Welcome to the

Blue Lake Wastewater Treatment Plant Improvements Project Public Hearing

You are muted and your video is disabled upon entry.

Please utilize the QA (lower right corner of the screen) to type in comments or questions throughout the session. Questions will be answered after the presentation during the Q & A session. Questions can also be submitted by calling 319.238.3413 or emailing comment@bluelakewwtp.com.

The meeting will begin at 6 p.m.

If you experience any technical difficulties, please call or text 319.238.3413 or email comment@bluelakewwtp.com.
Blue Lake Wastewater Treatment Plant Improvements Facility Plan Public Hearing

Tim O'Donnell, Senior Information Coordinator
Peter Lindstrom, Metropolitan Council Member, Chair of the Environment Committee
Jason Peterson, Principal Engineer, Project Manager
Rene Heflin, Manager, Wastewater Plant Engineering

Public Hearing
3/15/2021
Welcome to the
Blue Lake Wastewater Treatment Plant Improvements
Project Public Hearing

You are muted and your video is disabled upon entry.

Please utilize the QA (lower right corner of the screen) to type in comments or questions throughout the session. Questions will be answered after the presentation during the Q & A session. Questions can also be submitted by calling 319.238.3413 or emailing comment@bluelakewwtp.com.

If you experience any technical difficulties, please call or text 319.238.3413 or email comment@bluelakewwtp.com.

The meeting will begin at 6 p.m.
Meet the presenters of the Blue Lake Wastewater Treatment Plant Improvements Project Public Hearing

Tim O’Donnell
Peter Lindstrom
Jason Peterson
Rene Heflin
Public Hearing Purpose

• Summarize the proposed wastewater treatment plant improvements project and explain alternative approaches that we evaluated
• Answer your questions
• Receive your comments for the public record
Comment Period

The comment period is now open through March 25 at 5 p.m. In addition to offering comments at the public information meeting and public hearing, you can submit comments in the following ways:

• Mail written comments to Tim O’Donnell at Metropolitan Council Environmental Services, 390 Robert St. N., Saint Paul, MN 55101-1805
• Email comments to: public.info@metc.state.mn.us
• Record comments: 651.602.1500 (Metropolitan Council Public Comment Line)
• Send Teletype (TTY) comments to 651.291.0904
Submit Plan to Minnesota Pollution Control Agency (MPCA) with application for Clean Water Revolving Fund Project Priority List
Service Area and Facilities
Wastewater Treatment Plant Locations

We serve ~50% of Minnesota’s population

WHO WE SERVE
7 - county Twin Cities Metro Area
110 communities
3,000 square miles
2,700,000+ people

OUR FACILITIES
9 wastewater treatment plants
640 miles of interceptors
61 lift stations (pumping stations)
250 million gallons per day (average)
What is a Facility Plan?

MCES Facility Plan

This document is a prerequisite for a portion of the financing on MCES projects. The MCES Facility Plan:

- Summarizes the current state of the existing MCES wastewater treatment plant
- Identifies the need for rehabilitating existing facilities or constructing new facilities
- Determines the potential environmental impacts of new facilities
- Recommends a course of action

Facility Plan Schedule

- **2018**
 - Mar. 15, 2021: Public Hearing
 - Final Facility Plan: Spring 2021

- **2022**
How does the Blue Lake Plant treat wastewater?

Blue Lake is the second largest MCES plant and is the third largest plant in Minnesota. Located on the Minnesota River, the Blue Lake Plant began treating wastewater in 1971 and currently treats an average of 27.5 million gallons of wastewater per day.

It serves **300,000** people in **29** communities, and has **131 MILES** of interceptors.
Blue Lake Plant Wastewater Treatment Process

- Screens
- Grit
- Primary Settling
- Blowers
- Air
- 85-90% Bacteria
- Secondary Treatment
- Final Settling
- Bleach (Chlorine)
- Disinfection
- Sulfur (Dechlorinate)
- Thickenings
- 10-15% Gravity Belt Thicker
- Outflow to Minnesota River
- Solar panels help power the plant
- Landfill
- Anaerobic Digestion
 - Reduces solids for disposal
- Gas used for heating & drying replaces need to buy natural gas from utility
- Dewatering Centrifuge
- Dryer
- Fertilizer
Blue Lake Wastewater Treatment Plant Improvements

The purpose of the Blue Lake Facility Plan is to outline plant upgrades needed to serve anticipated growth in the southwest metropolitan area through 2050 and meet new water quality standards for phosphorus.

Location – City of Shakopee, west of US-169 on Hwy 101

Objectives/Goals

- Maintain reliability
- Preserve assets
- Improve operational flexibility, efficiency and safety
- Protect environment, health, safety and welfare of customers
- Partner with customers on construction where possible

Implementation Schedule

2018 Planning 2022 Design 2025 Design/Construction 2035 2040 Construction

$412.8 Million
Additional wastewater treatment is needed to meet future environmental regulations.

The MPCA established River Eutrophication Standard TMDL for the Minnesota River which will require the Blue Lake Plant to meet a 0.3 mg/l total effluent (phosphorous).

The plant needs to expand to serve population growth in the service area.

The Blue Lake Service area is expected to increase by approximately 170,000 residents by 2050.

Existing facilities that are near end of service life need to be renewed.

Final Stabilization Facility (FSF) is over 20 years old and needs renewal.
New Phosphorus Limits

Total Phosphorus 12 Month Rolling Kilogram Sum

Current Permit (2009) Limit: 58,024 kg/yr

Proposed Permit Limit: 17,407 kg/yr

DMR Report Year/DMR Report Month/DMR Reported Result Sign

<table>
<thead>
<tr>
<th>EFFECTIVE PERIOD</th>
<th>TYPE</th>
<th>UNIT</th>
<th>EXISTING LIMITS</th>
<th>PROPOSED LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-Dec</td>
<td>12 Month Moving Total</td>
<td>kg/yr</td>
<td>58,024</td>
<td>17,407</td>
</tr>
<tr>
<td>Jun-Sept</td>
<td>Calendar monthly Average</td>
<td>kg/d</td>
<td>N/A</td>
<td>100.1</td>
</tr>
<tr>
<td>Jan-Dec</td>
<td>12 Month Moving Average</td>
<td>mg/L</td>
<td>1.0</td>
<td>1.0 mg/L</td>
</tr>
</tbody>
</table>
Projected Growth in the Service Area

- Influent Flow Projected: 1.1% (1999-2019)
- Thrive MSP 2040: 0.5 MGD/yr
- Thrive MSP 2040: 5,175 cap/yr
- Projected Population Growth: 1.4% (2000-2012)

Population: 3,767 cap/yr
Influent Flow: 7,913 cap/yr

Water Resource Policy Plan Report
Blue Lake Plant Service Area

- **Blue Lake WWTP**
- Potential Locations for Future Scott County Plant

Long Term Service Areas

<table>
<thead>
<tr>
<th>Current</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Lake</td>
<td></td>
</tr>
</tbody>
</table>

Currently Served Areas

- Blue Lake
- Shakopee Mdewakanton Sioux Community
- County Boundaries
- City and Township Boundaries
- Lakes and Rivers
Condition Assessment

• Solids Assessment
 – Completed in 2018

• Liquids and Support Assessment
 – Completed in 2020

• Results
 – Near Term Needs
 o RTO
 o Conveyor
 – Dryer Renewal
 o New dryer train installed and commissioned
 o Existing dryer train rehabilitated.
Key Scope and Implementation Plan

Phase I – Improvement required within the next 10 years to meet customer level of service objectives ($159M)

Phase II – Improvements that can be deferred for 10-15 years ($140M)

Phase III – Remaining improvements identified w/in the 30-yr planning period that can be deferred 15+ years ($114M)

- Capacity Expansion
- Asset Preservation
- Quality Improvements
Phase I Improvements required w/in the next 10 years to meet customer level of service objectives ($159M)

- Grit collection system retrofit and renewal
- Primary treatment improvements
- **Aeration tank improvements**
- Addition of 2 secondary clarifiers
- Effluent process improvements
- **Addition of 4th Digester**
- **Renewal of Final Stabilization Facilities**
- Plant process control system renewal
- Improvement and expansion of liquid waste receiving (LWR)
- Site building architectural renewal

91% cost
Biological Nutrient Removal – Alternatives

<table>
<thead>
<tr>
<th>EFFECTIVE PERIOD</th>
<th>ALT. 0 CURRENT</th>
<th>ALT. 1 STEP FEED</th>
<th>ALT. 2 MODIFIED JHB</th>
<th>ALT. 3 SIDE STREAM</th>
<th>ALT. 4 ALT 3 PLUS CARBON</th>
<th>ALT. 5 ALT 2 PLUS EQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Capital Cost</td>
<td>$81,816,000</td>
<td>$52,416,000</td>
<td>$54,912,000</td>
<td>$69,984,000</td>
<td>$85,572,000</td>
<td>$47,712,000</td>
</tr>
<tr>
<td>2025 Comparative Annual O&M</td>
<td>$230,000</td>
<td>$187,000</td>
<td>$49,000</td>
<td>$307,000</td>
<td>$346,000</td>
<td>$77,000</td>
</tr>
<tr>
<td>Net Present Value</td>
<td>$89,000,000</td>
<td>$58,000,000</td>
<td>$56,000,000</td>
<td>$79,000,000</td>
<td>$96,000,000</td>
<td>$50,000,000</td>
</tr>
</tbody>
</table>

- Alternative 2 is recommended
 - Second most inexpensive option
 - Provides for more flexibility in the process
 - Provides for less chemical usage
 - Provides for smaller tertiary filters in Phase 2
Digester Gas Alternatives

<table>
<thead>
<tr>
<th>ALTERNATIVE</th>
<th>CAPITAL COST</th>
<th>ANNUAL O&M COST</th>
<th>PRESENT WORTH OF ANNUAL O&M</th>
<th>PRESENT WORTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flare All Gas</td>
<td>$0</td>
<td>$468,00</td>
<td>$6,690,000</td>
<td>$6,960,000</td>
</tr>
<tr>
<td>Current Use (34% Flare)</td>
<td>$744,000</td>
<td>$264,000</td>
<td>$2,950,000</td>
<td>$3,694,000</td>
</tr>
<tr>
<td>100% Digester Gas in Dryer</td>
<td>$744,000</td>
<td>$76,000</td>
<td>$1,140,000</td>
<td>$1,884,000</td>
</tr>
<tr>
<td>CHP Current Rate</td>
<td>$5,777,000</td>
<td>($267,000)</td>
<td>($3,980,000)</td>
<td>$1,886,000</td>
</tr>
<tr>
<td>CHP Future Rate</td>
<td>$5,777,000</td>
<td>($227,000)</td>
<td>($3,380,000)</td>
<td>$2,486,000</td>
</tr>
<tr>
<td>RNG</td>
<td>$9,629,000</td>
<td>($674,000)</td>
<td>($10,202,000)</td>
<td>($390,000)</td>
</tr>
</tbody>
</table>

- **100% Digester Gas in Dryer** is Recommended
 - Lowers greenhouse gas (GHG) emissions
 - Second lowest cost
 - Not impact by economic or political changes
Drying Alternatives

<table>
<thead>
<tr>
<th>COST ITEM</th>
<th>ALT. 1 DIGESTION WITH DRYING</th>
<th>ALT. 2 HYDROLYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs</td>
<td>$0</td>
<td>$15,104,000</td>
</tr>
<tr>
<td>Net Present Value (NPV) of Annual O&M</td>
<td>$10,755,000</td>
<td>$22,772,000</td>
</tr>
<tr>
<td>Total</td>
<td>$10,755,000</td>
<td>$37,876,000</td>
</tr>
</tbody>
</table>

- Digestion with Drying is Recommended
 - Maintains Class A – EQ Biosolids
 - Utilizes current structures
 - Substantially less expensive
Phase II

Improvements that can be deferred for 10-15 years ($140M)

- New primary treatment complex
- Addition of tertiary filtration to achieve effluent phosphorus of 0.3 mg/L
- Renewal of digester gas utilization equipment and new chemical addition facilities
- Addition of 1 gravity belt thickener (GBT)
- Rehabilitation of plant effluent structure

2027 2030 2035 2036 2037

- Design
- Construction
- Commissioning
- Process Proving
Tertiary Filter Alternative

- Conventional Filters are Recommended
 - All options are similar in price
 - Handles storm events
 - Handles high solids events
 - Least prone to plugging

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ALT. 1 CONVENTIONAL</th>
<th>ALT. 2 CLOTH MEDIA</th>
<th>ALT. 3 BACKWASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Capital Cost</td>
<td>$83,000,000</td>
<td>$70,000,000</td>
<td>$71,000,000</td>
</tr>
<tr>
<td>2025 Comparative Annual operating costs</td>
<td>$1,410,000</td>
<td>$1,460,000</td>
<td>$1,510,000</td>
</tr>
<tr>
<td>Terminal Value</td>
<td>($6,800,000)</td>
<td>($2,300,000)</td>
<td>($4,500,000)</td>
</tr>
<tr>
<td>Net Present Value</td>
<td>$120,000,000</td>
<td>$112,000,000</td>
<td>$113,000,000</td>
</tr>
</tbody>
</table>
Phosphorus Management Alternatives

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ALT. 1 CONVENTIONAL</th>
<th>ALT. 2 CLOTH MEDIA</th>
<th>ALT. 3 BACKWASH</th>
<th>ALT. 4 BACKWASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs</td>
<td>$0</td>
<td>$222,000</td>
<td>$6,849,000</td>
<td>$5,183,000</td>
</tr>
<tr>
<td>Net Present Value (NPV) of Annual O&M</td>
<td>$22,883,000</td>
<td>$19,852,000</td>
<td>$13,041,000</td>
<td>$15,177,000</td>
</tr>
<tr>
<td>Total</td>
<td>$22,883,000</td>
<td>$20,074,000</td>
<td>$19,890,000</td>
<td>$20,360,000</td>
</tr>
<tr>
<td>Payback Period to Current Status Quo</td>
<td>N/A</td>
<td><1 year</td>
<td>6 years</td>
<td>5.5 years</td>
</tr>
</tbody>
</table>

- Magnesium Hydroxide is Recommended
 - Minimal capital costs
 - Could utilize existing pellet marketing
Phase III

Remaining improvements identified w/in the 30-yr planning period that can be deferred 15+ years ($114M)

- Grit removal system replacement
- Primary sludge pump replacement
- Addition of 1 aeration tank and aeration blower
- Installation of zero-head loss channel to tertiary filtration
- Expansion of effluent pumping and disinfection
- Digester complex renewal
- Thickening and dewatering equipment renewal (incl. addition of 1 dewatering centrifuge)
- Replacement of chemical handling equipment
- Process control system renewal

92% cost
Implementation Schedule

Phase I
Solids Preservation

Phase II
Effluent Quality Improvements

Phase III
Liquids Capacity Improvements

Planning 2018-2022
Design 2022-2024
Construction 2025-2030
Commissioning 2030-2031

$159.2M Cost

Required completion of secondary clarifier expansion by 2032 with no IPIP load reduction

Design 2027-2029
Construction 2030-2035
Commissioning 2035-2036

$139.6M Cost

Phase Proving

Design 2033-2035
Construction 2035-2040
Commissioning 2040-2041

$114.0M Cost
Northern Star Industrial Pretreatment Incentive Program (IPIP)

• Northern Star potato processing in Chanhassen is the largest organic load to the Blue Lake Plant.
• The reduction in loading to the interceptor system will make the current interceptor odor control more effective.
• For planning, the assumption is that there will be no decrease in loading from Northern Star but there is flexibility in the plan to push construction of certain elements into the future phases.
 – Secondary Clarifiers
 – Additional Aeration Tank
Environmental Sustainability & Sustainable Services

Environmental Sustainability

- Energy Conservation and Renewable Energy
- Phosphorus Recovery

Sustainable Services

- Sustainable Services
 - Odor Management
 - Skilled Job Opportunities
Environmental Sustainability

• Energy Conservation
 – Replace aeration diffusers
 – Trim blower
• Renewable Energy
 – 100 days of flared gas re-directed to the dryer reduces greenhouse gas (GHG) emissions by 2,330 tons per year as carbon dioxide (CO₂)
 – Continue heat recovery
• Phosphorus Recovery
 – Continue production Class A Exceptional Quality (EQ)
 – Increased phosphorus removal requirements, returns more phosphorus to the environment in a form that can be beneficially reused
Sustainable Services/Odor Management

• Odor control in the plant
 – Gravity Thickeners
 – Thickening and Dewatering
 – Screenings Building
• Odor control in the interceptors
 – Bioxide at L-71
 – Baffle Piloting
Per- and Poly-fluoroalkyl Substances (PFAS)

- PFAS:
 - a group of numerous man-made chemical compounds
 - a nationwide emerging contaminant of concern linked to increased human health risks, including reduced immune system response, thyroid disease and cancer
Blue Lake Wastewater Treatment Plant
- Discharge

• Existing Blue Lake NPDES permit (since 2012) requires monitoring of 4 PFAS compounds in Blue Lake WWTP discharge to MN River
 - Perfluorobutanoic acid (PFBA)
 - Perfluorohexane sulfonate (PFHxS)
 - Perfluorooctanoic acid (PFOA)
 - Perfluorooctane sulfonate (PFOS)
• MPCA recently set water quality criteria for PFOS for Pool 2
 - 0.37 nanograms PFOS per gram (ng/g) of fish tissue
 - 0.05 nanograms PFOS per liter (ng/L) in surface water
• MPCA currently evaluating need for PFOS water quality standards (WQS) in Class 2 Waters
Project Recap

Environmental Sustainability

Sustainable Services

- Additional wastewater treatment is needed to meet future environmental regulations.
- Secondary treatment improvements & tertiary filtration will achieve effluent phosphorus of 0.3 mg/L
- The plant needs to expand to serve population growth in the service area.
- The plant will be expanded from 35 to 44 million gallons per day, on an average daily flow basis
- Existing facilities that are near end of service life need to be renewed.
- Final stabilization facilities, the process control system, site buildings, liquid waste receiving, primary clarifiers, digester gas utilization equipment, the effluent structure, and others will be renewed.
Total Cost and Rate Impacts

• MCES project funding: Public Facilities Authority (PFA) loans (20-year term)

• Loans for these projects are paid from two funding sources:
 1. Municipal Wastewater Charge (MWC): This is the MCES portion of your sewer bill.
 2. Sewer Availability Charge (SAC): This is a one-time charge for new connections.

• Impact to rates from $412.8 million in loans*:
 1. $15.64 = increase to the annual sewer billing per household (average $188 per year).
 2. $207.31 = per new household connection (or equivalent) per year paid from the SAC fund (for 20 years).

*This project is included in MCES capital improvement plan, so loan payments are already built into future increases to MWC and SAC rates. These figures show the relative impact on rates and how the project will be paid for over time.
Next Steps

Deadline for comments on Draft Facility Plan

3/25/2021

Metropolitan Council Environment Committee Plan Review

4/13/2021

Metropolitan Council adoption of Facility Plan

4/28/2021

Submit Plan to Minnesota Pollution Control Agency (MPCA) with application for Clean Water Revolving Fund Project Priority List

5/1/2021
How to offer public hearing comments

Computer, Smartphone and Tablet Users:

Use the QA box to type in questions and comments
Use the raise hand function to be unmuted and speak aloud
Email your question or comment to comment@bluelakewwtp.com

Phone Users:

Call or text 319.238.3413
Comment Period

• Submit comments no later than **March 25, 2021**
• Submit comments to Tim O’Donnell, MCES Senior Information Coordinator, via:

 – **E-mail:** public.info@metc.state.mn.us
 – **Postal mail:** Tim O’Donnell,
 Metropolitan Council Environmental Services,
 390 Robert St. N., St. Paul, MN 55101-1805
 – **Record comments:** 651.602.1500
 (Metropolitan Council Public Comment Line)
 – **Send TTY comments:** to 651.291.0904
Draft Facility Plan – Report Available for Review

• Shakopee City Hall, 485 Gorman St., Shakopee
• Shakopee Library, 235 Lewis St. S., Shakopee
• Metropolitan Council Website: MetroCouncil.org/SewerConstruction/BlueLakeWWTP
Stay Informed

Share questions and comments

✉ Email: comment@bluelakewwtp.com
📞 Call the Public Comment Line: 651.602.1500
🌐 MetroCouncil.org/SewerConstruction/BlueLakeWWTP
Thank you for participating in our public hearing.