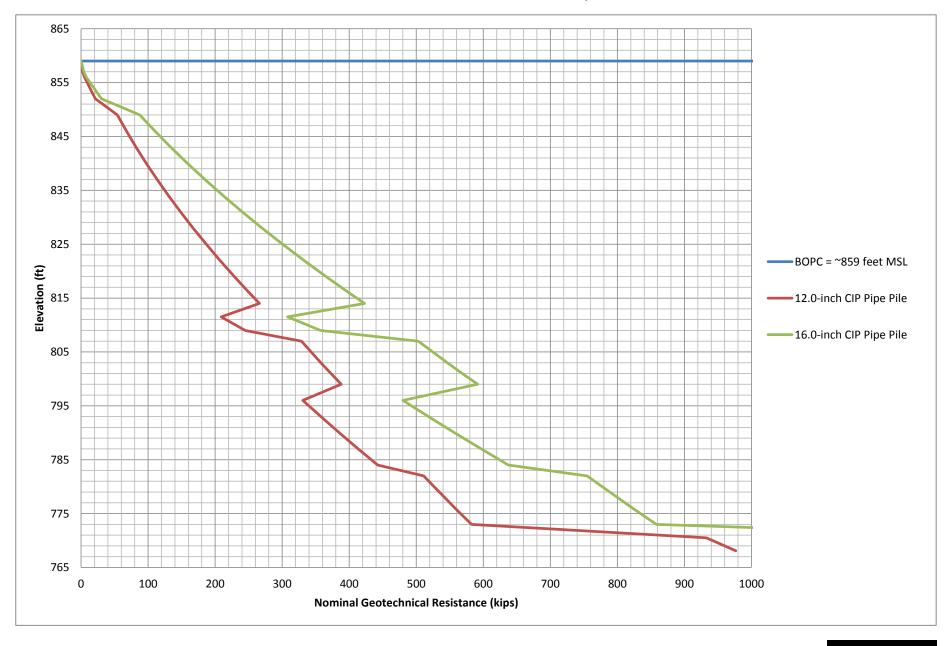
Summary of Anticipated Pile Lengths – PDA Analysis

Boring/Substructure	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons)	Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
		120	185 [370 kips]	12.0	804	70
2133CB (Pier 9)	874	120	182 [370 kips]	16.0	807	67
2133CB (FIEL 9)	874	140	245 [420 kin a]	12.0	802	72
		140	215 [430 kips]	16.0	805	69
		120	185 [370 kips]	12.0	808	59
2015SB (Pier 10)	867	120	192 [210 Kib2]	16.0	821	46
20133B (FIEL 10)	807	140	215 [430 kips]	12.0	803	64
		140	213 [430 KIPS]	16.0	816	51
		120	185 [370 kips]	12.0	809	58
2134CB (Pier 11)	867	120	192 [210 Kib2]	16.0	833	34
2134CB (FIEL 11)	807	140	215 [430 kips]	12.0	807	60
		140	213 [430 KIPS]	16.0	811	56
	869	120	185 [370 kips]	12.0	815	54
2135CB (Pier 12)				16.0	819	50
2155CB (Piel 12)	009	140	245 [420 bins]	12.0	812	57
		140	215 [430 kips]	16.0	816	53
		120	195 [270 king]	12.0	827	45
2136CB (Pier 13)	872	120	185 [370 kips]	16.0	832	40
2130CD (Piel 13)	0/2	140	215 [430 kips]	12.0	800	72
		140	213 [430 κιρ5]	16.0	829	43
		120	185 [370 kips]	12.0	826	49
2016SB (North	875	120	102 [210 kih2]	16.0	841	34
Abutment)	075	140	215 [430 kips]	12.0	815	60
		140	212 [430 Kib2]	16.0	837	38

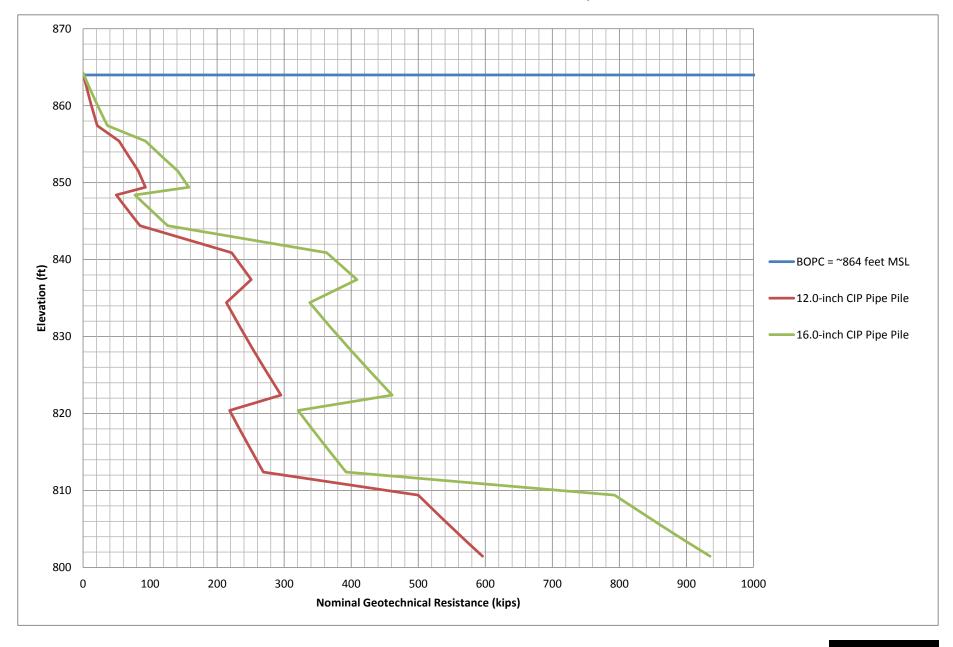
*Capacity may be achieved at shallower elevation. Recommend confirming with PDA. **Interpolated from Nominal Resistance Graph


Boring/Substructure	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons	Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
_		120		12.0	786	73
2026SB (South	050	120	240 [480 kips]	16.0	804	55
Abutment)	859	1.10		12.0	783	76
		140	280 [560 kips]	16.0	796	63
		120	240 [400 kin a]	12.0	783	77
2111CD (Dian 1)	960	120	240 [480 kips]	16.0	807	53
2111SB (Pier 1)	860	140		12.0	775	85
		140	280 [560 kips]	16.0	790	70
		120	240 [490 kina]	12.0	809	56
	065	120	240 [480 kips]	16.0	812	53
2013SB (Pier 2)	865	140	200 [5 C0 kina]	12.0	804	61
		140	280 [560 kips]	16.0	811	54
		120	240 (400)	12.0	810-801*	75-84*
	005	120	240 [480 kips]	16.0	831	54
2112SB (Pier 3)	885	140	200 [5 C0 kina]	12.0	800	85
		140	280 [560 kips]	16.0	824	61
		120	240 [490 kina]	12.0	799	84
2112CD (Diar 4)	000	120	240 [480 kips]	16.0	832	51
2113SB (Pier 4)	883	140	280 [E 60 king]	12.0	794	89
		140	280 [560 kips]	16.0	831-806*	52-77*
	879		240 [400 kin a]	12.0	811	68
		120	240 [480 kips]	16.0	835	44
2129 SB (Pier 5)		140	280 [E 60 king]	12.0	810	69
		140	280 [560 kips]	16.0	834-820*	45-59*
		120	240 [490 kina]	12.0	828	50
2130 CB (Pier 6)	070	120	240 [480 kips]	16.0	841	37
2130 CB (Pier 6)	878	140	280 [E60 king]	12.0	803	75
		140	280 [560 kips]	16.0	832	46
		120	240 [490 king]	12.0	803	69
20145D (Diar 7)	872	120	240 [480 kips]	16.0	813	59
2014SB (Pier 7)	872	140	280 [560 kips]	12.0	803	69
		140	200 [300 kips]	16.0	813-805	59-67
		120	240 [480 kinc]	12.0	800**	71**
2122CD (Diam 0)	071	120	240 [480 kips]	16.0	821	50
2132SB (Pier 8)	871	140	280 [EE0 king]	12.0	792**	79**
		140	280 [560 kips]	16.0	816	55

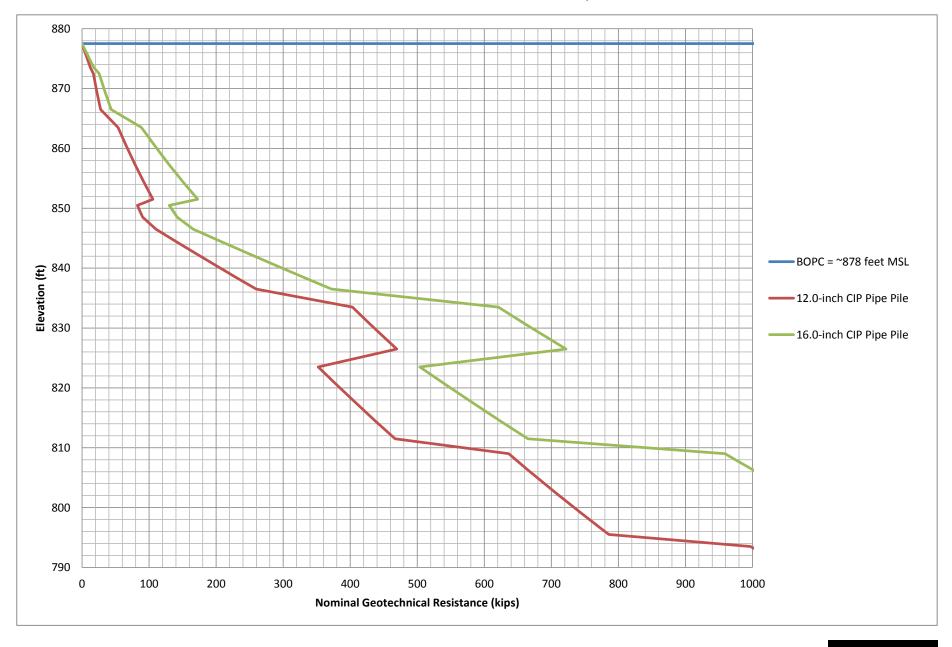
Summary of Anticipated Pile Lengths – MPF12 Analysis

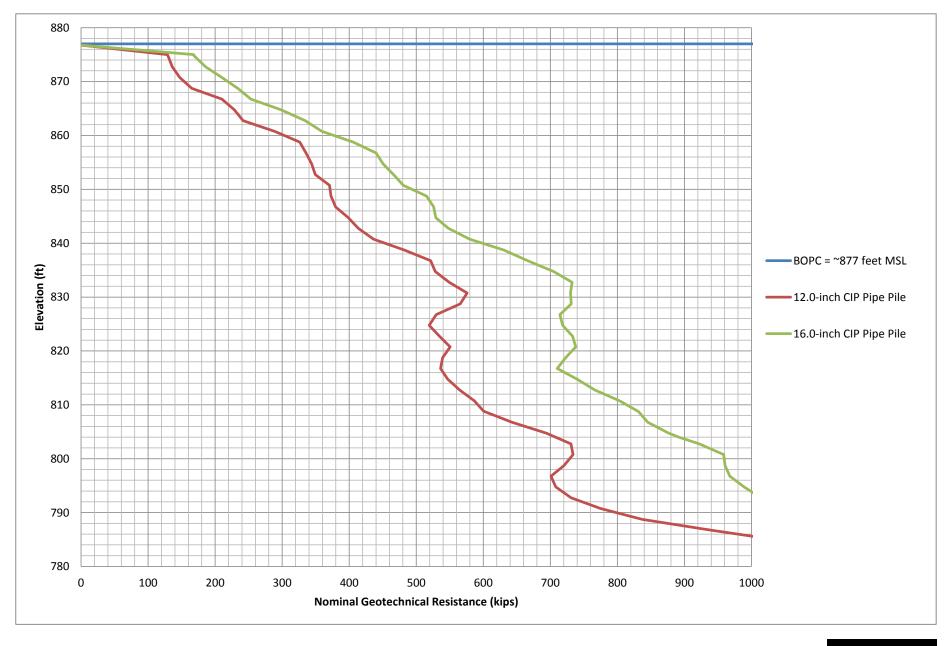

Summary of Anticipated Pile Lengths – MPF12 Analysis

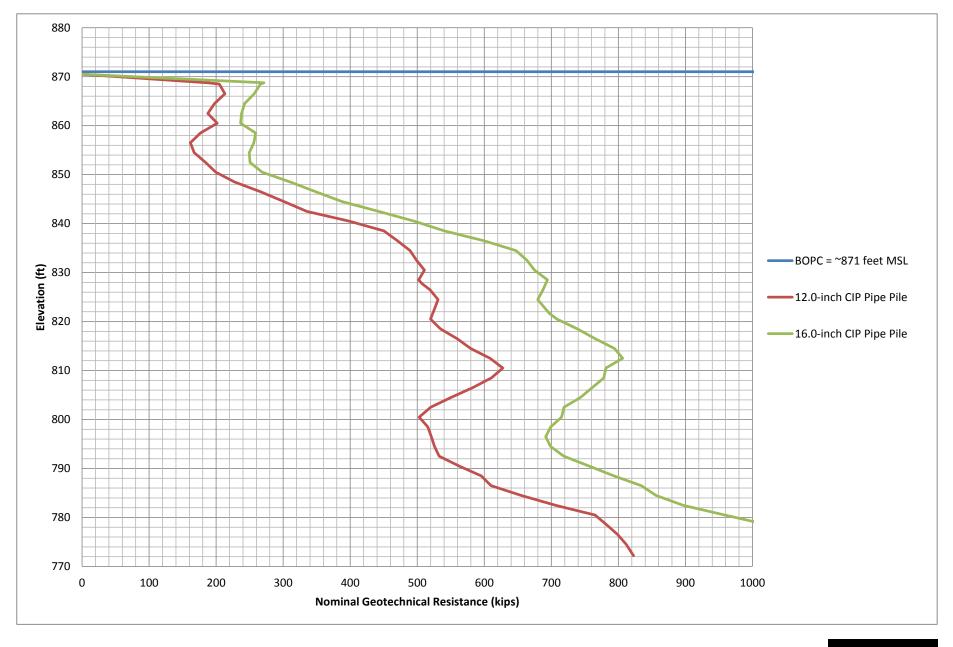
Boring/Substructure	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons	Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
		120	240 [490 kina]	12.0	801	73
2122CD (Diar 0)	874	120	240 [480 kips]	16.0	803	71
2133CB (Pier 9)	874	1.10	280 [E 60 king]	12.0	797*	77*
		140	280 [560 kips]	16.0	801	73
		120	240 [490 kina]	12.0	797	70
2015SB (Pier 10)	867	120	240 [480 kips]	16.0	811	56
201556 (Piel 10)	007	140	280 [560 kips]	12.0	791	76
		140	280 [560 kips]	16.0	809	58
		120	240 [490 kina]	12.0	805	62
2124CD (Diam 11)	0.07	120	240 [480 kips]	16.0	808	59
2134CB (Pier 11)	867	140	200 [5 (0 kina]	12.0	802**	65**
		140	280 [560 kips]	16.0	806	61
	0.50	120	240 [490 kina]	12.0	809-790*	60-79*
2125CD (Diar 12)			240 [480 kips]	16.0	815	54
2135CB (Pier 12)	869	140	280 [560 kips]	12.0	783**	86*
		140	280 [560 kips]	16.0	812	57
		120	240 [490 kina]	12.0	796	76
212(CD (Diar 12)	872	120	240 [480 kips]	16.0	825	47
2136CB (Pier 13)	ō/2	140	280 [E60 king]	12.0	790**	82**
		140	280 [560 kips]	16.0	807	65
		120	240 [480 kina]	12.0	807	68
2016SB (North	875	120	240 [480 kips]	16.0	831	44
Abutment)	8/5	140	280 [560 kips]	12.0	799	76
		140	200 [300 κιρ5]	16.0	820	55


Bridge Over Shady Oak Road - South Abutment Boring: 2026SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile


Bridge Over Shady Oak Road - Pier 1 Boring: 2111SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

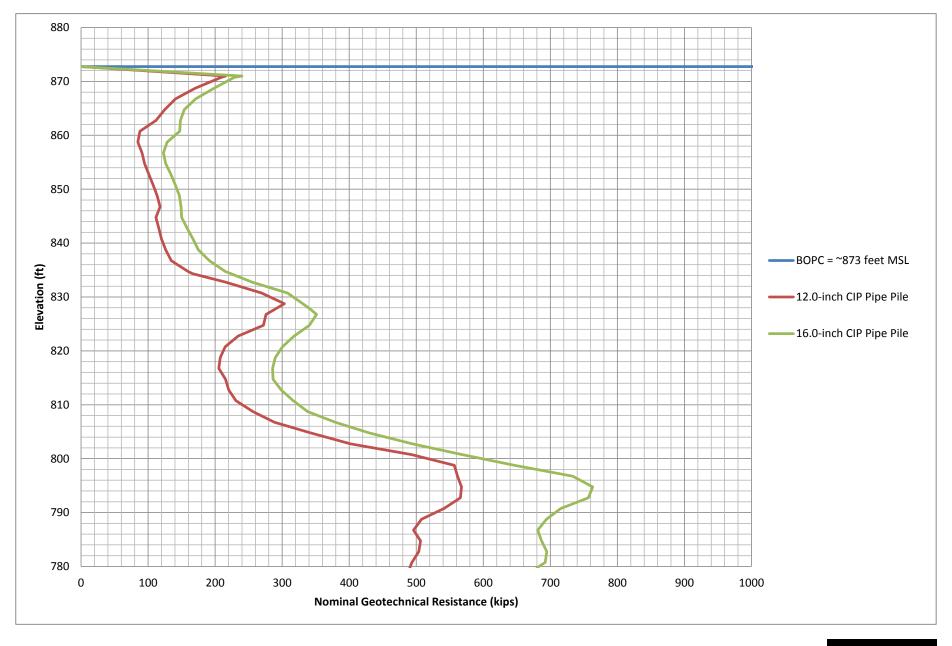

Bridge Over Shady Oak Road - Pier 2 Boring: 2013SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

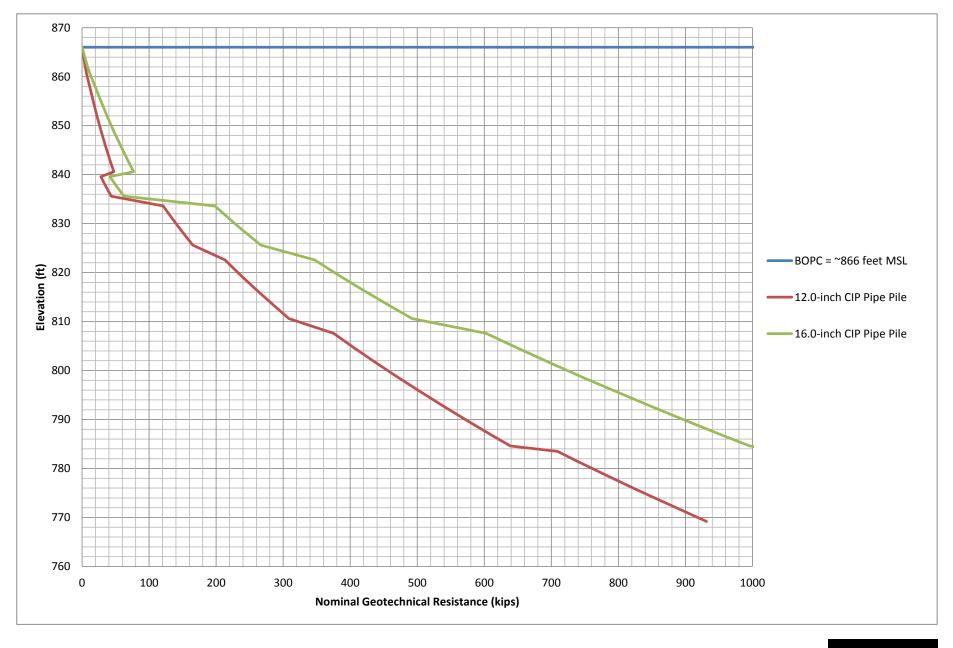

Bridge Over Shady Oak Road - Pier 4 Boring: 2113SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

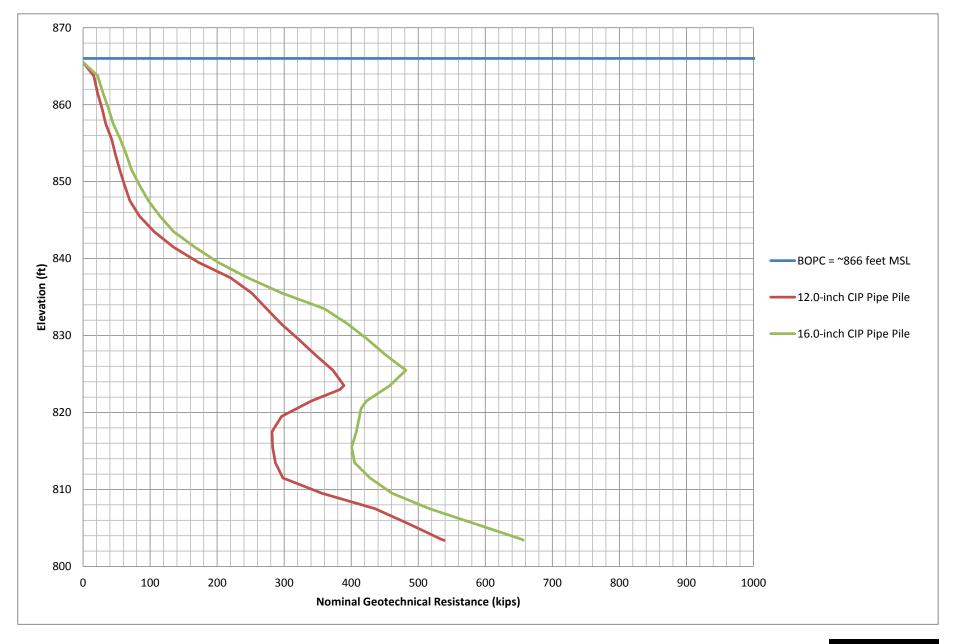

Bridge Over Shady Oak Road - Pier 5 Boring: 2129SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

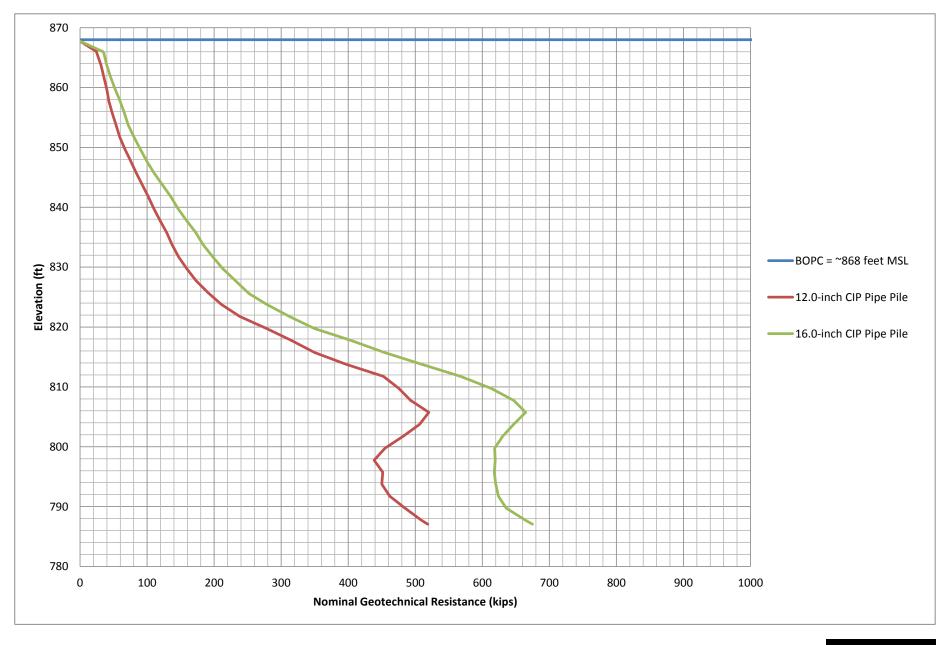
Bridge Over Shady Oak Road - Pier 6 Sounding: 2130CB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

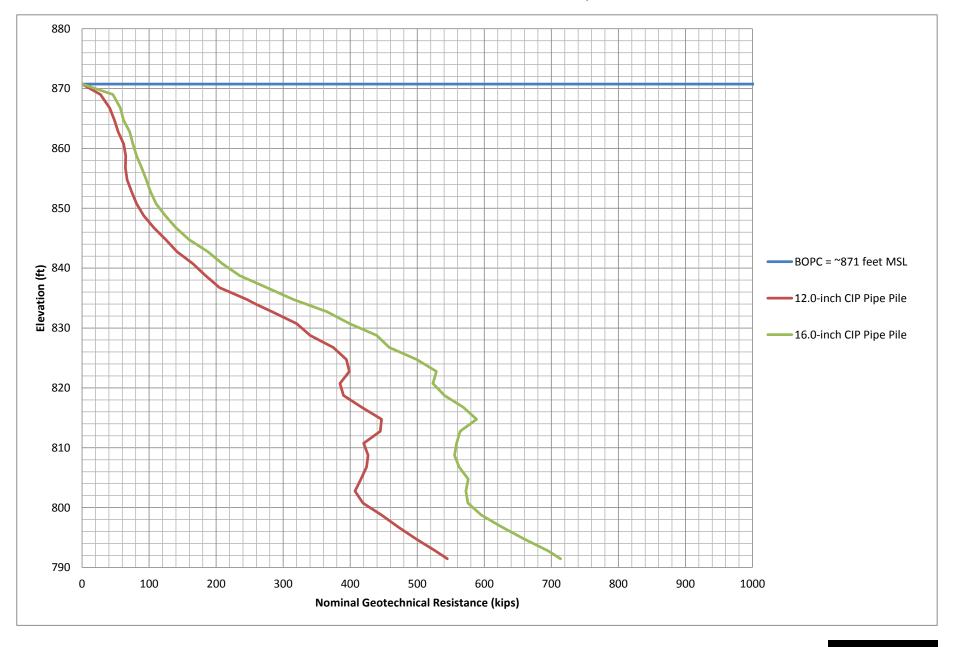
Bridge Over Shady Oak Road - Pier 7 Sounding: 2131CB 12.0-inch and 16.0-inch Closed Ended Pipe Pile


Bridge Over Shady Oak Road - Pier 7 Boriing: 2014SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

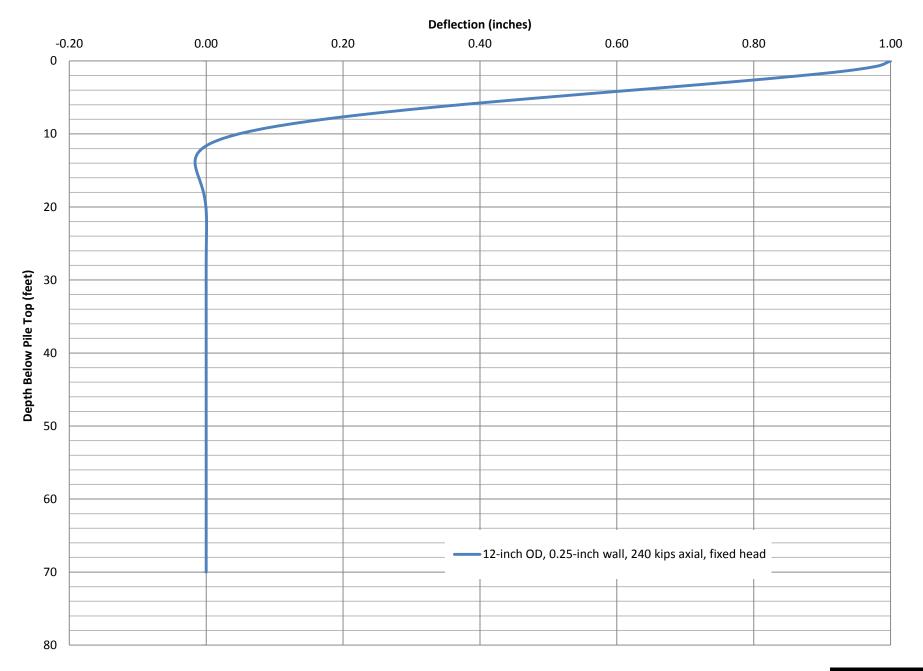

Bridge Over Shady Oak Road - Pier 8 Boring: 2132SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile


Bridge Over Shady Oak Road - Pier 9 Sounding: 2133CB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

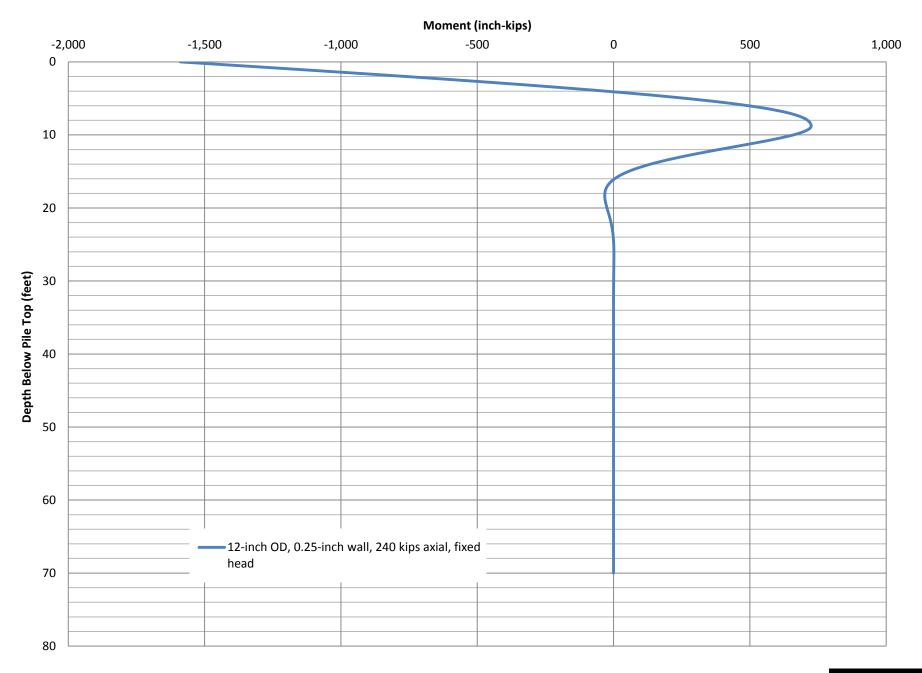

Bridge Over Shady Oak Road - Pier 10 Boring: 2015SB 12.0-inch and 16.0-inch Closed Ended Pipe Pile


Bridge Over Shady Oak Road - Pier 11 Sounding: 2134CB 12.0-inch and 16.0-inch Closed Ended Pipe Pile

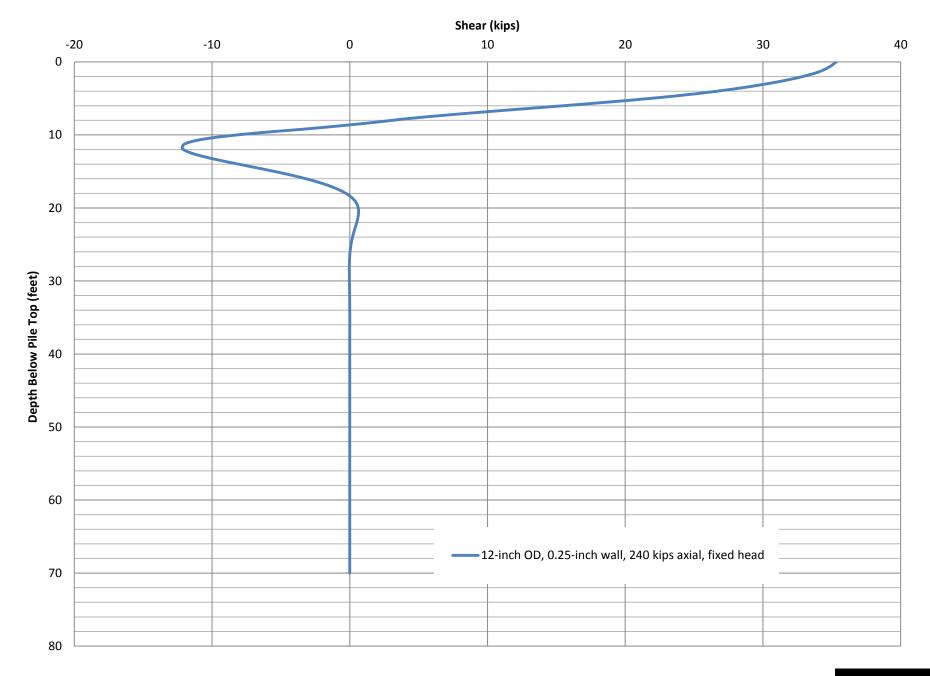
Bridge Over Shady Oak Road - Pier 12 Sounding: 2135CB 12.0-inch and 16.0-inch Closed Ended Pipe Pile



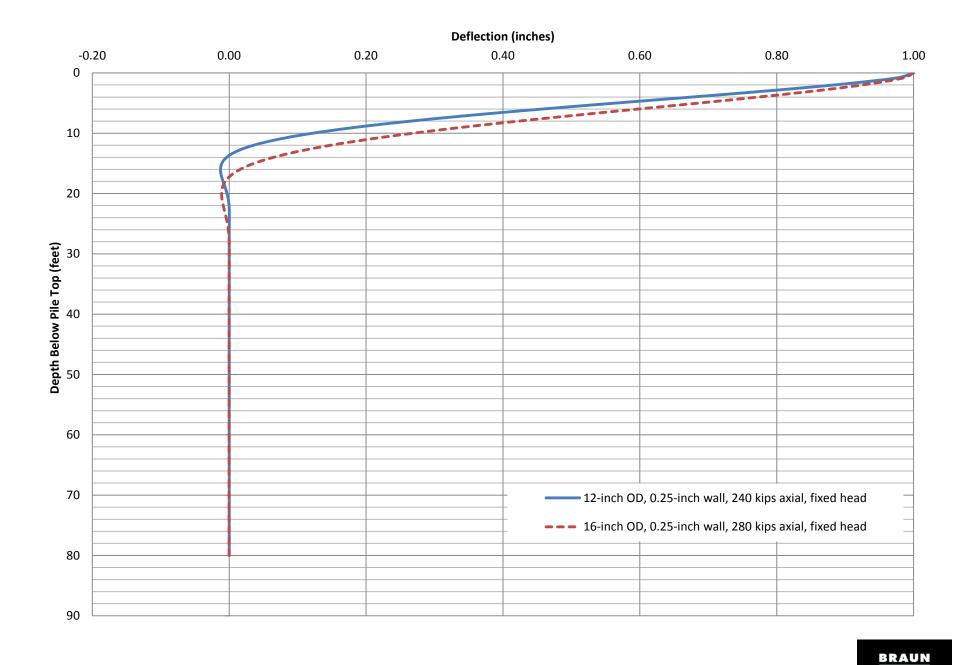
Bridge Over Shady Oak Road - Pier 13 Sounding: 2136CB 12.0-inch and 16.0-inch Closed Ended Pipe Pile


Lateral Analysis Results - Deflection

Boring: 2014SB (Pier 7)

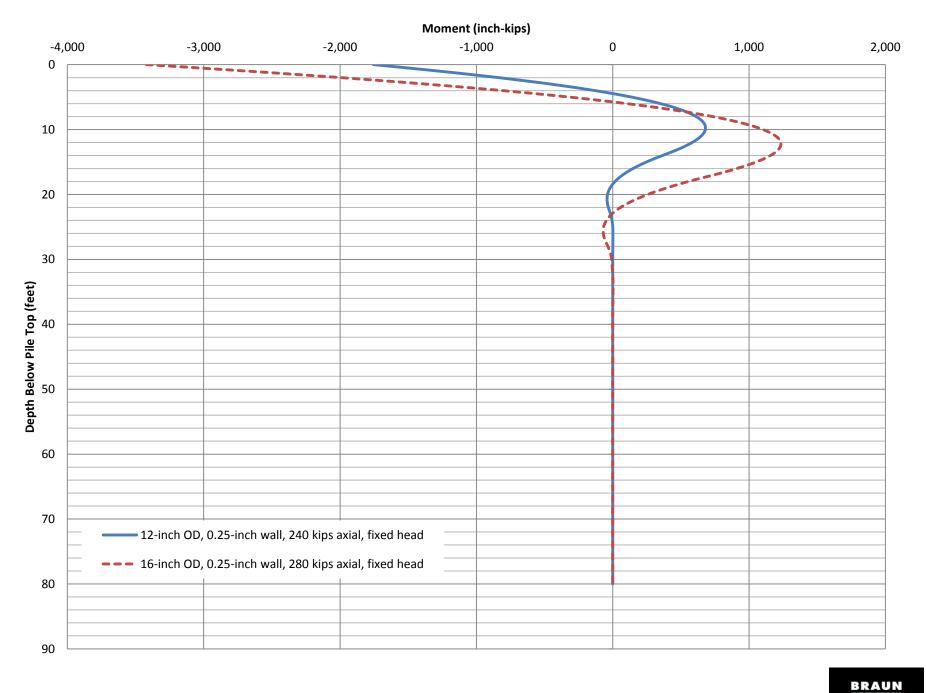

Lateral Analysis Results - Moment

Boring: 2014SB (Pier 7)


Lateral Analysis Results - Shear

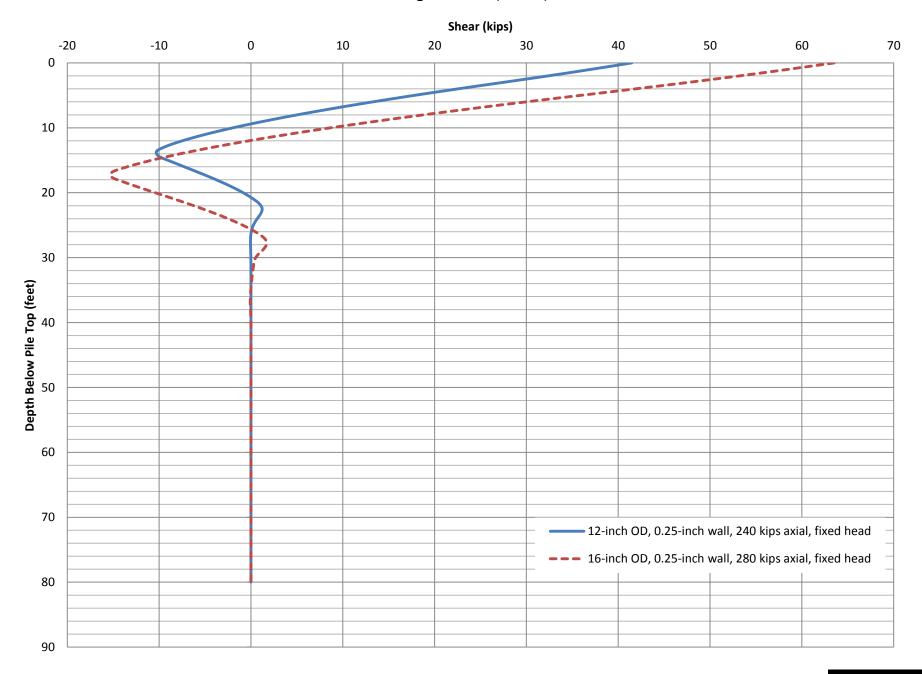
Boring: 2014SB (Pier 7)

Lateral Analysis Results - Deflection


Boring: 2133SB (Pier 9)

INTERTEC

Lateral Analysis Results - Moment


Boring: 2133SB (Pier 9)

INTERTEC

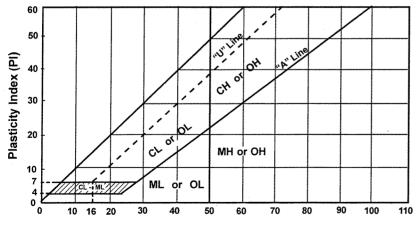
Lateral Analysis Results - Shear

Boring: 2133SB (Pier 9)

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Critor	ia for Accient	ing Group	Symbole and	So	ils Classification	Particle Size Identification
	Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^a				Group Symbol		Boulders over 12" Cobbles 3" to 12"
" E	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^c$	GW	Well-graded gravel ^d	Gravel Coarse
grained Soils 50% retained c 200 sieve	More than 50% of coarse fraction	5% or less	s fines ^e	$C_u < 4$ and/or $1 > C_c > 3^{\circ}$	GP	Poorly graded gravel d	Fine
etair eve	retained on	Gravels wit	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand
aine % re 0 si	No. 4 sieve	More than 12	2% fines *	Fines classify as CL or CH	GC	Clayey gravel dtg	Coarse No. 4 to No. 10 Medium No. 10 to No. 4
20.50	Sands	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3^{c}$	SW	Well-graded sand h	Fine
arse- than No.	50% or more of coarse fraction	0 /0 01 1000		$C_u < 6$ and/or $1 > C_c > 3^{c}$	SP	Poorly graded sand h	Silt
Coarse- more than No.	passes	Sands with	h Fines	Fines classify as ML or MH	SM	Silty sand ^{fg h}	below "A" line Clay< No. 200, Pl≥
	No. 4 sieve	o. 4 sieve More than		% ¹ Fines classify as CL or CH		Clayey sand ^{fg h}	on or above "A"
led Soils passed the sieve	Silts and Clave	Inorganic	PI > 7 ai	nd plots on or above "A" line ^j	CL	Lean clay ^{kim}	
ed t	Silts and Clays Liquid limit		PI < 4 oi	plots below "A" line ^j	ML	Silt ^{k m}	Relative Density of
d S ass ievi	less than 50	Organic		nit - oven dried < 0.75	OL	Organic clay ^{k m n}	Cohesionless Soils
raine Iore p 200 s			+	nit - not dried	OL	Organic silt k 1 m o	Very loose 0 to 4 BPF Loose
	Silts and clays	Inorganic		on or above "A" line	СН	Fat clay k I m	Medium dense 11 to 30 BPF
jé b Ž	Liquid limit			elow "A" line	MH	Elastic silt k I m	Dense
Fine 50% or N	50 or more	Organic	Liquid limit - oven dried < 0.75		ОН	Organic clay k 1 m p	Very dense over 50 BPF
		<u> </u>		nit - not dried	OH	Organic silt k 1 m q	4
Highly	Organic Soils	Primarily orga	anic matte	r, dark in color and organic odor	PT	Peat	Consistency of Cohesive Soils


Based on the material passing the 3-in (75mm) sieve.

If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name. h

 $C_u = D_{60} / D_{10} C_c = (D_{30})^2$

C.

- If soil contains≥15% sand, add "with sand" to group name d е
 - Gravels with 5 to 12% fines require dual symbols
 - GW-GM well-graded gravel with silt
 - GW-GC well-graded gravel with clay
 - GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- f If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains ≥ 15% gravel, add "with gravel" to group name. h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC
- SP-SC poorly graded sand with clay If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.
- If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant.
- If soil contains > 30% plus No. 200, predominantly sand, add "sandy" to group name 1
- If soil contains≥ 30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- PI ≥ 4 and plots on or above "A" line. n.
- Pl <4 or plots below "A" line 0
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

Dry density, pcf	oc
Wet density, pcf	S
Natural moisture content, %	SG
Liqiuid limit, %	Ċ
Plastic limit, %	Ø
Plasticity index, %	qu
% passing 200 sieve	qp
	Wet density, pcf Natural moisture content, % Liqiuid limit, % Plastic limit, % Plasticity index, %

- Percent of saturation, %
- Specific gravity
- Cohesion, psf
- Angle of internal friction

Organic content, %

- Unconfined compressive strength, psf
 - Pocket penetrometer strength, tsf

..... over 12" No. 4 to 3/4" No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200 < No. 200, PI < 4 or below "A" line< No. 200, PI≥4 and on or above "A" line

elative Density of hesionless Soils

Very loose	
Medium dense	11 to 30 BPF
Dense	31 to 50 BPF
Very dense	over 50 BPF

tency of Cohesive Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "Н.

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards.

Descriptive Terminology Cone Penetration Test

This document accompanies Cone Penetration Test Data. Please refer to the Boring Log Descriptive Terminology Sheet for information relevant to conventional v. Cone Penetration Test (CPT) boring logs.

Cone Penetration Test (CPT) sounding was performed in general accordance with ASTM D 5778 and consistent with the ordinary degree of care and skill used by reputable practitioners of the same discipline currently practicing under similar circumstances and in the same locality. No warranty, express or implied, is made.

Since subsurface conditions outside each CPT sounding are unknown, and soil, rock and pore water conditions cannot be relied upon to be consistent or uniform, no warranty is made that conditions adjacent to each sounding will necessarily be the same as or similar to those shown on this log. Braun Intertec is not responsible for any interpretations, assumptions, projections or interpolations of the data made by others.

pressure Pore water measurements and subsequently interpreted water levels shown on CPT logs should be used with discretion as they represent dynamic conditions. Dynamic pore water pressure measurements may deviate substantially from hydrostatic conditions, especially in cohesive soils. from In cohesive soils, pore water pressures often take an extended time to reach equilibrium and thus reflect their true field level. Groundwater levels can be expected to vary both seasonally and yearly. The absence of notations on this log regarding water does not necessarily mean that groundwater is not present to the depth explored, or that a contractor will not encounter groundwater during excavation or construction.

CPT Terminology

CPT Cone Penetration Test									
CPTU Cone	Penetration	Test	with	Pore					
Pressure measurem	Pressure measurements								
SCPTU Cone	Penetration	Test	with	Pore					
Pressure and Seism	Pressure and Seismic measurements								
PiezoconeCommo	PiezoconeCommon name for CPTU test								
Q _T r	QTnormalized cone resistance								
Bqp	ore pressure	ratio							
Frnormalized friction ratio									
σ_{vo} overburden pressure									
σ'νοε	σ' _{vo} effective overburden pressure								

q_T TIP RESISTANCE

The resistance at the cone corrected for water pressure. Data is from cone with a 60 degree apex angle and a 15 cm^2 end area.

fs SLEEVE FRICTION RESISTANCE

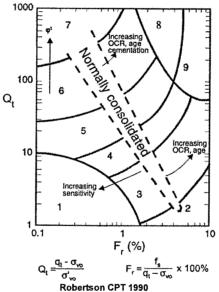
The resistance along the sleeve of the penetrometer.

F_r Friction Ratio

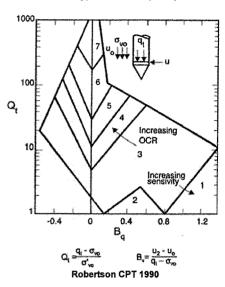
Ratio of sleeve friction over corrected tip resistance. $\mathsf{F}_r = \mathsf{f}_s/\mathsf{q}_t$

V_s Shear Wave Velocity

A measure of the speed at which a seismic wave travels through soil/rock.


SBT SOIL BEHAVIOR TYPE

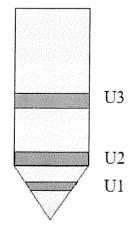
Soil Identification methods for the Cone Penetration Test are based on correlation charts developed from observations of CPT data and conventional borings. Please note that these identification charts are provided as a guide to Soil Behavior Type and should not be used to infer a soil classification based on grain size distribution.


Engineering judgment and comparison with augered borings is especially important in the proper interpretation of CPT data in certain geo-materials.

The following charts provide a Soil Behavior Type for the CPT Data. The numbers corresponding to different regions on the charts represent the following soil behavior types:

Soil Behavior Type based on friction ratio

Soil Behavior Type based on pore pressure



1 Sensitive, Fine Grained

- 2 Organic Soils Peat
- 3 Clays Clay to Silty Clay
- 4 Silt Mixtures Clayey Silt to Silty Clay
- 5 Sand Mixtures Silty Sand to Sandy Silt
- 6 Sands Clean Sand to Silty Sand
- 7 Gravelly Sand to Sand
- 8 Very Stiff Sand to Clayey Sand
- 9 Very Stiff, Fine Grained

U2 PORE WATER MEASUREMENTS

Pore water measurements reported on CPT logs are representative of pore water pressures measured at the U2 location, just behind the cone tip, prior to the sleeve, as shown in the figure below. These measurements are considered to represent dynamic pore water pressures due to the local disturbance caused by the cone tip. Dynamic pore water pressure decay and static pore water pressure measurements are reported on a Pore Water Pressure Dissipation Graph.

Appendix D

Retaining Walls W206, W207 and W209

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6545 Wayzata Boulevard, Suite 500 Wayzata, MN 55426

Re: Summary of Historical Boring Information and Preliminary Retaining Wall Recommendations Retaining Walls RTW-W206, RTW-W207, and RTW-W209 – 30% Design STA 2275+32 to STA 2304+71 Eden Prairie and Minnetonka, Minnesota

Dear Mr. Demers:

This purpose of this letter is to provide you and the design team with a summary of our gathered historical soil boring information in the area of retaining walls RTW-W206, RTW-W207, and RTW-W209 and to provide preliminary retaining wall closing design information. A final geotechnical report should be prepared after final geotechnical design borings are completed.

A. Subsurface Investigation Summary

A.1. Summary of Historical Boring Information

Due to site terrain and vegetation, preliminary design soil borings have not been completed. We referenced previously completed SWLRT soil borings and historical borings performed near the site to obtain general soil conditions typical of the area. Three (3) standard penetration soil borings for SWLRT were performed in the general area. The table below provides information on the borings including numbering, track stationing, and the ground surface elevation at the boring location:

Boring	Approximate Track Station	Surface Elevation at Boring Location (ft)
2016SB	2275+30	893.9
2018SB	2304+70	925.5
2019SB	2309+25	934.4

Southwest Light Rail Transit Project BL-13-00213 August 29, 2014 Page 2

Included in the Appendix are four historical borings (ST-121, ST-210, ST-211, ST-213) from an adjacent site which provide generalized soil information for the area. A boring location sketch is also provided in the Appendix.

A.2. Description of Foundation Soil Conditions

A.2.a. General Soil Profile

As mentioned previously, borings were not performed at the proposed wall locations. The following soil conditions are based on existing SWLRT borings and available historical boring information near the proposed walls. We recommended additional borings be performed prior to final design to evaluate the subsurface conditions at the wall locations.

In general, the area where the proposed walls are to be constructed consist of Des Moines lobe sands and clays.

The general soil profile consists of a mixture of sands and clays, with some surficial fill associated with the construction of TH 212 and TH 62.

Table 2 below provides some general guidelines regarding the consistency of the soils that are anticipated to be encountered.

Soil Type	Average Blows Per Foot (BPF)	Typical Soil Consistency
SP (poorly graded sand)	17 - 30	Medium Dense
SP-SM (poorly graded sand w/ silt)	10 - 16	Loose to Medium Dense
SM (silty sand)	18 - 30	Medium Dense
SC (clayey sand	20 - 35	Medium Dense to Dense
CL (lean clay)	6 - 15	Medium to Stiff
CLS (sandy lean clay)	10 - 15	Rather Stiff to Stiff

Table 2. Anticipated Soil Consistencies based on Historical Soil Boring Information

A.2.b. Groundwater

Based on the historical information and the borings near the proposed walls, we anticipate groundwater is deeper than the planned excavation depths for the proposed walls. However, perched groundwater may be encountered in sandy layers. In the area, perched groundwater was noted in sand layers up to an elevation of 910, but may vary away from the boring locations.

Southwest Light Rail Transit Project BL-13-00213 August 29, 2014 Page 3

Seasonal and annual fluctuations in groundwater levels should also be expected. Two piezometers were installed as part of the investigation for the proposed TH 62 tunnel and can be referenced for groundwater information. At last measurement on May 17, 2013, groundwater was encountered at elevation 880.

B. Design and Construction Considerations

Limited design information was known at the time of this report. Based on the draft municipal consent plans, it appears retaining walls RTW-W206, RTW-W207, and RTW-W209 will be constructed from STA 2275+50 to STA 2304+71. The table below shows the wall segment, length, track stationing, and the anticipated minimum, maximum, and average cut and fill depths as reported to us by the design team.

Retaining Wall	Length (ft)	Beg. Track STA	End Track STA	Min. Cut (ft)	Max. Cut (ft)	Ave. Cut (ft)	Min. Fill (ft)	Max. Fill (ft)	Ave. Fill (ft)		
RTW-206A	508	2275+49	2280+57		1		0	23	16		
RTW-206B	285	2280+57	2283+43	0	9	6					
RTW-206C	345	2283+43	2286+93				0	6	5		
RTW-206D	308	2286+93	2290+29	0	32	17					
RTW-206E	158	2290+20	2292+00				0	12	10		
RTW-207A	1291	2275+49	2288+35				0	16	8		
RTW-207C	51	2291+00	2291+50				0	4	2		
RTW-207D	1340	2291+50	2304+71	0	16	10					
RTW-209	482	2299+90	2304+71	4	17	11					

Table 3. Preliminary Wall Design Information

The following design and construction criteria were considered and will be addressed in our preliminary evaluation. We recommend a final geotechnical program be established and performed upon final design of the retaining walls:

Southwest Light Rail Transit Project BL-13-00213 August 29, 2014 Page 4

- Based on the cross sections we were provided, we anticipate that wall heights will range from 8 to 36 feet in height.
- While this report will discuss spread footing foundation with an allowable bearing capacity, we will also discuss the embedment depth for soldier piling and lagging along segments of the proposed retaining walls.
- For the preliminary solider pile wall design of the retaining wall, we assumed a uniform sandy soil with slightly increasing density below the excavation. We assume a surcharge from the light-rail train of 34 kips per axle spreading 5 feet along the length of rail and across the width of the tie.

B.1.a. Precautions Regarding Changed Information

We have attempted to describe our understanding of the proposed construction to the extent it was reported to us by others. Depending on the extent of available information, assumptions may have been made based on our experience. If we have not correctly recorded or interpreted the project details, we should be notified. New or changed information could require additional evaluation, analyses and/or recommendations.

C. Preliminary Recommendations

The following preliminary recommendations are based on the results of past and current soil borings in the vicinity of the proposed walls.

C.1. Cast-In-Place Concrete Retaining Walls

We based our preliminary design and construction recommendations on the MnDOT retaining wall design criteria for cast-in-place (CIP) concrete retaining walls, dated May 31, 2006.

C.1.a. Excavations

In general, we recommend removing the topsoil and fill from beneath the base of the new retaining walls. Based on the borings and historical information, the fill soils range from 1 to 7 feet below the ground surface. From there, the footings can either be placed on the native soils, or engineered fill can be placed and compacted to achieve design elevations. However, since the borings were offset along the proposed alignment and in the area of the proposed walls, it is possible that the fill soils do not extend to the same depth under the current alignment.

To provide lateral support to replacement backfill, additional required fill, and the structural loads they will support, we recommend oversizing (widening) the excavations 1 foot horizontally beyond the outer edges of the retaining wall foundations for each foot the excavations extend below bottom-of-footing subgrade elevations.

Excavation depths will vary between the borings and the actual wall location. Portions of the excavations may also be deeper than indicated by the borings. Contractors should also be prepared to extend excavations in wet or fine-grained soils to remove disturbed bottom soils.

C.1.b. Selection, Placement, and Compaction of Backfill.

We recommend referencing the following specification sections in Table 4 below from the 2014 MnDOT Standard Specifications for Construction when considering the material and compaction specifications for the embankment material beneath the wall, level pad material, and retaining wall backfill material.

Material	Material Specification	Compaction Specification
Embankment Fill	2105.A6	2105.3F
Leveling Pad Beneath Footings	3149.2G	2211.2D or 2211.3C
Retaining Wall Backfill	3149.2D2	2105.3F

Table 4. Material and Compaction Specifications for Retaining Walls.

C.1.c. Net Allowable Bearing Pressure

Based on MnDOT's cast-in place concrete retaining wall criteria, the above recommendations, and the assumed soils encountered at the wall locations, we anticipate the soils will be suitable for support of walls with a stem height of up to 20 feet. Because several feet of the stem wall height is buried for frost protection, the maximum exposed wall height will range from 16 to 23 feet. Regardless of wall height, we recommend further analysis and borings at the proposed wall locations to confirm soil conditions.

In areas where a cast-in-place wall may not be feasible, we have provided preliminary estimates for soldier pile and lagging installation using assumed soil conditions.

C.2. Preliminary Soldier Pile Wall Design

We performed a preliminary soldier pile and lagging design analysis based on preliminary information provided to us and assumed soil conditions provided in Table 5 below.

Geologic Material	Saturated Unit Weight (pcf)	Friction Angle (degrees)
Above Grade Soils and/or Retained Soils	120	30
Below Grade Soils	125	30

Table 5. Assumed Soil Conditions

I

Our preliminary analysis used the assumed soil conditions noted above to evaluate piles at various track stationing for various wall heights, grades, and slopes that were provided to us on preliminary track cross sections. Table 6 below provides preliminary sizing for use in preliminary cost estimation.

Track Stationing	Retaining Wall	Exposure Height (ft)	Pile Spacing (ft)	Pile Length (ft)	Number of Vertical Tiebacks	Horizontal Tieback Spacing (ft)
		25	8	40	1	8
2275+50 to	RTW-W206 &	20	8	35	1	8
2280+50	RTW-W207	15	8	25	1	8
		10	5	30	N/A	N/A
2281+00	RTW-W206	12	5	31	N/A	N/A
2281+50	RTW-W206	17	8	25	1	8
2202.00.4-		15	8	30	1	8
2282+00 to 2287+50	RTW-W206	10	8	25	1	8
2207130		8	8	23	1	8
		25	8	40	1	8
2284+00 to	RTW-W207	20	8	35	1	8
2288+00		15	8	25	1	8
		10	5	30	N/A	N/A
2288+00 to	206	32	8	51	3	8

Table 6. Preliminary Soldier Pile Design Information

Track Stationing	Retaining Wall	Exposure Height (ft)	Pile Spacing (ft)	Pile Length (ft)	Number of Vertical Tiebacks	Horizontal Tieback Spacing (ft)
2289+50		30	8	45	2	8
		22	8	37	1	8
2289+00 to	207	25	8	37	1	8
2289+50	207	15	8	23	1	8
2290+00 to	206 & 207	20	8	35	1	8
2292+00	200 & 207	15	8	25	1	8
2292+50 to						
2296+00	206 & 207	13	8	31	N/A	N/A
		20	8	30	1	8
2299+00 to 2304+50	207 & 209	15	8	23	1	8
2001100		10	8	25	N/A	N/A

D. General

This report should be considered preliminary in nature and will be revised upon final design parameters and the completion of the full geotechnical program. In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If you have any questions about this report, please contact Josh Kirk at 952.995.2222.

Sincerely,

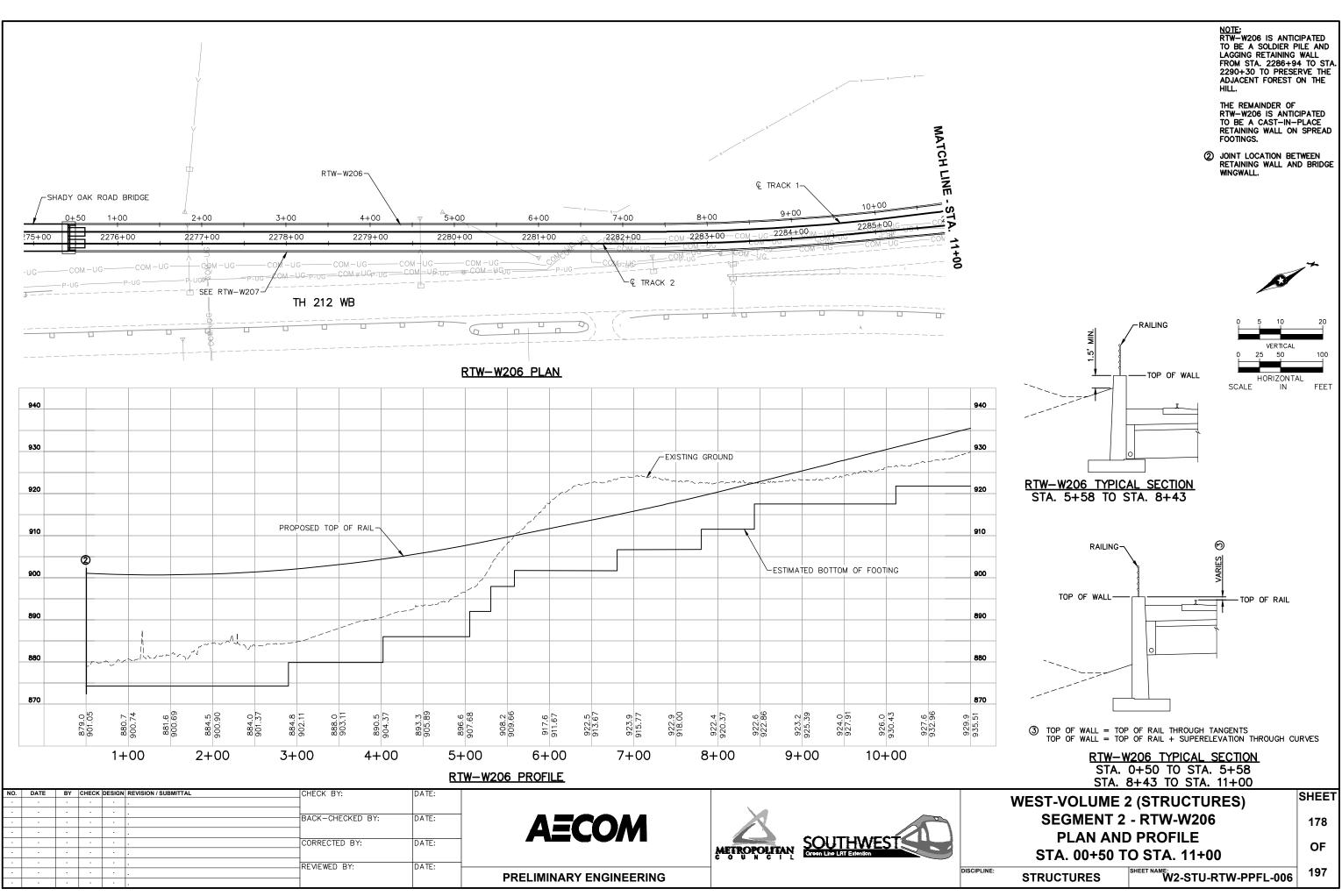
BRAUN INTERTEC CORPORATION

Professional Certification:

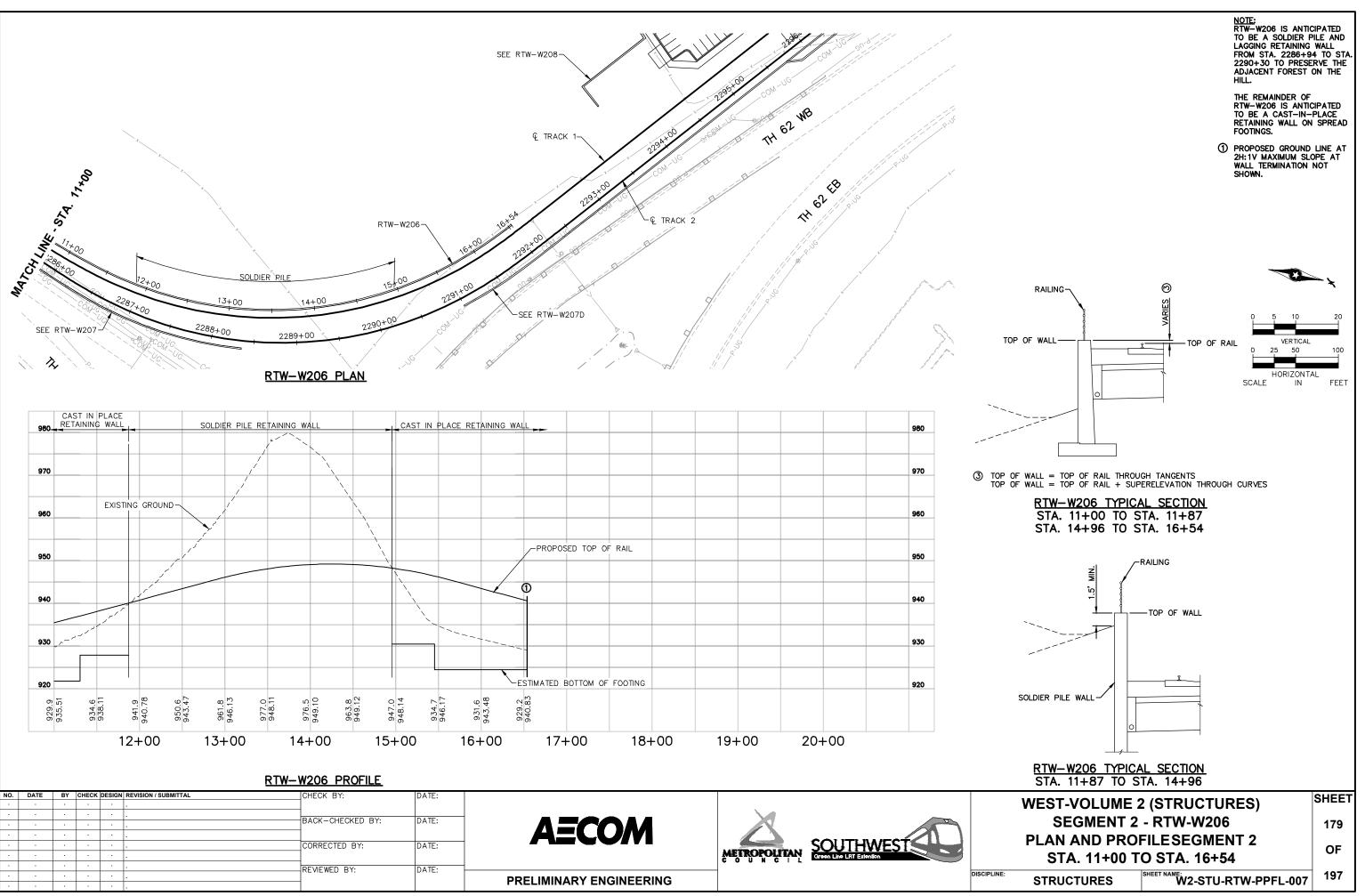
I hereby certify that this plan, specification or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

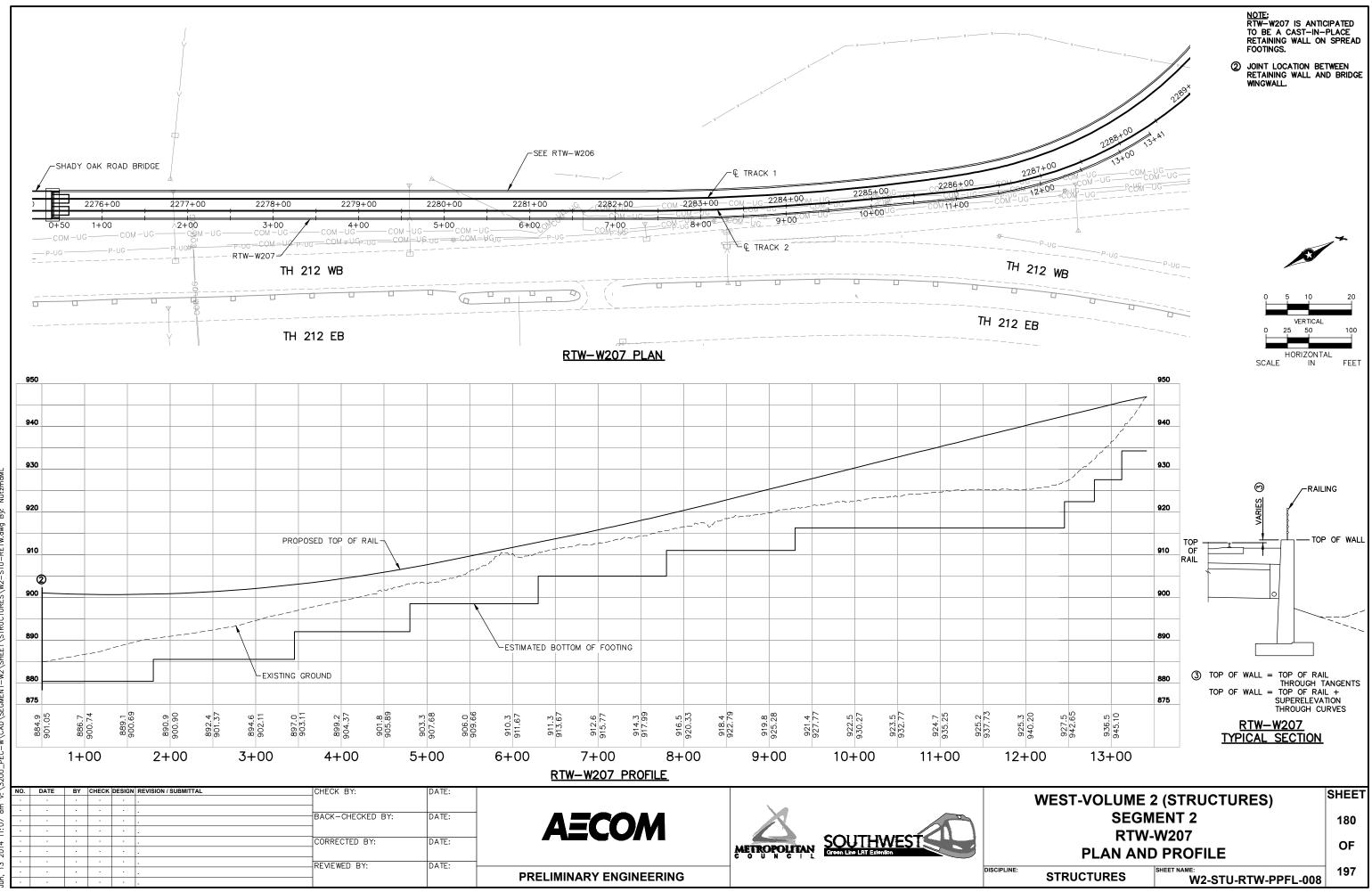
Joshua L. Kirk, PE Associate Principal - Project Engineer License Number: 45005

Ray A. Huber, PE Vice President – Principal Engineer

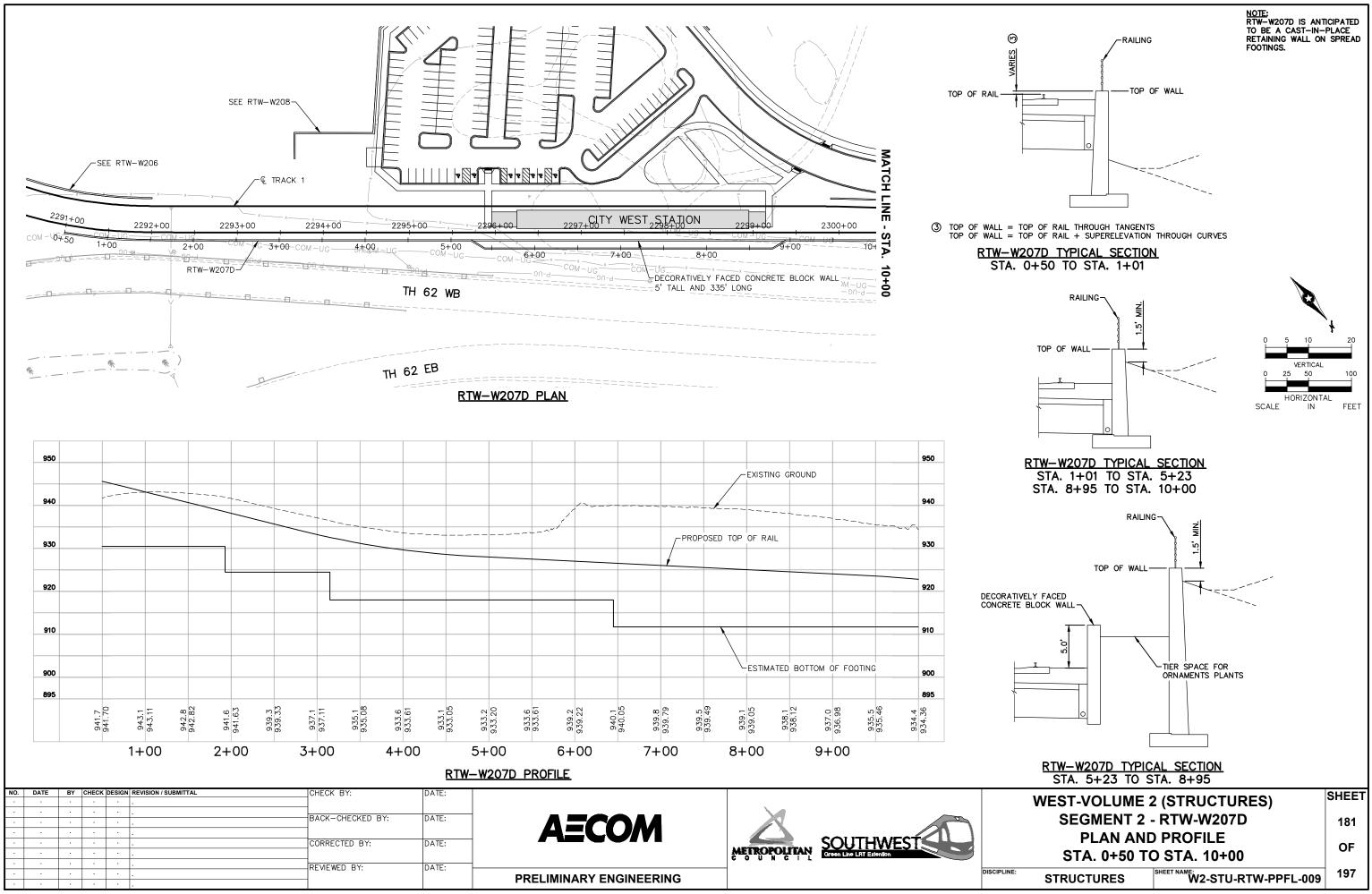

Appendix:

Preliminary Engineering Plan and Profile Pages RTW-W206, RTW-W207, RTW-W209 Soil Boring Location Sketch of Adjacent Site Historical Standard Penetration Borings - ST-121, ST-210, ST-211, ST-213

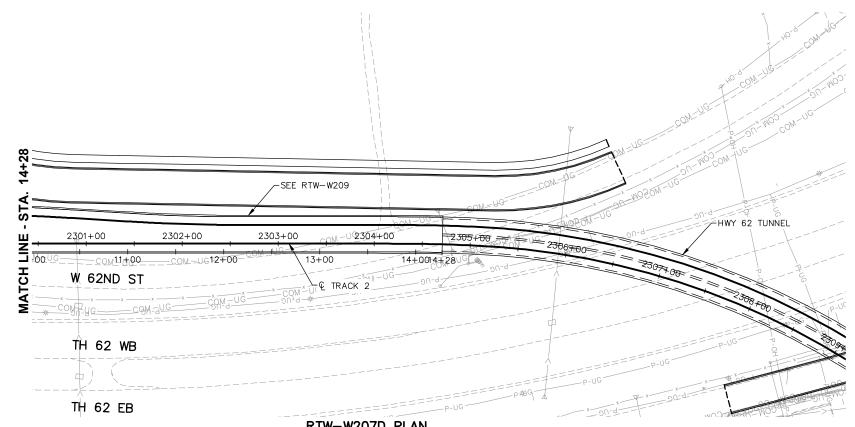

c: Mr. Jeff Stewart, SPO Ms. Laura Amundson, Parsons Brinkerhoff


APPENDIX

|

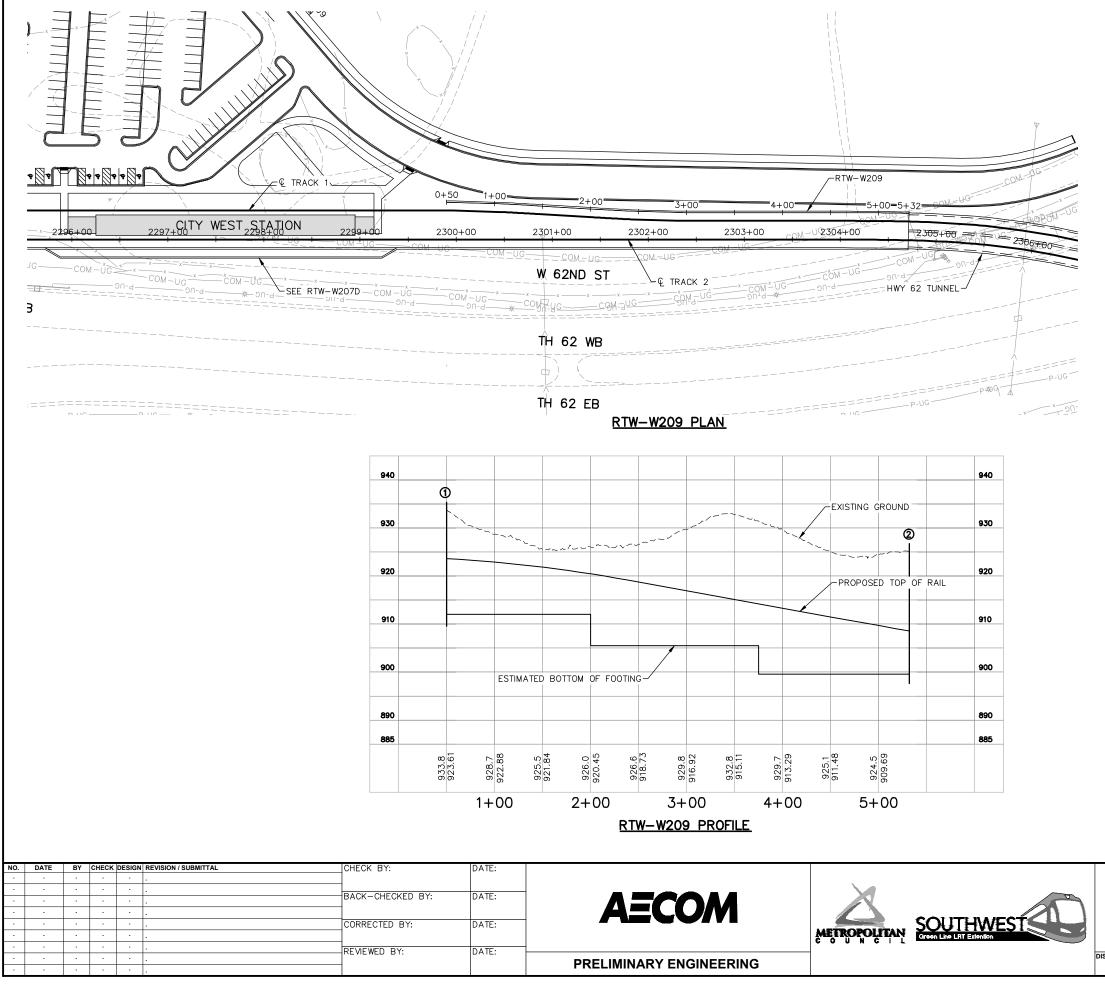


Jun, 13 2014 11:07 am V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-RETW.dwg By: Nu

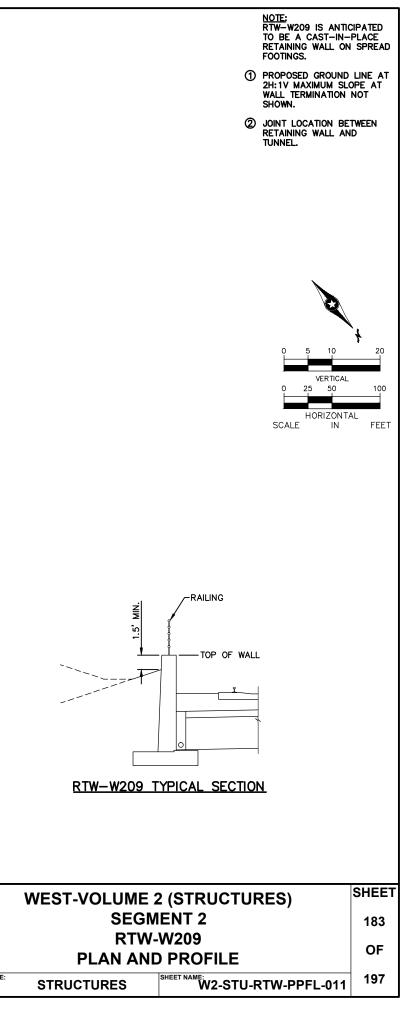


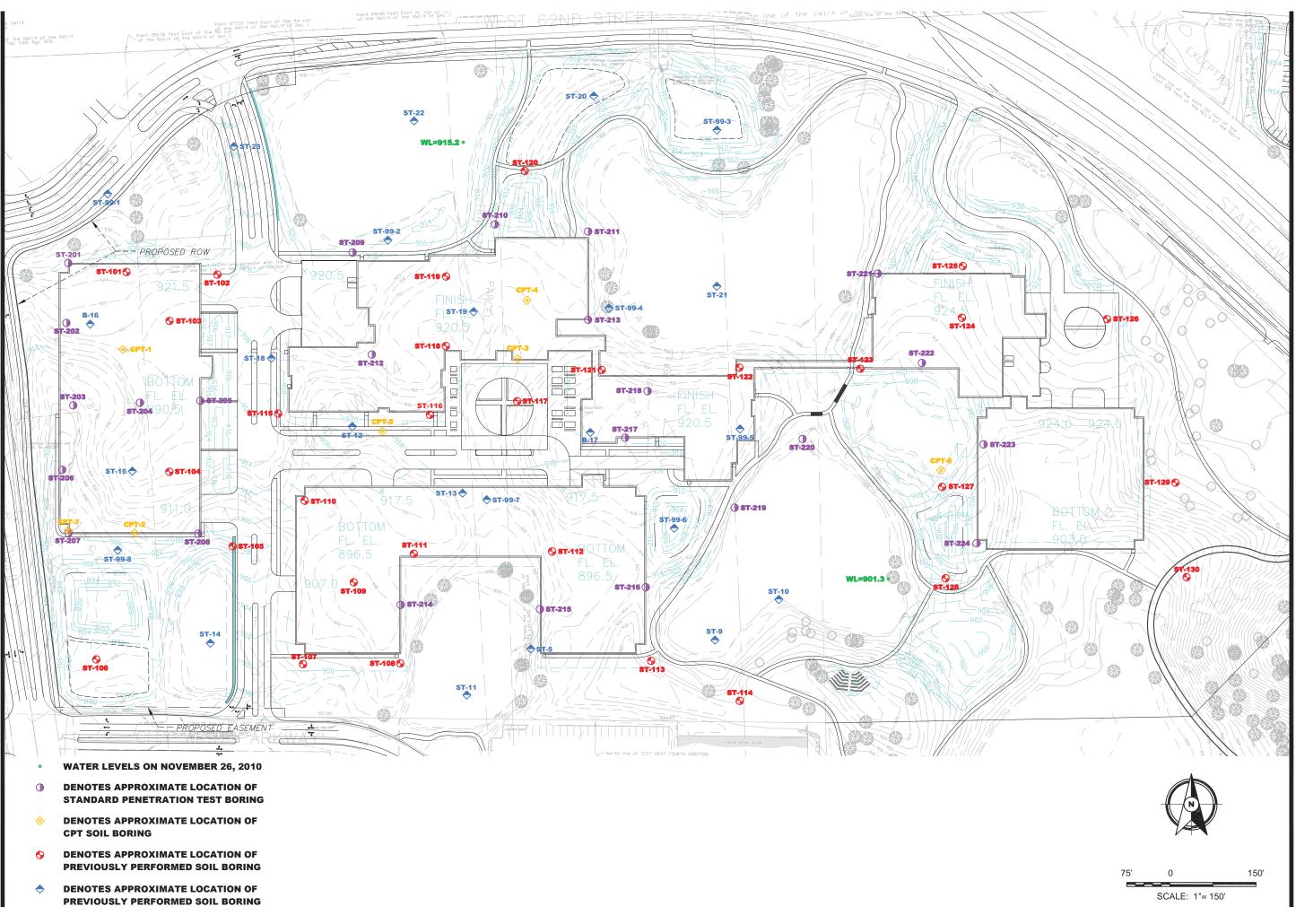
1, 13 2014 11:07 am V:\3200_PEC-W\CAD\SEGMENI-W2\SHEET\STRUCTURES\W2-STU-RETW

n, 13 2014 11:07 am V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-RETW.dwg By: N


	======================================						TH 62 WE				
DOLUCION CONTRACTOR OF THE REAL OF CONTRACTOR		====p 3/89 <u>1</u>	========== P-U D PLAN	<u>RTW–W20</u>			TH 62 EB				
	940			GROUND	EXISTING			940			
	930		2			~~~~~~~~~~	^^	930			
	920	RAII	PROPOSED TOP OF					920			
TOP	910							910			
	900						L_	900			
	890	FOOTING	MATED BOTTOM O	ES				890			
RTW	885							885			
			925.8 925.81	927.95 927.95 926.8	929.57 929.57 929.2 929.19	929.9 929.88	931.8 931.85 930.6 930.6	934.4 934.36			
		15+00	14+00 PROFILE	13+00 RTW-W207D		00 12	11+				
				DATE:	K BY:	СНЕ	TTAL	REVISION / SUBMI	CHECK DESIGN I	BY C	DATE
		AECOM	1	DATE:	CHECKED BY:	BAC			· · · .	•	•
				DATE:	RECTED BY:	COR			· · .		•
	ING	MINARY ENGINEER	PRFL	DATE:	EWED BY:	REV		· ·		· ·	•

ШЧ am V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU 2014 11:08


TYPICAL SECTION		Teet
WEST-VOLUME 2 (STR SEGMENT 2 - RTW-		SHEET 182
		OF
STA. 10+00 TO STA	. 14+28 /2-STU-RTW-PPFL-010	197
STRUCTURES W	12-310-KIW-FFFL-010	


- NOTE: RTW-W207D IS ANTICIPATED TO BE A CAST-IN-PLACE RETAINING WALL ON SPREAD FOOTINGS.
- ② JOINT LOCATION BETWEEN RETAINING WALL AND TUNNEL.

Jun, 13 2014 11:08 am V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-RETW.dwg By: Nut:

DISCIPLINE

11001 Hampshire Avenue So. Minneapolis, MN 55438 PH. (952) 995-2000 FAX (952) 995-2020

Base Dwg Provided By: WESTWOOD PROF. SERVICES

SOIL BORING LOCATION SKETCH GEOTECHNICAL EVALUATION PROJECT RED EDEN PRAIRIE, MINNESOTA

Project No: BL10	10023
Drawing No: BL101	0023D
Scale:	1"= 150'
Drawn By:	JAG
Date Drawn:	
Checked By:	CRK
Last Modified:	8/11/11
Sheet:	Fig:
of	

							BORING			5	-121		
							LOCATIO	DN: See attached sketch.					
DRILLE	R: S.	Briggs		METHOD:	3 1/4" HSA, Autoha	ammer	DATE:	12/2	20/10		SCALE:	1'' = 4'	
Elev. feet 921.2	Depth feet 0.0	Symbo	ol (S		escription of Materi or D2487, Rock-USA		0-1-2908)	BPF	WL	MC %	Tests	or Notes	
920.3	0.9	SC		_AYEY SAND, o	dark brown, frozen. (Topsoil)								
917.2	4.0	SP- SM	P(DORLY GRADE edium-grained,	ED SAND with SILT with Gravel, brown, (Glacial Outwash)	moist, loo	/= se. –	6					
		CL	S/ sti		AY, with Gravel, br (Glacial Till)	own, wet, v	very	17					
914.2	<u>7.0</u> 9.0	SP- SM	PC me	OORLY GRADE edium-grained,	D SAND with SILT brown, moist, medi (Glacial Outwash)	um dense.	_	14					
	0.0	CL	S/ sti		AY, trace Gravel, b (Glacial Till)	rown, wet,	very	24		18			
909.2	12.0	SC		AYEY SAND, b	prown, wet, very stil	ff to hard.							
			w	ith layer of Poor	(Glacial Till) Iy Graded Sand wi	th Silt at 1	5 feet	28					
904.2	17.0	SP	wi	th Gravel, with I	D SAND, fine- to c ayers of Clayey Sa t 24 feet, medium d (Glacial Outwash)	nd, brown, ense.		*	Ţ		*50/5" of se	et	
								26					
							-						
-								15					
-							-						
								12					

-				~ ~ ~			BORING		ST	-12	1 (cont)
							LOCATIO					•)
DRILLE	R: S.	Briggs		METHOD:	3 1/4" HSA, A	utohammer	DATE:	12/2	20/10		SCALE:	1" = 4'
Elev. feet 889.2	Depth feet 32.0	Symbol	(Soil		escription of N or D2487, Rock	laterials -USACE EM111	0-1-2908)	BPF	WL	MC %	Tests	or Notes
888.2	33.0									,,,		
- 		CL	SAN	IDY LEAN CL	AY, gray, wet, (Glacial T	rather stiff to v	/ery stiff. 	11				
	44.0							19				
880.2	41.0		END	OF BORING	.							
-			Wate	er observed a	it 24 feet while	drilling.	_					
-			Wate hollo	er observed a ow-stem auge	it 34 1/2 feet w r in the ground	vith 39 1/2 feet I.	of _					
-			Wate imm	er not observe ediately after	ed to cave-in c withdrawal of	lepth of 20 feet auger.						
-			Borii	ng then groute	ed.		_					
-							_					
-							-					
-							_					
_							_					
-							_					
-							_					
-							_					
-												
-							_					
-							_					
-							_					
L-10-1002	2				Brown Int	ertec Corporation	_					T-121 page

							[-21	<u> </u>				
						LOCATIC	N: Se	e att	ache	d sket	ch.	
M.	Rowland		METHOD:	3 1/4" HSA, Autohan	nmer	DATE:	7/28	3/11		SCA	LE:	1" = 4'
			De	escription of Materia	s		RPF	wi	an	MC	Test	ts or Notes
0.0						0-1-2908)			tsf	%	163	
1.5	CL	SA	ANDY LEAN CL	AY, dark brown, wet (Topsoil)		_						
	SM	SI	LTY SAND, fine	- to medium-grained nd with Silt, brown, i	l, with lay	vers of						
				(Alluvium)		_	4					
4.0	SP	PC	OORLY GRADE	D SAND, fine- to me	edium-gra	ained,						
		m	th layers of Silty edium dense.		, loose to)	5					
				(Alluvium)		_						
						_	0 N					
						_	Ą					
											Buildir	ng 2 Lowe
						_	11					
12.0	0					10 ()						
	UL	br	own to gray, we	t, rather stiff to hard.	ayers at	13 feet, –	18					
				(Giaciai Tili)		_						
							V 20			15		
						_	Δ					
						_						
						_	17		4	15	DD=1	19
						_						
							18			16		
						_						
						_						
										10		
						_				10		
						_						
						_						
						_						
							11					
						-						
	epth eet 0.0 1.5 4.0	eet 0.0 Symbol 1.5 SM 4.0 SP	epth eet 0.0 Symbol (S CL SA 1.5 SM SI PC 4.0 SP PC wi mu 12.0 CL SA	epth Definition 0.0 Symbol (Soil- ASTM D2488 CL SANDY LEAN CL 1.5 SILTY SAND, fine SM SILTY SAND, fine Poorly Graded Sa 4.0 POORLY GRADE with layers of Silty medium dense. 12.0 CL CL SANDY LEAN CL	epth Description of Material 0.0 Symbol (Soil- ASTM D2488 or D2487, Rock-USAC 1.5 SANDY LEAN CLAY, dark brown, wet (Topsoil) 1.5 SILTY SAND, fine- to medium-grained Poorly Graded Sand with Silt, brown, r (Alluvium) 4.0 SP SP POORLY GRADED SAND, fine- to medium dense. (Alluvium) (Alluvium) 12.0 CL CL SANDY LEAN CLAY, with Silty Sand I	epth Description of Materials 0.0 Symbol (Soil- ASTM D2488 or D2487, Rock-USACE EM1110 1.5 SANDY LEAN CLAY, dark brown, wet. (Topsoil) 1.5 SILTY SAND, fine- to medium-grained, with lay Poorly Graded Sand with Silt, brown, moist, ve (Alluvium) 4.0 POORLY GRADED SAND, fine- to medium-gra with layers of Silty Sand, brown, moist, loose to medium dense. 12.0 CL SANDY LEAN CLAY, with Silty Sand layers at brown to gray, wet, rather stiff to hard.	eetheet Description of Materials 0.0 Symbol CL SANDY LEAN CLAY, dark brown, wet. (Topsoil) 1.5 SM SM SILTY SAND, fine- to medium-grained, with layers of Poorly Graded Sand with Silt, brown, moist, very loose. (Alluvium) 4.0 POORLY GRADED SAND, fine- to medium-grained, with layers of Silty Sand, brown, moist, loose to medium dense. 12.0 CL SANDY LEAN CLAY, with Silty Sand layers at 13 feet, brown to gray, wet, rather stiff to hard. (Glacial Till)	epth eet Description of Materials BPF 0.0 Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) BPF 1.5 SANDY LEAN CLAY, dark brown, wet. (Topsoil) 4 4.0 SP SILTY SAND, fine- to medium-grained, with layers of Poorly Graded Sand with Silt, brown, moist, very loose. (Alluvium) 4 4.0 SP POORLY GRADED SAND, fine- to medium-grained, with layers of Silty Sand, brown, moist, loose to medium dense. 5 2.0 SANDY LEAN CLAY, with Silty Sand layers at 13 feet, brown to gray, wet, rather stiff to hard. 18 12.0 CL SANDY LEAN CLAY, with Silty Sand layers at 13 feet, digital and the gray of gray wet, rather stiff to hard. 18 12.0 CL SANDY LEAN CLAY, with Silty Sand layers at 13 feet, digital and digital th etc Description of Materials BPF WL 0.0 Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) BPF WL 1.5 SANDY LEAN CLAY, dark brown, wet. (Topsoil) - - - - 1.5 SILTY SAND, fine- to medium-grained, with layers of - Poorly Graded Sand with Silt, brown, moist, very loose. (Alluvium) - 4 4.0 POORLY GRADED SAND, fine- to medium-grained, with layers of Silty Sand, brown, moist, loose to medium dense. 5 2.0 SANDY LEAN CLAY, with Silty Sand layers at 13 feet, brown to gray, wet, rather stiff to hard. 11 12.0 CL SANDY LEAN CLAY, with Silty Sand layers at 13 feet, brown to gray, wet, rather stiff to hard. 18 12.0 17 18 10	epth eet 0.0 Description of Materials (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) BPF WL qp tsf CL SANDY LEAN CLAY, dark brown, wet. (Topsoil)	epth eet 0.0 Symbol (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) BPF WL qp MC (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) BPF WL qp MC (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APP (Soli-ASTM D2488 or D2487, Rock-USACE EM1110, Soli-ASTM D2488 or	epth eet 0.0 Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) BPF WL qp MC Test (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) BPF WL qp MC Test (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) APR VI (sp MC Test (Topsoil)	

							BORING		ЯТ	-21	0 (0	ont.)	
							LOCATIO					-	
DRILLE	R: M.	Rowland		METHOD:	3 1/4" HSA, /	Autohammer	DATE:	7/2	8/11		SCAI	_E:	1'' = 4'
Elev. feet	Depth feet	O mak al	(Soil		escription of N	Materials k-USACE EM111	0-1-2908)	BPF	WL		MC	Tests	or Notes
883.5	32.0	Symbol	SAN		AY, with Silty	Sand layers at				tsf	%		
_				(G	ilacial I III) (co	ontinued)	_						
_			With	n Gravel at 35	feet.			45					
_ 877.5	38.0	50			rown wat ve	and otiff	_						
-		SC	ULA	YEY SAND, b	nown, wel, ve	ะา y อแก.	-						
874.5	41.0		END	OF BORING				24					
-			Wat	er not observe	ed while drillin	ıg.	_						
-			Bori	ng then backfi	lled.		_						
-							_						
-							-						
-							_						
-							_						
-							_						
-													
-							_						
-							-						
-							_						
-							_						
-							_						
L-10-1002	2.4				Danua la	tertec Corporation						ST-2	10 page 2

									BORING	:		S	Г-211	
									LOCATIO	ON: Se	e att	ache	d sketch.	
DRILLER	: K.	Keck			METHOD	3 1/	4" HSA, Au	tohammer	DATE:	8/2	2/11		SCALE:	1" = 4'
Elev. I feet 909.6	Depth feet 0.0	Symb	ool	(Soil-		•	otion of Ma 487, Rock-l	terials JSACE EM111	0-1-2908)	BPF	WL	qp tsf	Test	s or Notes
-		SC		CLA	YEY SAND	, dark b	orown, wet (Topsoil)		-	-				
907.6	2.0	CL		LEAI	N CLAY with		D, brown, v Glacial Till	vet, medium.		- M 6				
905.6	4.0	CL		SAN				stiff to very	- stiff				//////////////////////////////////////	2 Lowest Lev
_				JAN			Glacial Till			15				
-									-					
-									-	21		4		
	10.5								-					
- -	10.5	SC- SM		SILT redd	Y CLAYEY sh brown, r	noist, n	nedium de		ed, _	24				
-						(0	Glacial Till)	-	25				
895.6	14.0	CL		SAN	DY LEAN C	CLAY, li	ght brown	, wet, very sti	ff.	-1				
893.6	16.0						Ĝlacial Till			21				
-		SC- SM		SILT medi	Y CLAYEY um dense.		, with Grav Glacial Till	el, brown, m	oist, -					
-						, , , , , , , , , , , , , , , , , , ,			-	28				
										X50/6"	,			
-									-					
-									-		ĮĮ			
-									-					
									-	25				
881.6	28.0								-					
-		SP- SM		POC redd	RLY GRAD	vaterbe	ND with S aring. cial Outwa	ILT, fine-grai sh)	ned,					
										16				
L-10-10023A								tec Corporation						ST-211 page 1

	<u>KILC</u>						BORING:		ST	-21	1 (cont	.)
							LOCATIC					
DRILLE	ER: K.	Keck		METHOD:	3 1/4" HSA, A	utohammer	DATE:	8/2	/11		SCALE:	1'' = 4'
Elev. feet 877.6	Depth feet 32.0	Symbol	(Soil		escription of M or D2487, Rock	1aterials -USACE EM111	0-1-2908)	BPF	WL	qp tsf	Tests	or Notes
		SC	CLA END Wate auge Wate	YEY SAND, g OF BORING er observed a er in the groun	gray, wet, rath (Glacial T t 23 feet with d. ed to cave-in o withdrawal of	er stiff to very s ill) 24 feet of hollo depth of 25 feet	stiff	20				

							BORING			S	Г-212	
							LOCATIO	DN: Se	e att	ache	d sketch.	
DRILLEF	R: M.	Rowland	ME	THOD:	3 1/4" HSA, Au	tohammer	DATE:	7/2	7/11		SCALE:	1" = 4'
Elev. feet 915.1	Depth feet 0.0	Symbol	(Soil- ASTI		escription of Ma or D2487, Rock-I		0-1-2908)	BPF	WL	MC %	Tests	or Notes
		SC //	CLAYEY	SAND, k	lack, wet. (Topsoil)		_				//////////////////////////////////////	//// Fill 5 feet to
913.6 	1.5	sc //	CLAYEY	SAND, t	prown, wet, med	lium.	_				slab elevat	ion 920.5
-					(Glacial Till)	_	8		14		
-							_					
_								8		19		
908.1	7.0	CL			AY, with Grave	brown wet	modium					
-			to stiff.		(Glacial Till		-	34			Cobble at 7	7 1/2 feet.
-					(0.000010111	/	_					
								8		18		
_							_					
_							_	16				
901.1	14.0	SC //	CLAYEY	SAND, v	vith layers of Si	ty Sand, brov	vn, wet,					
			stiff to ver	y stiff.	(Glacial Till)		17	Į			
_							_		-			
-							_	16				
-							-					
								13		17		
_							_					
-							_					
-							_					
								27				
_							_					
887.1	28.0	SM		ND fine	- to medium-gr	ained with lay	vers of					
-			Clayey Sa	and, brow	vn, wet, mediur (Glacial Till	n dense to de)	nse					
								29				
-							_					

							BORING		ST	-21	2 (cont	.)
							LOCATIO	DN: Se	e att	ache	d sketch.	
DRILLEF	<u>२:</u> М.	Rowland		METHOD:	3 1/4" HSA, A	utohammer	DATE:	7/2	7/11		SCALE:	1" = 4'
	Depth feet			D	escription of N	laterials		BPF	WL	мс		or Notes
883.1	32.0	Symbol	-			-USACE EM111				%		
- 881.1	34.0		Clay	ey Sand, bro	wn, wet, mediu Glacial Till) <i>(co</i>	rained, with lay im dense to de <i>ntinued)</i>	nse					
-		SC- SM	SILT	TY CLAYEY S lish brown, w	SAND, fine- to et to waterbear (Glacial T	medium-graine ing at 41 feet, d II)	d, dense _ _	33				
874.1	41.0							31				
			ENC	OF BORING	3.		_					
				er observed a er in the grou		40 feet of hollow	w-stem –					
-			Wat of a	er observed a uger.	at 16 feet imme	ediately after wi	ithdrawal –					
-			Bori	ng then grout	ed.							
-							_					
-							_					
-												
							_					
							_					
							_					
_												
							_					
							_					
-							-					
.							-					
-							_					
							_	1				

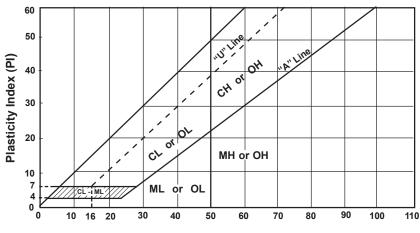
								BORING			S	[-21	3	
								LOCATIC	N: Se	e att	ache	d sket	ch.	
DRILLE	: R: К.	Keck	1	METHOD:	3 1/4"	HSA, Autohamn	ner	DATE:	8/1	/11		SCA	LE:	1" = 4'
Elev.	Depth								•					
feet 909.2	feet 0.0	Symbol		ASTM D2488	or D248	on of Materials 7, Rock-USACE	EM1110	-1-2908)	BPF	WL	qp tsf	MC %		ts or Notes
907.7	1.5	SM	SILTY	' SAND, fine		ed, dark brown, ⊺opsoil)	moist.	_					Buildir	/////// ng 2 Slab Fill 11 feet
_		SC- SM	SILTY loose.		SAND, f	ine-grained, bro	own, mo	oist, _					920.3,	
-					(A	lluvium)		_	6					
905.2	4.0	CL	LEAN	CLAY, gray	, wet, r	nedium.								
					(A	lluvium)			6	L	1			
-								_		-				observed ion 903.4 c
-			With 9	Sand seam a	at 7 1/2	feet		_	7	I⊥				and 903.3
900.2	9.0		vviure		at / 1/2			_	Å í	<u> </u>				
		CL- ML	SILTY	CLAY, ligh	t gray, v (A	wet, rather stiff. Iluvium)								
					0.	ind vicinity			9		1	23		
897.2	12.0													
_		ML	SANE dense			n, waterbearing	, mediu	m 	22					
_					(A	lluvium)		_	Δ					
_								_	15					
892.2	17.0	CL	SAND			h Gravel, dark	aray w							
_				stiff to stiff.			ylay, w	=ı, —	<u> </u>		2	16		
-					(GI	acial Till)		_						
									₩ 9					
-								_	Δ					
-								_						
-								_						
-								_						
-									15					
-								_						
-								_						
-								_						
-								_						
									12		2 1/2			
-								_						

				BORING	:	ST	-21	3 (C	ont.)	
				LOCATIO						
DRILLE		eck	METHOD: 3 1/4" HSA, Autohammer	DATE:	8/1	/11		SCAL	E:	1'' = 4'
Elev. feet 877.2	Depth feet 32.0	Symbol	Description of Materials (Soil- ASTM D2488 or D2487, Rock-USACE EM	1110-1-2908)	BPF	WL	qp tsf	MC %	Tests	or Notes
	41.0		SANDY LEAN CLAY, with Gravel, dark gra rather stiff to stiff. (Glacial Till) (continued) END OF BORING. Water observed at 8 feet with 9 feet of holl auger in the ground. Piezometer installed.				1	17		

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Criter	ia for Assigni	ing Group	Symbols and	Soi	ils Classification	Particle S	Size Identificati
	Group Names Using Labo				Group Symbol	Group Name ^b	Boulders Cobbles	
" uo	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^{c}$	GW	Well-graded gravel ^d	Gravel Coarse	3/4" to 3"
Soils ined o e	More than 50% of coarse fraction	5% or less	s fines ^e	$C_u < 4$ and/or $1 > C_c > 3^c$	GP	Poorly graded gravel d	Fine	
d S eve	retained on	Gravels wi	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand	
i ine % re) sid	No. 4 sieve	More than 12	2% fines ^e	Fines classify as CL or CH	GC	Clayey gravel dfg	Coarse	
grained Soils 50% retained o 200 sieve	Sands	Clean S	ands	$C_{u} \ge 6$ and $1 \le C_{c} \le 3^{c}$	SW	Well-graded sand h	Medium Fine	
arse- than No.	50% or more of	5% or less	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^c$	SP	Poorly graded sand h	Silt	
Coa more t	coarse fraction passes	Sands wit	h Fines	Fines classify as ML or MH	SM	Silty sand fgh	Clay	below "A"
0 g	No. 4 sieve	More than	12% ⁱ	Fines classify as CL or CH	SC	Clayey sand fgh	Clay	on or abov
he		Inorganic	PI > 7 ar	nd plots on or above "A" line ^j	CL	Lean clay kim		
ed Soils passed the sieve	Silts and Clays Liquid limit	morganic	PI < 4 or	plots below "A" line ^j	ML	Silt ^{k m}		Density of
asse eve	less than 50	Organic	Liquid lin	nit - oven dried < 0.75	OL	Organic clay k I m n	Cohesior	less Soils
grained more pas		organic	Liquid lin	nit - not dried	OL	Organic silt k I m o	Very loose	
-grain more o. 200	Cilto and alays	Inorganic	PI plots of	on or above "A" line	CH	Fat clay ^{k m}	Loose	
	Silts and clays Liquid limit	morganic	PI plots b	elow "A" line	MH	Elastic silt k I m	Medium dense	
	50 or more	Organic	Liquid lin	nit - oven dried	ОН	Organic clay k I m p	Very dense	
Fir 50%		Organic	Liquid lin	nit - not dried < 0.75	ОН	Organic silt k I m q		
Highly	Organic Soils	Primarily org	anic matte	r, dark in color and organic odor	PT	Peat	Consistency	of Cohesive So


Based on the material passing the 3-in (75mm) sieve a.

b. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name $C_u = D_{6i}$

$$D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$$

C.

- d. If soil contains>15% sand, add "with sand" to group name
- Gravels with 5 to 12% fines require dual symbols: e
- GW-GM well-graded gravel with silt
- GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains \geq 15% gravel, add "with gravel" to group name.
- h. Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant. k.
- If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- If soil contains≥30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- $PI \ge 4$ and plots on or above "A" line. n.
- PI <4 or plots below "A" line. о.
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

DD	Dry density, pcf	oc	Organic content, %
WD	Wet density, pcf	S	Percent of saturation, %
MC	Natural moisture content, %	SG	Specific gravity
LL	Liqiuid limit, %	С	Cohesion, psf
PL	Plastic limit, %	Ø	Angle of internal friction
PI	Plasticity index, %	qu	Unconfined compressive strength, psf
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf

Rev. 7/07

ation

Boulders	. over 12"
Cobbles	. 3" to 12"
Gravel	
Coarse	. 3/4" to 3"
Fine	. No. 4 to 3/4"
Sand	
Coarse	
Medium	
Fine	. No. 40 to No. 200
Silt	. <no. 200,="" or<="" pi<4="" td=""></no.>
	below "A" line
Clay	$<$ No. 200, PI \ge 4 and
	on or above "A" line
Relative Densi Cohesionless	

50	0 to 4 BPF
	5 to 10 BPF
danaa	11 to 20 DDF
dense	11 10 30 BPF
	31 to 50 BPF
nse	over 50 BPF
	se I dense

Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.'

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards

Appendix E

Retaining Walls W207D, W209, W210 and W211

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Foundation Analysis Design Recommendation Report Retaining Walls RTW-W207D, RTW-W209, RTW-W210, and RTW-W211 – 75% Design STA 2291+00 to STA2313+00 Southwest LRT, West Segment 2 Eden Prairie and Minnetonka, Minnesota

Dear Mr. Demers:

Braun Intertec Corporation has completed the geotechnical evaluation for the retaining walls RTW-W207D, RTW-W209, RTW-W210, and RTW-W211, adjacent to the Trunk Highway 62 Tunnel in Eden Prairie and Minnetonka, Minnesota. The following sections provide information regarding our opinions, methods and recommendations for the retaining wall foundations and backfill.

This report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for general track construction, the TH 62 tunnel crossing, City West Station Platform, and pole foundations for the Overhead Contact System (OCS) will be addressed in separate reports.

A. Project information

The west segment of the SWLRT project is proposing to construct a light rail transit line through the cities of Hopkins, Minnetonka, and Eden Prairie, Minnesota. This design report addresses the design and construction of four retaining walls that will support the track embankment near the 62 Tunnel segment in Eden Prairie and Minnetonka.

A.1. Type of Structure

Cast-in-place (CIP) concrete will be used to construct the retaining walls. The proposed CIP concrete walls will be supported by spread footing foundations founded at least 5 feet below the lowest finished grade along the toe of the wall. The walls will be designed and constructed by others.

A.2. Location of Walls

We were provided with drawings showing the plan and profile for each of the four walls. The rails will be lowered along the alignment relative to the adjacent grade in order to provide access to the tunnel. The locations and additional information for the walls are provided below.

A.2.a. Wall RTW-W207D

Wall RTW-207D is located along the south side of the proposed SWLRT alignment, extending between STA 2291+00 to STA 2304+71 for a length of about 1391 feet and connects to the West Tunnel entrance. The wall height (from top of footing to existing ground surface) will vary from 10 to 27 feet. The top of the wall will slope down from west to east with six steps in the foundation to accommodate the decreasing grade. Required grading changes due to the construction of the rail will consist of a 5 feet of fill at the western edge of the wall and 5 feet a cut along most of the alignment up to the western edge of the proposed station. About 15 feet of cut will be required east of the station to the termination point of the wall at the tunnel.

A.2.b. Wall RTW-W209

Wall RTW-W209 is located along the north side of the proposed SWLRT alignment, extending from about STA 2299+90 to STA 2304+71, for a length of 482 feet. The wall height (from top of footing to existing ground surface) will vary from 12 to 27 feet. The top of the wall will slope down from east to west with three steps in the foundation to accommodate the decreasing grade. Required grading changes due to construction of the rail will consist of about 4 to 7 feet of cut varying along the alignment of the wall.

A.2.c. Wall RTW-W210

Wall RTW-W210 is located along the north side of the proposed SWLRT alignment, extending from the west terminus of the 62 tunnel. It will extend from approximately STA 2311+69 to STA 2312+83, for a length of 116 feet. The wall will be parallel to and across the tracks from Wall RTW-W211. The wall height (from top of footing to existing ground surface) will vary from 15 to 22 feet with a decrease in height from south to north. Required grading changes due to construction of the rail will consist of 13 feet of cut at the western edge of the wall to 4 feet of cut at the eastern edge of the wall.

A.2.d. Wall RTW-W211

Wall RTW-W211 is located along the south side of the proposed SWLRT alignment, extending from the west terminus of the 62 tunnel. It will extend from approximately STA 2311+69 to STA 2313+00, for a length of about 130 feet. The wall will be parallel to and across the tracks from Wall RTW-W210. The wall height (from top of footing to existing ground) will vary from 15 to 20 feet with a decrease in height from south to north. Required grading changes due to construction of the rail will be similar to Wall RTW-W210.

B. Subsurface Investigation Summary

B.1. Summary of Borings Taken

Braun Intertec performed nine SPT (standard penetration test) borings (2152SW, 2153SW, 2154SW, 2155SW, 2156SW, 2157SW, 2158SW, 2018SB, and 2017SB) in the vicinity of the proposed wall alignments. Logs of the wall borings are included in the Appendix. A Boring Location Sketch is also included, showing the locations of the wall borings.

B.2. Description of Foundation Soil and Conditions

The proposed retaining walls are generally underlain with sandy lean clay till, followed by glacially deposited sands and silts to the termination depth of the borings. A more detailed description is provided below.

B.2.a. Topsoil

Four of the five borings initially encountered about 1/4 to 1 foot of topsoil or topsoil fill. The topsoil and topsoil fill consisted of sandy lean clay or silty sand that was brown to black and moist.

B.2.b. Pavement

Boring 2017SW initially encountered a pavement section consisting of 3 inches of bituminous over 3 1/2 inches of aggregate base.

B.2.c. Fill

Fill was encountered beneath the topsoil fill in Borings 2017SW, 2018SB, and 2019SB and extended to depths varying from 4 to 7 feet. The fill consisted of sandy lean clay (CL), clayey sand (SC), and silty sand (SM). Table 1 below illustrates the depth and type of fill material encountered.

Boring Number	Boring Elevation (ft)	Approximate Depth of Fill (ft)	Elevation at Bottom of Fill (ft)	Fill Composition
	(10)	(10)	(10)	Poorly Graded Sand with
2152SW	940.0	8	932	Poony Graded Sand With
	0.000	Ū	001	Silt, Sandy Lean Clay
2153SW	939.8	7	933	Sandy Lean Clay
2154SW	938.7	4	935	Clayey Sand
2155SW	936.5	6	930 1/2	Sandy Lean Clay
2156SW	934.7	3	931 1/2	Sandy Lean Clay
2157SW	930.0	6	924	Sandy Lean Clay
2158SW	927.7	6	922	Silty Sand, Clayey Sand
2018SB	925.5	8	917 1/2	Clayey Sand
2017SW	922.0	7	915	Lean Clay, Clayey Sand

Table 1. Fill Depths beneath Retaining Walls RTW-207D, RTW-W209, RTW-W210, RTW-W-211

Penetration resistances varied from 5 to 20 blows per foot (BPF).

B.2.d. Glacial Till

Glacial till soils were encountered throughout the soil profile across the lengths of the walls. The till consisted of sandy lean clay, clayey sand, and silty sand. The till soils typically contained varying amounts of gravel, were moist to wet and were brown. Penetration resistances varied from 9 to 81 BPF indicating the cohesive soils were rather stiff to hard and the granular soils were medium dense to very dense.

B.2.e. Glacial Outwash

Glacial outwash soils were also frequently encountered throughout the soil profile and were encountered beneath glacial till soils. The glacial outwash soils consisted of poorly graded sand and poorly graded sand with silt. The sands generally contained varying amounts of gravel. Penetration resistances varied from 10 BPF to 50 blows per 6 inches of penetration, indicating the soil was loose to very dense.

B.3. Summary of Water Level Measurements

SPT boring logs note water levels during drilling ranging from approximate 879 to 908 feet above mean sea level (MSL). This large range in elevation indicates the groundwater encountered was likely in a perched condition. Two temporary water level indicators were installed on either side of the tunnel and encountered a static water level at elevation 880. Depending on seasonal and annual precipitation rates, groundwater could be encountered near proposed footing elevations in a perched condition. Seasonal and annual fluctuations of groundwater should be anticipated.

C. Foundation Analysis

Based on the soil conditions encountered in the borings, foundations for the proposed retaining walls will bear on competent glacial till and glacial outwash soils. We recommend the use of spread footing foundations for support of the CIP walls.

To reduce the potential for settlement, we recommend surface compacting the exposed soils at the base of proposed foundations. Compaction should be completed with a large vibratory sheepsfoot compactor to densify any soils loosened by the excavation process.

The wall suitability will be controlled by the service limit state (settlement). A maximum total settlement of 1 inch is specified for the CIP retaining wall structures. Total settlement is defined as the sum of primary consolidation and secondary consolidation.

C.1. Excavations and Slopes

The tracks will be in a cut due to their lower elevation than existing grade. Retaining walls will be constructed separating the tracks from the adjacent higher grade. The retaining walls will consist of vertical CIP concrete walls. Preparation will include excavation to proposed grade, surface compaction beneath the footings, and backfilling behind the walls once the walls have been constructed to support the Guideway.

C.1.a. Settlement

We assume that any utilities along the proposed alignment will be relocated such that the walls will not be constructed over any existing utilities. Since grades are anticipated to be lowered, we anticipate that settlement along all of the retaining walls will be less than 1 inch, and more typically less than 1/2 inch.

C.1.b. Global Stability

Based on the proposed wall heights, slope angles, and the competent native soils encountered in the borings and soundings, the factor of safety is anticipated to exceed the required minimum value of 1.5. Local stability of the walls and associated reinforced embankments, which is separate from the global stability, will be determined by the retaining wall engineer.

C.2. Spread Footing Foundations

Settlements were calculated based on two methods. The first is the Hough method with Boussinesq and Westergaard stress distributions, which utilizes the standard penetration test (SPT) values from the soil borings. The second is the Menard method, which is based on pressuremeter determinations of soil parameters that were collected in the field or modified from the SPT values from the soil borings. For the Menard Method, where pressuremeter testing was not performed, conservative correlations were used to estimate pressuremeter values based on N₆₀ factors provided in Federal Highway Administration (FHWA) Publication No. FHWA-IP-89-008. Tables 5 and 6 from this publication are in the Appendix for reference. After these two methods were evaluated, the results were averaged.

Terzhagi's strength limit state is also included on the nominal bearing graphs in the Appendix, for reference. The strength limit state (bearing) will not control design.

The service limit state (settlement) will control the design and the average service limit state should be used for design of the retaining walls. A maximum settlement of 1 inch is specified for this project.

C.3. Summary of Design Assumptions

C.3.a. Embankment Heights, Unit Weights, Side Slopes, and End slopes

The wet unit weight of the anticipated compacted fill soils has been assumed as 120 pounds per cubic foot (pcf). The top surface behind all walls will be the associated tracks for the SWLRT and will be relatively flat. The slope in front of all walls will be 1:4 (V:H) or flatter. Information regarding the walls is provided in Table 2.

Retaining Wall Location	Existing Grade Elevations (ft)	Corresponding Proposed Wall Heights (ft)	Approximate Footing Elevation (ft)
RTW-W207D	930-950	8 to 15	905-936
RTW-W209	909-924	8 to 15	900-911
RTW-W210	914-918	9 to 13	905
RTW-W211	914-918	9 to 13	905

Table 2. Design Information for Walls

C.3.b. Retaining Wall Loading Information

It is assumed a 2-foot live load surcharge will be used for the design of the retaining walls. We recommend the design loads and footing widths follow the MnDOT standard plans included in the Appendix.

C.3.c. Design Methodologies

The LRFD (Load and Resistance Factor Design Method) was used for design of the retaining wall foundations supported on shallow foundations. Resistance factors were obtained from the Sixth Edition of the AASHTO (American Association of State Highway and Transportation Officials) LRFD Bridge Design Specifications (6th edition with 2013 interim revisions).

The ASD (Allowable Strength Design Method) was referenced for design of the retaining wall footings supported on shallow foundations. Strength design and safety factors were taken from the MnDOT design criteria for retaining walls with a 2-foot live load surcharge.

C.4. Construction Considerations

C.4.a. Design of Temporary Slopes and Shoring Limits

We recommend that permanent slopes match the existing slopes, except they should not be steeper than 1V:2H. Select Granular Borrow is anticipated to have an angle of internal friction greater than 30 degrees. This soil could be temporarily placed at a slope of 1V:1 1/2 H, but if not retained by a CIP embankment, must be limited to 1V:2H or flatter for the permanent condition.

C.4.b. Backfill Requirements

Exposed excavation bottoms, deemed suitable by a Geotechnical Engineer, should be surface compacted by a large vibratory sheepsfoot compactor.

Please refer to Table 3 below for material and compaction specifications based on the 2014 MnDOT Standard Specification for Construction.

Material	Material Specification	Compaction Specification	
Fill Placed Beneath Footings	2105.1A7	2105.3F	
Leveling Pad Beneath Footings	3138.2B	2211.3C	
Retaining Wall Backfill	3149.2D2	2105.3F	

Table 3. Recommended Fill and Compaction Specifications

Backfill placed for all wall embankments should consist of Select Granular Modified 10 percent and compacted to meet the requirements of 2105.3F1. Select Granular Modified 10 percent shall comply with Specification 3149.2B2, modified to having 10 percent or less passing the 0.075 mm (#200) sieve. We recommend backfill material be placed in uniform layers approximately parallel to the profile, extending the full width of the retaining structures. We recommend backfill material be placed in lift thicknesses not exceeding 12 inches.

D. Foundation Recommendations

D.1. Bearing Capacities and Associated Resistance Factors/Factors of Safety

Based on the soil conditions and recommended soil corrections the service limit bearing pressure exceeds the anticipated soil loading based on the MnDOT Standard Plan for CIP Retaining Walls Associated factors of safety are also provided on the attached plan.

D.2. Recommended Lateral Design Soil Parameters

The recommended lateral soil parameters to be used for design are provided in Table 4.

Soil Type	Angle of Internal Friction (degrees)	Effective unit Weight (pcf)	Coefficient of Sliding Friction Rough Concrete	Active Earth Pressure Coefficient	At-Rest Earth Pressure Coefficient
Select Granular Modified 10%	35	120	0.6	0.27	0.43
Granular Borrow	30	120	0.5	0.33	0.50
On-Site Granular Soils	32	120	0.5	0.3	0.46
On-Site Sandy Lean Clay	28	125	0.4	0.36	0.53
On-site Clayey Sand	28	135	0.4	0.36	0.53

Table 4. Lateral Soil Parameters

D.3. Recommended Foundation Types, Sizes and Embedment Depths

We recommend that the walls be supported on spread footings, following the MnDOT standard plans included in the *Cast-in-Place Retaining Wall Details* section of the Appendix. The size of these footings shall be determined based upon the stem wall height by the wall designer. If stem wall heights/footing sizes change during retaining wall design, we should be notified to confirm that bearing capacity and settlement criteria are within the recommended tolerances. We recommend that the footings be embedded at least 4 1/2 feet below grade (bottom of footing) for frost protection.

D.4. Temporary Slopes and Shoring Limits

Temporary slopes in Select Granular Borrow can be constructed at 1V:1 1/2 H or shallower. Temporary slopes constructed in granular borrow or natural granular material encountered at the site are recommended to be constructed at 1V:1.5H or shallower. In a temporary condition, these slopes have a Factor of Safety against global failure in excess of 1.3.

E. Material Classification and Testing

E.1. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM International Standard Practice D 2488. A chart explaining the classification system is attached. Samples were sealed in jars or bags and returned to our facility for review and storage

E.2. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures.

E.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced, and again after auger withdrawal. The boreholes were then backfilled or sealed with bentonite grout.

F. Qualifications

F.1. Variations in Subsurface Conditions

F.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore, strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

F.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

F.2. Continuity of Professional Responsibility

F.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

F.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

G. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

H. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If there are questions regarding these bridge foundation recommendations, please call Josh Kirk at 952.995.2222 or <u>jkirk@braunintertec.com</u> or Ray Huber at 952.995.2260 or <u>rhuber@braunintertec.com</u> at your convenience.

Sincerely,

BRAUN INTERTEC CORPORATION

Professional Certification:

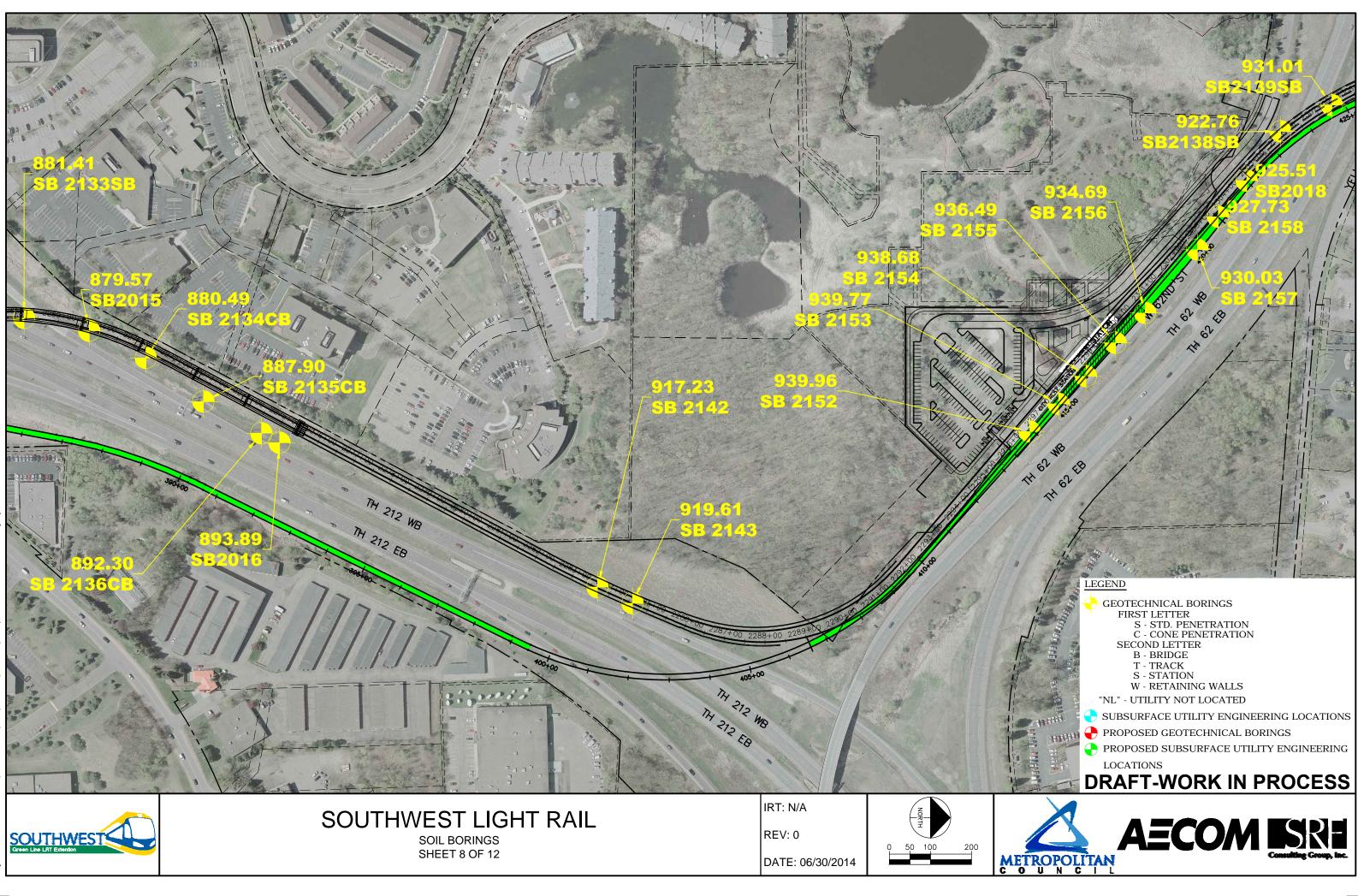
I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

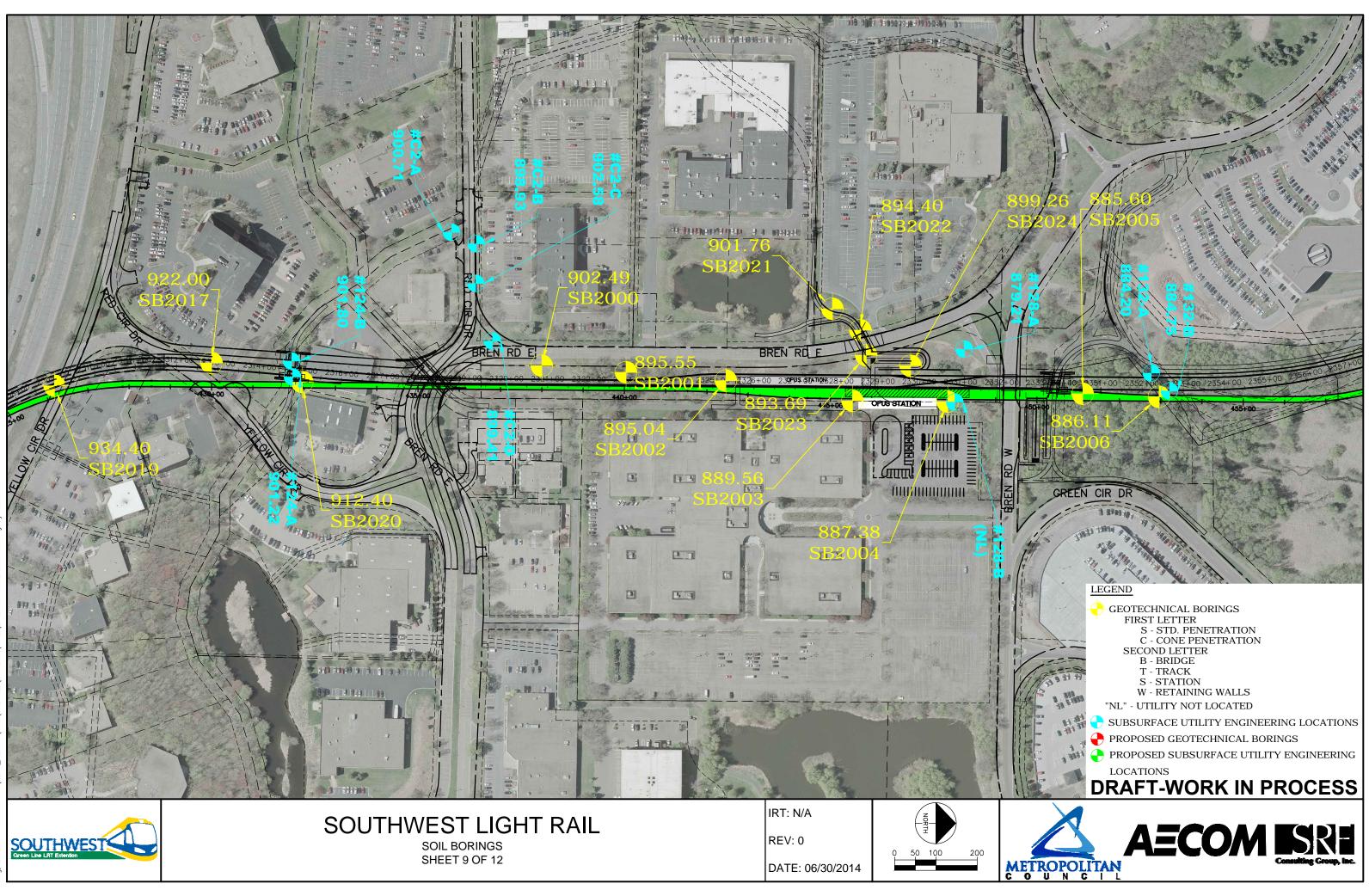
Joshua L. Kirk, PE Associate Principal-Project Engineer License Number: 45005

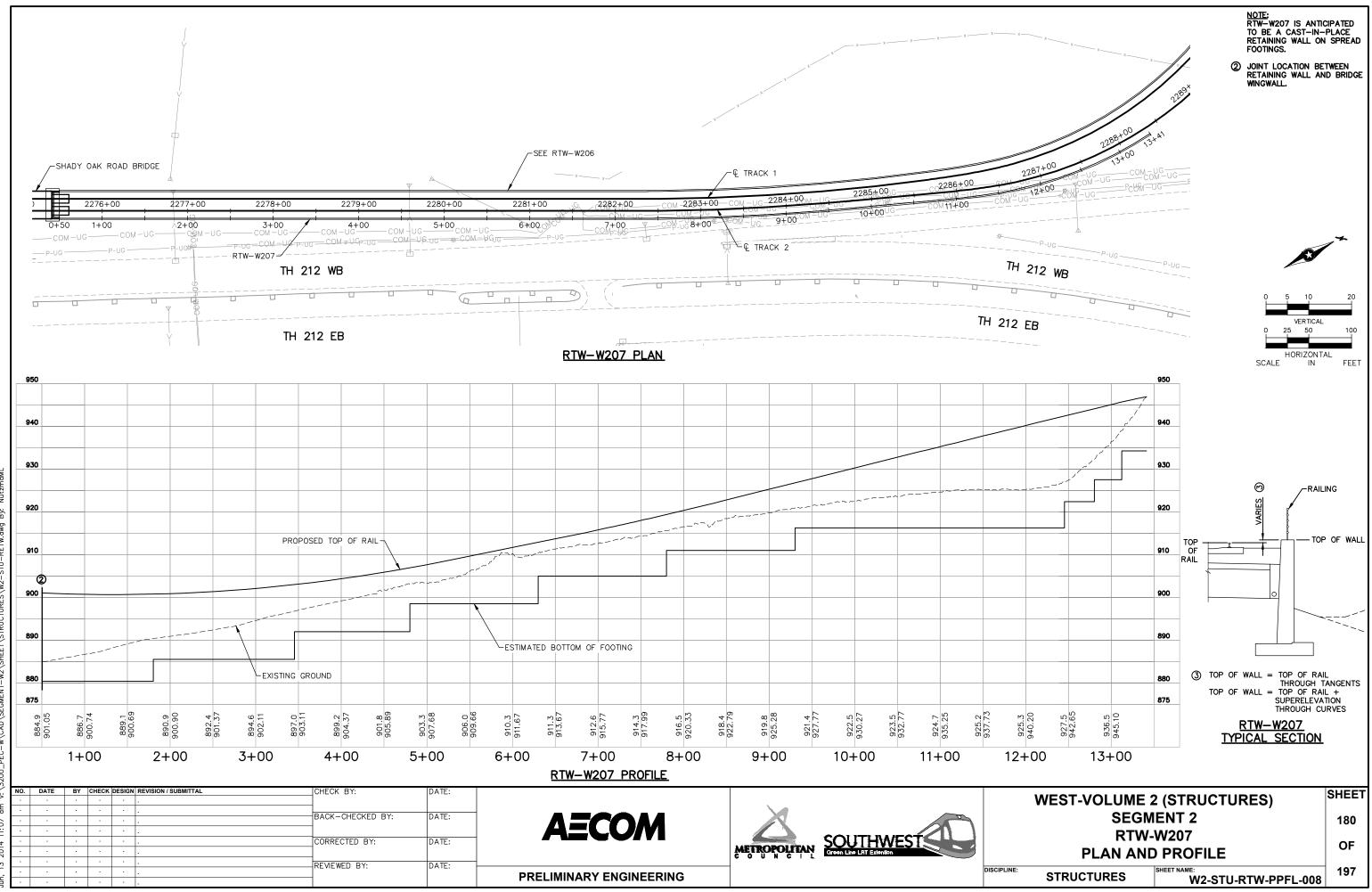
Reviewed by:

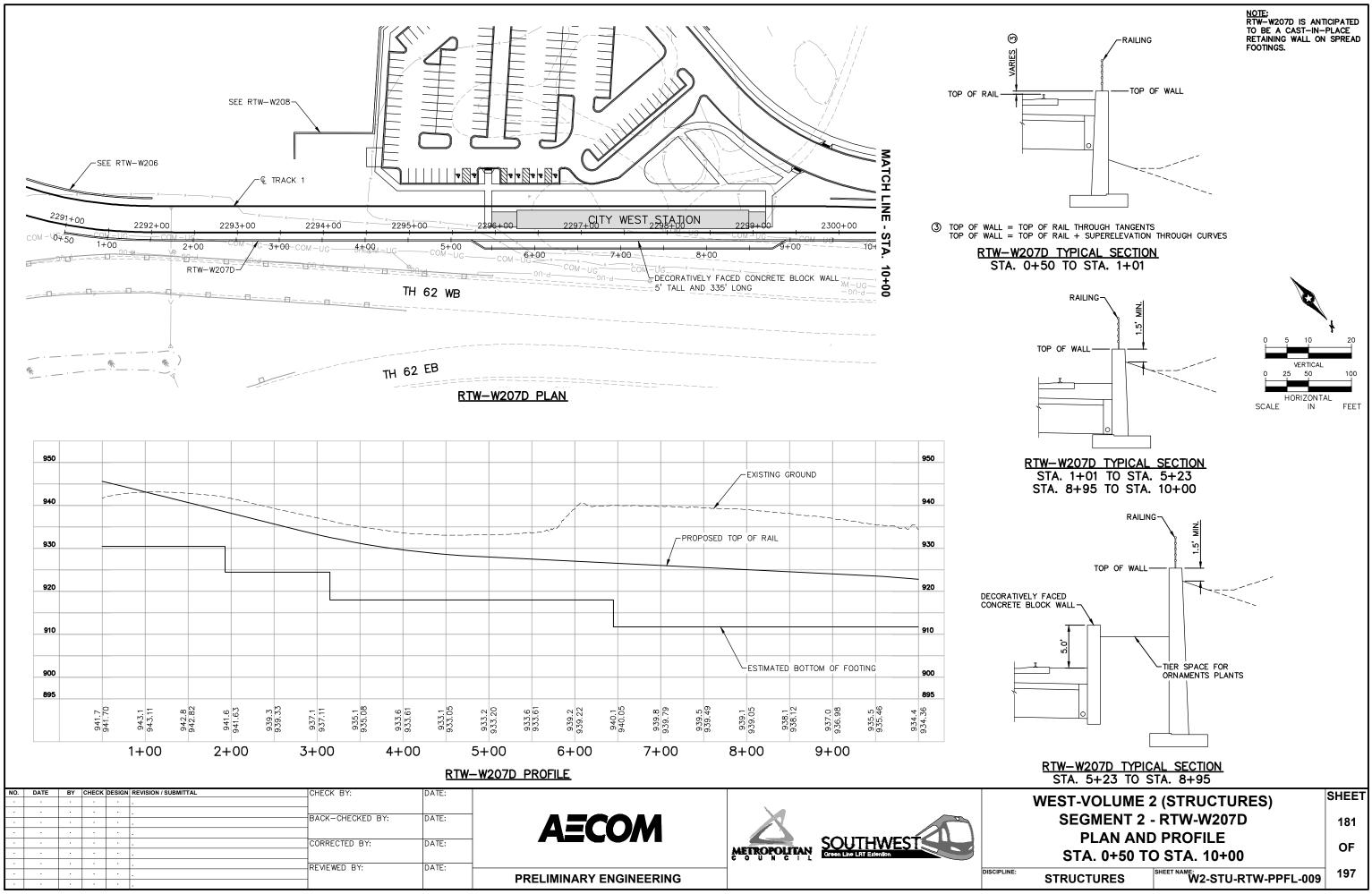
Ray A. Huber, PE Vice President-Principal Engineer

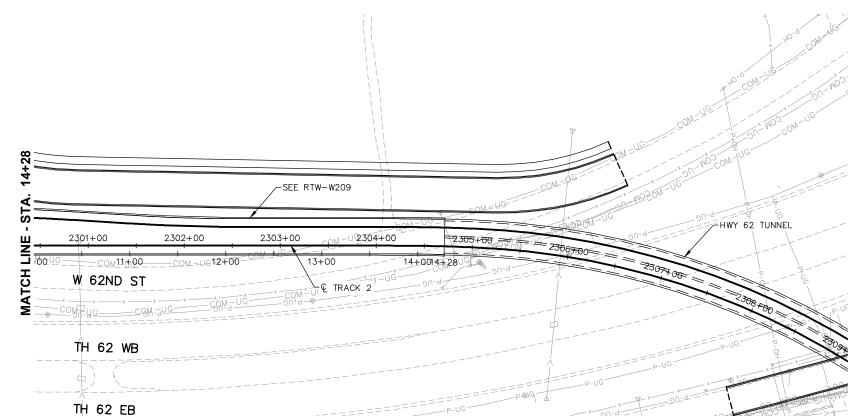
Reviewed by:


Matthew P. Ruble, PE Principal Engineer

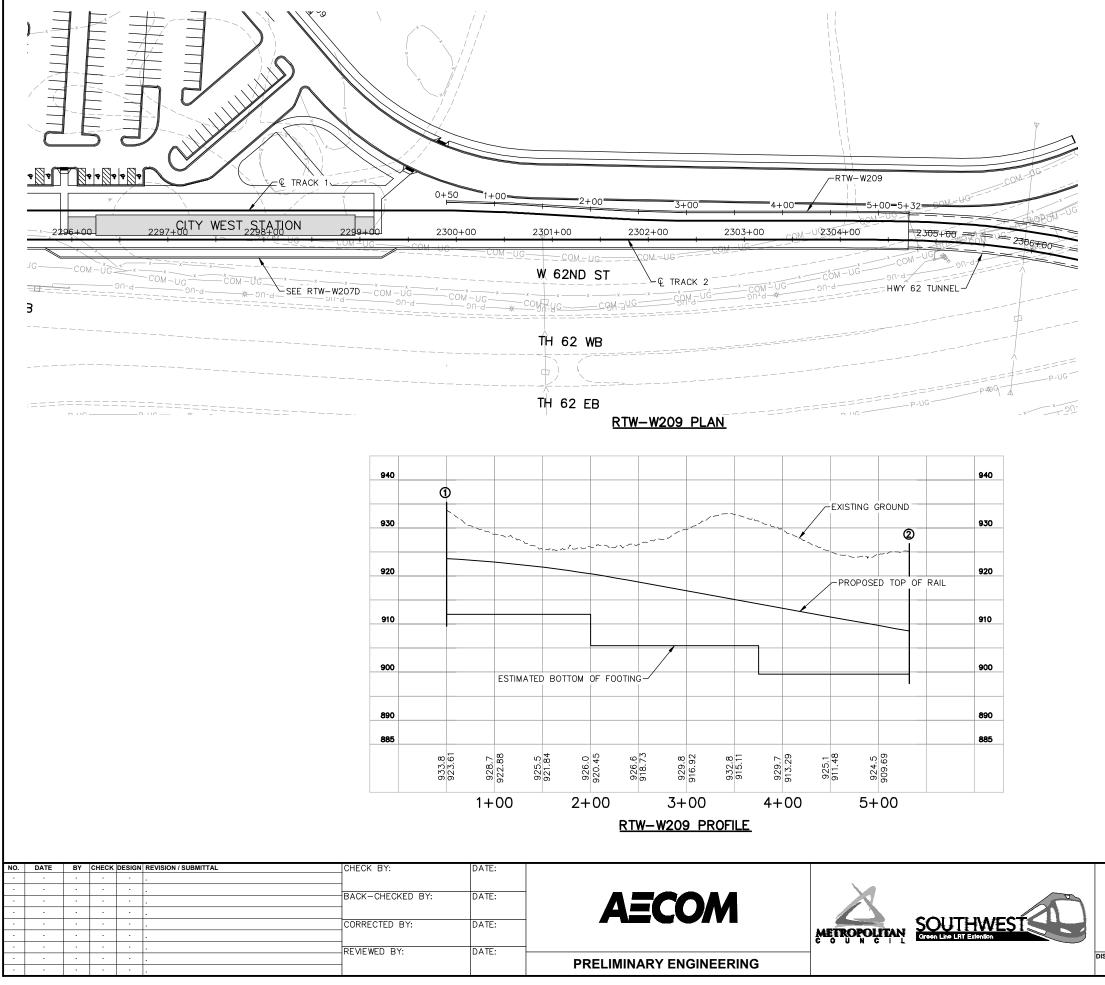

Appendix:


Boring Location Sketch Preliminary Engineering Plan and Profile Sheets for Retaining Wall RTW-W207D, RTW-W209, RTW-W210, and RTW-W211 Standard Penetration Boring Logs (2152SW, 2153SW, 2154SW, 2155SW, 2156SW, 2157SW, 2158SW, 2018SB and 2017SW) Limit State Graphs for Walls RTW-W207D, RTW-W209 and RTW-W210/W211 MnDOT Standard Sheet No. 5-297.632, 1 of 4 (2' LL Surcharge, Spread Footing Supported Retaining Walls) Publication No. FHWA-IP-89-008 N60 Correlation Tables SPT Descriptive Terminology

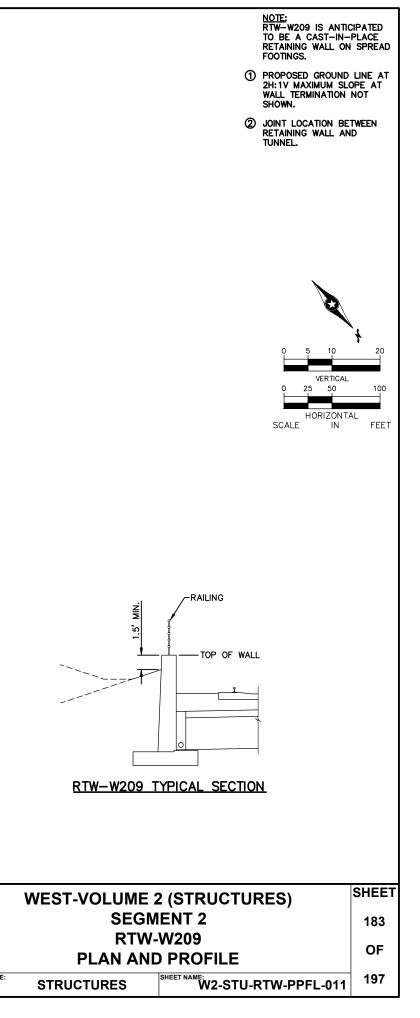

APPENDIX

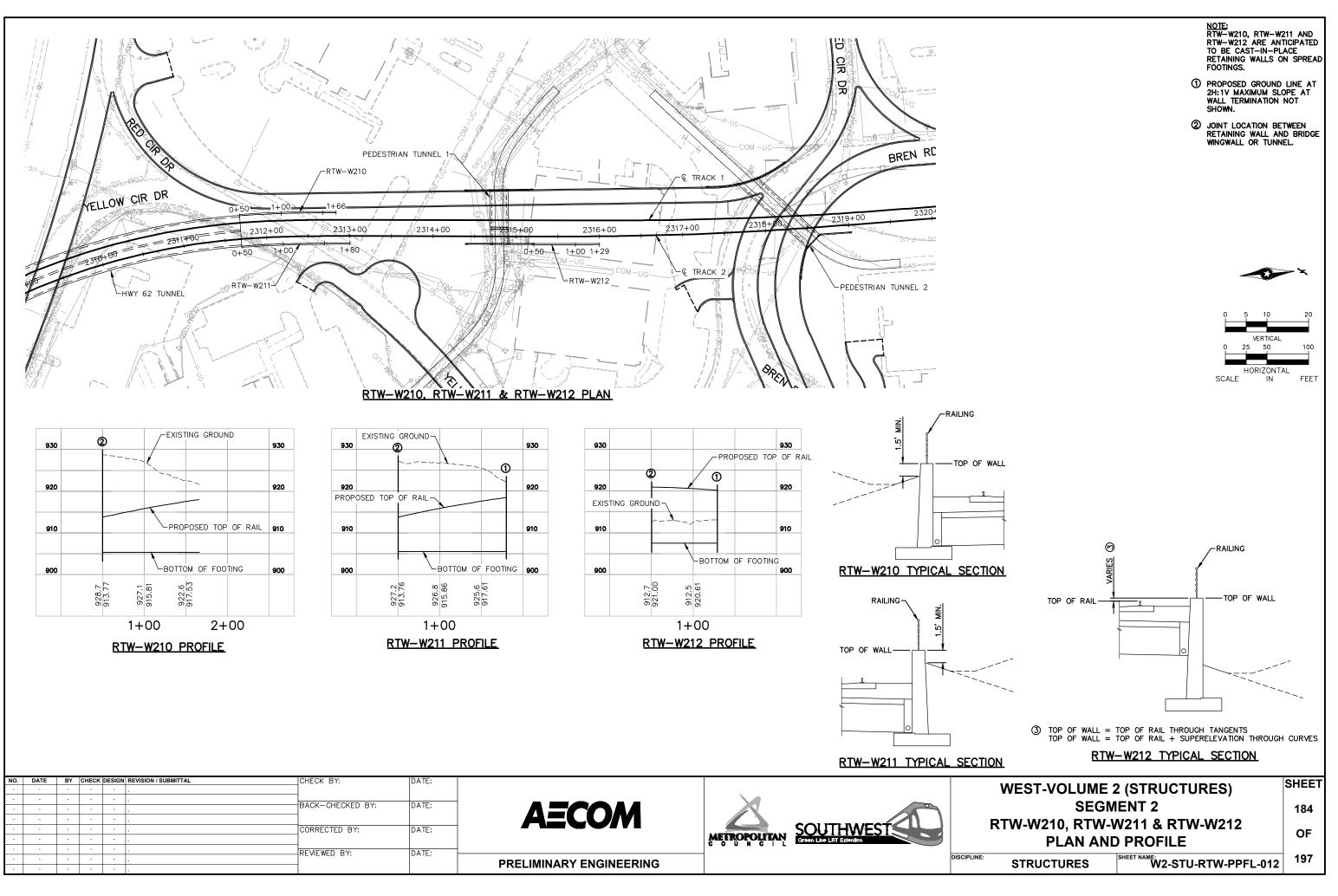


1, 13 2014 11:07 am V: \3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-RETW


n, 13 2014 11:07 am V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-RETW.dwg By: N

	TH 62 EB	RIN	======================================	
	940	EXISTING GROUN		940
	930		2	930
	920			920
	910			
	900			900
	890		ESTIMATED BOTTOM OF FOOTING	890
	934.4 934.4 931.85 931.85 930.64 930.64 930.930.9	929.88 929.6 929.57 929.2 929.19 929.19 927.9	926.8 925.8 925.81	885 <u>RTW</u>
	11+00	12+00 13+		
DATE BY CHECK DESIG	N REVISION / SUBMITTAL	CHECK BY:	DATE:	
· · · · ·	· · · · · · · · · · · · · · · · · · ·	BACK-CHECKED BY:		
· · · · ·	· ·	CORRECTED BY:	DATE:	METROPOLITAN SOUTHWEST
· · · · ·	· · · · · · · · · · · · · · · · · · ·	REVIEWED BY:	DATE: PRELIMINARY ENGINE	


TYPICAL SECTION	
SEGMENT 2 - RTW-W207D	SHEET 182
PLAN AND PROFILE STA. 10+00 TO STA. 14+28	OF
STRUCTURES STRUCTURES	197


- NOTE: RTW-W207D IS ANTICIPATED TO BE A CAST-IN-PLACE RETAINING WALL ON SPREAD FOOTINGS.
- ② JOINT LOCATION BETWEEN RETAINING WALL AND TUNNEL.

Jun, 13 2014 11:08 am V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-RETW.dwg By. Nutz

DISCIPLINE

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loca	ation				Boring I			Ground Elevation
				SWLRT					2152	SW		940.0 (Surveyed)
ocatio	n Her	nepir	n Co. Coordinate: X=49293	2 Y=136186	(ft.)	Drill	Machin	e 7507				SHEET 1 of 2
	Latit	ude (North)= Long	itude (West)=		Han	nmer CI	VE Auto	matic Ca	librated		Drilling 6/3/14
,	No S	tation-	Offset Information Available				SPT	МС	сон	γ		Other Tests
т	Depth	<i>S</i>				5	N 60	(%)	(psf)	(pcf)	Soil	Or Remarks
DEPTH	••••••••••	Lithology				ing ratic	REC	RQD	ACL	Core	×	Formation
DE	Elev.	Lit	Clas	sification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Rog	or Member
_	0.2 939.8	\boxtimes	2 1/2 inches of bituminous. POORLY GRADED SAND wi	th SILT find to	/	7		- 5				
+	2.0	\bigotimes	medium-grained, trace Grave		SM), fill	۲L		+				
1	938.0	\bigotimes				\square	11	⊥ 14 ⊥				
5-	-	\bigotimes	SANDY LEAN CLAY, trace G	ravel, brown and da	rk gray,	۲ ۲	14	17				
+		\bigotimes	moist, (CL), fill			ि	17	+ ''				
İ	8.0	\bigotimes				\square	19	18				
+	932.0					रि		+				
10-	-					\square	14	19			qp	=2 1/4 tsf
1						Æ]	ļ				
+						\mathbb{X}	16	_ 16				
4.5			SANDY LEAN CLAY, trace G	ravel. brown. moist.	stiff. (CL).	R		+				
15-	-		till	, ,,	, (- ,,	Ķ	15	16			qp	=2 tsf
+						41	1.0	+				
+							16	_ 17			D	D=114 pcf
20-	-					E	15	17				0.1.6
-	22.0						15	+ ''			qp	=2 tsf
1	918.0					\mathbb{N}	21	16				
+			SANDY LEAN CLAY, trace G	ravel. grav. moist. ve	erv stiff.	मि		+				
25-	-		(CL), till			\square	21	+			ap	=2 1/2 tsf
1	27.0					ति]	Ţ			"	
+	913.0	× . • . • .×	SILTY SAND, fine- to medium	n-grained, trace Grav	vel, brown,	\mathbb{X}	42	9				
	30.0	і́х і . і	moist, dense, (SM), till			R		+				
30+	910.0	× .	CLAYEY SAND, trace Gravel	, brown, moist, hard	. (SC), till	IX	44	Ţ				
Z +	32.0 908.0	· · · · · · · · ·		,	, (,,	KT.		+				
+	000.0	' . ' .× '× ' .	SILTY SAND, fine- to medium			Å	32	8				
35-	-	:.:X	frequent layers of Lean Clay, dense, (SM), till		mealum	L L	22	- 				
+	36.0 904.0	× . × .				ि	~~	+ '0				
1		' . ' .× '× ' .	CLAYEY SAND, trace Gravel	, brown, wet, very st	iff, (SC),	\square	26	12				
ļ		:.:X	till	-		सि		+ _				
40-	_ 40.0 900.0	× . × .				\bigtriangledown	40	13				
1		* . * .× *× * .	CILITY CAND find to medium	arginged trace Crea	al brown	Æ]	‡				
ļ		:.:X	SILTY SAND, fine- to medium wet, medium dense to very de	ense, (SM), till	vei, prown,	\mathbb{N}	28	9				
+		× . ×				रि]	+				
45	ndex She	r⊷ ⊥ et Cor	de 3.0 (Continu			125	ı — —	⊥ .Sc	⊥ oil Class:	J Kirk R	⊥_ bck (Class: Edit: Date: 7/18

state F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2152			Ground Eleva 940.0 (Su	
н	Depth	Ŋ			5	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Te Or Rema	
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formati or Memb	
	-		SILTY SAND, fine- to medi wet, medium dense to very With Gravel at 48 feet.	um-grained, trace Gravel, brown, dense, (SM), till <i>(continued)</i>	R	74* - 37 _	- 10			*No in ti	sample reco p of sampler.	very. Ro
	51.0 889.0		Bottom of Hole - 51 feet. Water observed at a depth Water observed at 41 feet of auger in the ground. Boring immediately backfill	with 49 1/2 feet of hollow-stem		39 -	9		<u> </u>			

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation				Boring 2153			Ground Elevation 939.8 (Surveyed)
Locatic	<i>n</i> Hen	nepir	Co. Coordinate: X=49286	4 Y=136257	(ft.)	Drill	Machine	9 7507				SHEET 1 of 2
		-		tude (West)=		Han	nmer CN	IE Auto	matic Ca	alibrated		Drilling 6/4/14
			Offset Information Available				SPT	МС	сон	γ		Other Teete
_	Depth	2					Maa	(%)	(psf)	(pcf)	Soil	Other Tests Or Remarks
DEPTH	Берит	Lithology				רט מנוסו	REC	RQD			*	
DE	Elev.	Lith	Clas	sification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Roci	Formation or Member
	0.5		2 1/2 inches of bituminous.		/	Ħ		6				:
ļ	939.3	\bigotimes				11						
+			SANDY LEAN CLAY, trace G		ams, dark	\square	11	14				
5	_	\bigotimes	brown and brown, moist, (CL)	, fill		Æ		-				
J		\bigotimes				$\left \right>$	11 .	15				
+	7.0 932.8					R		+				
ļ						Ķ	20	14				
10	-					5						p=3 1/2 tsf
t							25	14			D	D=118 pcf
Į						ואר איך	20	15				
+			SANDY LEAN CLAY, trace G	ravel, brown and gra	ay, moist,	मि		- 10				
15-	-		stiff to hard, (CL), till				16	16				o=3 tsf _=31
+						रि		+			P	L=12
ł						\mathbf{X}	22	13			P	l=19
20-	_					Æ		-			a	o=3 1/2 tsf
	22.0						31 .	_ 14			-11	
t	22.0 917.8	× .				47		-				D=120 pcf
+		· · · · · · · · · · · · · · · · · · ·					37	12				D=120 pci
25-	-	· · · × · × · ·				<u></u>	* -	15			*6	6 blows per 11-inch set.
1		· . · .× · . · .				1		ļ				•
+		·					30	8			D	D=120 pcf
20						रि		-				
30-		× . ×				\square	41	13			P	200=29%
+		′× ′ . ′ . ′ .×				सि		ł				
İ		і́х і . і і х	SILTY SAND, fine- to medium moist, medium dense to very		vel, brown,	X	25	9				
35-	-	× .				ł		Ļ			<u>م</u>	D=128 pcf
+		· .× ·× · .				K	32	9				
1		× .				R	*	ļ				0 blows per 3-inch set.
+		``.X 				17		ł				lo sample recovery. Roo tip of sampler.
40-	-						60	9				
ļ		× . ×				F		Į				
+		'× ' . ' . ' .×					23	8				
45		′× ′ . · _ · ×				Æ	· ·	<u>+</u>				
45⊥ 	ndex She	et Cod	de 3.0 (Continu	ed Next Page)								Class: Edit: Date: 7/18/ EAPOLIS\2013\00213-MNDOT.G

Г

UNIQUE NUMBER

1

	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I			Ground Elevation 939.8 (Surveyed)
т	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Litholc	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	× . × .×			र स	35 -	9				
-	-	· · · × · × · ·	SILTY SAND, fine- to medi moist, medium dense to ve	um-grained, trace Gravel, brown, ry dense, (SM), till <i>(continued)</i>		1	9				
50-	51.0 888.8	× . ×	Bottom of Hole - 51 feet. Water not observed while d Water not observed with 49 the ground.	rilling. 9 1/2 feet of hollow-stem auger in		47	8				

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc	ation				Boring			Ground Elevation
				SWLRT		-			2154	SW		938.7 (Surveyed)
ocatio	hen Hen	nepir	n Co. Coordinate: X=492797	Y Y=136323	(ft.)		Machine					SHEET 1 of 2
	Latit	ude (North)= Longit	ude (West)=		Han	nmer CN	IE Autor	matic Ca	librated		Completed 6/3/1
	No Si	tation-	Offset Information Available				SPT	МС	сон	γ	!!	Other Tests
г	Depth	2g				5	N 60	(%)	(psf)	(pcf)	Soil	Or Remarks
DEPTH		Lithology				Drilling Operation	REC	RQD	ACL	Core	ž	Formation
ā	Elev.	Γÿ	Clas	sification		Drii	(%)	(%)	(ft)	Core Breaks	s g	or Member
1	1.0	888	12 inches of aggregate base.			-73		12				
+	937.7	\bigotimes	CLAYEY SAND, trace Gravel,	brown and gray, m	oist, (SC),	Į		÷				
+	4.0	\bigotimes	fill			\mathbb{X}	9	16				
5-	934.7					R	-	Į.				
- +			CANDY I FAN CLAY trace Or	aval brown maint	rothor stiff		10	16				
+			SANDY LEAN CLAY, trace Gr to very stiff, (CL), till	avel, brown, moist,		ł		-				
ļ						X	19	15				
10	_ 10.0 928.7	× .				41	-	-				D=129 pcf
+	020.7	· . · .× 				\Rightarrow	26	9				D 120 por
Į		^ · · ×				<u></u>	26	13				
+		× . • . ×	CLAVEY SAND trace Croud	brown moist you			20	- 13				
15-	-	'x ' . · · ×	CLAYEY SAND, trace Gravel, till	brown, moist, very	sun, (SC),		26	10			P	200=33%
1		× .				मि						
+		· · · *					23	11				
~	20.0	· . · .× · . · .				मि		-				
20-	918.7	× . · · ×				\mathbf{X}	23	10			D	D=131 pcf
+		× .				Æ		-				
+	-	× 1				\mathbb{X}	19	8				
25-	-	· . · .× ·× · .	SILTY SAND, fine- to medium	-grained, trace Gra	vel, brown,	R	_	Į.				000 049/
+		· . · .× ·× · .	moist, medium dense to dense With Gravel at 25 feet.	e, (SIVI), till		X	47	8			P.	200=21%
1		: : ×				41		Ì				No sample recovery. Ro
+		× . ×					39*	-			in	tip of sampler.
30	30.0 908.7	́х́.				51		-				
İ							81	8				
-			SILTY SAND, fine- to medium	-grained, with Grav	el, with		62	10				
-			lenses of Lean Clay, heavy Gr 30 to 3 feet, brown, moist, very			F		-				
35	-				,. ,.		31	9				
+	37.0	́х́.,				-{F}		Ļ				
+	901.7	:.:X				\square	36	8			D	D=130 pcf
40-	-	× . `.`.×				Æ		Į.				
·• +		Гх Г. Г. Г.Х	SILTY SAND, fine- to medium moist, dense to very dense, (S		vel, brown,		37	9				
+		× .	ווטוסו, עבווסב נט עבוץ עבווטב, (כ	<i>с</i> , ш		मि		+				
1						X	34	9				
45						4		L	⊥	L		

٦

	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2154			Ground Elevation 938.7 (Surveyed)
T	Depth	gy				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	<u>51.0</u> 887.7		moist, dense to very dense With Gravel at 48 feet. Bottom of Hole - 51 feet. Water not observed while d Water not observed with 49 the ground.	rilling. 1/2 feet of hollow-stem auger ir		31 - 49 - 60 -	9				
			Water not observed with 49	1/2 feet of hollow-stem auger in							

tate F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation				Boring 1 2155			Ground Elevation 936.5 (Surveyed)
ocatio	<i>n</i> Hen	nepir	Co. Coordinate: X=49271	6 Y=136395	(ft.)	Drill	Machine	7507				SHEET 1 of 2
		-		tude (West)=					natic Ca	alibrated		Drilling Completed 6/4/1
			Offset Information Available				SPT	МС	сон			
F	Depth					ion	N60	(%)	(psf)	(pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Clas	sification		Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	0.5 936.0		6 inches of bituminous. SANDY LEAN CLAY, dark bro	own moist (CL) fill	/	3		13 15				
+	2.0	×	SANDY LEAN CLAY, trace G	. ,		۲ <u>۲</u>	14	-				
+	934.5 4.0 932.5	\bigotimes	moist, (CL), fill SANDY LEAN CLAY, with lay			<u>-</u> <u></u>	14	- 18				
5	6.0		and brown, moist, (CL), fill				20	-				
+	930.5					ł		16				
İ							14	- 16				
10	-		SANDY LEAN CLAY, trace G	ravel, brown, moist,	stiff to		16					
ł			very stiff, (CL), till			सि		15				
Į							22	-			DI	D=115 pcf
†	15.0					Æ		- 9				
15+	921.5	× . · · ×				14	38	+				
+		× .	SILTY SAND, fine- to medium	n-grained, trace Gra	vel, brown,	41		9				
t		× .	moist, dense, (SM), till				34	- 2			DI	D=125 pcf
20+	20.0 916.5		POORLY GRADED SAND, fir	e- to medium-grain	ed brown		30 -				P	200=4%
t	22.0	· · · · · ·	moist, medium dense, (SP), c		cu, biowii,	Æ		8				
+	914.5	× . ×					31 .	+				
		`× ` . ` . ` .×				ł		8				
25+		'× ' . ' . ' .×				A	28					
ł		'x '. · · ×				L C	30	8				
Į		× .				िसि		8				
30+	-	× .				\square	41	+				
ļ		× .	SILTY SAND, fine- to medium		vel, brown,	Æ		7				
+		· . · .× ·× · .	moist, medium to dense, (SM), till		X	34	+				
35+	-	`.`.X `x`.				KT/		- 8				
+		`.`.X X				Å	39	6				
t		×				S I	39	0				
ļ						िसि		9				
40+	-					\square	43 -	-				
ļ	42.0	× . 				Æ		9				
+	894.5		POORLY GRADED SAND, fir medium dense, (SP), outwast		noist,	R	25	- 8				
45	45.0 ndex She		de 2.0 (Continu	ed Next Page)		\geq	I	L	L	.	1	 Class: Edit: Date: 7/18

late	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2155				l Elevation 5 (Surveyed
I	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil		er Tests Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Break:	Rock	Fo or l	rmation Member
-	891.5 47.0	× . · . · .×	SILTY SAND, fine- to medi moist, dense, (SM), till	um-grained, trace Gravel, brow		33	2					
- - 50 -	889.5 - 51.0	· · ·	POORLY GRADED SAND, dense to very dense, (SP),	fine-grained, brown, moist, outwash	R	41 _ - 53 ⁻	- 4					
_	885.5		Bottom of Hole - 51 feet. Water not observed while of Water not observed with 49 the ground. Boring immediately backfill	1/2 feet of hollow-stem auge	r in							
			2011.g									

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location	1	_	_		Boring I 2156		_	Ground Elevation 934.7 (Surveyed)
Locatio		noni	Co. Coordinato: X=40264	_	(ft)	Drill	Machine		2100	011		SHEET 1 of 2
LUCALIC			n Co. Coordinate: X=49264		(ft.)		Machine			191		Drilling 6/4/14
				ude (West)=		1 Ian			natic Ca			Completed 0/4/14
	No Si Depth		Offset Information Available				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Clas	sification		Drilling Operation	REC (%)	RQD (%)		Core Breaks	8	
-	0.4 934.3 3.0	\bigotimes	2 1/2 inches of bituminous over SANDY LEAN CLAY, trace Gr moist, (CL), fill		base. /-		-	-			•	
5-	931.7 - - 7.0		SANDY LEAN CLAY, trace Gr stiff, (CL), till	avel, brown, moist, rath	er	R	12 	-				
10-	927.7		LEAN CLAY, trace Gravel, bro	wn and gray, moist, (CL	_), till		15 - 9	- - -				
- - 15-	_ 12.0 922.7 - - - - 17.0	× · · × · · · × · × · · · × · · · · × · · · ·	CLAYEY SAND, trace Gravel, stiff, (SC), till	brown, moist, very stiff	to		28 - - 14 -	+ + + +				
20-	917.7	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND, fir moist, loose. (SP), outwash	e- to medium-grained, b	prown,		10	+ + +				
20	914.7 - - 25.0		SANDY LEAN CLAY, trace Gr (CL), till	avel, brown, moist, very	∕ stiff,	A A A	16 - 23 ⁻	- - -				
25-	909.7 27.0		SANDY LEAN CLAY, trace Gi (CL), till	avel, brown, moist, very	∕ stiff,	×	28 -					D=118 pcf =2 1/2 tsf
30-	907.7	·× · . ·× ·× · . · ·	SILTY SAND, trace Gravel, wi Clay, brown, moist, medium d		an		21 - - 16 -	-				
- - 35- -	902.7						23 - 	+ - -				o sample recovery. Rock tip of sample.
40-	- - -		POORLY GRADED SAND, fir brown and brown, moist, medi			R R R	24 - - 27 -	+ + + +				ap er oumpro.
45	- - -					र्स र र	- 18 -	+ + + -		 		
	Index She	et Coo	de 3.0 (Continu	ed Next Page)								Class: Edit: Date: 7/18/1 APOLIS\2013\00213-MNDOT.GF

	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2156			Ground Elevation 934.7 (Surveyed)
Ĩ	Depth	Лbс			ис	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
•	+	· · · · · · · · · · · ·			R	21	-				
50-	-	· · · · · · · · · · · ·	POORLY GRADED SAND	, fine- to medium-grained, light	R	27					
•	+ + +		brown and brown, moist, m (continued)	edium dense, (SP), outwash	R R R R R R R R R R R R R R R R R R R	-	+				
55-	56.0					29 ⁻	+				

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc	ation				Boring I			Ground Elevation
				SWLRT					2157	SW		930.0 (Surveyed)
ocatio	n Hen	nepir	n Co. Coordinate: X=49248	9 Y=136595	(ft.)		Machine					SHEET 1 of 2 Drilling
	Latit	ude (North)= Longi	tude (West)=		Han	nmer CN	IE Autor	natic Ca	librated		Completed 6/5/14
	No St	tation-	Offset Information Available				SPT	МС	сон	γ	i	Other Tests
т	Depth	g				5	N 60	(%)	(psf)	(pcf)	Soil	Or Remarks
DEPTH		Lithology				ing ratic	REC	RQD	ACL	Core	×	Formation
D	Elev.	Lit	Clas	sification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Ro	or Member
_	1.3		4 inches of bituminous over 12	2 inches of aggrega	te base.	R		17				
+	928.7	\bigotimes				ł		-				
+	-	\bigotimes	SANDY LEAN CLAY, trace G	avel, brown and gra	ay, moist,	$\left \right>$	13	14				
5-	-		(CL), fill			R	-	-				
-	6.0 924.0	\sum				- X	12	15				
+						Ł		+				
1	-					K	16	17				
10	-		SANDY LEAN CLAY, trace Gi stiff to very stiff, (CL), till	avel, brown and gra	ay, moist,	41	-	-				
+	-					$ \downarrow $	20	16				
1	-					<u></u>	16	13				
+	14.0 916.0	///// × .						- 13				
15-	_ 510.0	: , : ,× ,					22	11			D	D=128 pcf
ļ	-	î i x	SILTY SAND, fine- to medium		vel, brown,	िसि		‡				
+	-	× . ×	moist, medium dense, (SM), ti	II			17	9				
	20.0	'x ' . · · ×				रि		-				
20-	910.0	× . · . ×				\mathbf{X}	23	12				
Ľ. †	-	х.	CLAYEY SAND, trace Gravel,			Æ		-				
+	-	× .	moist to 22 1/2 feet then wet,	very stiff to stiff, (SO	C), till	\mathbb{X}	15	15				
25-	25.0	· . · .×				R	-	-				
+	905.0	× . `.`.×	SILTY SAND, fine- to medium	-grained, trace Gra	vel, brown,	X	21 .	8				
+	28.0	× . ×	wet, medium dense, (SM), till			47					*N	No sample recovery.
-	902.0					\mathbb{A}	35*	F			'	to sample recovery.
30-	-		SANDY LEAN CLAY, trace Gr (CL), till	avel, brown, wet, v	ery stiff,	41	-	+			D	D=122 pcf
t	32.0		(),			\square	24	_ 14				- · po:
ļ	898.0	× . 				کر ا	25	10				
+		'× ' . 				F						
35	-	× .				\square	30	9				
ļ	-	· . · .× ·× · .	SILTY SAND, fine- to medium		vel, brown,	िसि		+				
+		· . · .× ·× · .	wet, medium dense to dense,	(JIVI), LIII		\square	27	11				
40	-					Æ		<u>+</u>				
40		× . `.`.×				\mathbf{X}	41	9				
+	42.0 888.0	× .	POORLY GRADED SAND, fin	e to medium arain	ed trace	<u>-</u> [<u>A</u>]		ł				
+			Gravel, with frequent layers of	Silty Sand, brown,	moist,		39	7				
45		et Cod	dense, (SP), outwash de 3.0 (Continue			1		L	L	L	$\lfloor _$	

U.S. Customary Units

SHEET 2 of 2 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Trunk Highway/Location Boring No. Ground Elevation State Project Bridge No. or Job Desc. SWLRT 2157SW **930.0** (Surveyed) γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core ୪ Breaks ଝ Core Formation Classification Elev. or Member (%) (%) (ft) 42 3 7 POORLY GRADED SAND, fine- to medium-grained, trace 42 10 Gravel, with frequent layers of Silty Sand, brown, moist, dense, (SP), outwash (continued) 50 46 11 53.0 877.0 POORLY GRADED SAND WITH SILT, fine- to medium-grained, trace Gravel, brown, wet, medium dense, 55 28 11 (SP-SM), outwash 56.0 Bottom of Hole - 56 feet. 874.0 Water observed at 22 1/2 feet while drilling. Water observed at 53 feet with 54 1/2 feet of hollow-stem auger in the ground. Boring immediately backfilled with bentonite grout.

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation				Boring I 2158			Ground Elevation 927.7 (Surveyed)
ocatio	<i>n</i> Her	nepir	Co. Coordinate: X=49240	9 Y=136645	(ft.)	Drill	Machine	₹7507				SHEET 1 of 2
				tude (West)=					natic Ca	librated		Drilling 6/6/14
			Offset Information Available				SPT	МС	сон	γ		
							N60	(%)	(psf)	(pcf)	Soil	Other Tests Or Remarks
DEPTH	Depth	olog.				gation					8	:
DEF	Elev.	Lithology	Clas	sification		Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
			SILTY SAND, fine- to medium	n-grained trace Gra	vel dark	권	170	170	1.2	D) Ourie		
1	2.0	\bigotimes	brown, moist, (SM), fill	·		<u>t</u>	-	9				
+	925.7	\bigotimes			aiat (00)	S I	13	13				
_ †		\bigotimes	CLAYEY SAND, trace Gravel, fill	, brown and gray, m	oist, (SC),	मि		-				
5-	6.0	\bigotimes					12	10				
+	921.7					रि		+				
+							12	16				
10-	-					Æ		-				
10			SANDY LEAN CLAY, trace G	ravel, brown, moist,	rather stiff	$\left \right>$	14 .	14				
ł			to very stiff, (CL), till			R	-	-				
1							13	17			D	D=114 pcf
15-	_					ł		-				D 404 a -f
+	17.0					X	20 .	16				D=124 pcf
1	910.7	× .				41						
1		· · · · · · · · · · · · · · · · · · ·				K	26	12				
20-	-	' . ' .× '× ' .	CLAYEY SAND, with Gravel,	brown moist venus	stiff to	5	-	-				
1		· . · .× · . · .×	hard, (SC), till	brown, moist, very s			34 .	14				
ļ		× · ·				R I	27*	Į.			*N	lo sample recovery. Roc
- +	25.0	× . ×				F		-			in	tip of sampler.
25	902.7	· · ·				\mathbb{N}	52*					lo sample recovery. Roc
+		× .				रि		-			in	tip of sampler.
+		· · · × · × · .				\square	41	8				
30-	-	* , * ,× *× * ,				Æ	· ·	-				
50		:.:X				$\left \right>$	62 .	8			P	200=25%
+		× . ×	SILTY SAND, fine- to medium	o-grained trace Grav	vel brown	R	-	-				
1		′× ′ . ′ . ′ .×	moist, very dense to medium		roi, bronni,		28	7				
35-	-	× .				ł		<u> </u>				
+		× .				K	33 .	6				
İ		X x				K		† _				eavy Gravel noted from 3
-						Å	35	8			to	40 feet.
40-	41.0	(* ; ; ; ×				L	35					
1	886.7	× .				₩	30.	7				
ļ		· · ·× ·× · ·	CLAYEY SAND, trace Gravel	, brown, moist. hard	, (SC), till	S L	25	12				
+	45.0	`.'.X x'.		,,	× // -			- 12				
45	45.0 Index She	et Cor	de 3.0 (Continu	ed Next Page)		17 6	I	⊥			1	

Soil Class: J. Kirk Rock Class: Edit: Date: 7/18/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ

U.S. Customary Units

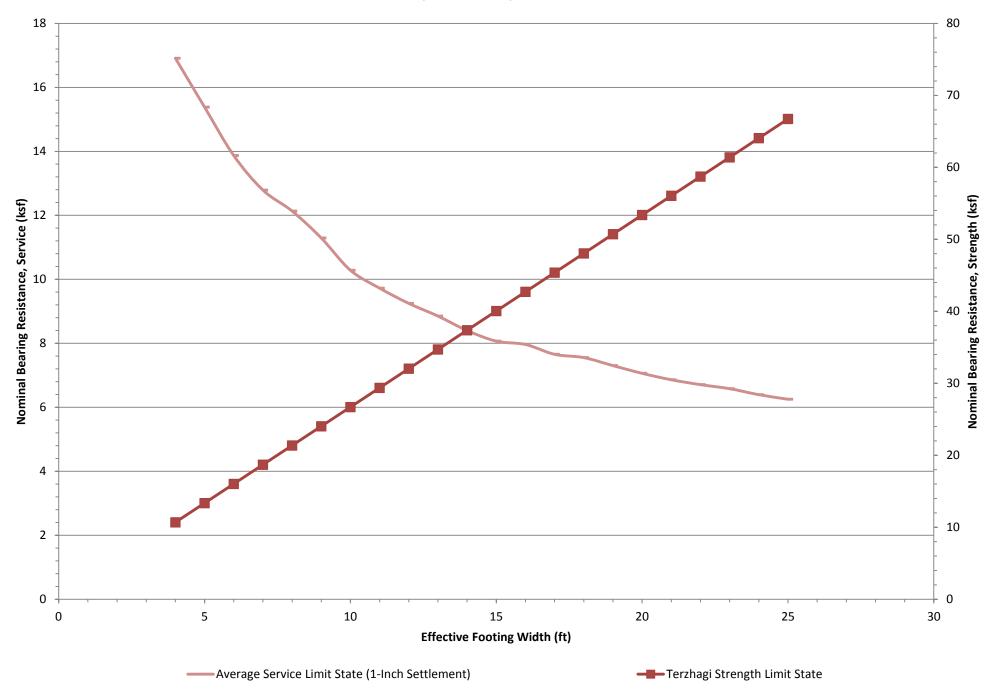
SHEET 2 of 2 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Trunk Highway/Location Boring No. Ground Elevation State Project Bridge No. or Job Desc. 927.7 (Surveyed) SWLRT 2158SW γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core ୪ Breaks ଝ Core Formation Classification Elev. or Member (%) (%) (ft) 882.7 ́х. 25 11 SILTY SAND, fine- to medium-grained, with Gravel, brown, 7 moist, medium dense, (SM), till 22 6 50.0 50 877.7 22 10 POORLY GRADED SAND with SILT, fine- to medium-grained, trace Gravel, brown, wet, medium dense, (SP-SM), outwash 55 14 56.0 Bottom of Hole - 56 feet. 871.7 Water observed at 25 feet while drilling. Water observed at 50 feet with 54 1/2 feet of hollow-stem auger in the ground. Boring immediately backfilled with bentonite grout.

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loca SWLRT	tion				Boring I 2017			Ground Elevation (Surve	
ocatio	n Hon	noni	Co. Coordinato: X=402022		(ft.)	Drill	Machine	2 7500	2017	011		SHEET 1 c	
ocan			n Co. Coordinate: X=492023		(11.)				matic Ca	librated		Drilling d	// <u>/</u> B/1/1
			North)= Longit Offset Information Available	ude (West)=								Completed	
							SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Test Or Remark	
DEPTH	Depth	(bo)c				g ation							
DEF	Elev.	Lithology	Class	sification		Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Membe	
	0.5	<u></u>	$_{\rm c}$ 3 inches of Bituminous over 3		jate (권	(70)	(70)	(14)	Dican			/
	-	\bigotimes	Base. FILL: Lean Clay, slightly organ	ic trace roots dark	gray	H	-	+					
-	-	\bigotimes	wet.		gray,	S I	5	24			00	C=3%	
_	4.0	\bigotimes				मि	-	+					
5-	-	\bigotimes	FILL: Clayey Sand, with Grave	l, brown and gray, v	vet.	\square	12	11					
-	7.0					Æ	-	-					
-	-	``.X _{`x} `.					11	ţ					
10	_					Ł		+			0	200=32%	
-	-	× . ×				K	8 .	16			P2	200=32%	
	-	× . ×	CLAYEY SAND, trace Gravel, and seams, brown with rust sta			41	-	1					
-	-	′× ′ . · · · ×	stiff, (SC), till		very	Å	11	-					
15-	_	× .				۲ ۲	12	-					
	-						12 -	+					
-	- 10.0	í× í				\mathbb{N}	19 -	+					
~	_ 19.0					सि	-	-					
20-	-					\square	20	17			P2	200=60%	
-	-					रि	1 -	+					
-	-					17	-	Ē					
25-	_					ł							
-	-					Ķ	17 .	-					
	-					5	-	ļ					
-	-		SANDY LEAN CLAY, trace Gra (CLS), till	avel, gray, wet, very	stiff,	H	-	+					
30-	-					ואר איך	26	+					
-	-					िस	-	Į					
+	-					岱	-	ł					
35-	-					1	-	Ļ					
55	-					\mathbb{N}	28	Ļ			qp	=2 1/2 tsf	
+	-					B	-	ł					
	39.0					łł	-	ļ					
40-	-	× . ×		ensined with Ora	un al al la la	KT KT		+					
+	-	í× ′. ∙. ∙.×	SILTY SAND, fine- to medium- brown, moist to 43 feet then wa			K	58 .	t					
Z	-	× .	(SM), till			17	-	ļ					
+	44.0					岱	-	+					
45	Index She	∟⊥⊥ et Cov				17 6	J	L	⊥		\perp	Class: Edit: Date:	

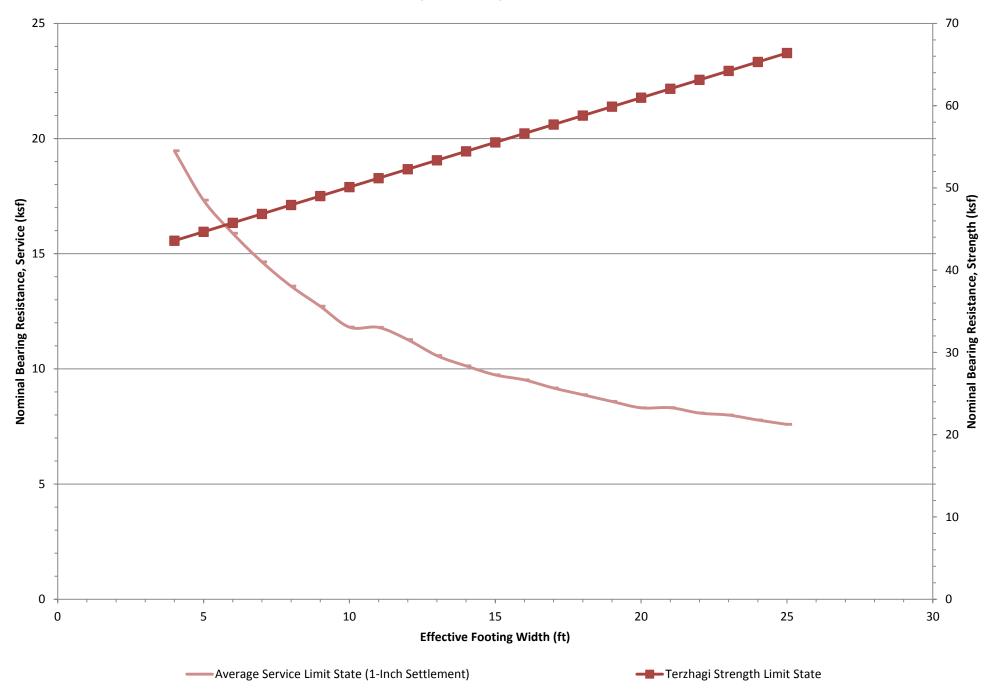
	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2017			Ground Eleva (Si	ation urveyed)
DEPTH	Depth	Lithology		assification	Drilling Operation	SPT N60 REC	MC (%) RQD	COH (psf) ACL	γ ^(pcf) Core Breaks	ock Soil	Other To Or Rem Format	arks ion
	Elev.					(%) *	(%) -	(ft)	Breaks		or Mem 0 blows per 6-	
50 -	- - - 51.0		medium dense to very dens (continued)	, reddish brown, waterbearing,		15	+ + +					
			auger in the ground.	with 49 1/2 feet of hollow-stem e-in depth of 37 feet immediately ed with bentonite grout.	,							
			Boring immediately backfille	ed with bentonite grout.								

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc	ation				Boring			Ground Elevation
				SWLRT					2018	SB		925.5 (Surveyed)
ocatio	n Hen	nepii	n Co. Coordinate: X=49232	2 Y=136715	(ft.)		Machine					SHEET 1 of 3
	Latit	ude (North)= Long	tude (West)=		Han	nmer CN	IE Autor	natic Ca	librated		Completed 4/24/13
	No Si	tation-	Offset Information Available			-	SPT	МС	СОН	1	i.	Other Tests
E	Depth	ogy				ion	N60	(%)	(psf)	(pcf)	Soil	Or Remarks
DEPTH		Lithology		aification		Drilling Operation	REC	RQD	ACL	Core Breaks	сk	Formation
<u>ц</u>	Elev.	L	SILTY SAND, coarse-grained	sification	n (CM)	δõ	(%)	(%)	(ft)	Breaks	Ř	or Member
+	1.0 924.5	$\overline{\times}$			n, (Sivi),	×	8	15				
1		\bigotimes				1						
+		\bigotimes	CLAYEY SAND, trace Gravel	brown and grove w	at (SC) fill	ß		+				
5-	-	\bigotimes	CLATET SAND, liace Glaver	, brown and gray, w	et, (SC), illi	S L	14	16				
ļ		\bigotimes				मि						
+	8.0 917.5	XX X				ß						
10-	_	· . · .× · . · .				ζ	TW -	- 16				
10		· · · ×	CLAYEY SAND, trace Gravel	, brown, wet, stiff, (0	CS), till		1	- 10				u=3280 psf D=116 pcf
+	-	· · · ×				Į		+				
1	14.0	× . ×				5		Ì				
15-	911.5					Þ		-				
+	-		SANDY LEAN CLAY, trace G till	ravel, brown, wet, s	tiff, (CL),	₩	14	16				
ļ	-		(III			ł		Ţ				
+	19.0 906.5	× .				4		-				
20-	-	'.'.× 'x '.					TW -	- 18				u=6060 psf
+		· . · .×		brown moist your		5					D	D=112 pcf
+			CLAYEY SAND, trace Gravel till	, brown, moist, very	sun, (SC),	\mathbb{X}	26	10				
25-	-	× . ×				यि	-	_				
+	27.0	× . ×				Ķ	30	_ 13				
1	898.5	× . · × ×				K	0.4	† _				
+		× .	SILTY SAND, fine- to mediun		e Gravel,	Å	34	6				
30	-	· · · *	borwn, moist, dense, (SM), til			Ì ┣ ┣	40	8				
ļ	32.0					मि		- -				
+	893.5					\square	22	7				
35-	-	× . • . • .×	CLAYEY SAND, trace Gravel till	, brown, moist, very	stiff, (SC),	Æ		Ť.				
	27.0	`× ` . ` . ` .×	-				30	10				
+	37.0 888.5	× .				PD		+				
1		· . · .× ·× · .					27	9				
40-	-	`.'.X x'.	SILTY SAND, fine- to mediun	arained trace Gra	vel moist	PD		+				
1		· . · .× ·× · .	to 50 feet then wet, dense to			PD	28	6				witched to mud rotary
		:.:×					49	11				illing method after 40-foc ample.
+		× . ×				PD		+				
45-	Index She	et Cod	de 3.0 (Continu				ı — — —-					Class: Edit: Date: 7/18/1 EAPOLIS\2013\00213-MNDOT.G

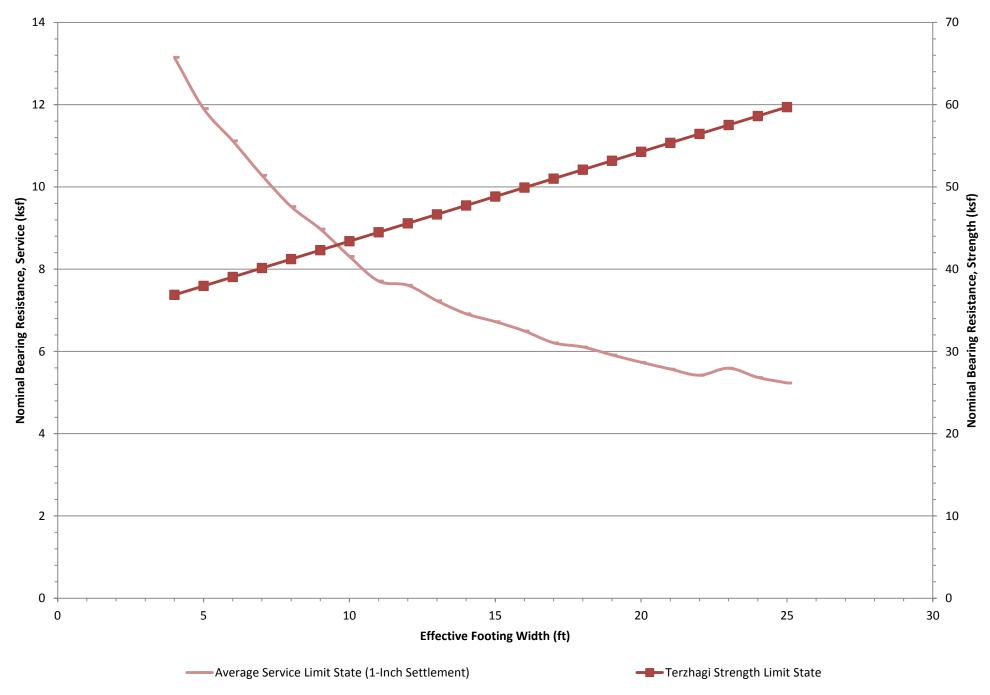
State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2018			Elevation (Surveyed)
т	Depth	gy			u u	SPT N60	MC (%)	COH (psf)	γ (pcf)		er Tests Remarks
DEPTH	Elev.	Lithology	CI	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	รั For ช or №	mation Iember
-	-	× . ×			PD	42	11			·	
-	-	· . · .× ·× · . · . · .×			PD	48	13			Gravel at 47	7 feet.
50 - -	-	`× ` . ` . ` .× `× ` .				100	15				
-	-	`.`.× `×`. `.`.×	to 50 feet then wet, dense t	um-grained, trace Gravel, moist o very dense, (SM), till	PD	55	10				
55-	-	′× ′ . ′ . ′ .× ′× ′ .	(continued)		PD	49	11				
-	-	``.``.× `×``. ``.``.×			PD	44	+ - 10				
60-	61.0	`x ` . ` . ` .X . <u>.</u> .			PD	*	 11			*100 blows	per 6-inch set.
-	864.5	· · · × · × · .	SILTY SAND fine- to medi	um-grained, trace Gravel, gray,	PD	28	- - - 11				
- 65 -	-	· · · · · · · · · · · · · · · · · · ·	wet, medium dense, (SM),		PD	19	- - - 9				
-	67.0 858.5 69.0	· · · × × · . · . · .×	CLAYEY SAND, trace Grav	vel, gray, wet, hard, (SC), till	- PD	33	- - 14				
- 70-	856.5	Ť			PD	100	- - 19				
-	-				PD		+				
75-	-		SILT, brown, wet, very dens	se, (ML), till		100	+				ed Grain Size
-	-				PD		+			Accumulation	on Curve
- 80-	_ 79.0 _ 846.5 _	, , , , , , , , , , , , , , , , , , ,				102	 22				
-	-	· · · ×			PD		+ -				
- 85 -	-	·× · . · · · × ·× ·	SANDY SILT, trace Gravel, till	, brown, wet, very dense, (SM),		90	+			See attache	ed Grain Size
-	-	· · · × ·× · . · · · ×				90	+			Accumulation	
- 90 -	90.0	′× ′ . ′ . ′ .×			PD		+				



	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2018			Ground Elevation 925.5 (Surveyed)
т	Depth	gy			u u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEFIN	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	835.5				X	100* -	-			*N	o sample recovery.
-	-				PD	-	+				
95 - - -	-		SILTY SAND, fine- to media wet, medium dense, (SM),	um-grained, trace Gravel, gray, till		100 -	+				e attached Grain Size cumulation Curve
-	-				PD	-	+				
- 00	101.0 824.5		Bottom of Hole - 101 feet.			87	27				
			NOTE: Piezometer placed t adjacent borehole.	to a depth of about 50 feet in							



Limit State Shallow Foundation Analysis RTW-W207D(2156SW) - 1-inch Settlement



Limit State Shallow Foundation Analysis RTW-W209 (2018SB) - 1-inch Settlement

Limit State Shallow Foundation Analysis RTW-W210 and RTW-W211 (2017SB) - 1-inch Settlement

WALL LOADING CASE: 2' - LIVE LOAD SURCHARGE

	WALL	GEOMETRIC	S AND DAT	A - SPREAD	FOOTING		QUANTI	TIES PER FOO	T - SPREAD I	OOTING		BASE PF	
STEM	STEM	TOE	FOOTING	FOOTING	SHEAR	SHEAR KEY	STRUCTURA	L CONCRETE	REINFOR	CEMENT	WALL DETAILING	KIPS/S	Q. F1.
HEIGHT	WIDTH	WIDTH	THICKNESS	WIDTH	KEY SIZE	LOCATION	1A43 (CU.YD.)	3Y43 (CU.YD.)	PLAIN	EPOXY	SCHEME (1)	TOE	HEEL
h	a	ь	с	d	e	f f	FOOTING	STEM	(POUND)	(POUND)	SCHEME	TUE	HEEL
5	1'-81/2"	1'-0"	1'-5"	3'-6"	N/A	N/A	0.187	0,296	15,38	38.16	SHORT	1.670	0.070
6	1'-9"	1'-2"	1'-5"	4'-0"	N/A	N/A	0.211	0.360	16.43	41.74	SHORT	1.820	0.090
7	1'-9!/2"	1'-4"	1'-5"	4'-6"	N/A	N/A	0.235	0,425	19.70	45.34	SHORT	1.970	0.120
8	1'-10"	1'-6"	1'-5"	5'-0"	N/A	N/A	0.259	0.492	20.75	48.89	SHORT	2.110	0.150
9	1'-10 ¹ /2"	1'-8"	1'-5"	5'-6"	N/A	N/A	0.283	0.561	24.13	52.69	SHORT	2,250	0.180
10	1'-11"	1'-9"	1'-5"	6'-0"	N/A	N/A	0.306	0.631	25.18	62,49	MEDIUM	2,446	0.199
11	1'-11/2"	2'-0"	1'-5"	6'-6"	N/A	N/A	0.331	0.703	31.28	66.85	MEDIUM	2,536	0.239
12	2'-0"	2'-3"	1'-5"	6'-9"	1'-0"	3'-10%"	0.380	0.776	35.38	72,23	MEDIUM	2.758	0.156
13	2'-01/2"	2'-6"	1'-5"	7'-0"	1'-0"	4'-21/8"	0.393	0.851	40.30	76.82	MEDIUM	2.986	0.013
14	2'-1"	2'-9"	1'-6"	7'-8"	1'-0"	4'-5¾"	0.477	0.928	40.49	81.74	MEDIUM	3.147	0.078
15	2'-11/2"	3'-0"	1'-6"	8'-2"	1'-0"	4'-91/4"	0.506	1.006	40.10	99.57	TALL	3.239	0.111
16	2'-2"	3'-3"	1'-9"	8'-8"	1'-0"	5'-07/8"	0.615	1.085	41.38	105.97	TALL	3.494	0.056
17	2'-21/2"	3'-6"	1'-9"	9'-2"	1'-0"	5'-4%	0.649	1.166	49.02	111.90	TALL	3,586	0.089
18	2'-3"	3'-9"	1'-9"	9'-8"	1'-0"	5'-7%"	0.682	1.249	50.52	129.74	TALL	3.679	0.121
19	2'-31/2"	4'-0"	2'-0"	10'-2"	1'-0"	5'-11/2"	0.810	1.333	54.26	137.41	TALL	3.935	0.066
20	2'-4"	4'-3"	2'-0"	10'-8"	1'-0"	6'-3"	0.875	1.417	61.38	165.51	TALL	4.056	0.090
21	2'-41/2"	4'-6"	2'-0"	11'-2"	1'-0"	6'-61/2"	0.916	1.504	71.34	174.30	TALL	4.151	0.122
22	2'-5"	4'-9"	2'-3"	11'-8"	1'-0"	6'-101/8"	1.064	1.593	85.93	183.51	TALL	4.407	0.067
23	2'-5 /2"	5'-0"	2'-6"	12'-2"	1'-0"	7 -1%	1.221	1.683	84.82	224.49	TALL	4.663	0.012
24	2'-6"	5'-3"	2'-9"	12'-9"	1'-0"	7'-5%"	1.396	1.775	94.03	234.03	TALL	4.872	0.020
25	2'-6 ¹ /2"	5'-6"	2'-9"	13'-3"	1'-0"	7 -8%	1.449	1.868	100.13	288.16	TALL	4.967	0.052
26	2'-7"	5'-10"	3'-0"	13'-9"	1'-0"	8'-11/2"	1.631	1.963	102.26	299.67	TALL	5.189	0.000
27	2'-71/2"	6'-2"	3'-3"	14'-4"	1'-0"	8'-61/8"	1.832	2.059	127.34	315.84	TALL	5.364	0.000
28	2'-8"	6'-6"	3'-3"	15'-0"	1'-0"	8'-10%"	1.916	2.157	140.92	394.98	TALL	5.334	0.140
29	2'-8 ¹ /2"	6'-10"	3'-6"	15'-6"	1'-0"	9'-31/4"	2.123	2.257	148.00	407.90	TALL	5.558	0.077
30													

NOTE: EPOXY REINFORCEMENT QUANTITY ASSUMES AN EXPANSION JOINT IS USED ON BOTH PANEL ENDS. THE QUANTITY MUST BE ADJUSTED WHEN CONSTRUCTION JOINTS ARE USED. QUANTITIES ON THIS SHEET DO NOT INCLUDE RAILING. SEE RAILING SHEETS FOR RAIL REINFORCEMENT (EPOXY) AND RAIL CONCRETE (3Y46),

① SEE STANDARD PLANS 5-297.621 TO .623 FOR REINFORCING DETAILS.

DESIGN CRITERIA

1992 A.A.S.H.T.O. DESIGN SPECIFICATIONS DESIGN METHOD: WORKING STRESS - STABILITY, FOUNDATIONS LOAD FACTOR DESIGN - REINFORCED CONCRETE $f^+ c = 4,000 \mbox{ PSI}$ fy = 60,000 \mbox{ PSI}

FACTOR OF SAFETY OVERTURNING: 2.0 MINIMUM FACTOR OF SAFETY SLIDING: 1.5 MINIMUM LOCATION OF RESULTANT: MIDDLE 1/3 OF FOOTING NEGLECTING SOIL IN FRONT OF WALL.

SEE FOUNDATION REPORT FOR ALLOWABLE BEARING PRESSURE AND COEFFICIENT OF FRICTION.

BACKFILL CHARACTERISTICS: INTERNAL ANGLE OF FRICTION: 35" = 33 PCF EQUIVALENT FLUID PRESSURE ACTIVE STATE Be = 1.0 COEFFICIENT OF FRICTION: 0.55 UNIT WEIGHT: 125 PCF

1' 6" 2' - LIVE LOAD SURCHARGE CONC. RAILING (TYPE F) 1/10 1/10 1 APPROX. 24 h STEM HEIGHT FOR $h < 20^{\circ}$ FOR $h \ge 20^{\circ}$ 1-1/2 " F 3-1/2 " F ь a 3-1/2 " TOE -HEEL υ • d TYPICAL SECTION

		_					
REVISED:	STANDARO SHEET NO. 5-297.632 (1 OF 4)	TITLE:	RETAINING			SURCHARGE	
APPROVED: MAY 31, 2006	STANDARD APPROVED MAY 31, 2006		SPREAD F	OOTING GEOME	TRY	AND DATA	
STATE BRIDGE ENSINEER	STATE PROJ. NO).	(TH) SHEET	N0.	OF	SHEETS

A	E _o tsf	E _R tsf	P*L tsf		f _s tsf	N b1/ft
E tsf	1	0.125	8	1.15	57.5	4
E tsf R	8	1	64	6.25	312.5	22.7
p* tsf L	0.125	0.0156	1 1 180	0.11	5.5	0.5
q tsf	0.87	0.16	9	1	50	5
f tsf	0.0174	0.0032	0.182	0.02	1	0.1
N bl/ft	0.25	0.044	2	0.2	10	1

Table 5. Correlation results for sand. (Column A = Number in Table x Row B.)

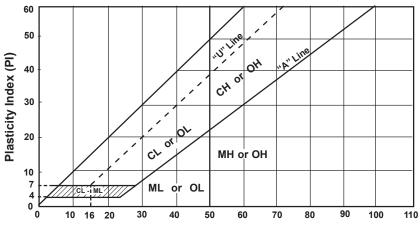
Table 6. Correlation results for clay. (Column A = Number in Table x Row B.)

	A						
A	В	E _o tsf	E _R tsf	P*L tsf	q _c tsf	f _s tsf	S _u tsf
Eo	tsf	1	0.278	14	2.5	56	100
E _R	tsf	3.6	1	50	13	260	300
₽* L	tsf	0.071	0.02	ad ¹ and	0.2	4	7.5
٩ _c	tsf	0.40	0.077	5	1	20	27
fs	tsf	0.079	0.0038	0.25	0.05	1	1.6
s _u	tsf	0.010	0.0033	0.133	0.037	0.625	1

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Criteri	ia for Assigni	ing Group	Symbols and	So	Is Classification	Particle Siz	ze Identification
		up Names Us			Group Symbol	Group Name ^b	Boulders Cobbles	
s uo	Gravels	Clean G	ravels	$C_u \ge 4$ and $1 \le C_c \le 3^{c}$	GW	Well-graded gravel ^d	Gravel Coarse	2/4" to 2"
grained Soils 50% retained (200 sieve	More than 50% of coarse fraction	5% or less	s fines ^e	$C_u < 4$ and/or $1 > C_c > 3^c$	GP	Poorly graded gravel d	Fine	
eve	retained on	Gravels wi	th Fines	Fines classify as ML or MH	GM	Silty gravel ^{d f g}	Sand	
aine % re 0 si	No. 4 sieve	More than 12	2% fines ^e	Fines classify as CL or CH	GC	Clayey gravel ^{d f g}		No. 4 to No. 10 No. 10 to No. 40
-9rs	Sands	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3^{c}$	SW	Well-graded sand ^h		No. 40 to No. 200
arse- than No.	50% or more of coarse fraction	5% or less	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3$ ^c	SP	Poorly graded sand h	Silt	
Coarse more tha No	passes	Sands wit	h Fines	Fines classify as ML or MH	SM	Silty sand ^{fgh}	Clav	below "A" line
Ĕ	No. 4 sieve	More than	12% ⁱ	Fines classify as CL or CH	SC	Clayey sand ^{fg h}	Cidy	on or above "A" line
the s	Silte and Clave	Inorganic	PI > 7 ar	nd plots on or above "A" line ^j	CL	Lean clay kim		
ed t	Silts and Clays Liguid limit	literganie	PI < 4 or	r plots below "A" line ^j	ML	Silt ^{k m}	Relative D	
ed Soils passed sieve	less than 50	Organic	Liquid lin	nit - oven dried < 0.75	OL	Organic clay k I m n	Cohesionle	ess Solls
e pa 0 si			Liquid lin	nit - not dried	OL	Organic silt ^{k m o}	Very loose	
grain e more 0. 200	Silts and clays	Inorganic	PI plots of	on or above "A" line	СН	Fat clay k I m	Loose	
	Liquid limit	morganio	PI plots b	pelow "A" line	MH	Elastic silt k I m	Medium dense	
Fine 50% or N	50 or more	Organic	Liquid lin	nit - oven dried < 0.75	ОН	Organic clay k I m p	Very dense	
50			Liquid lin	nit - not dried	ОН	Organic silt k I m q		
Highly	Organic Soils	Primarily org	anic matte	r, dark in color and organic odor	PT	Peat	Consistency of	Cohesive Soils


Based on the material passing the 3-in (75mm) sieve. a.

b. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name. $C_u = D_{6i}$

$$D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$$

C.

- d. If soil contains>15% sand, add "with sand" to group name.
- Gravels with 5 to 12% fines require dual symbols: e
- GW-GM well-graded gravel with silt
- GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains \geq 15% gravel, add "with gravel" to group name. h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant. k.
- If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- If soil contains≥30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- $PI \ge 4$ and plots on or above "A" line. n.
- PI <4 or plots below "A" line. о.
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

DD	Dry density, pcf	OC	Organic content, %					
WD	Wet density, pcf	S	Percent of saturation, %					
MC	Natural moisture content, %	SG	Specific gravity					
LL	Liqiuid limit, %	С	Cohesion, psf					
PL	Plastic limit, %	Ø	Angle of internal friction					
PI	Plasticity index, %	qu	Unconfined compressive strength, psf					
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf					

7/07

Stiff

Very soft 0 to 1 BPF

Soft 2 to 3 BPF

Rather soft 4 to 5 BPF

Medium 6 to 8 BPF Rather stiff 9 to 12 BPF

Very stiff 17 to 30 BPF

Hard over 30 BPF

..... 13 to 16 BPF

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.'

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards

Appendix F

TH 62 Tunnel Crossing

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Results of Field Exploration and Recommendations – 100% Design Proposed TH 62 Tunnel Crossing STA 2304+71 to STA 2311+69 Southwest LRT, West Segment 2 Eden Prairie/Minnetonka, Minnesota

Dear Mr. Demers:

Braun Intertec has completed the requested drilling and geotechnical evaluation for the design of the tunnel to be constructed under Highway 62 as part of the SWLRT (Southwest Light Rail Transit) project in Eden Prairie and Minnetonka, Minnesota. The following sections provide recommendations for the design of the tunnel, embankment design, and construction on the project.

This report is part of a larger series of reports for the west segment of the SWLRT project. Recommendations for the retaining walls adjacent to the tunnel and pole foundations for the Overhead Contact System (OCS) will be addressed in separate reports.

A. Project information

The Southwest Light Rail Transit Project Office (SPO) requested subsurface soil and groundwater information and a Foundation Analysis Design Recommendation Report (FADR) in the area of TH 62, where a tunnel is being considered beneath the highway for the future light rail transit line.

A.1. Type of Structures

The design report provides foundations recommendations for the tunnel under TH 62. The tunnel is proposed to be a 700-foot long structure extending beneath both lanes of traffic of TH 62, as well as Yellow Circle Drive, located to the north of the highway.

AA/EOE

Southwest Light Rail Transit Project BL-13-00213 August 29, 2014 Page 2

B. Subsurface Investigation Summary

B.1. Summary of Borings Taken

A total of four (4) standard penetration tests (SPT) soil borings were performed between August 1, 2013 and May 15, 2014. Appendix A of this report includes copies of the borings and a boring layout sketch.

B.2. Description of Foundation Soil Conditions

Two borings generally encountered fill soils consisting of silty sand and clayey sand with some gravel to depths ranging from 4 to 8 feet beneath the surface. The other two borings encountered sandy lean clay topsoil ranging in thickness from ½ to 1-foot thick.

Beneath the topsoil and fill, glacially deposited soils consisting of poorly graded sand (SP), poorly graded sand with silt (SP-SM), silty sand (SM), clayey sand (SC), sandy silt (ML), silt (ML), and sandy lean clay (CL) were encountered. The Penetration resistances within this deposit ranged from 5 to 120 blows per foot (BPF), indicating loose to very dense sandy soils and rather soft to hard clayey soils.

B.3. Summary of Water Level Measurements

Groundwater was difficult to determine during and immediately after drilling operations due to the lowpermeability soil and use of mud rotary drilling techniques. Two piezometers were installed, one at 2018SB and one at 2019SB to evaluate the static groundwater level over a period of approximately three weeks. The piezometers were installed to depths of 50 feet and groundwater levels were monitored at the intervals noted below in Table 1.

Location	Boring Surface Elevation (ft)	Piezometer Reference Elevation (ft.)	Groundwater at time of Drilling (ft)	Boring Groundwater Elevation on April 29, 2013 (ft)	Groundwater Elevation on May 3, 2013 (ft)	Groundwater Elevation on May 9, 2013 (ft)	Groundwater Elevation on May 17, 2013 (ft)
Boring 2018SB	925.5	928.8	NA	879.9	879.9	879.9	879.9
Boring 2019SB	934.4	937.3	879.4	NE	NE	NE	NE
Boring 2138SB	923.0	-	896.0	-	-	-	-
Boring 2138SB	931.0	-	871.0	-	-	-	-

Table 1. Groundwater Measurements at TH 62 Piezometer Locations

*NE=Not encountered

Groundwater was not observed when measured in April and May, 2013, in Boring 2019SB and likely was below the invert depth of the piezometers. Additionally, due to the relatively clayey nature of the soils encountered at shallow depths, specifically the glacial till, perched groundwater on top of these layers may be encountered at the time of construction following rainy periods. Fluctuations in groundwater levels should be anticipated throughout the year due to seasonal variations in rainfall and other factors.

B.4. Interpretation of Water Level

Based on the water level measurements in the borings and the piezometer placed, the static groundwater level appears to be between elevations 857 and 880. If given time to stabilize, we anticipate groundwater will be nearer to 880 based on current and historical information from borings near this location. While not encountered by the borings, isolated pockets of perched water may be encountered and will need to be drained during construction.

C. Foundation Analysis

Based on the soil conditions encountered in the borings, we recommend the use of a spread footing or mat foundation system to carry the proposed tunnel and train loads. Given the dimensions of the tunnel excavations, the soils at the bottom of footing depth will experience an "unload" condition from the removal of the overburden soils and replacement with a tunnel.

C.1. Bearing Capacity

The geologic materials, specifically the glacial tills encountered at the proposed foundation elevations, appear competent and suitable for support of the tunnel foundation.

Based on our calculations and understanding, the soil conditions noted in the borings are anticipated to provide a bearing resistance in excess of the required capacity.

C.2. Settlement

Based on anticipated fill heights of up to 36 feet, and the recommendations provided in Section D.4 below, we anticipate settlement will be within the service limit of one-inch.

C.3. Time Rate of Settlement

Due to the consistency of the underlying soils beneath the tunnel, we anticipate that any consolidation of the existing soils will occur during construction of the tunnel and embankment. Following the recommended compaction specifications noted below, we estimate less than 1-inch of long term settlement from the embankment and underlying soils.

C.4 Tunnel Foundations

Settlements were calculated based on two methods. The first is the Hough method with Boussinesq and Westergaard, which utilizes the standard penetration test (SPT) values from the soil borings. The second is the Menard method, which is based on pressuremeter determinations of soil parameters that were collected in the field or modified from the SPT values from the soil borings. For the Menards Method, where pressuremeter testing was not performed, conservative correlations were used to estimate pressuremeter values based on N₆₀ factors provided in Federal Highway Administration (FHWA) Publication No. FHWA-IP-89-008. Tables 5 and 6 from this publication are attached for reference. After these two methods were evaluated, the results were averaged.

Terzhagi's strength limit state is also included on the nominal bearing graphs in the Appendix, for reference. The strength limit state (bearing) will not control design.

The service limit state (settlement) will control the design and the average service limit state should be used for design of tunnel foundations. A maximum settlement of 1 inch is specified for this project.

D. Summarize Design Assumptions

It is our understanding the tunnel will be a cast-in-place concrete structure, and will be backfilled to near existing grade. It is anticipated the construction will take place in multiple phases to keep lanes of traffic open on TH 62.

The top of rail elevation (TOR) ranges from 908 on the south end of the tunnel to 913 on the north end, with a low point of 904. The excavation bottom extends approximately 5 ½ feet below the top of rail elevation.

The total width of the tunnel is approximately 38 feet (outside to outside) to accommodate the two tracks with a separator wall in between. The tunnel is 16.5 feet tall, with a 2-foot thick concrete roof. The total height of the tunnel is proposed to be 20 feet.

We understand the tunnel will be a cast-in-place structure, utilizing a cut and cover method of construction. Total fill thicknesses will vary from 32 to 36 feet beneath the roadways, with approximately 13 feet over cover between the top of the tunnel and the roadway. The construction will be staged, shifting traffic while constructing the first half of the tunnel and roadway, then diverting traffic over the new tunnel, and constructing the second half. Temporary shoring will be required to facilitate construction.

D.1. Embankment Heights, Unit Weights, and Slopes

As mentioned above, 32 to 36 feet of fill soils will be required to re-establish roadway elevations upon excavation for the tunnel. Because settlement of the backfill soils will be critical to the construction staging and scheduling, we recommend using select granular borrow soil meeting the requirements of MnDOT 3149.2B2 instead of the onsite soils to reduce the time rate of settlement. We estimate all settlement of this soil will occur during construction. This soil has an assumed unit weight of 120 pounds per cubic foot (pcf) and a friction angle of 35 degrees.

The native silty sands and clayey sands are considered Type B Soil under OSHA guidelines. Unsupported excavations should therefore be maintained at a gradient no steeper than 1 to 1 (horizontal: vertical). Slopes constructed in this manner may still exhibit surface sloughing. If site constraints do not allow the construction of temporary slopes with these dimensions, then temporary shoring may be required, and OSHA requires slope or excavations over 20 feet in depth to be evaluated by an engineer.

An OSHA approved competent person should review this soil classification in the field. Excavations must comply with the requirements of OSHA 29 CFR, Part 2926, Subpart P, "Excavations and Trenches." This document states that excavation safety is the responsibility of the contractor. Reference to these OSHA requirements should be included in the project specifications.

In the event there is insufficient room to slope excavations, or if the excavations are exposed to surcharges and need to be shored, we recommend designing the shoring based on the parameters presented below in Table 2. The parameters shown have not been reduced by safety factors.

Saturated unit weights are recommended to account for the potential buildup of hydrostatic pressure behind undrained support structures.

Geologic Material	Saturated Unit Weight (pcf)	Friction Angle (deg)	Active Coefficient (K _A)	At Rest Coefficient (K _o)	Passive Coefficient (K _P)	Coefficient of Friction (ð)
Imported Select Granular Borrow	120	35	0.27	0.42	3.09	0.45
(MnDOT 3419.2B2)						
Silty Sand (SM)	130	30	0.33	0.50	3.00	0.40
Clayey Sand (SC)	135	28	0.36	0.53	2.76	0.35
Sandy Lean Clay (CL)	130	28	0.36	0.53	2.76	0.35

Table 2. Lateral Load Parameters and Coefficient of Friction

D.2. Design Methodologies – Tunnel Foundation Structures

The LRFD (Load and Resistance Factor Design Method) was used for design of the bridge substructures supported on shallow foundations. Resistance factors were obtained from the Sixth Edition of the AASHTO (American Association of State Highway and Transportation Officials) LRFD Bridge Design Specifications (6th edition with 2013 interim revisions).

D.3. Construction Considerations

D.3.a. Subcut Recommendations and Backfill Requirements

We recommend excavating the soils to the proposed bottom of subgrade elevations as noted on the plans. We anticipate silty sand and clayey sand soils will be encountered in the excavation bottoms. While not encountered by the borings, perched groundwater conditions may be encountered throughout the excavation depending on seasonal and annual precipitation. If encountered, temporary dewatering may be needed along with the placement of crushed rock and the use of sumps and pumps to assist in controlling groundwater seepage and to provide a stable working platform during construction.

As noted in the plans, we recommend placing a 12-inch layer of crushed rocks beneath the tunnel foundation to act as a leveling pad and protect the subgrade soils during construction. Perforated draintile is also recommended at the bottom of excavation elevation to collect and dispose of any accumulated groundwater. If additional excavations are needed during construction, this should be taken into consideration when installing the draintile. The draintile should be placed directly upon a non-permeable or low permeability layer, such as the native glacial soils to prevent the accumulation of groundwater beneath the tile elevation.

We anticipate the excavation will be widened several feet beyond the outside of the wall to facilitate construction.

We recommend backfilling the excavation with Select Granular Borrow. We also recommend compacting the soils to meet the requirements as noted in Table 3 below based on the 2014 MnDOT Standard Specification for Construction.

Table 3. Material and Compaction Specifications for Backfill and Fill

Material	Material Specification	Compaction Specification
Leveling Pad Beneath Foundation	3138.2B	2211.3C
Tunnel and Excavation Backfill	3149.2B2*	21053.3F

*We recommend backfill material used for the tunnel excavation consist of Select Granular Modified 10%. Select Granular Modified 10% shall comply with Specification 3149.2B2, modified to 10% or less passing the 0.075 mm (#200) sieve. For excavations extending near or below groundwater, a crushed rock with less than 10% percent passing the 0.075 mm(#200) sieve shall be used for backfill and to provide a working platform and to help control groundwater seepage.

E. Foundation Recommendations

E.1. Nominal Bearing Capacities and Associated Resistance Factors

Please refer to the figures in the Appendix for the recommended bearing resistances and service limit states for the tunnel foundation. These graphs are based on the settlement methods discussed in Section D.2 of this report. For the service limit state, a resistance factor of 1.0 shall be applied.

The resistance factors for evaluating the strength limit state performance are based on the current LRFD code:

Bearing Resistance, using SPT = 0.45 Sliding, Cast-in-Place Concrete on Sand =0.8

Also, refer to the attached figures in the Appendix for the ultimate bearing resistances of the foundations. We based the figures on the settlement methods discussed in Section 3.2 of this report. We recommend that the average service limit state be used for retaining wall base pressure verification as identified on the MnDOT Retaining Wall standard plans.

E.2. Recommended Design Soil Parameters (e.g., Coefficient of Friction, Lateral Earth Pressure Coefficients, etc.)

Refer to Table 2. In section D.1 for recommended soils design parameters for use in the design of the tunnel walls.

F. Material Classification and Testing

F.1. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars or bags and returned to our facility for review and storage.

F.2. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures and follow by MnDOT guidelines.

F.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced. The boreholes were then backfilled or sealed with bentonite grout.

G. Qualifications

G.1. Variations in Subsurface Conditions

G.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore, strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

G.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

H. Continuity of Professional Responsibility

H.1. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

H.2. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

I. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

J. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If there are questions regarding these bridge foundation recommendations, please call Josh Kirk at 952.995.2222 or jkirk@braunintertec.com or Ray Huber at 952.995.2260 or rhuber@braunintertec.com.

Sincerely,

BRAUN INTERTEC CORPORATION

Professional Certification:

I hereby certify that this plan, specification, or report Was prepared by me or under my direct supervision And that I am a duly Licensed Professional Engineer Under the laws of the State of Minnesold

Joshua L. Kirk, PE Associate Principal / Project Engineer 450

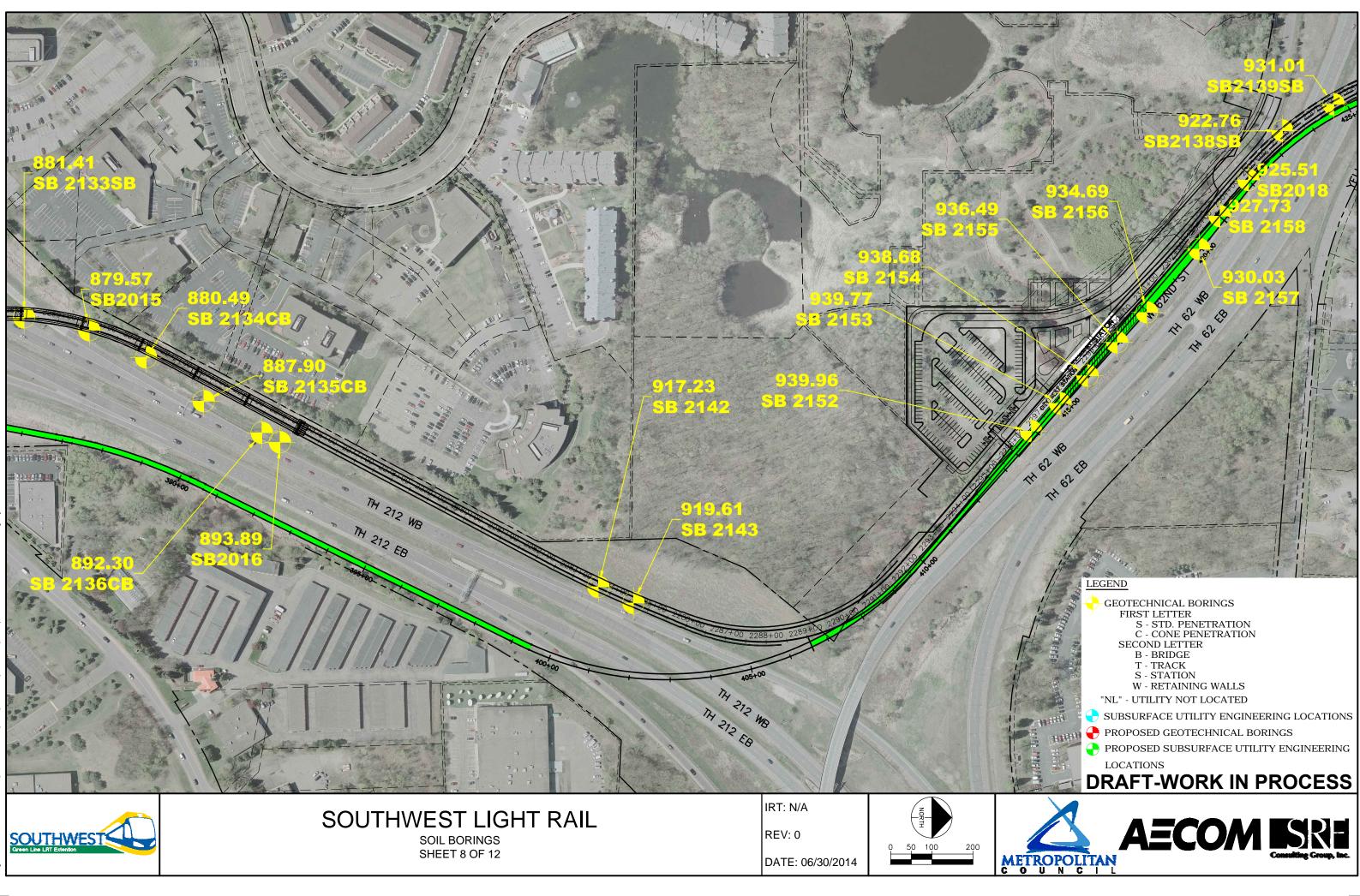
License Number: 45005

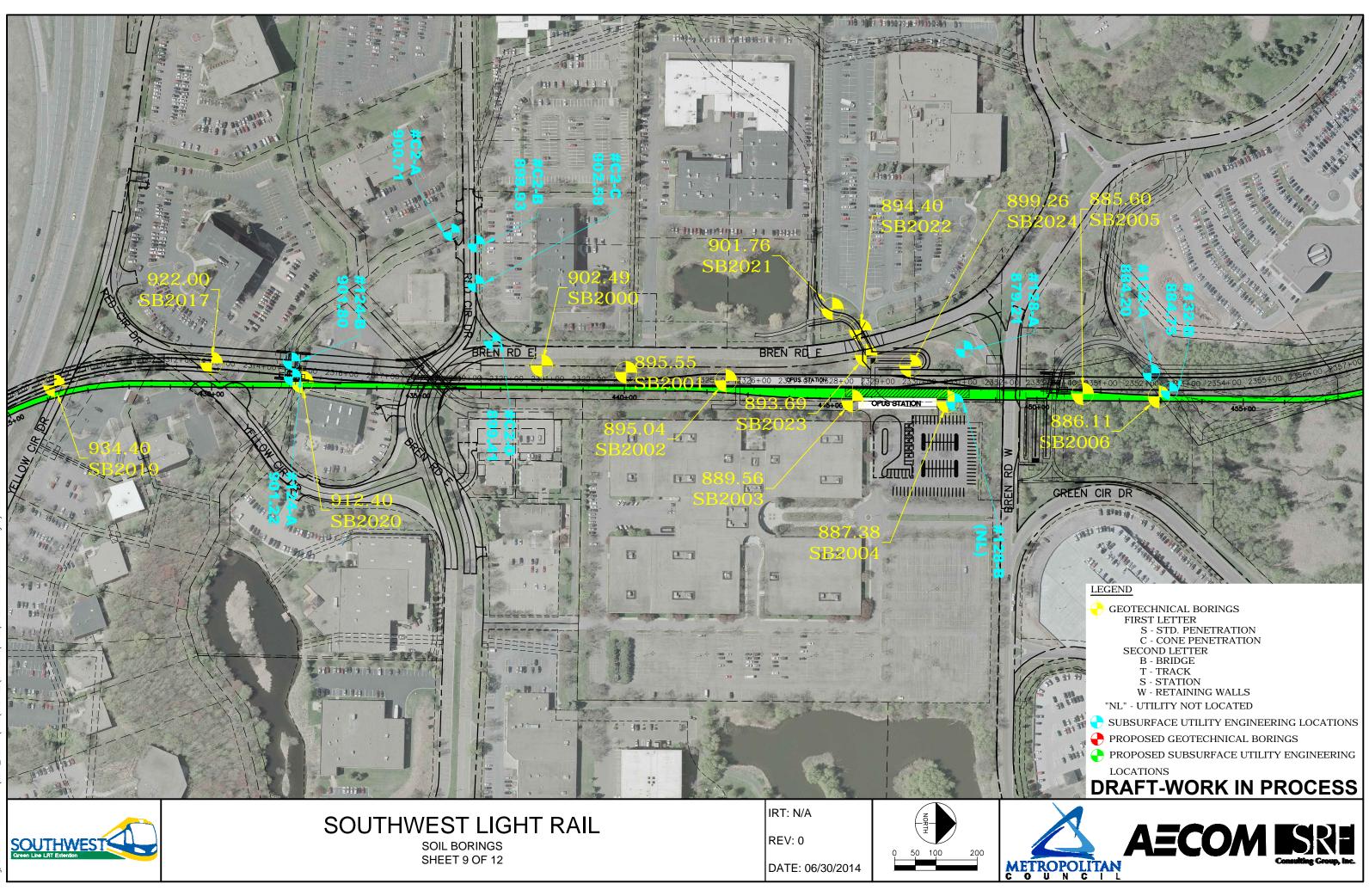
Reviewed by:

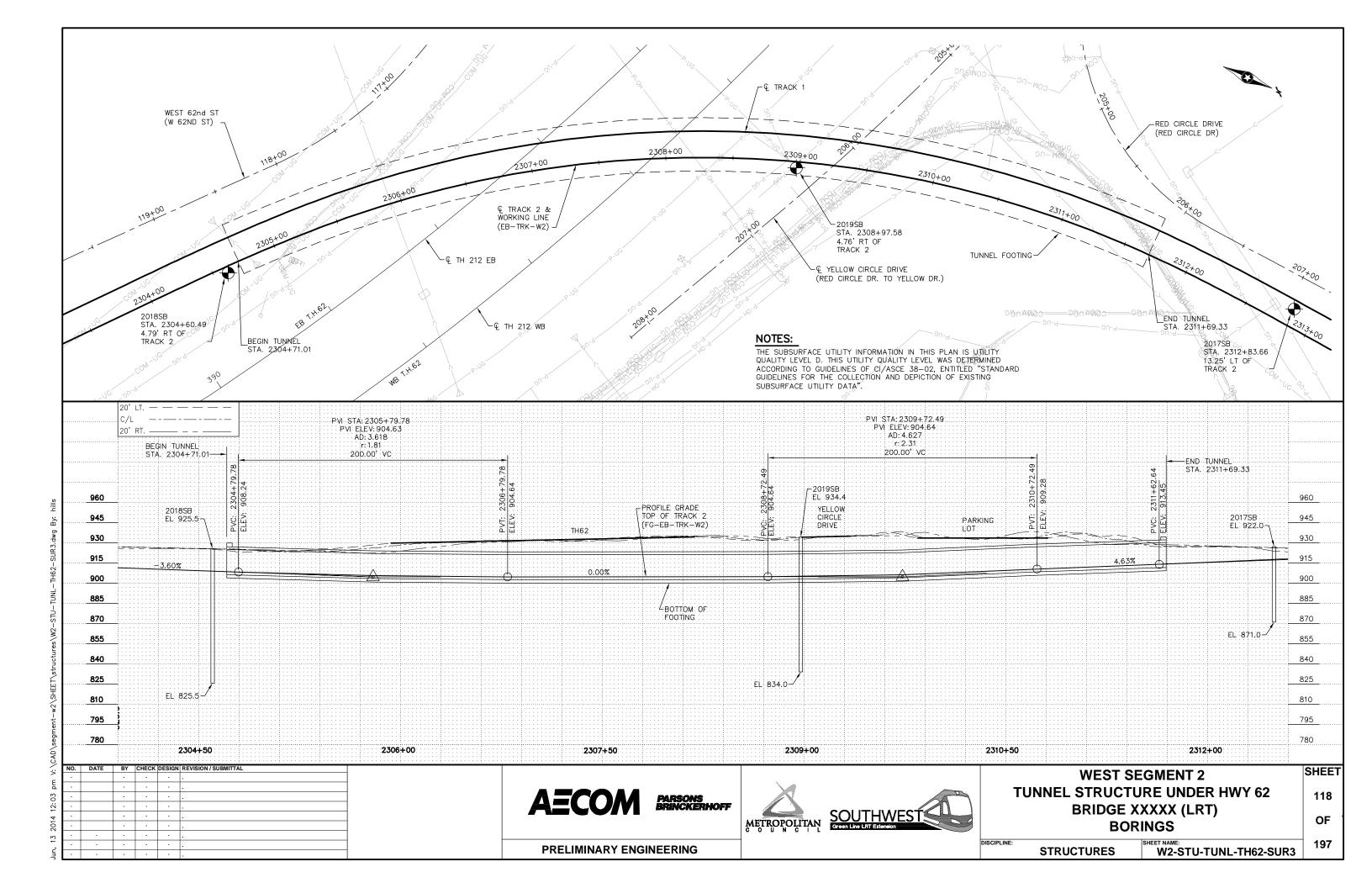
Ray A. Huber, PE Vice President/Principal Engineer

Reviewed by:

Matthew P. Ruble, PE **Principal Engineer**


Appendix: Soil Boring Location Sketch Preliminary Engineering Plan and Profile Sheets-Tunnel Structure under Highway 62 Soil Boring Logs 2018SB, 2019SB, 2138SB, and 2139SB Limit State Analysis Graphs Publication No. FHWA-IP-89-008 N₆₀ Correlation Tables **Descriptive Terminology**


ICENSED ESSIONA ENGINEER


MI

APPENDIX

940	_		2019SB Elevation 934.4	940
930	Coh N60	2018SB Elevation 925.5	Coh: N60 8 - FILL: Clayey Sand, fine- to medium-grained, with Gravel, dark 2017SW 12 - \FILL: Clayey Sand, fine- to medium-grained, with Sand 2017SW 12 - \sinclusions, brown, moist. Elevation 922.0	930
920	14 TW	FILL: Silty Sand; coarse—grained, trace Gravel, brown, moist. FILL: Clayey Sand, fine— to medium—grained, trace Gravel, brown and gray, wet. CLAYEY SAND, fine— to medium—grained, trace Gravel, brown, wet, medium dense.	56 - moist, rather stiff. 58 - SILTY SAND, fine- to medium-grained, trace Gravel, Cobbles at 10 38 - SiLTY SAND, fine-grained, with some Gravel, with occasional Clay 47 - SiLTY SAND, fine- to medium-grained, trace Gravel, with Sand	920
910	14 TW 26	SANDY LEAN CLAY, trace Gravel, brown, wet, stiff.	24 32 32 32 32 11 31 31 SkiTY SAND, fine- to coarse-grained, with Gravel, brown, moist, 12 12 30 31 2 14	910
900	30 34 40 22	- SILTY SAND, fine— to medium—grained, with some Gravel, brown, moist, dense. CLAYEY SAND, fine— to medium—grained, trace Gravel, brown, moist, medium dense.	77 20 SANDT LEAN CLAT. frace Gravel, gray, wer, very shift. 45 - SILTY. SAND, frace Gravel, with occasional Clay lenses and seams, 17 51 - brown, moist, medium dense to dense. 17 61 - 26	900 900 890
880	30 27 28 49 42		27 27 23 CLAYEY. SAND, fine- to medium-grained, trace Gravel, brown, 23 - imolst, medium dense. With Gravel at 52 feet. 17 58 20 SILTY SAND, fine- to medium-grained, with Gravel, reddish brown, 17 58 17 58 17 58 18 SILTY SAND, fine- to medium-grained, with Gravel, reddish brown, 17 58	880
870	48 100 55 49		 30 30 30 30 30 30 30 30 30 30 30 30 30 3	870
860	44 * 28 19 33	- - SILTY SAND, fine∺ to medium∺grained, trace Gravel, gray, wet, - medium dense. 2 CLAYEY SAND, fine∹ to medium∹grained, trace Gravel, gray, wet,	13 wet, very dense. hollow-stem auger in the ground. Water not observed to cave-in depth of 37 feet immediately after withdrawal of Boring 13 SLTY SAND, fine-grained, brown, waterbearing, medium dense. depth of 37 feet immediately after withdrawal of Boring 60 SANDY SILT, with occasional Sand lenses and seams, brown, wet, immediately backfilled with bentanite grout; Bottom of Borehole at Suger. 48 Slipty SAND, fine-grained, brown, waterbearing, dense to very Suger.	860
850	100	- dense. - SILT, fine-grained, brown, wet, very dense. 	96	850
840	102 90 100*			840
830	100 87	- very dense.	END OF BORING; Water abserved at 61 feet with 64 1/2 feet of hollow-stem auger in the ground.	830
820		Water level obscured due to drilling fluids used during mud rotary drilling operation. Boring then sealed with bentonite grout.		
		NOTE: Plezometer placed to a depth of about 50 feet in adjacent borehole. Bottom of Borehole at 101 ft	NQTE: · Plezometer placed to a depth of about 50. feet in adjacent borehole. Battom of Borehole at 101: ft:	810
790	NOTES: THE MATERIAL CLASSIFICATION AND IN ASTM:	DESCRIPTIONS ARE CLASSIFIED ACCORDING TO THE UNIFIED SOIL N SYSTEM. DETAILS ON THE SYSTEM CAN BE FOUND IN THE FADR D2488.		780
770				770
NO. DATE	BY CHECK DESIGN REVI	ISION / SUBMITTAL	AECOM PARSONS BRINCKERHOFF METROPOLITAN SOUTHWEST	52 SHEET 0F
			PRELIMINARY ENGINEERING STRUCTURES SHEET NAME: W2-STU-BRG-TH62-BOR1	197

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation				Boring I 2017			Ground Elevation (Surveyed)
Locatio					(ft.)	Drill	Machine		2017	011		SHEET 1 of 2
ocan			n Co. Coordinate: X=492023 North)= Longit	ude (West)=	(it.)				matic Ca	librated		Drilling 01414
	-		Offset Information Available									Completed
_	Depth					- -	SPT N60	MC (%)	COH (psf)	(pcf)	Soil	Other Tests Or Remarks
DEPTH	Bopin	Lithology				ng ratiol	REC	RQD		Core	×	
DE	Elev.	Liti		sification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Roc	or Member
-	0.5		3 inches of Bituminous over 3 Base.	1/2 inches of Aggre	gate /	5		-				
-	-	\bigotimes	FILL: Lean Clay, slightly organ	nic, trace roots, dar	k gray,	ł		-			0	C=3%
-	4.0	\bigotimes	wet.				5	24				5-376
5-	-		FILL: Clayey Sand, with Grave	el, brown and gray,	wet.	<u>L</u>	12	11				
-	7.0	XX				सि						
-	-					\mathbf{X}	11	-				
10	_					मि	-	+			00	200=32%
-	-					K	8.	_ 16			P2	200=32%
-	-	× . ×	CLAYEY SAND, trace Gravel, and seams, brown with rust sta			<u>F</u>	11	+				
	-	× . ×	stiff, (SC), till			मि		-				
15-	-	i× i. i. i.×					12	+				
-	-	ix i. ix				Æ	-	+				
	19.0	'× ' .				K	19	+				
20-	-					51	20	17			P2	200=60%
-	-					F	20 .	- ''				
-	-					封	-	+				
25-	-					ł		-				
	-					X	17.	-				
-	-					\$		+				
-	-		SANDY LEAN CLAY, trace Gr (CLS), till	avel, gray, wet, ver	y stiff,	5	-	+				
30	-		× //			\square	26	+				
+	-					रि	-	÷				
	-					F	-	+				
35-	_					5		+			an	=2 1/2 tsf
	-						28	+			717	
+	39.0					H	-	÷				
40-	_ 03.0	<u>////</u> × · · · ×				12		+				
	-		SILTY SAND, fine- to medium- brown, moist to 43 feet then wa			X	58 .	l -				
Z	-		(SM), till	atorio cannig, vory ut	,	5	-	+				
-	44.0					比	-	Ļ				
45	Index She	⊥⊥⊥ et Coo		ed Next Page)		17 6	I	L	⊥ Soil	' Class: Ro	⊥ ock (

iale F	Project		Bridge No. or Job Desc.	Trupk Highway / acation				Boring	No		Crow	nd Elevatior	
	Project		Bridge No. or Job Desc.	Trunk Highway/Location				2017			Grour	na Elevation (Surve	
				UNLIXI		0.07					:		
	Depth	7				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil		ther Test ^r Remark	
DEPTH	Depin	Lithology			ng ratior	REC	RQD					ormation	
ם ב	Elev.	Litt	Cl	assification	Drilling Operation	(%)	(%)	(ft)	Core Break	S oc	01	r Membe	
_					सि	-	-			*5	50 blows	s per 6-incł	ו set
-			POORLY GRADED SAND	with SILT fine- to	Į	-	-						
+			coarse-grained, with Gravel	, reddish brown, waterbearing,	5		+						
50	51.0	· · · · · ·	medium dense to very dens (continued)	e, (SP-SM), outwash		15 -							
			Bottom of Hole - 51 feet. Water observed at 43 feet v	vith 49 1/2 feet of hollow-stem									
			auger in the ground. Water not observed to cave	-in depth of 37 feet immediately	,								
			after withdrawal of auger. Boring immediately backfille	-									
			Boring inimediately backning	ed with bentonite grout.									

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc	ation				Boring I			Ground Elevation
				SWLRT					2018	SB		925.5 (Surveyed)
ocatio	hen Hen	inepii	n Co. Coordinate: X=49232	2 Y=136715	(ft.)		Machine					SHEET 1 of 3
	Latit	ude (North)= Long	tude (West)=		Harr	nmer CN	IE Autor	natic Ca	librated		Completed 4/24/13
	No Si		Offset Information Available			-	SPT	МС	сон	1	Soil	Other Tests
E	Depth	ogy				ion	N 60	(%)	(psf)	(pcf)	Š	Or Remarks
DEPTH		Lithology	Clas	sification		Drilling Operation	REC	RQD	ACL	Core Breaks	сĸ	Formation
	Elev.	–	SILTY SAND, coarse-grained			δð	1	(%)	(ft)	Breaks	Ř	or Member
+	1.0 924.5	$\overline{\mathbf{X}}$			/	Ķ	8.	_ 15				
Į		\bigotimes				Ŧ		ļ				
+		\bigotimes	CLAYEY SAND, trace Gravel	brown and grav w	et (SC) fill	5		+				
5-	-	\bigotimes		, g, ,	ot, (00),	\square	14	16				
+						रि						
+	8.0 917.5	× ,				5						
10	-	· · · /					TW -	- 16				
+		· . · .× · . · .	CLAYEY SAND, trace Gravel	, brown, wet, stiff, (0	CS), till	Þ		+				u=3280 psf D=116 pcf
ļ		' . ' .× ' . ' .				甘		ļ				
+	14.0 911.5					ł		_				
15-	911.5					K	14	16				
ļ			SANDY LEAN CLAY, trace G till	ravel, brown, wet, s	tiπ, (CL),	मि						
+	19.0					5		-				
20-	906.5	× . · · ×					TW -	- 18				
		× .				Þ		-				u=6060 psf D=112 pcf
İ		× .	CLAYEY SAND, trace Gravel	, brown, moist, very	stiff, (SC),	Þ						
+		·* ·× · .	till			Æ	26	10				
25 -	-	`.`.X `x`.				S I	30	13				
ļ	27.0	; ; ; ,X				रि						
+	898.5					\square	34	6				
30-	-	× . ×	SILTY SAND, fine- to medium borwn, moist, dense, (SM), til		e Gravel,	Æ	-	+				
	32.0	`× ` . ` . ` .×	,,, (<i>,</i> , (<i>,</i>),			X	40	8				
1	893.5	× ·				KT/		† _				
		× : .]	CLAYEY SAND, trace Gravel	, brown, moist, very	stiff, (SC),	Å	22	7				
35-	-	× ×	till		. ,/	L L	30	10				
1	37.0	, , , ,×				PD						
+	888.5	× . . .×					27	9				
40-		'× ' . ' . ' .×				PD						
40-		× ' . ×	SILTY SAND, fine- to medium			\mathbb{X}	28	6			0	witched to mud reter
+		· · ·	to 50 feet then wet, dense to	very dense, (SIVI), til	I	PD		+			dr	witched to mud rotary illing method after 40-foo
1		× 1				$\mid X \mid$	49	11			sa	ample.
45	ndex She	L:_^1				PD		L	L	L	1_	

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2018			Ground Elevation
т	Depth	gy				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	, Elev.	Lithology	CI	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	× . 			PD	42	11 13				el at 47 feet.
50-	-	· · · × · · · · × · · · · ×		un arrived types Oracle maint	PD PD	100	15 				
55-	- - -	·× · . ·× ·× · .	to 50 feet then wet, dense t (continued)	um-grained, trace Gravel, moist o very dense, (SM), till	PD	55 49	10 				
-	-	·× · . ·× ·× · . ·×			PD	44	- - - - 10				
60-	61.0 864.5	· · · × · · · × · × · · ·			PD PD	*	11 1			*100	blows per 6-inch set
65-	-	× · · · · · · × · × · · · · · ×	SILTY SAND, fine- to medi wet, medium dense, (SM),	um-grained, trace Gravel, gray, ill	PD	28 19	11 - - 9				
-	67.0 858.5 69.0	· · · × × · · · · · ×	CLAYEY SAND, trace Grav	rel, gray, wet, hard, (SC), till	PD	33	14				
70-	_ 856.5 - -				PD	100	19 				
75-	- -		SILT, brown, wet, very dens	se, (ML), till		100	+				attached Grain Size Imulation Curve
80-	79.0 846.5	× . ·× ·×			_PD	102	- - - 22				
85-	-	· · · · · · · · · · · · · · · · · · ·	SANDY SILT, trace Gravel, till	brown, wet, very dense, (SM),	PD		+ + +			See	attached Grain Size
-	- - - - 90.0	~ · · × ·× · · × ·× · · ×			PD	90	+				imulation Curve

state F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2018			Ground Elevation 925.5 (Surveyed)
H	Depth	Лbс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	835.5				PD	100* _ - -	- - -				o sample recovery.
95-	-		SILTY SAND, fine- to mediu wet, medium dense, (SM), t	um-grained, trace Gravel, gray, ill	× PD	100 -	-				e attached Grain Size cumulation Curve
00	 101.0 824.5		Bottom of Hole - 101 feet.			87 -	- 27				
			Boring then sealed with ber NOTE: Piezometer placed t adjacent borehole.	o a depth of about 50 feet in							

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc	ation				Boring			Ground Elev	
				SWLRT					2019	SB		934.4 (5	
ocatio	-		n Co. Coordinate: X=49207		(ft.)		Machine					SHEE Drilling	T 1 of 3
			, .	tude (West)=		Han	nmer CN	IE Autor	natic Ca	alibrated		Completed	4/25/1
	No St	tation-	Offset Information Available			-	SPT	MC	СОН	1	Soil	Other 7	
F	Depth	ogy				ion	N 60	(%)	(psf)	(pcf)	Š	Or Ren	narks
DEPTH		Lithology	Clas	sification		Drilling Operation	REC	RQD	ACL	Core Break	сk	Forma	
<u>ц</u>	Elev.	L			4 11 6 11	Ъŏ	1	(%)	(ft)	Break	SŒ	or Men	nber
-	_ 1.0 933.4	$\overline{\mathbf{X}}$	CLAYEY SAND, with Gravel, I			₩	8.	8					
	-	\bigotimes	CLAYEY SAND, with Sand inc fill	clusions, brown, mo	oist, (SC),	1		-					
-	4.0 930.4	\longrightarrow				5		+					
5-	_ 000.1						12	16					
	-		SANDY LEAN CLAY, trace Gi seams, brown, moist, rather s		es and	िसि		-					
-	9.0					5							
10-	925.4	× .				12	-	<u> </u>					
-	-	× .	SILTY SAND, fine- to medium				56 .	_ 5				V sample atte tip. Switched	
-	-	× .	cobbles at 10 feet, brown, mo	st, very dense, (SM	1), till	5		+				mpling.	
-	14.0	· . · .×				-}}							
15-	920.4	× · ·	SILTY SAND, fine-grained, wi	th some Gravel wit	h	51		-					
-	-	× . ×	occasional Clay lenses and se				38	4					
-	-	× . 	(SM), till			ł		+					
	19.0 915.4	. <u>.</u> . X.				17							
20-	-	`.`.X `x`.					47	8					
-	-	* , * ,× * , * ,	SILTY SAND, fine- to medium	grained trace Gra	vol with	Æ		+					
-	-		Sand lenses, brown, wet, med				24	10					
25-	-	× . ×				R	-	_					
-	27.0	× . ×				X	32 .	8					
	907.4	× . × .				-41							
-	-	× .					31	6					
30-	-	· · · /	SILTY SAND, fine- to coarse- moist, dense to very dense, (S		l, brown,		30	6					
-	-	· . · .× · . · .	moist, dense to very dense, (a	sivi), tili		िसि		-					
-	34.0	· . · .× · . · .					77	4					
35-	900.4	× .				Æ							
-	-	× .					45	7					
+	-	· · · ×				ξŢ		+					
1	-		SILTY SAND, trace Gravel, wi			Ķ	34	14					
40-	-	' . ' .× ' . ' .×	seams, brown, moist, medium	dense to dense, (S	SIVI), TIİİ	5	61						
	-						61	7					
-	-	× . ×				ואר איר	25	10					
	_ 44.0 890.4	× .				मि		+ '0					
45-	Index She	⊢ _ ⊥ et Coo	de 3.0 (Continu	ed Next Page)			J	⊥ Soil	Class:B	. Field R	ock (Class: Edit: L	Date: 8/15

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2019			Ground Elevation 934.4 (Surveyed)
п	Depth	gy			4	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	, ,			R	27	8				
-	-	`×``. ``.× `×`. ``.×			Image: A start	23	11				
50 - - -	-	·× · . · . · .× ·× · .	CLAYEY SAND, trace Grave	el, brown, moist, very stiff, (SC),	R	23	12			0	ravel at 52 feet.
-	54.0 880.4	``.``.× `x``. `x``.			X	17	11			G	aver at 52 leet.
55-	57.0	· . · .× ·× · . · . · .×	SILTY SAND, fine-grained, t (SM), till	prown, wet, medium dense,		30	18				
-	877.4 59.0 875.4	·× · . · . · .× · . · .×	SANDY SILT, fine-grained, I	prown, wet, dense, (SM), till		40	19				
60-	_ 0/0.4	· · · × ·× · .	CLAYEY SAND, trace Grave	el, gray, wet, stiff, (SC), till		15	12				
-	64.0	·× · . · . · .×				TW	22			D	D=106 pcf
65-	- ^{870.4} 67.0	× . · . × ·× .	SANDY SILT, fine-grained, v brown, wet, very dense, (SM	with Sand lenses and seams, I), till	X	61 .	21				
-	867.4 69.0	× . · . ×	SILTY SAND, fine-grained, t dense, (SM), till	prown, waterbearing, medium	-41	13	28				
70-	_ 865.4	× . · . × ·× . · . ×	SANDY SILT, with occasion brown, wet, very dense, (ML		K K	60 .	21				
-	73.0 861.4	· · · · · · · · · · · · · · · · · · ·	· · ·			-	+				
75-	-	· · · · · × · . · . · ×			KT K	48 .	_ _ 17				
-	-	· . · .× ·× · . · . · .×				- - -	+				
80-	-	·× · . · . · .× ·× · .		prown, waterbearing, dense to	K K	96 .	19				
-	-	· · · × ·× · . · · · ×	very dense, (SM), till			-	+				
85-	-	× · . · . · .× ·× · .			X	82	21				
-	-	· · · × ·× · · · · · ×			₹ }	. .	+ +				
90		× . · . <u>·</u> .×			ł		L			<u> </u>	

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2019			Ground Elevation 934.4 (Surveyed)
T	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Clá	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
95-	- - - - - - - - - - - - - - - - - - -		Very dense, (SM), till <i>(contin</i> Bottom of Hole - 101 feet. Water observed at 61 feet v auger in the ground. Water observed at 55 1/2 fe after withdrawal of the auge Boring then sealed with ben	vith 64 1/2 feet of hollow-stem tet when rechecked 30 minutes r.		87 - - - 100 - - - 80 -	21				
							 Soil	Class:B	. Field Ro	ock (

MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION

LABORATORY LOG & TEST RESULTS - SUBSURFACE EXPLORATION

UNIQUE NUMBER U.S. Customary Units

State Project Trunk Highway/Location Boring No. Ground Elevation Bridge No. or Job Desc. 2138SB 923.0 (Surveyed) SWLRT SHEET 1 of 2 (ft.) Location Hennepin Co. Coordinate: X=492201 Y=136797 Drill Machine 7506 Drilling 5/15/14 Hammer CME Automatic Calibrated Latitude (North)= Longitude (West)= Completed No Station-Offset Information Available γ SPT MC COH Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core ୪ Breaks ନ Core Formation Classification Elev. or Member (%) (%) (ft) 28 0.2 SANDY LEAN CLAY, trace roots, black. (CLS), topsoil ł 922.8 gu=1 1/4 tsf 5 17 5 11 17 qu=3 tsf 19 16 DD=108 pcf 10 19 16 SANDY LEAN CLAY, trace Gravel, brown and gray, wet, rather soft to very stiff. (CLS), till 20 16 15 18 16 23 15 20 P200=45% 26 13 22.0 901.0 24 11 25 22 9 ▼ SILTY SAND, fine- to medium-grained, trace Gravel, brown, 37 10 moist to wet, medium dense to dense. (SM), till × Ł 30 32 5 35 8 34.0 889.0 35 POORLY GRADED SAND, fine- to medium-grained, trace 34 7 Gravel, brown, moist, dense. (SP), outwash 37.0 886.0 39 5 POORLY GRADED SAND with SILT, fine- to medium-grained, trace Gravel, with lenses of Lean Clay, 40 35 9 brown, moist. (SP-SM), outwash 42.0 881.0 SILTY SAND, fine- to medium-grained, trace Gravel, with 13 11 lenses of Lean Clay, brownish gray, moist, loose to dense. (SM), till 45 Soil Class: J. Kirk Rock Class: Edit: Date: 6/4/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ Index Sheet Code 3.0 (Continued Next Page)

MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION LABORATORY LOG & TEST RESULTS - SUBSURFACE EXPLORATION

BRAUN

UNIQUE NUMBER

state	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2138			Ground Elevation 923.0 (Surveyed)
Ι	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
50	63.0 860.0		lenses of Lean Clay, browni (SM), till <i>(continued)</i>	ım-grained, trace Gravel, with sh gray, moist, loose to dense. rery dense. (MLS), glaciofluvium		22 19* - 9 - 20 - 44 - - - - - - - - - - - - - -				DD	=133 pcf
65-	<u>66.0</u> 857.0		Bottom of Hole - 66 feet. Water observed at a depth of	of 27 1/2 feet while drilling. //ith 64 1/2 feet of hollow-stem		51	19				

MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION

LABORATORY LOG & TEST RESULTS - SUBSURFACE EXPLORATION

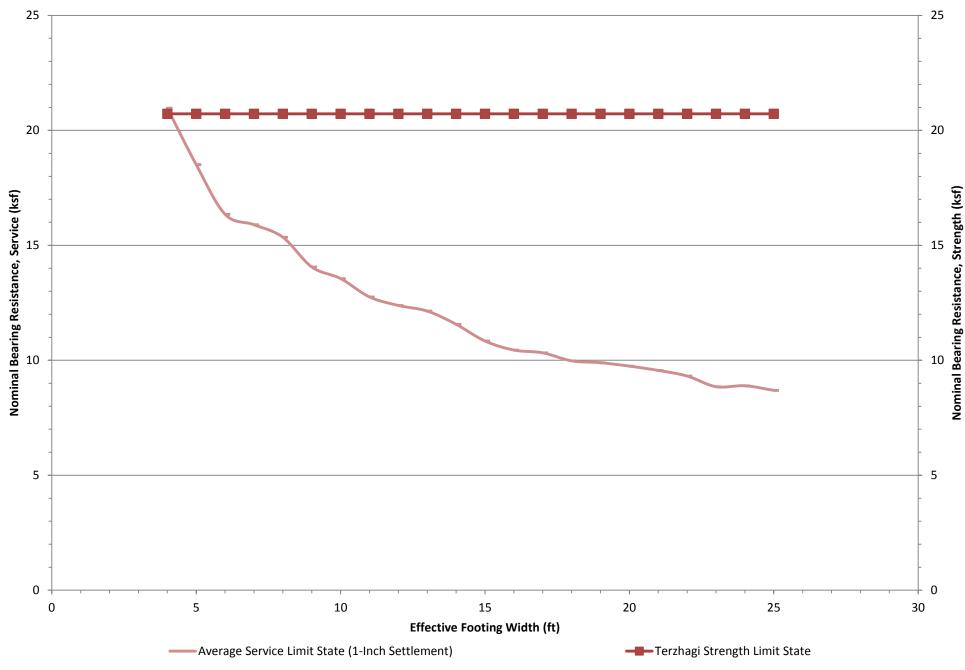
UNIQUE NUMBER U.S. Customary Units

State Project			Bridge No. or Job Desc. Trunk Highway/Location SWLRT						Boring I 2139			Ground Elev 931.0 (S	
i			n Co. Coordinate: X=49213	8 Y=136922	(ft.)	Drill	Machine	9 7506				SHEET	Г 1 of 2
			Hammer CME Automatic Calibrated				librated		Drilling Completed	5/15/14			
	-		-Offset Information Available				SPT	МС	сон	γ		Other 7	Tooto
-	Depth	2				6	N60	(%)	(psf)	(pcf)	Soil	Or Rem	
DEPTH	Dopui	Lithology				ng atio	REC	RQD	ACL	Core	×	Forma	tion
DE	Elev.	Litt	Clas	sification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Roc	or Men	
	1.0	<u>x11/</u>		Y, trace roots, dark brown and black,			-	28			N	ote: Boring wa	
-	930.0		∖moist. (CLS), topsoil		/	Ę		-				ilizing full-fligh chniques due	
-	-					5		-			w	ork zone hour	S.
5-	-						20 -	16				D=112 pcf	
-						सि		-			qu	u=3 1/2 tsf	
-	-					5		-					
+	-		SANDY LEAN CLAY, trace G	ravel, brown and gra	ıy, wet,	ł		+					
10-	-		stiff to very stiff. (CLS), till				32	9					
-	-					5		-					
						H							
15-	_						107* -	+			*	Dook in tin of a	omolor
-	-					मि		t				Rock in tip of s	ampier.
-	18.0					5		Ļ					
-	913.0	× . ×				ł	-	-					
20-	-	× . `.`.×	SILTY SAND, fine- to mediun lenses of Lean Clay, brown, r			X	43	9			P	200=31%	
+	23.0	`× ` . ` . ` .×	, , , ,			5		-					
-	908.0	· <u>··</u> X .				岱		Ì					
25-	-	× : .	POORLY GRADED SAND wi	th SILT, fine- to			36 -	6					
-		· · /× `× ` /	medium-grained, brown, mois	t, dense. (SP-SM), c	outwash	सि		-					
-	28.0	:.:X				5		+					
-	903.0	× . ×				ł	-	-					
30-	-	× . ×	SILTY SAND, fine- to mediun dense. (SM), outwash	n-grained, brown, mo	pist,	Ķ	41	9					
+	33.0	× . ×	, , ,			5	-	Ļ					
-	898.0	· · · ·				岱		ţ					
35-	-					\searrow	40 -	2			P	200=5%	
+	-					सि	-	+ -					
-	-		POORLY GRADED SAND, fi		ed, trace	岱		Į					
+	-		Gravel, brown, moist, dense.	(SP), outwasn		łł		ł					
40-	-	· · ·				X	34	3					
+	120					5	.	Ļ					
-	43.0 888.0	· · · × · . · . · ×	SILTY SAND, fine- to mediun			抖	·	+					
45	Index She	Ŀ <u>, í</u>	lenses of Lean Clay, brown, r	noist, very dense to i ied Next Page)	meaium*	15	L	L	l	L	(dense. (SM), t	

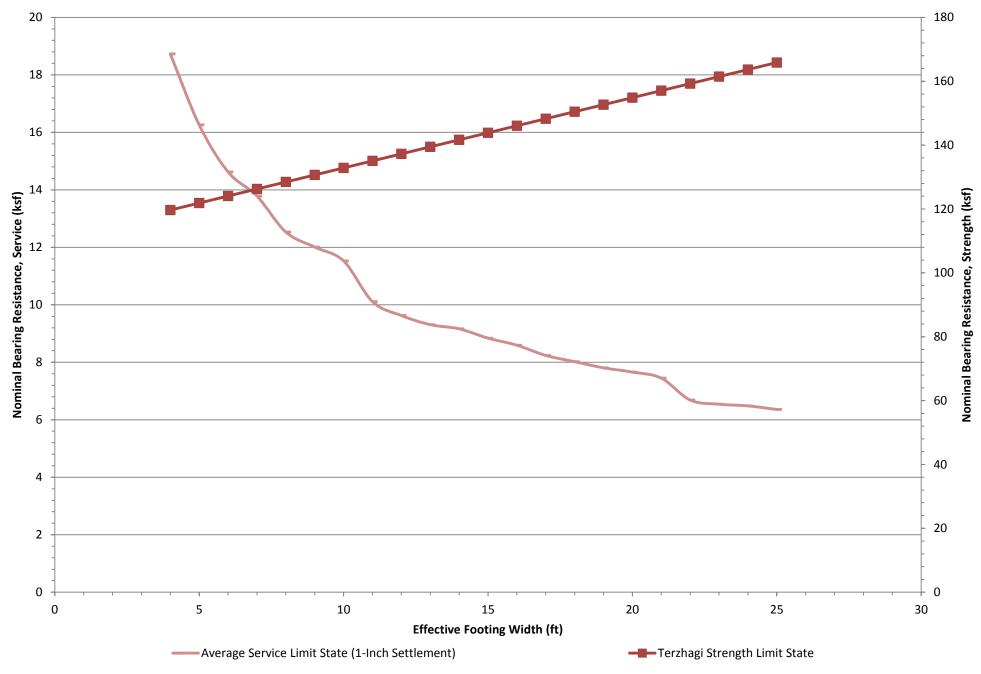
MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION LABORATORY LOG & TEST RESULTS - SUBSURFACE EXPLORATION

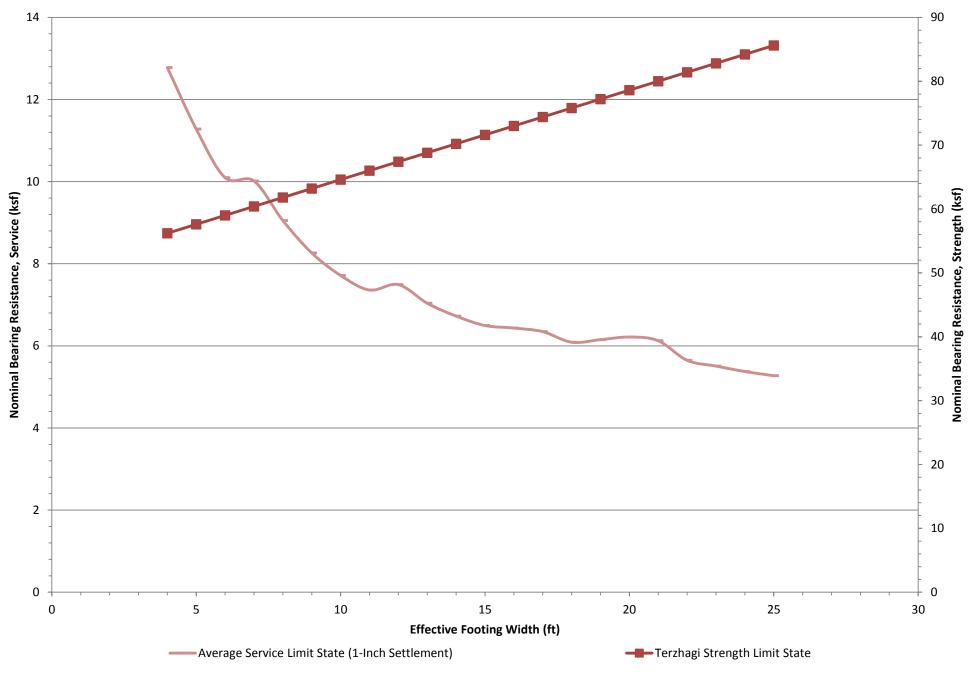
BRAUN[®] INTERTEC

UNIQUE NUMBER

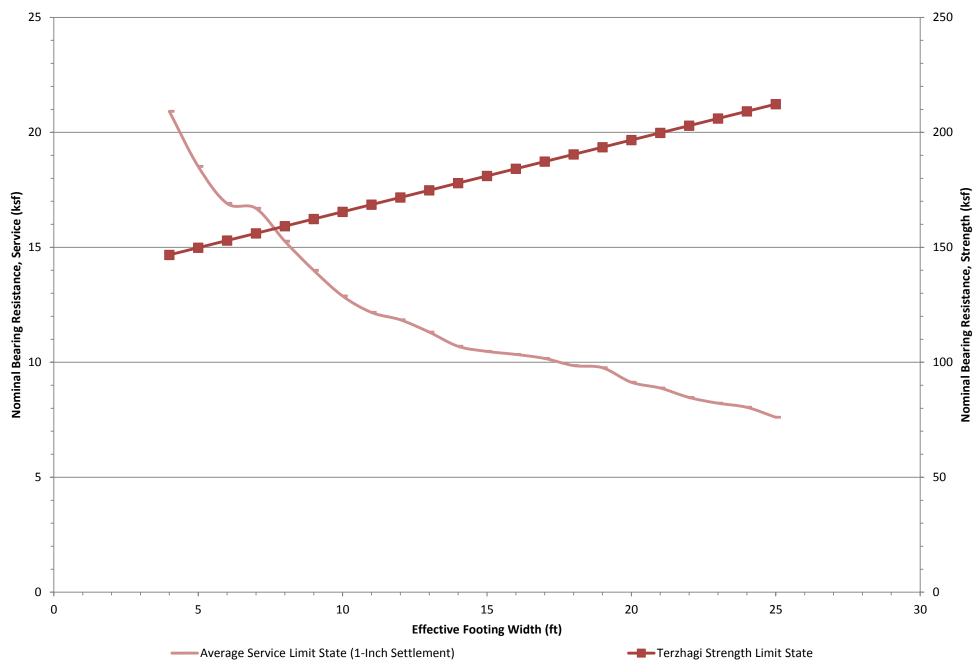

U.S. Customary Units

State Project			Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring No. 2139SB			Ground Elevation 931.0 (Surveyed)	
н	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks	
DEPTH	Elev.	Lithology	Cla	ssification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member	
	- - - -	× · · · × · · · × · · · · · · × · · · ·		XXXXX V	56 	9 				00=22%		
- - 55- - -	- - - - 58.0	× · · × · · · × · × · · × · × · · × · × · · × · × · · ×	SILTY SAND, fine- to mediur lenses of Lean Clay, brown, r (continued)		TTTT XTT	17	- - - - - - -					
- -60- -	873.0 - -		SILT, brown, wet, very dense	. (MLS), glaciofluvium		55	- - - - -			DE	D=113 pcf	
- 65 - - -	_ 63.0 868.0 		POORLY GRADED SAND w medium-grained, brown, wet,	th SILT, fine- to very dense. (SP-SM), outwash	111 X 111	52	- - - - -			P2	00=6%	
70-	71.0				₹Ţ X	120	19					
	860.0		Bottom of Hole - 71 feet. Water observed at a depth of Water observed at 58 feet wi auger in the ground. Boring immediately backfilled	th 69 1/2 feet of hollow-stem								


Soil Class: J. Kirk Rock Class: Edit: Date: 6/4/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ



Limit State Shallow Foundation Analysis TH 62 Tunnel (2019SB)



Limit State Shallow Foundation Analysis TH 62 Tunnel (2138SB)

Limit State Shallow Foundation Analysis TH 62 Tunnel (2139SB)

A	E _o tsf	E _R tsf	P*L tsf		f _s tsf	N b1/ft
E tsf	1	0.125	8	1.15	57.5	4
E tsf R	8	1	64	6.25	312.5	22.7
p* tsf L	0.125	0.0156	1 1 180	0.11	5.5	0.5
q tsf	0.87	0.16	9	1	50	5
f tsf	0.0174	0.0032	0.182	0.02	1	0.1
N bl/ft	0.25	0.044	2	0.2	10	1

Table 5. Correlation results for sand. (Column A = Number in Table x Row B.)

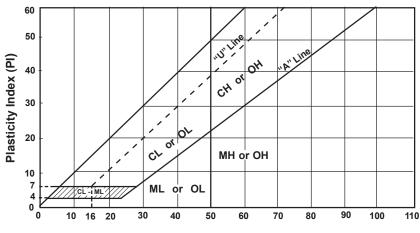
Table 6. Correlation results for clay. (Column A = Number in Table x Row B.)

	A	and the second second second second second second second second second second second second second second second					
A	В	E _o tsf	E _R tsf	P*L tsf	q _c tsf	f _s tsf	S _u tsf
Eo	tsf	1	0.278	14	2.5	56	100
E _R	tsf	3.6	1	50	13	260	300
₽* L	tsf	0.071	0.02	ad ¹ and	0.2	4	7.5
٩ _c	tsf	0.40	0.077	5	1	20	27
fs	tsf	0.079	0.0038	0.25	0.05	1	1.6
s _u	tsf	0.010	0.0033	0.133	0.037	0.625	1

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Criter	ia for Assign	ing Group	Symbols and	Soi	ils Classification	Particle S	Size Identificati
	Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^a			Group Symbol	Group Name ^b	Boulders Cobbles		
" uo	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^{c}$	GW	Well-graded gravel ^d	Gravel Coarse	3/4" to 3"
Soils ined c e	More than 50% of coarse fraction	5% or less	s fines ^e	$C_u < 4$ and/or $1 > C_c > 3^c$	GP	Poorly graded gravel d	Fine	
d S etair eve	retained on	Gravels wi	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand	
iine % r∈) si	No. 4 sieve	More than 12% fines e		Fines classify as CL or CH	GC	Clayey gravel dfg	Coarse	No. 4 to N No. 10 to
grained Soils 50% retained (200 sieve	Sands	Clean S	ands	$C_{u} \ge 6$ and $1 \le C_{c} \le 3^{c}$	SW	Well-graded sand h	Fine	
arse- than No.	50% or more of coarse fraction passes	5% or less	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^c$	SP	Poorly graded sand h	Silt	<no. 200<="" td=""></no.>
Coa more t		Sands wit	h Fines	Fines classify as ML or MH	SM	Silty sand fgh	Clay	below "A"
0 c	No. 4 sieve	More than 12% ⁱ		Fines classify as CL or CH	SC	Clayey sand fgh		on or abov
he		Inorganic	PI > 7 ar	nd plots on or above "A" line ^j	CL	Lean clay kim		
ed Soils passed the sieve	Silts and Clays Liguid limit	linorganic	PI < 4 or	plots below "A" line ^j	ML	Silt ^{k m}		Density of
asse eve	less than 50	Organic	Liquid lin	id limit - oven dried < 0.75		Organic clay k I m n	Cohesionless So	less Soils
-grained more pas		organio	Liquid lin	nit - not dried	OL	Organic silt k I m o	Very loose	
-grain more o. 200	Oilte and slave	Inorganic	PI plots of	on or above "A" line	СН	Fat clay k I m	Loose	
	Silts and clays Liguid limit	Inorganic	PI plots b	elow "A" line	MH	Elastic silt k I m	Medium dense	
	50 or more	Organic	Liquid lin	nit - oven dried	ОН	Organic clay k I m p	Very dense	
Fir 50%		Grganic	Liquid lin	nit - not dried < 0.75	OH	Organic silt k I m q		
Highly	Organic Soils	Primarily org	anic matte	r, dark in color and organic odor	PT	Peat	Consistency	of Cohesive So


Based on the material passing the 3-in (75mm) sieve a.

b. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name $C_u = D_{6i}$

$$D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$$

C.

- d. If soil contains>15% sand, add "with sand" to group name
- Gravels with 5 to 12% fines require dual symbols: e
- GW-GM well-graded gravel with silt
- GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains \geq 15% gravel, add "with gravel" to group name.
- h. Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant. k.
- If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- If soil contains≥30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- $PI \ge 4$ and plots on or above "A" line. n.
- PI <4 or plots below "A" line. о.
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

DD	Dry density, pcf	oc	Organic content, %
WD	Wet density, pcf	S	Percent of saturation, %
MC	Natural moisture content, %	SG	Specific gravity
LL	Liqiuid limit, %	С	Cohesion, psf
PL	Plastic limit, %	Ø	Angle of internal friction
PI	Plasticity index, %	qu	Unconfined compressive strength, psf
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf

Rev. 7/07

ation

Boulders	. over 12"			
Cobbles	. 3" to 12"			
Gravel				
Coarse	. 3/4" to 3"			
Fine	. No. 4 to 3/4"			
Sand				
Coarse				
Medium				
Fine	. No. 40 to No. 200			
Silt	. <no. 200,="" or<="" pi<4="" td=""></no.>			
	below "A" line			
Clay	$<$ No. 200, PI \ge 4 and			
	on or above "A" line			
Relative Density of Cohesionless Soils				

20	0 to 4 BPF
	5 to 10 BPF
danaa	11 to 20 DDF
dense	11 10 30 BPF
	31 to 50 BPF
nse	over 50 BPF
	se dense

Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.'

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards

Appendix G

Opus Area

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Preliminary Foundation Analysis Design Recommendation Report Proposed Opus Area Construction – 100% design STA 2314+00 to STA 2362+00 Southwest LRT, West Segment 2 Eden Prairie/Minnetonka, Minnesota

Dear Mr. Demers:

Braun Intertec has completed the preliminary geotechnical evaluation for the proposed Opus Area construction between STA 2314+00 to STA 2362+00. The following sections provide our recommendations for the design and construction of the five pedestrian underpasses, retaining walls RTW-W212 and RTW-W213, and general track construction.

This report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for the Opus Platform Station and pole foundations for the Overhead Contact System (OCS) will be addressed in separate reports.

A. Project information

The west segment of the SWLRT project is proposing to construct a light rail transit line through Hopkins, Minnetonka, and Eden Prairie, Minnesota. This portion of the project considers the design and construction of five pedestrian underpasses, associated retaining walls, and track construction between Stations 2314+00 and 2362+00.

A.1. Type of Structures

The sections below provide preliminary design and construction recommendations for five pedestrian underpasses, retaining walls RTW-W212 and RTW-W213, and general track construction between STA 2314+00 and STA 2362+00 based on a limited soil boring program. Prior to final design, we

recommend completing a boring program to obtain more complete subsurface soil and groundwater information. Based on the boring information available at the time of this report, we anticipate the five pedestrian underpasses and two retaining walls will be supported on cast-in-place (CIP) concrete spread footing foundations.

A.2. Location of Pedestrian Underpasses

A.2.a. Pedestrian Underpass 1

Pedestrian Underpass 1 will be constructed to carry the light rail alignment over Red and Yellow Circle Trail between STA 2314+69 and STA 2314+91. Underpass 1 is proposed to consist of a 20-foot long span of a continuous cast-in place slab with a width of approximately 66 feet supported on spread footings with an approximate width of 10 feet. Retaining wall RTW-W212 will be constructed adjacent to the northeast corner of the underpass structure. It is anticipated that RTW-W212 will be a cast-in place retaining wall on spread footings.

A.2.b. Pedestrian Underpass 2

Pedestrian Underpass 2 will be constructed to carry the light rail alignment, Red Circle Drive, and Bren Road E, between STA 2318+25 and STA 2318+56. Underpass 2 is proposed to consist of a 28-foot long span of a continuous cast-in place slab with a width of approximately 108 feet supported on spread footings with an approximate width of 10 feet.

A.2.c. Pedestrian Underpass 3

Pedestrian Underpass 3 will be constructed to support Bren Road E over a proposed pedestrian path. Underpass 3 is proposed to consist of a 21-foot long span of a continuous cast-in place slab with a width of approximately 45 feet supported on spread footings with an approximate width of 10 feet

A.2.d. Pedestrian Underpass 4

Pedestrian Underpass 4, between STA 2333+17 to STA 2333+39, will be constructed to support the light rail tracks over the pedestrian path, which will be lowered to accommodate construction. Underpass 4 is proposed to consist of a 20-foot long span of a continuous cast-in place slab with a width of approximately 50 feet supported on spread footings with an approximate width of 10 feet.

A.2.e. Pedestrian Underpass 5

Pedestrian Underpass 5, between STA 2361+30 to STA 2361+59, will be constructed to support the light rail tracks over the pedestrian path, which will be lowered to accommodate construction. Underpass 5 is proposed to consist of a 26 ½-foot long span of a continuous cast-in place slab with a width of approximately 54 feet supported on spread footings with an approximate width of 10 feet.

A.3. Location of Retaining Walls

A.3.a. RTW-W212

Wall RTW-W212 is located adjacent to the northeast wing wall of Pedestrian Underpass 1. RTW-W212 is anticipated to have an average exposed height of 8 feet and average 12 feet between the top of wall and top of footing. The wall is approximately 80 feet long. The bottom of footing elevation for the wall is near 907, with a finished grade of approximately 920, resulting in the placement of approximately 8 feet of new fill to establish top of rail elevation.

A.3.b. RTW-W213

Wall RTW-W213 is located adjacent to the northwest corner of the Opus Station Platform. RTW-W213 is anticipated to have an average exposed height of 9 feet and average 17 feet between the top of wall and top of footing. The wall is approximately 200 feet long. The bottom of footing elevation for the wall is near 880, which steps down to approximately 876 to avoid an existing utility. The top of rail elevation near the wall is approximately 890, resulting in cuts into the existing soils to establish top of rail elevations.

A.4. Other Information

As part of the future construction, one building will be demolished to construct the alignment as well as the realignment of several roadways including Yellow Circle Drive, Red Circle Drive, Bren Road E, and Bren Road W. As part of the roadway realignments, new underpasses for pedestrian walkways will also need to be constructed.

The Opus business park, constructed as early as the 1970's, included areas of deep soil corrections to remove organic soils, and associated deep fills. In areas that were previously landscaped areas, or green areas, the organic soils were not completely removed prior to the placement of fill.

B. Subsurface Investigation Summary

B.1. Summary of Borings Taken

Braun Intertec performed 12 standard penetration test borings (2000ST, 2001ST, 2002ST, 2003SS, 2004SS, 2005ST, 2006ST, 2020ST, 2021SW, 2022SW, 2023SW, and 2024SW) in the vicinity of the proposed Opus Area construction. Logs of the borings are included in the Appendix, along with a Boring Location Sketch.

B.2. Description of Foundation Soil Conditions

B.2.a. Topsoil

The borings initially encountered about 4 to 6 feet of topsoil. The topsoil consisted of lean clay, sandy lean clay, and clayey sand that was dark brown to black and moist to wet.

B.2.b. Fill

Fill was encountered within two of the four boring locations and consisted of poorly graded sand with silt (SP-SM), silty sand (SM), clayey sand (SC), sandy lean clay (CL). Table 1 below illustrates the depth and type of fill material encountered.

		Approximate	Elevation at	
	Boring Elevation	Depth of Fill	Bottom of Fill	
Boring No.	(ft)	(ft)	(ft)	Fill Composition
2000ST	902.5	12	890 ½	SM, CL
2001ST	895.6	12	883 ½	CL
2002ST	895.0	9	886	SC, OL
2003SS	889.6	7	882 ½	SP-SM
2004SS	887.4	7	880 ½	SP-SM, CL
2005ST	885.6	N/A	N/A	N/A
2006ST	886.1	N/A	N/A	N/A
2020ST	912.4	24	888 ½	SP-SM, SM, SC, CL
2021SW	901.8	4	898	SM, SC
2022SB	894.4	N/A	N/A	N/A
2023SB	893.7	4	889 ½	CL
2024SW	889.3	17	882	SC, CL

Table 1. Fill Depths

Penetration resistances varied from 7 to 35 blows per foot (BPF), although some of the higher penetration resistances were likely influenced by encountering a rock or debris in the sampler.

B.2.c. Swamp Deposits

Swamp deposit soils consisting of organic lean clay (OL), Peat (Pt), and sandy silt (ML) were encountered in Borings 2002ST, 2003SS, 2004SS, and 2024SW. Penetration resistances within the swamp deposits ranged from 2 to 16 BPF.

B.2.d. Alluvium

Alluvial silts were encountered beneath the swamp deposits in Borings 2003SS and 2004SS at depths ranging from 12 to 14 feet beneath the surface at both locations. The silts were generally gray in color and contained trace amounts of roots. Penetration resistances in the silts were 8 BPF, indicating loose conditions.

B.2.e. Glacial Till

Glacial till soils were encountered throughout the soil profile beneath the topsoil, fill swamp deposits, and alluvium. The tills consisted of silty sand (SM), silt (ML), clayey sand (SC), and sandy lean clay (CL). The till soils contained a trace to some gravel, were moist to wet or waterbearing and were brown to gray. Penetration resistances varied from 7 to 46 BPF, indicating the granular soils were in a loose to dense condition and the cohesive soils were medium to hard in consistency.

B.2.f. Glacial Outwash

Glacial outwash soils were also encountered beneath the fill, swamp deposits, and alluvium throughout the area. The glacial outwash soils consisted of poorly graded sand (SP) and poorly graded sand with silt (SP-SM). The sands generally contained some gravel. Penetration resistances varied from 12 to 44 BPF, indicating the soil was medium dense to dense.

B.3. Summary of Water Level Measurements

Due to the impermeable nature of the clayey soils and mud rotary drilling techniques, the depth of the static groundwater level was difficult to determine and the boring logs likely do not reflect the actual groundwater levels. It appears that water is perched on top of and between clayey soils and within sandy soil layers at depth. Piezometers may be needed to determine more accurate groundwater levels. Groundwater was measured or estimated to be located at the depths shown in Table 2.

Location	Surface Elevation	Measured or Estimated Depth to Groundwater (ft)	Corresponding Groundwater Elevation (ft)
2000ST	902.5	17 ½	885
2001ST	895.6	31	864 ½
2002ST	895.0	20	875
2003SS	889.6	15	874 ½
2004SS	887.4	15	872 ½
2005ST	885.6	35 ½	850
2006ST	886.1	30	856
2020ST	912.4	41	871 ½
2021ST	901.8	N/A	N/A
2022SB	894.4	N/A	N/A
2023SB	893.7	11	882 ½
2024SW	899.3	21	878

Table 2. Groundwater Summary

-Note: Seasonal and annual fluctuations of groundwater should be anticipated.

B.4. Foundation Analysis

Based on anticipated soil conditions, soil conditions encountered in the borings, and the loads anticipated on the pedestrian underpasses and retaining walls structures, we recommend the use of spread footing foundations.

B.5. Embankments and Slopes – Pedestrian Underpasses and Retaining Walls

The pedestrian underpasses and retaining walls will be new structures constructed adjacent to or beneath various roadways and will be constructed on spread footing foundations. Retaining walls RTW-W212 and RTW-W213 are proposed to be CIP concrete walls used to support the embankment. Foundation preparation will include the removal of topsoil and fill as well as partial subcuts into the native soils. After the removals, the foundation preparation will consist of surface compacting the underlying soils and backfilling to proposed subgrade elevations with controlled backfill.

B.5.a. Settlement

Based on the current boring program and the recommended soil corrections, settlements are anticipated be within the service limit state for settlement of one-inch. Upon completion of a final boring program, additional settlement analyses will be performed.

B.5.b. Bearing Capacity

Soil borings have not yet been performed for every structure. Based on the current borings, it appears the bottom of footing elevation will be founded in fill or native soils. We anticipate limited soil corrections will be required in some areas to provide a bearing resistance in excess of the required capacities.

B.5.c. Global Stability

Based on the proposed wall heights, slope angles, and the anticipated soil conditions, the factor of safety is anticipated to exceed the required minimum value of 1.5, but will be re-analyzed upon completion of a boring program. Local stability of the walls and associated reinforced embankments, which is separate from the global stability, will be determined by the retaining wall engineer.

B.6. Spread Footing Foundations

Settlements were calculated based on two methods. The first is the Hough method with Boussinesq and Westergaard stress distributions, which utilizes the standard penetration test (SPT) values from the soil borings. The second is the Menard method, which is based on pressuremeter determinations of soil parameters that were collected in the field or modified from the SPT values from the soil borings. For the Menard Method, where pressuremeter testing was not performed, conservative correlations were used to estimate pressuremeter values based on N₆₀ factors provided in Federal Highway Administration (FHWA) Publication No. FHWA-IP-89-008. Tables 5 and 6 from this publication are in the Appendix for reference. After these two methods were evaluated, the results were averaged.

Terzhagi's strength limit state is also included on the nominal bearing graphs in the Appendix, for reference. The strength limit state (bearing) will not control design.

B.7. Summarize Design Assumptions

B.7.a. Retaining Wall Loading Information

It is assumed a 2-foot live load surcharge will be used for the design of the retaining walls. We recommend the design loads and footing widths follow the MnDOT standard plans included in the Appendix.

B.7.b. Design Methodologies – Spread-Footing-Supported Structures

The LRFD (Load and Resistance Factor Design Method) was used for design of the bridge and retaining wall foundations supported on shallow foundations. Resistance factors were obtained from the Sixth Edition of the AASHTO (American Association of State Highway and Transportation Officials) LRFD Bridge Design Specifications (6th edition with 2013 interim revisions).

The ASD (Allowable Strength Design Method) was referenced for design of the retaining wall footings supported on shallow foundations. Strength design and safety factors were taken from the MnDOT design criteria for retaining walls with a 2-foot live load surcharge.

C. Construction Considerations

C.1. Design of Temporary and Permanent Slopes

The permanent slopes can match the existing slopes, except they must be not steeper than 1V:2H. The select granular borrow is anticipated have an angle of internal friction of approximately 35 degrees. This soil could be temporarily placed at a slope of 1V:1.5H, but must be limited to 1V:2H or flatter for the permanent condition.

C.2. Subcut Recommendations and Backfill Requirements for Pedestrian Underpasses and Retaining Walls

C.2.a. Pedestrian Underpass 1

The proposed bottom of footing elevation is 899, which means 10 feet of existing fill soils are present beneath proposed footing grades. Up to 10 feet of new fill is proposed to attain proposed design grade elevations. Based on our calculations, we estimate the new fill load and the maximum toe pressure from the wall will produce less than one-inch of settlement on the existing soils. However, there is an inherent risk of constructing on undocumented fill soils as the consistency of the soil may vary away from the boring location.

To help reduce the variability of the fill soils, a soil correction beneath the footings of three to five feet could be conducted to reduce differential settlement across the wall. It should be noted that a two-foot thick layer of sand fill was encountered by the boring at bottom of footing elevation; however, it cannot be assumed this layer is present throughout the underpass footprint. We recommend fill placed for Underpass 1 meet the material and compaction specifications noted in Table 3 below.

A conservative approach to constructing the footings includes removing all fill soils beneath the proposed abutment and wing wall footings, and its associated oversize areas. An excavation of this size may impact neighboring structures and utilities, and may require the use of shoring to support the sidewalls of the excavation. Rammed aggregate piers or helical anchors could also be considered as a means of supporting the footings and walls.

C.2.b. Pedestrian Underpass 2

Existing grades near Underpass 2 appear to range from approximately 902 to 910, with finished grade near 915, resulting in raises in grade as much as 13 feet.

Soils borings have not yet been completed within the footprint of Underpass 2 to verify soil conditions and provide applicable recommendations; therefore general recommendations can be provided based on Boring 2020ST. The general recommendations provided for Pedestrian Underpass 1 apply to Pedestrian Underpass 2.

C.2.c. Pedestrian Underpass 3

Existing grades near Underpass 3 appear near 894, with finished grade of the pedestrian path near 882, resulting in cuts on the order of 12 feet.

The soils encountered at the anticipated subgrade elevations of the underpass footings in Borings 2022SB and 2023SB generally appear suitable for support of conventional spread footings. The anticipated subgrade soils appear to consist of a mixture of sand and lean clay.

It appears the pedestrian underpass will be excavated into the existing soils, so additional stresses from raises in grade are not expected.

The geologic materials encountered at the anticipated subgrade elevations of the underpass footings in Boring 2022SB performed on the west side of the north abutment appear to bear on sandy lean clay to the termination depth of the boring. To reduce the risk for differential settlement, we recommend subcutting the clay subgrade soils a minimum of two-feet below bottom of footing elevation and replacing the material with imported material meeting the specifications of Table 3 below.

C.2.c.1. Groundwater Considerations

We anticipate groundwater will be encountered at or above proposed footing elevation for the abutment near 2023SB. The normal water level (NWL) of the adjacent pond is 888 with a high water level of 893.3. Dewatering may be difficult due to the proximity of the pond.

To prevent draining the pond, we recommend a cut-off wall be constructed around the underpass above the elevation of the high water level to reduce the risk of draining the pond. The wall should extend significantly below the bottom of the underpass to avoid heave of the soils at the bottom of the underpass. Additional borings would be needed along the underpass and near the pond to evaluate the extent and elevation of sand pockets which are present in this area and were found by the completed borings.

Even with a cut-off wall there is a risk that the pond water levels will be affected without wrapping and sealing the underpass area completely. Drains would likely be needed beneath the underpass to prevent flooding and instability. The different water elevations across the wall sections may cause some reduction in the pond water elevation. If there are sand seams in the glacial soils or if the additional borings performed do not identify all of the sand pockets at depth, there could be a complete drawdown of the pond. The pond may be required to be lined to maintain the existing water level. The hydraulics team for the project should evaluate the need of outflow structures to handle spikes in a lined pond.

C.2.d. Pedestrian Underpass 4

Existing grades near the underpass appear to be near 885, with finished grade of the pedestrian path near 871, resulting in cuts on the order of 14 feet.

Our preliminary recommendations are based on Boring 2005ST, located approximately 55 feet north of Underpass 4.

The soils encountered at proposed bottom of footing elevations consist of glacially deposited lean clays, which appear suitable to support the proposed structure. Based on the preliminary engineering plans, we anticipate settlement of the underlying soils will be less than one-inch due to the overall unload condition associated with the proposed 14-foot cut.

C.2.d.1. Groundwater Considerations

Existing lowlands and swamps are present north of Underpass 4, and groundwater may be encountered at shallow elevations as a result. If groundwater is encountered within the excavation, we recommend removing the water with sumps and pumps.

C.2.e. Pedestrian Underpass 5

Existing grades near the underpass appear to be near 908, with finished grade of the pedestrian path near 900. Based on the current and proposed elevations cuts on the order of 8 feet will be needed to reach proposed pedestrian path elevation, and raises in grade on the order of 7 feet will be required to reach top of rail elevation of 915.

Soils borings have not yet been completed in the vicinity of Underpass 5 to verify soil conditions and provide applicable recommendations; therefore general recommendations can be provided based on Boring 2005SB. The general recommendations provided for Pedestrian Underpass 4 should be applied to Pedestrian Underpass 5.

C.2.f. Selection, Placement, and Compaction of Underpass Fill and Backfill

We recommend fill placed for the underpasses and retaining walls meet the material and compaction specifications noted in Table 3 below.

Material	Material Specification	Compaction Specification	
Subgrade Fill	MnDOT 2105.1A6	MnDOT 2105.3F	
Leveling Pad Beneath Footings	MnDOT 3138	MnDOT 2211.3C	
Retaining Wall Backfill	MnDOT 3149.2D2	MnDOT 2105.3F	
Guideway Select Granular Layer	MnDOT 3149.2B2	100% of standard Proctor Density	
Guideway Select Granular Layer	WIIDOT 5149.282	(ASTM D698)	
Guideway Subballast	MnDOT 3138	MnDOT 2211.3C	

Table 3. Material and Compaction Specification for Backfill and Fill

Although not anticipated, if groundwater is encountered within the excavation, we recommend backfilling over wet or submerged excavation bottoms with at least 2 feet of coarse sand having less than 50 percent of the particles by weight passing a #40 sieve, and less than 5 percent of the particles passing a #200 sieve.

C.3. Guideway Construction

C.3.a. Excavations

Throughout the track profile, a five-foot subcut beneath the top of rail elevation is anticipated for construction of the Guideway. The following subsections provide preliminary recommendations to prepare the subgrades for the track. Additional borings will be required for final design recommendations.

C.3.a.1. Guideway Subgrade Preparation

We recommend excavating the soils down to the proposed bottom of subgrade elevation. We expect a combination of native soils, previously placed fill, and engineered fill associated with the underpass

abutments and wing walls. Areas of the track between STA 2319+00 and STA 2332+00 may contain pockets of organic soils at depth. We recommend removing all vegetation, topsoil, and any soft or wet soils encountered at the surface. If soft or otherwise unsuitable soils are encountered at subgrade elevations, additional excavations may be necessary. Table 4 below provides our recommended excavation depths the boring locations.

		Guideway	Recommended	
	Boring Elevation	Subgrade Elevation	Excavation Depth	Excavation Bottom
Boring	(ft)	(ft)	Below Subgrade (ft)	Elevation (ft)
2000ST	902.5	903		901 ½
2001ST	895.6	895	1 ½	893 ½
2002ST	895.0	887	6	881
2003SS	889.6	885	9	876
2004SS	887.4	883	7 ½	875 ½
2005ST	885.6	882	3	879
2006ST	886.1	881	3	878
2020ST	912.4	915		912
20023SW	893.7	885		885
2024SW	899.3	884	4	880

Table 4. Recommended Guideway Subgrade Correction Depths

Excavation depths will vary away from the boring locations and could be deeper. We recommend a geotechnical engineer or experienced technician working under the supervision of a geotechnical engineer observe the subgrade soils prior to the placement of fill. If pockets of unsuitable fill or soft native soils are encountered, the excavations may extend beyond the depths noted in the table above.

Fat clays were encountered at Guideway subgrade elevations near Borings 2005ST and 2006ST. We recommend a three-foot subcut of the fat clays beneath the proposed subgrade elevation and replacement with onsite lean clay soils. Fat clays are considered highly sensitive to changes in moisture content and the placement of a lean clay buffer, which is less susceptible to changes in moisture content, will provide greater stability to the Guideway subgrade.

We recommend performing a final boring program for the track alignment to evaluate excavation depths along the alignment and to further evaluate potential deep fill areas or areas containing possible organics.

C.3.b. Excavation Dewatering

We recommend removing groundwater from the excavations. Sumps and pumps can be considered for excavations in low-permeability silt- and clay-rich soils, or where groundwater can be drawn down 2 feet below the bottoms of excavations in more permeable sands. In large excavations, or where groundwater must be drawn down more than 2 feet, a well contractor should review our logs to determine if wells are required, how many will be required, and to what depths they will need to be installed.

We expect any groundwater encountered will be perched within sandy layers of soils encountered during the excavation process. Seasonal and annual precipitation will influence the amount and extent of groundwater that will be encountered at some locations. At other locations, such as near Underpass 3, we anticipate we will be at or below static groundwater levels.

C.3.c. Selecting Excavation Backfill and Additional Required Fill

C.3.c.1. General Subgrade Fill

We initially recommend backfilling over wet or submerged excavation bottoms with at least 2 feet of coarse sand having less than 50 percent of the particles by weight passing a #40 sieve, and less than 5 percent of the particles passing a #200 sieve. We anticipate that this material will need to be imported.

On-site soils free of organic soil and debris can be considered for reuse as subgrade backfill and fill. The clays, however, being fine-grained, will be more difficult to compact if wet or allowed to become wet, or if spread and compacted over wet surfaces. We do not recommend reusing fat clay soils as engineered fill. Fat clays may be used as fill in landscaped or green areas.

Imported material needed to replace excavation spoils or balance cut and fill quantities, may consist of sand, silty sand, clayey sand, sandy lean clay or lean clay. We recommend, however, that the plastic index of these materials not exceed 20.

C.3.c.2. Guideway Fill

Based on the proposed design sections, the Guideway will be composed of 40-inch thick layer of granular material, under a minimum of 12-inches of subballast material. We recommend specifying Guideway fill to meet the requirements of the Minnesota Department of Transportation (MnDOT) 3149.2B2 (Select Granular Borrow) for the granular material, and 3138 (Aggregate Base) for the subballast.

C.3.d. Placement and Compaction of Backfill and Fill

We recommend spreading backfill and fill in loose lifts of approximately 6 to 12 inches. We recommend compacting backfill and fill in accordance with the criteria presented below in Table 5. The relative compaction of utility backfill should be evaluated based on the structure below which it is installed, and vertical proximity to that structure.

Material	Material Specification Compaction Specification		
Guideway Subgrade Fill	Onsite Material Free of Debris and	100% of standard Proctor Density	
Guideway Subgrade Fill	Organic Material	(ASTM D698)	
Cuidoway Select Crapular Layor	MnDOT 3149.2B2	100% of standard Proctor Density	
Guideway Select Granular Layer	MIIDOT 5149.262	(ASTM D698)	
Guideway Subballast	MnDOT 3138	MnDOT 2211.3C	

Table 5. Material and Compaction Specification for Backfill and Fill

*-Select Granular Borrow Modified 10% as noted in D.2.a.2

C.3.e. Drainage Control

We recommend installing subdrains at low points of the Guideway. Preferably the subdrains should consist of perforated pipes embedded in washed gravel, which in turn is wrapped in filter fabric. Perforated pipes encased in a filter "sock" and embedded in washed gravel, however, may also be considered.

D. Foundation Recommendations

D.1. Nominal Bearing Capacities and Associated Resistance Factors

Refer to the figures in the Appendix for the recommended bearing resistance, service limit state for the underpass abutments and walls. These graphs are based on the settlement methods discuss in Section C.4 of this report. For the service limit state, a resistance factor of 1.0 shall be applied.

The resistance factors for evaluating the strength limit state performance are based on the current LRFD code:

Bearing Resistance, using SPT = 0.45 Sliding, Cast-in-Place Concrete on Sand = 0.8

D.2. Recommended Design Soil Parameters (e.g., Coefficient of Friction, Lateral Earth Pressure Coefficients, etc.)

The recommended soil parameters to be used for design are as follows:

Soil Type	Angle of Internal Friction (degrees)	Effective Unit Weight (pcf)	Coefficient of Sliding Friction Rough Concrete	Active Earth Pressure Coefficient	At-Rest Earth Pressure Coefficient
Select Granular Borrow Modified 10%	35	120	0.6	0.27	0.43
Granular Borrow	30	120	0.5	0.33	0.50

Table 6. Recommended Soil Design Parameters

We define "retained soil" as soil that extends at least 2 horizontal feet beyond the bottom outer edges of the wall footings (the wall heel, not the stem) and then (2) rises up and away from the wall at an angle no steeper than 60 degrees from horizontal. We anticipate these geometric conditions will be met if the excavations meet OSHA requirements for the types of soils likely to be exposed in the excavation.

D.3. Recommended Footing Sizes and Embedment Depths

We recommend the underpass abutment and retaining walls be supported on spread footings. The size of the footing should be determined in accordance with Section C.4 and the limit state graphs in the Appendix. We recommend placing footings a minimum of 4 ½ feet below the proposed grade.

D.4. Recommended Slope Angles

Temporary slopes in the Granular Borrow or Select Granular Borrow backfill are recommended to be constructed at 1V:1.5H or shallower. Temporary slopes constructed in natural material are recommended to be constructed at 1V:2H or shallower. In a temporary condition; these slopes have a Factor of Safety against global failure in excess of 1.3.

D.5. Excavation Support and Shoring

The anticipated soils within the utility trenches will include sand and clay fill, swamp deposit soils, and native sands and clay, which are considered Type C Soil under OSHA guidelines. Unsupported excavations should therefore be maintained at a gradient no steeper than 1 ½ to 1 (horizontal: vertical). Slopes constructed in this manner may still exhibit surface sloughing. If site constraints do not allow the construction of temporary slopes with these dimensions, then temporary shoring may be required, and we should be consulted for additional recommendations. OSHA requires that slope or excavations over 20 feet in depth need to be evaluated by an engineer.

An OSHA approved competent person should review this soil classification in the field. Excavations must comply with the requirements of OSHA 29 CFR, Part 2926, Subpart P, "Excavations and Trenches." This document states that excavation safety is the responsibility of the contractor. Reference to these OSHA requirements should be included in the project specifications.

In the event there is insufficient room to slope excavations, or if the excavations are exposed to surcharges and need to be shored, we recommend designing the shoring based on the parameters presented below in Table 6. The parameters shown have not been reduced by safety factors.

Saturated unit weights are recommended to account for the potential build up of hydrostatic pressure behind undrained support structures. We recommend that saturated unit weights be reduced by 62.4 pounds per cubic foot for strata or portions of a stratum extending below the groundwater levels at the structure location or as noted in the borings.

	Saturated Unit Weight	Friction Angle			
Geologic Material	(pcf)	(deg)	K _A	Ko	K _P
Sand Fill (SP, SP-SM)	120	30	.33	.50	3.00
Sand Fill (SM, SC)	125	28	.36	.53	2.76
Clay Fill (CL)	125	26	.39	.56	2.56
Swamp Deposit Soils (PT)	75	14	.61	.76	1.63
Swamp Deposit Soils (OL, ML)	90	22	.46	.62	2.20
Glacial Sands (SP, SP-SM)	120	32	.31	.47	3.25
Glacial Lean Clay (CL)	130	28	.36	.53	2.76
Glacial Fat Clay (CH)	120	24	.42	.59	2.37

Table 7. Parameters for Shoring Design

D.6. Building Demolition and Removal of Existing Structures

Based on the proposed track alignment, it appears one building may be demolished, along with the realignment of several roadways walkways, and likely utilities. We recommend completely removing all building materials from the excavations including concrete, bituminous, aggregate base, utility pipes, and any bedding material associated with the utilities prior to the placement of fill. If it is not conducive to remove existing utility lines, we recommend they be abandoned and filled with sand, flowable fill, or concrete.

E. Material Classification and Testing

E.1. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars or bags and returned to our facility for review and storage.

E.2. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures and follow MnDOT guidelines.

E.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced. The boreholes were then backfilled or sealed with bentonite grout.

F. Qualifications

F.1. Variations in Subsurface Conditions

F.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore, strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

F.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

F.2. Continuity of Professional Responsibility

F.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

F.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

F.3. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

G. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If there are questions regarding these bridge foundation recommendations, please call Josh Kirk at 952.995.2222 or Ray Huber at 952.995.2260.

> LICENSED POFESSIONA ENGINEER

MI minut

Sincerely,

BRAUN INTERTEC CORPORATION

Professional Certification:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional/Legin under the laws of the State of Minnesota.

oshua L. Kirk, PE Associate Principal/Project Engine Joshua L. Kirk, PE

License Number: 45005

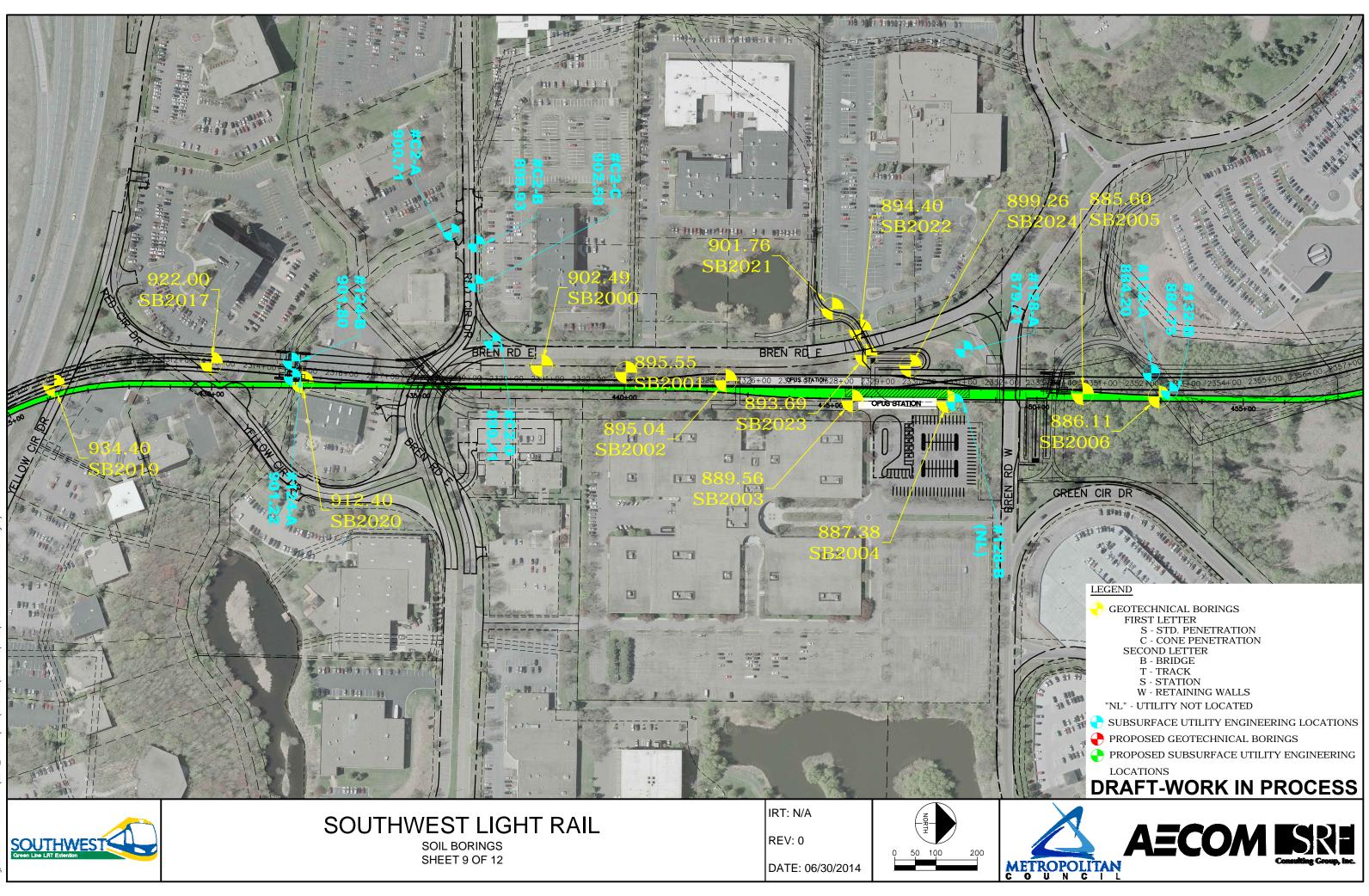
Reviewed by:

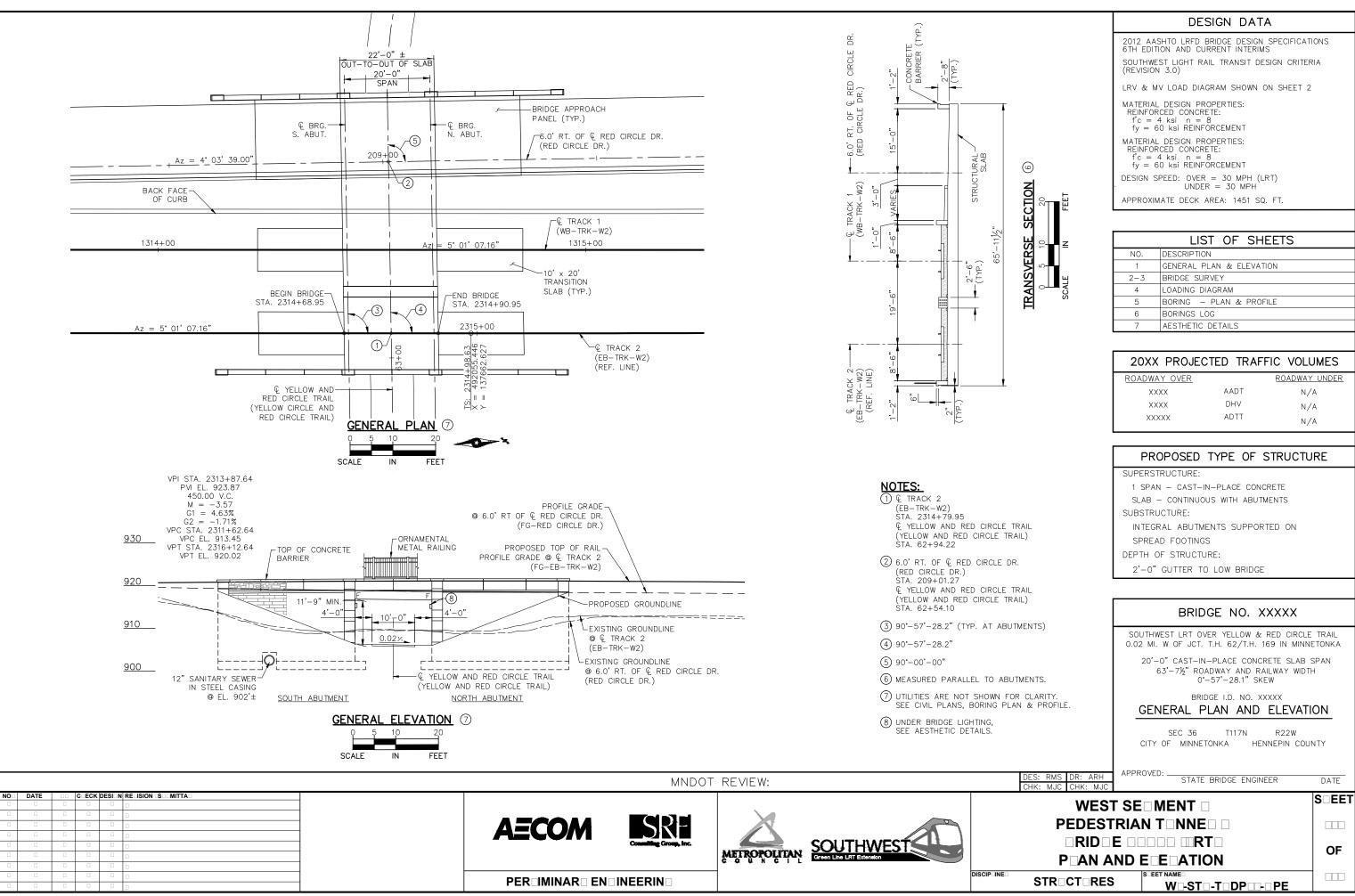
des

Ray A. Huber, PE Vice President-Principal Engineer

Reviewed by:

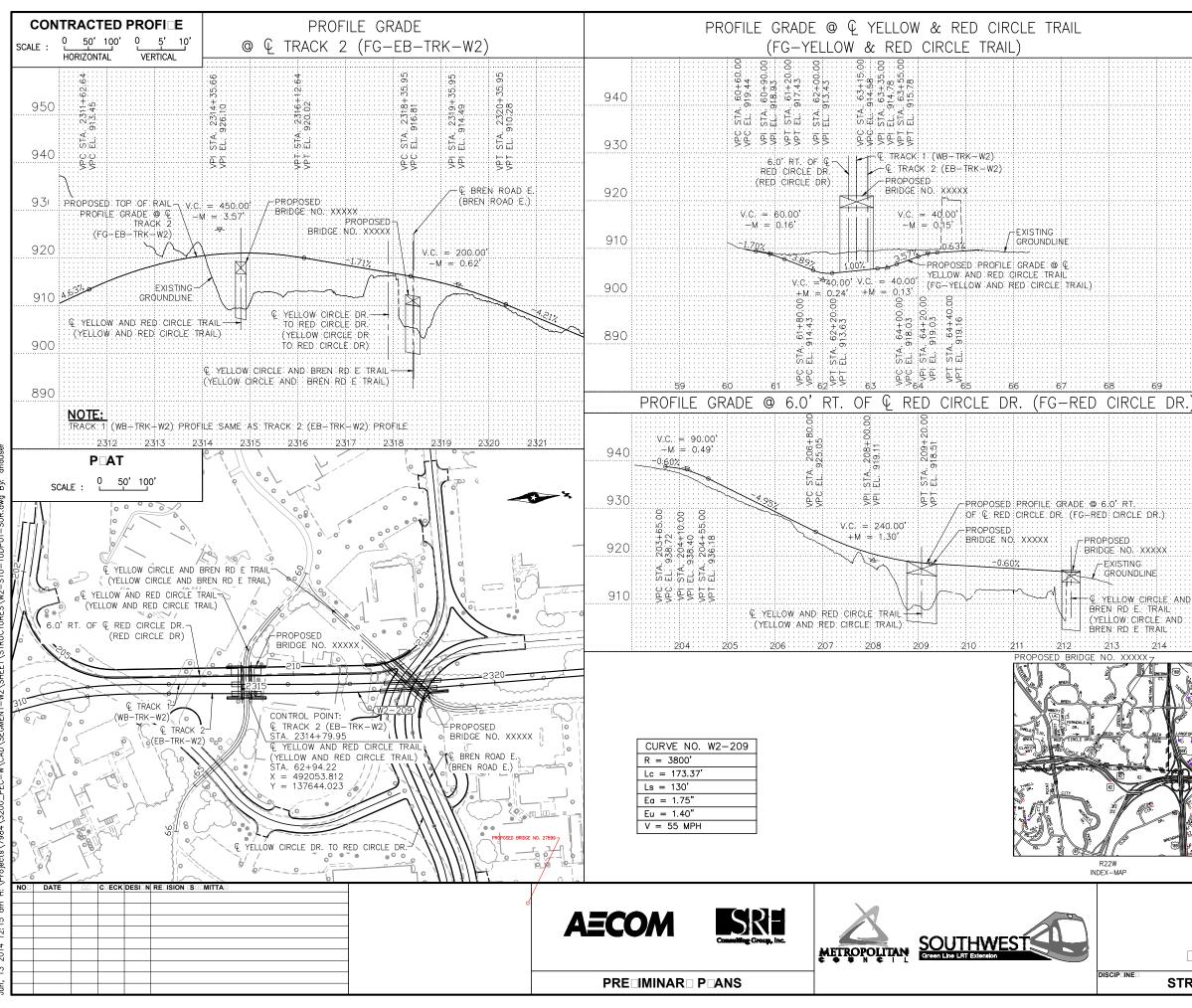
Matthew P. Ruble, PE **Principal Engineer**

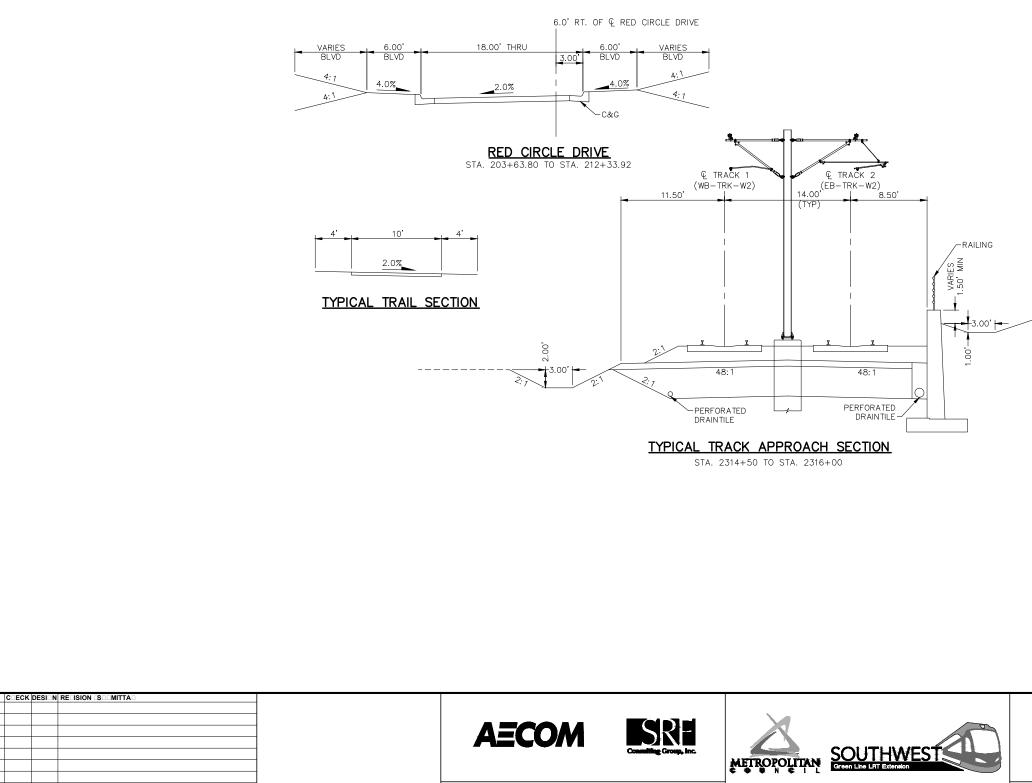

Appendix:


Boring Location Sketch Preliminary Engineering Plan and Profile Sheets for Opus Area Preliminary Engineering Plan and Profile Pages for Retaining Walls RTW-W212 and RTW-W213 Log of Boring Sheets (Borings 2000ST, 2001ST, 2002ST, 2003SS, 2004SS, 2005ST, 2006ST, 2020ST, 2021SB, 2022SB, 2023SB and 2024SW) Limit State Analysis Charts Publication No. FHWA IP-89-008 N Correlation Table MnDOT Standard Sheet No. 5-297.623. 1 of 4 (2' LL Surcharge, spread footing supported retaining walls) SPT Descriptive Terminology

Mr. Jeff Stewart: SPO C: Ms. Laura Amundson: SPO

APPENDIX




	LIST OF SHEETS
NO.	DESCRIPTION
1	GENERAL PLAN & ELEVATION
2-3	BRIDGE SURVEY
4	LOADING DIAGRAM
5	BORING – PLAN & PROFILE
6	BORINGS LOG
7	AESTHETIC DETAILS

FFIC VOLUMES

ROADWAY OVER
XXXX
XXXX
XXXXX

OCATION EN INEER SO SER ATIONS AT SPECIAL FEATURES: WATERFALLS, DAMS, FLOODS, ICE, DEBRIS, SLIDING BANKS, RECREATIONAL BOATING. 2. OTHER BRIDGES OR CULVERTS OVER THE SAME STREAM (PARTICULARLY STRUCTURES WHICH CARRY HIGH WATER WITHOUT OVERFLOW OF ROADWAY) : CHEN LOCATION, TYPE, LENGTH, HEIGHT ABOVE HIGH WATER, CROSS-SECTIONAL AREA ETC. 3. APPARENT HIGHWATER ELEVATION OBTAINED FROM OTHER DATA: APPROX. VELOCITY OF WATER AT TIME OF SURVEY. DATE STREAM OR DITCH DESIGNATION DRAINAGE ARE MAX. FLOOD ON RECORD MAXIMUM OBSERVED HIGHWATER ELEVATION DESIGN FLOOD (- YR. FREQ. - C.E.S DESIGN STAGE ELEVATION DESIGN MEAN VELOCITY THROUGH RUCTUR - F.P.S TOTAL STAGE INCREASE -FF LOW MEMBER AT OR ABOVE ELEVATION FLOWLINE ELEVATION -SNEW ANGLE -WATERWAY AREA REQUIRED BELOW ELEVATION SO FT AT RIGHT ANGLES TO CHANNEL BASIC FLOOD (100 XR. FREQ.) - C.F.S. STAGE FLEVATION - FT. TOTAL STAGE NCREASE - FT. MEAN VEROCITY THROUGH STRUCTURE - F.P.S ESTIMATED DEPTH OF PIER SCOUR = COUR CODE =-BRIDGE SURVEY SHEETS MADE FROM SURVEY PERFORMED BY RANI ENGINEERING MNDOT NAME: 2773A NORTHING (HEN. COUNTY COORDINATES): 137082.117 EASTING (HEN, COUNTY COORDINATES): 490527.817 BENCHMARK ELEVATION (NAVD88): 963.180 Q YELLOW CIRCLE AND BREN RD E. TRAIL MONUMENT DESCRIPTION: BRASS MONUMENT IN BRIDGE ABUTMENT LOCATION: IN EDEN PRAIRIE, 1.1 MILES EAST ALONG T.H. HWY 62 FROM JCT. OF (YELLOW: CIRCLE: AND T.H. 62 & I-494 BREN: RD :E : TRAIL : MONUMENT NAME: CONTROL POINT 6 NORTHING (HEN. COUNTY COORDINATES): 142016.680 EASTING (HEN. COUNTY COORDINATES): 489989.960 214 BENCHMARK ELEVATION (NAVD88): 932.956 MONUMENT DESCRIPTION: CAST IRON MONUMENT LOCATION: 0.2 MILES EAST ALONG SMETANA ROAD FROM JCT. OF SMETANA ROAD & NOLAN DR CIT OF MINNETONKA AT MILE POINT ON (T.H., C.S.A.H.,C.R. etc.) PROPOSED BRIDGE LOCATED 0.02 MILES WEST OF JCT. T.H. 62 & T.H. 169 SEC 36 TWP T117N R R22W CITY OF MINNETONKA COUNTY HENNEPIN DES: RMS DR: ARH CHK: MIC CHK: MI SEE WEST SE MENT PEDESTRIAN TONNED OF STR CT RES W-ST-TDP-SR

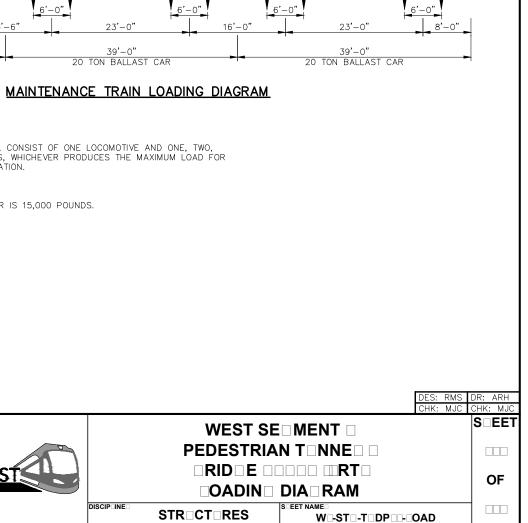
NO DATE

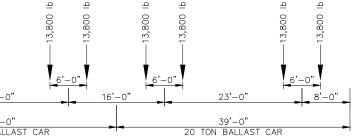
DISCIP

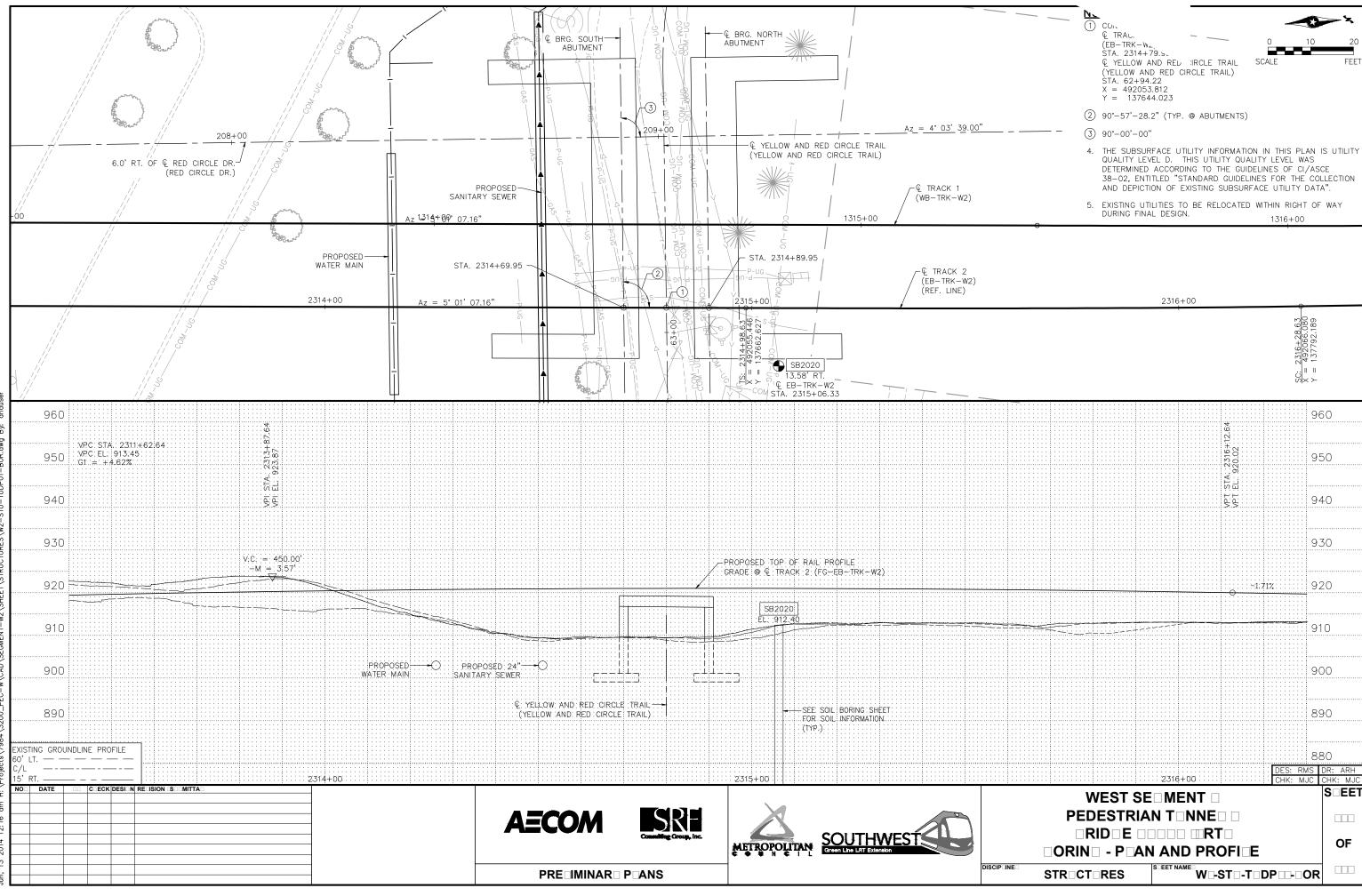
DR: ARH
CHK: MJC S⊓EET
0-22.
OF
_

LIGHT RAIL VEHICLE LOADING DIAGRAM

NOTES:

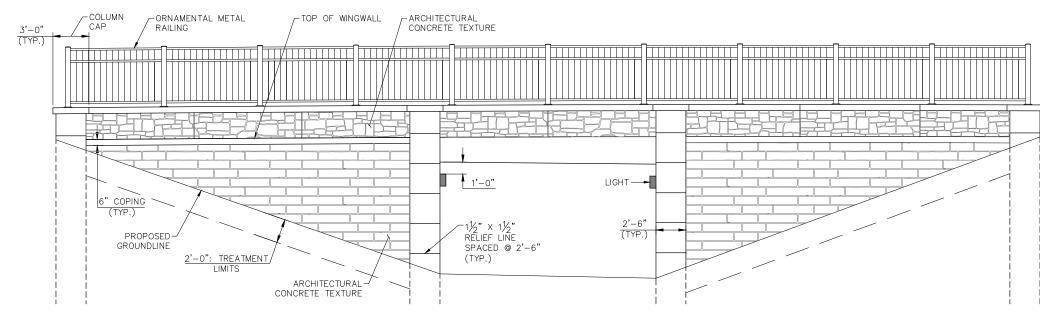

- 1. THE LRT TRAIN SHALL CONSIST OF EITHER ONE, TWO OR THREE CARS, WHICHEVER PRODUCES THE MAXIMUM LOAD FOR THE ELEMENT UNDER CONSIDERATION.
- 2. AXLE LOAD IN POUNDS.
- 3. LOADING DIAGRAM REPRESENTS MAXIMUM LOAD AT EACH TRUCK IN ACCORDANCE WITH SOUTHWEST LIGHT RAIL TRANSIT DESIGN CRITERIA (REVISION 2.0) FIGURE 8-2.

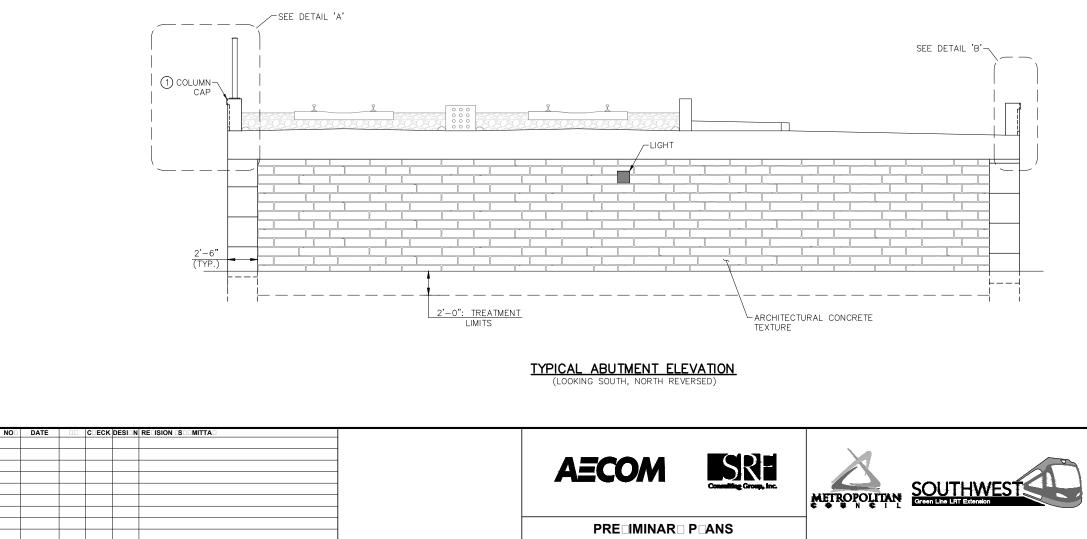

<u>_</u> Р Р ۵ م ٩ 000 000 000 3,800 20'-0" 7' - 6''15' - 6'23'-0" 35'-0" 50 TON LOCOMOTIVE 39'-0" 20 TON BALLAST CAR


NOTES:

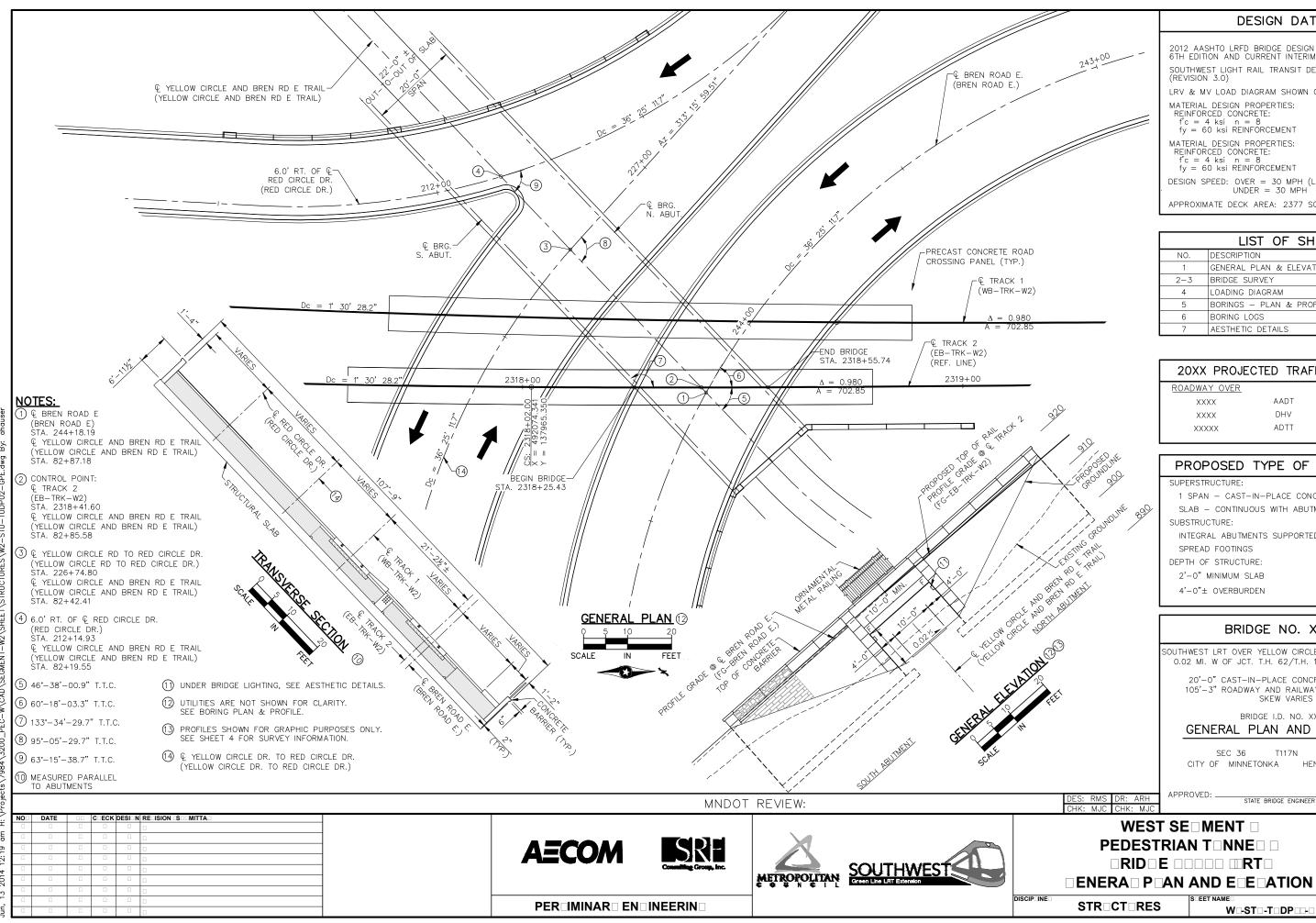
- 1. THE MAINTENANCE TRAIN SHALL CONSIST OF ONE LOCOMOTIVE AND ONE, TWO, THREE, OR FOUR BALLAST CARS, WHICHEVER PRODUCES THE MAXIMUM LOAD FOR THE ELEMENT UNDER CONSIDERATION.
- 2. AXLE LOAD IN POUNDS.
- 3. WEIGHT OF EMPTY BALLAST CAR IS 15,000 POUNDS.

NO	DATE	E CECK DESI N REISION SOMITTA				
			AECOM			
				Consulting Group, Inc.	SOUTHWEST	
					METROPOLITIAN Green Line LET Extension	
			PRE IMINA			DISCIP
			FRELIMINA			



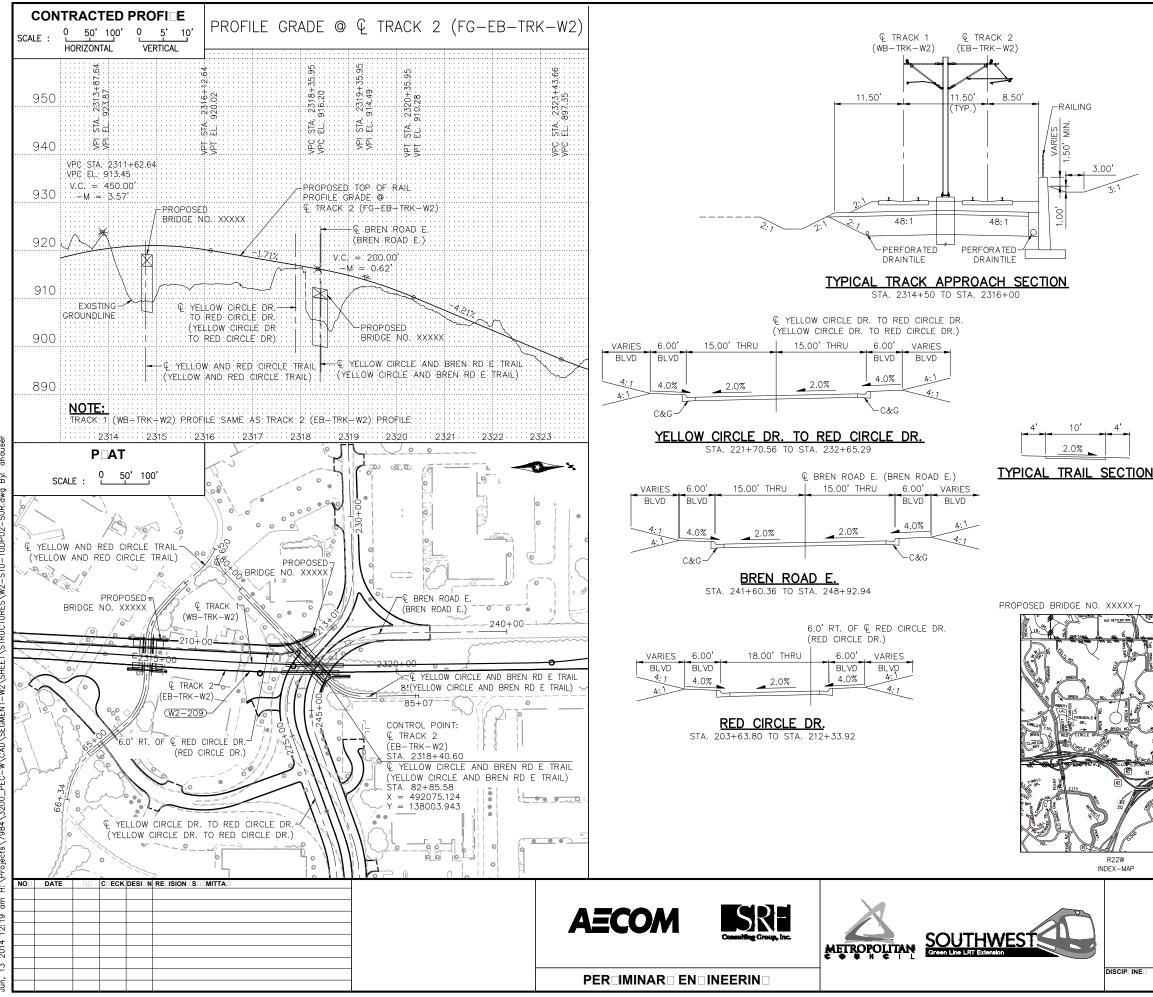


								· · · · · · · · · ·								· · · · · · · · · · ·	· · · · · · · · · · ·	
				2020ST Elevation: 912.4										· · · · · · · · · ·		· · · · · · · · · · · · ·		
915		Coh	SPT-N					· · · · · · · · · ·										
		(psf)	(BPF)	FILL: Clayey Sand, with Gravel, dark														
910				FILL: Silfy Sand, fine- to FILL: Silfy Sand, fine- to medium-grained, trace Gravel, brown,														
			7 11	- moist. FILL: Sandy Lean Clay, trace Gravel,														
905			8	brown and gray, wet. FILL: Clayey Sand, trace Gravel, gray;														
			35	Wet. FILL: Silty 'Sand, fine- to														
900			18	medium-grained, trace Gravel, brown, moist. FILL: Poorly Graded Sand with Silt,														
			7 12	- \fine- to coorse-grained, with Gravel,														
895				+ FILL: Clayey Sand, trace Gravel,														
			.25	FILL: Clayey Sand, fine- to medium-grained; trace Gravel, brown,												· · · · · · · · · · · · · · · · · · ·		
890				Fill: and gray, wet.										· · · · · · · · · ·		 		
885			.29	SILTY SAND, fine— to međium→grained, itrace Gravel, with Clay inclusions, — brown, moist, medium dense to dense.														
885			34								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·				· · · · · · · · · · · ·		
880																		
000			27	POORLY GRADED SAND with SILT, — fine— to medium-grained, with some _ Gravel, brown, moist to 41 feet then	· · · · · · · · ·													
875			24	waterbearing, medium dense to dense,														
			-24															
870			44															
				END OF BORING. Water observed at 41 feet with 49 11/2														
865				feet of hollow-stem auger in the ground. Water not abserved to cave-in depth of														
860				Boring: immediately; backfilled: with bentonite: grout. Bottom of Borehole: at 51: ft												· · · · · · · · · · · · · · · · · · ·		
				Bottom of Borehole at 51 ft										· · · · · · · · ·		· · · · · · · · · · · ·		
855																		
850																		
845																		
840		OTES:			· · · · · · · · · · · · · · · · · · ·													
		THE MATER	RIAL DESC	RIPTIONS ARE CLASSIFIED ACCORDING TO THE UNIFIED SOIL TEM. DETAILS ON THE SYSTEM CAN BE FOUND IN THE FADR														
835	111111111111	AND IN AS	TM:D2488	B. THE SOIL GROUP CATEGORY PER THE AASHTO SOIL														
ool o		DEOLON																
D DATE												•=						
						A		CO	M		SR				K			
										Ċ	something Grou	p, Inc.	MĘI	ROPO	LITAN		Ť S	
+													- **	₩ N	¶⊊ I -			DISC
							Р		IINAR		611							

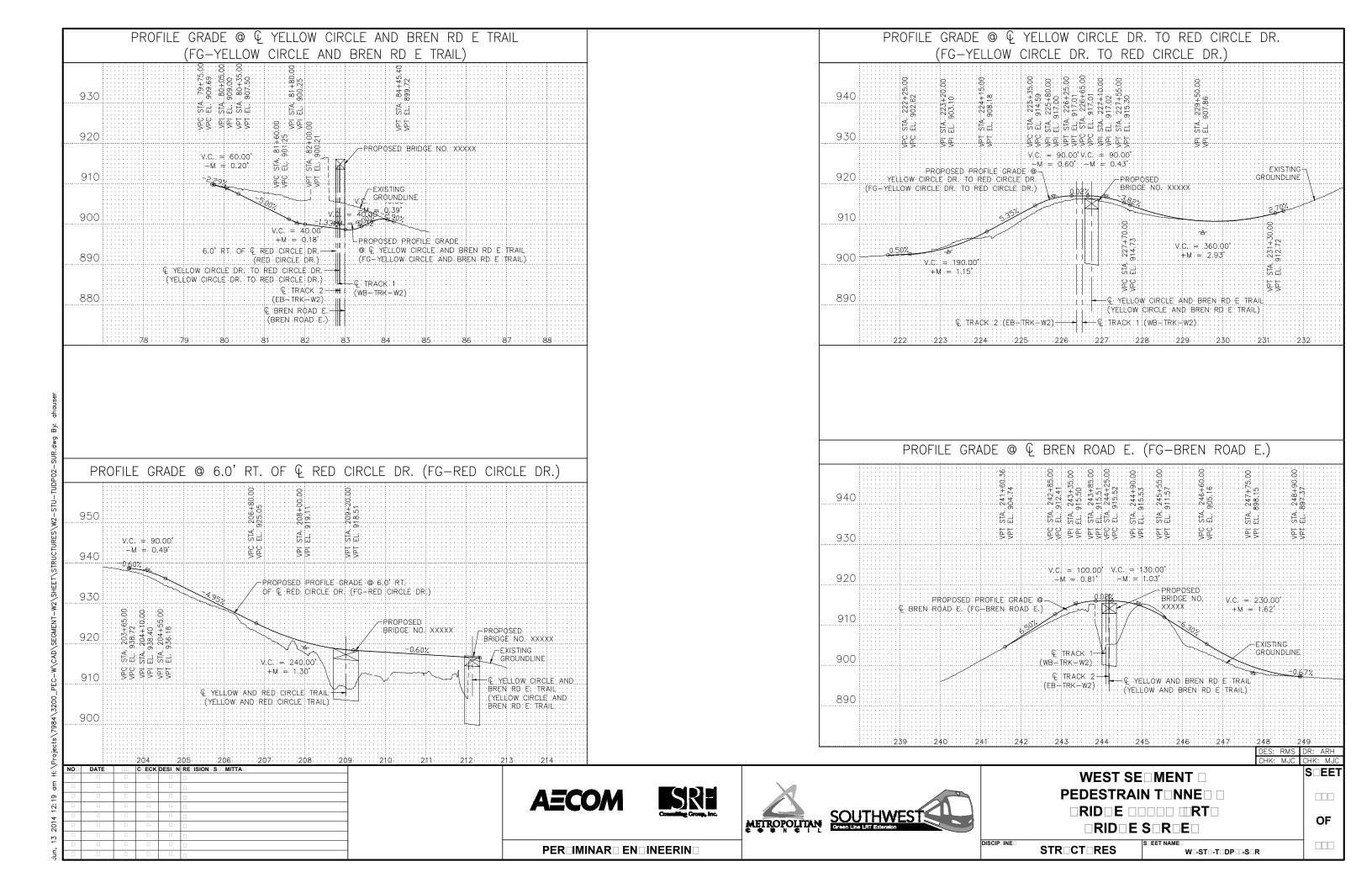


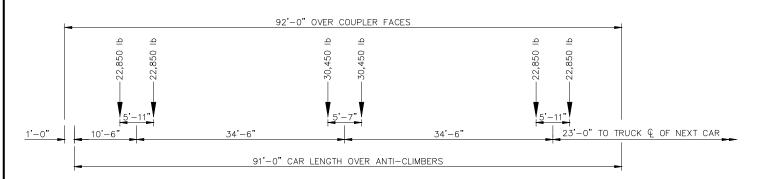
ARCHITECTURAL ELEVATION

1/2"


DESIGN DATA

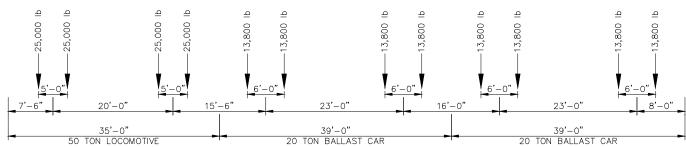
2012 AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS 6TH EDITION AND CURRENT INTERIMS SOUTHWEST LIGHT RAIL TRANSIT DESIGN CRITERIA (REVISION 3.0) LRV & MV LOAD DIAGRAM SHOWN ON SHEET 2 MATERIAL DESIGN PROPERTIES: $\begin{array}{l} \text{REINFORCED CONCRETE:} \\ \text{fc} = 4 \text{ ksi } n = 8 \\ \text{fy} = 60 \text{ ksi REINFORCEMENT} \end{array}$ MATERIAL DESIGN PROPERTIES: REINFORCED CONCRETE: f'c = 4 ksi n = 8fy = 60 ksi REINFORCEMENT DESIGN SPEED: OVER = 30 MPH (LRT) UNDER = 30 MPH APPROXIMATE DECK AREA: 2377 SQ. FT.


LIST OF SHEETS DESCRIPTION NO. GENERAL PLAN & ELEVATION 1 2-3 BRIDGE SURVEY LOADING DIAGRAM 4 5 BORINGS - PLAN & PROFILE 6 BORING LOGS AESTHETIC DETAILS 7


	20XX PROJ	ECTED TRAFF	IC VOLUMES
	ROADWAY OVER		ROADWAY UNDER
0	xxxx	AADT	N/A
219	XXXX	DHV	N/A
/ /	XXXXX	ADTT	N/A
019	L		•
IPPOPUNDUM	PROPOSED	TYPE OF S	STRUCTURE
1 2 PROUNT 00	SUPERSTRUCTURE:		
\sim $^{\circ}$ /		-IN-PLACE CONC	RETE
son the second		JOUS WITH ABUTM	
1, WOLH - 83	SUBSTRUCTURE:		
ENSTREAM PRAIL		MENTS SUPPORTED	ON
ETINGAIL	SPREAD FOOTING		
(EN E RAIL)	DEPTH OF STRUCT		
RUF W	2'-0" MINIMUM		
< (10 ⁵ k 17 ⁶ k) get even get under	4'-0"± OVERBU		
AC BILL			
Ret AD LI			
	וחם		
(A)		DGE NO. X	<u> </u>
^D O	SOUTHWEST LRT OVE	ER YELLOW CIRCLE	& BREN RD E TRAIL 59 IN MINNETONKA
0 ₀	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST-	ER YELLOW CIRCLE	& BREN RD E TRAIL 59 IN MINNETONKA ETE SLAB SPAN
9 ⁰⁰	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD	ER YELLOW CIRCLE ET. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY	& BREN RD E TRAIL 59 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES)
^b O	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD	ER YELLOW CIRCLE ET. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY SKEW VARIES	& BREN RD E TRAIL 59 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX
^b O	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD B GENERAL	ER YELLOW CIRCLE ET. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY SKEW VARIES RIDGE I.D. NO. XX PLAN AND	& BREN RD E TRAIL 59 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX ELEVATION
0 ₀	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD B <u>GENERAL</u> SEC 36	RIDGE I.D. NO. XX	& BREN RD E TRAIL 9 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX ELEVATION R22W
^b O	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD B <u>GENERAL</u> SEC 36	ER YELLOW CIRCLE T. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY SKEW VARIES IRIDGE I.D. NO. XX PLAN AND 5 T117N	& BREN RD E TRAIL 9 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX ELEVATION R22W
3 ⁰	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD B GENERAL SEC 36 CITY OF MINN	ER YELLOW CIRCLE T. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY SKEW VARIES IRIDGE I.D. NO. XX PLAN AND 5 T117N NETONKA HENI	& BREN RD E TRAIL 9 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX ELEVATION R22W NEPIN COUNTY
^b O	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD B GENERAL SEC 36 CITY OF MINN	ER YELLOW CIRCLE T. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY SKEW VARIES IRIDGE I.D. NO. XX PLAN AND 5 T117N	& BREN RD E TRAIL 9 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX ELEVATION R22W
DES: RMS DR: ARH CHK: MJC CHK: MJC	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD B GENERAL SEC 36 CITY OF MINN APPROVED:	ER YELLOW CIRCLE T. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY SKEW VARIES IRIDGE I.D. NO. XX PLAN AND 5 T117N NETONKA HENI STATE BRIDGE ENGINEER	& BREN RD E TRAIL 9 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX ELEVATION R22W NEPIN COUNTY
DES: RMS DR: ARH CHK: MJC CHK: MJC CHK: MJC CHK: MJC	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD B GENERAL SEC 36 CITY OF MINN APPROVED:	ER YELLOW CIRCLE T. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY SKEW VARIES RIDGE I.D. NO. XX3 PLAN AND 5 T117N NETONKA HENT STATE BRIDGE ENGINEER	& BREN RD E TRAIL S9 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX ELEVATION R22W NEPIN COUNTY DATE SDEET
DES: RMS DR: ARH CHK: MJC CHK: MJC WEST PEDEST	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD B GENERAL SEC 36 CITY OF MINN APPROVED: T SE MENT RIAN T NN	ER YELLOW CIRCLE T. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY SKEW VARIES RIDGE I.D. NO. XX; PLAN AND STI17N NETONKA HENN STATE BRIDGE ENGINEER E	& BREN RD E TRAIL 39 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX ELEVATION R22W NEPIN COUNTY DATE
DES: RMS DR: ARH CHK: MJC CHK: MJC WEST PEDEST	SOUTHWEST LRT OVE 0.02 MI. W OF JC 20'-0" CAST- 105'-3" ROAD B GENERAL SEC 36 CITY OF MINN APPROVED:	ER YELLOW CIRCLE T. T.H. 62/T.H. 16 -IN-PLACE CONCRI WAY AND RAILWAY SKEW VARIES RIDGE I.D. NO. XX; PLAN AND STI17N NETONKA HENN STATE BRIDGE ENGINEER E	& BREN RD E TRAIL 39 IN MINNETONKA ETE SLAB SPAN WIDTH (VARIES) XXX ELEVATION R22W NEPIN COUNTY DATE S EET

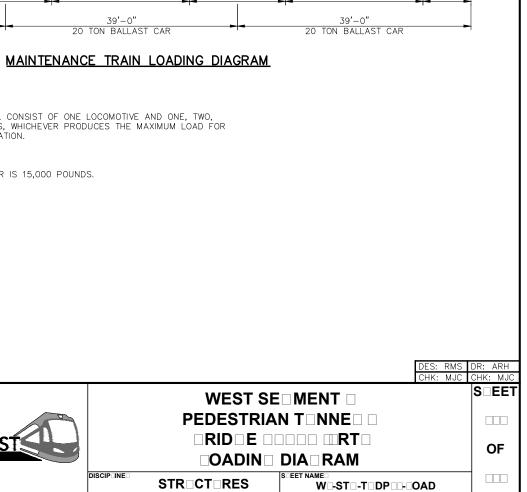
W-ST-TDP-PE

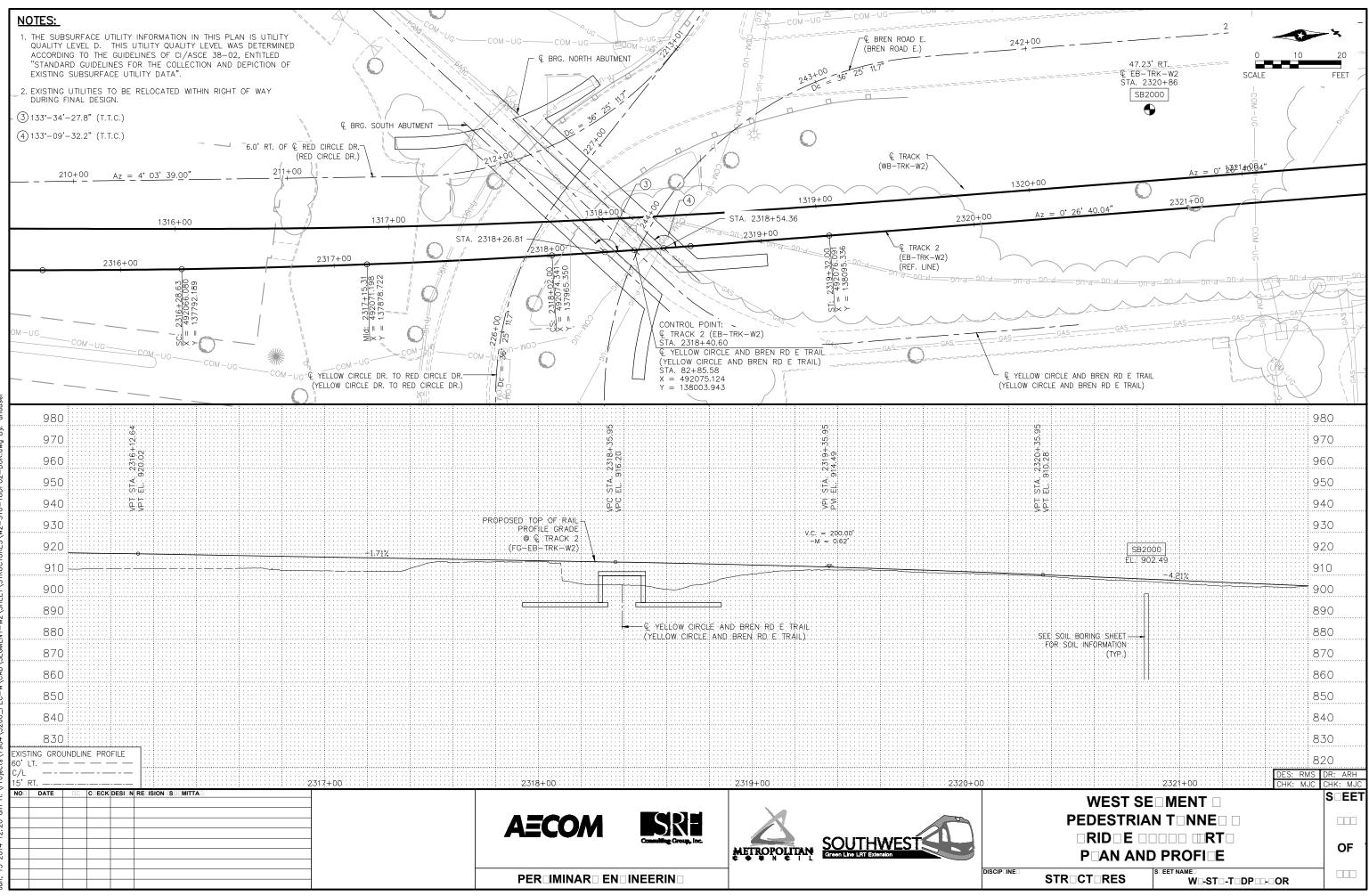
OCATION EN INEER SO SER ATIONS AT SPECIAL FEATURES: WATERFALLS, DAMS, FLOODS, ICE, DEBRIS, SLIDING BANKS, RECREATIONAL BOATING. 2. OTHER BRIDGES OR CULVERTS OVER THE SAME STREAM (PARTICULARLY STRUCTURES WHICH CARRY HIGH WATER WITHOUT OVERFLOW OF ROADWAY) : WEN LOCATION, TYPE, LENGTH, HEIGHT ABOVE HIGH WATER, CROSS-SECTIONAL AREA ETC. 3. APPARENT HIGHWATER ELEVATION OBTAINED FROM OTHER DATA: APPROX. VELOCITY OF WATER AT TIME OF SURVEY. DATE STREAM OR DITCH DESIGNATION DRAINAGE ARE MAX. FLOOD ON RECORD MAXIMUM OBSERVED HIGHWATER ELEVATION DESIGN FLOOD (-YR. FREQ. - C.E.S DESIGN STAGE ELEVATION DESIGN MEAN VELOCITY THROUGH - F.P.S. TOTAL STAGE INCREASE -LOW MEMBER AT OR ABOVE ELEVATION FLOWLINE FLEVATION SKEW ANGLE -WATERWAY AREA REQUIRED BE OW ELEVATION SQ.FT. AT RIGHT ANGLES TO CHANNEL BASIC FLOOD (100 X 🕻 FREQ.) - C.F.S STAGE FLEVATION - FT TOTAL STAGE NCREASE - FT. MEAN VELOCITY THROUGH STRUCTURE - F.P.S. ESTIMATED DEPTH OF PIER SCOUR = &COUR CODE =-BRIDGE SURVEY SHEETS MADE FROM SURVEY PERFORMED BY RANI ENGINEERING MNDOT NAME: 2773A NORTHING (HEN. COUNTY COORDINATES): 137082.117 EASTING (HEN. COUNTY COORDINATES): 490527.817 BENCHMARK ELEVATION (NAVD88): 963.180 MONUMENT DESCRIPTION: BRASS MONUMENT IN BRIDGE ABUTMENT LOCATION: IN EDEN PRAIRIE, 1.1 MILES EAST ALONG T.H. HWY 62 FROM JCT. OF T.H. 62 & I-494 MONUMENT NAME: CONTROL POINT 6 NORTHING (HEN. COUNTY COORDINATES): 142016.680 EASTING (HEN. COUNTY COORDINATES): 489989.960 BENCHMARK ELEVATION (NAVD88): 932.956 MONUMENT DESCRIPTION: CAST IRON MONUMENT LOCATION: 0.2 MILES EAST ALONG SMETANA ROAD FROM JCT. OF SMETANA ROAD & NOLAN DR **CIT** OF MINNETONKA AT MILE POINT ON (T.H., C.S.A.H.,C.R. etc.) PROPOSED BRIDGE LOCATED 0.02 MILES WEST OF JCT. T.H. 62 & T.H. 169 SEC 36 TWP T117N R R22W CITY OF MINNETONKA COUNTY HENNEPIN DES: RMS DR: ARH CHK: MIC CHK: MI S EET WEST SE MENT PEDESTRAIN T NNE OF STR CT RES W-ST-TDP-SR



LIGHT RAIL VEHICLE LOADING DIAGRAM

NOTES:

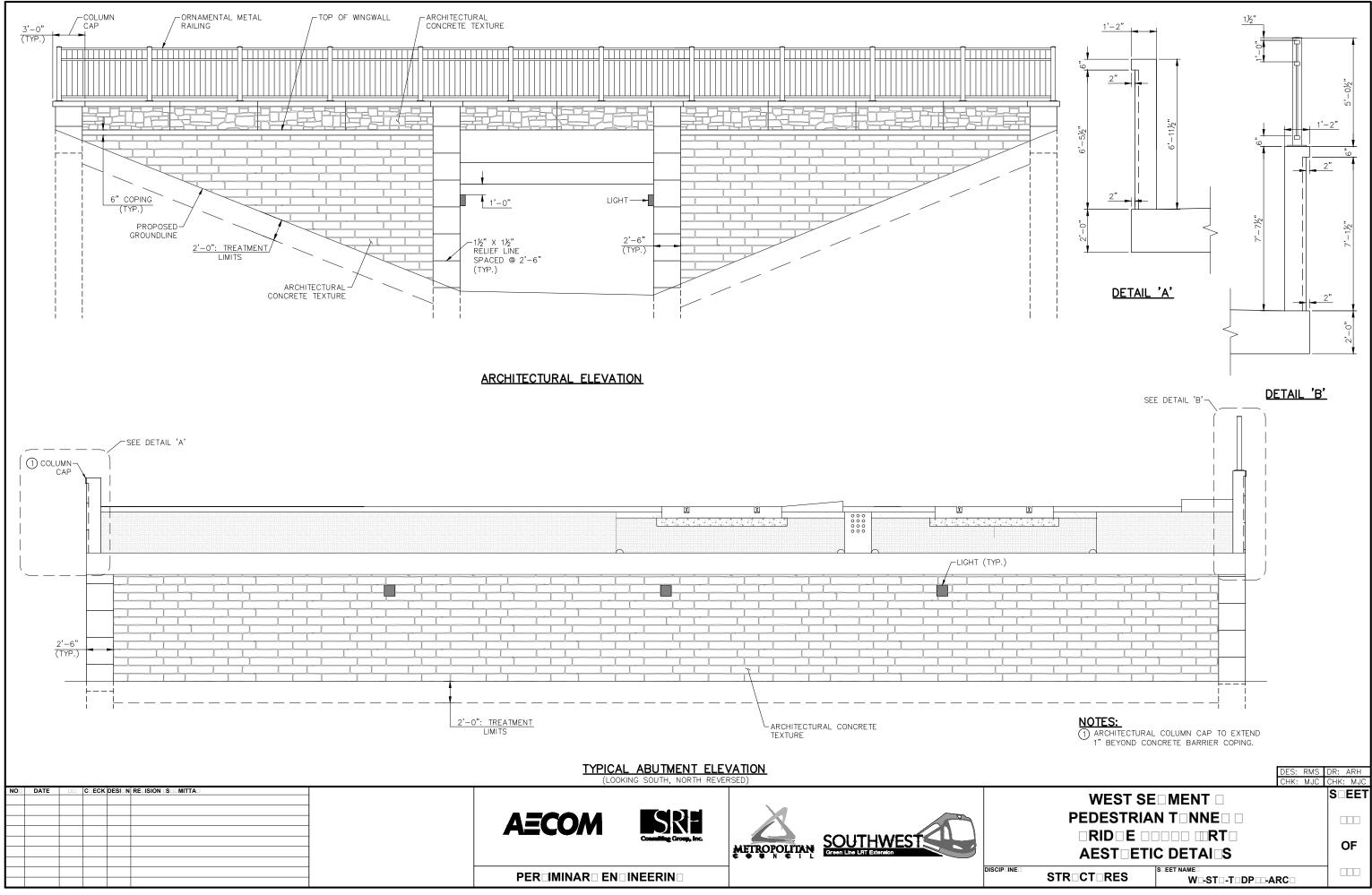

- 1. THE LRT TRAIN SHALL CONSIST OF EITHER ONE, TWO OR THREE CARS, WHICHEVER PRODUCES THE MAXIMUM LOAD FOR THE ELEMENT UNDER CONSIDERATION.
- 2. AXLE LOAD IN POUNDS.
- 3. LOADING DIAGRAM REPRESENTS MAXIMUM LOAD AT EACH TRUCK IN ACCORDANCE WITH SOUTHWEST LIGHT RAIL TRANSIT DESIGN CRITERIA (REVISION 2.0) FIGURE 8-2.

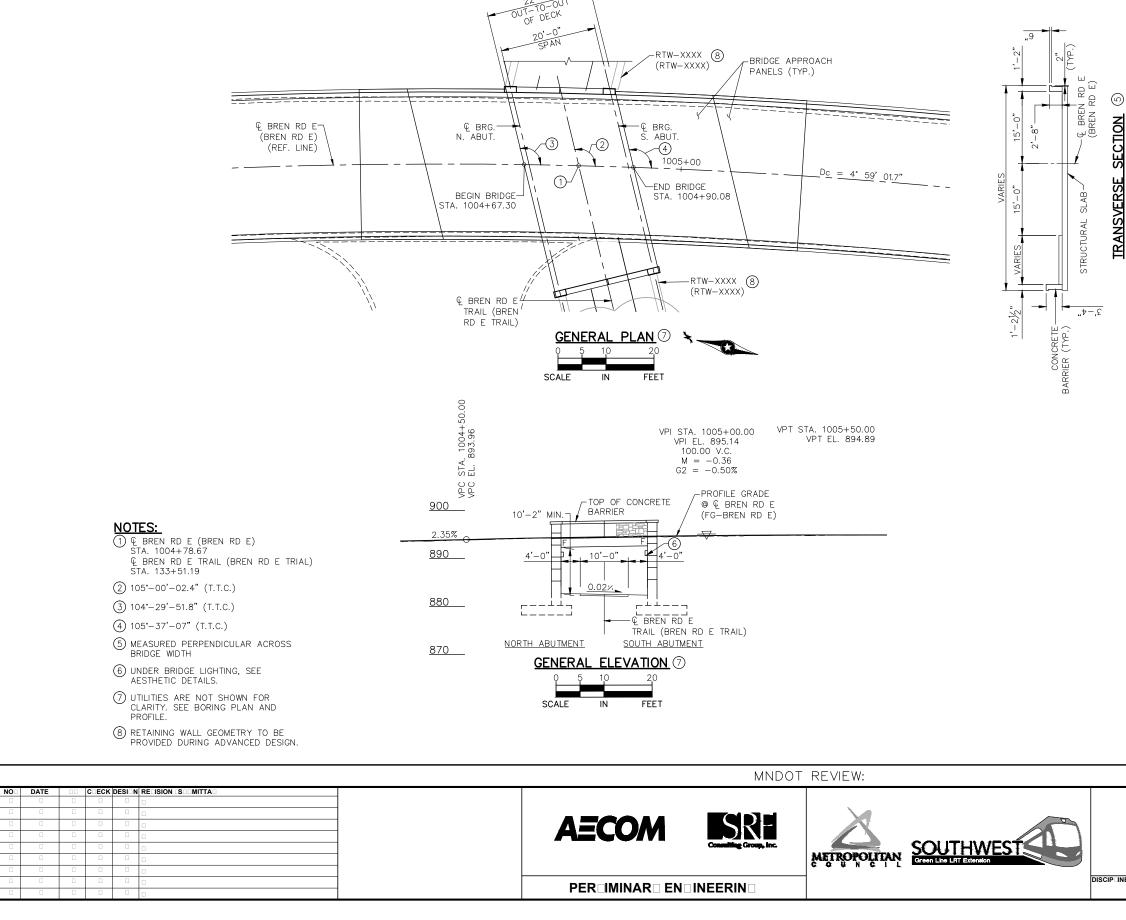


NOTES:

- 1. THE MAINTENANCE TRAIN SHALL CONSIST OF ONE LOCOMOTIVE AND ONE, TWO, THREE, OR FOUR BALLAST CARS, WHICHEVER PRODUCES THE MAXIMUM LOAD FOR THE ELEMENT UNDER CONSIDERATION.
- 2. AXLE LOAD IN POUNDS.
- 3. WEIGHT OF EMPTY BALLAST CAR IS 15,000 POUNDS.

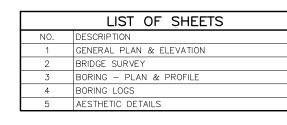
DATE				AECOM	METROPOLITAN	SOUTHWEST Green Line LAT Extension	
]				DISCIP




in, 13 2014 12:20 am H: \Projects\7984\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-TUDP02-BOR.dwg E

			AECOM	SRE utiling Group, Inc.	SOUTHWES Groen Line LAT Extension	
DATE						
	CLASSIFICATION SYSTEM. DETAIL	S ON THE SYSTEM CAN BE FOUND IN THE FADR GROUP CATEGORY PER THE AASHTO SOIL				
835	NOTES: THE MATERIAL DESCRIPTIONS A	RE CLASSIFIED ACCORDING TO THE UNIFIED SOIL				
840	118	END: OF BORING.* Bottom of Borehole at 61. ft				
845	CT					
850		- SILTY SAND, fine- to medium-grained, - trace Gravel, brown, wet, medium dense.				
855	15 24	 POORLY GRADED SAND, fine- to coarse-grained, trace Gravel, brown, waterbedring, medium dense. SILTY SAND, fine- to medium-grained, trace Gravel, brown, wet, medium 				
860	30 31					
865	25 27					
870	34 27	CLAYEY SAND, trace Gravel, with frequent Sand lenses, gray to 37 feet then brown, wet, very stiff to hard.				
	32 28	SILTY SAND, fine- to medium-grained, trace Gravel, gray, moist, medium dense to dense. With Lean Clay layers at 30 feet.				
875	20 22	CLAYEY SAND, trace Gravel, gray, wet, very stiff.				
880	22 22	SILTY SAND, fine— to medium—grained, with occasional Lean Clay lenses, trace Gravel, brown to 22 feet then gray, wet, medium dense.				
885	27 26	POORLY GRADED SAND with SILT, fine- to medium-grained, with Gravel and Cobbles, brown, moist to wet, medium dense.				
895 890	7 9	FILL: Sandy Lean Clay, trace Gravel, - brown, wet.				
900	10 11	FILL: Silty Sand, fine- to medium-grained, with Lean Clay lenses, brown, moist. FILL: Sandy Lean Clay, brown, wet.				
	Coh SPT-N (psf) (BPF)	FILL: Lean Clay, dark brown, frozen.				
905		2000SW Elevation 902.5				

in, 13 2014 12:21 am H:\Projects\7984\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-TUDP02-ARCH.dwg By


 DES: RMS_DR: ARH
CHK: MJC_CHK: MJC
 APPROVED:
 STATE BRIDGE ENGINEER
 DATE

 WEST SE
 MENT
 SEET

 PEDESTRIAN TONNE
 Image: Section of the section of the

DESIGN DATA

2012 AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS 6TH EDITION AND CURRENT INTERIMS SOUTHWEST LIGHT RAIL TRANSIT DESIGN CRITERIA (REVISION 3.0) HL-93 LIVE LOADING MATERIAL DESIGN PROPERTIES: REINFORCED CONCRETE: f'c = 4 ksi n = 8fy = 60 ksi REINFORCEMENTMATERIAL DESIGN PROPERTIES: REINFORCED CONCRETE: f'c = 4 ksi n = 8fy = 60 ksi REINFORCEMENTDESIGN SPEED: OVER = 30 MPH (LRT) UNDER = 30 MPH APPROXIMATE DECK AREA: 929 SQ. FT.

20XX PROJECTED TRAFFIC VOLUMES

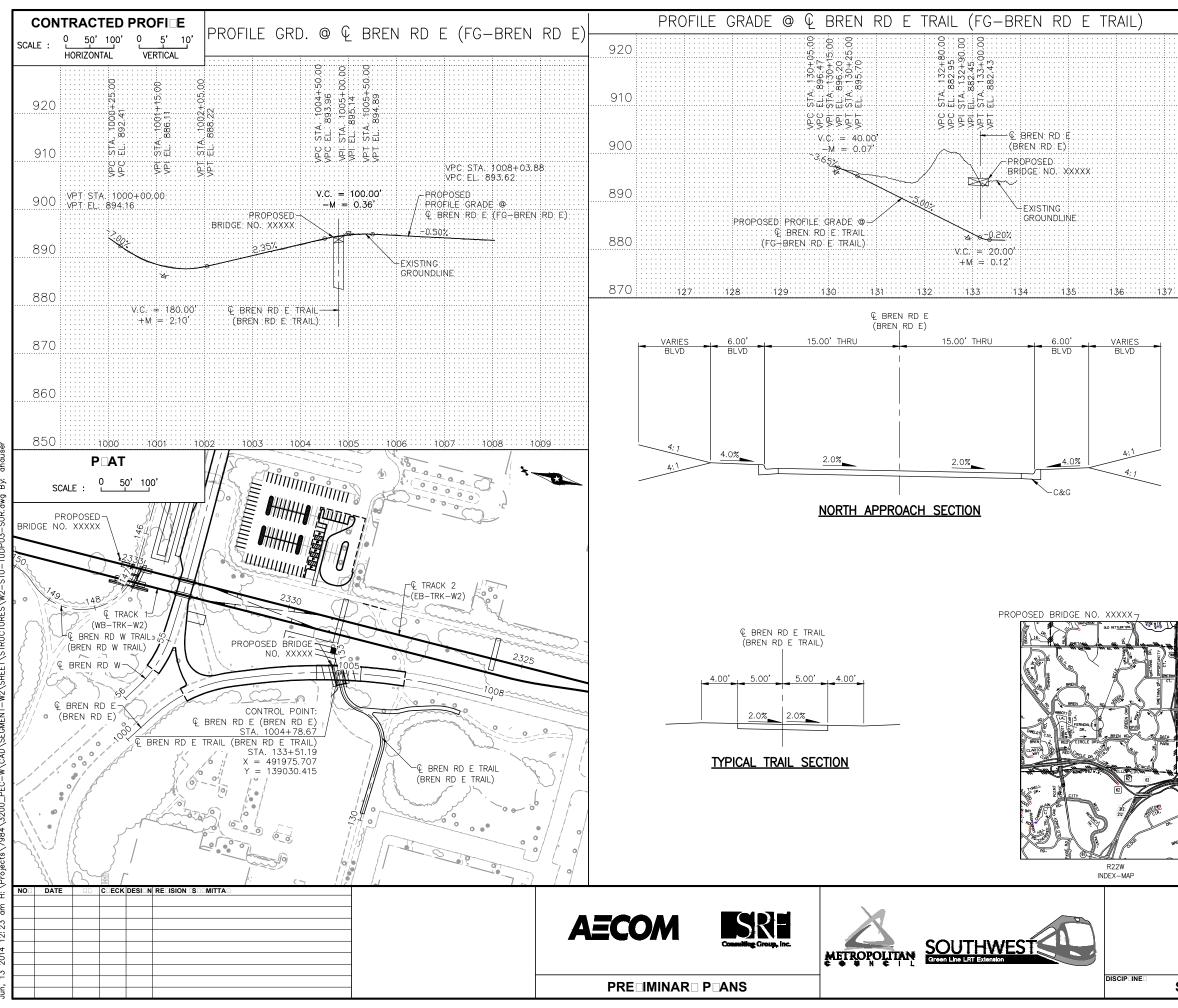
	ROADWAY UNDER
AADT	N/A
DHV	N/A
ADTT	N/A
	DHV

PROPOSED TYPE OF STRUCTURE

SUPERSTRUCTURE: 1 SPAN – CAST-IN-PLACE CONCRETE SLAB – CONTINUOUS WITH ABUTMENTS SUBSTRUCTURE: INTEGRAL ABUTMENTS SUPPORTED ON SPREAD FOOTINGS DEPTH OF STRUCTURE: 2'-0" GUTTER TO LOW BRIDGE

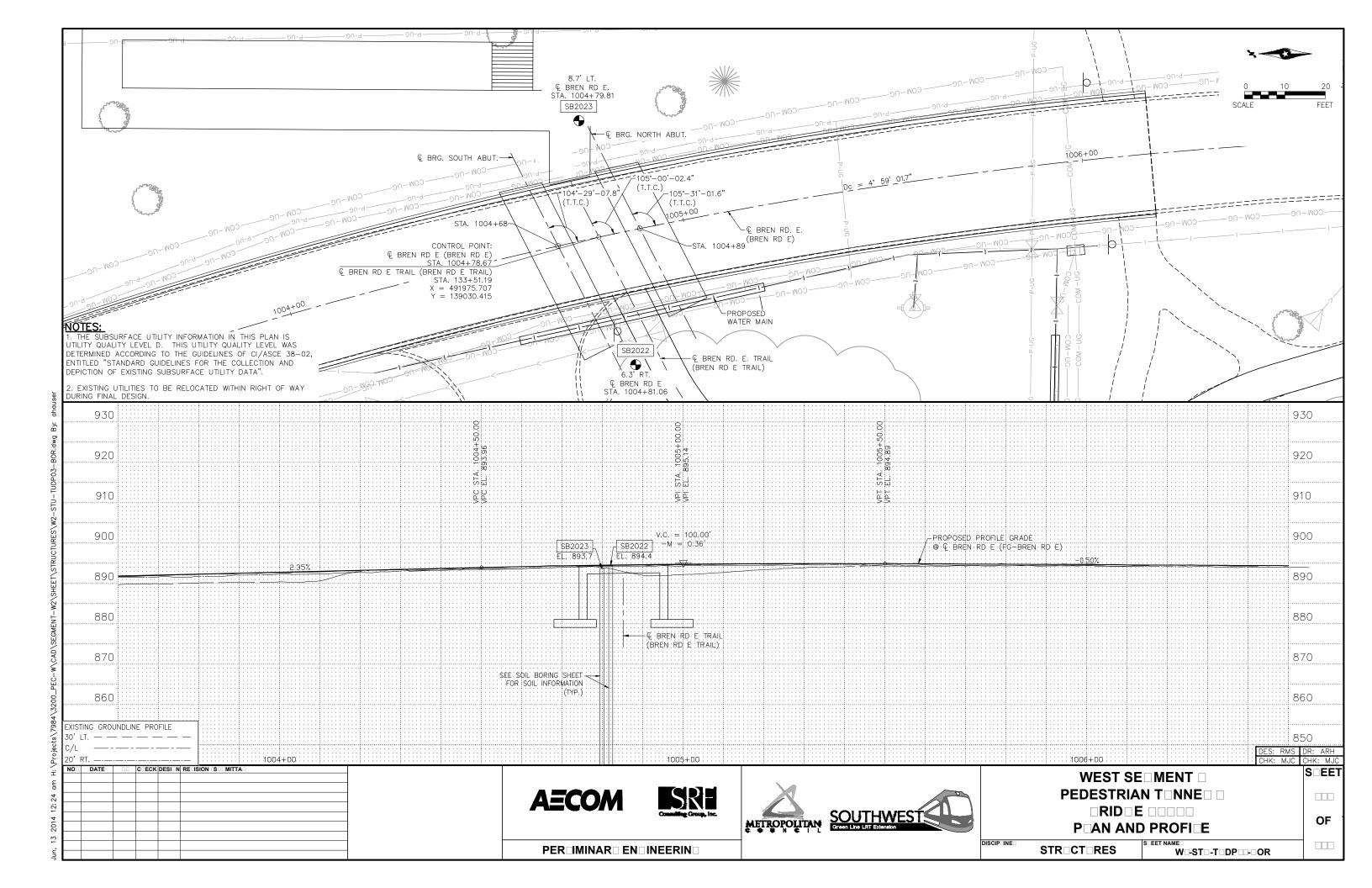
BRIDGE NO. XXXXX

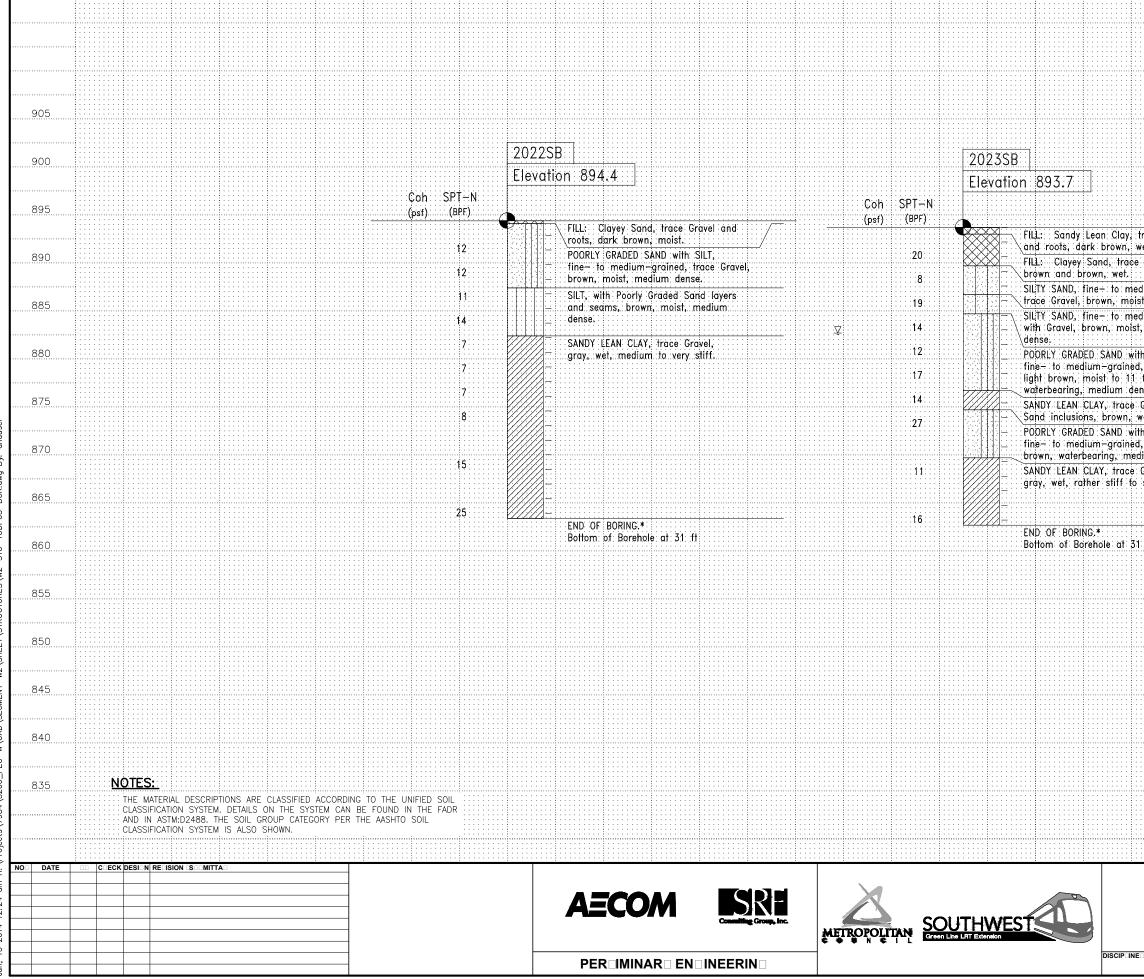
SOUTHWEST LRT OVER BREN RD. E TRAIL 0.02 MI. W OF JCT. T.H. 62/T.H. 169 IN MINNETONKA


20'-0" CAST-IN-PLACE CONCRETE SLAB SPAN 30'-0" ROADWAY WIDTH SKEW VARIES

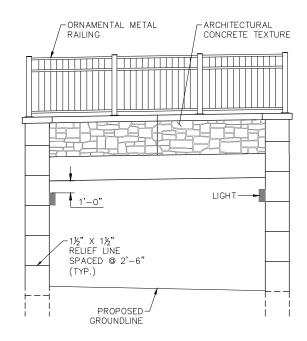
BRIDGE I.D. NO. XXXXX

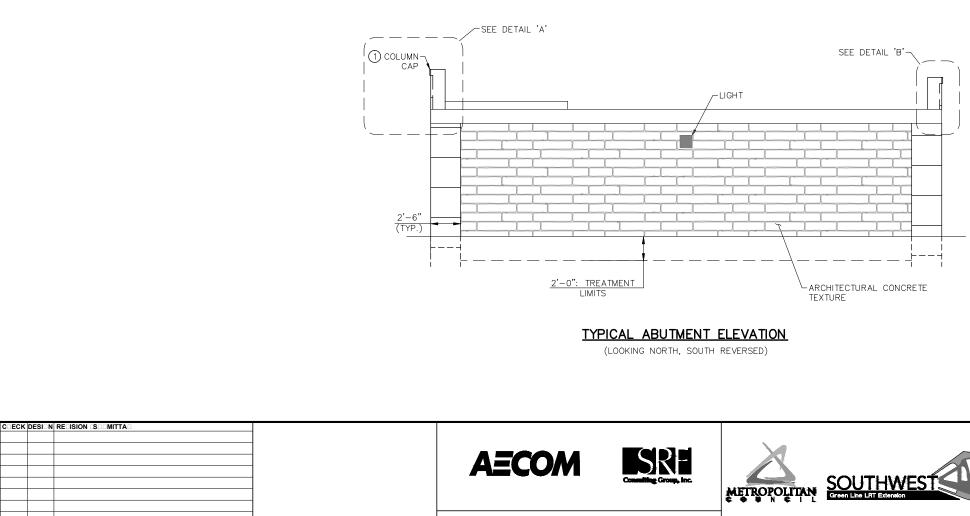
GENERAL PLAN AND ELEVATION


SEC 36 T117N R22W CITY OF MINNETONKA HENNEPIN COUNTY



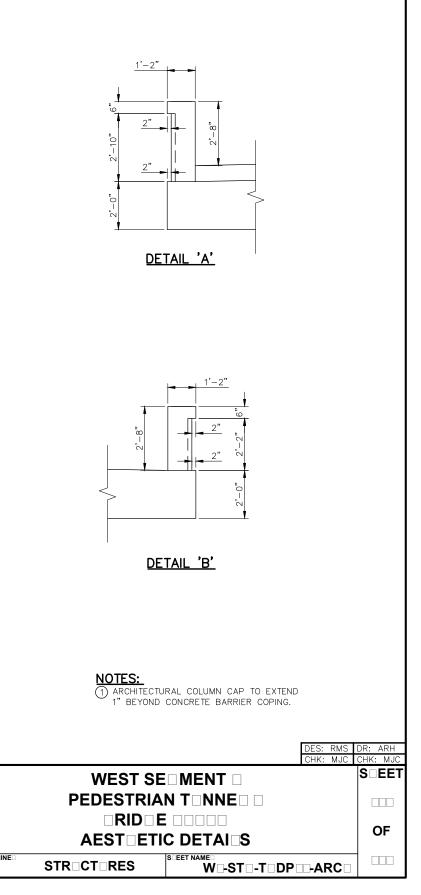
Jun, 13 2014 12:23 am H:\Projects\7984\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-TUDP03-SUR.dwg

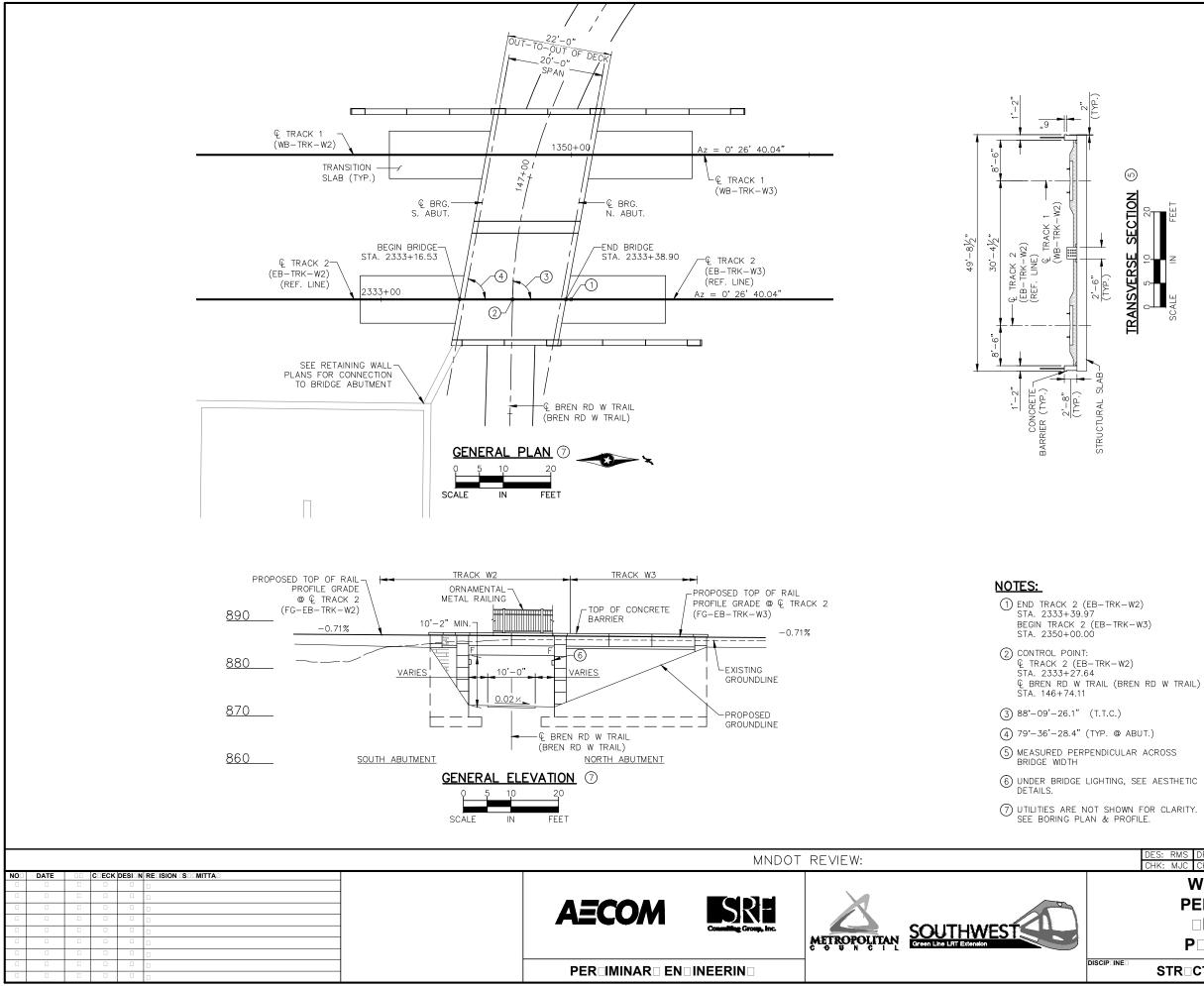

OCATION EN INEER SO SER ATIONS AT SPECIAL FEATURES: WATERFALLS, DAMS, FLOODS, ICE, DEBRIS, SLIDING BANKS, RECREATIONAL BOATING. 2. OTHER BRIDGES OR CULVERTS OVER THE SAME STREAM (PARTICULARLY STRUCTURES WHICH CARRY HIGH WATER WITHOUT OVERFLOW OF ROADWAY) : GIVEN LOCATION, TYPE, LENGTH, HEIGHT ABOVE HIGH WATER, CROSS-SECTIONAL AREA ETC. 3. APPARENT HIGHWATER ELEVATION OBTAINED FROM OTHER DATA: APPROX. VELOCITY OF WATER AT TIME OF SURVEY. DATE STREAM OR DITCH DESIGNATION DRAINAGE ARE MAX. FLOOD ON RECORD MAXIMUM OBSERVED HIGHWATER ELEVATION DESIGN FLOOD (- YR. FREQ. - C.F.S DESIGN STAGE ELEVATION DESIGN MEAN VELOCITY THROUGH RUCTURE – F.P.S. TOTAL STAGE INCREASE -F LOW MEMBER AT OR ABOVE ELEVATION FLOWLINE ELEVATION -SREW ANGLE -WATERWAY AREA REQUIRED BELOW ELEVATION SQ.FT. AT RIGHT ANGLES TO CHANNEL BASIC FLOOD (100 XR. FREQ.) - C.F.S STAGE FLEVATION - FT. TOTAL STAGE NCREASE MEAN VELOCITY THROUGH STRUCTURE – F.P.S. ESTIMATED DEPTH OF PIER SCOUR = COUR CODE =-BRIDGE SURVEY SHEETS MADE FROM SURVEY PERFORMED BY RANI ENGINEERING MNDOT NAME: 2773A NORTHING (HEN. COUNTY COORDINATES): 137082.117 EASTING (HEN. COUNTY COORDINATES): 490527.817 BENCHMARK ELEVATION (NAVD88): 963.180 MONUMENT DESCRIPTION: BRASS MONUMENT IN BRIDGE ABUTMENT LOCATION: IN EDEN PRAIRIE, 1.1 MILES EAST ALONG T.H. HWY 62 FROM JCT. OF T.H. 62 & I-494 Ele Fle MONUMENT NAME: CONTROL POINT 6 NORTHING (HEN. COUNTY COORDINATES): 142016.680 EASTING (HEN. COUNTY COORDINATES): 489989.960 BENCHMARK ELEVATION (NAVD88): 932.956 MONUMENT DESCRIPTION: CAST IRON MONUMENT LOCATION: 0.2 MILES EAST ALONG SMETANA ROAD FROM JCT. OF SMETANA ROAD & NOLAN DR **CIT** OF MINNETONKA AT MILE POINT ON (T.H., C.S.A.H.,C.R. etc.) PROPOSED BRIDGE LOCATED 0.02 MILES WEST OF JCT. T.H. 62 & T.H. 169 SEC 36 TWP T117N R R22W CITY OF MINNETONKA COUNTY HENNEPIN DES: RMS DR: ARH CHK, WIC CHK, WI S EET WEST SE MENT PEDESTRIAN T NNE OF STR CT RES W-ST-TDP-SR



un, 13 2014 12:24 am H: \Projects\7984\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-TUDP03-BOR.dwg

ravel, ith ravel, re; PE	ED	ES □F	STI Ric	RI/)□	AN E I	T							S: f		880 875 870 865 860 855 850 845 840 835 0R: ARH CHK: MJC S EET OF
ith. ravel, e;															875 870 865 860 855 850 845 840 835 840 835
ith ravel,															875 870 865 860 855 850 845 840 835 835
ith ravel,															875 870 865 860 855 850 845 840
ith ravel,															875 870 865 860 855 850 845 840
ith ravel,															875 870 865 860 855 850 845
ith ravel,															875 870 865 860 855 850 845
ith ravel,															875 870 865 860 855 850
ith ravel,															875 870 865 860 855
ith ravel,] 														875 870 865 860 855
ith ravel,															875 870 865 860
ith ravel,] 														875 870 865
ith ravel,] 														875 870 865
ith ravel,] 														875 870
ith ravel,															875
ith ravel,]														875
]														
	ſ													· · · · · · · · · · · · · · · · · · ·	880
]								· · · · ·						880
	::/:		::::									:::		1.1	
ined,	/														885
	/														
· · · · · · ·	/		+ 									· · · ·		· · · · · · · · · · · · · · · · · · ·	890
															895
															900
												· · · ·		•	
· · · · · · · · ·									· · · · ·						905
· · · · · · · · · ·															
	/el Jark ined,	Jark ined,	lark	dark	Jark	lark	lark ined,	lork	lark	lark	lark	lark	lark	lark	lark




ARCHITECTURAL ELEVATION

NO DATE

PER IMINAR EN INEERIN

DESIGN DATA

2012 AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS 6TH EDITION AND CURRENT INTERIMS SOUTHWEST LIGHT RAIL TRANSIT DESIGN CRITERIA (REVISION 3.0) LRV & MV LOAD DIAGRAM SHOWN ON SHEET 2 MATERIAL DESIGN PROPERTIES: REINFORCED CONCRETE: fc = 4 ksi n = 8fy = 60 ksi REINFORCEMENTMATERIAL DESIGN PROPERTIES: REINFORCED CONCRETE: f'c = 4 ksi n = 8 fy = 60 ksi REINFORCEMENT DESIGN SPEED: OVER = 30 MPH (LRT) UNDER = 30 MPH

APPROXIMATE DECK AREA: 1112 SQ. FT.

LIST OF SHEETS

NO.	DESCRIPTION
1	GENERAL PLAN & ELEVATION
2	BRIDGE SURVEY
3	LOADING DIAGRAM
4	BORING – PLAN & PROFILE
5	BORING LOGS
6	AESTHETIC DETAILS

20XX PROJECTED TRAFFIC VOLUMES

ROADWAY OVER		ROADWAY UNDER
XXXX	AADT	N/A
XXXX	DHV	N/A
XXXXX	ADTT	N/A

PROPOSED TYPE OF STRUCTURE

SUPERSTRUCTURE: 1 SPAN - CAST-IN-PLACE CONCRETE SLAB - CONTINUOUS WITH ABUTMENTS SUBSTRUCTURE: INTEGRAL ABUTMENTS SUPPORTED ON SPREAD FOOTINGS DEPTH OF STRUCTURE:

2'-0" GUTTTER TO LOW BRIDGE

BRIDGE NO. XXXXX

SOUTHWEST LRT OVER BREN RD W TRAIL 0.02 MI. W OF JCT. T.H. 62/T.H. 169 IN MINNETONKA

20'-0" CAST-IN-PLACE CONCRETE SLAB SPAN 47'-4¹" RAILWAY WIDTH 10°-23'-31.6" SKEW

BRIDGE I.D. NO. XXXXX

GENERAL PLAN AND ELEVATION

SEC 36 T117N CITY OF MINNETONKA

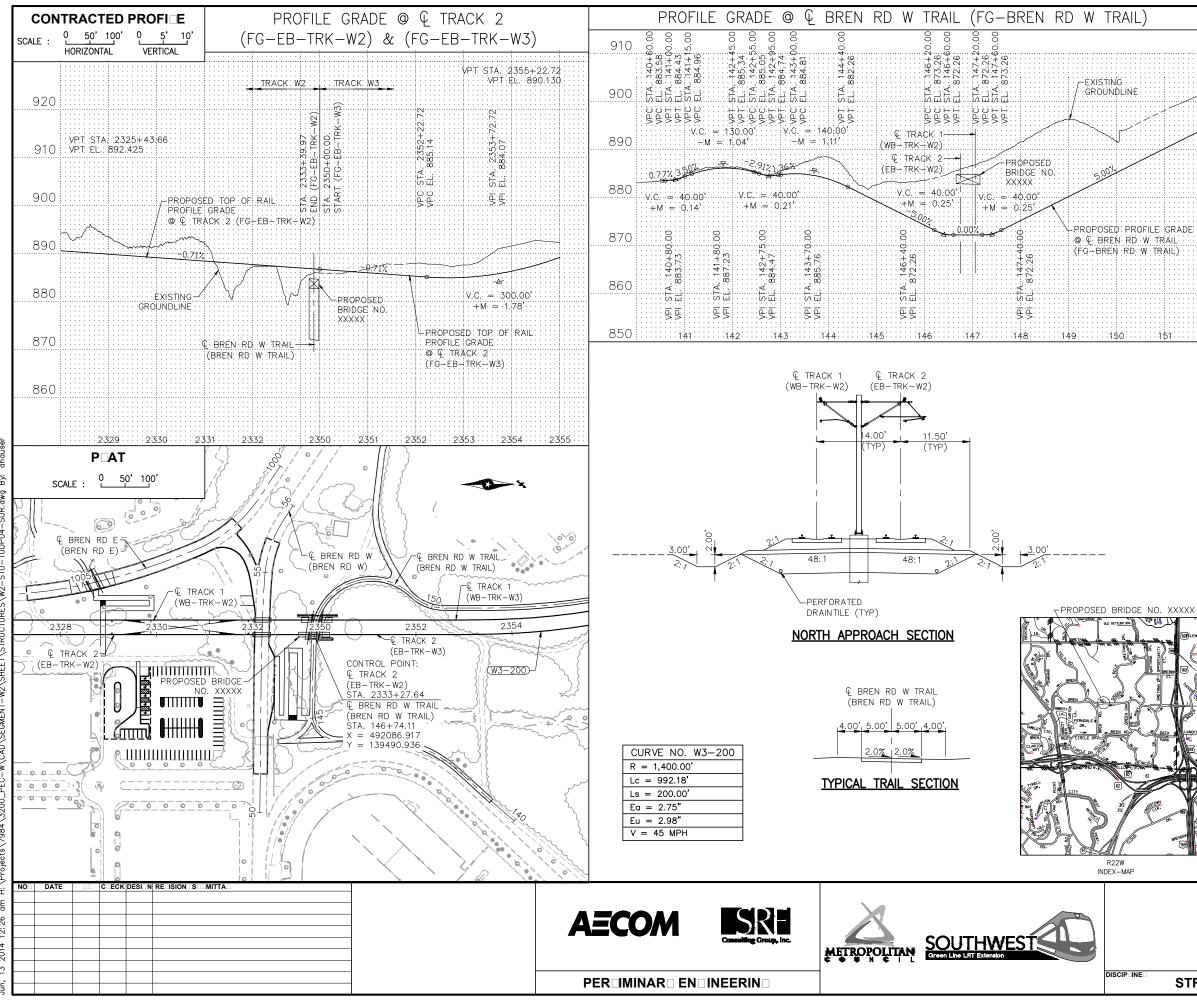
R22W HENNEPIN COUNTY

DES: RMS DR: ARH CHK: MJC CHK: MJC

DATE

SEET

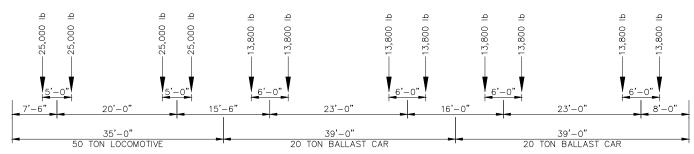
OF


P AN AND E E ATION FFT NAME

PEDESTRIAN T NNE

STR CT RES	SOE

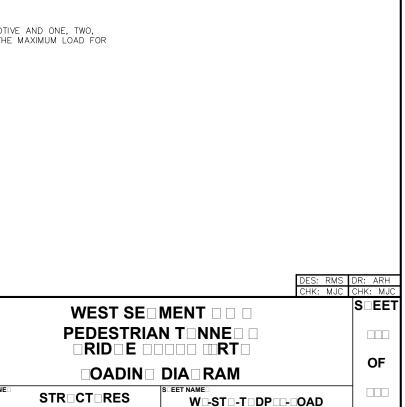
W-ST-TDP-PE

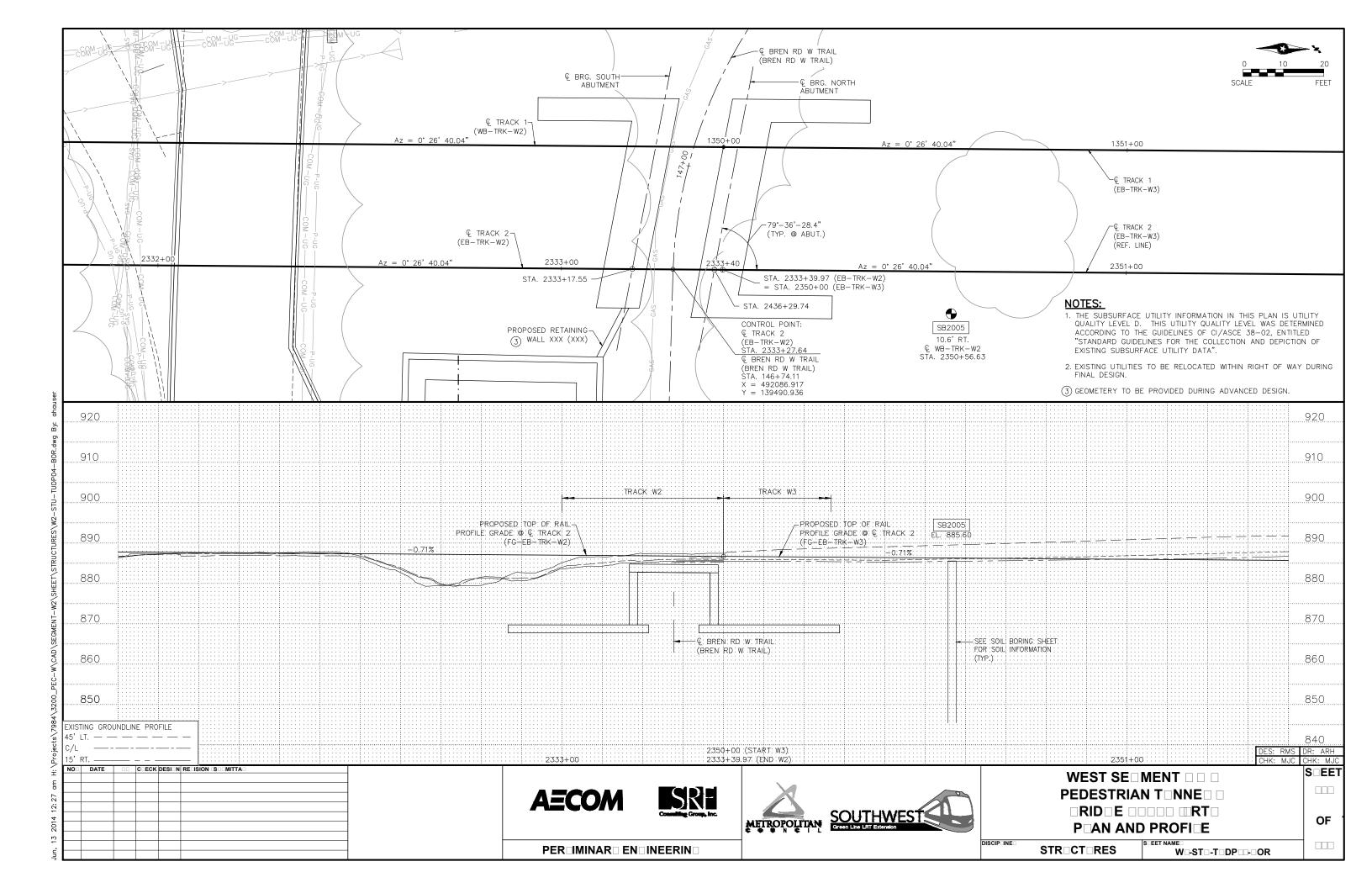

OCATION EN INEER SO SER ATIONS AT SPECIAL FEATURES: WATERFALLS, DAMS, FLOODS, ICE, DEBRIS, SLIDING BANKS, RECREATIONAL BOATING. 2. OTHER BRIDGES OR CULVERTS OVER THE SAME STREAM (PARTICULARLY STRUCTURES WHICH CARRY HIGH WATER WITHOUT OVERFLOW OF ROADWAY) : CHEN LOCATION, TYPE, LENGTH, HEIGHT ABOVE HIGH WATER, CROSS-SECTIONAL AREA ETC. 3. APPARENT HIGHWATER ELEVATION OBTAINED FROM OTHER DATA: APPROX. VELOCITY OF WATER AT TIME OF SURVEY. DATE STREAM OR DITCH DESIGNATION DRAINAGE ARE MAX. FLOOD ON RECORD MAXIMUM OBSERVED HIGHWATER ELEVATION 151 DESIGN FLOOD (-YR. FREQ. - C.F.S DESIGN STAGE ELEVATION DESIGN MEAN VELOCITY THROUGH RUCTURE - F.P.S. TOTAL STAGE INCREASE -FI LOW MEMBER AT OR ABOVE ELEVATION FLOWLINE ELEVATION -SNEW ANGLE -WATERWAY AREA REQUIRED BELOW ELEVATION SQ.FT. AT RIGHT ANGLES TO CHANNEL BASIC FLOOD (100 JR. FREQ.) - C.F.S STAGE FLEVATION - FT. TOTAL STAGE NCREASE MEAN VELOCITY THROUGH STRUCTURE - F.P.S ESTIMATED DEPTH OF PIER SCOUR = &COUR CODE =-BRIDGE SURVEY SHEETS MADE FROM SURVEY PERFORMED BY RANI ENGINEERING MNDOT NAME: 2773A NORTHING (HEN. COUNTY COORDINATES): 137082.117 EASTING (HEN. COUNTY COORDINATES): 490527.817 BENCHMARK ELEVATION (NAVD88): 963.180 MONUMENT DESCRIPTION: BRASS MONUMENT IN BRIDGE ABUTMENT LOCATION: IN EDEN PRAIRIE, 1.1 MILES EAST ALONG T.H. HWY 62 FROM JCT. OF T.H. 62 & I-494 MONUMENT NAME: CONTROL POINT 6 NORTHING (HEN. COUNTY COORDINATES): 142016.680 EASTING (HEN. COUNTY COORDINATES): 489989.960 BENCHMARK ELEVATION (NAVD88): 932.956 MONUMENT DESCRIPTION: CAST IRON MONUMENT LOCATION: 0.2 MILES EAST ALONG SMETANA ROAD FROM JCT. OF SMETANA ROAD & NOLAN DR CIT OF MINNETONKA AT MILE POINT ON JCT. T.H. 62 & T.H. 169 SEC 36 TWP T117N R R22W CITY OF MINNETONKA COUNTY HENNEPIN DES: RMS DR: ARH CHK, WIC CHK, WI S EE1 WEST SE MENT PEDESTRIAN T NNE OF STR CT RES W-ST-TDP-SR

LIGHT RAIL VEHICLE LOADING DIAGRAM

NOTES:

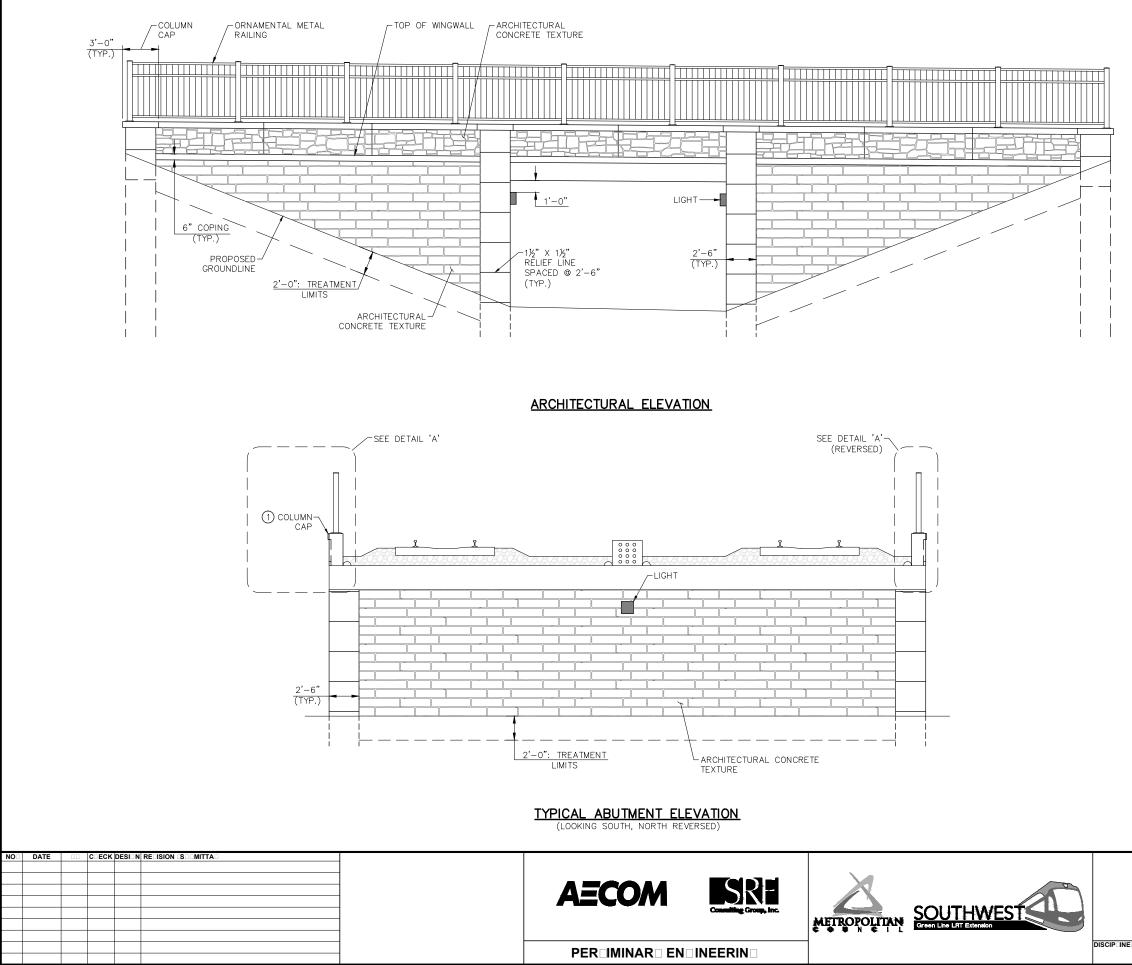
- 1. THE LRT TRAIN SHALL CONSIST OF EITHER ONE, TWO OR THREE CARS, WHICHEVER PRODUCES THE MAXIMUM LOAD FOR THE ELEMENT UNDER CONSIDERATION.
- 2. AXLE LOAD IN POUNDS.
- 3. LOADING DIAGRAM REPRESENTS MAXIMUM LOAD AT EACH TRUCK IN ACCORDANCE WITH SOUTHWEST LIGHT RAIL TRANSIT DESIGN CRITERIA (REVISION 2.0) FIGURE 8-2.

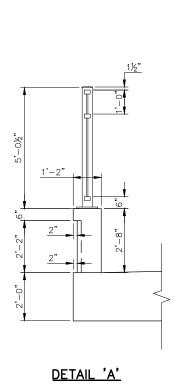


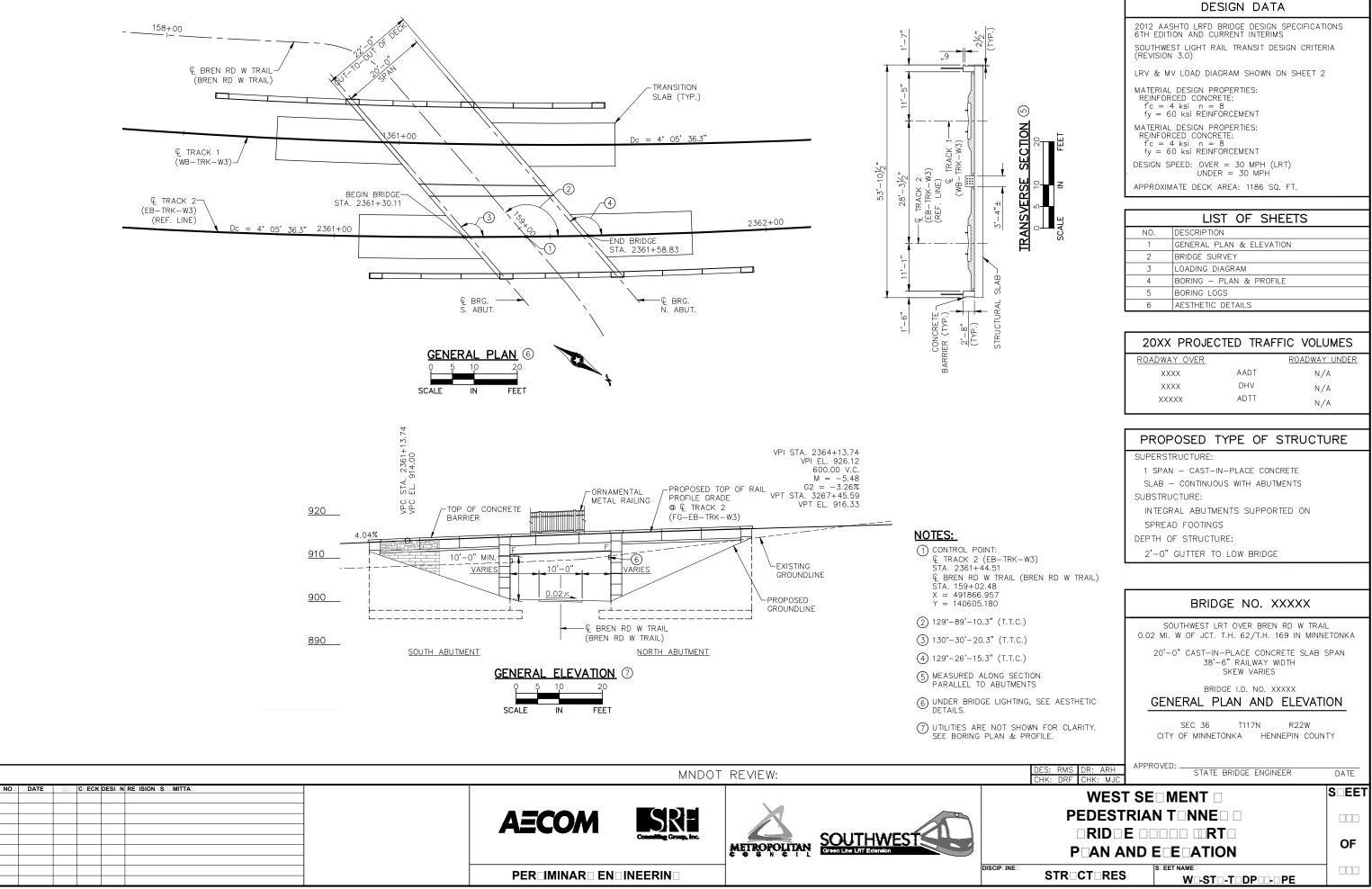

MAINTENANCE TRAIN LOADING DIAGRAM

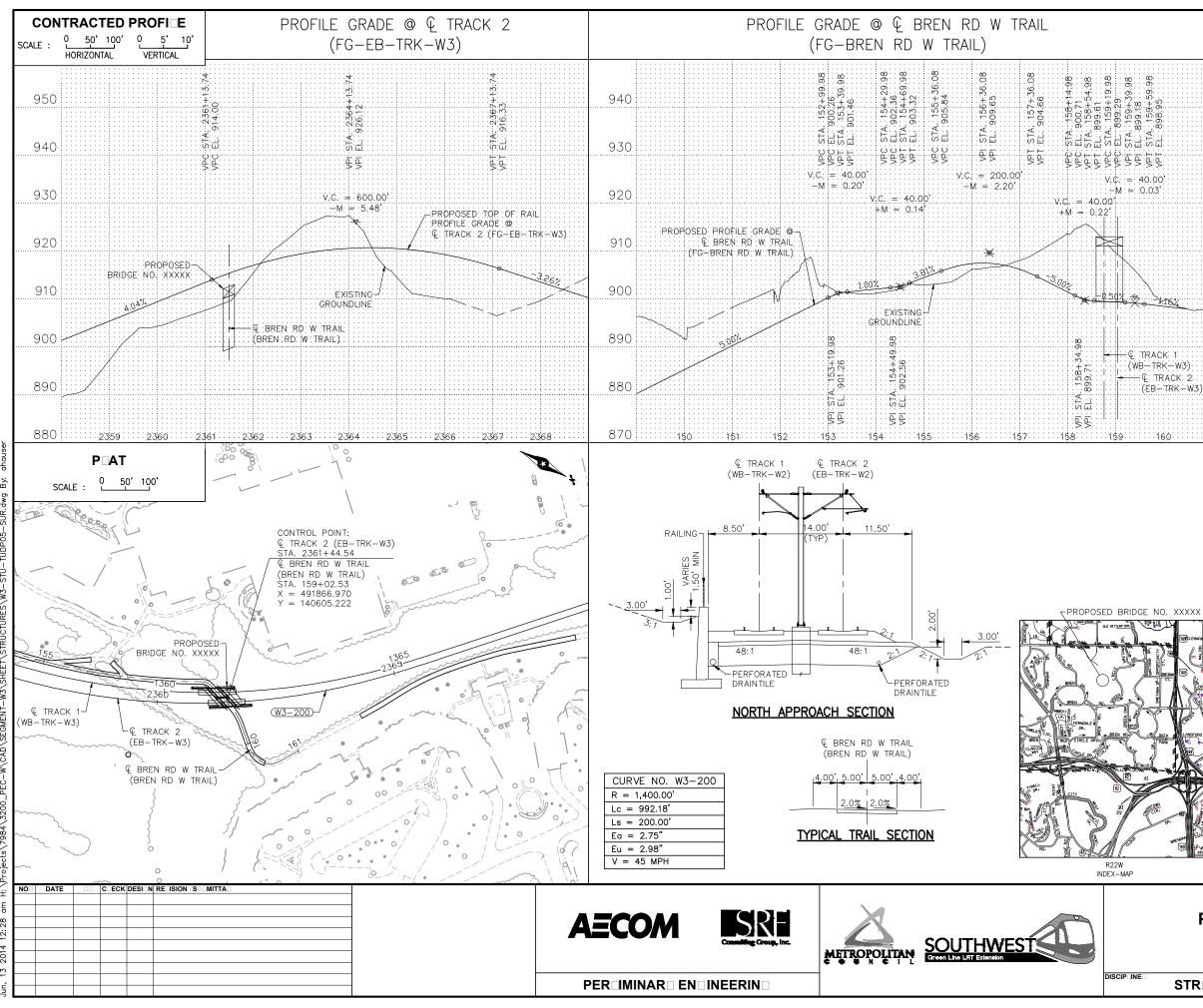
NOTES:

- 1. THE MAINTENANCE TRAIN SHALL CONSIST OF ONE LOCOMOTIVE AND ONE, TWO, THREE, OR FOUR BALLAST CARS, WHICHEVER PRODUCES THE MAXIMUM LOAD FOR THE ELEMENT UNDER CONSIDERATION.
- 2. AXLE LOAD IN POUNDS.
- 3. WEIGHT OF EMPTY BALLAST CAR IS 15,000 POUNDS.


NO	DATE	COECK	DESION	N RECISION SOMITTAC					
					AECOM	SRF			
						Consulting Group, Inc.		SOUTHWEST	
							METROPOLITAN	Green Line LRT Extension	
									DISCIP

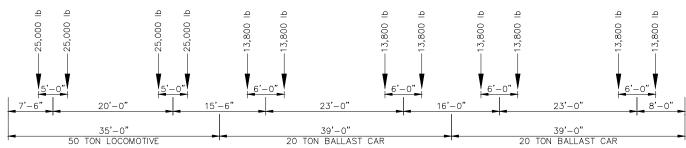



895				895	890		2005ST	
090		2004SS		090	090		Elevatio	on 885.6
890	Çoh SPT-N	Elevation 887.4		890	885	Coh SPT-N (psf) (BPF)		LEAN CLAY, black, frozen
	(psf) (BPF)	FILL: Sandy Lean	Clay, trace roots,			11		LEAN CLAY, with Sand, trace Gravel,
885	8	black, frozen.	/····	885	880	16		brown, wet, rather stiff. FAT CLAY, with Silty Sand and Silt
	9	fine- ta médium-	grained, trace Gravel, /		675	8		seams, brown to 12 feet then gray, wet, medium to stiff.
880	6	<u>xt</u> - FiLL: Lean Clay, brown to black, w		880	875	8		
875	5	PEAT, fibrous, black	sk, wet.	875	870	13		
	8 	SILT, with Silty Sa roots, gray, moist,	nd lenses, trace			12		SANDY LEAN CLAY, trace Gravel, gray, wet, rather stiff to hard.
870	[⊥] ⊈ 12	POORLY GRADED S/ medium-grained,	AND, fine- to	870	865			
			gray, moist to 15 feet			10		
865	10	dense;		865	860			
			to medium-grained,			12		
860	11	and Lean Clay len		860	855			
		\waterbearing, med END OF BORING.	ium dense/			.14		
855			15 feet with 15 feet ger in the ground.	855	850	23		With occasional Sand lenses from
850			15 feet with 24 1/2 m auger in the ground.	850	845			
		Boring immediately				22		
845 840		bentonite: grout. Bottom of Borehold		845	840			
5						.24		
840				840	835	20		
						20		
835				835	830	36		
					825	24		POORLY GRADED SAND, fine— to medium—grained, trace Gravel, brown,
[600			waterbearing, medium dense:
					&∠U	35		CLAYEY SAND, trace Gravel, brown and gray, wet, hard.
					815			
					015	46		
	NOTES:				810			
	THE MATERIAL DESCR	RIPTIONS ARE CLASSIFIED ACCORDING EM. DETAILS ON THE SYSTEM CAN BE THE SOIL GROUP CATEGORY PER TH EM IS ALSO SHOWN.	TO THE UNIFIED SOIL E FOUND IN THE FADR		805	30		POORLY GRADED SAND, fine- to Water not encou medium-grained, trace Gravel, brown, due to mud roto waterbearing, medium dense. END OF BORING. Boring immediat
								bentonite grout. Bottom of Boreh
E DATE	CECK DESICN RELISION SOM						• 7 1	
2014 12:27 0					AEC	om is	R-	
t						Conniting	Group, Inc.	METROPOLITAN SOUTHWEST
					PER□IMI			
3							_	



PEDESTRIAN TONNE Image: Control of the second sec	NOTES: ARCHITECTURAL COLUMN CAP TO EXTEND 1" BEYOND CONCRETE BARRIER COPING.	
PEDESTRIAN TONNE OF OF AESTORIC DETAILS	CHK: MJC (
AEST ETIC DETAI S		
		OF

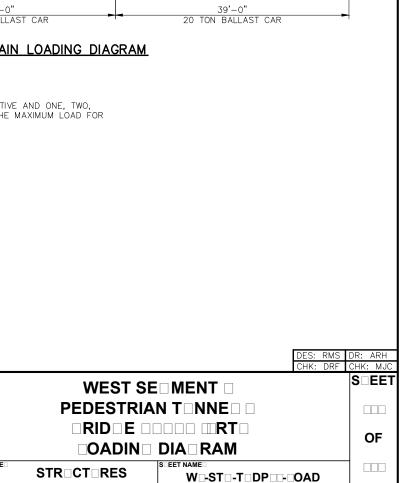
NO.	DESCRIPTION
1	GENERAL PLAN & ELEVATION
2	BRIDGE SURVEY
3	LOADING DIAGRAM
4	BORING – PLAN & PROFILE
5	BORING LOGS
6	AESTHETIC DETAILS

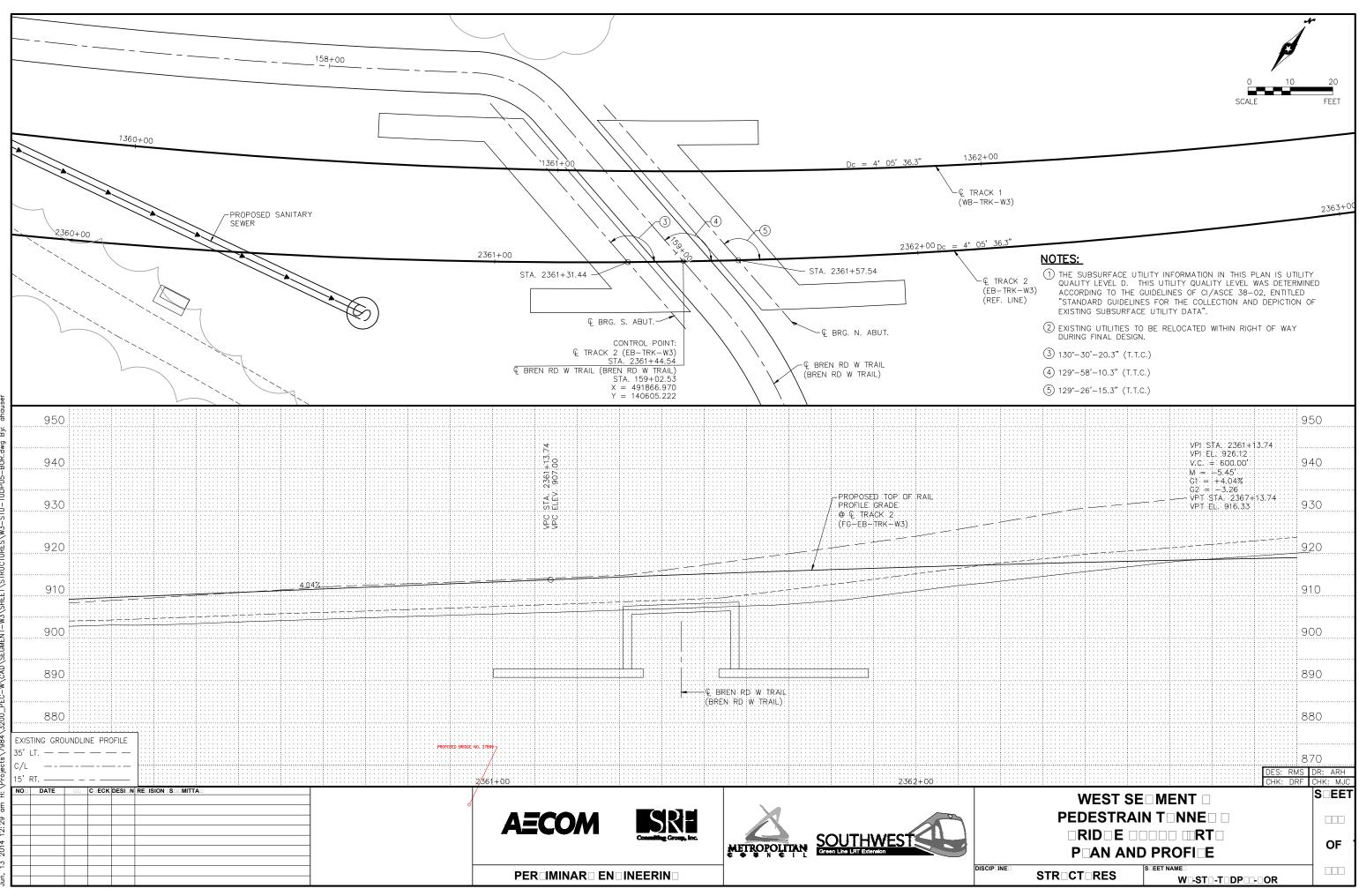

OCATION EN INEER SO SER ATIONS AT SPECIAL FEATURES: WATERFALLS, DAMS, FLOODS, ICE, DEBRIS, SLIDING BANKS, RECREATIONAL BOATING. 2. OTHER BRIDGES OR CULVERTS OVER THE SAME STREAM (PARTICULARLY STRUCTURES WHICH CARRY HIGH WATER WITHOUT OVERFLOW OF ROADWAY) : GIVEN LOCATION, TYPE, LENGTH, HEIGHT ABOVE HIGH WATER, CROSS-SECTIONAL AREA ETC. 3. APPARENT HIGHWATER ELEVATION OBTAINED FROM OTHER DATA: APPROX. VELOCITY OF WATER AT TIME OF SURVEY. DATE STREAM OR DITCH DESIGNATION DRAINAGE ARE MAX. FLOOD ON RECORD MAXIMUM OBSERVED HIGHWATER ELEVATION DESIGN FLOOD (-YR. FREQ. - C.E.S ÷Q∷TRACK∷1 DESIGN STAGE ELEVATION (WB-TRK-W3) DESIGN MEAN VELOCITY THROUGH RUCTUR - F.P.S C TRACK: 2 TOTAL STAGE INCREASE -EF (EB-TRK-W3) LOW MEMBER AT OR ABOVE ELEVATION FLOWLINE ELEVATION -SNEW ANGLE -WATERWAY AREA REQUIRED BELOW ELEVATION - SQ.FT. 160 AT RIGHT ANGLES TO CHANNEL BASIC FLOOD (100 X FREQ. - C.F.S. STAGE ELEVATION. - FT TOTAL STAGE NCREASE MEAN VELOCITY THROUGH STRUCTURE - F.P.S ESTIMATED DEPTH OF PIER SCOUR = COUR CODE =-BRIDGE SURVEY SHEETS MADE FROM SURVEY PERFORMED BY RANI ENGINEERING MNDOT NAME: 2773A NORTHING (HEN. COUNTY COORDINATES): 137082.117 EASTING (HEN, COUNTY COORDINATES): 490527.817 BENCHMARK ELEVATION (NAVD88): 963.180 MONUMENT DESCRIPTION: B.M. DISK IN BRIDGE ABUTMENT LOCATION: IN EDEN PRAIRIE, 1.1 MILES EAST ALONG T.H. HWY 62 FROM JCT. OF T.H. 62 & I-494 ala ällä MONUMENT NAME: CONTROL POINT 6 NORTHING (HEN. COUNTY COORDINATES): 142016.680 EASTING (HEN. COUNTY COORDINATES): 489989.960 BENCHMARK ELEVATION (NAVD88): 932.956 MONUMENT DESCRIPTION: CAST IRON MONUMENT LOCATION: 0.2 MILES EAST ALONG SMETANA ROAD FROM JCT. OF SMETANA ROAD & NOLAN DR **CIT** OF MINNETONKA AT MILE POINT ON JCT. T.H. 62 & T.H. 169 SEC 36 TWP T117N R R22W CITY OF MINNETONKA COUNTY HENNEPIN DES: RMS DR: ARH CHK+ DRE CHK+ MJ SEE WEST SE MENT PEDESTRIAN T NNE OF STR CT RES W-ST-TDP-SR

LIGHT RAIL VEHICLE LOADING DIAGRAM

NOTES:

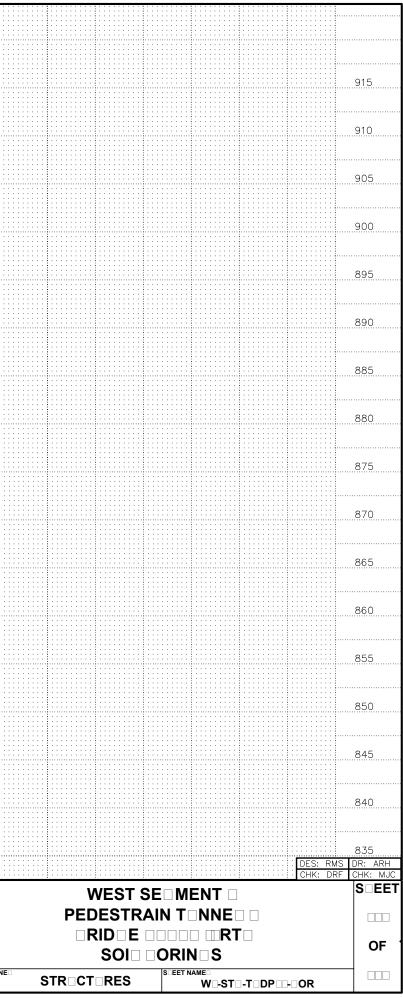
- 1. THE LRT TRAIN SHALL CONSIST OF EITHER ONE, TWO OR THREE CARS, WHICHEVER PRODUCES THE MAXIMUM LOAD FOR THE ELEMENT UNDER CONSIDERATION.
- 2. AXLE LOAD IN POUNDS.
- 3. LOADING DIAGRAM REPRESENTS MAXIMUM LOAD AT EACH TRUCK IN ACCORDANCE WITH SOUTHWEST LIGHT RAIL TRANSIT DESIGN CRITERIA (REVISION 2.0) FIGURE 8-2.

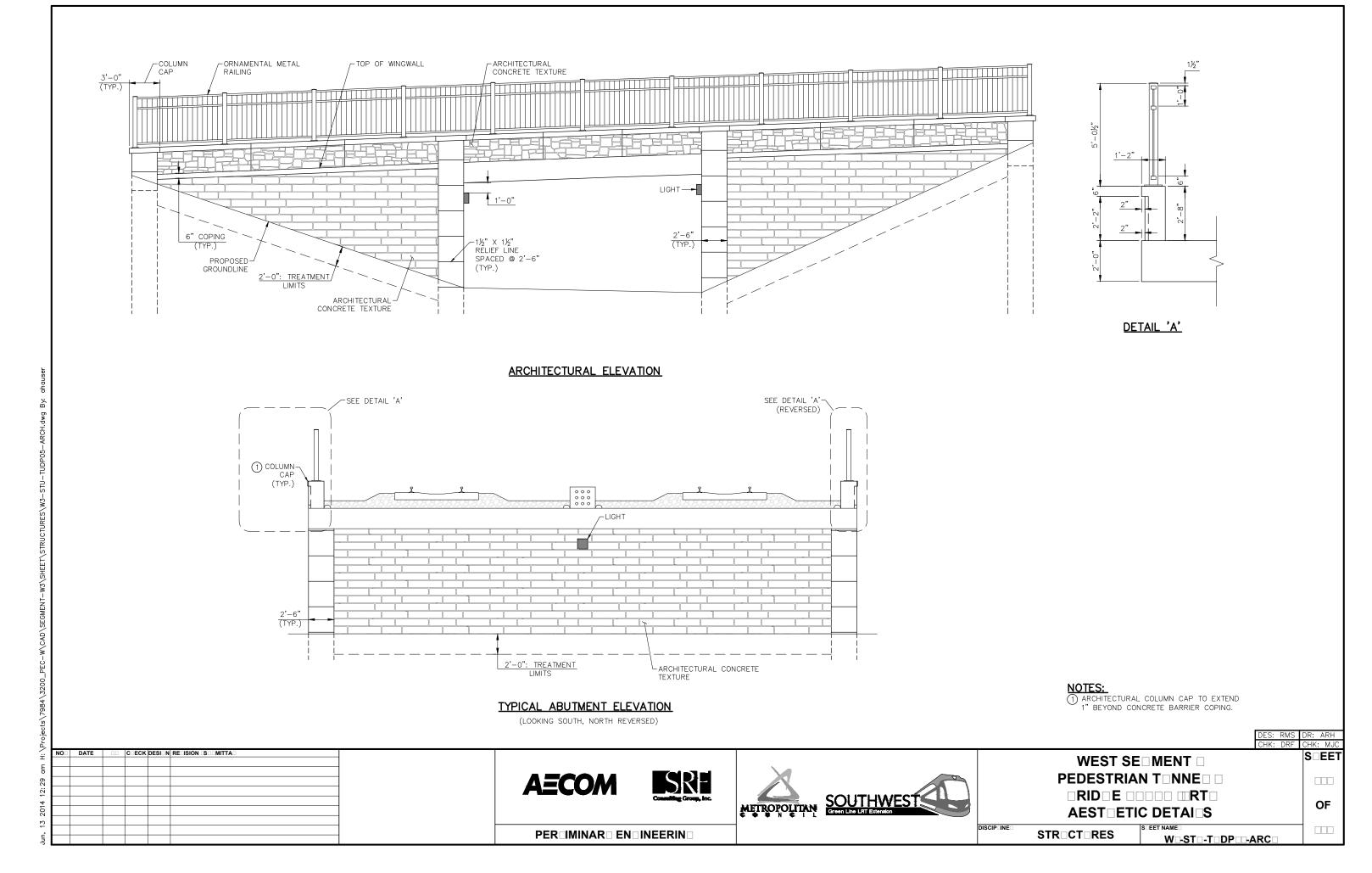


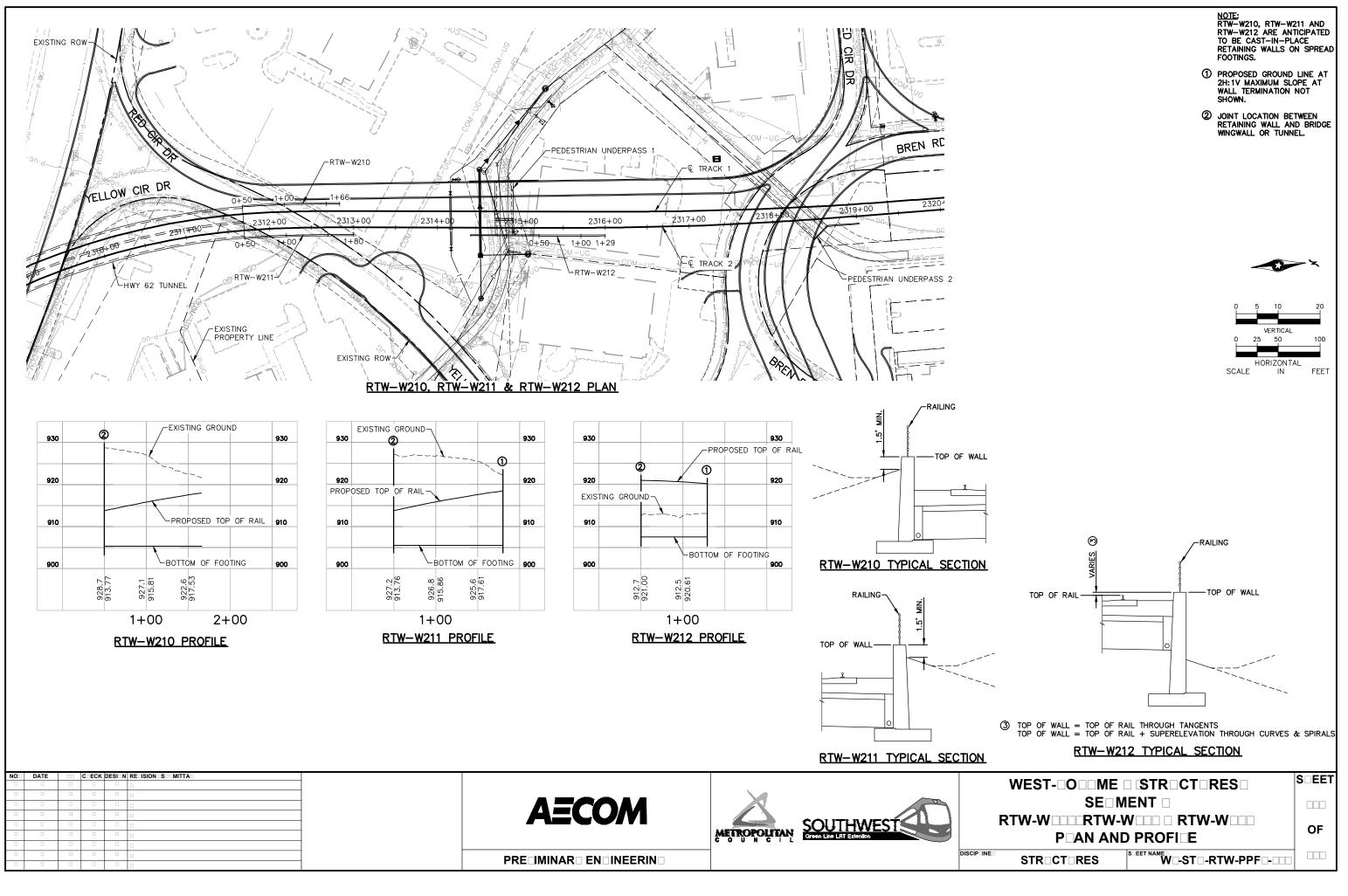

MAINTENANCE TRAIN LOADING DIAGRAM

NOTES:

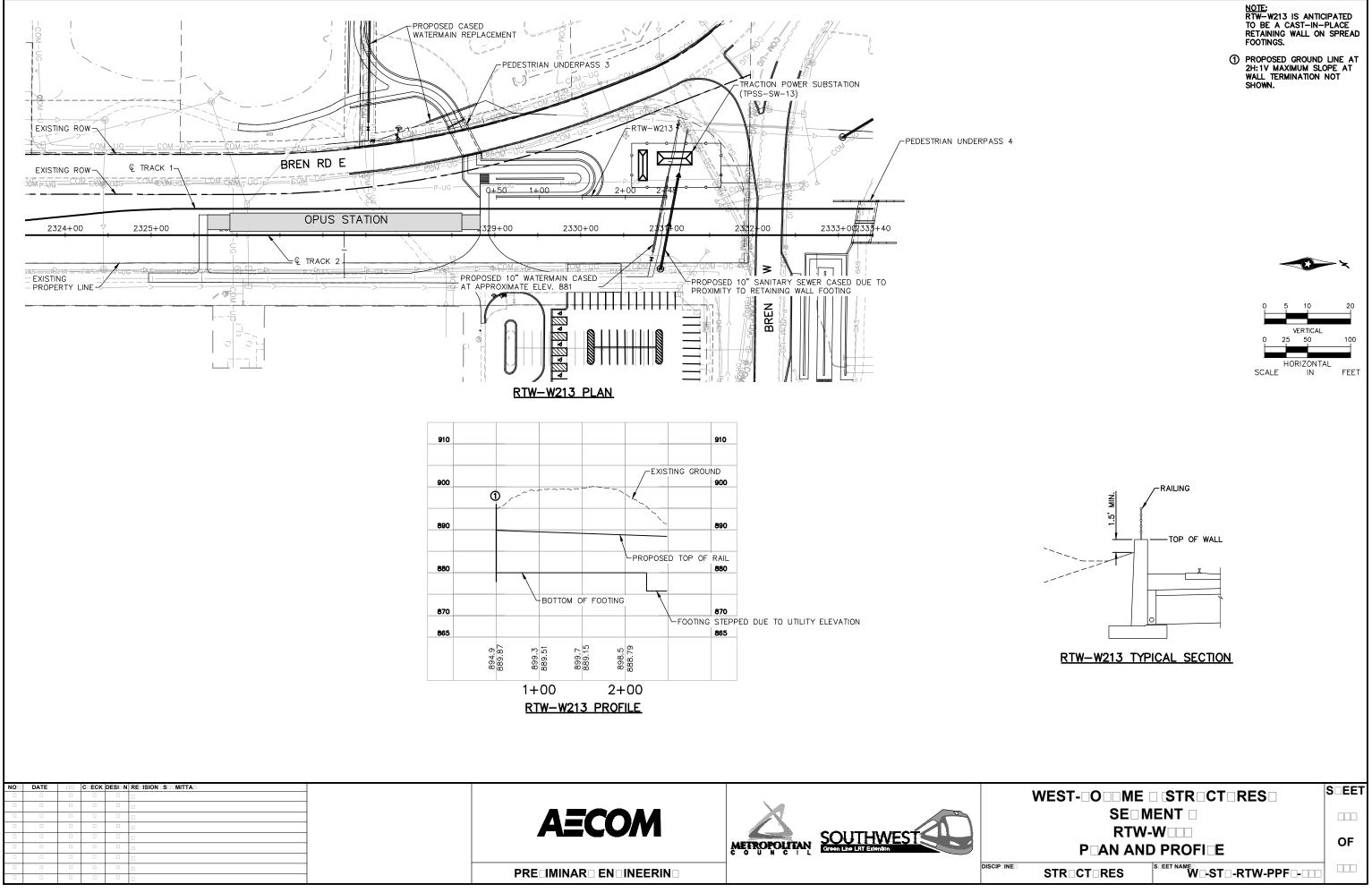
- 1. THE MAINTENANCE TRAIN SHALL CONSIST OF ONE LOCOMOTIVE AND ONE, TWO, THREE, OR FOUR BALLAST CARS, WHICHEVER PRODUCES THE MAXIMUM LOAD FOR THE ELEMENT UNDER CONSIDERATION.
- 2. AXLE LOAD IN POUNDS.
- 3. WEIGHT OF EMPTY BALLAST CAR IS 15,000 POUNDS.


NO	DATE	C CK	DESION						
					AECOM	SRF			
						Consulting Group, Inc.		SOUTHWEST	
							METROPOLITAN	Green Line LRT Extension	
									DISCIP





lun, 13 2014 12:29 am H:\Projects\7984\3200_PEC-W\CAD\SEGMENI-W3\SHEET\STRUCTURES\W3-STU-TUDP05-BOR.dwg By:


														AE	C)/	Con	SR Bite Gro	up, Inc.	2	S	гни	/ESŤ	D
	C ECK DESI												1											
	THE CLAS	MATERIA SSIFICATIO	L DESCRI N SYSTE	IPTIONS M. DET	ARE CL AILS ON	LASSIFIEL THE SY	S ACCO	RDING 1 CAN BE	TO THE U FOUND I	NIFIED	SOIL FADR													
840	NOTE	<u></u>																						
845																								
850																								
855																								
860																								
865																								
870																								
875																								
880																								
885																								
890																								
895																								
900																								
905																								
0.05																								
910																								
915																								
				:::::																				

Jun, 27 2014 10:25 am V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-RETW.dwg By: I

	in Proje	ect BL-13	3-00213	BORING	:		20	00ST
	RT	AL EVALU Minnesot		LOCATIC See attac			6; E: 492029.9	
DRILL	ER: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/3/	/13		SCALE: 1" = 4'
Jelev. feet - 902.5		Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	10-1-2908)	BPF	WL	MC %	Tests or Notes
901.8	3 0.7	FILL	FILL: Lean Clay, dark brown, frozen. ∖ (Topsoil Fill)	Ĺ			26	
Cee Descriptive Terminology sheet for explanation of 100 sheet for explana			FILL: Silty Sand, fine- to medium-grained, w Clay lenses, brown, moist	th Lean - –	10		12	
ive Terminolo 	5 4.0	FILL	FILL: Sandy Lean Clay, brown, wet.		11		27	
(See Descript	5 7.0	FILL	FILL: Sandy Lean Clay, trace Gravel, brown	wet.	7		15	
 	5 12.0				9		16	
090.5		SP- SM -	POORLY GRADED SAND with SILT, fine- to medium-grained, with Gravel and Cobbles, b moist to wet, medium dense. (Glacial Outwash)		27		4	P200=8%
GDT 8/1/14 10:22	5 17.0				26		10	
		SM -	SILTY SAND, fine- to medium-grained, with o Lean Clay lenses, trace Gravel, brown to 22 gray, wet, medium dense. (Glacial Till)	eet then _	22	Ţ	12	An open triangle in the water level (WL) column indicates the depth at which groundwater was
3.GPJ BRAUN_V					22		16	observed while drilling. Groundwater levels fluctuate.
	5 24.0	SC -	CLAYEY SAND, trace Gravel, gray, wet, very	- v stiff.	20		19	
	5 27.0		(Glacial Till)		22		12	
BORING N:/GINT/PROJECTS/MINNEAPOLIS/2013/00213.GPJ BRAUN_V8_CURRENT 	, 21.0	SM -	SILTY SAND, fine- to medium-grained, trace gray, moist, medium dense to dense. (Glacial Till)	Gravel, –	32		9	
- 0			With Lean Clay layers at 30 feet.		28		10	
ප <u>870.5</u> BL-13-002			Braun Intertec Corporation					2000ST page 1 of 2

			3-00213	BORING	6:	<u>200</u>	10 00	「 (cont.)
SWLRT	•	AL EVALU Minnesot		LOCATI See atta				; E: 492029.9
DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/3	/13	;	SCALE: 1" = 4'
Elev. feet 870.5	Depth feet 32.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	110-1-2908)	BPF	WL	MC % -	Tests or Notes -
	47.0 51.0	SC SP SM	CLAYEY SAND, trace Gravel, with frequent lenses, gray to 37 feet then brown, wet, very hard. POORLY GRADED SAND, fine- to coarse- trace Gravel, brown, waterbearing, medium (Glacial Outwash) SILTY SAND, fine- to medium-grained, trac- brown, wet, medium dense. (Glacial Till)	r stiff to	34 27 25 27 30 31 15 24 15 14 15 14 15 16 17 18			*Water observed at 17 1/2 feet with 17 1/2 feet of hollow-stem auger i the ground. Boring immediately backfilled with bentoni grout.

		ect BL-2					BORING: 2001ST							
SWLRT	-	AL EVAL Minnes		N			LOCATIC See attac				7; E	E: 492046		
DRILLE	R: M.	Belch		METHOD:	3 1/4" HSA, Autoha	ammer	DATE:	4/4	/13		SCA	LE: 1" = 4'		
Elev. feet 895.6	Depth feet 0.0	Symbol	(Soi		escription of Materia or D2487, Rock-USA)-1-2908)	BPF	WL	MC %	qp tsf	Tests or Notes		
893.6	2.0	FILL			dark brown, frozen (Topsoil Fill)					17				
093.0	2.0	FILL		.: Sandy Lea then wet.	n Clay, trace Grave	l, brown, n	noist to 7	19		6				
_								30		9				
							-	6		20				
								5		22				
883.6	12.0	SC	CLA soft.		with Sand lenses, g (Glacial Till)	ray, wet, ra	ather 	TW				TW=Thinwall		
878.6	17.0	CL	SAN	DY LEAN CL	_AY, trace Gravel, <u>c</u>	jray, wet, r	nedium	5		26				
			to st		(Glacial Till)	, - , ,,	_	8		15	2 1/2			
								16*				*No sample recovery.		
							-	10		13	2			
868.6	27.0							14		13	3			
000.0	21.0	SC	CLA brov harc	vn, moist to 3	trace Gravel, with S 1 feet then waterbe (Glacial Till)	and lense: aring, med	s, ium to	22		10				
								41*	⊥			*No sample recovery.		

			3-00213	BORING	6:	20015	ST (0	cont.)
SWLRT	•	AL EVALU Minnesot		LOCATIO See attac				E: 492046 -
DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/4	/13	SCA	LE: 1" = 4'
Elev. feet - 863.6	Depth - feet 32.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	110 1 2008)	BPF	WL MC		Tests or Notes
-	52.0		CLAYEY SAND, trace Gravel, with Sand len brown, moist to 31 feet then waterbearing, m hard.	ses,	25 -	13		P200=29%
			(Glacial Till) (continued)	-	20 -	24	_	
				-				
				-	17 -	11	-	
					7 -	12	-	
				-	24 -	11	-	
_				-	24 -	10	-	
				-	30 -	8	_	
				-				
				-	20 -	9	-	
_				-	48 -	12	-	
834.6	61.0 -		END OF BORING		24 -	10	-	
			Water observed at 31 feet while drilling	-				
			Boring immediately backfilled with bentonite	- grout	1			

		3-00213	BORING:		4	2002ST	
GEOTECHNI SWLRT Minnetonka			LOCATIC See attac			95.2; E: 492	2065.8
DRILLER:	A. Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/4	/13	SCALE:	1" = 4'
Elev. Depth feet feet 895.0 0.		Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM17	10-1-2908)	BPF	WL	Tests or	Notes
894.2 0.		FILL: Clayey Sand, trace roots, dark brown, (Topsoil Fill)	frozen.				
-		FILL: Clayey Sand, trace Gravel, brown, dry	to moist.				
-			_	25			
-			_				
-			_	19			
888.0 7.	0 FILL	FILL: Organic Clay, black, wet.					
- 886.0 9.	n 🕅		_	14			
		ORGANIC CLAY, black, wet. (Swamp Deposit)					
-			_	7			
-			_				
- 881.0 14.	0			6			
	CL	LEAN CLAY, brown, wet, very stiff. (Glacial Till)		10			
-			_	18			
- 877.0 18.			_				
	CL	SANDY LEAN CLAY, trace Gravel, gray, wet to hard.	, very stiff				
		(Glacial Till)		√ 32	$ \Sigma $		
-							
-			_				
-			_				
_				√ 19			
869.0 26.		END OF BORING.					
-		Water observed at 20 feet with 20 feet of hol auger in the ground.	low-stem				
-		Boring immediately backfilled with bentonite	grout. –				
		1		1	1		

			3-00213	BORING	:		20	03SS	
SWLR	Г	AL EVALU Minnesot		LOCATIO See attao				2; E: 492	2115.2
ORILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/5	5/13		SCALE:	1'' = 4
Elev. feet 889.6	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	110-1-2908)	BPF	WL	MC %	Tests	or Notes
888.6	1.0	FILL 💥	FILL: Sandy Lean Clay, dark brown, frozen.						
_		FILL	FILL: Poorly Graded Sand with Silt, fine- to medium-grained, trace Gravel, brown, moist		6				
882.6	7.0	PT 1	PEAT, fibrous, black, wet. (Swamp Deposit)		 M 6				
880.6	9.0	<u><u> </u></u>	(ewanp Deposit)	_	4				
_	0.0	OL	SLIGHTLY ORGANIC CLAY, with roots, black (Swamp Deposit)	ck, wet.	M 2		28	OC=3%	
				-	А -				
877.6	12.0	 ML	SILT, trace roots, gray, moist, loose.						
876.6	13.0	SP	(Alluvium)		8 🕅				
-			POORLY GRADED SAND, fine- to medium- trace Gravel, with occasional Lean Clay lens moist to 15 feet then waterbearing, loose. (Glacial Outwash)		6	₽			
865.6	24.0			-					
-		CL	LEAN CLAY, trace Gravel, gray, wet, rather (Glacial Till)	SUIT	↓				
863.6	26.0				11				
			END OF BORING. Water observed at 15 feet with 15 feet of ho auger in the ground.	llow-stem	-				
			Water observed at 16 feet with 24 1/2 feet or hollow-stem auger in the ground.	f –					
			Boring immediately backfilled with bentonite	grout.					

		ect BL-13		BORING	:	2	2004SS	
SWLRT	Г	AL EVALU Minnesot		LOCATIC See attac			32.7; E: 492	2117
DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/5	5/13	SCALE:	1'' = 4'
Elev. feet 887.4	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	10-1-2908)	BPF	WL	Tests or I	Notes
886.7	0.7	FILL K	FILL: Sandy Lean Clay, trace roots, black, fro (Topsoil Fill) FILL: Poorly Graded Sand with Silt, fine- to medium-grained, trace Gravel, brown, moist.	ozen	. 8			
883.4	4.0	FILL	FILL: Lean Clay, trace Gravel, dark brown to wet.	black,	9			
880.4	7.0	PT 44 3 4 34 4 3	PEAT, fibrous, black, wet. (Swamp Deposit)		6			
875.4	12.0		Shells at 10 feet.		5			
873.4	14.0	ML	SILT, with Silty Sand lenses, trace roots, gray loose. (Alluvium)	v, moist, 	8			
		SP	POORLY GRADED SAND, fine- to medium-g trace Gravel, with Lean Clay lenses, gray, mo feet then waterbearing, loose to medium dens (Glacial Outwash)	ist to 15	12	Ţ		
					10			
863.4	24.0	SM 1	SILTY SAND, fine- to medium-grained, trace	– Gravel.				
	26.0		with Poorly Graded Sand and Lean Clay lense waterbearing, medium dense. (Glacial Till)	es, gray,	11			
			END OF BORING. Water observed at 15 feet with 15 feet of hollo auger in the ground.	ow-stem _				
			Water observed at 15 feet with 24 1/2 feet of hollow-stem auger in the ground.					
			Boring immediately backfilled with bentonite g	grout. –				
L-13-00213	3		Braun Intertec Corporation				20	04SS page

Braun Proje			BORING	:		20	05ST
GEOTECHNIC SWLRT Minnetonka,			LOCATIO See attac			559.9	9; E: 492097.9
DRILLER: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/4	/13		SCALE: 1" = 4'
Elev. Depth feet feet 885.6 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	110-1-2908)	BPF		qp tsf	Tests or Notes
	Symbol CL CH CH	-	/ n, wet, 	BPF 11 16 8 8 13 12 10			Switched to mud rotary drill method after 15-fo sample.
-				12		1	
-			-	14	1	1/2	

			3-00213	BORING	:	200	05S	T (cont.)
SWLRT		AL EVALU Minneso		LOCATIO See attac	ON: N:	139	9559.	. ,
DRILLER	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/4	/13		SCALE: 1" = 4'
Elev. I feet 853.6	Depth feet 32.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	110-1-2908)	BPF	WL	qp tsf	Tests or Notes
	59.0	SP	POORLY GRADED SAND, fine- to medium- trace Gravel, brown, waterbearing, medium dense. (Glacial Outwash)	et, rather 			2 3/4	Had to re-mud rotary from 45-60 feet to be able to mud rotary dow to 65 feet.

	n Proje							BORING:		200)5S	T (con	it.)
C/V/I D.	ECHNIC# T	AL EVA	LUA	ATION	N			LOCATIC See attac				9; E: 49	92097.9
Minne	etonka,	Minne	esota	a									
Minne Minne DRILLE DRILLE Elev. feet 821.6 - - - - - - - -	ER: M.	Belch			METHOD:	3 1/4" HSA, A	Autohammer	DATE:	4/4	/13		SCALE:	1'' = 4'
5 Elev. 5 feet	Depth feet				Πο	scription of M	atorials		BPF	WL	an	Test	Nicker
821.6	64.0	Symb	ool	-	-ASTM D2488	or D2487, Rock	-USACE EM1110		DFF		qp tsf	Test	s or Notes
		SC		CLA hard		race Gravel, b	prown and gray,	wet,					
						(Glacial T	ill)	_	35				
								_					
								_					
			$\langle \rangle \rangle$					_					
			\square										
			$\langle \rangle$					_	46				
			$\langle \rangle \rangle$					_					
								_					
_ 811.6	74.0		\square	D OO			4	- i					
		SP		trace	e Gravel, brow	n, waterbeari	- to medium-gra ng, medium der	nse	√ 30				
809.6	76.0				OF BORING	(Glacial Outv	vasn)						
_							Irilling due to m	ud rotary					
-				drillir									
				Borir	ng immediatel	ly backfilled w	ith bentonite gro	out. –					
								_					
°								_					
								_					
								_					
								_					
								_					
								_					
								_					
								_					
								_					
BL-13-0021	3					Rraun Int	tertec Corporation						2005ST page 3 of 3

	n Proje								BORIN	G:			20	06S	T	
SWLRT	CHNICA tonka,				N					.TION: N: 139744.8; E: 492105.5 ttached sketch.						
DRILLE	R: M.	Belch			METHO	D:	3 1/4" HSA, Aut	ohammer	DATE:		4/4	/13		SCA	LE:	1'' = 4'
Elev. feet 886.1	Depth feet 0.0	Sym	ibol			488 0	scription of Mate	SACE EM111	0-1-2908)		BPF	WL	MC %	qp tsf	Tes	ts or Notes
882.1	4.0	CL		LEA	N CLAY, I	race	e roots, black, fr (Topsoil)	ozen.		_	9					
		CH		FAT feet	CLAY, wit then gray,	th S wet	ilty Sand and Si , medium to rat (Glacial Till)	ner stiff.	own to 12 -		8		31		P200=	:98% rain Size
											12			3/4		nulation
872.1	14.0	CL		SAN		CL	AY, trace Grave	l arav wet	rather		Ĭ					
		01		soft	to rather s	tiff.	(Glacial Till)		-	_	5			1 1/2		
									_	-	9			3/4		
-									-		7					
857.1	29.0	05		DO O												
		SP		with	Gravel, gr	ay, '	D SAND, fine- t waterbearing, m (Glacial Outwa	edium dens	ainea, e		19	Ţ				
L-13-00213								ec Corporation								6ST page

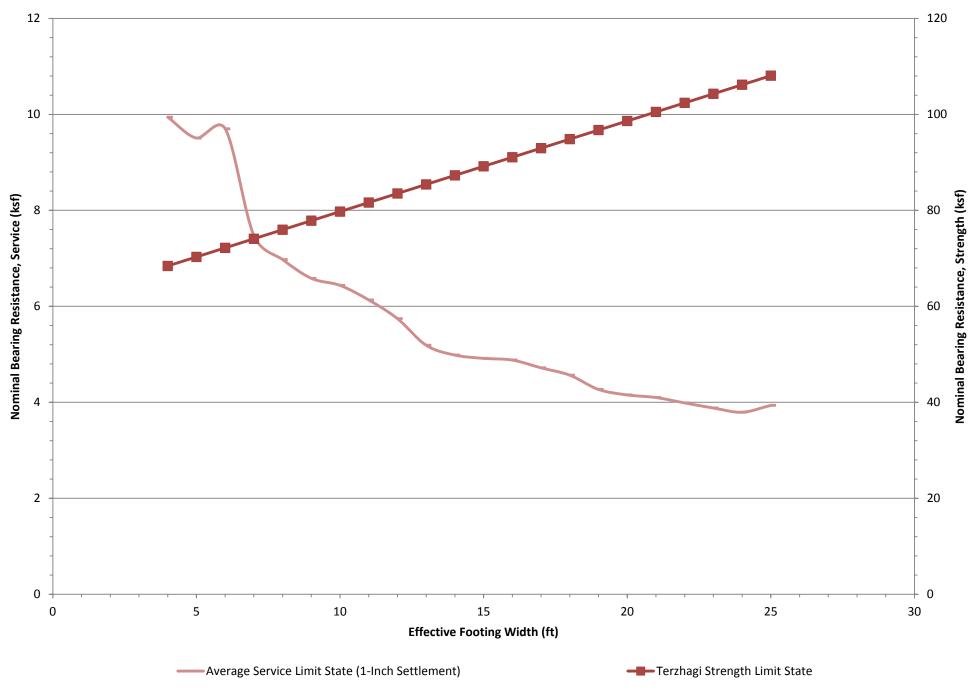
			3-00213	BORING:		200)6S	Т (С	cont.)
SWLRT	-	AL EVALU Minneso		LOCATIC See attac	ON: N: hed sk	139 etch	9744.	8; E	: 492105.5
DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/4	/13		SCA	LE: 1" = 4'
Elev. feet 854.1	Depth feet 32.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1110		BPF	WL	MC %	qp tsf	Tests or Note
852.1	34.0		POORLY GRADED SAND, fine- to coarse-grai with Gravel, gray, waterbearing, medium dense (Glacial Outwash) <i>(continued)</i>						
_		CL	SANDY LEAN CLAY, trace Gravel, gray, wet, v to hard.	very stiff	√ 28			1 1/2	
			(Glacial Till)		22 22 47*			1 1/2	*No sample recovery.
835.1	51.0		END OF BORING. Water observed at 30 feet with 30 feet of hollow	 	36				
			auger in the ground. Water observed at 33 feet with 49 1/2 feet of hollow-stem auger in the ground.	_					
			Boring immediately backfilled with bentonite gro	out					

			8-00213	BORING			20	20ST		
SWLR	т	AL EVALU Minnesot		LOCATIC See attac			37669.1; E: 492069.7 ch.			
DRILLE	ER: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	8/1	/13		SCALE:	1'' = 4'	
Elev. feet 912.4	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM12	10-1-2908)	BPF	WL	MC %	Tests	or Notes	
911.9 - -	0.5	FILL FILL	FILL: Clayey Sand, with Gravel, dark brown, (Topsoil Fill) FILL: Silty Sand, fine- to medium-grained, tra Gravel, brown, moist.	_						
908.4	4.0	FILL	FILL: Sandy Lean Clay, trace Gravel, brown wet.	and gray, 	7		16			
905.4	7.0	FILL	FILL: Clayey Sand, trace Gravel, gray, wet.		11					
903.4	9.0	FILL	FILL: Silty Sand, fine- to medium-grained, tra Gravel, brown, moist.	ace	8		15			
900.4	12.0	FILL	FILL: Poorly Graded Sand with Silt, fine- to coarse-grained, with Gravel, brown, moist.		35					
898.4	14.0	FILL	FILL: Clayey Sand, trace Gravel, brown, we		18					
893.4	19.0	FUL			7		12	P200=51%		
 - -		FILL	FILL: Sandy Lean Clay, trace Gravel, brown moist to wet.	anu gray, 	12		9			
888.4	24.0	SM	SILTY SAND, fine- to medium-grained, trace with Clay inclusions, brown, moist, medium d dense. (Glacial Till)	Gravel, ense to	25					
					29					

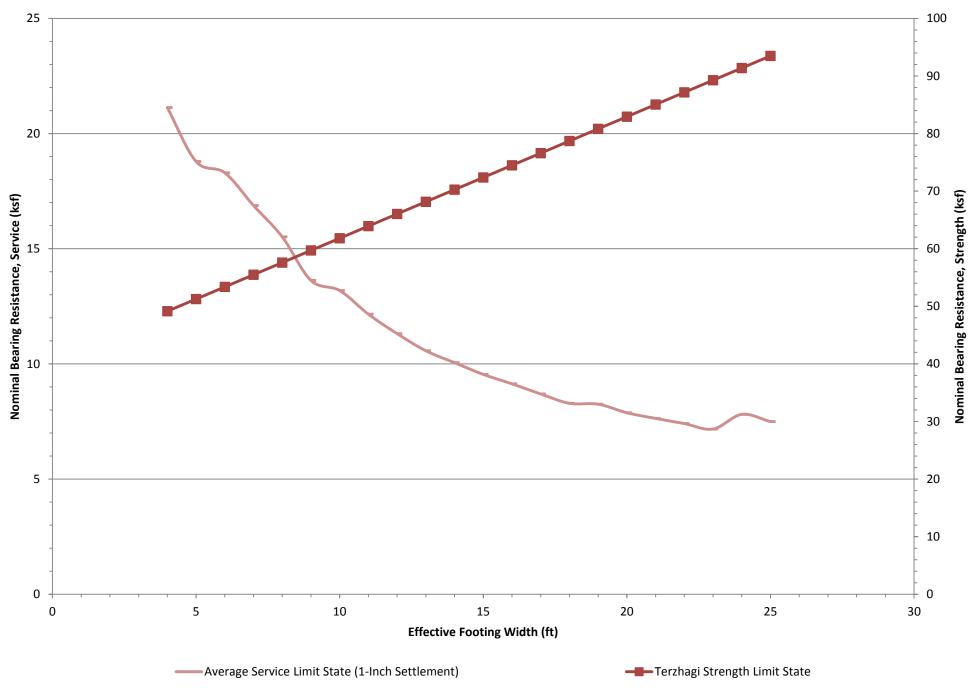
Braun Pr				BORING	:	202	20S	T (cont	t.)
GEOTECHN SWLRT Minnetonl				LOCATIO See attao				1; E: 49	2069.7
DRILLER:	M. Belch	ı	METHOD: 3 1/4" HSA, Autohammer	DATE:	8/1	1/13		SCALE:	1" = 4'
Elev. Dep feet fee 880.4 3	et	nbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11		BPF	WL	MC %	Tests	or Notes
	9.0 SP- SM		SILTY SAND, fine- to medium-grained, trace with Clay inclusions, brown, moist, medium d dense. (Glacial Till) (continued) POORLY GRADED SAND with SILT, fine- to medium-grained, with some Gravel, brown, n feet then waterbearing, medium dense to der (Glacial Outwash) Glacial Outwash) END OF BORING. Water observed at 41 feet with 49 1/2 feet of hollow-stem auger in the ground. Water not observed to cave-in depth of 31 fe immediately after withdrawal of auger. Boring immediately backfilled with bentonite	ense to	27 24 44	Ţ			

	n Proje				BORING	6:		20	21S	B		
SWLR	ECHNICA T etonka,			DN	LOCATION: N: 138953.4; E: 49 See attached sketch.							
DRILLER: S. McLean				METHOD: 3 1/4" HSA, Autohan	nmer DATE:	8/	5/13		SCALE: 1" = 4'			
Elev. feet 901.8	Depth feet 0.0	Symb	ol (S	Description of Material oil-ASTM D2488 or D2487, Rock-USAC		BPF	WL	MC %	qp tsf	Tests or Notes		
_901.5 /	0.3	FILL	da Fil	L: Silty Sand, fine- to medium-grai rk brown, moist. (Topsoil Fill) L: Clayey Sand, with some Gravel bist.	ļ	6		13				
897.8	4.0	SC		AYEY SAND, trace Gravel, brown, ry stiff. (Glacial Till)	wet, rather stiff to 	9		11				
892.8	9.0	SM	Cla	TY SAND, fine- to medium-grained ay layers and seams, brown with rus dium dense. (Glacial Till)	l, with Silt and st stains, moist,	25						
887.8	14.0	CL		NDY LEAN CLAY, with Sand layers ce Gravel, brown, wet, very stiff. (Glacial Till)	and seams,	11						
884.8	17.0	CL		NDY LEAN CLAY, trace Gravel, gr if to stiff. (Glacial Till)	ay, wet, rather	14			1 1/2			
						12			1	*Water not observed with 2 1/2 feet of hollow-stem au in the ground.		
_					- - -	11			1	Water not observed to cave-in depth o 27 1/2 feet immediately aft withdrawal of auger.		
	24.0					12			1 1/2	Boring immediately backfilled.		
870.8	31.0	F - F		ID OF BORING.*		-{}						

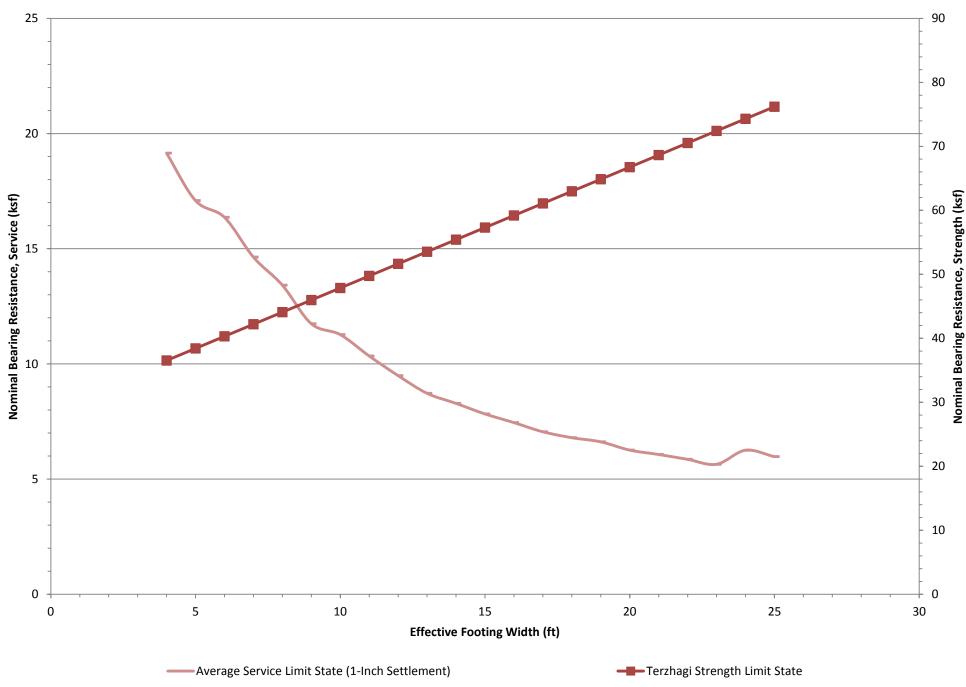
Braun Pi							BORING			202	22S	W
GEOTECHI SWLRT Minneton					N: N: 139021.3; E: 491944.1 ned sketch.							
DRILLER:	DRILLER: S. McLean			METHOD:	3 1/4" HSA, Autohammer	mer	DATE:	8/5		SCA	LE: 1" = 4'	
Elev. De feet fe 894.4	et	mbol	(Soi		escription of Materials or D2487, Rock-USACE	EM1110)-1-2908)	BPF	WL	MC %	qp tsf	Tests or Notes
	0.3 SC SP SM 7.0 2.0 2.0 CL		SAN to ve	st. ORLY GRADE dium-grained, se. T, with Poorly wn, moist, med	(Glacial Till) .AY, trace Gravel, gra (Glacial Till)	ne- to noist, m	edium	12 12 12 12 14 7 7 7 8 15 25		4	1/2 1/2 1 1/2 1 1/2 2 2 1/2	*Water not observed with 2S 1/2 feet of hollow-stem aug in the ground. Water not observed to cave-in depth of 27 feet immediately afte withdrawal of auger. Boring then backfilled.


		ect BL-13		BORING: 2023SW							
SWLR	Г	AL EVALU Minnesot		LOCATION: See attache				N: N: 139035.4; E: ed sketch.			
DRILLER: S. McLean			METHOD: 3 1/4" HSA, Autohammer	DATE:	8/5	8/5/13			SCALE: 1" = 4'		
Elev. feet - 893.7	Depth - feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	10-1-2908)	BPF	WL	MC %	qp tsf	Tests or Notes		
<u>893.0</u> - -	0.7	FILL K	FILL: Sandy Lean Clay, trace Gravel and roc brown, wet. (Topsoil Fill) FILL: Clayey Sand, trace Gravel, dark brown brown, wet.	f	20		11				
<u>889.7</u> 886.7	4.0 -	- XXX SM -	SILTY SAND, fine- to medium-grained, trace brown, moist, loose (Glacial Till) -	Gravel,	8						
884.7	9.0	SM -	SILTY SAND, fine- to medium-grained, with 0 brown, moist, medium dense. (Glacial Till)	Gravel, _	19		9		P200=16%		
		SP- SM -	POORLY GRADED SAND with SILT, fine- to medium-grained, trace Gravel, light brown, m feet then waterbearing, medium dense. (Glacial Outwash)		14	Ţ					
-				-	12		20		P200=11%		
876.7	17.0										
874.7	19.0	CL -	SANDY LEAN CLAY, trace Gravel, with Sand inclusions, brown, wet, stiff. (Glacial Till)	-	14						
		SP- SM -	POORLY GRADED SAND with SILT, fine- to medium-grained, trace Gravel, brown, waterb medium dense. (Glacial Outwash)		27						
869.7	24.0	CL -	SANDY LEAN CLAY, trace Gravel, gray, wet								
-			stiff to stiff (Glacial Till) -		11			1 1/2	*Water observed at 11 feet with 24 1/2 feet of hollow-stem aug in the ground.		
-	24.0				16			2	Boring immediately backfilled with bentonite grout.		
862.7	31.0		END OF BORING.*		<u> </u>						

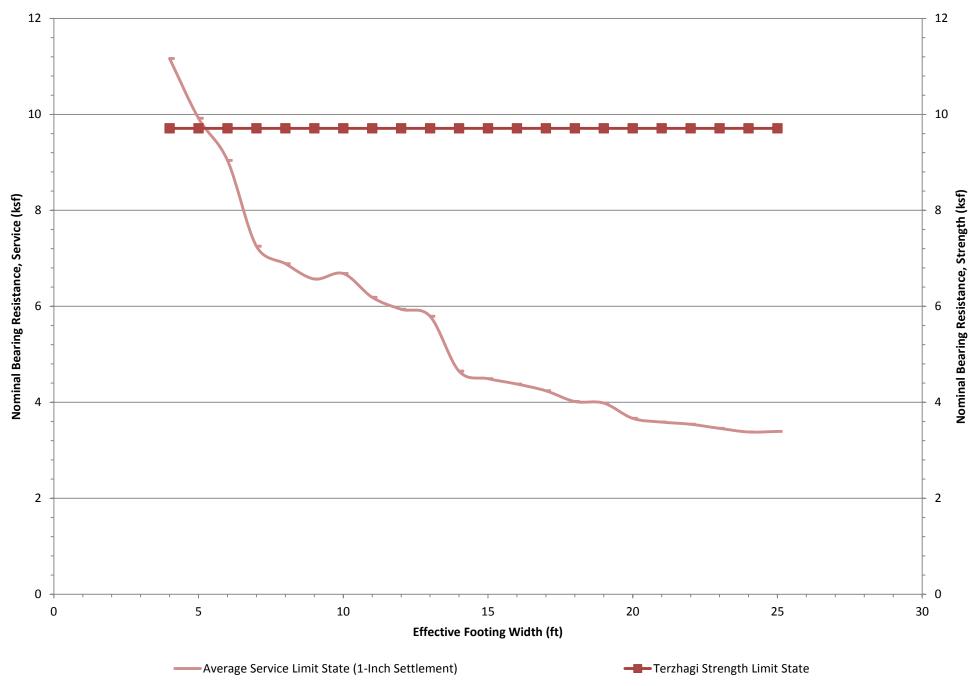
			3-00213	BORING	:		20	24SW	
	т	AL EVALU Minnesot		LOCATIO See attao		V: 139142.8; E: 492030.2 sketch.			
DRILLE	ER: M.	Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	8/6	/13		SCALE:	1'' = 4'
Elev. feet 899.3	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	,	BPF	WL	MC %	Tests or	Notes
Minne DRILLE Elev. feet 899.3 - 898.1 - - - - - - - - - - - - - - - - - - -	1.2	FILL FILL	FILL: Lean Clay, trace roots, dark brown, m (Topsoil Fill) FILL: Clayey Sand, slightly organic, trace G black Clay inclusions, dark brown, moist.	-	4		8	OC=4%	
_ <u>890.3_</u>	9.0	FILL	FILL: Lean Clay, slightly organic, with Sand dark gray and black, wet.	l inclusions,	15		24		
 887.3	12.0	FILL	FILL: Clayey Sand, slightly organic, trace G roots, dark brown, wet.	Gravel and	18		24	OC=4%	
<u> 884.3 </u> _	15.0	FILL	FILL: Lean Clay, organic, black and dark gr	ray, wet.	14		32	OC=5%	
<u> 882.3 </u> – 880.3	<u>17.0</u> 19.0	ML	SANDY SILT, highly organic, black, wet. (Swamp Deposit)		16		52	OC=13%	
		CL	LEAN CLAY, gray, wet, rather stiff. (Glacial Till)		11	Ā			
<u> 877.3 </u> – –	22.0	SP- SM	POORLY GRADED SAND with SILT, fine- t medium-grained, trace Gravel, gray, waterb medium dense. (Glacial Outwash)		23			*Water obser	ved at 21
 870.3	29.0			-				feet with 29 1 hollow-stem a ground. Boring immed backfilled with	/2 feet of auger in th liately
868.3	31.0	SP	POORLY GRADED SAND, fine- to coarse- trace Gravel, brown, waterbearing, medium (Glacial Outwash) END OF BORING.*		27			grout.	



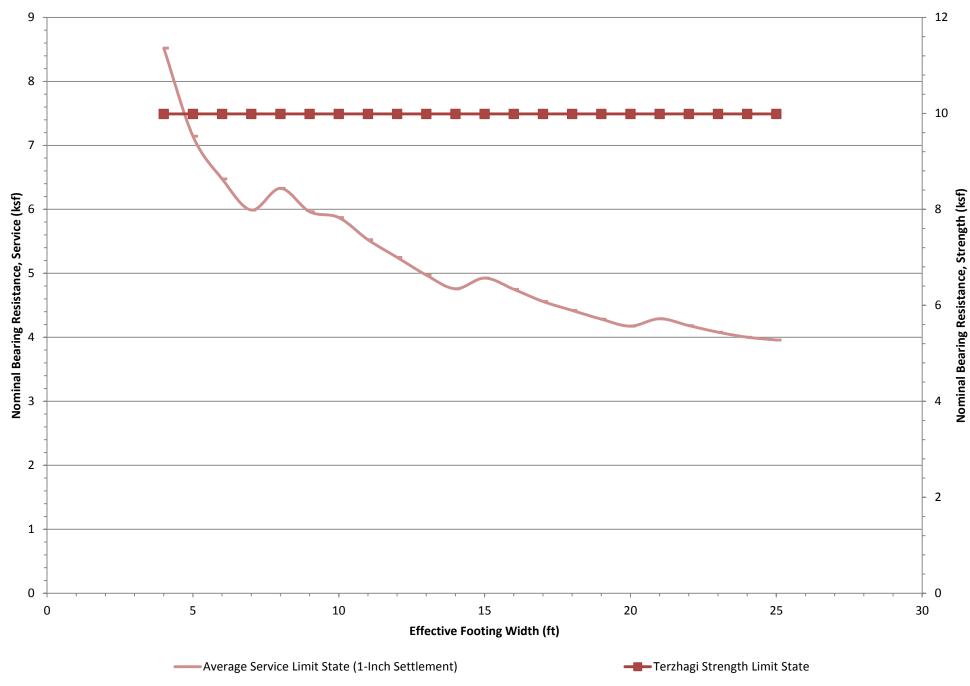
Limit State Shallow Foundation Analysis Opus Pedestrian Underpass 1 and 2, Boring 2020ST



Limit State Shallow Foundation Analysis Opus Pedestrian Underpass 3 - North Abutment, Boring 2022SW



Limit State Shallow Foundation Analysis Pedestrian Underpass 3 - S Abutment, Boring 2023SW



Limit State Shallow Foundation Analysis Pedestrian Underpass 4 and 5, Boring 2006ST

Limit State Shallow Foundation Analysis RTW-W213, Boring 2024SW

В	Eo	ER	p*L	qc	fs	N
A	tsf	tsf	tsf	tsf	tsf	b1/ft
E tsf	1	0.125	8	1.15	57.5	4
E _R tsf	8	1	64	6.25	312.5	22.7
p* tsf	0.125	0.0156	1	0.11	5.5	0.5
q_tsf	0.87	0.16	9	1	50	5
f tsf	0.0174	0.0032	0.182	0.02	1	0.1
N b1/ft	0.25	0.044	2	0.2	10	1

Table 5. Correlation results for sand. (Column A = Number in Table x Row B.)

Table 6. Correlation results for clay. (Column A = Number in Table x Row B.)

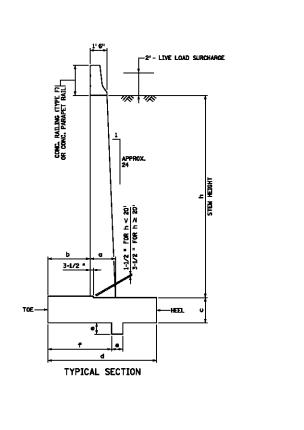
A	в	E _o tsf	E _R tsf	P*L tsf	q _c tsf	f _s tsf	S _u tsf
	tsf		0.278	14	2.5	1.00	100
	tsf	3.6	1	50	13	260	300
P [*] L	tsf	0.071	0.02	1	0.2	4	7.5
9 _c	tsf	0.40	0.077	5	1	20	27
fs	tsf	0.079	0.0038	0.25	0.05	1	1.6
su	tsf	0.010	0.0033	0.133	0.037	0.625	1

WALL LOADING CASE: 2' - LIVE LOAD SURCHARGE

WALL GEOMETRICS AND DATA - SPREAD FOOTING QUANTITIES PER FOOT - SPREAD FOOTING										BASE PI KIPS/S			
STEM	STEM	TOE	FOOTING	FOOTING	SHEAR	SHEAR KEY	STRUCTURA	L CONCRETE	REINFOR	REMENT	WALL DETAILING	KIF3/3	5 M. F.I.
EIGHT	WIDTH	WIDTH b	THICKNESS	HTQTW d	KEY SIZE	LOCATION	1A43 (CLLYDJ) FOOTING	SY43 (CULYD.) Sten	(POUND)	EPOXY (POUND)	SCHEME ()	TOE	HEEL
5	1'-8///	1'-0"	1'-5"	3'-6"	N/A	N/A	0.187	0.296	15.38	38.16	SHORT	1.670	0.070
6	1'-9"	1'-2"	1'-5"	4'-0"	N/A	N/A	0.211	0,360	16,43	41.74	SHORT	1.820	0.090
7	1'-9%	1'-4"	1'-5"	4'-6"	N/A	N/A	0,235	0.425	19,70	45,34	SHORT	1.970	0.120
8	1'-10"	1'-6"	1'-5"	5'-0*	N/A	N/A	0.259	0.492	20.75	48.89	SHORT	2.110	0.150
9	1-10/2	1'-8"	1'-5"	5'-6'	N/A	N/A	0.283	0.561	24.13	52.69	SHORT	2.250	0.180
10	1'-11"	11-90	1'-5"	6'-0"	N/A	N/A	0.306	0.631	25.18	62.49	MEDIUM	2.446	61199
11	1 -11/2"	2'-0"	1'-5"	6'-6"	N/A	N/A	0.331	0.703	31.28	66.85	MEDIUM	2.536	0.239
12	2'-0"	2'-3"	1'-5"	6'-9"	1'-0"	3'-10%	0.380	0.776	35.38	72.23	MEDIUM	2.758	0.156
13	2 0/2	2'-6"	1'-5"	7'-0"	1'-0"	4 2/	0.393	0.851	40.30	76.82	MEDIUM	2.966	0.013
14	2'-1"	2'-9"	1'-6"	7'-8"	1'-0"	4 - 5%	0.177	0.928	40,49	61.74	MEDIUM	3.147	0.078
15	2 -1/2	3-0	1'-6"	8'-2"	1'-0"	4-9//	0.506	1.006	40.10	99.57	TALL	3.239	0.111
16	2'-2"	3'-3"	1'-9"	6'-8"	1'-0"	5-0%	0.615	1.085	41.38	105.97	TALL	3.494	0.056
17	2 -2/2	3'-6"	1'-9"	9'-2"	1'-0"	5 4%	0.649	1.166	49.02	111.90	TALL	3.586	0.089
18	2'-3"	3'-9"	1'-9"	9'-8"	1'-0"	5 7%	0.682	1.249	50.52	129.74	TALL	3.679	0.121
19	2 -3/2	4-0	2'-0"	10'-2"	1'-0"	5'-11%	0.810	1.333	54.26	137.41	TALL	3.935	0.066
20	21-4#	41-30	2'-0"	10'-8"	1'-0'	61-30	0.875	1.417	61.38	165.51	TALL	4.056	0.090
21	2 4/2	4'-6"	2'-0"	11'-2"	1'-0"	6 61/2	0.916	1.504	71.34	174.30	TALL	4,151	0.122
22	21-6*	41-90	2'-3"	11 <i>1-</i> 80	1'-0"	6'-10%	1.064	1.593	65.93	183.51	TALL	4.407	0.067
23	2 -5//	5'-0"	2'-6"	12'-2"	ייי	7 1%	1.221	1.683	84.82	224.49	TALL	4.663	0.012
24	2'-6"	5'-3"	2'-9"	12'-9"	1'-0'	7 - 5%	1.396	1.775	94.03	234.03	TALL	4,872	0.020
25	2 -6/~	5'-6"	2'-9"	13'-3º	1'-0"	7 -8%	1.449	1.668	100.13	288.16	TALL	4.967	0.052
26	2'-7■	5'-10"	3'-0"	13'-9"	1'-0"	8 11/2	1.631	1.963	102.26	299.67	TALL	5,189	0.000
27	2 -7/2	6'-2"	3'-3°	14'-4"	1'-0'	8 -61/2	1.832	2.059	127.34	315.84	TALL	5.364	0.000
28	2'-8"	6'-6"	3'-3'	15'-0"	1'-P'	8'-10%	1.916	2,157	140.92	394.98	TALL	5.334	0.140
29	2 -8//	6'-10"	3'-6"	15'-6"	1'-0'	9-3/4	2.123	2.257	148.00	407.90	TALL	5.558	0.077
30	1		1			ļ	I						

NOTE, EPOXY REINFORCEMENT QUANTITY ASSUMES AN EXPANSION JOINT IS USED ON BOTH PANEL ENDS. THE QUANTITY MUST BE ADJUSTED WHEN CONSTRUCTION JOINTS ARE USED, QUANTITIES ON THIS SHEET DO NOT BUCJUE RAILING, SEE RAILING SHEETS FOR RAIL REINFORCEMENT GEPOXY) AND RAIL CONCRETE 137461.

(1) SEE STANDARD PLANS 5-297.621 TO .623 FOR REINFORCING DETAILS.


DESIGN CRITERIA

1992 A.A.S.H.T.O. DESIGN SPECIFICATIONS DESIGN METHOD. WORKING STRESS - STABILITY, FOLMOATIONS LOAD FACTOR DESIGN - REINFORCED CONCRETE TC # 4,000 PSI Ty = 60,000 PSI

FACTOR OF SAFETY OVERTURNING, 2.0 MINIMUM FACTOR OF SAFETY SLIDING, 1.5 MINIMUM Location of Resultants, Middle 1/3 of Footing Neglecting Soil in Front of Wall.

SEE FOUNDATION REPORT FOR ALLOWABLE BEARING PRESSURE AND COEFFICIENT OF FRICTION.

BACKFILL CHARACTERISTICS: INTERNAL ANGLE OF FRICTION: 35' = 33 POF EQUIVALENT FULID PRESSURE ACTIVE STATE = 53 POF EQUIVALENT FULID PRESSURE AT REST STATE Be = 1.0 COEFFICIENT OF FRICTION: 0.55 UNIT WEIGHT: 125 POF

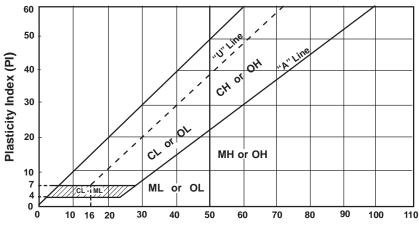
SEDa	атикимо знат на. 5-297.632 (1 OF 4)	71 71.6 .	RETAINING				SURCHARGE	
WEDI MAY 31, 2006	MAY 31, 2006		SPREAD F	OOTIN	G GEOM	ETRY	AND DATA	
TATL BREE BREAK	STATE PROJ. NO	-	(TH)	SHEET	NO.	OF	SHEETS

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Criter	ia for Assigni	ing Group	Symbols and	So	Is Classification	Particle	Size Identification
		up Names Us			Group Symbol	Group Name ^b	Boulders Cobbles	
o الم	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^{c}$	GW	Well-graded gravel ^d	Gravel	3/4" to 3"
grained Soils 50% retained c 200 sieve	More than 50% of coarse fraction	5% or less	s fines e	C_u < 4 and/or 1 > C_c > 3 ^c	GP	Poorly graded gravel ^d		No. 4 to 3/4"
eve	retained on	Gravels wi	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand	
aine % re	No. 4 sieve	More than 12	2% fines ^e	Fines classify as CL or CH	GC	Clayey gravel ^{d f g}		No. 4 to No. 10 No. 10 to No. 4
20 50	Sands	Clean S	ands	$C_{u} \ge 6 \text{ and } 1 \le C_{c} \le 3^{c}$	SW	Well-graded sand h		No. 40 to No. 2
arse- than No.	50% or more of coarse fraction	5% or less	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^c$	SP	Poorly graded sand h	Silt	<no. 200,="" pi<<="" td=""></no.>
Coa more t	Dasses	Sands wit	h Fines	Fines classify as ML or MH	SM	Silty sand ^{fgh}		below "A" line
	No. 4 sieve	More than 12% ⁱ		Fines classify as CL or CH	SC	Clayey sand ^{fgh}	- Clay	on or above "A"
-grained Soils r more passed the o. 200 sieve		Inorganic	PI > 7 ar	nd plots on or above "A" line ^j	CL	Lean clay kim		
ed th	Silts and Clays Liquid limit	and oldys	PI < 4 or	plots below "A" line ^j	ML	Silt ^{k m}		Density of
asse ieve	less than 50	Organic	-	nit - oven dried < 0.75	OL	Organic clay ^{k m n}	Cohesionless Soils	nless Soils
e pa 0 si			+ ·	nit - not dried	OL	Organic silt ^{k m o}		0 to 4 BPF
Jrain nore 200	Silts and clays	Inorganic		on or above "A" line	СН	Fat clay ^{k m}		5 to 10 BPF 11 to 30 BPF
ο τα Νο. π	Liquid limit			pelow "A" line	MH	Elastic silt k I m		31 to 50 BPI
Fin	50 or more	Organic		nit - oven dried < 0.75	он	Organic clay k I m p		over 50 BPF
50		Liquid		nit - not dried	ОН	Organic silt k I m q		
Highly	Organic Soils	Primarily org	anic matte	r, dark in color and organic odor	PT	Peat	Consistency	of Cohesive Soils

Based on the material passing the 3-in (75mm) sieve a.


b. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name $C_u = D_{60}$

$$D_{10} / D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$$

- d. If soil contains>15% sand, add "with sand" to group name.
- Gravels with 5 to 12% fines require dual symbols: e.
- GW-GM well-graded gravel with silt

c.

- GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains \geq 15% gravel, add "with gravel" to group name.
- h. Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. If soil contains 10 to 29% plus No. 200, add "with sand" or "with grave!" whichever is predominant. k.
- If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- If soil contains≥30% plus No. 200 predominantly gravel, add "gravelly" to group name m.
- $PI \ge 4$ and plots on or above "A" line. n.
- PI <4 or plots below "A" line. о.
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

DD	Dry density, pcf	OC	Organic content, %
WD	Wet density, pcf	S	Percent of saturation, %
MC	Natural moisture content, %	SG	Specific gravity
LL	Liqiuid limit, %	С	Cohesion, psf
PL	Plastic limit, %	Ø	Angle of internal friction
PI	Plasticity index, %	qu	Unconfined compressive strength, psf
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf

s	 	 3" to 12"	

Oluvoi	
Coarse	3/4" to 3"
Fine	No. 4 to 3/4"
Sand	
Coarse	No. 4 to No. 10
Medium	No. 10 to No. 40
Fine	No. 40 to No. 200
Silt	<no. 200,="" 4="" <="" or<="" pi="" td=""></no.>
	below "A" line
Clay	
	on or above "A" line

	Very loose	0 to 4 BPF
1	Loose	5 to 10 BPF
	Medium dense	11 to 30 BPF
	Dense	31 to 50 BPF
	Loose Medium dense Dense Very dense	over 50 BPF

oils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.'

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards.

Appendix H

Opus Station

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Geotechnical Evaluation Proposed Opus Station Platform – 100% Design STA 2325+92 to STA 2328+62 Southwest LRT, West Segment 2 Minnetonka, Minnesota

Dear Mr. Demers:

We are pleased to present this Geotechnical Report for the proposed Opus Station, located between STA 2325+92 and STA 2328+62 in Minnetonka, Minnesota. Details of our results and recommendations are provided in the following report.

This report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for the retaining walls, pedestrian underpasses, and the Overhead Contact System (OCS) will be addressed in separate reports.

A. Project Information

SWLRT is proposing to construct a light rail transit line through the cities of Hopkins, Minnetonka, and Eden Prairie, Minnesota. This Geotechnical Evaluation Report addresses the proposed Opus Station Platform, from track STA 2325+92 to STA 2328+62 in Minnetonka. The site of the proposed platform station is located east of Bren Road East and approximately 338 feet south of Bren Road West.

B. Results

B.1. Exploration Logs

B.1.a. Log of Boring Sheets

Log of Boring sheets for our penetration test borings are included in the Appendix. The logs identify and describe the geologic materials that were penetrated, and present the results of penetration resistance, laboratory tests performed on penetration test samples retrieved from them, and groundwater measurements.

Strata boundaries were inferred from changes in the penetration test samples and the auger cuttings. Because sampling was not performed continuously, the strata boundary depths are only approximate. The boundary depths likely vary away from the boring locations, and the boundaries themselves may also occur as gradual rather than abrupt transitions.

B.1.b. Geologic Origins

Geologic origins assigned to the materials shown on the logs and referenced within this report were based on visual classification of the various geologic material samples retrieved during the course of our subsurface exploration, penetration resistance testing performed for the project, laboratory test results, and available common knowledge of the geologic processes and environments that have impacted the site and surrounding area in the past.

B.2. Geologic Profile

B.2.a. Summary of Borings Taken

The Southwest Light Rail Transit Project Office (SPO) requested subsurface soil and groundwater information in the area of the proposed Opus Station Platform, on two parcels of land owned by the City of Minnetonka. Two (2) standard penetration soil borings were performed in this area. The number, location, and function of the soil boring can be seen in Table 1 below.

Boring	Approximate Track Station	Surface Elevation	Soil Boring Function
2002SS	2325+25	895.0	Station Platform
2003SS	2328+25	889.6	Station Platform

Table 1. Soil Boring Information for Opus Station Area

B.2.b. Geologic Materials

A berm is present throughout much of the proposed station area. The borings were performed at the base of the berm to facilitate drill rig access, so the composition of the berm materials was not investigated.

The borings generally encountered fill soils of mix composition ranging in depths of 7 to 9 feet below the ground surface or elevations 883 and 886. The majority of the fill appears to be non-organic. However, an organic clay layer was encountered in Boring 2002SS from 7 to 9 feet below the ground surface.

Swamp deposited soils were encountered in the borings beneath the fill to depths ranging from 7 to 14 feet below the ground surface or to elevations ranging from 886 to 877 ½.

Beneath the fill and swamp deposited soils, the borings encountered native alluvium and glacially deposited soils to a termination depth of 25 feet below existing grades. The alluvium soils consisted of silt (ML) and the glacial soils consisted of poorly graded sand (SP), lean clay (CL), and sandy lean clay (CL).

Penetration resistance values recorded in the native sands ranged from 6 to 9 blows per foot (BPF), indicating the soils were loose and the native clays ranged from 11 to 32 BPF, indicating the soils were rather stiff to hard.

B.2.c. Groundwater

Groundwater was measured or estimated to be located at the depths shown below in Table 2. Corresponding groundwater elevations were determined from comparisons of the measured/estimated depths to groundwater and surface elevations, and were rounded to the highest 1/2-foot.

Location	Measured or EstimatedSurfaceDepth to GroundwaterElevation(ft)		Corresponding Groundwater Elevation (ft)
200255	895.0	20	875
2003SS	889.6	15	871 ½

Table 2. Groundwater Summary

Seasonal and annual fluctuations of groundwater, however, should be anticipated.

Based on the information received from the project team, it is our understanding the pond located west of the proposed Opus Platform Station (to the west of Bren Road East) has a normal water level around 888.0 and a measured high water level of 892.6. It is also our understanding the wetlands north of the proposed platform station (north of Bren Road West) have a normal water level around 878.3 and a measured high water level elevation of 880.9.

C. Basis for Recommendations

C.1. Design Details

C.1.a. Proposed Construction

The proposed Opus Platform Station is approximately 270 feet in length and is located between track STA 2325+92 and STA 2328+62. The station will be lightly loaded with ramps on each end leading to an elevated slab-on-grade supported on cast-in-place footings and foundation walls. Pedestrian access to the station including ramps and/or walks, along with an associated canopy structure will be constructed as part of the station.

C.1.b. Anticipated Grade Changes

Based on the preliminary engineering plans, the top of rail elevation (from south to north) ranges from 892 to 890 with a finished station grade ranging from 893 to 891, respectively. Borings 2002SS and 2003SS were completed in the area of the proposed station at elevations 895.0 and 889.6, respectively.

C.1.c. Precautions Regarding Changed Information

We have attempted to describe our understanding of the proposed construction to the extent it was reported to us by others. Depending on the extent of available information, assumptions may have been made based on our experience with similar projects. If we have not correctly recorded or interpreted the project details, we should be notified. New or changed information could require additional evaluation, analyses and/or recommendations.

C.2. Design and Construction Considerations

Based on the soil borings, the site appears suitable for construction of the station using shallow spread footings and ground supported slabs. Potential issues affecting the station construction are as follows:

- Organic soils were encountered beneath the fill at both boring locations and will need to be removed and replaced with engineered fill prior to construction of the station platform. The excavation depth will extend close the other observed groundwater elevations, and provisions should be made for removal any water encountered within the excavation.
- Maximum frost depth for the Southwest Light Rail Transit is assumed to be 60 inches (5 feet), therefore, a frost-free section of 5 feet should be provided below the station. To provide this frost-free section at the station location and the adjacent track segments, a subcut of 4 1/2 feet below the top of rail is anticipated. We referenced the above information from the SWLRT Guideway design criteria.
- Lean clay soils may be encountered once the subcut is complete; these soils are considered moisture sensitive and are also susceptible to disturbance from construction activities and participation. Therefore, site grading and movement on the site will be somewhat limited during wet weather conditions. Stabilization of the subgrade with gravel may be required.

D. Recommendations

Our recommendations below are for final design of the platform station based on the information provided to us within the preliminary engineering plans. We have also referenced the design guidelines use for the recently completed Central Corridor Light Rail Transit (CCLRT) construction.

D.1. Station Subgrade Preparation

D.1.a. Excavations

We recommend removing vegetation, topsoil fill, fill, and swamp deposit soils from below the proposed station area. A 5-foot zone of non-frost susceptible soil should be provided beneath the top of slab elevation (4 feet below top of rail) based on the proposed Guideway design. We expect cuts on the order of 11 to 13 feet from existing grade to reach a suitable excavation bottom. Soils encountered at anticipated subgrade elevations consist of poorly graded sand and lean clay soils and appear suitable for support of proposed fill and station construction.

The subgrade should be sloped to promote drainage to low areas where drain tile can remove any excess water. Anticipated excavation depths and bottom elevations to reach the bottom of the station Guideway section at each of the borings are shown in Table 3 below. If there is a

significant raise in grade for the track or structures, additional subcutting may be required. The final profiles should be reviewed by us to verify the anticipated excavation depths.

Location	Ground Surface Elevation	Anticipated Excavation Depth (ft)	Corresponding Bottom Elevation
200255	895.0	14	881
200355	889.6	13	876 ½

Table 3. Excavation Depths and Bottom Elevations to Bottom of Frost-Free Zone

Excavation depths will vary between the borings. Portions of the excavations may also be deeper than indicated by the borings. Contractors should also be prepared to extend excavations in wet or fine-grained soils to remove disturbed bottom soils.

To provide lateral support to replacement backfill, additional required fill and the structural loads they will support, we recommend oversizing (widening) the excavations 1 foot horizontally beyond the outer edges of the station platform, for each foot the excavations extend below bottom-of-footing.

D.1.b. Surface Compaction

We recommend soils exposed in the excavation bottoms be surface compacted prior to placement of backfill and fill or structures. Surface compaction should involve at least six passes of a vibratory sheepsfoot compactor (3 foot minimum in diameter). If groundwater is present in the excavation bottom, or if the excavation bottom soils become unstable through surface compaction, surface compaction should not be performed.

D.1.c. Selecting Excavation Backfill and Additional Required Fill

D.1.c.1. Subgrade Fill

We initially recommend backfilling over wet or submerged excavation bottoms with at least 2 feet of coarse sand having less than 70 percent of the particles by weight passing a #40 sieve, and less than 10 percent of the particles passing a #200 sieve. We anticipate that this material will need to be imported.

On-site soils free of organic soil and debris can be considered for reuse as subgrade backfill and fill. The clays, however, being fine-grained, will be more difficult to compact if wet or allowed to become wet, or if spread and compacted over wet surfaces.

Imported material needed to replace excavation spoils or balance cut and fill quantities, may consist of sand, silty sand, clayey sand, sandy lean clay or lean clay. We recommend, however, that the plastic index of these materials not exceed 20.

D.1.c.2. Guideway and Platform Station Fill

Based on the proposed design sections, the Guideway will be composed of 40-inch thick layer of granular material, under a minimum of 12-inches of subballast material. We recommend specifying Guideway fill to meet the requirements of the Minnesota Department of Transportation (MnDOT) 3149.2B2 (Select Granular Borrow) for the granular material, and 3138 (Aggregate Base) for the subballast.

D.1.d. Placement and Compaction of Backfill and Fill

We recommend spreading backfill and fill in loose lifts of approximately 6 to 12 inches. We recommend compacting backfill and fill in accordance with the criteria presented below in Table 4. The relative compaction of utility backfill should be evaluated based on the structure below which it is installed, and vertical proximity to that structure.

Material	Material Specification	Compaction Specification	
Guideway Subgrade Fill	Onsite Material Free of Debris and Organic Material	100% of standard Proctor Density (ASTM D698)	
Guideway Select Granular Layer	MnDOT 3149.2B2*	100% of standard Proctor Density (ASTM D698)	
Guideway Subballast	MnDOT 3138	MnDOT 2211.3C	

Table 4. Material and Compaction Specification for Backfill and Fill

*-Select Granular Borrow Modified 10%

D.1.e. Subgrade Drainage

We recommend crowning the subgrade, so excess water entering the Guideway fill can be collected and routed away to a storm sewer. We recommend installing perforated drainpipes at the bottom of the Select Granular drainage layer, outside of the track footprint at points to which the subgrade is directed. We recommend perforated drain pipe used be placed within a Coarse Filter Aggregate material (MnDOT Specification 3149.2H) with a geotextile separation fabric separating it from the Select Granular Material.

D.2. Spread Footings

D.2.a. Embedment Depth

We recommend embedding footings and other footings associated with canopies, stoops or sidewalks 60 inches below the lowest exterior grade.

D.2.b. Subgrade Improvement

Prior to placing fill, forms or reinforcement, we recommend surface compacting the exposed subgrade. If unstable soils are encountered, they should be subcut and replaced with more favorable granular soils.

D.2.c. Net Allowable Bearing Pressure

We recommend sizing spread footings to exert a net allowable bearing pressure of 2,500 pounds per square foot (psf). This value includes a safety factor of at least 3.0 with regard to bearing capacity failure.

D.2.d. Settlement

We estimate that total and differential settlements among the footings will amount to less than oneinch and ½-inch, respectively, under the assumed loads.

D.3. Slab-On-Grade Construction

We anticipate the slab-on-grade for the station platform will be supported by the Guideway fill. We recommend using a modulus of subgrade reaction, k, of 200 pounds per square inch per inch of deflection (pci) to design the slab. Also, we recommend a minimum of 6 inches of aggregate base be provided below the platform slab. We recommend following the compaction criteria provided in Section D.1.d.

D.4. Exterior Slabs

Though not necessarily designed to accommodate dead and live load surcharges or vehicles, exterior slabs can be subjected to both. Settlement of exterior slabs on poorly compacted foundation backfill, utility backfill, and other compressible natural deposit soils or fills can also contribute to unfavorable surface drainage conditions and frost-related damage to the slabs and adjacent structures and pavements. Subgrades supporting exterior slabs should therefore consist of non-

organic compacted fill or native soils. To accommodate the potential for exterior slabs bearing unanticipated traffic loads, we recommend using the compaction criteria provided in Section D.1.d. We anticipate that a majority of exterior slabs associated with station construction will be placed on the Guideway fill section. For exterior slabs not supported by the Guideway fill, we recommend a transition zone of at least 5:1 (H:V) to reduce the effects of differential frost heave away from the station.

D.5. Construction Quality Control

D.5.a. Excavation Observations

We recommend having a geotechnical engineer observe all excavations related to subgrade preparation and spread footing and slab-on-grade construction. The purpose of the observations is to evaluate the competence of the geologic materials exposed in the excavations, and the adequacy of required excavation oversizing.

D.5.b. Materials Testing

We recommend density tests be taken in excavation backfill and additional required fill placed below spread footings, slab-on-grade construction, beside foundation walls, and below pavements.

We also recommend slump, air content and strength tests of portland cement concrete.

D.5.c. Cold Weather Precautions

If site grading and construction is anticipated during cold weather, all snow and ice should be removed from cut and fill areas prior to additional grading. No fill should be placed on frozen subgrades. No frozen soils should be used as fill.

Concrete delivered to the site should meet the temperature requirements of ASTM C 94. Concrete should not be placed on frozen subgrades. Concrete should be protected from freezing until the necessary strength is attained. Frost should not be permitted to penetrate below footings.

E. Procedures

E.1. Penetration Test Borings

The penetration test borings were drilled with a flotation tired-mounted core and auger drill equipped with hollow-stem auger. The borings were performed in accordance with ASTM D 1586. Penetration test samples were taken at 2 ½ -foot intervals to termination depth. Actual sample intervals and corresponding depths are shown on the boring logs.

Penetration test boreholes that met the Minnesota Department of Health (MDH) Environmental Borehole criteria were sealed with an MDH-approved grout. Sealing records for those boreholes will be forwarded to the Minnesota Department of Health Well Management Section. Copies of the sealing records follow the Log of Boring sheets in the Appendix.

E.2. Material Classification and Testing

E.2.a. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars and returned to our facility for review and storage.

E.2.b. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM or AASHTO procedures.

E.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced, and again after auger withdrawal. The boreholes were then backfilled as noted on the boring logs.

F. Qualifications

F.1. Variations in Subsurface Conditions

F.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

F.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

F.2. Continuity of Professional Responsibility

F.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

F.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

F.3. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

F.4. Standard of Care

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If there are questions regarding these recommendations, please call Josh Kirk at 952.995.2222 jkirk@braunintertec.com or Ray Huber at 952.995.2260 rhuber@braunintertec.com at your convenience.

Sincerely,

BRAUN INTERTEC CORPORATION

Professional Certification:

I hereby certify that this plan, specification or report was prepared by me or under my direct supervision and that I am a duly Licensed Invitessional Engineer under the laws of the State of Minnesota

LICENSED

MINIMUM MINI

OFESSIONA ENGINEER

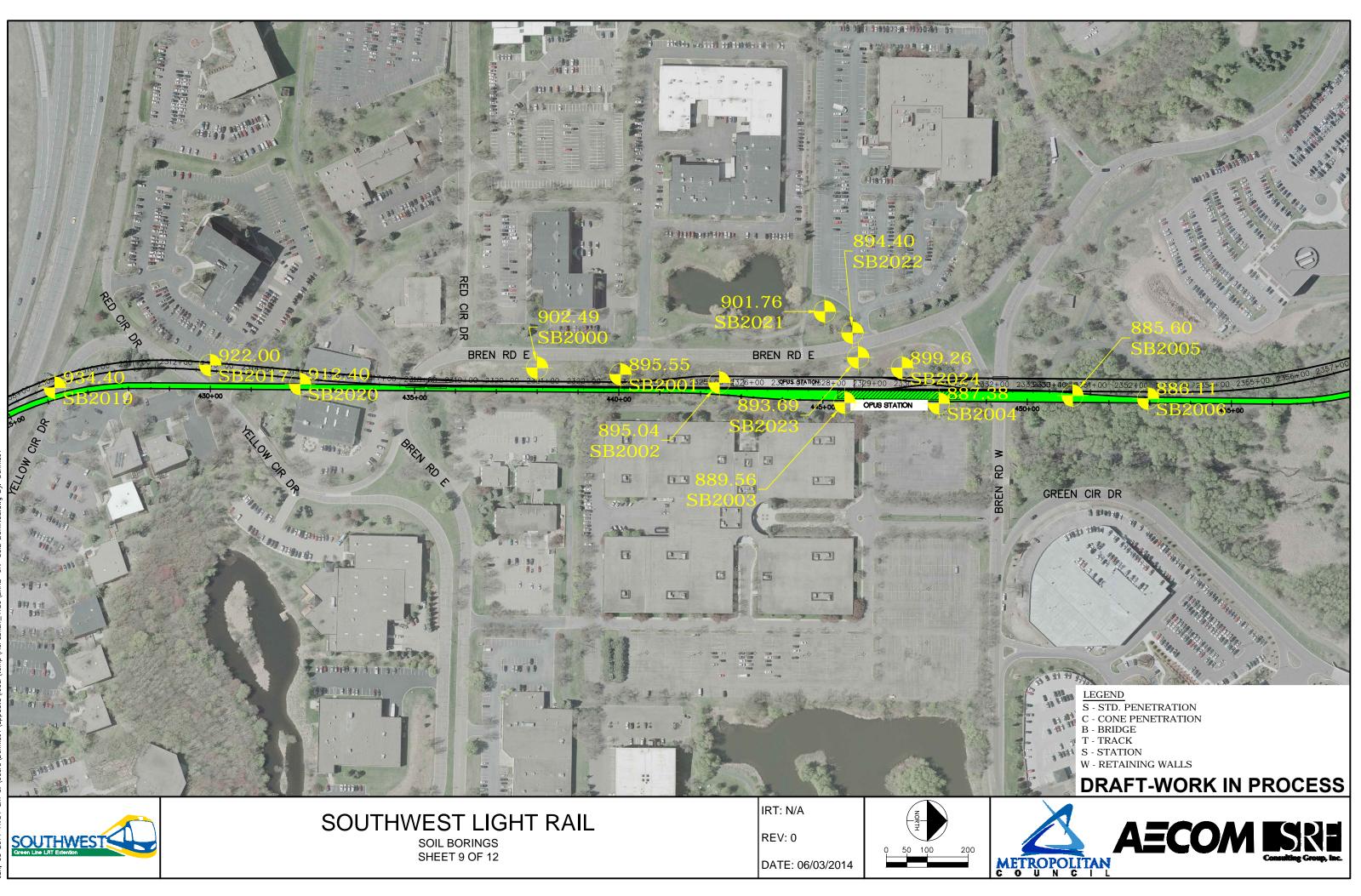
Jøshua L. Kirk, PE Associate-Project Engine

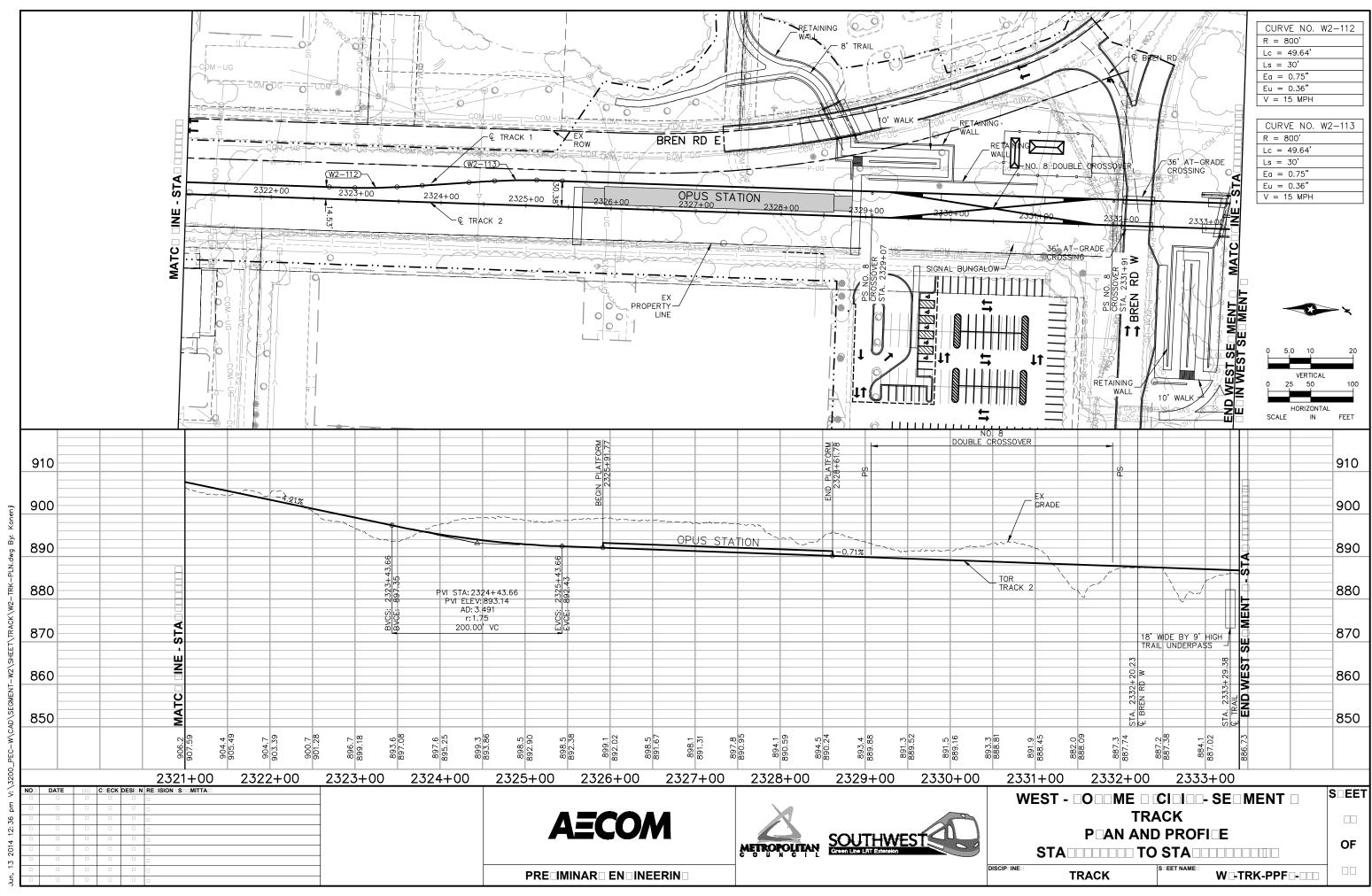
License Number: 45005

Reviewed by:

FOR'.

Ray A. Huber, PE Vice President-Principal Engineer


Reviewed by:


Matthew P. Ruble, PE **Principal Engineer**

Appendix: Boring Location Sketch Preliminary Engineering Plan and Profile Page W2-TRK-PPFL-010 Standard Penetration Borings 2002SS and 2003SS SPT Descriptive Terminology

APPENDIX

LOG OF BORING-

			3-00213	BORING	:	_ 2	2002SS	
GEOTECHNICAL EVALUATION SWLRT Minnetonka, Minnesota			LOCATIC See attac	95.2; E: 492	192065.8			
DRILLE	ER: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/4	/13	SCALE:	1" = 4
Elev. feet 895.0	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM	11110-1-2908)	BPF	WL	Tests or	Notes
-	0.8	FILL	FILL: Clayey Sand, trace roots, dark brow (Topsoil Fill) FILL: Clayey Sand, trace Gravel, brown, d	n, frozen.	25			
888.0	7.0	FILL	FILL: Organic Clay, black, wet.		14			
886.0	9.0	OL	ORGANIC CLAY, black, wet. (Swamp Deposit)		7			
881.0	14.0			-	6			
-		CL	LEAN CLAY, brown, wet, very stiff. (Glacial Till)		18			
<u>877.0</u>	18.0	CL	SANDY LEAN CLAY, trace Gravel, gray, w to hard. (Glacial Till)	vet, very stiff 	₩ 32	Ā		
_				- - - -	<u>_</u>			
869.0	26.0		END OF BORING.		19			
			Water observed at 20 feet with 20 feet of h auger in the ground. Boring immediately backfilled with bentonit	-				

LOG OF BORING-

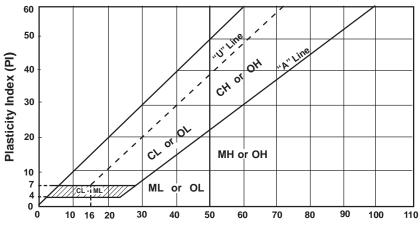
			3-00213	BORING	:		20	03SS	
GEOTECHNICAL EVALUATION SWLRT Minnetonka, Minnesota			LOCATION: N: 139002.2; E: 492115. See attached sketch.					2115.2	
DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/5	5/13		SCALE:	1'' = 4
Elev. feet 889.6	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	110-1-2908)	BPF	WL	MC %	Tests	or Notes
888.6	1.0	FILL 🛞	FILL: Sandy Lean Clay, dark brown, frozen.						
_	1.0	FILL	FILL: Poorly Graded Sand with Silt, fine- to medium-grained, trace Gravel, brown, moist	-	6				
882.6	7.0	PT 1/2 1/2	PEAT, fibrous, black, wet. (Swamp Deposit)		 M 6				
880.6	9.0		(Gwamp Deposit)	-	Ă				
	5.0	OL	SLIGHTLY ORGANIC CLAY, with roots, bla (Swamp Deposit)	ck, wet.	2		28	OC=3%	
				-	Å -		20	00-070	
877.6	12.0								
876.6	13.0	ML SP	SILT, trace roots, gray, moist, loose. (Alluvium)	7	8 🕅				
-			POORLY GRADED SAND, fine- to medium- trace Gravel, with occasional Lean Clay lens moist to 15 feet then waterbearing, loose. (Glacial Outwash)		6	Į			
865.6	24.0			-	-				
_		CL	LEAN CLAY, trace Gravel, gray, wet, rather (Glacial Till)	stiff.					
863.6	26.0				11				
			END OF BORING.						
			Water observed at 15 feet with 15 feet of ho auger in the ground.	llow-stem					
			Water observed at 16 feet with 24 1/2 feet o hollow-stem auger in the ground.	f –	-				
			Boring immediately backfilled with bentonite	arout					

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Criteria for Assigning Group Symbols and				So	ils Classification	Particle S	Size Identification
	Group Names Using Laboratory Tests a			Group Symbol	Group Name ^b	Boulders Cobbles		
"uo	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^{c}$	GW	Well-graded gravel ^d	Gravel	3/4" to 3"
grained Soils 50% retained c 200 sieve	More than 50% of coarse fraction	5% or less fines ^e		$C_u < 4$ and/or $1 > C_c > 3^c$	GP	Poorly graded gravel ^d	Fine	
d S etain eve	retained on	Gravels wi	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand	
nine % re	No. 4 sieve	More than 12	2% fines ^e	Fines classify as CL or CH	GC	Clayey gravel dfg	Coarse	No. 4 to No. No. 10 to N
-9ra 50°	Sands	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3^{c}$	SW	Well-graded sand h	Fine	
arse- than No.	50% or more of coarse fraction passes	0/0 01 1633	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^c$	SP	Poorly graded sand h	Silt	,
Coa more t		Sands wit	h Fines	Fines classify as ML or MH	SM	Silty sand fgh	Clay	below "A" li
	No. 4 sieve	More than	n 12% ⁱ	Fines classify as CL or CH	SC	Clayey sand fgh	Clay	, on or above
-grained Soils r more passed the o. 200 sieve			PI > 7 ar	nd plots on or above "A" line ^j	CL	Lean clay kim		
ed t [†]	Silts and Clays Liquid limit		PI < 4 or	PI < 4 or plots below "A" line ^j		Silt ^{k m}		Density of
asse leve	less than 50	Organic	Liquid lin	nit - oven dried < 0.75	OL	- 0 ,	Cohesionless Soils	
e pa o si		organio	Liquid lin	nit - not dried	OL	Organic silt k I m o	Very loose	
rain 10re 200	Silte and alove	-	PI plots of	on or above "A" line	СН	Fat clay ^{k m}	Loose	
ог д Ло. 7 Ло. 7	Silts and clays Liquid limit 50 or more		PI plots b	elow "A" line	MH	Elastic silt k I m	Medium dense	
Fine 50% c		Organic	Liquid limit - oven dried < 0.75		ОН	Organic clay k I m p	Very dense	
20		Ciganic	Liquid lin	nit - not dried	OH	Organic silt ^{k m q}		
Highly	Organic Soils	Primarily org	anic matte	ic matter, dark in color and organic odor		Peat	Consistency	of Cohesive So

Based on the material passing the 3-in (75mm) sieve a.


b. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name $C_u = D_{60}$

$$D_{10} / D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$$

- d. If soil contains>15% sand, add "with sand" to group name.
- Gravels with 5 to 12% fines require dual symbols: e.
- GW-GM well-graded gravel with silt

c.

- GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with silt
- GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains \geq 15% gravel, add "with gravel" to group name.
- h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant. k.
- If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- If soil contains≥30% plus No. 200 predominantly gravel, add "gravelly" to group name m.
- $PI \ge 4$ and plots on or above "A" line. n.
- PI <4 or plots below "A" line. о.
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

DD	Dry density, pcf	OC	Organic content, %
WD	Wet density, pcf	S	Percent of saturation, %
MC	Natural moisture content, %	SG	Specific gravity
LL	Liqiuid limit, %	С	Cohesion, psf
PL	Plastic limit, %	Ø	Angle of internal friction
PI	Plasticity index, %	qu	Unconfined compressive strength, psf
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf

MP .	

tion

Boulders Cobbles Gravel	
Coarse	3/4" to 3"
Fine	No. 4 to 3/4"
Sand	
	No. 4 to No. 10
Medium	No. 10 to No. 40
Fine	No. 40 to No. 200
Silt	<no. 200,="" 4="" <="" or<="" pi="" td=""></no.>
	below "A" line
Clay	\ldots < No. 200, PI \geq 4 and
-	on or above "A" line

Very loose	. 0 to 4 BPF
Loose	. 5 to 10 BPF
Medium dense	. 11 to 30 BPF
Loose Medium dense Dense	. 31 to 50 BPF
Very dense	. over 50 BPF

oils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.'

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards