Facility Plan for New Lift Station L32A (Fridley)

March 2021

The Council's mission is to foster efficient and economic growth for a prosperous metropolitan region

Metropolitan Council Members

Charlie Zelle
Judy Johnson
Reva Chamblis
Christopher Ferguson
Deb Barber
Molly Cummings
Lynnea Atlas-Ingebretson
Robert Lilligren
Abdirahman Muse

Chair District 1 District 2 District 3 District 3 District 4 District 5 District 6 District 7 District 8

Raymond Zeran Peter Lindstrom Susan Vento Francisco Gonzalez Chai Lee Kris Fredson Phillip Sterner Wendy Wulff District 9 District 10 District 11 District 12 District 13 District 14 District 15 District 16

The Metropolitan Council is the regional planning organization for the seven-county Twin Cities area. The Council operates the regional bus and rail system, collects and treats wastewater, coordinates regional water resources, plans and helps fund regional parks, and administers federal funds that provide housing opportunities for low- and moderate-income individuals and families. The 17-member Council board is appointed by and serves at the pleasure of the governor.

On request, this publication will be made available in alternative formats to people with disabilities. Call Metropolitan Council information at 651-602-1140 or TTY 651-291-0904.

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the Laws of the State of Minnesota.

Jennifer Baroda, PE Registration No. 53799 Date: _____

Table of Contents

Executive Summary	
Overview and Problem Statement	1
L32 System Recommendation	
Alternative Recommendation	2
Implementation Plan Summary	3
Proposed Project Schedule and Delivery	3
Introduction and Background	4
Previous Studies	5
Existing System	6
Description of Existing Facilities	6
Current and Future Flow Projections	8
Issues and Concerns	10
Alternative Evaluation for Lift Station L32	11
Design Guidelines	11
Overall System Analyses	12
Downstream System Capacity Analysis	12
Upstream System Capacity Analysis	12
Spill Prevention	
Resiliency Addition	17
Alternative 1 – Do Nothing	19
Alternative 2 – New Lift Station on the West Side of River	19
Preliminary Estimated Project Cost for Alternative 2	22
Limitations for Alternative 2	22
Alternative 3 – New Lift Station on East Side of River	23
East Side Facilities	23
West Side Facilities	
Preliminary Estimated Project Cost for Alternative 3	28
Limitations of Alternative 3	29
Comparison of Alternatives	30
Recommendations	32
Environmental Review	33
Project Delivery Schedule	34
Appendix	35

List of Figures

Figure 1 – Service Area Map for Lift Station L32	
Figure 2: The daily flow data for the last 20 years for the lift station L32 in million gallons	8
Figure 3 – Map of the Existing and Future Service Area for L32	9
Figure 4 – Map of the Downstream System Area Analyzed	
Figure 5 – Map of the Upstream System Area that was Analyzed	
Figure 6 – Site Plan for Alternative 2: New Lift Station on West Side of River	
Figure 7 – Site Plan for Alternative 3 - East Side Facilities	
Figure 8 – Site Plan for Alternative 3 - West Side Facilities	
Figure 9 – Forcemain Pipes at the River Crossing	

List of Tables

Table 1 - Service Area Acreage of Communities that Contribute to Lift Station L32	7
Table 2 – Existing and Future Flow Projections	9
Table 3 – Available Storage and Response Time in Upstream Pipe	
Table 4 – Estimated Construction Cost for Different Spill Prevention Options	
Table 5 – Present Worth Costs for Different Spill Prevention Options	
Table 6 – Estimated Project Cost for Alternative 2	
Table 7 – Estimated Project Cost for Alternative 3	
Table 8 – Comparison Summary for Three Alternatives Discussed in the Report	

List of Appendices

- Appendix A Facility Plan Support Document
- Appendix B Geotechnical Report
- Appendix C Environmental Assessment Worksheet (EAW) Report
- Appendix D Summary of Public Hearing Presentation, Public Comments Received, and Actions
- Appendix E Council Resolution Adopting Facility Plan

Executive Summary

Overview and Problem Statement

This Facility Plan addresses the provision of sufficient, reliable wastewater conveyance from Champlin, Anoka, Brooklyn Park, Maple Grove, Osseo and Fridley to the MCES conveyance system. Wastewater generated in Champlin, Anoka, Brooklyn Park, Maple Grove and Osseo is conveyed to L32 through a series of interceptor gravity pipes and forcemains, which then carry flow through Fridley and other downstream communities to the Metropolitan Wastewater Treatment Plant (Metro Plant) in St. Paul.

Lift station L32 is located on the west side of the Mississippi River on 7700 Mississippi Lane in Brooklyn Park. It was constructed in the 1970s as a wet well/dry well lift station with dual 42-inch force mains that cross the Mississippi River and discharge to MCES gravity interceptor 4-NS-521 on the east side of the river. The lift station is 50 years old and deteriorated. The wet well is corroded and has been repaired several times in the past. Most of the equipment, including the electrical, mechanical and pumping systems, is nearing the end of its useful life and needs to be replaced to maintain a reliable system.

Studies conducted in 2002 and 2004 determined that the current wastewater conveyance system in the northwest metropolitan area of the Twin Cities will be insufficient to meet the area's growing population needs in the future. Growth projections for the northwest portion of the seven-county metropolitan area indicated a near doubling of wastewater flows under the fully developed, ultimate build-out scenario. Studies and hydraulic modeling were completed for the northwest area system to reexamine the flow and to determine the upgrades required for the system to handle the ultimate flow.

Community efforts have occurred to reduce Inflow and Infiltration (I&I) and are expected to continue in the future. The I&I reductions are accounted for in future flow projections. Upgrades to the system over the last few years include the addition of two new forcemains across the Mississippi River to increase reliability, improved lift station L32 ventilation and odor control systems for safety, and interceptor system improvements upstream of lift station L32 in Brooklyn Park to increase the system capacity and response time. Improvements in Brooklyn Park also includes removal of direct local connections from the interceptor to reduce the likelihood of basement backups.

The existing lift station has a firm capacity of 43 million gallons per day (MGD). Recent peak flows through the lift station have reached 38 MGD, showing that lift station L32 is nearing its capacity and will need greater capacity to handle the flow in the near future.

The 2040 peak flow is projected to be 48 MGD and the ultimate peak flow is projected to be 67 MGD.

The following problem statement has been developed to support the alternatives identified and evaluated in this Facility Plan:

"Lift station L32 must be upgraded or replaced due to its age and also to provide sufficient future capacity and reliable wastewater conveyance for the community for the duration of the planning period."

L32 System Recommendation

The following list addresses the issues/concerns with the existing lift station:

- 1. Age of the lift station
 - a. Existing lift station is 50 years old and deteriorated.
 - b. The equipment has reached its useful life and requires complete replacement of all electrical, mechanical and pumping equipment.
 - c. The wet well is corroded and had been repaired several times.
- 2. Lack of Resiliency
 - a. Failures at the lift station in the past have resulted in back-ups into neighboring homes. Improvements are required to improve reliability and response time for the lift station.
 - b. There is insufficient air flow in the lift station mechanical systems to address odors.
 - c. Most of the equipment is older technology which restricts improvements and needs replacement.
- 3. Capacity Concerns
 - a. The lift station is nearing its firm capacity and will need to be expanded in the near future to provide reliable service to the community.
 - b. The ultimate capacity, defined as the complete development of the service area, is projected to almost double the flows to the lift station. Since the lift station needs to be upgraded, a new lift station is required to handle not just the near future flow but the ultimate flow.

It is therefore recommended that the facility improvements be made to L32 to upgrade the lift station as well as to increase the capacity for future growth.

Alternative Recommendation

The existing site for L32 in Brooklyn Park is not big enough to make all of the above upgrades without impacting the nearby properties or without acquiring additional properties.

It would be challenging to upgrade the existing lift station and build new structures while maintaining service to the community through the existing lift station.

MCES owns a 22-acre property on the east side of the Mississippi River in the City of Fridley. This site is large enough to build a new lift station with the required 67 MGD ultimate capacity, odor control system and other related structures to meet the future needs of the region. It is therefore recommended that the new lift station be constructed on the east side of Mississippi River in Fridley. This site will provide more room for the new larger lift station, allow adequate screening of the facility from its neighbors, and provide a long-term solution for conveying wastewater in the region.

Since the ultimate capacity is forecasted to occur more than 30 years from now, it is recommended that the lift station structures that are difficult to expand, including wet well, electrical room and other building elements, are constructed to meet the ultimate capacity of 67 MGD. However, the pumps, mechanical and electrical equipment inside the building should be designed to meet the interim 2040 capacity of 48 MGD and upgraded in the future as capacity increases. This will ensure that the new lift station equipment is not only properly sized for near future flows, but the lift station structure is large enough to upgrade in the future with minimal construction requirements.

Implementation Plan Summary

The recommended plan is to construct a new lift station on the east side of the Mississippi River in the City of Fridley. The new lift station should be constructed to meet the future area needs and will be a part of MCES's multiphase approach to preserve and improve wastewater assets in the Fridley area. The new lift station will be constructed to meet MCES and industry standards.

Considering the size of the new lift station, a request for proposal (RFP) will be issued to select the best consulting firm for the design of the lift station.

Proposed Project Schedule and Delivery

Below is the planned schedule for the new lift station L32A:

- Planning 2018 to 2021
- Design 2021 to 2023
- Construction 2023 to 2026

The new lift station is planned to be online by the end of 2026.

Introduction and Background

The northwest area system includes a portion of the 7-county Twin Cities metropolitan area. The major interceptor systems in the area include:

- 1. Champlin-Anoka-Brooklyn Park Interceptor (CAB)
- 2. Brooklyn Park Interceptor (BPI)
- 3. Elm Creek Interceptor (ECI)
- 4. Coon Rapids Interceptor (CRI)
- 5. Fridley Interceptor

The flow from four of the above five major interceptors (all except the Fridley Interceptor) passes through lift station L32 and is pumped by L32 through a series of forcemains and interceptor gravity pipes, eventually passing through Fridley and other downstream communities before entering the Metropolitan Wastewater Treatment Plant (Metro Plant) in St. Paul.

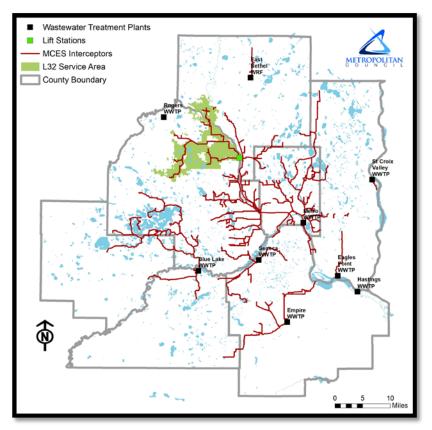


Figure 1 – Service Area Map for Lift Station L32

Previous Studies

Various studies were completed to evaluate the system's ability to meet future capacity needs.

- The studies conducted in 2002 (Interceptor Master Plan by CDM and Brown and Caldwell) and 2004 (Northwest Area Plan Report by Brown and Caldwell) determined that the current wastewater conveyance system in place in the northwest metropolitan area of the Twin Cities will be insufficient to meet the area's growing population needs. Growth projections for the northwest portion of the seven-county metropolitan area indicated a near doubling of wastewater flows by the year 2050.
- 2006 study (Draft Concept Plan for the Elm Creek Interceptor (ECI) by CDM and CH2MHill) was completed updating the trends in growth for the area and provided the recommended plan to serve the ultimate build-out conditions for the planning area.
- More studies were completed in 2010 (Champlin-Anoka-Brooklyn Park Diversion and Elm Creek Interceptor Relief (CAB-ECI) Project by CDM and CH2MHill) to determine the upgrades required to the system that could meet the incremental flow projections for service area flow. This approach allows for phased implementation of projects staged to meet projected growth scenarios.

The 2010 study identified several interceptor sewer components projected to have insufficient capacity to convey future peak flows in the Brooklyn Park Lift Station (L32) sewershed. These components include the ECI and CAB Interceptor. The study also determined that the existing reliability issues at L32 will be compounded as flows increase. The timing and extent of these capacity problems are dependent upon community development patterns and rates, service area, peaking factors, and available capacity. The study area and the facility improvement options to accommodate this growth, while minimizing capital expenditures. This plan provided MCES with phased improvement options that can be selected based on updated wastewater flow and community planning information. Facility conditions, local/state corridor improvements, and downstream hydraulic constraints are considerations that must be updated as capital improvement options are selected in the future.

Since the CAB-ECI study, condition assessments were conducted for the existing lift station L32 and various upgrades were made to the Brooklyn Park system. Some of these improvements are currently under construction. The upgrades include:

- Two additional 42-inch DIP forcemains across the Mississippi River were installed in 2014 to increase conveyance reliability after one of the older pipes failed. The failed pipe was repaired.
- The HVAC and odor control system were replaced in 2018-2019 to provide a safe working environment in the existing wet well.

 Various improvements are underway or complete through a current capital project in Brooklyn Park area to improve the interceptor system upstream of lift station L32. Rehabilitation includes installing larger diameter pipe and removing local direct connections to the interceptor. The larger diameter pipe will increase response time and removing of direct local connections will prevent backups or flooding of homes in the area. Refer to the section below for repose time details.

Besides the above improvements, additional facility improvements are required at lift station L32 to increase station capacity, reliability and upstream storage capacity. The available response time for power outages or other station failures is very low, creating a risk of flooding homes that are upstream of the lift station and still connected directly to the interceptor. It is required that the lift station L32 be upgraded and/or rehabilitated.

Existing System

The existing system includes lift station L32 located on the west side of Mississippi River and the four forcemains discharging flow from L32 to the MCES interceptor on the east side of Mississippi River into interceptor 4-NS-521.

Description of Existing Facilities

Forcemains

The original 42-inch ductile iron pipe (DIP) and prestressed concrete cylinder pipe (PCCP) dual forcemains (Barrel A and B) were constructed in 1970 to convey flow from L32 on the west side of the Mississippi River and discharge into MCES interceptor 4-NS-521 on the east side of the river. The part of the dual forcemain under the Mississippi River is DIP and the part of the dual forcemain on east side of the River is PCCP. Due to interior corrosion, about 450 feet of the downstream end of each PCCP forcemain was lined with cured-in-place-pipe (CIPP) in 1996 reducing the inside diameter to 40-inches. These forcemains discharge into two sections of 42-inch fiberglass-reinforced mortar pipe (FMP) before combining into a 60-inch FMP where flow is by gravity to the Fridley Interceptor. The 42 and 60-inch pipes (69U1-70U2) were constructed in 2016 to replace existing deteriorated piping. MCES inspects FMP interceptors every 15-years for condition.

The additional two 42-inch high density polyethylene (HDPE) forcemains (Barrel C and D) under the Mississippi River were installed in 2014 to increase the reliability of the conveyance system. Under existing flow condition, Barrels C and D are primarily used to convey flow across the Mississippi River, with the Barrels A and B reserved for emergency flows.

Fridley Interceptor

The Fridley Interceptor (4-NS-521), which receives flow from the L32 forcemain discharge, is a 96inch diameter gravity pipe. This pipe was rehabilitated in 2016 by lining with CIPP. Interceptors that are CIPP lined are inspected by MCES every 15-years.

Lift Station L32

L32 is the Metropolitan Council Environmental Services (MCES) owned pump station located on 7700 Mississippi Lane in Brooklyn Park serving areas of communities located in the northwest portion of the metropolitan area. Table 1 below shows the service area acreage for the communities that contribute to L32.

Community	Service Area Acreage	
	(Acres)	
Anoka	3,910	
Brooklyn Center	64	
Brooklyn Park	14,299	
Champlin	4,146	
Corcoran	592	
Dayton	1,389	
Maple Grove	15,263	
Medina	2,815	
Osseo	469	
Plymouth	2,192	
Ramsey	3,537	
Rogers	319	

Table 1 - Service Area Acreage of Communities that Contribute to Lift Station L32

The existing lift station L32, located on the west side of Mississippi River, was constructed in 1972 as a wet well/dry well lift station. Various upgrades have been made since it was constructed including adding more pump capacity, electrical and HVAC improvements, and

odor control improvements. Currently, the lift station has total of 6 pumps and has firm capacity of 43 MGD.

In spite of the above upgrades, the 50-year-old lift station has continued to deteriorate and has reached the end of its useful life. The wet well is corroded and has been repaired several times in the past. More upgrades to the electrical, mechanical and pumping components and technology are required to maintain reliable service to the communities it serves.

Current and Future Flow Projections

The graph below shows the daily flow data in millions of gallons from the year 2000 to October 2020. The flow is based on meter M221 installed in the lift station L32. The average daily flow through this lift station in the last 20 years is about 15.6 MGD. The highest peak flow noticed was in September 2016 which totaled about 38.4 MGD (as shown in Graph 2 below), and the second highest peak was in Spring 2019.

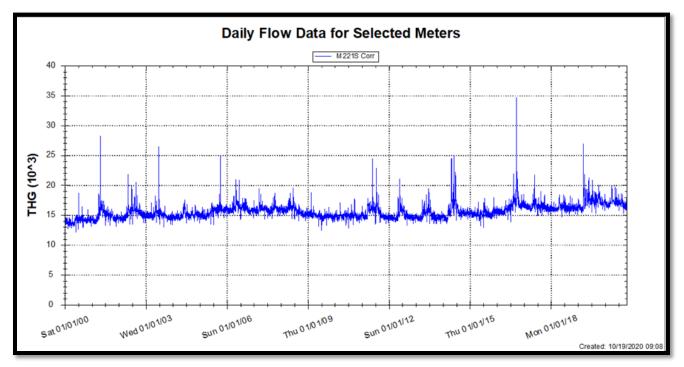


Figure 2: The daily flow data for the last 20 years for the lift station L32 in million gallons

The projected flows for L32 Service area are as shown in Table 2 below. The flow projection is based on 450 gallons/acre/day for the 2040 flow forecast and 600 gallons/acre/day for the ultimate flow forecast. The 2040 flows and ultimate flows are based on the assumption that the flow from Rogers and Corcoran will be diverted to the new Crow River Wastewater Treatment Plant (WWTP).

	Average Day Flow (ADF) MGD	Peak Day Flow MGD
2016*	16.55	38.4
2019*	17.28	26.93
2040	25	50
Ultimate	34	67

Table 2 – Existing and Future Flow Projections

Note: * The average daily and peak day flow is from the metered data.

Figure 3 below shows the map of the existing and future L32 service area.

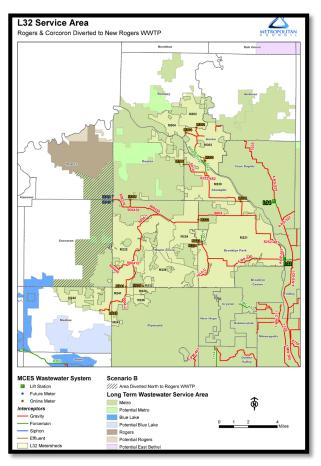


Figure 3 – Map of the Existing and Future Service Area for L32

Based on the flow data in Table 2, the exiting lift station L32, which has the maximum capacity of 43 MGD, is nearing its full capacity and will need to be upsized to meet the needs of the community in the near future.

Table 2 also shows the growth projections for the area that will double the wastewater flows by the ultimate growth period. The existing lift station L32 must be upgraded or replaced to provide sufficient capacity and reliable wastewater conveyance to the community for the duration of the planning period.

Issues and Concerns

It is required that the facility improvements be made to L32 to upgrade the lift station for the following reasons:

- 1. Age of the lift station
 - a. Existing lift station is 50 years old and deteriorated.
 - b. The equipment has reached its useful life and requires complete replacement of all electrical, mechanical and pumping equipment.
 - c. The wet well is corroded and had been repaired several times.
- 2. Lack of Resiliency
 - a. Failures at the lift station in the past have resulted in back-ups into neighboring homes. Improvements are required to improve reliability and response time for the lift station.
 - b. There is insufficient air flow in the lift station mechanical systems to address odors.
 - c. Most of the equipment is older technology which restricts improvements and needs replacement.
- 3. Capacity Concerns
 - a. The lift station is nearing its firm capacity and will need to be expanded in the near future to provide reliable service to the community.
 - b. The ultimate capacity, defined as the complete development of the service area, is projected to almost double the flows to the lift station. Since the lift station needs to be upgraded, a new lift station is required to handle not just the near future flow but the ultimate flow.

The lift station should be rehabilitated for the age related issues but should also be upsized to meet the ultimate demands of the community which is 67 MGD.

Alternative Evaluation for Lift Station L32

Various options were evaluated to upgrade and increase the capacity of the existing lift station. The alternatives include:

- 1. Do nothing
- 2. Increase the capacity or replace the existing lift station at the current location on the west side of the river with a new, larger lift station.
- 3. Construct a new larger lift station on the east side of the river

Several factors were reviewed that are common to all three alternatives and are discussed separately from the review of these alternatives. These factors include MCES Design Guidelines in all of the proposed alternatives, an evaluation of upstream and downstream system capacities, the inclusion of system improvements to prevent spills, resiliency and reliability improvements to manage risks associated with the failure of facility components, and rehabilitation of the four forcemain pipes that cross the Mississippi River.

Design Guidelines

The following guidelines were used for the planning of the lift station L32 upgrades.

- Building Components The lift station should be designed for the ultimate peak flow of 67 MGD. Since the ultimate flow is not anticipated for another 30-40 years, structural components that are difficult to expand such as wet well, electrical room, and other built element should be sized for the ultimate flow of 67 MGD. The mechanical and electrical equipment has life cycle of 20 years. Therefore, mechanical and electrical equipment should be designed for intermediate 2040 flow of 48 MGD and should be upgraded when higher flow is anticipated.
- 2. Generators Standby generators sized to maintain continuous operation of the lift station will be included at the facility.
- 3. Pumps Firm capacity is the station's capacity with the largest pump out of service. The station pumps will be selected for a firm capacity of 48 MGD.
- 4. Storage and Response Time The new facility is required to provide response time for operators to come to the site during emergency events to fix the problem. This will include improvements to the facility such as back-up systems or storage that address its overall reliability as well as improvements that would help prevent spills. The response time required for any lift station is based on the location and amount of time it takes the operator to reach the site safely. A response time of 60 mins under peak flows is desired per MCES Design Guidelines.
- 5. Per MCES Design Guidelines, the inverted siphon should have firm capacity. Three of the four siphon pipes should be capable of conveying the peak flow.

Overall System Analyses

The following system analyses were performed to determine if the other systems around L32 are capable of handling the higher flow in the future. These analyses were conducted to determine if any other system upgrades are required beside upgrades at the lift station L32.

Downstream System Capacity Analysis

Downstream system modeling was completed to determine if there is enough capacity in the pipe downstream of L32 for the ultimate flow condition. The downstream system was modelled from existing L32 to meter M200 downstream. Figure 4 below shows the map of area analyzed.

The model result shows that there is sufficient capacity in the system downstream and there are no constraints downstream if flow increases to 67 MGD. The model results are available in Appendix A of the report.

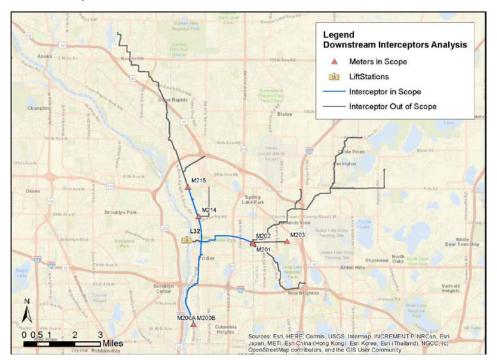


Figure 4 – Map of the Downstream System Area Analyzed

Upstream System Capacity Analysis

Storage volume available in the pipe upstream of the lift station is called in-line storage. This is the most convenient and cost-effective way of providing response time at any lift station.

The upstream system model was analyzed to determine if there is enough capacity in the upstream pipe and how much storage is available in the pipe leading to the lift station L32. Figure 5 below shows the area that was analyzed in the model.

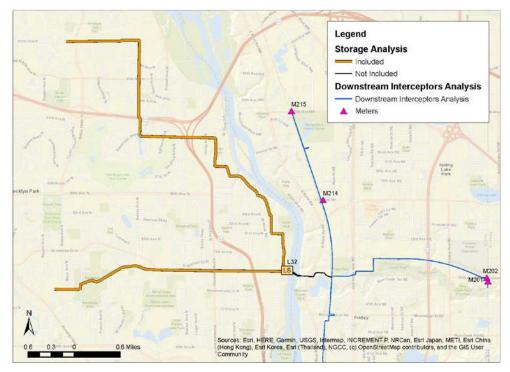


Figure 5 – Map of the Upstream System Area that was Analyzed

As discussed earlier, there is an existing project in Brooklyn Park currently under construction that will increase the diameter of pipe from 60-inch to 72-inch. The model analysis was completed using 72-inch diameter pipe. Table 3 below shows the model results of the available storage and response time for different flow scenarios. The storage and response time were calculated assuming the pipe is free of any debris or structural defects.

Table 3 – Available Storage and Response Time in Upstream Pipe
--

Peak Flows	Available Storage	Response Time
Existing Flows (38 MGD)	1.4 MG	53 minutes
2040 Flows (48 MGD)	~1.3 MG	41 minutes
Ultimate Flows (67 MGD)	1.1 MG	24 minutes

The model results show that there is enough capacity in the pipe upstream. There is about 1.4 MG of storage or 53 minutes of response time available in-line with the existing peak flow and about 1.1 MG of storage or 24 minutes of response time available for the ultimate peak flows. The model shows that, after the calculated response time, the pipe surcharged, and flow may back-up in the basements of the surrounding lower level houses. The model results are attached in Appendix A of the report.

To meet the design guidelines of 60 minutes of response time required for this lift station, an additional 30 mins of response time is required for the ultimate peak flow condition. As this is needed regardless of the improvements implemented as a part of the L32 project, the alternatives for providing this additional response time were evaluated separately.

Spill Prevention

Spills due to failures at the lift station can be prevented in various ways: addition of an onsite storage tank, providing in-line storage upstream of the lift station, and incorporating features within the lift station that can prevent system spills. The basic design criterion of the in-line storage or an on-site storage tank requires that it must be able to accept flow by gravity alone so that a power outage won't affect its ability to store water and provide time to correct or restore lift station functionality.

On-site Storage Tank

One option for providing an additional 30-minutes of storage would be the construction of a 1.5 million gallon (MG) storage tank. A 150 foot diameter circular tank will be required with an overall depth of 60-70 ft to meet the gravity inflow requirements. While flow will enter the tank by gravity, a pump-out system will need to be constructed to reintroduce any temporarily stored wastewater back into the system. Additionally, the storage tank will require a wash-down system which will be used to clean the tank with fresh water after each use.

An on-site tank can also generate additional odors due to the sewage being retained in the tank. Odor control facilities constructed as a part of the overall project will need to be sized for the air space added by including a storage tank. This larger odor control unit will have higher operation and maintenance costs, due to a larger quantity of filter media. Additional operation and maintenance costs for this option include maintenance of the additional pumps required to pump out the flow, and cleaning of the tank after flow backs up.

Considering the close proximity of the project to the Mississippi River, the size and depth of the structures required, and the types and characteristics of the natural site soils, construction of an additional storage tank will present significant challenges to the project, adding significant construction costs. The emergency situations that the tank would be used

to mitigate high flows would occur infrequently. It is highly likely that if a new storage tank is constructed, it will be used only a few times during the life of the lift station.

In-line Storage

As discussed earlier, there will be 24 minutes of storage available in the upstream pipe for the ultimate peak flow condition. After 24 minutes, the flow will start backing up in the pipe and may flood the basements of the houses that are still directly connected to the interceptor pipe. Most of the directly connected houses on the upstream pipe will be removed from MCES interceptors with the completion of the current Brooklyn Park project, reducing the risks of basement flooding into those houses. Additional model analysis was completed to determine if it is feasible to increase the response time by removing the remaining direct connections and taking care of the houses that are at lower elevations than the interceptor pipe. Additional basement surveys determined that there are 2-3 additional locations on Brookdale Drive and 81st Ave N that are at lower elevations and prone to backups. This flooding issue can be taken care of by installing small lift stations near those locations. The smaller submersible lift stations can prevent back-ups resulting from a failure at L32 from impacting a connected home; hence, increasing the storage and response time within the system. More survey and analysis on the location and total number of lift stations would be conducted during design. Based on available survey data, this Facility Plan assumes that 2 additional lift stations will be required, one on Brookdale Drive near existing lift station L32 and another on 81st Ave N.

The increased response time achieved by adding two small lift stations under various peak flow scenarios are as follows:

Description	Response Time with Additional 2 Lift stations
Existing Flow (38 MGD)	103 min
2040 Flows (48 MGD)	68 min
Ultimate Flows (67 MGD)	49 min

The two new small lift stations will increase the response time from 24 minutes to almost 50 minutes under ultimate flow conditions. The additional 10 minutes of required response time can be achieved by adding resiliency to the new and upgraded lift station.

Independent Pumping System at the New Lift Station

Another option evaluated to increase the response time at the new lift station is to add an independently powered backup pump system with a dedicated generator in addition to what will be designed for the main lift station. The backup pumps, along with additional generator, would be sized to handle peak flow operations. The main generators will be diesel powered. The independent generator could be powered by natural gas to offset the possibility of diesel fuel problems. This system should be further evaluated during design.

This independent pump system could be plumbed directly into the wet well with independent sets of pump control float switches. If the sewage rises due to failure of the primary system, the independent system will continue to pump sewage. This system would protect against loss of power, transfer switch malfunction, primary control and pump failures providing resiliency to the lift station. This independent system should be designed to operate independently of the primary SCADA (supervisory control and data acquisition) system.

Under average flow condition, this independent system could maintain continuous service and provide additional response time. 2-12,500 gallons per minute (gpm) of pumps would pump 1.5 MG in 60 min.

Cost Estimate for Spill Prevention Options

Table 4 below shows the cost estimate for constructing different options to provide 30 minutes of additional storage and response time for this lift station.

Sr. No.	Description	Cost	Cost with Contingency*
		(in 2020 dollars amount)	
1	On-site Storage Tank	\$22,090,900	\$37,996,348
2	Addition of 2 new smaller submersible pump station	\$1,300,000	\$2,236,000
3	Independent Pump System	\$1,500,000	\$2,580,000

Table 4 – Estimated Construction Cost for Different Spill Prevention Options

Note: *The contingency includes 20% undeveloped design contingency, 22% engineering and administration cost and 30% construction contingency.

Present Worth Analysis

A present worth analysis of these three options was performed to determine which options provide the best long-term solution for reducing the risk of a spill at the new L32 facility. This analysis compares immediate construction costs, long-term operation and maintenance costs, and remaining value of each option at the end of a 20-year period. A 3% interest rate is used as a part of this analysis to compare future costs with present costs. Table 5 summarizes the present worth value of these three options.

Description	On-Site Storage Tank	2 Smaller Submersible Pump Stations	Independent Pump System
Capital Costs	\$37,996,348	\$2,031,250	\$2,580,000
Operational Costs (Annual O&M)	\$35,609	\$7,706	\$2,960
Annual O&M Costs (20-yr Present Value)	\$712,187	\$154,112	\$59,209
Salvage Value	-\$4,680,000	-\$325,000	-\$375,000
Present Worth Value	\$34,028,535	\$1,860,362	\$2,264,209

Based on the present worth cost of the on-site storage tank, construction challenges and the number of times the tank might be used during the useful life of the lift station, the on-site storage tank is not a recommended option. The option of adding two smaller submersible lift station and/or the independent pump system options which can provide similar response time will be use and evaluated further during the design.

Resiliency Addition

Resiliency means reducing or removing the risks of failure at the lift station. Adding redundancy and resiliency is invaluable for any lift station. The most common failures at any lift station are electrical power outages, pump failures, and buildup of grit or rags that restrict flow. Considering the location of this lift station closer to the Mississippi River, minimizing sewer overflows is extremely important to protect the environment and health and safety of people.

Split Wet Well System

For the new lift station, considering the size of the ultimate flow, it is anticipated that there will be a split wet well system with each wet well capable of managing firm capacity. The split wet well will have mirror image pumps and motor control rooms and separate generators for each control room. Each motor control room will have separate main circuit

breakers and separate automatic transfer switches. The generators will be a diesel generator with exterior walk in sound enclosures to reduce noise. The diesel-driven generator will automatically start when power goes out. This solution has been used throughout the industry as a reliable backup in case of power failure.

Pumps

MCES guidelines require firm capacity for pump design (one redundant pump available on site). The new lift station is anticipated to be designed for either 6 pumps (5 active and 1 stand-by) or 8 pumps (7 active and 1 stand-by) with variable frequency drives to maintain uniform pumping rates.

Automatic Bar Screen and Grinders

Automatic bar screens or channel grinders are industry standard. This will eliminate the need to clean the buildup of rags and debris on a daily basis. This will help reduce maintenance costs and help prevent flow restrictions due to plugged screens.

Other resiliency options beside what is discussed above will be evaluated during design.

River Crossing

The forcemain pipes at river crossing were modelled and evaluated. The four forcemain pipes crossing the Mississippi River could be converted into an inverted siphon. The two old pipes, Barrels A and B could be rehabilitated and could serve as backup siphons. This configuration would provide sufficient capacity for the forecasted ultimate flow rates in the service area. Each of the four forcemain pipes would include valves that will allow each to be taken out of service for cleaning and maintenance.

Due to the age of the two older forcemains (Barrel A and B) it is recommended that the two forcemain be rehabilitated if it is to be used in the future. Model analysis shows that due to the need to maintain a flushing velocity in the siphon system, it is proposed that while rehabbing the forcemains, the old forcemain pipes be reduced to smaller diameter from 42-inch to a 30-inch or a 24-inch size. The model analysis is attached in Appendix A of this report.

To rehabilitate the two older forcemain pipes to a smaller diameter, various options were reviewed including cured-in-place pipe (CIPP) lining, slip-lining and a spiral wound pipe. The rehabilitation method needs to be evaluated further during the design to accommodate bends in the pipes requiring lining. For the cost estimates, CIPP lining costs are used in the alternatives below.

Alternative 1 – Do Nothing

The alternative of do nothing will keep the existing lift station the same size and without upgrades. This lift station will not be able to handle the ultimate future flow.

The existing lift station is 50 years old and is nearing the end of its useful life. If the do nothing option is selected, it will continue to deteriorate and will require excessive maintenance and eventually lead to failure. The failure of the lift station would allow wastewater to back-up into residential basements and will create overflow/spill into the surrounding environment and into the Mississippi River. This would pose a threat to public health and safety, the environment, and private properties nearby.

Additionally, the do nothing alternative will still require improvements to the facility to mitigate existing deficiencies. These improvements would include the addition of two smaller lift stations and/or an independent backup pumping system to prevent system spills, as well as rehabilitation of the forcemain pipes that cross the Mississippi River. These improvements would only provide a temporary fix to the system; simply delaying the need to replace the lift station.

This option does not meet MCES Customer Level of Service goals. This alternative is not recommended per MCES policy of providing continued and best customer services to the communities they serve and to reduce the risk of spills and other environmental impacts to the Mississippi River and residential neighborhood.

Alternative 2 – New Lift Station on the West Side of River

This alternative includes building a new lift station at the current site on the west side of the river in Brooklyn Park. This includes

- New pump station to meet future flow and resiliency needs per MCES guidelines
- Adding two new smaller submersible lift station and/or Independent pump system to increase in-line storage and response time
- Upgrades to the existing odor control system

Upgrades to the existing building

A model was created to determine how much capacity can be gained by upgrading the pumps within the existing building and the results indicate that there is not enough space in the building to add additional pumps to meet the future ultimate peak flow capacity. Also, since the lift station is older and reached the end of its useful life, upgrades to the wet-well and the electrical and mechanical systems will also be required. The upgrades to the pumps within the existing lift station will only incorporate higher interim capacity and will not solve the response time and resiliency issues required during an emergency. The existing lift station does not meet Hydraulic Institute (HI) standards for a self-cleaning wet well and will continue to suffer response time and resiliency issues in the future. Automatic bar screens or channel grinders are industry standard. The current station utilizes a manual bar screen that requires cleaning at least once daily. With the limited space available, this alternative is not likely to improve that situation if the upgrades are to be made within the existing building. Back-ups and other issues related to power outages have occurred at this lift station. Upgrading pumps within the existing building will not solve these issues.

The existing lift station is required to be in continuous operation during construction to allow for continued service to the residents. This makes it difficult if not impossible to construct all the required upgrades without constructing a larger separate lift station building.

New Lift Station

The existing property is not large enough to allow for building a new larger lift station while keeping existing building in place for continuous operation. Also considering the location of the site close to the Mississippi River, it is highly likely that the depth of groundwater will pose a greater challenge to the construction method selected for the new building. As the location is close to the Mississippi River, certain setbacks are required from the river and bluffs per the Department of Natural Resources (DNR) requirements further restrain the site.

Additional property will need to be purchased to complete all the construction work and to build a new lift station. For this alternative and cost estimate comparison, it is assumed that additional property north of the existing site will need to be purchased.

For the new lift station and to meet 67 MGD ultimate peak flow capacity, a 6 and 8 pump rectangular lift station or a 6 and 8 pump circular self-cleaning style lift station was considered. Detailed analyses on selecting the shape and the number of pumps to be used should be conducted during the design of the lift station. For a station of this size, variable frequency drives are recommended for pump starting and maintaining uniform pumping rates throughout the system.

Considering the depth of the lift station required and due to close proximity to the Mississippi River and high groundwater table, it is assumed that a caisson construction may be required. For the sizing and cost estimate purpose, a circular foundation lift station with 8 pumps (with 6 pumps operating at the firm capacity) is used. It is assumed that there will be circular shape foundation with rectangular building on top. Figure 6 below shows the site plan for this alternative.

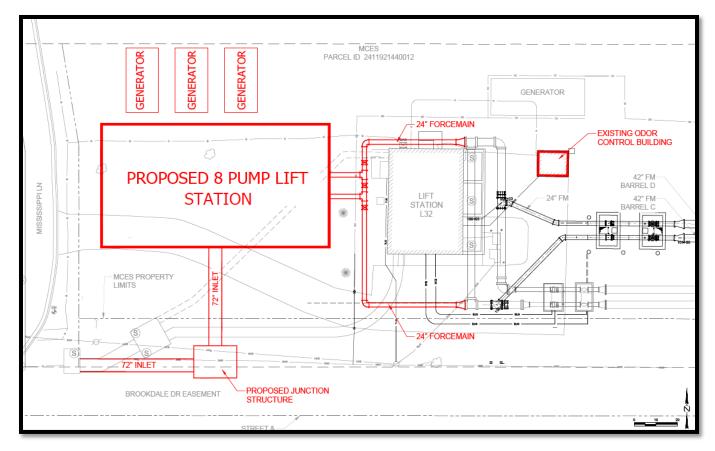


Figure 6 – Site Plan for Alternative 2: New Lift Station on West Side of River

The site plan shows confirms that if a new lift station is constructed while keeping the existing lift station in service, the existing site will be too small and will not be able to fit the new lift station without impacting the neighboring property or the street. Additional property purchase will be required.

Spill Prevention

As discussed earlier in this facility plan, the two new smaller submersible lift stations need to be constructed to reduce the chances of back-ups into basements and to increase the response time in the upstream pipe. In addition, the independent pump system should be installed to increase additional response time along with adding all the other resiliency factors inside the new lift station including split wet well, redundant pump system, automatic bar-screen and grinders, back-up generators, etc.

Odor Control System Upgrades

The existing equipment recently installed on the west side of the river has capacity for the existing flows as well as the ultimate peak wet weather flows projected. However, upgrades

to the existing odor control system might be required in the future. The odor control upgrades that will be required include the following:

- 1. Reconfiguring the Existing Radial Carbon Unit
- 2. Installing new odor control ductwork to the siphon structure
- 3. Further investigation into odor issues that may result in additional modifications

Due to the potential presence of mercaptans and other reduced sulfide compounds in addition to the hydrogen sulfide in the existing sewer flow, more analysis will be required to determine if additional chemical addition or secondary treatment is necessary.

Preliminary Estimated Project Cost for Alternative 2

The preliminary estimated cost of project based on above discussion is shown in Table 6 below for Alternative 2.

Sr. No.	Description	Cost
1	New pump station	\$19,200,000
2	Addition of 2 new smaller submersible pump station	\$1,560,000
3	Dedicated pumps at lift station	\$1,800,000
4	Odor control upgrades	\$240,000
5	Property Acquisition + Temporary easements	\$960,000
	Subtotal	\$23,760,000
	22% Engineering and Administration	\$5,227,200
	30% Construction Contingency	\$7,128,000
	Total Project Cost (in 2020-dollar amount)	\$36,115,200

Table 6 – Estimated Project Cost for Alternative 2

Limitations for Alternative 2

• To construct a new lift station while keeping the existing one in operation, additional property acquisition is required. Even with the purchase of additional property, due to proximity of the river, the site would be too tight with all the buffer and space requirement for a lift station.

- There is not enough room for all of the necessary construction activities onsite and therefore, relatively large temporary easements will be necessary and/or staging at a location nearby or offsite will be required. This will be on top of acquiring additional property.
- Considering the location of the lift station close to Mississippi River and depth of the lift station, the excavations will be relatively deep and may require caisson construction. Additional sheeting may be required to protect neighboring properties and the street.
- Due to residential proximity, screening is important for the lift station sites. Screening the lift station may not be possible due to space constraints at this location.

Alternative 3 – New Lift Station on East Side of River

The flow from the existing lift station L32 is pumped through a forcemain under the Mississippi River, and discharges into interceptor 4-NS-521 in Fridley. Along the way, it passes through an interconnection structure that is located on the south side of a 22-acre MCES property on 6900 E River Road.

In 2014, when MCES was planning the river crossing improvements, the Girl Scouts of Minnesota and Wisconsin River Valleys approached MCES with an offer to sell this property. The Metropolitan Council purchased this 22-acre property in 2016 with the intention of expanding the facility for future growth and rebuilding the new larger lift station on this site to avoid challenging site constraints on the west side of the river.

This alternative assumes a new lift station will be constructed on the east side of the Mississippi River in Fridley where there is ample space available for the construction of a larger lift station. The new lift station could be constructed while keeping the existing lift station in operation. The proposed new lift station L32A will be nearly completed prior to beginning demolition and construction activities on the west bank site of the existing L32 lift station. All four existing river crossing forcemain pipes will be utilized to maintain continuous flow of sewage through the system during and after construction. The proposed new system configuration is described in the sections below as East Side Facilities and West Side Facilities.

East Side Facilities

The proposed new lift station will be constructed on the south side of the property in Fridley, north of the existing forcemain pipes and interconnection structure. The building can be isolated from the neighbors with vegetation and/or fencing. Figure 7 below shows the site plan for the facilities on the East Side of river.

The following facilities will be constructed on the East Side:

- A pump station capable of handling 67 MGD future ultimate peak flow
- New odor control system
- Flow metering station

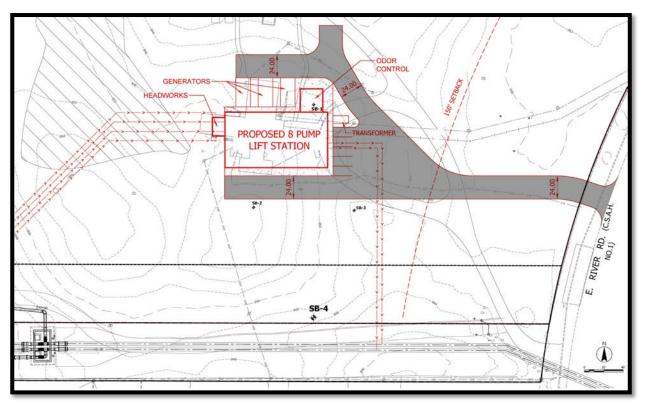


Figure 7 – Site Plan for Alternative 3 - East Side Facilities

Pump Station

A hydraulic model was created to design the pump station. Two lift stations shapes were analyzed to determine the footprints of the lift station consisting of a 6 and 8 pump rectangular lift station and a 6 and 8 pump circular self-cleaning style lift station. Detailed analyses on selecting the shape and the number of pumps to be used should be conducted during the design of the lift station. For a station of this size, variable frequency drives are recommended for pump starting and maintaining uniform pumping rates throughout the system.

The close proximity of the proposed lift station site to the Mississippi River, combined with the depth of the structures, presents significant challenges to the construction of the lift station. As described in the geotechnical report attached in Appendix B, due to the significant excavation depths required for the lift station, open cut excavation may not be feasible. Given the size and depth of the structures, open caisson construction methods may be possible in a dewatered condition. The construction method to be used should be evaluated during the design.

For the caisson construction, a circular shape foundation will be better suited for the depth of the lift station. It is assumed that there will be circular shape foundation with rectangular building on top as shown on the site plan above. More research and detailed analysis need to be completed to determine the final shape and size of the lift station.

For the sizing and cost estimate purpose, a circular foundation lift station with 8 pumps (with 6 pumps operating at the firm capacity) is used.

The new pump station will include the independent pump system to increase additional response time. Other resiliency factors including a split wet well, redundant pump system, automatic bar-screen and grinders, and back-up generators will also be added to reduce spills due to failures at the lift station.

Odor Control System

With the new lift station constructed on the East Side, a local odor control system will be necessary at the new lift station to provide safe worker access to areas exposed to odorous air as well as to prevent corrosion inside the lift station. Local odor control will also be necessary for structures immediately downstream of the inverted siphons. Installing odor control measures will help to prevent odors from escaping and causing odor complaints in the surrounding neighborhood.

The odor control technology to use depends on the compounds that need to be treated and the environmental conditions of the air flow to be treated. Based on the chemical compounds currently found in the air flow on the West Side, hydrogen sulfide is the main odor compound. Vapor and liquid phase treatment similar to the existing odor control on the West Side may be the most effective way of odor control under these circumstances. Based on the current air flow samples, the odor control facility with an air flow rate of 15,000 cfm minimum will be required.

The air flow sample on the west side of the river also shows the potential presence of mercaptans and other reduced sulfide compounds in the sewage at very low rates. More sampling and analysis would be required to determine if any secondary odor control be required in addition to vapor phase technology. The actual size of the odor control and selection of the treatment technology required will be determined during design after more sampling and analysis are performed.

Flow Metering Station

The existing electromagnetic sewage flow meters on the west bank should be relocated to the proposed new lift station on the east bank. Temporary meters could be installed upstream during the transition period.

West Side Facilities

With the new lift station construction on the East Side, the existing lift station will be demolished, however, some facilities will remain on the West Side. The West Side facilities include:

- Two new small submersible lift stations at locations west of the site
- Control building
- Siphon entrance structure (headhouse)
- Odor and corrosion control systems

Figure 8 below shows a site plan for the system that will remains on the West Side when the lift station is moved to the East Side in Fridley.

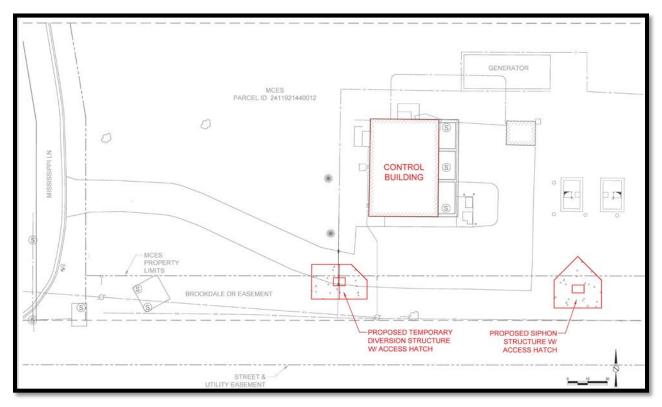


Figure 8 – Site Plan for Alternative 3 - West Side Facilities

Spill Prevention

As discussed earlier in this report, construction of two new smaller submersible lift stations is recommended to reduce the risk of back-ups into basements and to increase the response time in the upstream pipe. Two new smaller lift station will be constructed on the West Side.

Other spill prevention resiliency items will be added to the new lift station on the East side as discussed earlier.

Siphon Structure

When the new lift station is constructed on the East Side of river, the forcemain pipes will be converted to inverted siphons. The West Side Facility in Brooklyn Park will include a new siphon headbox to direct flow to the lead and lag barrels of the forcemain pipes. The siphon headbox will deliver flow to the existing forcemain pipes where they currently turn east from the discharge header on the East Side of the station. The four siphon forcemain pipes will all discharge at the new lift station. The two forcemain barrels on the east side of the river will be reconnected to the new station and will continue to direct flow to interceptor 4-NS-521. Figure 8 below shows the river crossing.



Figure 9 – Forcemain Pipes at the River Crossing

Hydraulic modelling was completed for the forcemain pipes under the river using various combinations of pipes and using reduced size forcemain for the two older pipes (Barrels A and B, see section above for more information). The results of the models show that the 67 MGD capacity can be obtained with several operating conditions and by reducing the old forcemain pipe size to 24-inches. More detailed analysis should be conducted when the inverted siphon system is designed. The model results are attached in Appendix A of this report.

Odor Control System

Odor control systems will be required on the west side of the river and on the east side of the river. The inverted siphon headbox on the west side of the river will create an air dam. Air flow to relieve pressure in the air space in the sewer on the west side of the river upstream of the inverted siphon will require treatment.

The existing odor control system recently installed on the west side of the river has capacity for existing flows and the ultimate peak wet weather flows projected. The existing system will stay in place and continue providing odor control on the West Side. Once the siphon structure is designed and further investigation into odor issues takes place, additional modifications might be required to the existing system.

The air flow sample on the west side of the river also shows the potential presence of mercaptans and other reduced sulfide compounds in the sewage at very low rates. More sampling and analysis would be required to determine if any secondary odor control be required in addition to vapor phase technology currently in place.

Preliminary Estimated Project Cost for Alternative 3

The preliminary estimated cost of project based on the discussion above is shown in Table 7 below for Alternative 3 both for East and West Side Facilities.

Sr. No.	Description	Cost
1	New pump station (8-pump circular foundation)	\$20,400,000
2	Addition of 2 new smaller submersible pump station	\$1,560,000
3	Dedicated pumps at lift station	\$1,800,000
4	New odor control system on East Side	\$360,000

Table 7 – Estimated Project Cost for Alternative 3

5	Flow metering	\$36,000
6	Siphon system	\$6,900,000
7	Odor control system modification on West side	\$120,000
8	River Crossing forcemain pipe rehab	\$2,400,000
	Subtotal	\$33,576,000
	22% Engineering and Administration	\$7,386,720
	30% Construction Contingency	\$10,072,800
	Total Project Cost (in 2020-dollar amount)	\$51,035,520

Limitations of Alternative 3

Construction Challenges

The close proximity of the proposed lift station site to the Mississippi River, combined with the depth of the structures, present challenges to the construction of the lift station. As described in the geotechnical report attached in Appendix B, due to the significant excavation depths required for the lift station, open cut excavation may not be possible. Given the size and depth of the structures, open caisson construction may be employed in a dewatered condition. The construction method to be used should be evaluated in depth during the design.

Higher construction cost

The estimated construction cost is much higher than Alternative 2.

Comparison of Alternatives

Table 8 below compares and summarizes three alternatives discussed in this Facility Plan.

Criteria	Alternative 1 - Do Nothing	Alternative 2 – New Lift Station on West Side of River	Alternative 3 - New Lift Station on East Side of River
Community Impacts	Higher impacts. Continued lift station deterioration could cause sewer backups and might flood basements of the nearby homeowners. This would negatively impact homeowners, and other community assets. Future community needs will not be met.	High community impacts due to extensive construction work required. Additional land will be required to construct new facilities while still maintaining the flow through the existing lift station. There will be large impacts to the streets and nearby properties during construction. Community on Mississippi Ln and Brookdale Dr will be impacted again after current interceptor reconstruction project. Adequate screening of the facility from its neighbors may not be possible.	Less community impacts compared to Alternative 2 as construction would be contained within the existing Met Council property. Adequate screening of the facility from its neighbors will be feasible.
Capacity Needs	Will not meet future capacity needs of the community.	Will meet the future capacity needs of the community.	Will meet the future capacity needs of the community.
Constructability and Ease of Integration	No construction impacts on the site but challenges with the potential for basement surcharging and lack of ultimate future capacity would exist. Some construction will still be required to build the two smaller lift station upstream of the lift station.	The existing site is small and would not be able to facilitate construction without getting additional temporary construction easements and another property acquisition. Even with additional property acquisition, the site will be small for the size of the lift station. Adequate screening of the facility from its neighbors may not be possible due to space limitations.	The site is large and therefore would be able to facilitate construction within the existing property. No additional easements required.
Operability	Lack of future ultimate capacity would still exist and would still have concerns with aging infrastructure. Operation and maintenance cost will keep going up as facility ages and will eventually lead to failure.	Improved operations and meet the future ultimate capacity needs of the community.	Improved operations and meet the future ultimate capacity needs of the community.

Criteria	Alternative 1 - Do Nothing	Alternative 2 – New Lift Station on West Side of River	Alternative 3 - New Lift Station on East Side of River
Sustainability	Challenges with flooding and lack of ultimate flow capacity would still exist.	New LS would meet all the requirements including high energy efficiency and reduced energy costs.	New LS would meet all the requirements including high energy efficiency and reduced energy costs. This alternative will allow for more sustainable lift station with better use through the years due to additional space available on the site.
Costs			
Capital (Total Project)	N/A	High	Highest
O & M	Since the lift station will be continue aging, the O&M cost keep increasing over the period of time and will be highest then other Alternatives.	Lift station will be constructed new and with better technologies, it is assumed that the O&M cost will be similar to Alternative 3.	Lift station will be constructed new and with better technologies, it is assumed that the O&M cost will be similar to Alternative 2.
Life Cycle	It is not possible to estimate costs due to the unknown impacts of doing nothing. Likely this alternative would be higher because it delays dealing with problems, leading to higher operation and maintenance costs, and increased emergency repairs.	Life cycle will be similar to Alternative 3.	Life cycle will be similar to Alternative 2.
Recommendations	Not recommended	Not a preferable option due to space limitations and proximity to the neighboring properties.	Recommended and preferable option.

Recommendations

The existing site for L32 in Brooklyn Park is not large enough to make all the upgrades to meet future flow and response time needs. In order to meet all the requirements, a new larger building will be required to construct. It would be challenging to construct a new larger lift station on the existing property while keeping the existing lift station running due to space constraints. Additional property next to the lift station site will need to be purchased.

MCES already purchased a 22-acre property on the east side of the river in Fridley (which was formerly known as Girl Scout Camp Lockeslea) due to a willing seller in 2016. This site is large enough to build a new lift station with a 67 MGD ultimate peak capacity and response time requirements, odor control system and other related structures to meet the future need of the service area and have less construction impacts due to all construction activities will be mostly constraints inside the property.

Due to limited space available on the existing lift station property; constraints with the construction methods; proximity to the neighboring property and the street; and, the need to purchase additional property (which is not for sale currently), MCES recommends Alternative 3 to construct a new lift station on the east side of the Mississippi River on MCES owned property. The new lift station will be able to meet the future community flow needs and will be constructed to meet MCES standards of resiliency and required response time. With Alternative 3, most of the construction activities will be contained within the existing MCES owned property reducing the community impacts during construction. This site will provide more room for the new larger lift station, allow adequate screening of the facility from its neighbors, and provide a sustainable long-term solution for conveying wastewater in the region.

Since the ultimate capacity is 30-40 years in the future, it is recommended that the lift station structure be constructed to meet the ultimate capacity of 67 MGD, however the pumps, mechanical and electrical equipment which has life of about 20 years be designed to meet an interim capacity. The lift station equipment should be upgraded in the future as capacity increases. This will ensure the lift station is not oversized right now and it is still feasible to increase the capacity in the future when required with minimal construction impacts.

Environmental Review

This section addresses the recommended Alternative 3 where it is assumed a new lift station will be constructed on the east side of the Mississippi River in Fridley on MCES property. Environmental impacts on site in Fridley are discussed in this section.

Wetland Delineation

Wetland determination and delineation was performed for the Camp Lockeslea site to identify the extent and spatial arrangement of wetlands and waterways within the property. Two wetland areas and four streams were identified on the property. The report of the findings was submitted to the Local Governmental Unit (LGU), Coon Creek Watershed District and U.S. Army Corps of Engineers (USACE) for approval. The wetland delineation report was approved in April 2019 for the wetland boundaries and types shown on the report. The report is attached in Appendix C of this Facility Plan under EAW report.

The new facilities and all construction activities will be outside the wetland boundaries identified.

Archeological and Historic Sites

Archeological Phase I was completed on the site in Fridley to determine whether the study area contained any archeological sites. Phase I investigation identified one precontact site (21AN0185) and therefore Phase II assessment was completed by 106 Group to determine whether 21AN0185 was eligible for listing in the National Register of Historic Places (NRHP). Phase II investigations recommends site 21AN0185 not eligible for listing in the NRHP. 106 Group recommends no further archeological work required.

The Minnesota Historical Society State Historic Preservation Office (SHPO) will be contacted regarding the report prepared by 106 Group and for their recommendations and the response received from SHPO will be documented. Refer to EAW attached in Appendix C for more information on archeological and historic sites.

Environmental Assessment Worksheet (EAW)

Since we are expanding the lift station (which is a part of a collection system) above 2 MGD threshold, a mandatory EAW was prepared to review project's potential environmental effects on the site and ways to avoid or minimize them. A copy of the EAW is attached in Appendix C of this Facility Plan.

Project Delivery Schedule

The recommendation is to plan for the design of the new lift station on the east side of the Mississippi River in Fridley. The new lift station should be constructed to meet the future area needs and will be a part of MCES's multiphase approach to preserve and improve wastewater assets in the Fridley area. The new lift station will be constructed to meet MCES and industry standards.

Proposed Lift Station L32A in Fridley is programmed as a six year project, with the planning phase occured in 2020 and design beginning in 2021. Construction is anticipated to start in 2023 and be completed by 2026. The new lift station is anticipated to be in operation by end of 2026.

The draft Facility Plan was made available for public review in early December 2020, and a public hearing was conducted on December 17, 2020. Following the public hearing, all the comments were incorporated into report and the copy of the public hearing record including the summary of the public hearing, powerpoint slides for the presentation, any comments received during the public review period and other items related to the public hearing process are all attached in Appendix D of this report. The plan was reviewed and adopted by the Metropolitan Council in February 2021 before it was submitted to the MPCA for review in conjunction with an application for placement on the Project Priority List for funding through the Clean Water Revolving Loan Fund beginning in fiscal year 2022. The Council resolution for the adoption of the Facility Plan is included in Appendix E of this report.

Appendix

Appendix A

Facility Plan Support Documents

L-32 Lift Station – Phase 2 Facility Plan Support

Prepared for:

Metropolitan Council Environmental Services MCES

Prepared by:

Stantec Consulting Ltd.

November 2020

This document entitled L-32 Lift Station – Phase 2 was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of MCES (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by Dayl Kinschen (signature)

Daryl Kirschenman

Reviewed by Much R. Rock (signature)

Mark Rolfs

Table of Contents

L-32	FACILITY PLAN SUPPORT INTRODUCTION	I
1.0	L-32 LIFT STATION FACILITY PLAN SUPPORT – PHASE 2	1.1
1.1	PRELIMINARY REPORT DRAWINGS	
1.2	SITE SURVEY	1.2
1.3	TREE SURVEY	1.2
1.4	SIPHON HYDRAULIC ANALYSIS	1.2
1.5	RIVER CROSSING	1.4
1.6	PUMP HYDRAULIC ANALYSIS EXISTING LIFT STATION EXPANSION	1.5
1.7	PUMP HYDRAULIC ANALYSIS EAST	1.6
1.8	ODOR CONTROL ANALYSIS	
1.9	DOWNSTREAM SANITARY SEWER CAPACITY	1.8
1.10	UPSTREAM SANITARY SEWER CAPACITY	1.8
1.11	RESPONSE TANK SIZING WEST RIVER	1.9
1.12	LIFT STATION AND RESPONSE TANK SIZING AND CONSTRUCTABILITY	
	CHALLENGES EAST RIVER	
1.13	ELECTICAL SERVICE AND GENERATOR SIZING	
1.14	COST ESTIMATES	
1.15	EAW	
1.16	ARCHAEOLOGICAL ASSESSMENT	1.14

LIST OF APPENDICES

APPENDIX A – REPORT DRAWINGS	1.A
APPENDIX B – SIPHON ANALYSIS MAX FLOW FIGURES	1.B
APPENDIX C – PUMP CURVES	1.C
APPENDIX D – ODOR CONTROL ANALYSIS	1.D
APPENDIX E – L32_DOWNSTREAM CAPACITY ANALYSIS	1.E
APPENDIX F – L32_UPSTREAM STORAGE CAPACITY	1.F
APPENDIX G – RESPONSE TANK SIZING EAST	1.G
APPENDIX H – COST ESTIMATE	1.H
APPENDIX I – TREE SURVEY	1.1

L-32 Facility Plan Support Introduction

Stantec has completed various phases of the Phase 2, L-32 Lift Station facility Plan Support proposal. A summary of the work completed to date and key findings from each work task is provided below. Additional detail information about various tasks can be found in the Appendix as independent reports and task memos. The Archeological investigation and EAW are ongoing activities. Separate documents will be prepared for the Archeological investigation and the EAW.

For the purposes of the facility plan support, the following assumptions and tasks have been reviewed.

- Current flows at L-32 range from 11,300 gpm to 25,000 gpm (16.28 mgd to 36.11 mgd) based on 2018 and 2019 meter information. The current peak flow factor was 2.2 in 2018 and 2.1 in 2019.
- The existing lift station pumps have been modeled hydraulically. Utilizing 5 pumps and one forcemain, L-32 currently has a capacity of 37.0 MGD. The existing lift station is currently at capacity if only one forcemain is considered. The original two 42-inch DIP barrels are not utilized in this analysis. If two forcemains are operational the existing lift station has a theoretical capacity of 50.1 MGD if the pumps used the full-size impellers. Actual total capacity is 30,200 gpm for a current firm capacity of 43.5 MGD. The existing pumps may have had impellers trimmed based on information received from MCES.

Replacing the existing pumps with 150 Hp. or 200 hp pumps to meet the revised design flow has been previously reviewed as a west side option.

- MCES has project the ultimate Peak Wet Weather Flow is currently projected to be 46,500 gpm or 67 mgd. This exceeds the firm capacity of the station by approximately 30 MGD. Firm capacity is defined as one forcemain out of service and one pump out of service.
- Four barrels cross the river. Barrels A and B are the original 42-inch barrels are to be re-sized by CIPP lining or other methods. Barrels C and D are newer 42-inch HDPE, DR-17 and were installed in 2015. Siphon hydraulics have been verified.
- Preliminary Report Drawings identifying project schematic design concepts.
- A site survey and tree survey have been completed.
- The lift station is to be re-located on the East Side of the Mississippi River based on limited space on the west side of the river.
- Pump Hydraulics have been reviewed for a six pump or eight pump station.
- Storage Options on East and West side of river have been reviewed.
- Downstream Sanitary Sewer capacity has been reviewed.
- Future flow metering is to be completed utilizing 24-inch Mag Meters on the East Side of the River, to allow the upstream gravity system to surcharge. Parshall Flumes on the West side of the River are not feasible as part of the siphon headworks design. Parshall flumes on the West side

of the river at design capacity would require an 84-inch flume throat and limit the capacity of the proposed siphon system.

- Prepare an Environmental Assessment for this site.
- Prepare an Archeological phase 1 and phase 2 investigation for this site.

1.0 L-32 LIFT STATION FACILITY PLAN SUPPORT – PHASE 2

1.1 PRELIMINARY REPORT DRAWINGS

Stantec has completed preliminary report drawings to review modifications on the East and West side of the River. Report drawings have been prepared to facilitate discussions with staff and may be incorporated into the facility plan as needed. Preliminary report drawings as listed below are attached as Appendix A.

Figure C1: Vicinity & Location Map.

Figure C2: Overall Site Plan.

Figure C3A: Site Plan – West Side.

Figure C3B: Site Plan – West Side Storage Tank.

Figure C3C: Site Plan – West Side – Above Grade Plan.

Figure C3E: Site Plan – West Side - Above Grade Plan – Larger Text.

Figure C4: Existing Conditions – East Side - with Wetland delineation and Archeological study area.

Figure C5: Soil Boring Plan & Profile - barrels C and D.

Figure C6: West Side Plan & Profile.

Figure C7: East Side Plan & Profile and Profile Record Plan.

Figure C8: East Side Lift Station - Option A, 6 pump rectangular lift station.

Figure C9: East Side Lift Station - Option B, 6 pump circular self-clean style lift station.

Figure C10: East Side Lift Station - Option C, 8 pump rectangular lift station.

Figure C10A: East Side Lift Station - Option C, above grade plan.

Figure C10B: East Side Lift Station - Option C, above grade plan.

Figure C10C: East Side Lift Station - Option C Profile.

Figure C10D: East Side Lift Station - Option C Profile.

Figure C10E: East Side Site Plan – Option C – Larger Text.

Figure C11: East Side Lift Station - Option D, 8 pump circular self-clean style lift station.

Figure LS1: Option A, 6 pump rectangular plan.

Figure LS2: Option A, 6 pump rectangular section

Figure LS3: Option B, 6 pump circular plan.

Figure LS4: Option B, 6 pump circular section.

Figure LS5: Option C, 8 pump rectangular plan.

Figure LS6: Option C, 8 pump rectangular section.

Figure LS7: Option D, 8 pump circular plan.

Figure LS8: Option D, 8 pump circular plan.

Figure LS9: Option E, 8 pump plan with 2 hydraulic pumps.

Figure LS10: Option E, 8 pump plan with 2 hydraulic pumps.

Preliminary site drawings identify the proposed headworks structure locations, proposed piping alignments, along with lift station locations on the east side of river.

1.2 SITE SURVEY

Stantec has completed a topographical site survey. Existing utilities were located and incorporated into the site survey. The topo information is included on Figure C-4. This detail survey was completed for the southern 14 acres of the 22-acre site. Stantec had previously completed a wet land delineation. The wet land delineation is included on plan sheet C-4. CAD files of the survey information are available upon request.

1.3 TREE SURVEY

Stantec has completed a tree survey for the site. A detailed list of trees and tree symbols has been included. The Tree survey is included as report Figure T-1 through T-5. T-1 identifies all 14 acres. Sheets T2 through T-5 subdivides the site into quarter to make the tree identification numbers more legible. The tree survey results are included in Appendix I. Each tree is identified by common name, species, diameter at breast height (4.5 feet), condition, latitude, and longitude.

1.4 SIPHON HYDRAULIC ANALYSIS

Stantec has completed a model of the four - barrel siphon system.

The results of the models show that the 67 MGD capacity can be obtained with several operating options and based on various combinations of operating weir levels. The capacity of siphons can reach 75 MGD at full capacity with one 42-inch barrel out of service. The existing model can be adjusted based on the

L-32 LIFT STATION – PHASE 2

final headworks structure design. Weirs may be modified by length and elevation to modify flows and control the flushing velocities through the four- barrel system.

The Siphon model and results are included in Appendix B consisting of the following information. Additional models can be run for surcharging upstream pipes and lowering inverts on the east side of the river. Final invert elevations will be reviewed during design.

Figure 0 Model overview.

Figure 1 Configuration summary.

Figure 2 Hydraulic Grade line summary Option 1A, Barrel A & B.

Figure 3 Hydraulic Grade line summary Option 1A, Barrel C & D.

Figure 4 Siphon Velocity Curve Option 1A.

Figure 5 Hydraulic Profile-Option 1B.

Figure 6 Hydraulic Profile Option 2, Barrels C & D.

Figure 7 Velocity Curve-Option 1B.

Figure 8 Hydraulic Profile, Option 2, Barrels C & D.

Figure 9 Hydraulic Profile, Option 2, Barrels C & D.

Figure 10 Siphon Velocity Curve-Option 2.

Figure 11 Hydraulic Profile Option 3, Barrels A & B.

Figure 12 Hydraulic Profile Option 3, Barrels C & D.

Figure 13 Velocity curve- Option 3.

Figure 14 Hydraulic Profile Option 4, Barrels A & B.

Figure 15 Hydraulic Profile Option 4, Barrels C & D.

Figure 16 Velocity Curve Option 4.

Figure 17 Hydraulic Profile Option 5 Barrels A & B.

Figure 18 Hydraulic profile Option 5, Barrels C & D.

Figure 19 Velocity Curve Option 5.

1.5 **RIVER CROSSING**

The original forcemain barrels A and B were constructed in 1970 and consist of two 42 inch DIP installed across the Mississippi river. Due the age of these barrels and the need to maintain a flushing velocity in the siphon system. It is proposed that both barrels A and B, be reduced to 30 inch inside diameter from 42 inch.

The record plans indicate that the existing pipe were installed with 5 feet of cover over the existing pipes. As part of the lift station design, the bottom of the river elevation needs to be verified to make sure this is still true. If the River bottom matches the original profile and five feet of cover still exits, there is adequate cover on the pipes and the pipes will not float when dewatered for installation of a reduced diameter system.

Several alternatives have been reviewed for the reduction in pipe diameters to 30 inches. The portion of forcemain to be reduced under the river consists of approximately 830 feet of pipe. This will require the pipes to be dewatered, all sediments removed, and the pipes to be televised to confirm the conditions of the existing pipes.

Option No. 1 was to install a CIPP lining. We found no suppliers willing to reduce the size from 42 inch to 30 inch. Another sub option was to reduce in multiple linings, from 42 inch to 39 inch to 36 inch to 33 inch to 30 inch. This option is also not feasible, and suppliers have not previously attempted this method of reduction and did not recommend this option.

Option No. 2 reviewed consisted of slip lining a fusible PVC pipe through the existing 42 inch pipes, the problem with this option is the 45 degree bends. The fusible PVC pipe is too stiff and will not make the radius required to fit through the bends.

Option No. 3 reviewed consisted of HDPE slip lining. The minimum bending radius for HDPE is 40 Diameters, so this option will also not work through a 45 degree bend.

Option No. 4 reviewed consisted of fold and form PVC which can be inserted and placed but there is no way to control expansion to ensure adequate wall thickness is maintained. This option is not recommended to the uncertainty of the finished wall thickness.

Option No. 5A and 5B reviewed is a Woven hose. These two sub-options are described below.

5A by Primus Line is a flexible slip lining solution for trenchless rehabilitation of pressure pipelines consisting of a seamless woven fiber (Kevlar). This is an ideal product for this application but is only available in sizes to 20 inches. This option does not achieve the desired diameter.

5B by Aqua Pipe is a woven fiberglass liner impregnated on site with resin and is then pulled in place through the host pipe. The Aqua pipe liner is shaped by pushing a pig through the liner using water pressure and then cured with circulating hot water. (CIPP for pressure applications) a possible candidate technology, but currently is only available up to 24 inch diameters.

L-32 LIFT STATION – PHASE 2

Option No. 6 is the installation of a new 30 inch directionally drilled pipe crossing the river. This alternative may be an option to be considered in design but poses risks such as fracking below the river and may possibly add significant time to the project due to permit requirements.

Option No. 7 consists of floating new 30-inch PVC or 30-inch HDPE pipe across the river similar to existing barrels C and D. This option would disturb the bottom and would definitely add significant time to the project due to permit requirements.

Option No. 8. consists of excavating down to the 45-degree bends on the East side of the River. Cut these bends off, and drill from the bank using directional drilling pipe through the horizontal section of the existing pipe and pull back a 30-inch HDPE from the surface, grout the pipe in place and backfill. This option maybe possible if the excavation can be successful down to the 45-degree bends. Draining the pipe and televising to verify bend locations is recommended. Difficult excavation and sheeting at the river's edge may be necessary with this alternative. The cost estimate for the river crossing is currently based on Option 8 but will vary depending on the field verified location of the existing bends. The bend excavation may possibly add significant time to the project due to permit requirements.

Option No. 9. Consists of installing two 24-inch siphon barrels if the existing 45-degree bends are located to close to the river's edge to remove. Weir elevations and inverts would need to be revised to verify final capacity of the 24-inch barrels.

1.6 PUMP HYDRAULIC ANALYSIS EXISTING LIFT STATION EXPANSION

As part of the phase 1 study in 2019, Stantec had previously reviewed the existing lift station capacity.

The site on the west side of the River is extremely congested with existing piping and construction of a new lift station on this site is not possible. The expansion of the lift station capacity is reviewed based on replacing existing pumps and controls within the existing building.

The phase one study reviewed replacing the six existing 100 Hp pump with six 150 Hp pumps. The results indicated that with five pumps and two forcemains available, the existing lift station capacity can be increased to 64 MGD. This is short of the desired design flow of 67 MGD. The results below are based on Aurora model 16x16x20, 150 HP, 900 rpm, with an 18.8125-inch impeller.

Pump Condition	Pump Flow	Pump Head	Station Total
One Pump, One FM	10,935 gpm	43.9 ft	15.7 MGD
Two Pumps, One FM	9,635 gpm	50.4 ft	27.7 MGD
Three Pumps, One FM	8,200 gpm	56.2 ft	35.4 MGD
Five Pumps, One FM	1,2,3: 4,930 gpm 4 & 6: 6,750 gpm	64.7 ft 60.8 ft	40.6 MGD
Five Pumps, Two FMs	1,2,3: 8,860 gpm 4 & 6: 8,940 gpm	53.7 ft 53.4 ft	64.0 MGD

Table 1 – Proposed Future Pump Results

To meet the design flow of 67 MGD, the existing pumps will need to be replaced with six 200 HP. pumps.

To facilitate construction and installation of the new pumps, it is proposed that the floor of the motor room be modified, the existing pump bases be removed and a new opening be created to allow each pump to be installed from a vertical position. The new opening required at each pump location would consist of a 54" x 54" hatch or curb with removable grating. A new hatch through the main level floor and roof would also be required to facilitate pump removal and installation.

A detailed design could investigate a combination of the following modifications to the existing lift Station and forcemain to reduce the total dynamic head for this lift station modification.

- Investigate other pump models, horsepower, and pump speeds.
- Investigate opening three barrels under the river to serve as forcemains to reduce headloss and increase capacity. Using three forcemains would be more comparable to the proposed East side lift station which requires three barrels to function properly. The primary difference would be that that under this case, the pipes would be under forcemain pressure, whereas for the East Side Option they are only under siphon head pressure.
- Investigate replacing the existing 24-inch forcemains with 30-inch forcemains to reduce headloss and increase capacity.
- Model the existing lift station with six pumps running and three forcemains open. Install a smaller twenty-minute response tank which consists of a gravity in, pump out design. The pumps could be sized to provide firm capacity for this lift station.

1.7 PUMP HYDRAULIC ANALYSIS EAST

Stantec has completed a new hydraulic model of a 6 and 8 pump lift station to be located on the East side of the river. Hydraulics were based on five pumps, six and seven pumps operational to provide firm capacity with one pump out of service for each review. Two styles of lift stations have been evaluated

based on a rectangular layout and circular lift station design. The style of lift station did not affect the hydraulic pump performance, only the number of active pumps.

The basis of the Pump Model elevations and layout are shown in the report figures Appendix A.

- A 6 pump station, (5 active pumps), Design condition = 9306 <u>gpm @ 60.8</u> feet. Based on 80 percent Eff. = 179 HP. Preliminary review of pump selections indicate that a six pump station will require six 200 Hp. pumps. A single pump operating of this size will produce 10,808 gpm @ 51.6 feet TDH.
- An 8 pump station, (7 active Pumps), Design Condition = 6647 gpm @ 54.7 feet. Based on 80 percent Eff= 115 Hp. Preliminary review of pump selections indicate that an eight pump station will require eight 150 Hp. pumps. A single pump operating of this size will produce 8,265 gpm @ 44.4 feet TDH.
- An 8 pump station, (6 active Pumps), Design Condition = 7,755 gpm @ 57.0 feet. Based on 80 percent Eff = 140 Hp. Preliminary review of pump selections indicate that an eight pump station will require eight 150 Hp. pumps. A single pump operating of this size will produce 8,265 gpm @ 44.4 feet TDH.
- Detail design, pump selection and pipe sizing would be conducted during a final design.
- For a station of this size, Variable Frequency Drives, are recommended for pump starting and maintaining uniform pumping rates throughout the system.

Based on these initial calculations, several pump selections have been made using Cornell pumps. Pumps were selected with 900 RPM motor Initial pump selections are included in Appendix C. The cost estimates have been based on 900 RPM motors.

In addition to the primary 6 or 8 pumps to be installed in the lift station, supplemental hydraulic pumps were reviewed which could be installed in a circular storage tank or lift station to supplement pumping in the event of a station failure. Mixed flow or hydraulic pumps were added to Report figure LS 9 and LS10. Information on mixed flow and hydraulic pumps has been included at the end of Appendix C. Two back up pumps with 12,500 gpm at 56 ft. TDH capacity is equivalent to 1.5 MG of storage in a 60 minute time frame. Two by-pass pumps would provide another layer of redundancy and eliminate or reduce the need for an additional storage tank.

1.8 ODOR CONTROL ANALYSIS

Stantec has reviewed the existing odor control equipment and has provided recommendations for the existing and proposed equipment required to be incorporated as part of the New L-32 project.

The existing equipment recently installed on the west side of the river has capacity for existing flows and the ultimate peak wet weather flows projected. However, upgrades up-grades to the existing West River odor control will be required.

Localized odor control for the new lift station on the East side of the river will be required for the new wet well.

A summary of the odor control review has been added as Appendix D.

1.9 DOWNSTREAM SANITARY SEWER CAPACITY

Stantec has completed a model to analyze the capacity of the gravity sewer at the downstream discharge from L-32. The capacity study assumed future L-32 to design flow of 67 MGD downstream of L-32. Two storm events were reviewed from May 2017 and March 2019. Information from Meters M201, M202, M203, M214 and M215 were analyzed. These flows were then increased by 20 percent and 50 percent to review hydraulics of existing piping system.

The models assumed no additional infiltration into the system, not recorded in previous storm events. No downstream constraints and Arch pipe dimensions based on standard pipe dimensions.

The model results indicate that the interceptor has sufficient capacity for all scenarios analyzed. If there is any evidence of surcharging in the system, it is due to a partially obstructed pipe or sediment within the existing pipes. Cleaning of the existing gravity system might be necessary in the future if a blockage is observed, but, the replacement of the downstream piping should not be required from a capacity perspective.

Appendix E includes the following information related to the downstream capacity.

Figure No. 1 Downstream L-32 Interceptor Analysis.

Lift Station downsteam capacity analysis.

List of downsteam pipes in the study area.

1.10 UPSTREAM SANITARY SEWER CAPACITY

Stantec has utilized the upstream pipe modeling information to verify the storage capacity upstream of existing L-32. The current critical basement elevations are approximately 825 and are located on Mississippi Lane South of Brookdale Boulevard.

The following potential upstream storage volumes are available based on a Peak Incoming flow rate of 67 MGD.

- Elevation 825 provides 1.1 MG available storage which is equivalent to 24 Minutes storage.
- Elevation 826 provides 1.68 MG available storage which is equivalent to 36 minutes of storage.
- Elevation 827 provides 2.29 MG available storage which is equivalent to 49 minutes of storage.

The following potential upstream storage volumes are available based on a current peak Incoming flow rate of 36 MGD.

- Elevation 825 provides 1.4 MG available storage which is equivalent to 56 minutes storage.
- Elevation 826 provides 1.97 MG available storage which is equivalent to 79 minutes of storage.
- Elevation 827 provides 2.29 MG available storage which is equivalent to 103 minutes of storage.

Appendix F includes the following information related to the upstream storage capacity.

Figure 1 Upstream L-32 interceptor analysis, study area, estimated storage and response times, potential storage current vs. peak, critical basement elevations, critical contours, and surveyed homes and homes to be surveyed, and pipe data.

Storage volumes at elevations above 825 can be achieved by the installation of a duplex submersible lift station on Mississippi Lane south of Brookdale. The approximate location of a Mississippi Lane lift station is shown on the C drawings of Appendix A. A complete survey of upstream houses will be required to make a final determination of possible up-stream storage. If the Mississippi Lane Lift Station is installed, it appears that elevation 826 is the next critical basement.

Other measures to increase the upstream storage may include the installation of check valves in critical upstream laterals or individual service.

1.11 RESPONSE TANK SIZING WEST RIVER

Stantec has reviewed response tank sizing on the west side of the river. A 70-foot diameter tank would fit on the west side adjacent to the existing lift station. Approximate location is shown in Appendix A, figure C3B. Due to limited space required to construct a storage tank on the West Side of the river will be extremely difficult. Soil borings in the proposed location need to be completed for design. The storage tank will need to be built as a caisson with all excavated material removed from site as the excavation proceeds as there is no room to stockpile soils on site. Approximately 8500 cubic yards will need to be excavated as the caisson proceeds.

A 70-foot diameter tank, gravity in and pump out, would provide 20 minutes of storage at a Peak Flow of 67 MGD. If the allowable bounce in the tank is a minimum of 32 feet. A tank with a rim elevation of 830 and bottom tank elevation of 790 will provide for a 20 minute storage tank. Each additional foot of depth would provide an additional 40 seconds of storage.

It is anticipated that two pumps will be installed in the storage tank to pump out the overflow wastewater. Figure C3B, shows a valve vault and a permanent connection to the existing forcemain.

An independent control panel and generator could be installed to provide a redundant pumping system at L-32. Pumping directly into the forcemain system during a flood event will increase response time.

1.12 LIFT STATION AND RESPONSE TANK SIZING AND CONSTRUCTABILITY CHALLENGES EAST RIVER

Stantec has reviewed the two lift station options and multiple size storage tanks diameter to provide one half hour and one hour of storage on the east side of the river. A response tank of 3.0 MG is required to provide a one-hour response time at peak flow. A response tank of 1.5 MG is required to provide one half hour of storage response time on the east site of the river.

L-32 LIFT STATION – PHASE 2

The two lift stations shapes consisted or a 6 and 8 pump rectangular lift station and a 6 and 8 pump circular self-cleaning style lift station.

Option A and C Wet Wells: The wet wells on the East side of the river for a six pump rectangular station and 8 pump rectangular station provides approximate 50,000 and 68,000 gallons of storage. These wet wells only provide approximately one minute of storage at a peak flow of 67 MGD, before overflowing into an additional response tank.

Option B and D Wet Wells: The wet wells on the East side of the river for a six pump and 8 pump circular self-cleaning wet wells provides approximate 16,000 and 22,0000 gallons of storage. These wet wells only provide approximately one half minute of storage at a peak flow of 67 MGD, before overflowing into an additional response tank.

Additional response tank for a peak flow of 67 MGD results in a one hour storage requirement of 3 MG. Several 3 MG response tank sizes were evaluated ranging from 100-foot diameter to 200-foot diameter.

Additional response tank for a half peak flow of 33.5 MGD results in a 1.5 MG response tank. Several 1.5 MG response tank diameters were evaluated ranging from 100 foot to 200-foot diameter.

The smaller the diameter of the response tank the deeper the resulting tank. Appendix G has been included to provide initial calculations on tank diameters, excavation, helical pile, and concrete quantities. Additional items required for all tanks include dewatering, submersible pumps to pump out the response tank, a wash down system, fiberglass liner and an aluminum domed roof.

The close proximity of the proposed L-32 site to the Mississippi River, combined with the depth of the structures, present significant challenges to the construction of the lift station and storage tank. In addition, the types and characteristics of the natural site soils add to these challenges, as is described below. These challenges impact the project by increasing the risk of construction-related problems and adding to the overall cost.

Open Caisson Construction

As described in the geotechnical report, due to the significant excavation depths required for the Storage Tank and Lift Station, open cut excavations are not practical, and may not be feasible. Instead, open caisson construction is recommended. The high-permeability soils with high groundwater, at the level of the river, make the "wet method" of caisson construction appear to be preferred.

This method involves constructing the concrete "cutting shoe" and lower level pump station walls above grade, then removing the interior soil, causing the structure to sink. Instead of dewatering the interior, however, the groundwater is allowed to remain at its natural level. This way, the groundwater is equalized between the interior and exterior. Once the groundwater level is reached, the submerged interior soils must be excavated without being able to see them. Removing the perimeter soil, beneath the sloped cutting shoe, is especially difficult without visual guidance.

The caisson can sink only if the weight of the concrete overcomes the combined resistance of the soil bearing pressure beneath the driving shoe and the soil skin friction against the side walls. Sidewall friction

L-32 LIFT STATION – PHASE 2

can be overcome with lubricants, such as bentonite slurry. The bearing resistance can only be overcome by removing the soil that the driving shoe is sitting on. Knowing where the soil is supporting the shoe is much more difficult if it cannot be seen directly.

The geotechnical report indicated that groundwater was encountered at two elevations: a perched table at approximately elevation 836, sitting on top of the glacial till, and a permanent table, believed hydraulically connected to the river, at approximately elevation 811. It is groundwater at 811 that will likely pose a greater challenge to sinking the caisson.

Once the caisson reaches the terminal elevation, a "plug" of tremie concrete, several feet thick, placed under water, will seal the base. The interior water can then be pumped out and construction can continue the dry interior. However, the high hydrostatic pressures exerted on the bottom face of the unreinforced concrete plug require that the distance between supports cannot be large.

Depending upon the depth, the walls for a rectangular-shaped caisson can span clear interior dimensions of 20'-30' or more without intermediate support. As the size increases beyond these dimensions, however, the need for support of the straight walls increases quickly. Spreader beams, at the driving shoe level, and often at intermediate heights, are required. These beams, in turn, create more soil bearing area and difficulty for the contractor to excavate soil from around and below the beams.

Circular caissons, due to their inherent compression-ring strength, are better suited for deeper depths and larger interior spans. Without the need for spreader beams, their unencumbered interior spaces can more easily be excavated. However, depending upon the hydrostatic pressures and diameter, even tremie concrete plugs several feet thick don't have the strength to span tens of feet without steel reinforcement. It is partially due to this limitation, though not solely, that our recommendation is to dewater the excavation during construction.

Unfortunately, the soils that must be excavated are dense and granular. They are highly permeable and have high bearing capacity and high skin friction. The borings indicate that several feet have blow counts of high double-digits. This soil will likely have to be "carved" out, and the little soil remaining may have sufficient strength to support the (buoyant) weight of the caisson walls.

Storage Tank

The basic design criterion of the Storage Tank requires that it must be able to accept inflow by gravity alone, so that a power outage won't affect its ability to store water and will provide time to correct or restore lift station functionality. A 3.0MG storage capacity is projected to provide 60 minutes of storage, and a 1.5MG tank will provide capacity to store 30 minutes of inflow.

Given an existing ground surface elevation = 850, and a design HWL = 816, the top of the water surface is 34 feet below grade. From there, the tank depths plunge to as much as 85 feet below grade for the 100-foot diameter tank. Working at increased depths increases the risks of construction problems.

Since an unreinforced tremie concrete plug cannot span even the minimum 100-foot diameter, the excavation must be dewatered, and a reinforced structural slab constructed. Though even the reinforced slab cannot span 100 feet or more under the hydrostatic pressures anticipated.

In addition, none of the storage tanks have adequate weight to meet the minimum safety factor (1.5) against flotation during a flooding event. The tank must be held down with helical pile anchors. The helical piles, however, will also provide the distributed support the base slab requires, so it must only span the distance between piles.

While the helical piles solve the slab strength and uplift issues, they can only be constructed in a dewatered condition. This adds cost to the project.

The 1.5 MG gallon, 150-foot diameter storage tank was selected as the most likely candidate for construction. This seemed to provide a solution that had the highest likelihood of being constructible. This alternative was also selected for increased scrutiny for the cost analysis. All of the base cases used a dome style roof for the cost estimate. Based on the potential for objection to this structure, a further buried tank cost estimate was considered. This would include the addition of many support columns and a concrete roof buried slightly below grade.

Lift Station

As mentioned above, rectangular-shaped caissons of the size proposed will require spreader beams. The spreader beams will create more difficulty in these soils to excavate sufficiently to enable the caisson to sink – in the wet or dry. The inability to get a caisson to sink can cause months'-long delays. To avoid this risk, a circular-shaped caisson seems preferable.

As discussed, a circular caisson is inherently stronger in compression, when loaded from the exterior. No spreader beams are required to support the walls. However, since the unreinforced tremie concrete plug/slab is inadequate to span the full diameter under high hydrostatic pressures, beams are required to support the plug. Difficult wet excavation is still required.

As with the Storage Tank, the circular shape is more efficient and less concrete is needed for strength, it also weighs less and doesn't meet the minimum safety factor against buoyancy during flood conditions. Additional wall thickness can be added for ballast, but the amount needed is disproportionate.

To make up the uplift resistance needed, helical piles can be installed and embedded throughout the area of the base slab, both to support the slab under hydrostatic pressures, and to hold down the structure during flood.

As with the Storage Tank, helical piles can only be installed in a dewatered condition. Therefore, a placeholder cost was included for dewatering in each of the design options presented.

Conclusion

Given the size and depth of the structures, the presence and elevation of groundwater anticipated during construction, and the types of soils that will be encountered, combined with the need for supplemental base slab support and uplift resistance, we recommend that open caisson construction be employed in a dewatered condition. Modifications to this approach may be evaluated, but they should be justified with careful consideration of their merits.

1.13 ELECTICAL SERVICE AND GENERATOR SIZING

Stantec has reviewed the electrical service size for the proposed 6 - 200 HP station and the 8 - 150 HP. Station. It is anticipated that there will be on electrical service to the building. Motor controls would be split into two control rooms after the service entrance panel with separate main circuit breakers and separate automatic transfer switches.

Preliminary service size for a six-200 hp pumps or 8 -150 Hp. pumps and other loads results in a 2000-amp service. Preliminary service size for 6 -150 Hp. pumps and other loads results in a 1600-amp service.

Generators have been sized based on utilizing variable frequency drives. It is also anticipated that two generators will be supplied to run either half of the lift station and sized for 3 or 4 pumps, respectively. The proposed generators will be diesel generators with exterior walk in sound enclosures.

Generator selection is based on firm capacity of the lift stations. Each design will have 6 or 8 pumps. The firm capacity was based on five pumps active and six pumps active. However, for the generator design, six 200Hp. five pumps are active, but all six pumps need to be connected to a generator. For the eight pump station, six pumps are active. The generator will be sized for three active pumps per wet well.

Two generators for 6-200Hp. pumps, six active pumps, results in a generator size of 650 KW.

Two generators for 8-150 Hp. pumps, six active pumps, results in a generator size of 550 KW.

1.14 COST ESTIMATES

Several cost estimates have been prepared and are included in Appendix H.

<u>Lift Station Summary</u>: A lift station summary cost estimate page has been included to summarize lift station options and possible response tank sizing.

<u>Lift Station Option A Cost Estimate</u>: Six Pump Rectangular lift station, with common wet well and split drywell. The control room will also be split into two separate spaces. This design will be based on 5 active pumps, with one pump serving as firm capacity.

<u>Lift Station Option B Cost Estimate</u>: Six Pump Circular self-cleaning lift station, with common wet well and split drywell. The control room will also be split into two separate spaces. This design will be based on 5 active pumps, with one pump serving as firm capacity.

<u>Lift Station Option C Cost Estimate</u>: Eight Pump Rectangular lift station, with common wet well and split drywell. The control room will also be split into two separate spaces. This design will be based on 6 active pumps, with two pumps serving as firm capacity.

<u>Lift Station Option D Cost Estimate</u>: Eight Pump Circular self-cleaning lift station, with common wet well and split drywell. The control room will also be split into two separate spaces. This design will be based on 6 active pumps, with two pumps serving as firm capacity.

<u>River Crossing Estimate E</u>: The river crossing, west side modifications and gravity piping to the lift station has been estimated separately from the lift station options. These modifications will be required regardless of which lift station option is selected. The river crossing estimate includes the headworks inlet structure and tail works structure which is required to join flows immediately in front of the lift station regardless of lift station style selected.

<u>Response Tank Estimate F</u>: The option to construct a storage response tank has been estimated separately as it is independent of which lift station option is selected. This cost estimates for various diameter storage tanks are included in Appendix G.

<u>West Side Lift Station Expansion Estimate G</u>: A cost estimates is included to expand the west lift station with 150 hp. pumps. This option could provide a capacity of 64 MGD, but still has minimal wet well capacity.

<u>West Side Lift Station Expansion Estimate H</u>: A cost estimate is included to expand the west lift station with 200 Hp. pumps. This option could provide a capacity of 67 MGD, but still has minimal wet well capacity.

<u>West Side Storage Tank Estimate I</u>: A west side storage tank is also included with 20 minute storage is included as Estimate I.

<u>Mississippi Lane Lift Station Estimate J</u>: An estimate is provided to install a duplex lift station on Mississippi land to increase the available storage volume in up-stream piping.

<u>Hydraulic Pumps East Side Estimate K:</u> An estimate has been provided to add two 12,500 gpm back up pumps to the East side lift station. These back up hydraulic or electric pumps would produce 1.5 MG per hour back up pumping capacity to be installed in lieu of installing the underground storage tank. This option would provide a back-up station capacity of 36 MG, which would be independent of the primary pumping options.

<u>Storage Tank Operation Cost Estimate L:</u> A cost estimate was prepared to facilitate the business case analysis of the storage tank options. This summary has been included at the end of Appendix H which identifies response time gained by various storage options. The capitol costs of various diameter tanks and underground storage tanks were included in Appendix G.

1.15 EAW

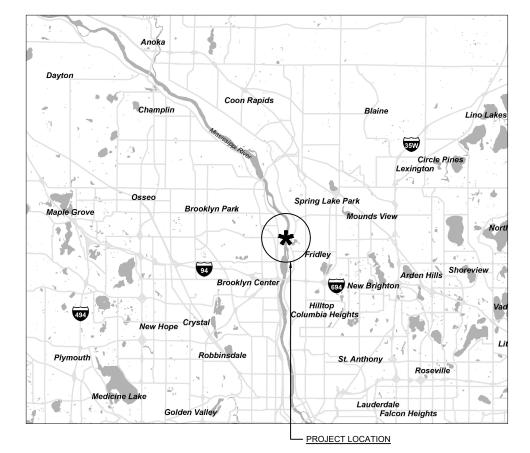
Stantec has prepared an Environmental Assessment Work for the L-32 site. A copy of the EAW will be provided as a separate document. A draft EAW has been submitted.

1.16 ARCHAEOLOGICAL ASSESSMENT

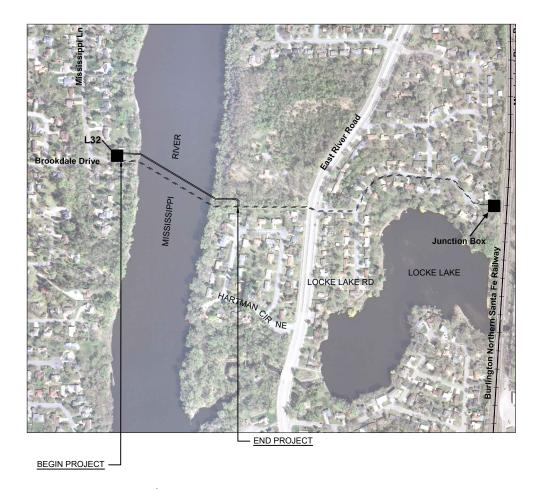
Stantec subcontracted the 106 Group to complete an archaeological site assessment. The archaeological assessment included a physical site field investigation on the southern 14 acres of the 22 acre site. Shovel testing was conducted, and results have been compiled into an assessment report summarizing methodology and recommendations for this site.

L-32 LIFT STATION – PHASE 2

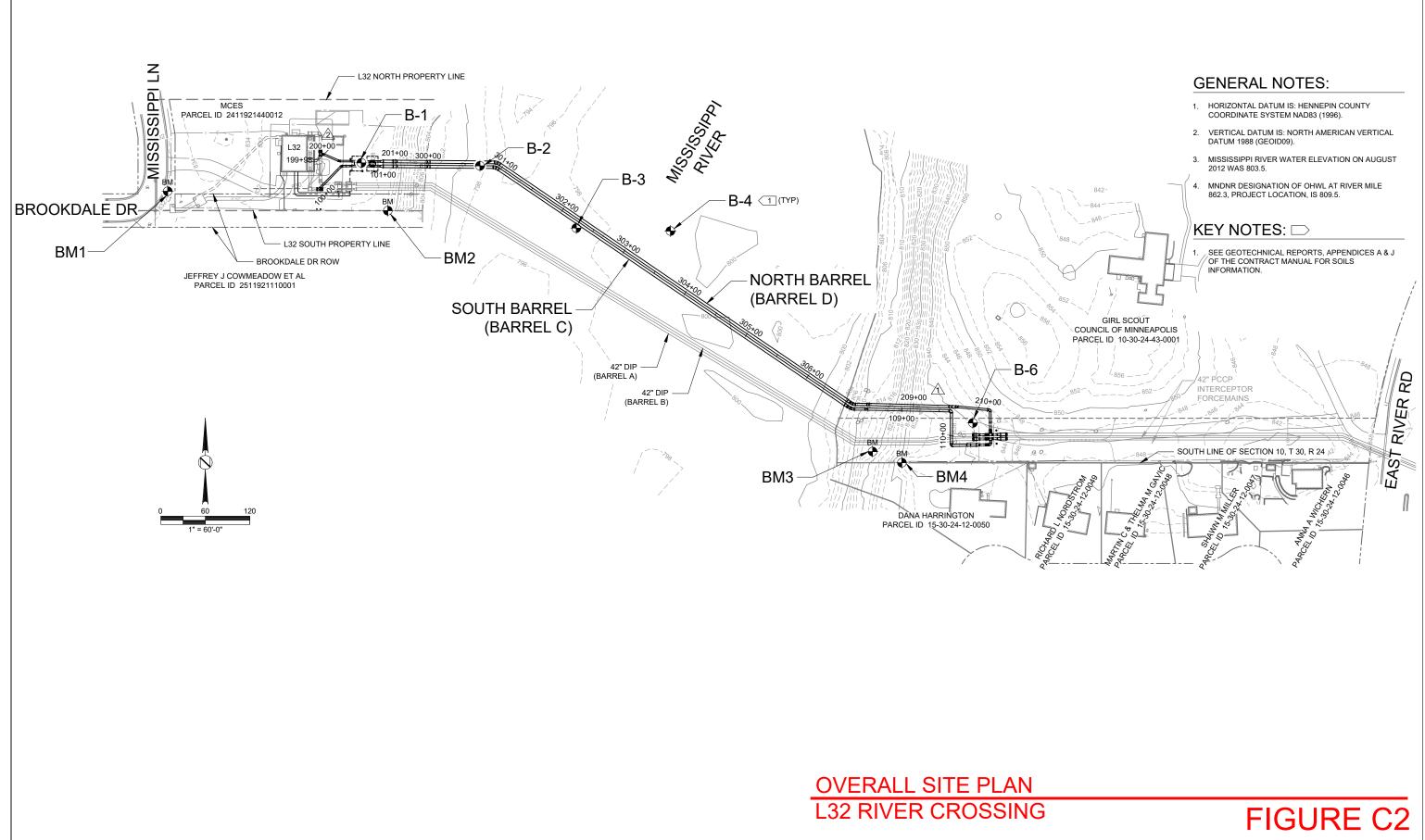
The results of the phase 1 investigation concluded that there are signs of Archeological artifacts. A resulting Phase 2 study was been authorized.

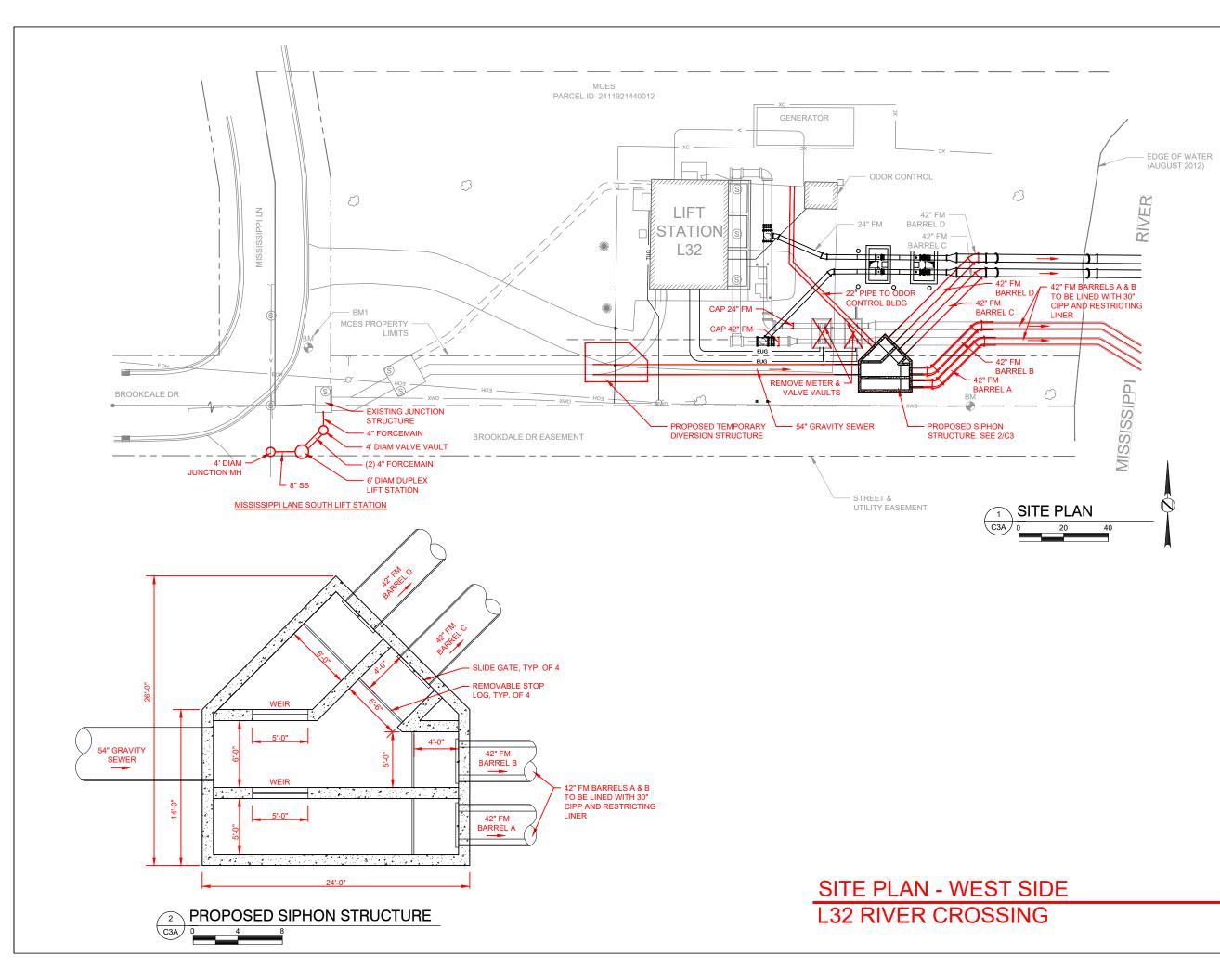

The phase 2, field work consisted of 12 close-interval shovel test and three 1x1 meter excavations. As a result, a total of 11 lithic (stone) artifacts and 4 ceramic sherds were discovered. No subsurface features were identified. The site does not appear to be eligible for the National Register of Historic Places and no further archaeological work is necessary.

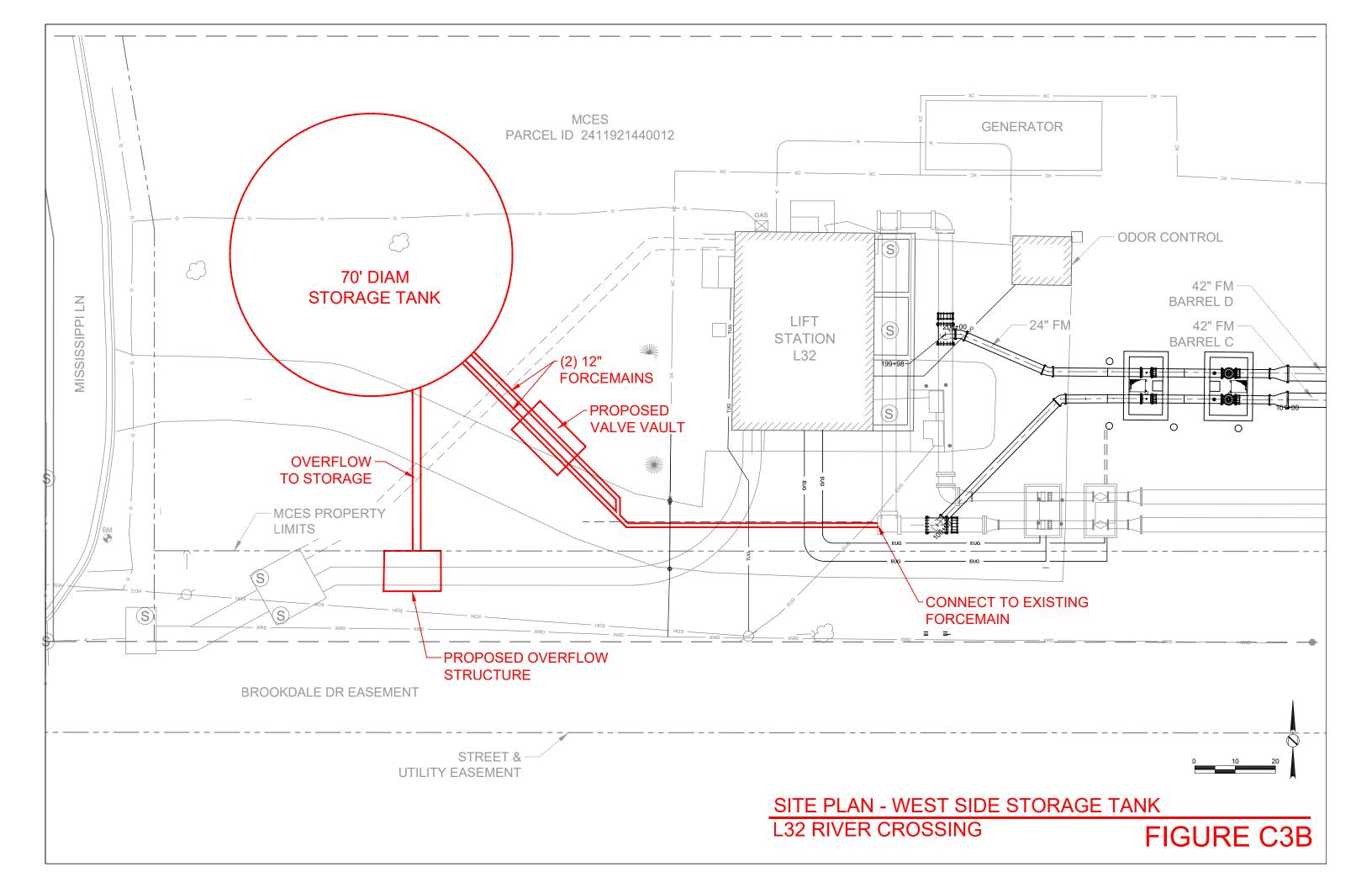
The 106 group is finalizing their report for review and submittal to SHPO and OSA for their review and concurrence. The complete report will be submitted as a separate document.

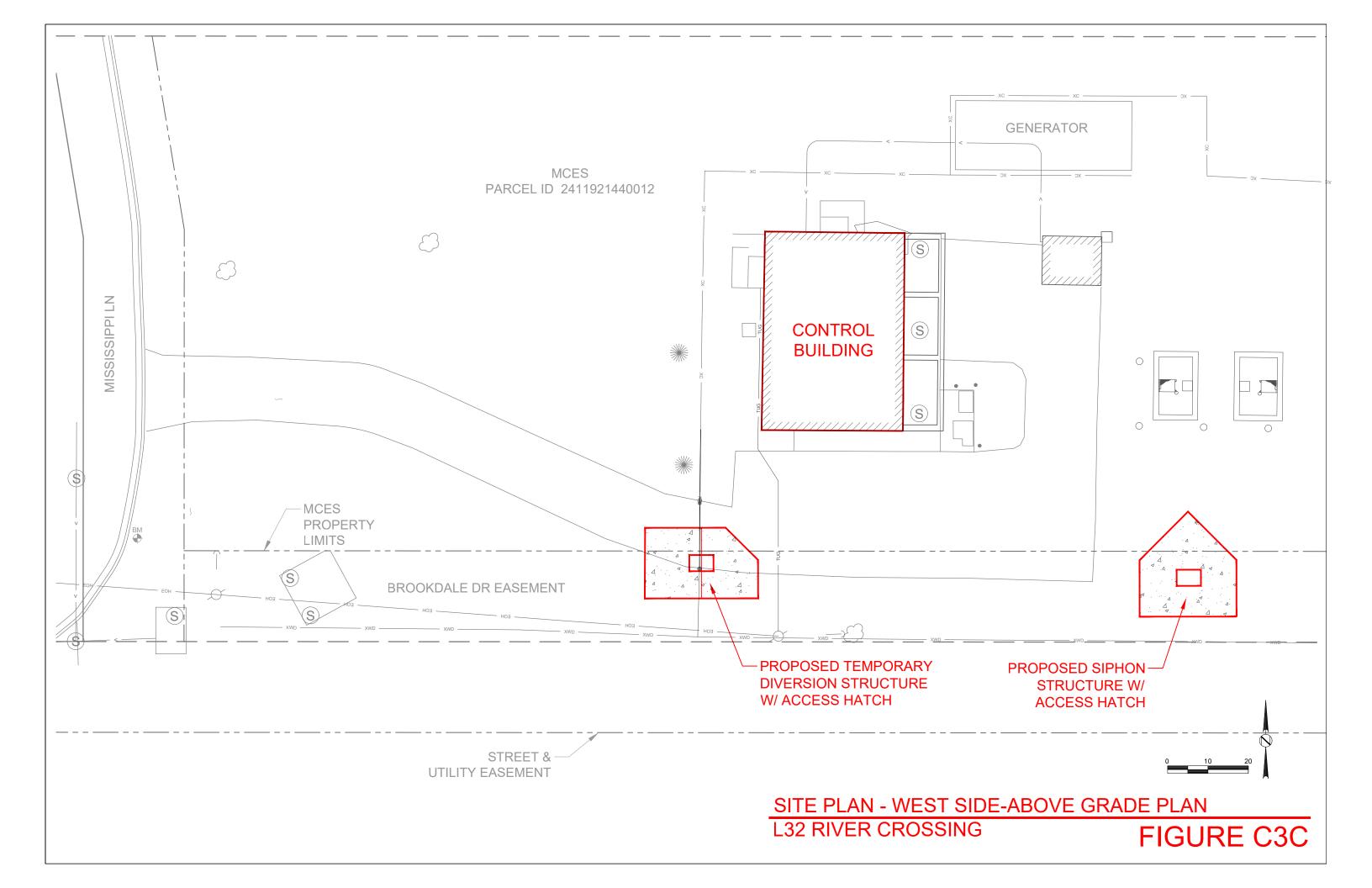

APPENDIX A – REPORT DRAWINGS

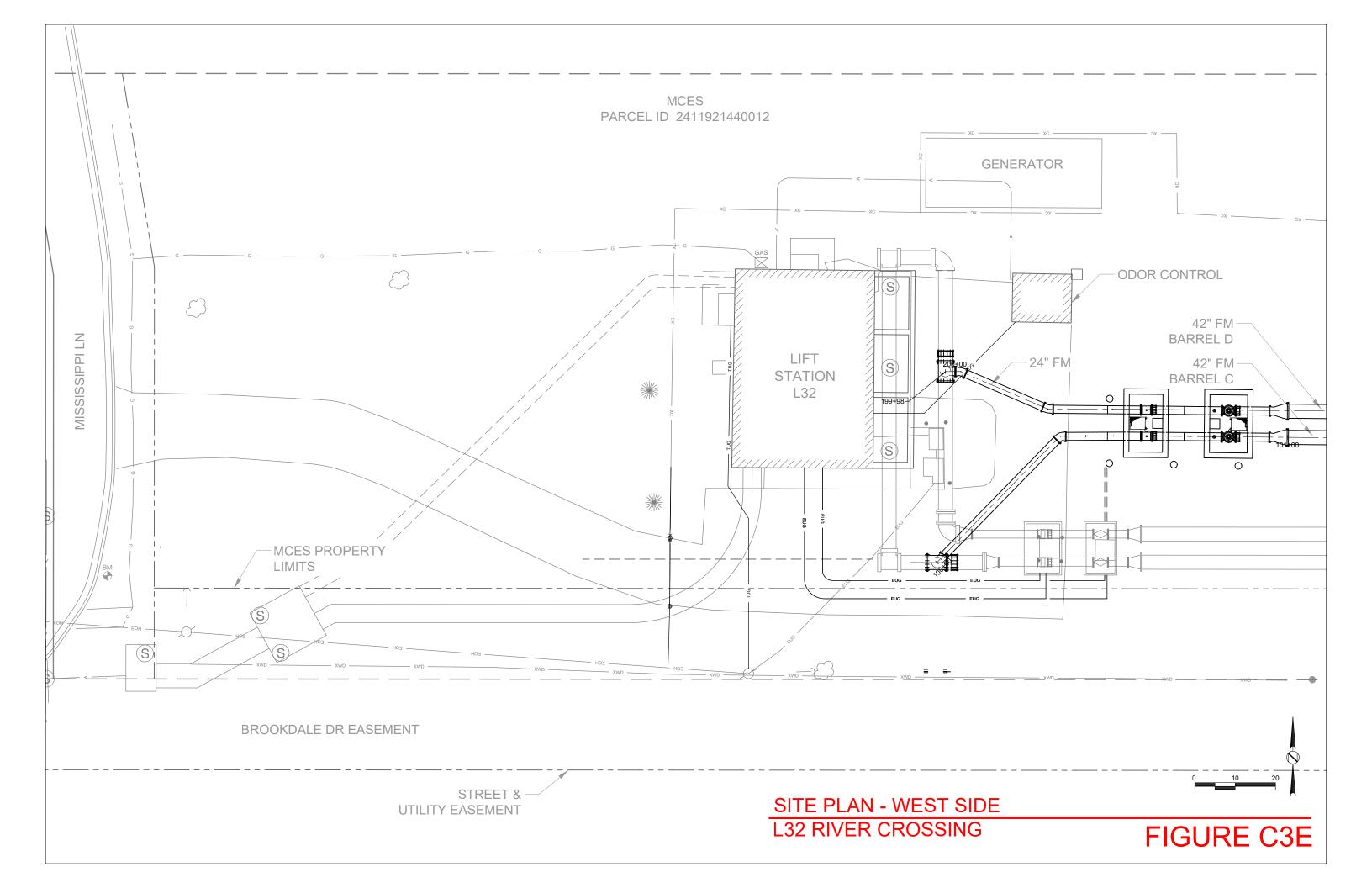
VICINITY & LOCATION MAP L32 RIVER CROSSING

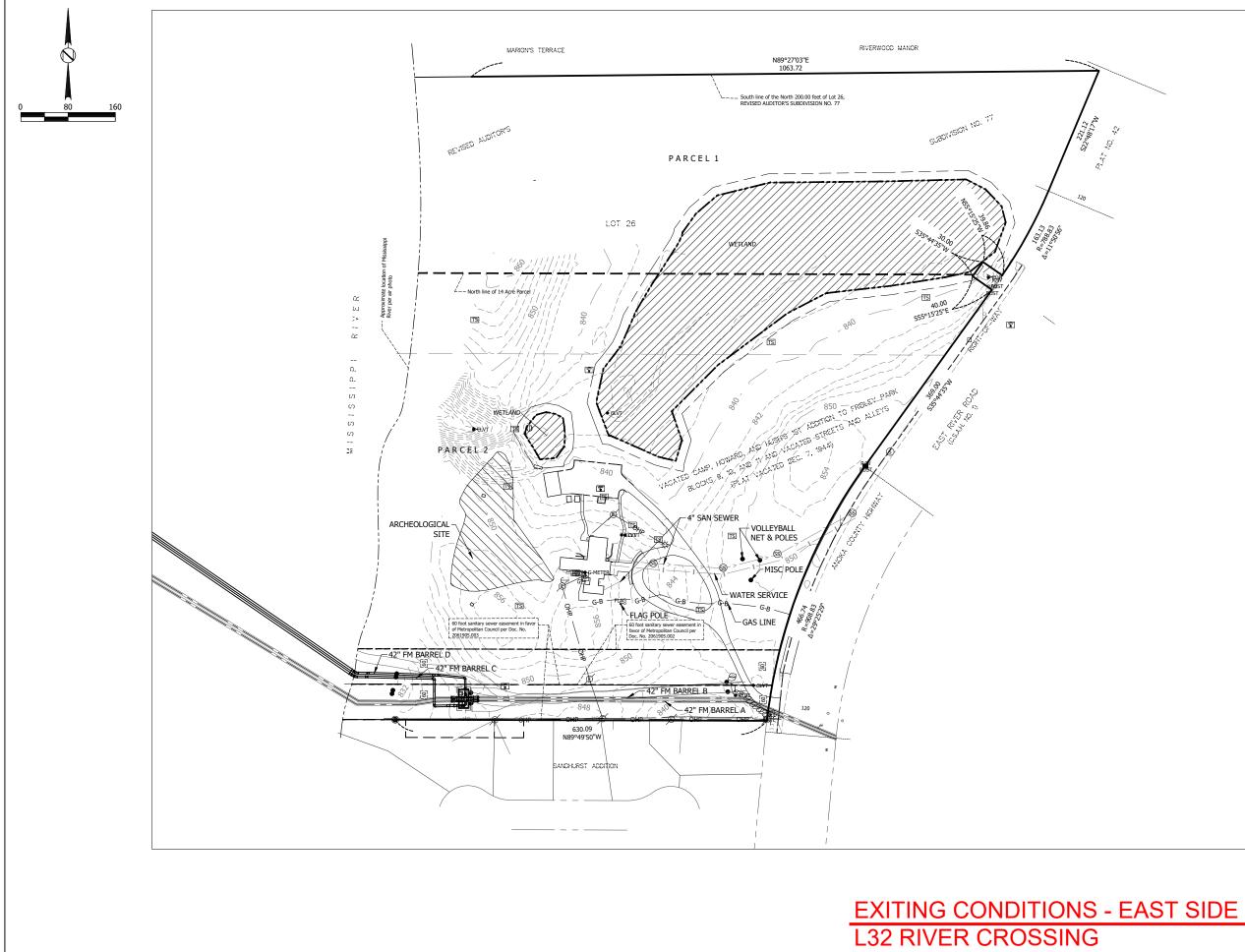


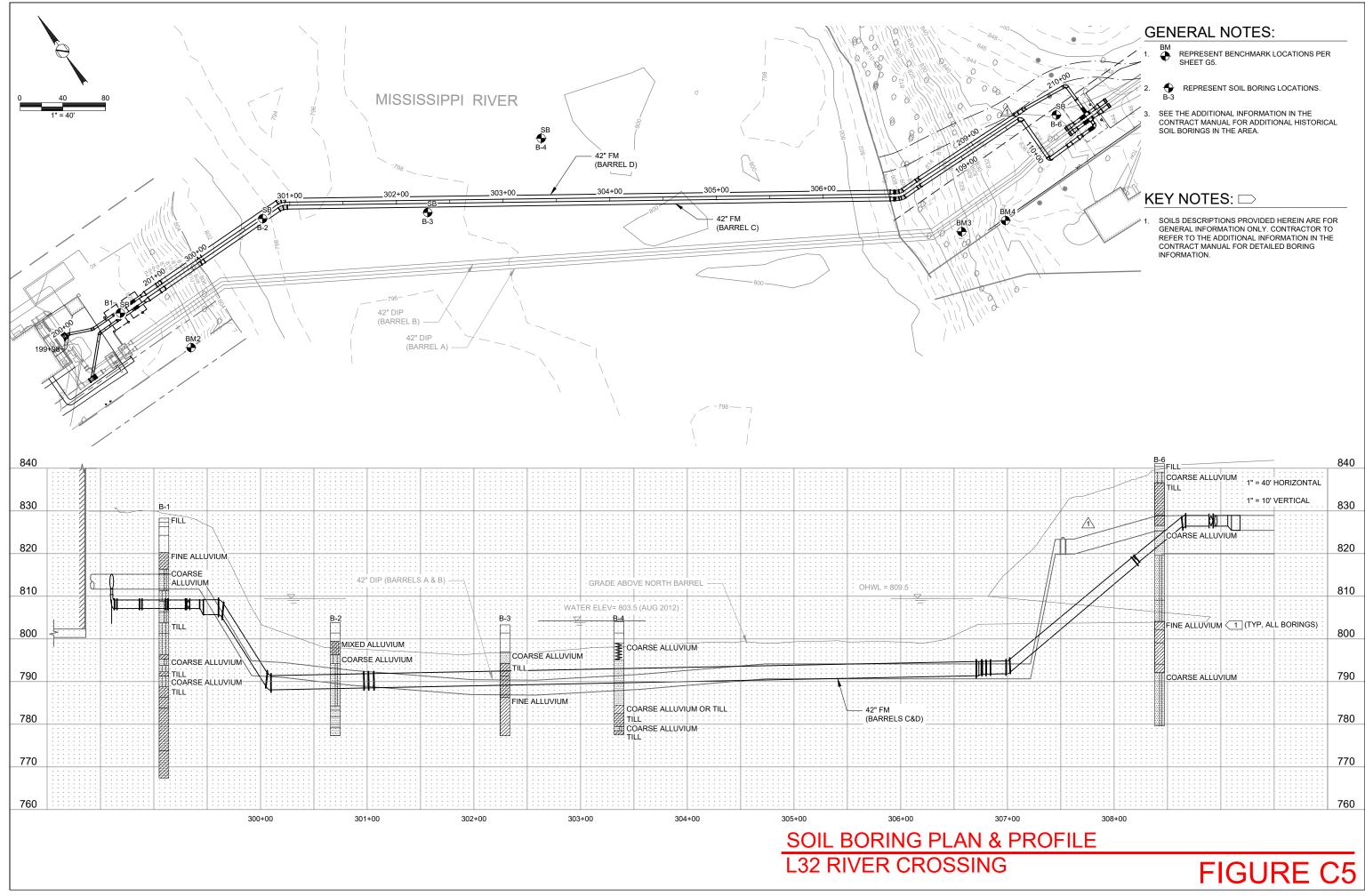





FIGURE C1







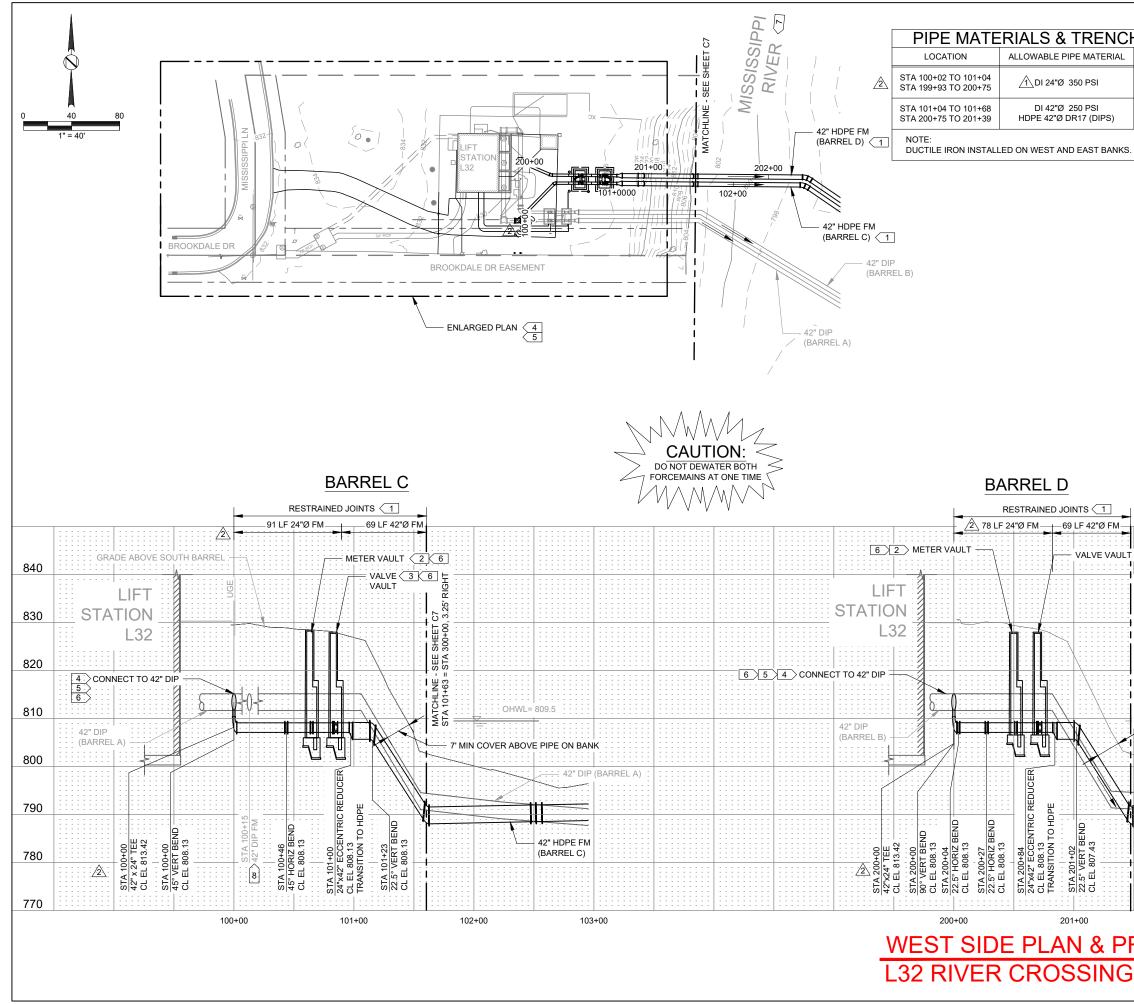
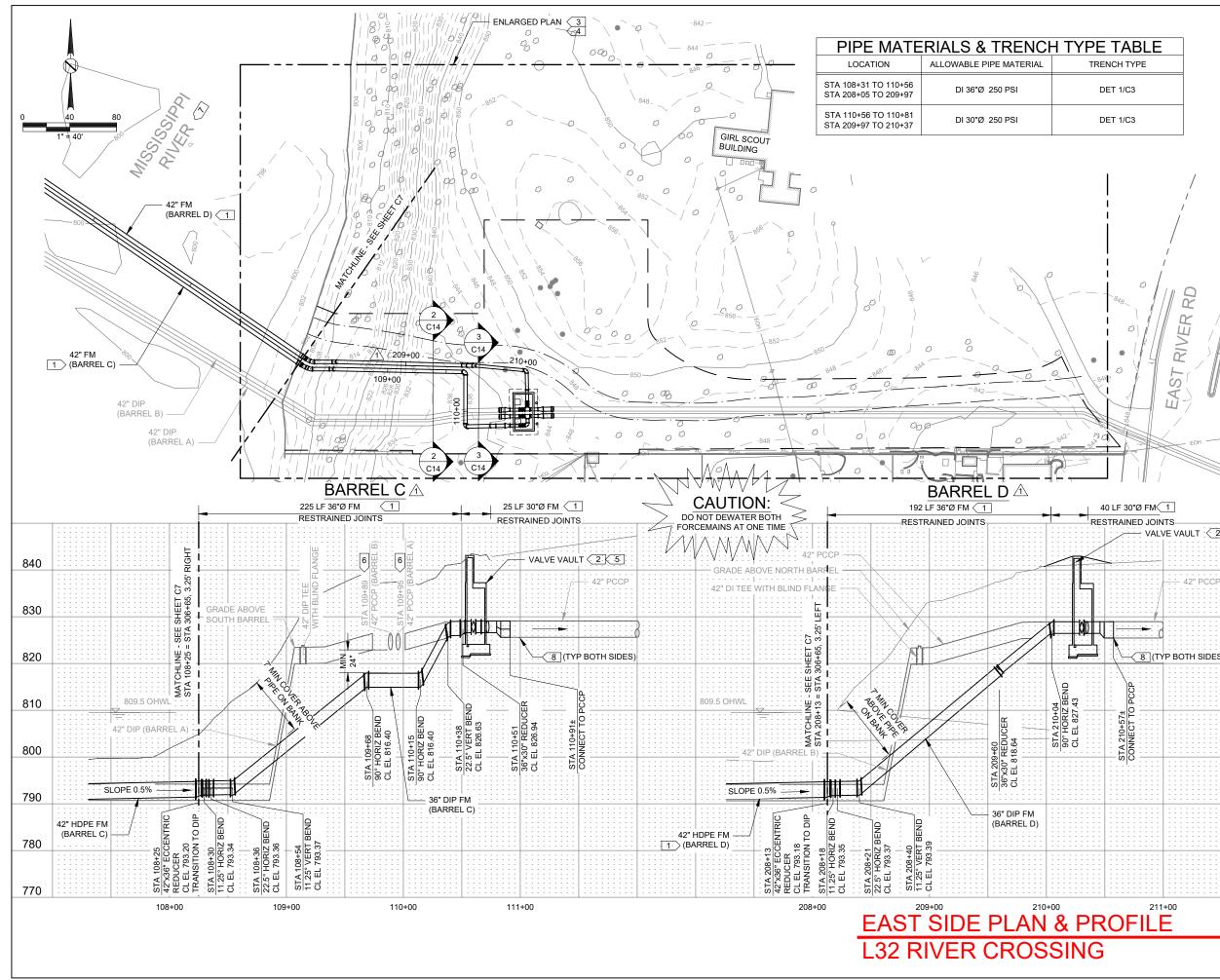


FIGURE C4

/ · / · · · · · · · · · · · · · · · ·	8
COARSE ALLUVIUM	7
	7
	7
	7
308+00 OFILE	

가	H TYPE TABLE
	TRENCH TYPE
	DET 1/C3
	DET 1/C3
S.	

GENERAL NOTES:

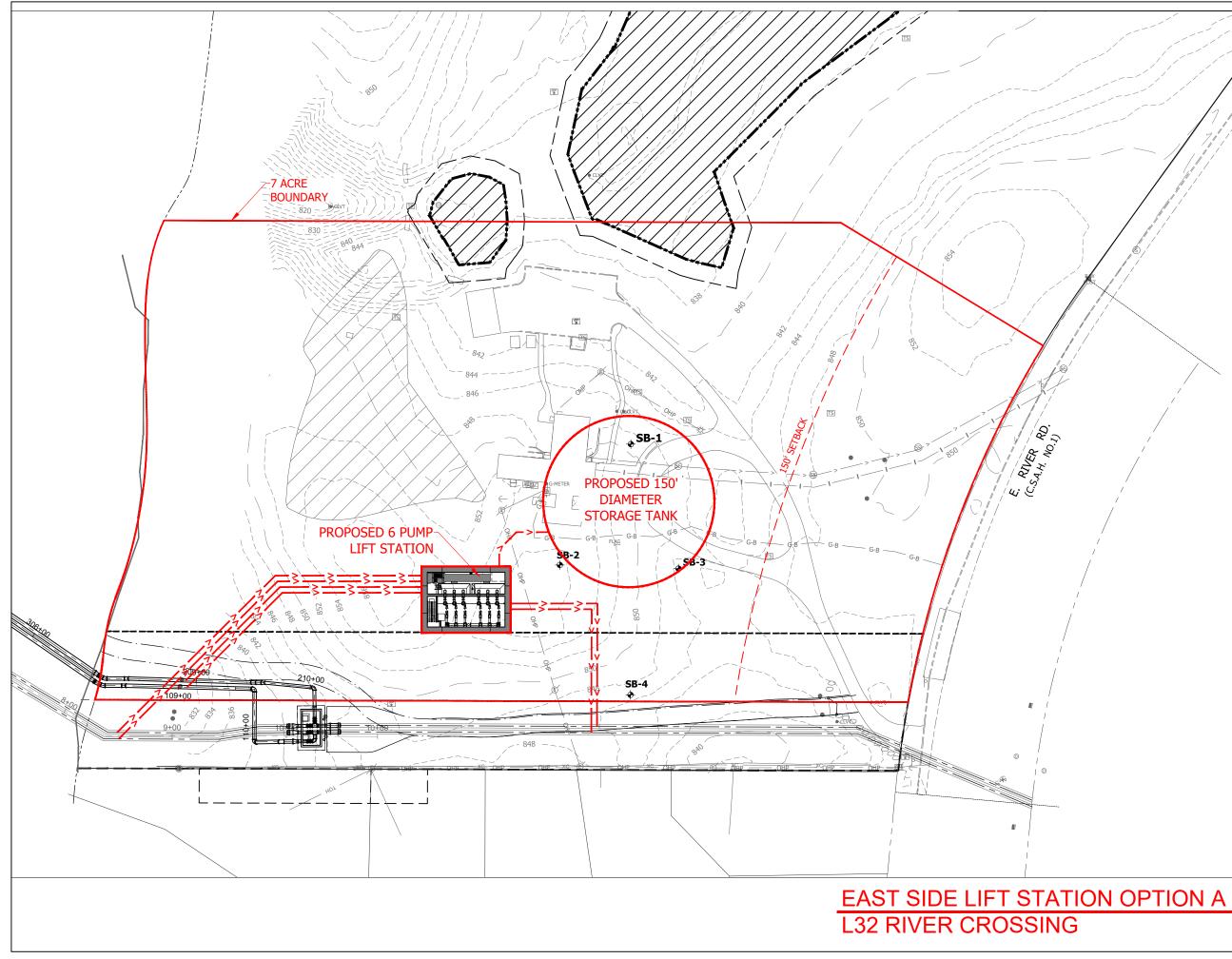

- 1. NO NAVIGATION CHANNEL IS AVAILABLE IN THE VICINITY OF THE PROJECT. CONTRACTOR TO ACCESS WORK AREA IN THE RIVER FROM LAND.
- 2. MAINTAIN ACCESS TO LIFT STATION, GENERATOR, & ODOR CONTROL BUILDING AT ALL TIMES.
- 3. MNDNR DESIGNATION OF OHWL AT RIVER MILE 862.3, PROJECT LOCATION, IS 809.5.
- 4. CONTRACTOR SHALL CONTACT COAST GUARD 24 HOURS BEFORE STARTING WORK WITHIN THE RIVER. A BROADCAST NOTICE WILL BE SENT TO MARINERS, LOCAL SHERIFFS, AND BOATING LAW OFFICE. SEE SHEET G2 FOR CONTACT INFORMATION.

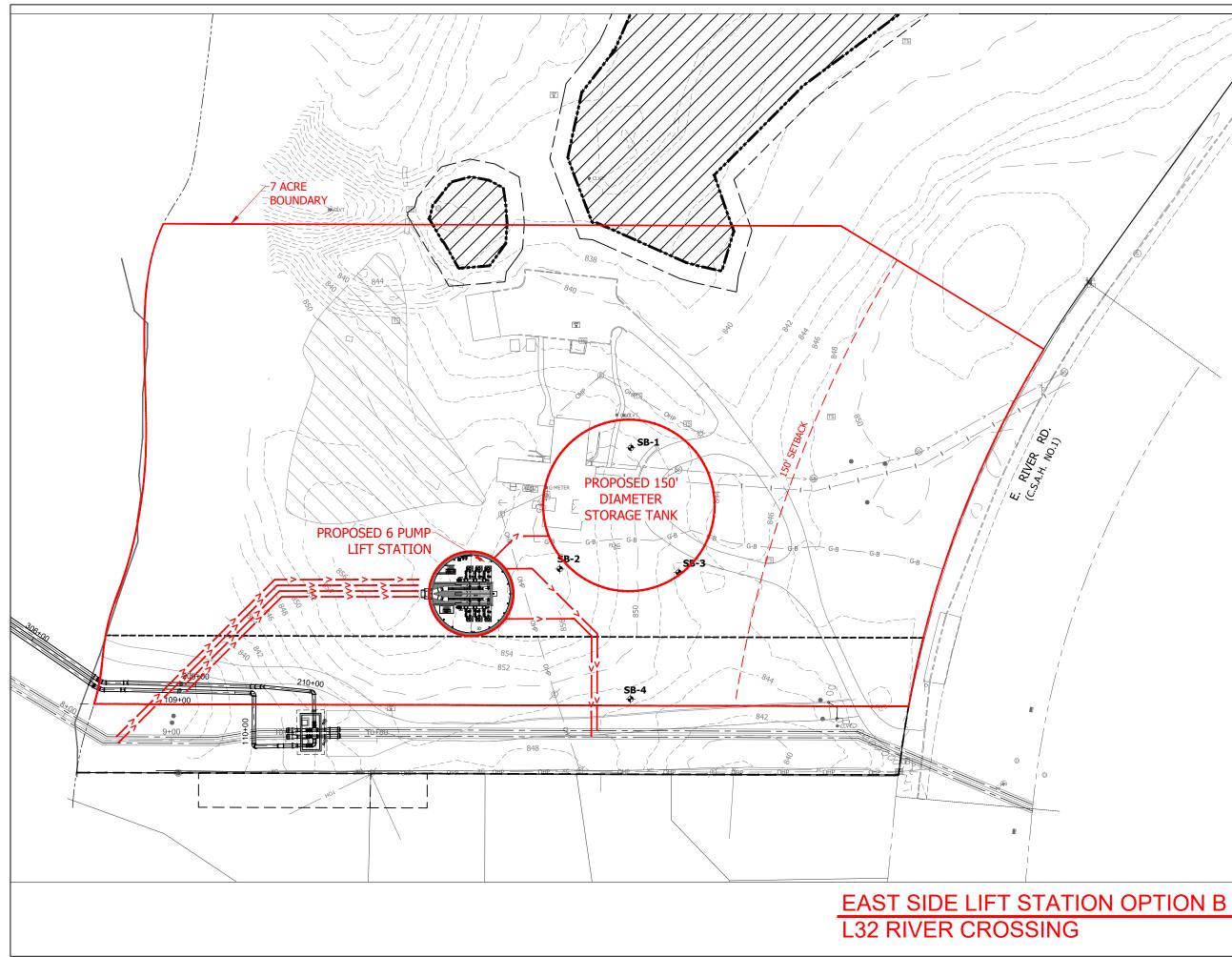
KEY NOTES:

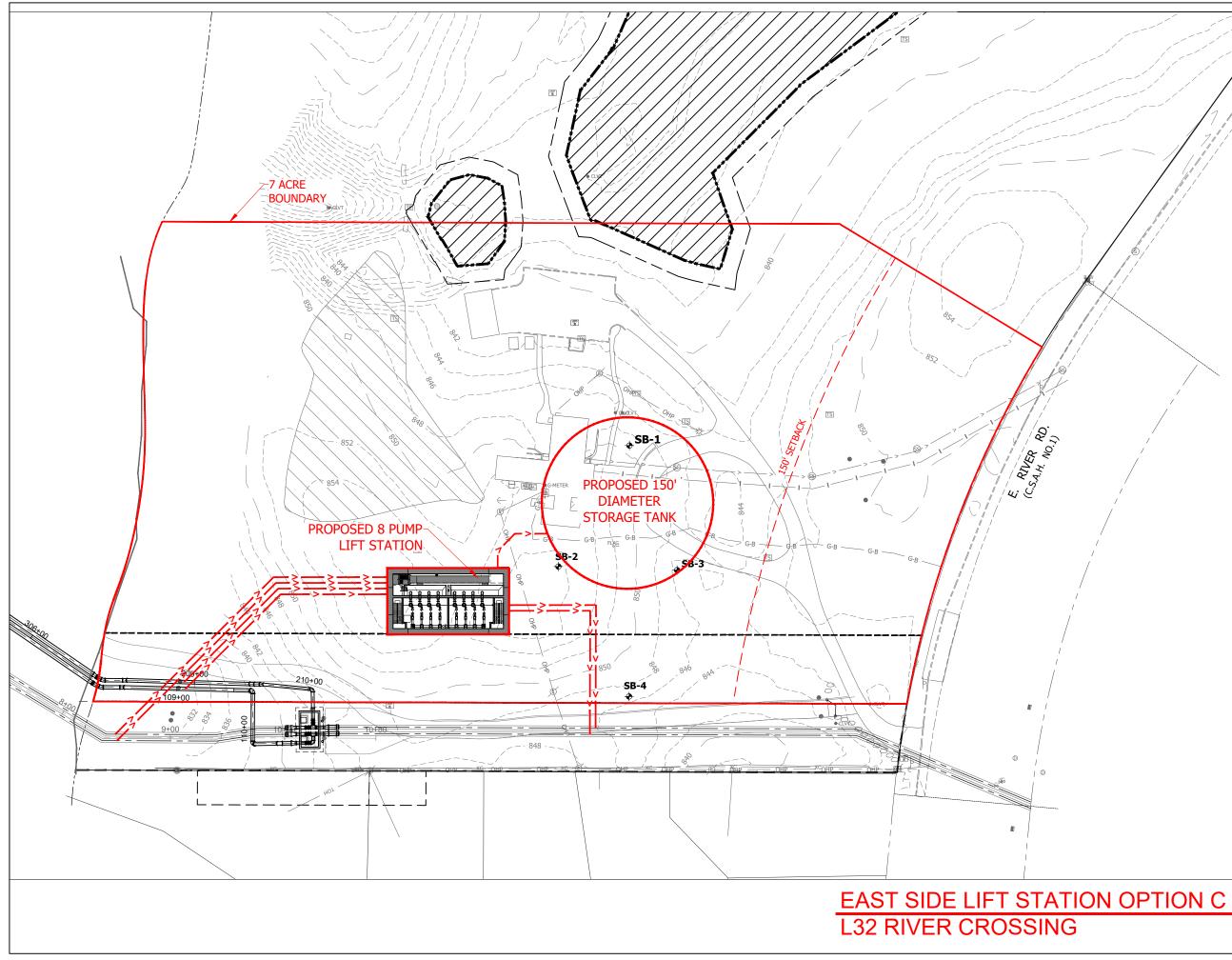
- 1. SEE PIPE MATERIALS & TRENCH TYPE TABLE, THIS SHEET. HDPE WAS INSTALLED IN RIVER.
- 2. CONSTRUCT METER VAULT PER DETAILS, SHEET S4.
- 3. CONSTRUCT VALVE VAULT PER DETAILS, SHEETS S5 & S6.
- 4. SEE SHEET C9 FOR SITE PREPARATION & DEMOLITION.
- 5. SEE SHEET C11 FOR SITE LAYOUT & RESTORATION.
- 6. SEE MECHANICAL PLAN & SECTIONS, SHEET M2.
- 7. ALL WORK WITHIN RIVER SHALL CONFORM TO MNDNR, MPCA & USACE PERMITS. REFER TO THE ADDITIONAL INFORMATION IN THE CONTRACT MANUAL.
- 8. TEMPORARILY SUPPORT 42" DIP FOR THE INSTALLATION OF BARREL C. SEE SPECIFICATION 01010 FOR WORK SEQUENCE.

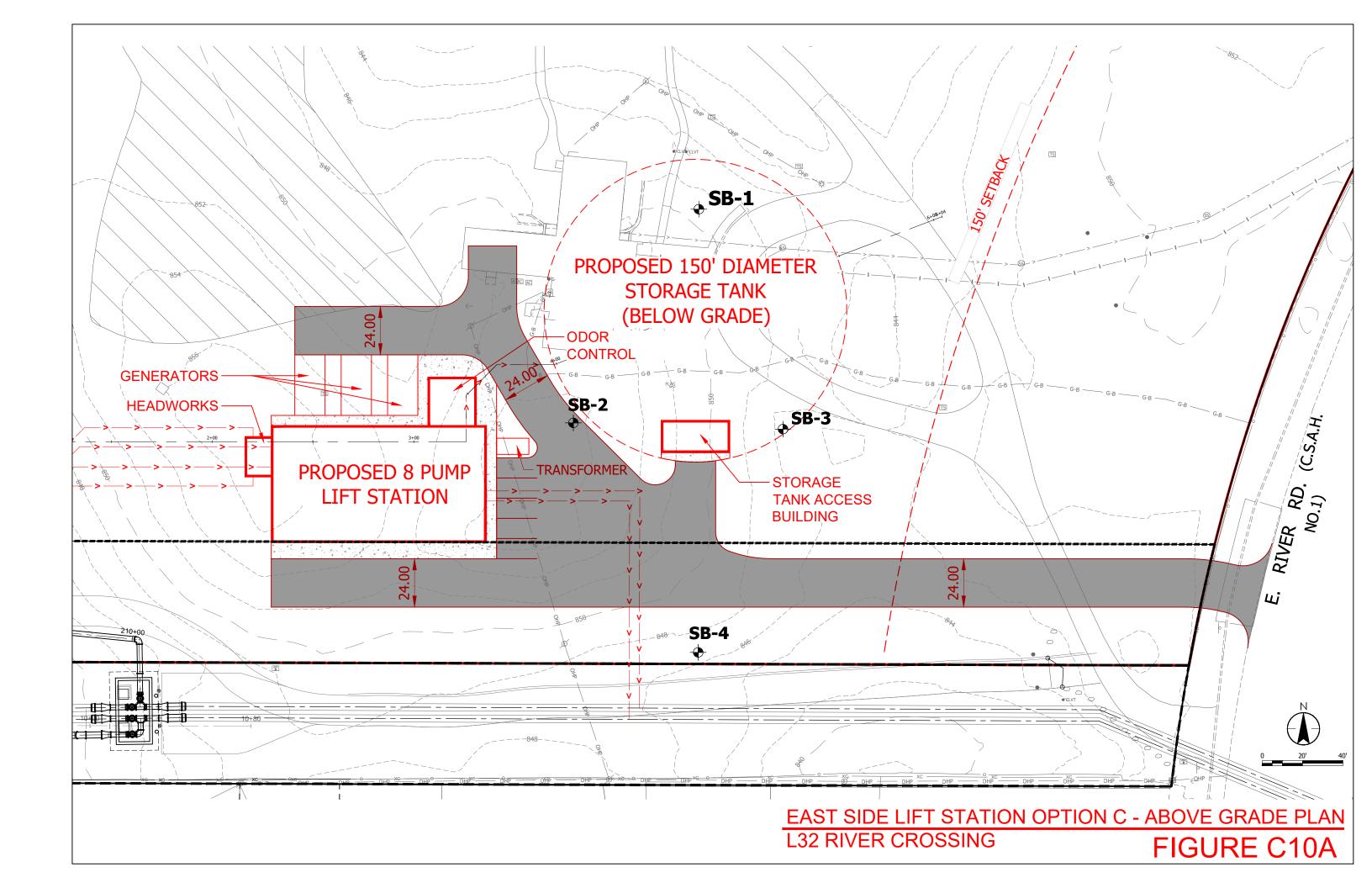
•	
- 1" = 40' HORIZONTAL	
T 3 6.	840
CT S225/LEFT	830
= 51A 3000, 3.25 = 51A 3000, 3.25 = 51A 3000, 3.25	820
	810
7' MIN COVER ABOVE PIPE ON BANK GRADE ABOVE NORTH BARREL	800
42" DIP (BARREL B)	790
42" HDPE FM (BARREL D)	780
	770
202+00 203+00	
ROFILE	

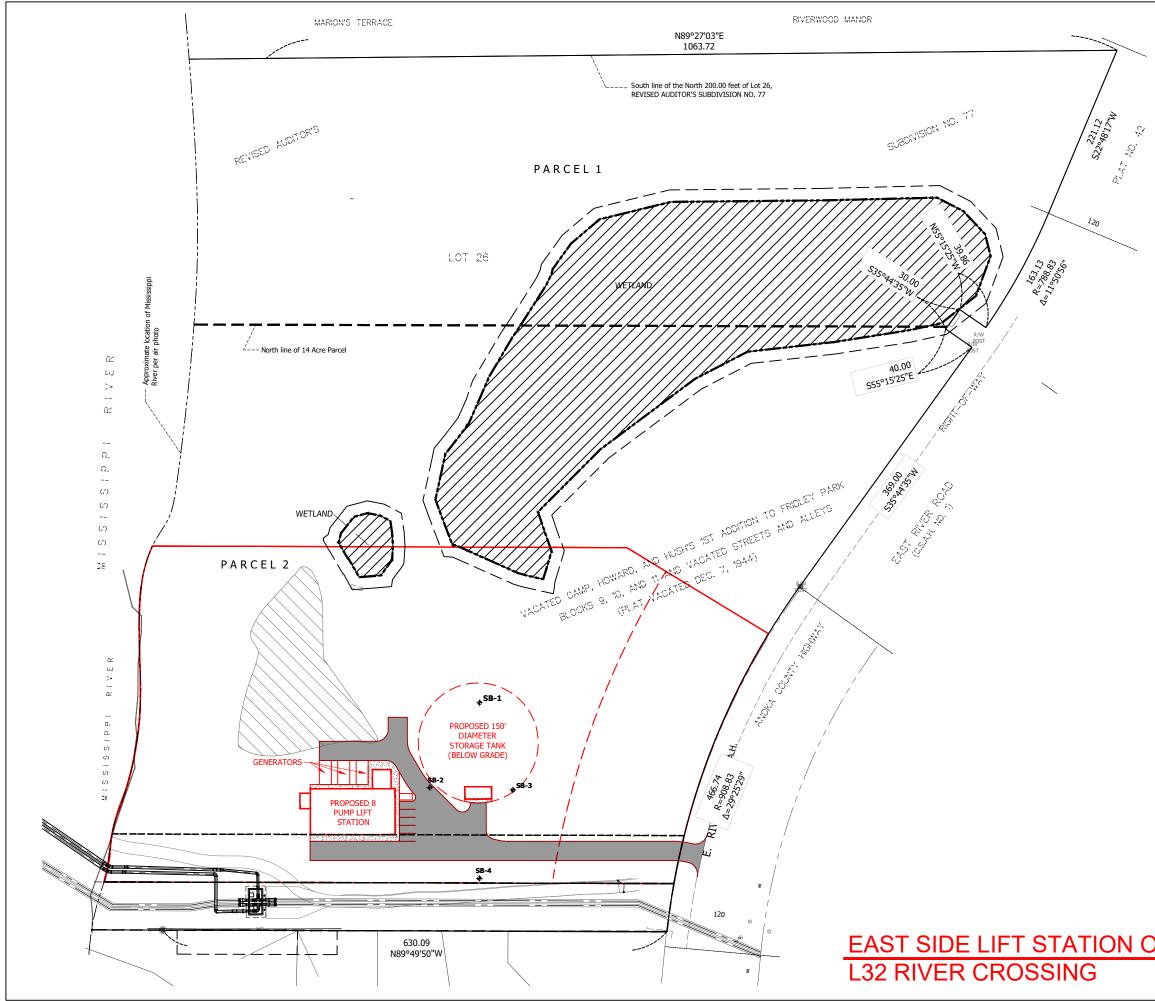
FIGURE C6

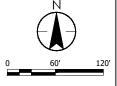

GENERAL NOTES:

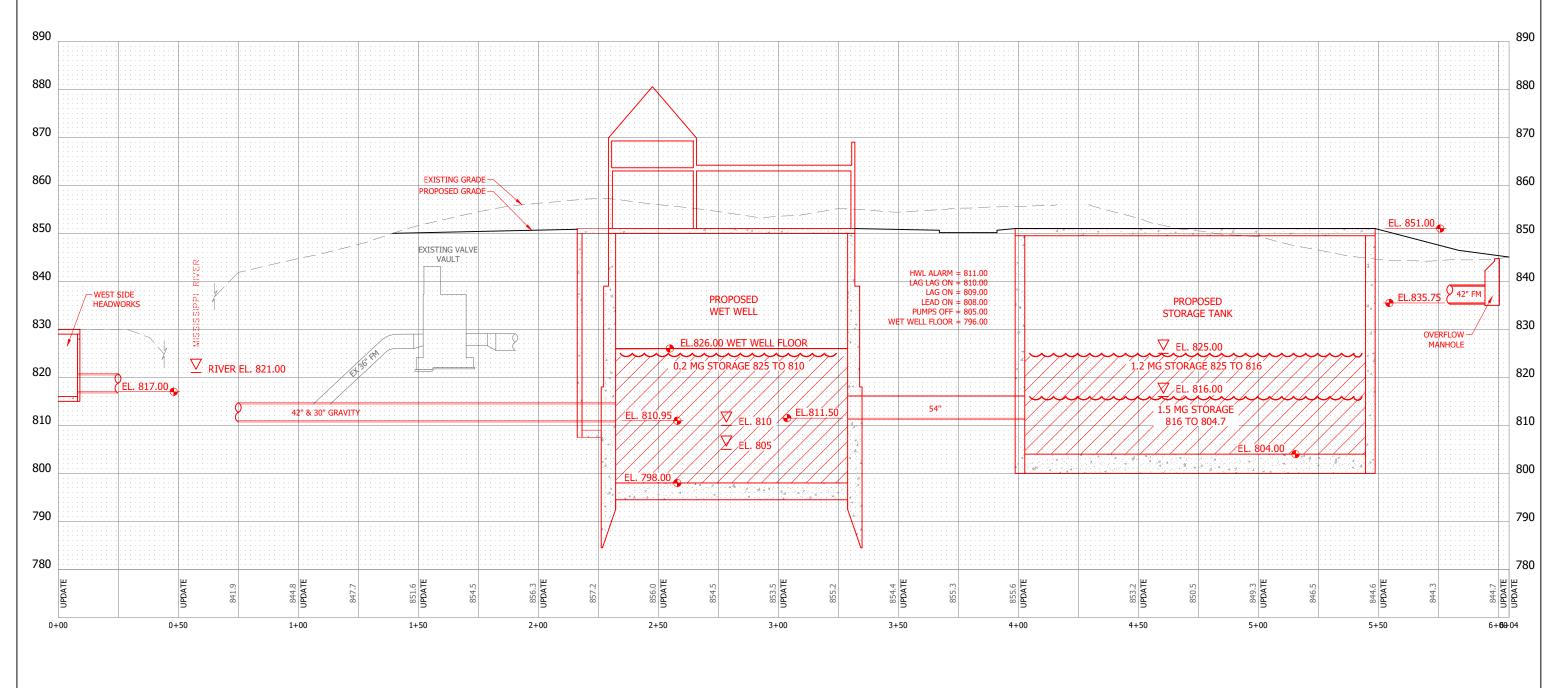

- 1. NO NAVIGATION CHANNEL IS AVAILABLE IN THE VICINITY OF THE PROJECT. CONTRACTOR TO ACCESS WORK AREA IN THE RIVER FROM LAND.
- 2. MNDNR DESIGNATION OF OHWL AT RIVER MILE 862.3, PROJECT LOCATION, IS 809.5.
- 3. CONTRACTOR SHALL CONTACT COAST GUARD 24 HOURS BEFORE STARTING WORK WITHIN THE RIVER. A BROADCAST NOTICE WILL BE SENT TO MARINERS, LOCAL SHERIFFS, AND BOATING LAW OFFICE. SEE SHEET G2 FOR CONTACT INFORMATION.

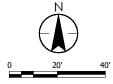

KEY NOTES:


- 1. SEE PIPE MATERIALS & TRENCH TYPE TABLE, THIS SHEET. HDPE WAS INSTALLED IN RIVER.
- 2. CONSTRUCT VALVE VAULT PER DETAILS, SHEET S7 & S8.
- 3. SEE SHEET C10 FOR SITE PREPARATION & DEMOLITION.
- 4. SEE SHEET C12 & C13 FOR SITE LAYOUT & RESTORATION.
- 5. SEE MECHANICAL PLAN & SECTIONS, SHEET M3.
- 6. TEMPORARILY SUPPORT 42" DIP FOR THE INSTALLATION OF BARREL C. SEE SPECIFICATION 01010 FOR WORK SEQUENCE.
- 7. ALL WORK WITHIN RIVER SHALL CONFORM TO MNDNR, MPCA & USACE PERMITS. REFER TO THE ADDITIONAL INFORMATION IN THE CONTRACT MANUAL.
- 8. CONNECT TO PCCP PER DETAIL 1/C4.

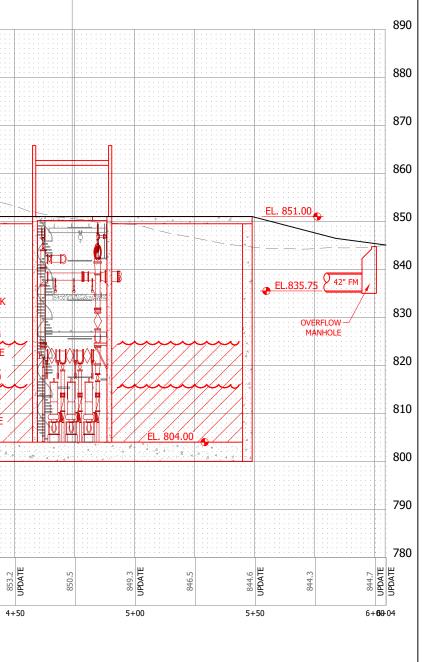

40 LF 30"Ø FM 1					
VALVE VAULT 2 5	ONTAL				
	CAL				
1" = 10' VERTI	CAL 840				
42" PCCP					
: :::::::::::::::::::::::::::::::::::					
	830				
· · · · · · · · · · · · · · · · · · ·					
n: <mark> </mark>					
לי (ג'ִיִיִּרָאָ BOTH SIDES):	820				
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
	010				
	810				
Connect To Safa 210-574	800				
- ⁻					
:					
· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · 790				
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	780				
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	···· 770				
211+00					
ROFILE					
³ FIGURI	⊢(:/∣				







EAST SIDE LIFT STATION OPTION C - ABOVE GRADE PLANL32 RIVER CROSSINGFIGURE C10B



EAST SIDE LIFT STATION OPTION C - PROFILE L32 RIVER CROSSING FIGURE C10C

890 880 870 860 EXISTING GRADE PROPOSED GRADE 850 EXISTING VALVE VAULT C 🕇 ۵۲ ریا HWL ALARM = 811.00 LAG LAG ON = 810.00 LAG ON = 809.00 LEAD ON = 808.00 PUMPS OFF = 805.00 840 - West Side Headworks а. а. PROPOSED STORAGE TANK 830 WET WELL FLOOR = 796.00 PROPOSED PUMP ROOM () 28 2 EL. 825.00 1.2 MG STORAGE 825 TO 816 EL. 816.00 ∑ RIVER EL. 821.00 820 EL. 817.00 EL.811.50 54" 42" & 30" GRAVIT) EL. 810.95 810 1.5 MG STORAGE 816 TO 804.7 A.g. A. 4.g. 4.g 800 EL. 798.00 × 6 6 790 780 856.3 UPDATE 855.6 UPDATE UPDATE UPDATE 844.8 UPDATE 851.6 UPDATE 856.0 UPDATE 853.5 UPDATE 854.4 UPDATE 841.9 354.5 355.2 847. 0+00 0+50 1+00 1+50 2+00 2+50 3+00 3+50 4+00

EAST SIDE LIFT STATION OPTION C - PROFILE L32 RIVER CROSSING

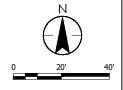
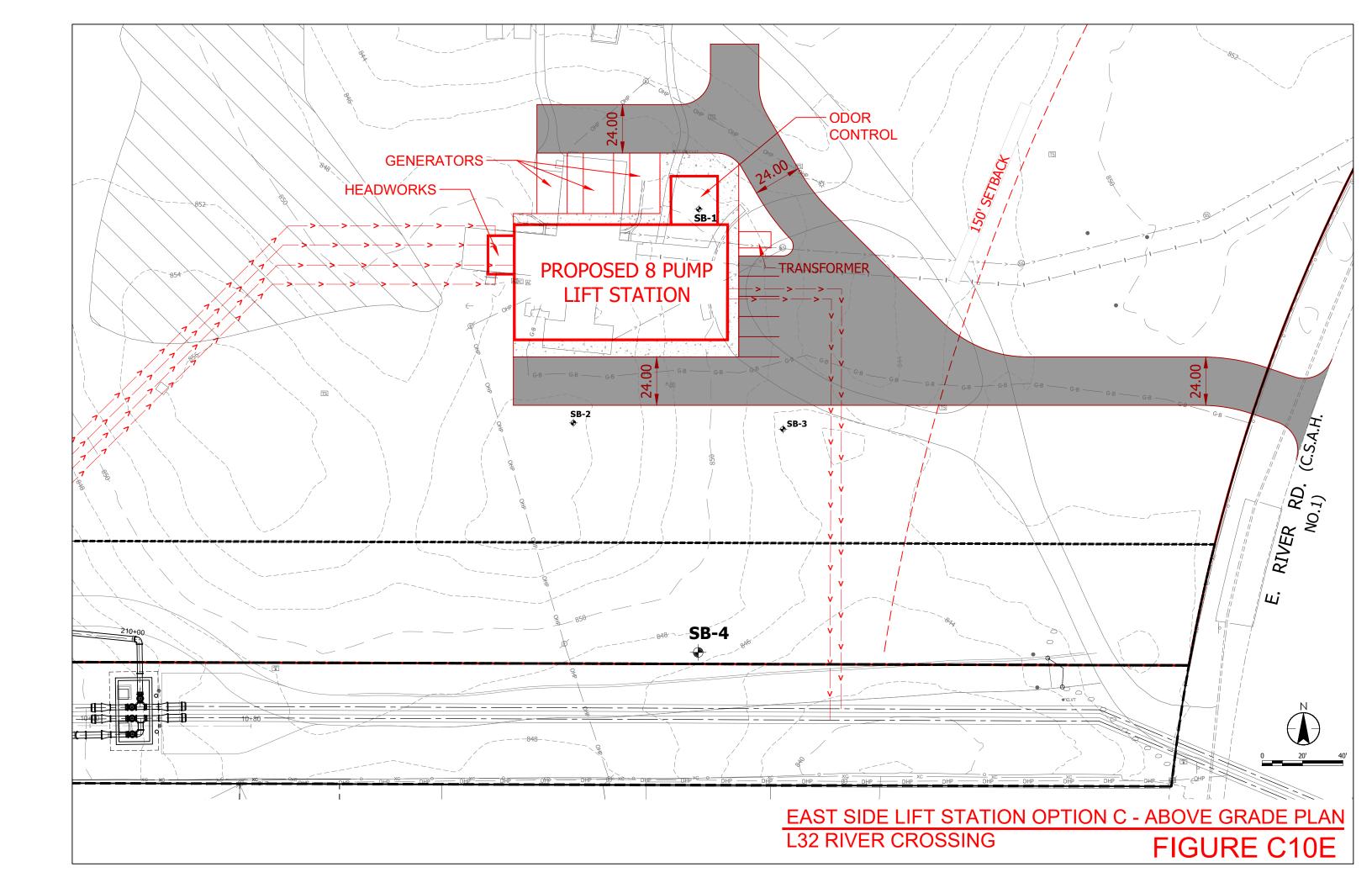
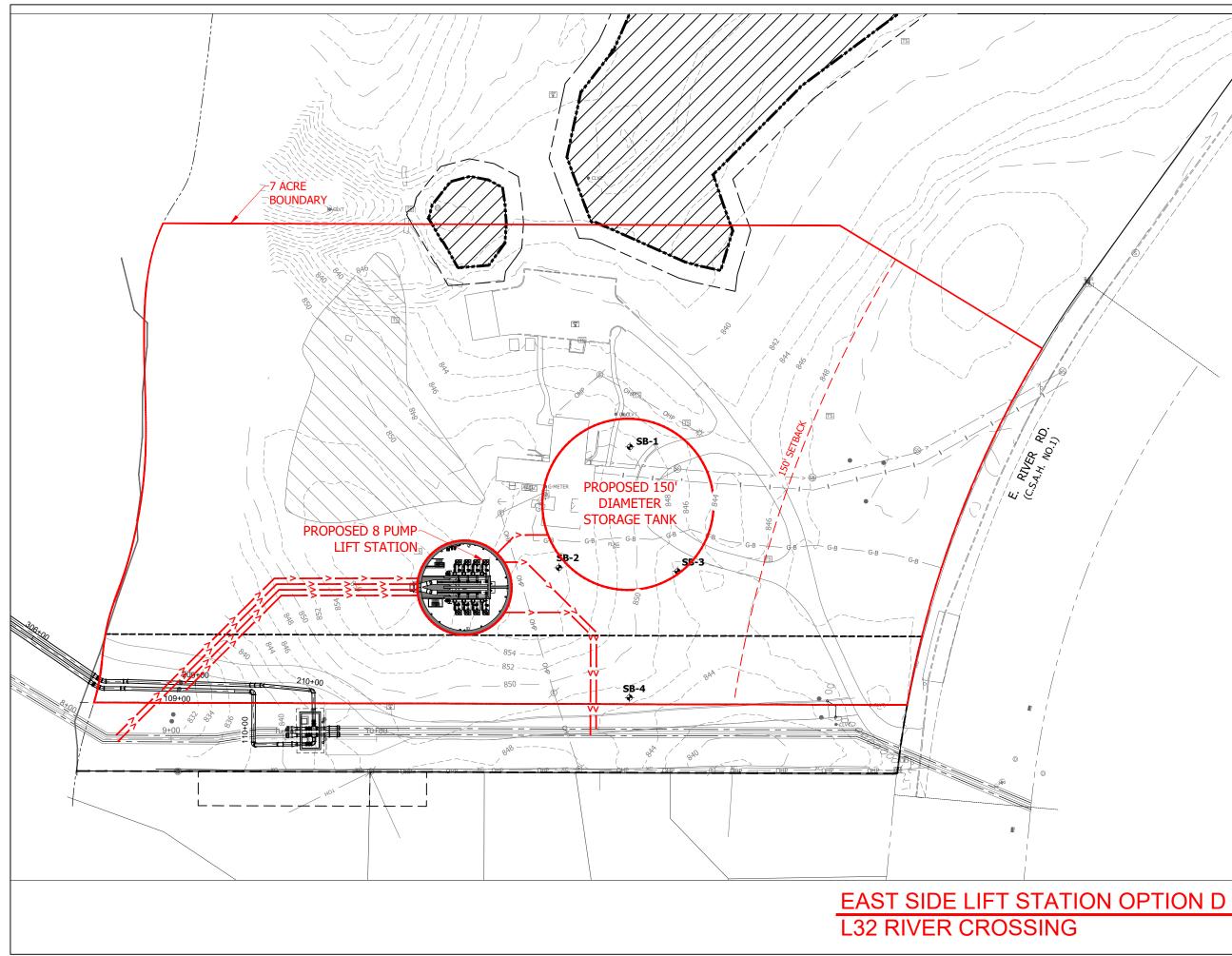
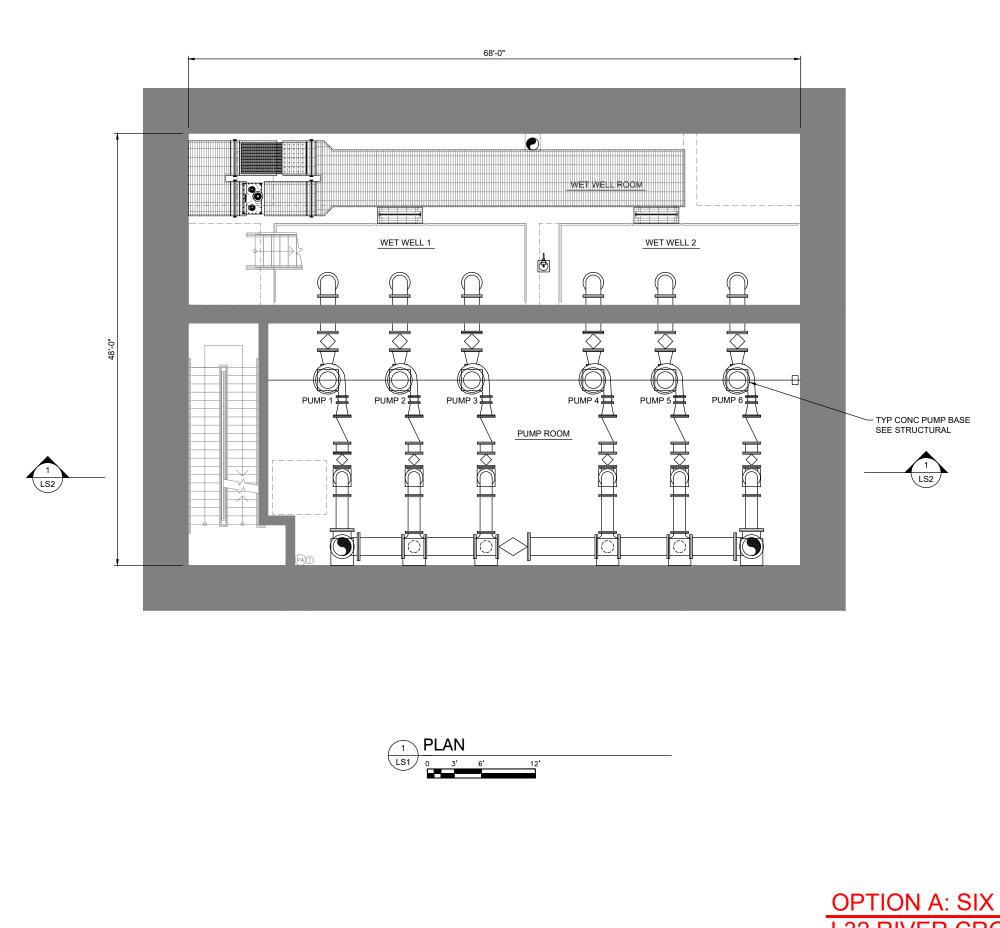
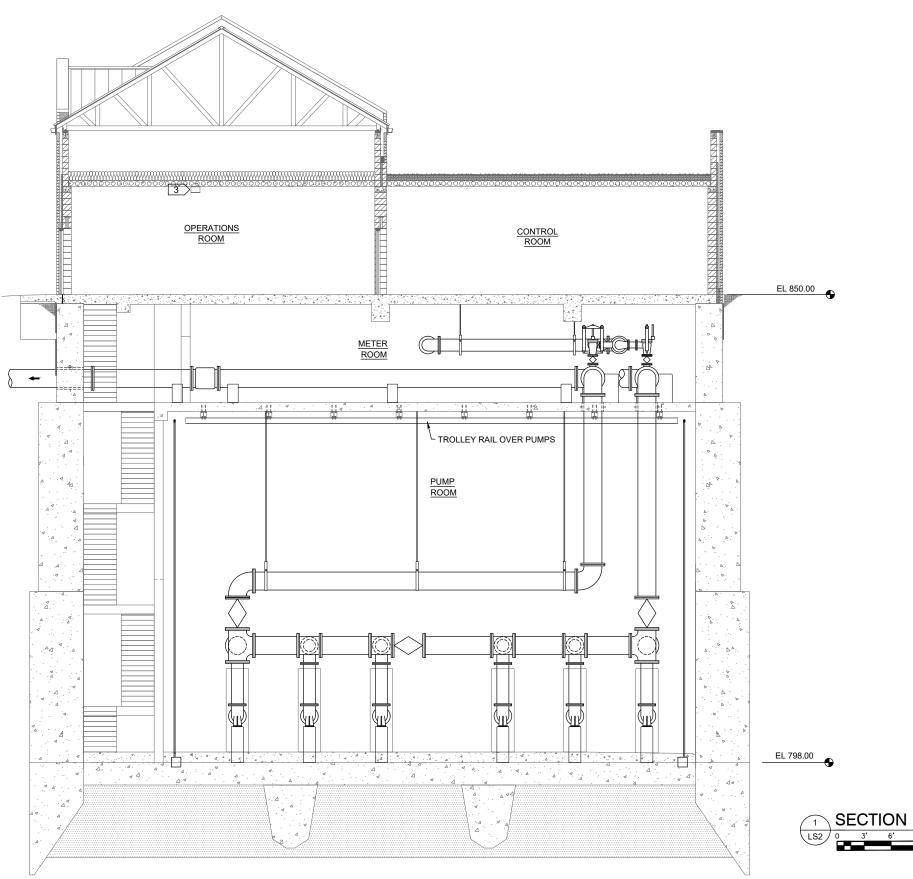
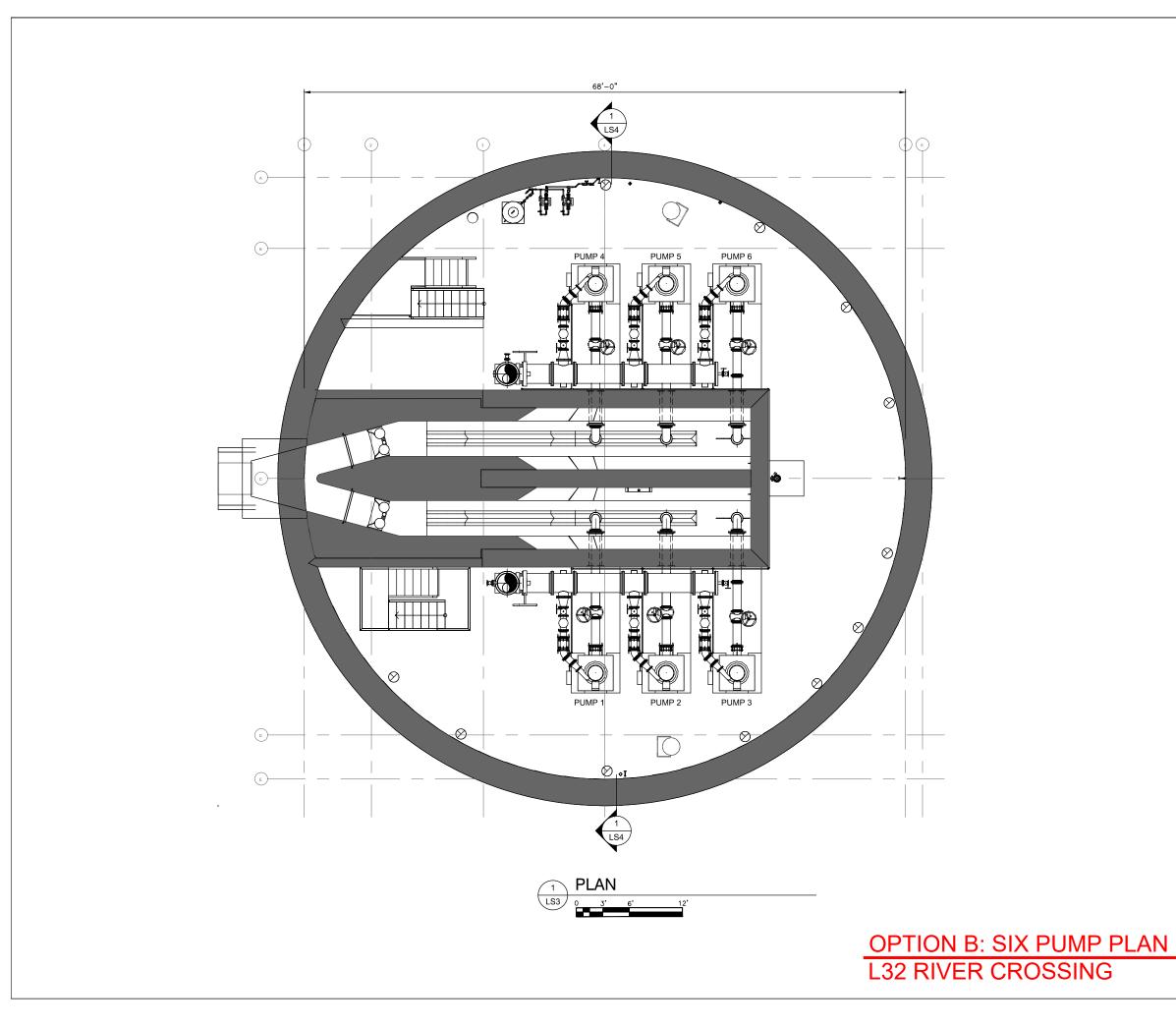





FIGURE C10D




OPTION A: SIX PUMP PLAN L32 RIVER CROSSING

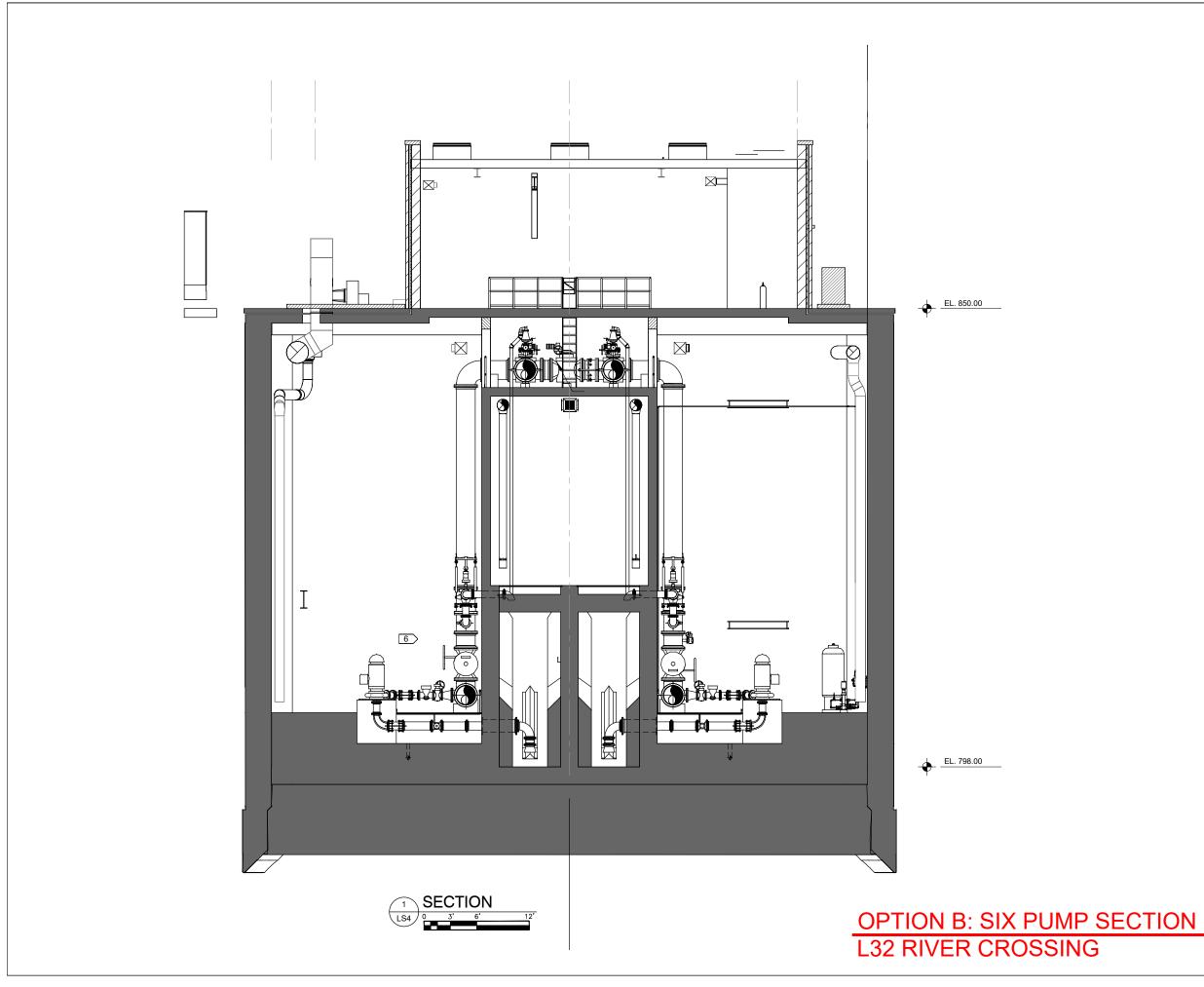
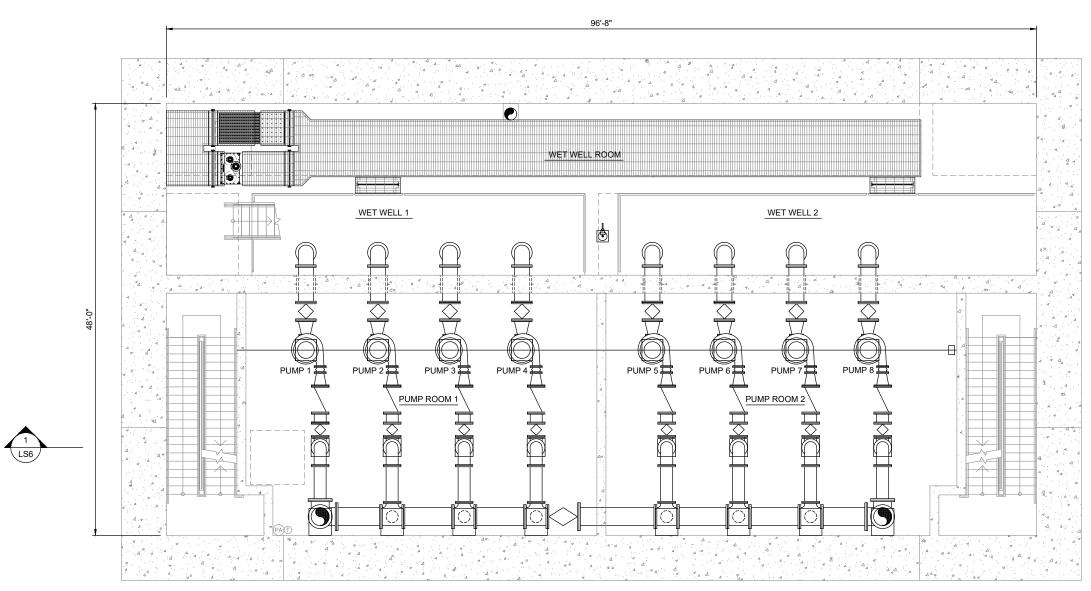
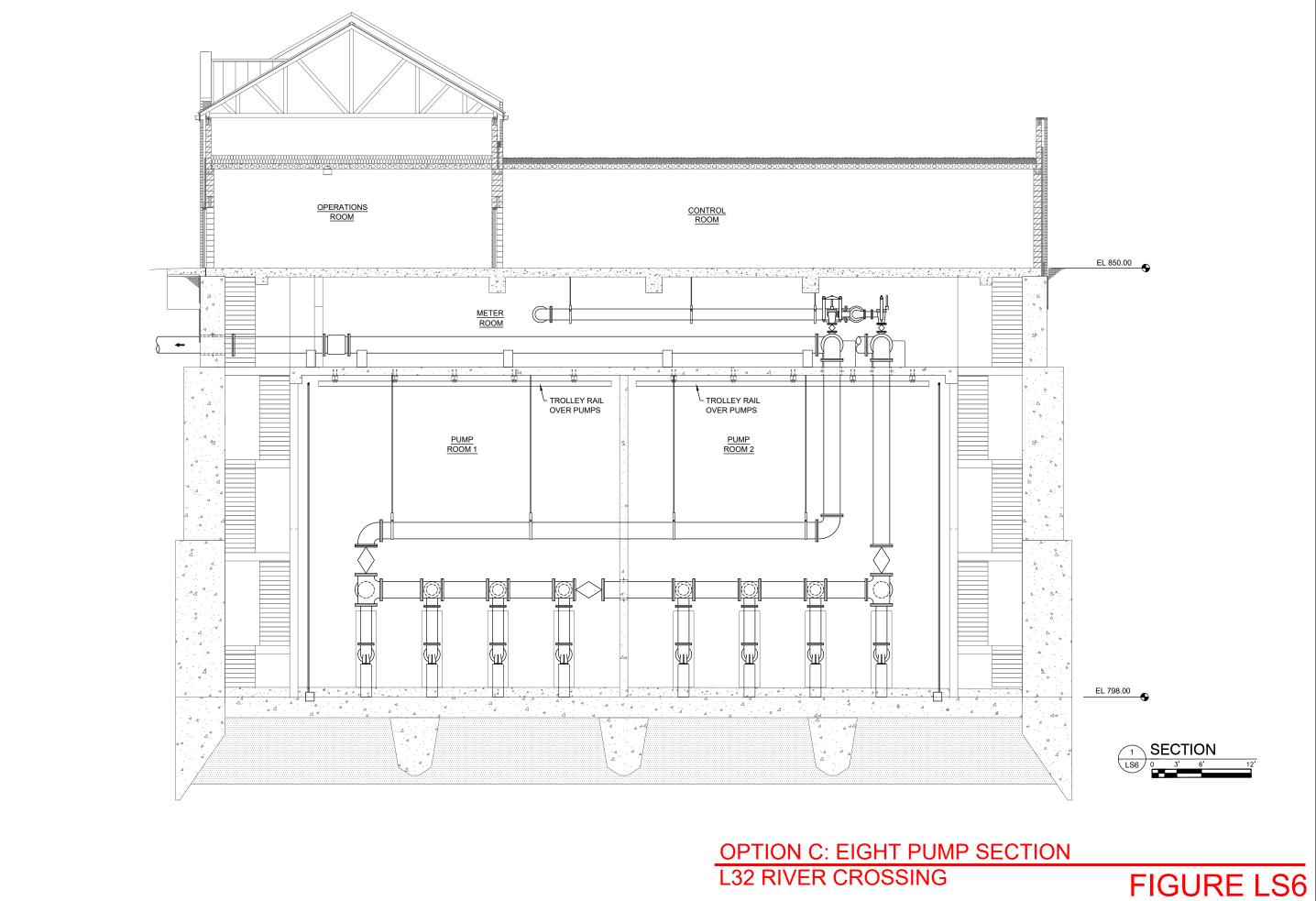
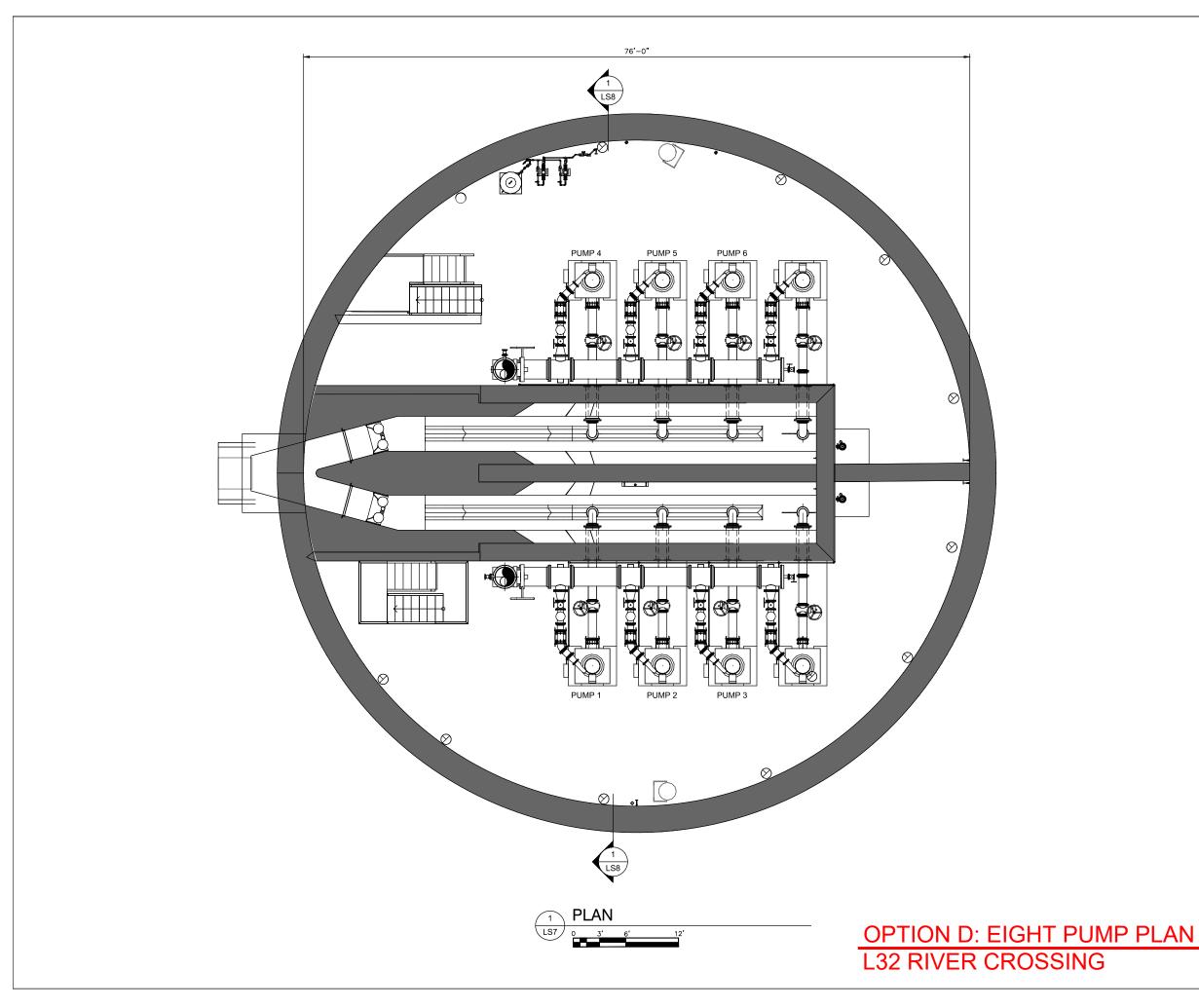
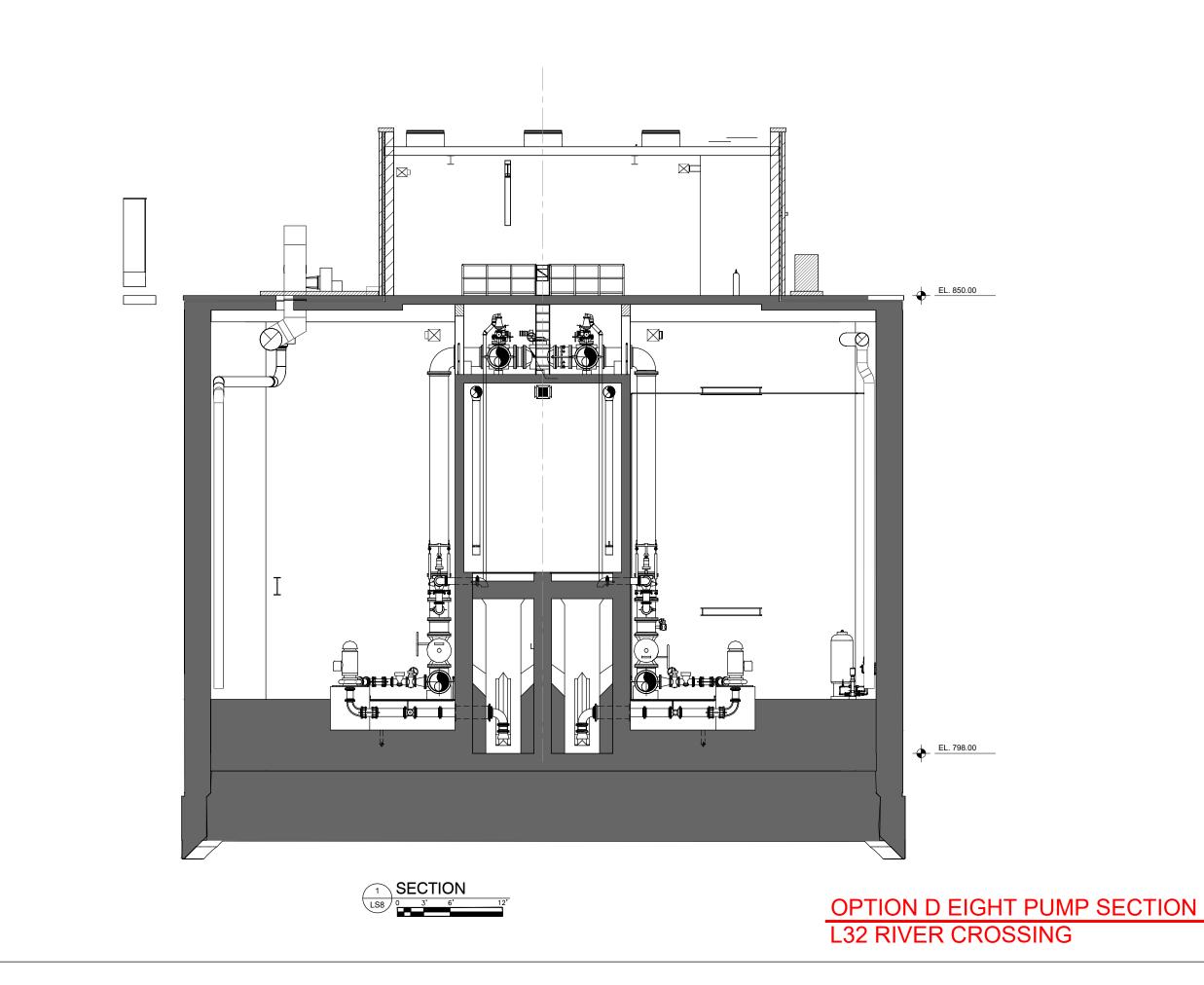


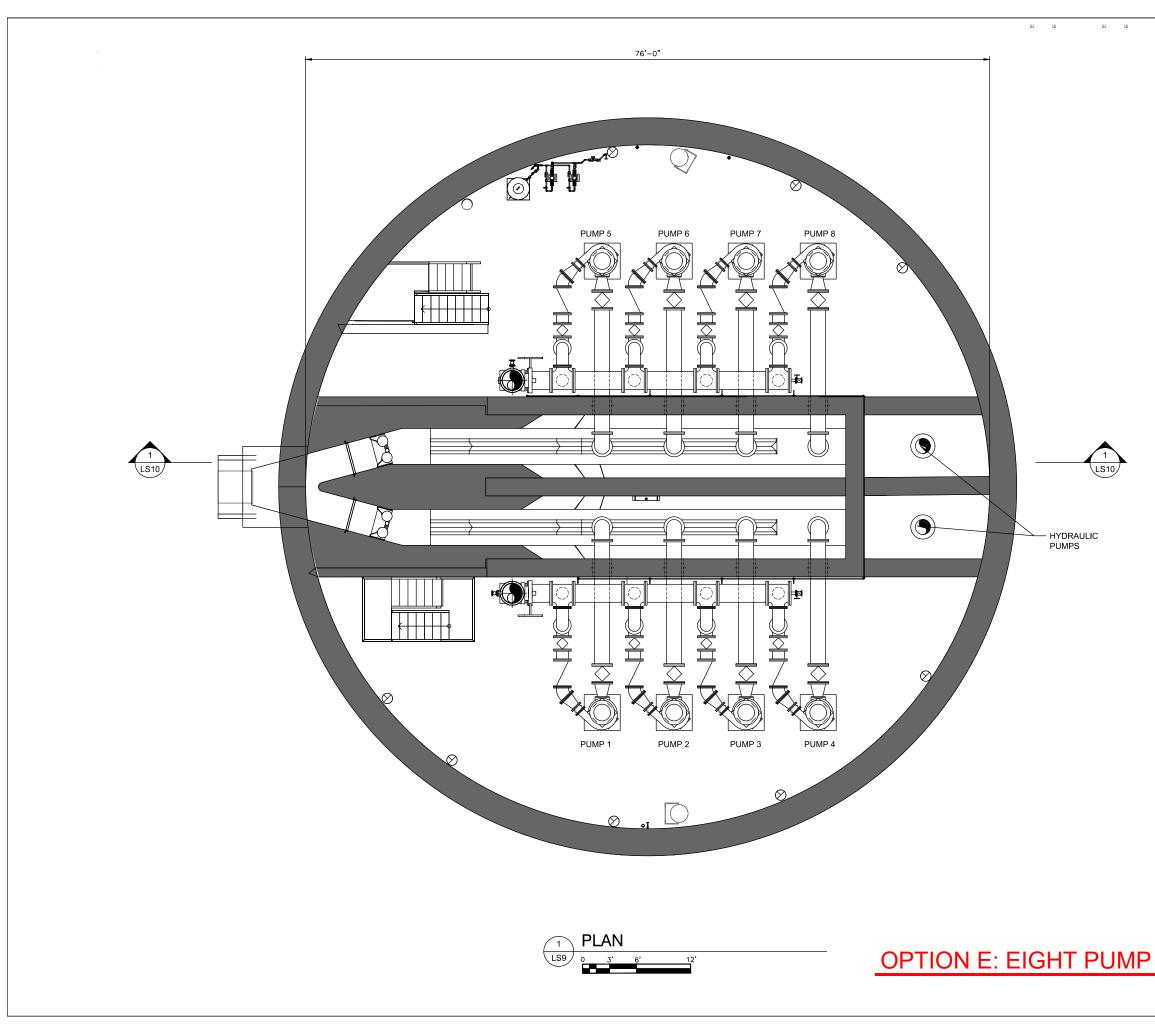
FIGURE LS2

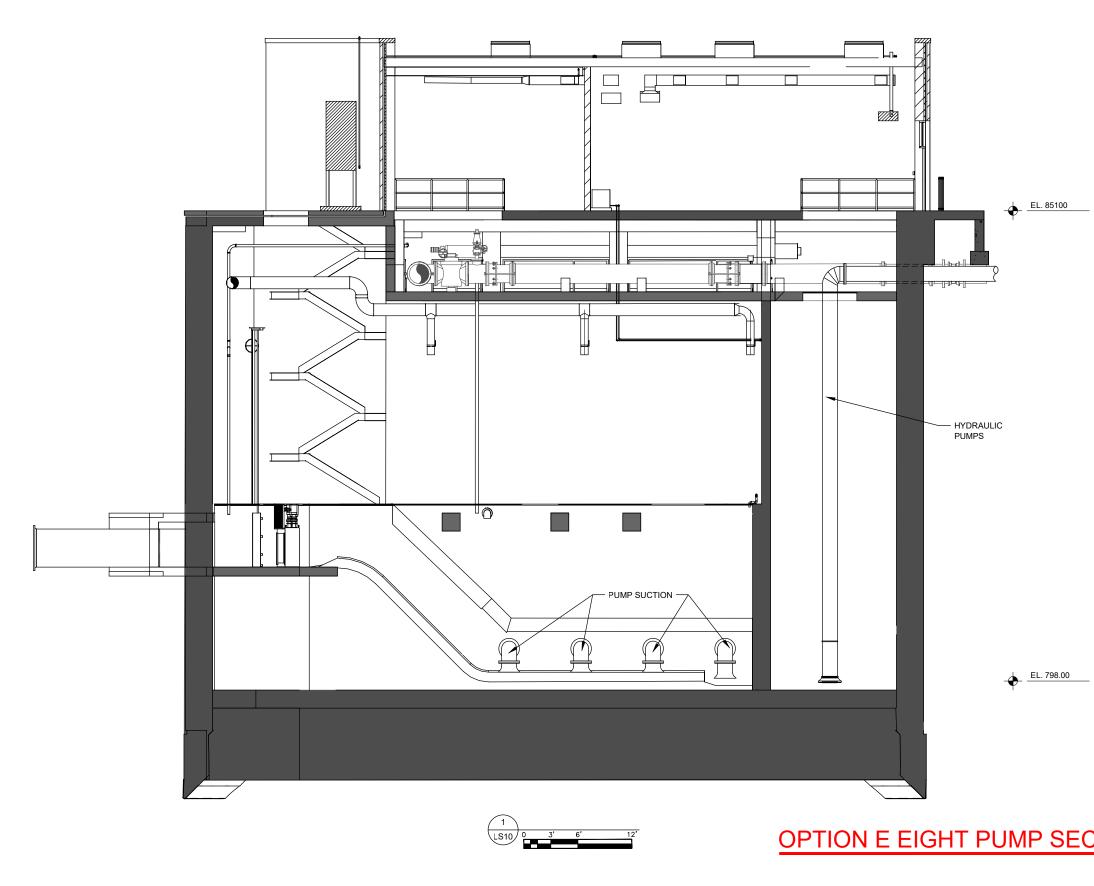


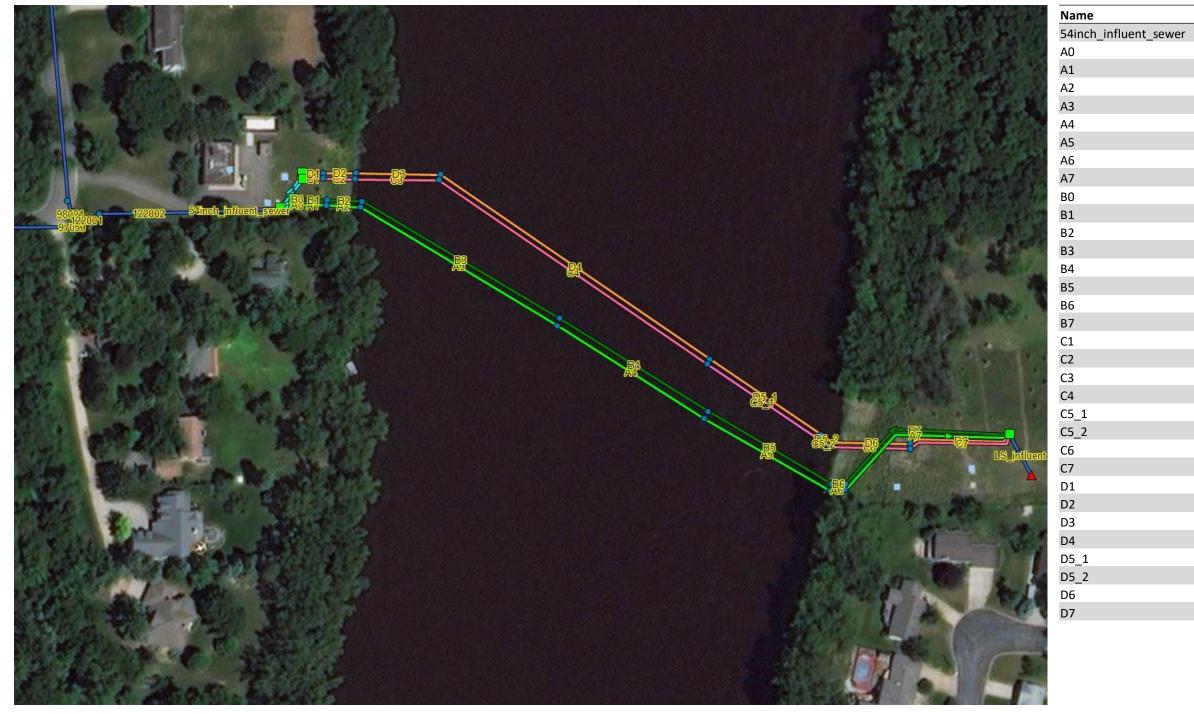



OPTION C: EIGHT PUMP PLAN L32 RIVER CROSSING








OPTION E: EIGHT PUMP PLAN W/ (2) HYDRAULIC PUMPS FIGURE LS9

L

OPTION E EIGHT PUMP SECTION W/ (2) HYDRAULIC PUMPS FIGURE LS10

APPENDIX B – SIPHON ANALYSIS MAX FLOW FIGURES

Client/Project Metropolitan Council Environmental Services Lift Station L-32 Siphon Retrofit

Figure Title
0 Mod

Stantec

Date: April 30, 2020

	A . I . A .	~	
Inlet Node	Outlet Node	Size	Length (ft)
1220020	INLET_0	54in	98.8
INLET_A	A-00	30in	9.0
A-00	A-01	30in	30.9
A-01	A-02	30in	42.6
A-02	A-03	30in	282.0
A-03	A-04	30in	213.6
A-04	A-05	30in	177.7
A-05	A-06	30in	18.7
A-06	Wetwell	30in	233.1
INLET_B	B-00	30in	9.4
B-00	B-01	30in	31.5
B-01	B-02	30in	43.8
B-02	B-03	30in	282.0
B-03	B-04	30in	214.9
B-04	B-05	30in	175.3
B-05	B-06	30in	17.2
B-06	Wetwell	30in	232.2
INLET_C	C-01	42in	25.4
C-01	C-02	42in	38.8
C-02	C-03	42in	103.2
C-03	C-04	42in	400.1
C-04	J-02	42in	166.0
J-02	C-05	36in	14.8
C-05	C-06	36in	98.8
C-06	Wetwell	36in	133.3
INLET_D	D-01	42in	26.0
D-01	D-02	42in	39.5
D-02	D-03	42in	104.9
D-03	D-04	42in	400.6
D-04	J-01	42in	165.0
J-01	D-05	36in	16.6
D-05	D-06	36in	95.8
D-06	Wetwell	36in	128.0

Option	1A	1B	2	3	4	5
Barrel A	30	30	24	30	30	
Barrel B	30	30	30	30	30	
Barrel C				30		42
Barrel D	42	42	42	30	30	42
Capacity*	76 MGD	76 MGD	68 MGD	75 MGD	57 MGD	74 MGD

Yellow Highlight indicates Primary Barrel

	Flows (MGD)							
Option	1A	1B	2	3	4	5		
Barrel A	14.6	18.7	11.2	19.0	20.8	0.0		
Barrel B	18.5	16.0	19.5	19.4	21.1	0.0		
Barrel C	0.0	0.0	0.0	10.4	0.0	32.6		
Barrel D	34.5	33.0	36.5	18.8	21.2	35.1		
Total	67.6	67.6	67.2	67.6	63.1	67.6		

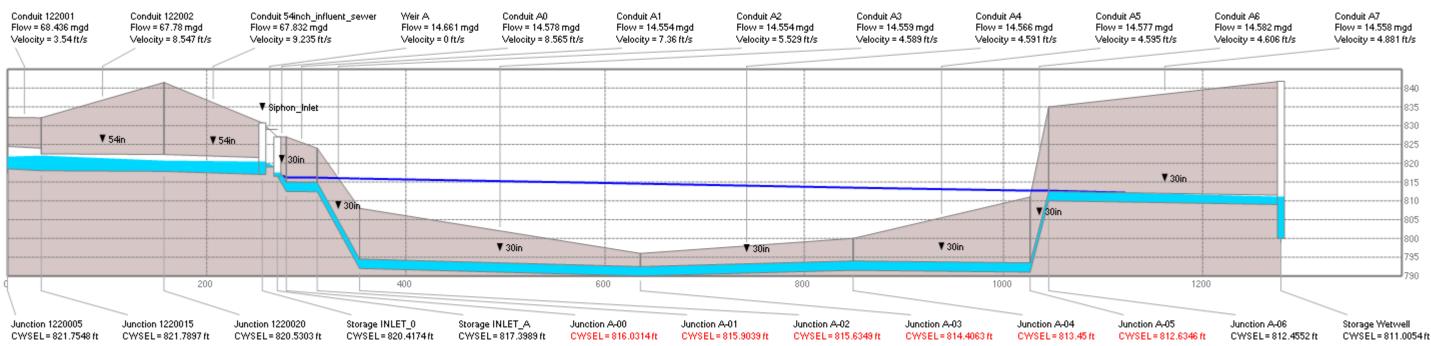
Velocity (fts)

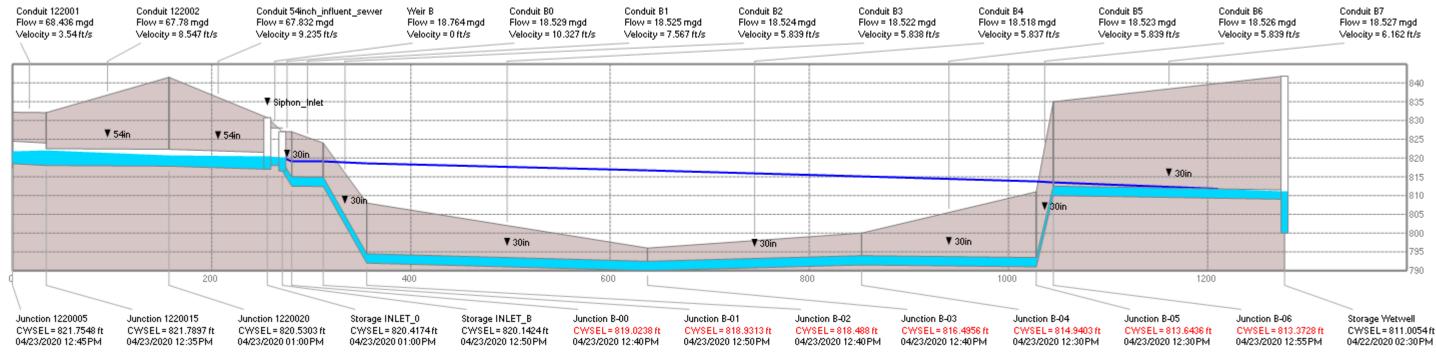
Option	1A	1B	2	3	4	5
Barrel A	4.6	5.9	5.5	6.0	6.6	0.0
Barrel B	5.8	5.0	6.1	6.1	6.6	0.0
Barrel C	0.0	0.0	0.0	3.3	0.0	5.2
Barrel D	5.6	5.3	5.9	5.9	6.7	5.6

Date: April 30, 2020

* Capacity based on max flow in upstream 54" Sewer before surcharging occurs

Client/Project Lift Station L-32 Siphon Retrofit


Figure


1

Metropolitan Council Environmental Services

Configuration Summary

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	2	62	5.8
Barrel B	30	1	37	5.4
Barrel C	42	Closed	0	0.0
Barrel D	42	0	18	5.2

Sufficient Capacity for 67 MGD

Velocity for Barrel A meets minimum only > 60 MGD

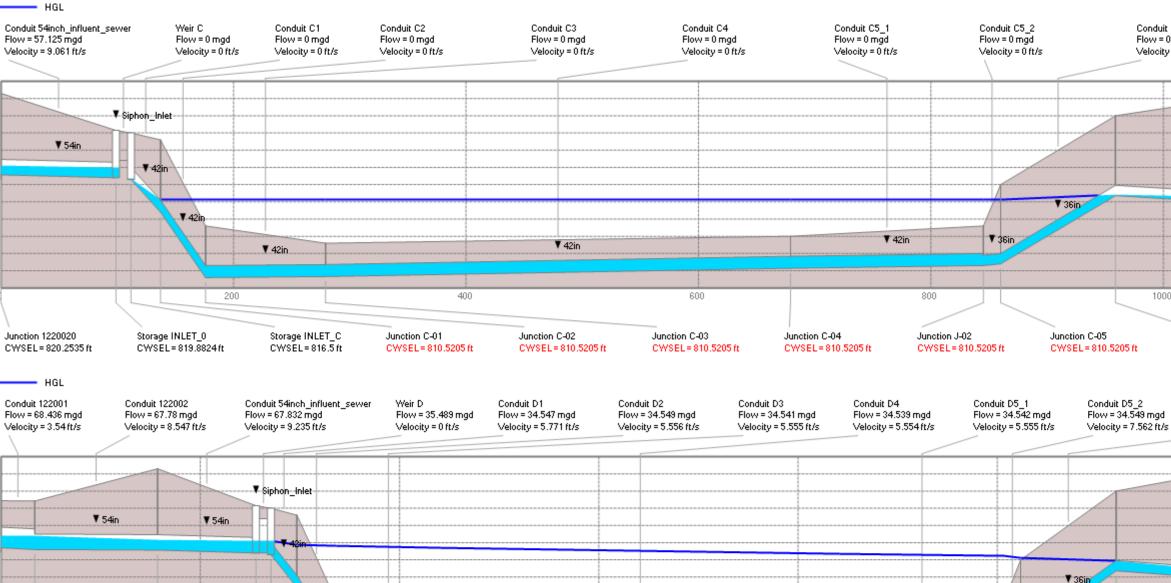

Client/Project	
Metropolitan Cou Lift Station L-32 Sig	

Figure Title 2

Peak values

Incil Environmental Services phon Retrofit

Hydraulic Gradeline Profile – Option 1A Barrels A & B

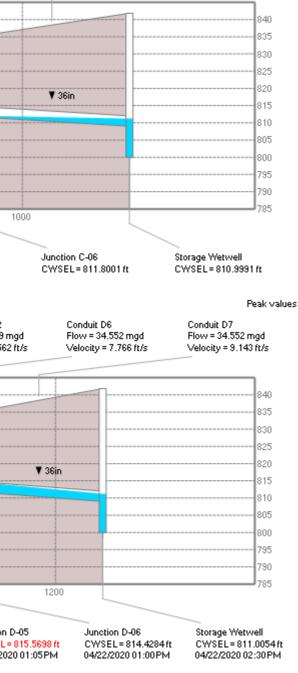
											/
				13:-						▼ 36in	
				▼ 42in		▼ 42ir			▼ 42in	▼ 36in	
ſ		200		400		600		800	1	1000	
Ĵ	unction 1220005	Junction 1220015	Junction 1220020	Storage INLET_0	Storage INLET_D	Junction D-01	Junction D-02	Junction D-03	Junction D-04	Junction J-01	Junction D
	WSEL = 821.7548 ft	CWSEL= 821.7897 ft	CWSEL = 820.5303 ft	CWSEL=820.4174 ft	CWSEL = 820.2629 ft	CWSEL=819.2071 ft	CWSEL=818.9142 ft	CWSEL=818.377 ft	CWSEL=816.7274ft	CWSEL=815.9635.ft	CWSEL=
0	14/23/2020 12:45PM	04/23/2020 12:35PM	04/23/2020 01:00 PM	04/23/2020 01:00PM	04/23/2020 12:50PM	04/23/2020 12:50PM	04/23/2020 01:00PM	04/23/2020 12:40PM	04/23/2020 12:40PM	04/23/2020 12:30PM	04/23/202

Stantec

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	2	62	5.8
Barrel B	30	1	37	5.4
Barrel C	42	Closed	0	0.0
Barrel D	42	0	18	5.2

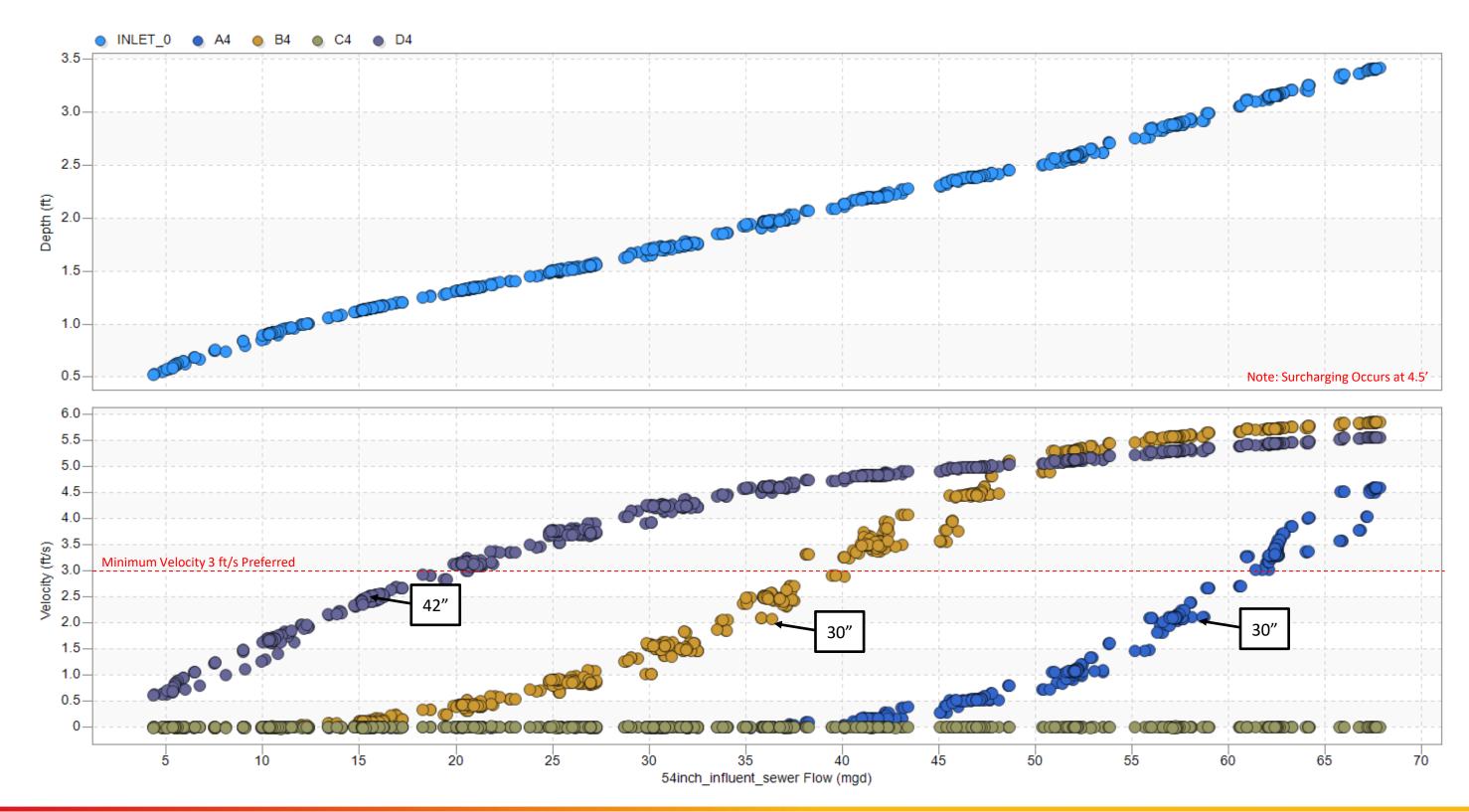
Sufficient Capacity for 67 MGD

Velocity for Barrel A meets minimum only > 60 MGD


Figure Title

3

Date: April 30, 2020



Conduit C7 Flow = 0 mgd Velocity = 0 ft/s

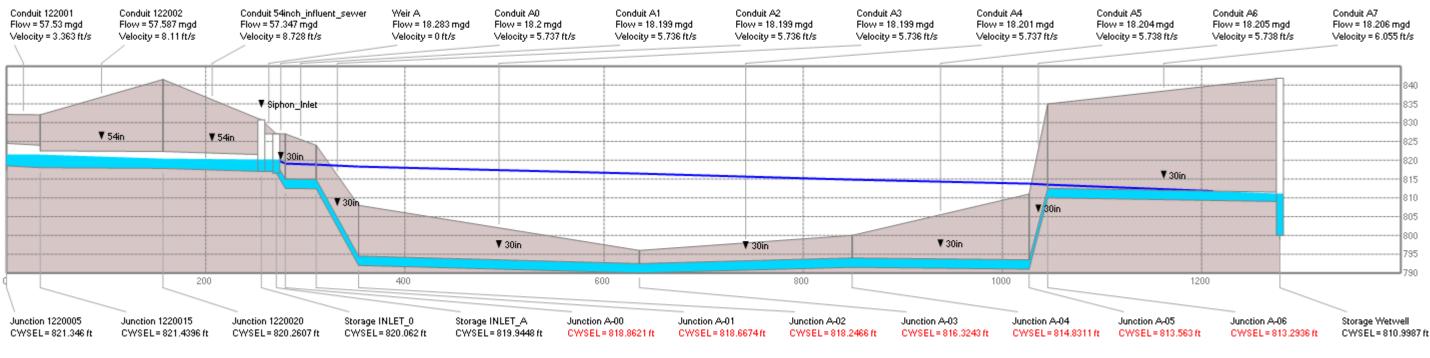
ncil Environmental Services ohon Retrofit

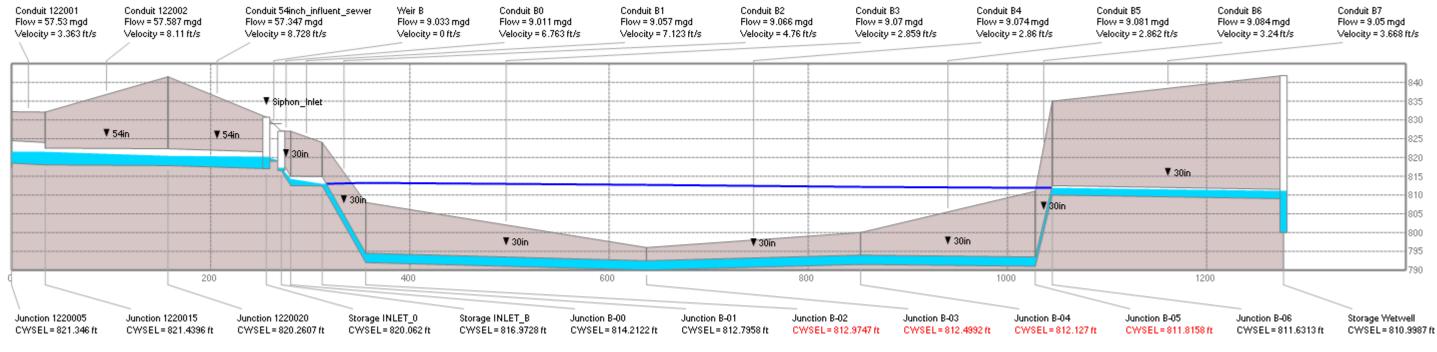
Hydraulic Gradeline Profile – Option 1A Barrels C & D

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	2	62	5.8
Barrel B	30	1	37	5.4
Barrel C	42	Closed	0	0.0
Barrel D	42	0	18	5.2

Sufficient Capacity for 67 MGD


Velocity for Barrel A meets minimum only > 60 MGD


Figure Title 4 Siph

uncil Environmental Services ohon Retrofit

Siphon Velocity Curve – Option 1A

Stantec	
----------------	--

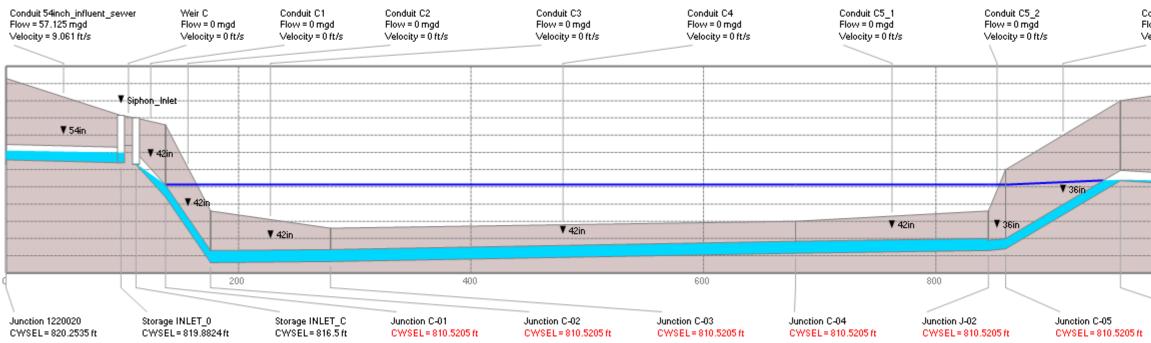
Date: April 30, 2020

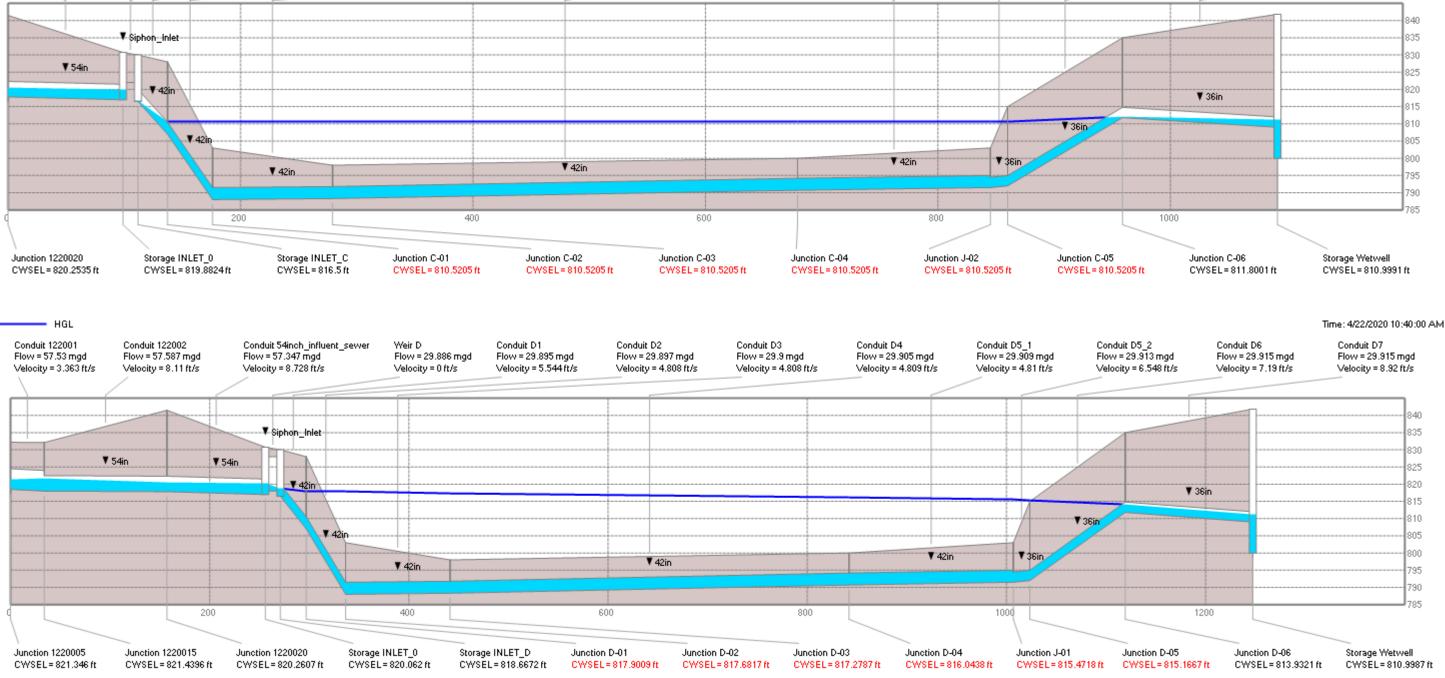
Option	Diameter	Weir Height	Q (MGD) @ 3ft/s	V (ft/s) @ 67 MGD
Barrel A	30	0	10	5.9
Barrel B	30	2	58	5.0
Barrel C	42	Closed	0	0.0
Barrel D	42	1	38	5.3

Sufficient Capacity for 67 MGD

Velocity for Barrel B meets minimum only > 58 MGD

Figure Title 5




Time: 4/22/2020 10:40:00 AM

Incil Environmental Services phon Retrofit

Hydraulic Gradeline Profile – Option 1B Barrels A & B

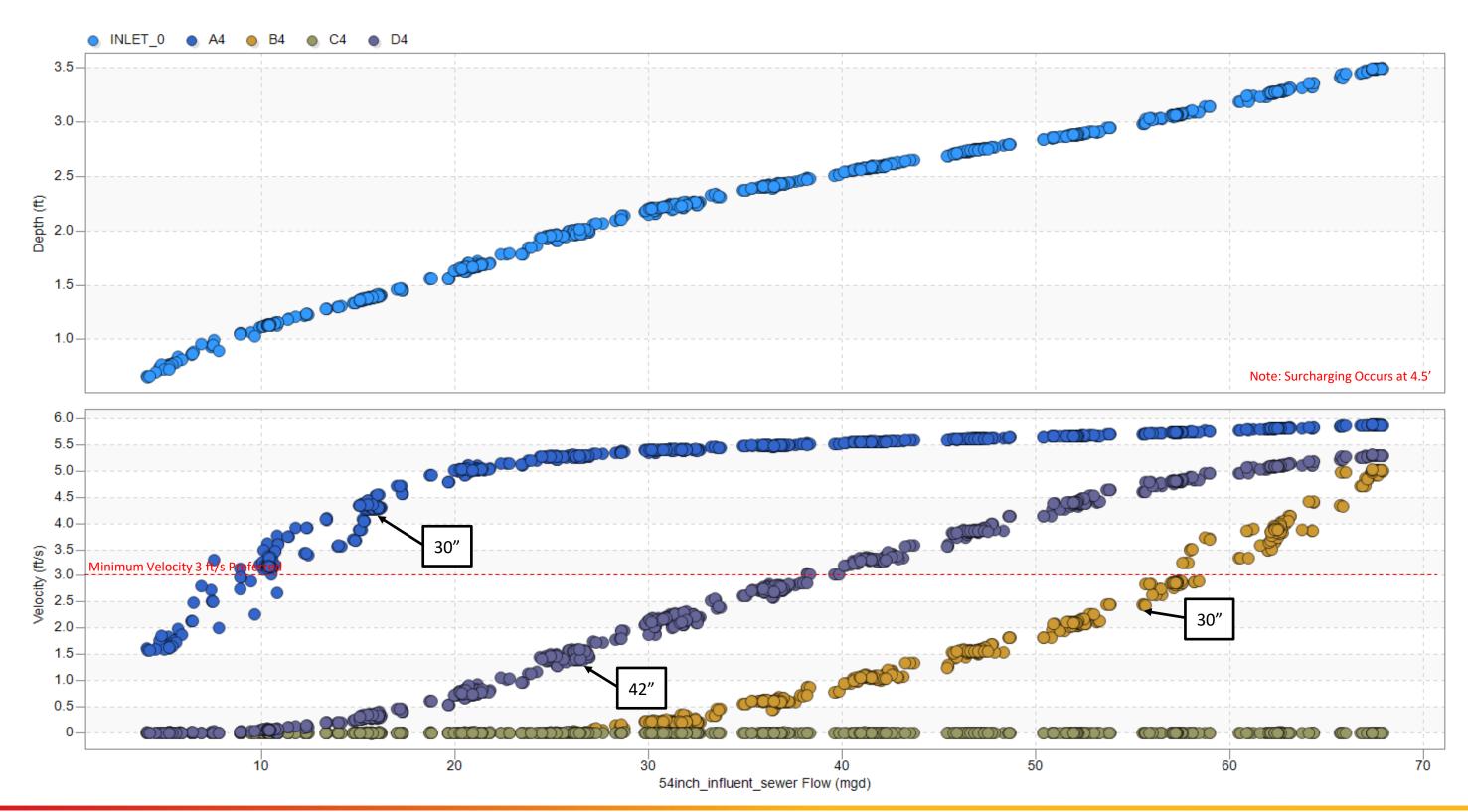
Date: April 30, 2020

Option	Diameter	Weir Height	Q (MGD) @ 3ft/s	V (ft/s) @ 67 MGD
Barrel A	30	0	10	5.9
Barrel B	30	2	58	5.0
Barrel C	42	Closed	0	0.0
Barrel D	42	1	38	5.3

Sufficient Capacity for 67 MGD

Velocity for Barrel B meets minimum only > 58 MGD

Client/Project
Metropolitan Cou
Lift Station L-32 Sip


Figure Title 6

Conduit C7 Flow = 0 mgd Velocity = 0 ft/s

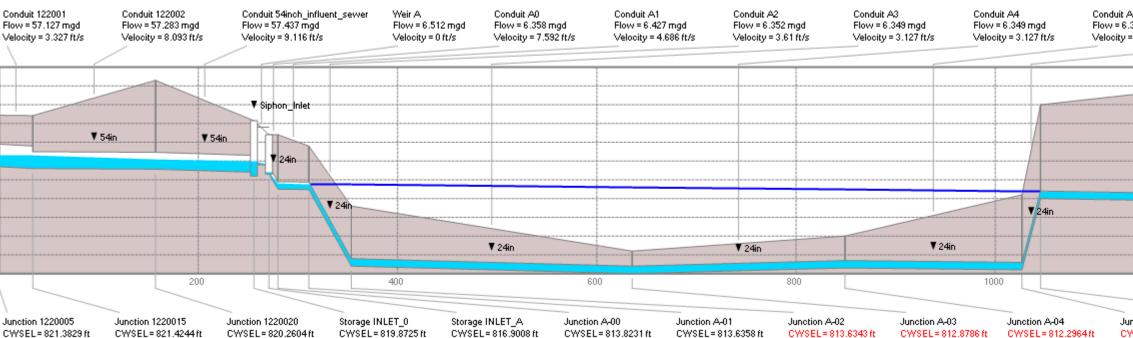
incil Environmental Services phon Retrofit

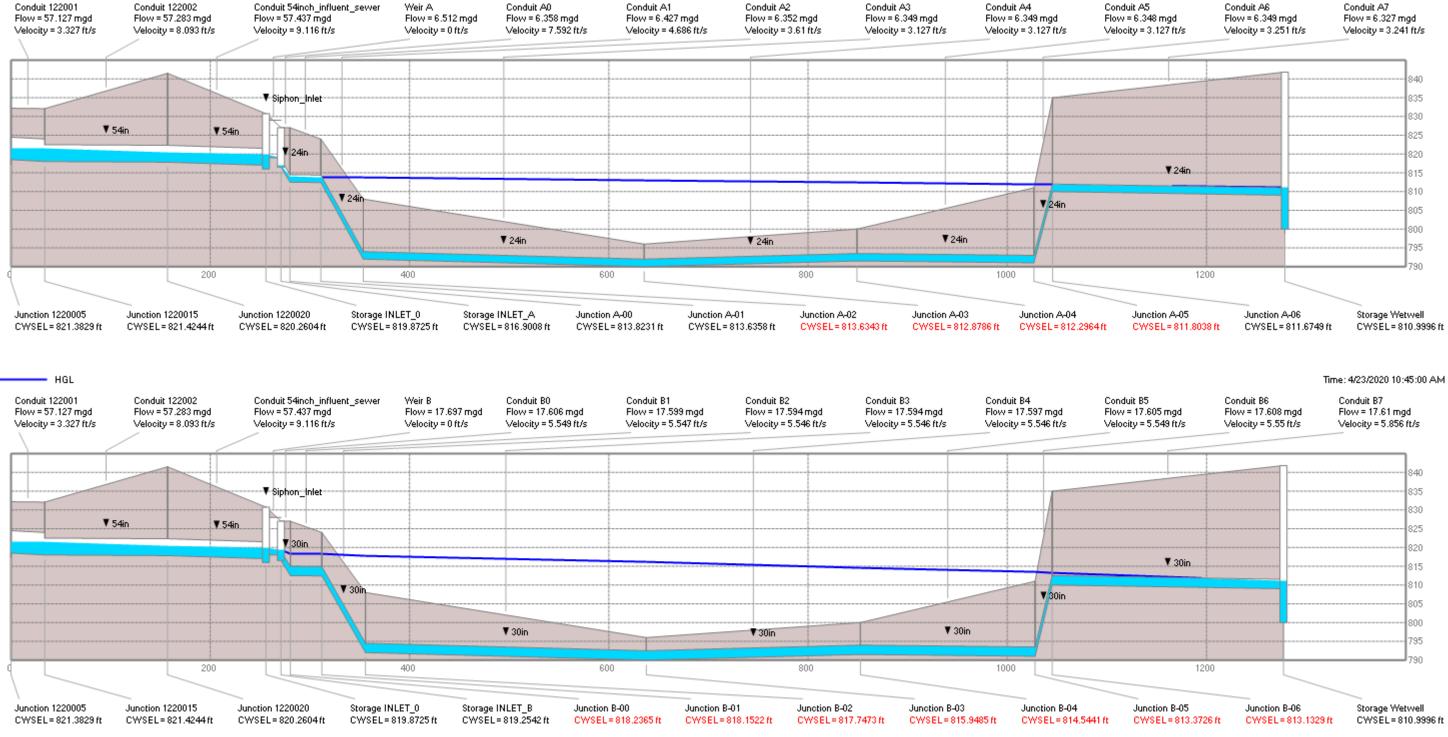
Hydraulic Gradeline Profile – Option 2 Barrels C & D

Option	Diameter	Weir Height	Q (MGD) @ 3ft/s	V (ft/s) @ 67 MGD
Barrel A	30	0	10	5.9
Barrel B	30	2	58	5.0
Barrel C	42	Closed	0	0.0
Barrel D	42	1	38	5.3

Sufficient Capacity for 67 MGD

Velocity for Barrel B meets minimum only > 58 MGD


Client/Project
Metropolitan Cour
Lift Station L-32 Sip


Figure Title **7** Siph

Date: April 30, 2020

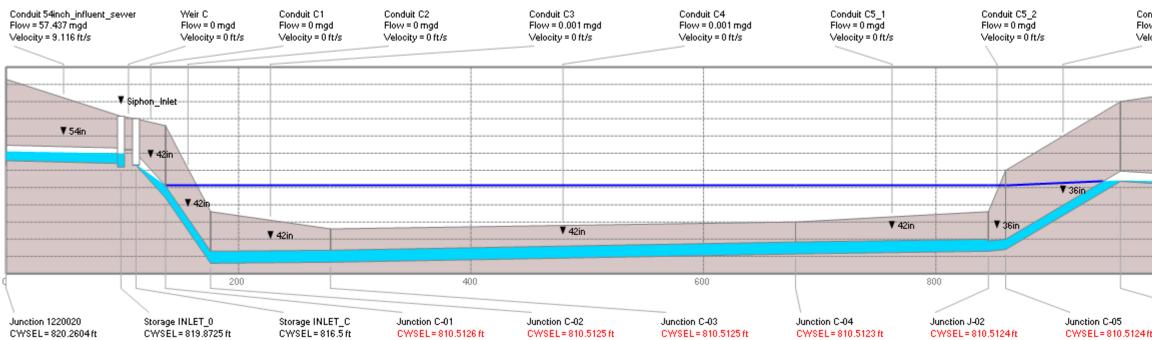
uncil Environmental Services ohon Retrofit

Siphon Velocity Curve – Option 1B

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	24	2	57	5.5
Barrel B	30	1	37	6.1
Barrel C	42	Closed	0	0.0
Barrel D	42	0	18	5.9

Sufficient Capacity for 67 MGD


Velocity for Barrel A meets minimum only > 57 MGD

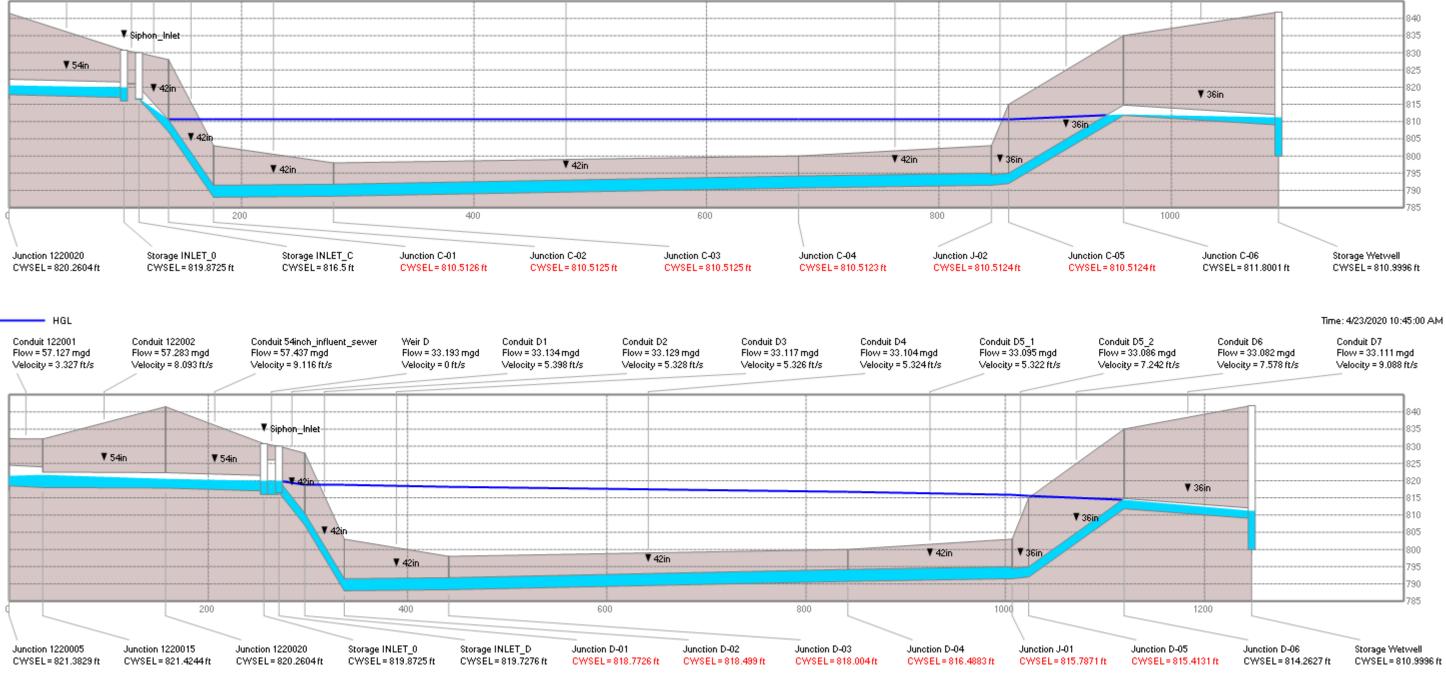

Client/Project
Metropolitan Cour
Lift Station L-32 Sip

Figure Title 8 Hydraulic Gradeline Profile – Option 2 Barrels A & B

Incil Environmental Services phon Retrofit

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	24	2	57	5.5
Barrel B	30	1	37	6.1
Barrel C	42	Closed	0	0.0
Barrel D	42	0	18	5.9

Sufficient Capacity for 67 MGD

Velocity for Barrel A meets minimum only > 57 MGD

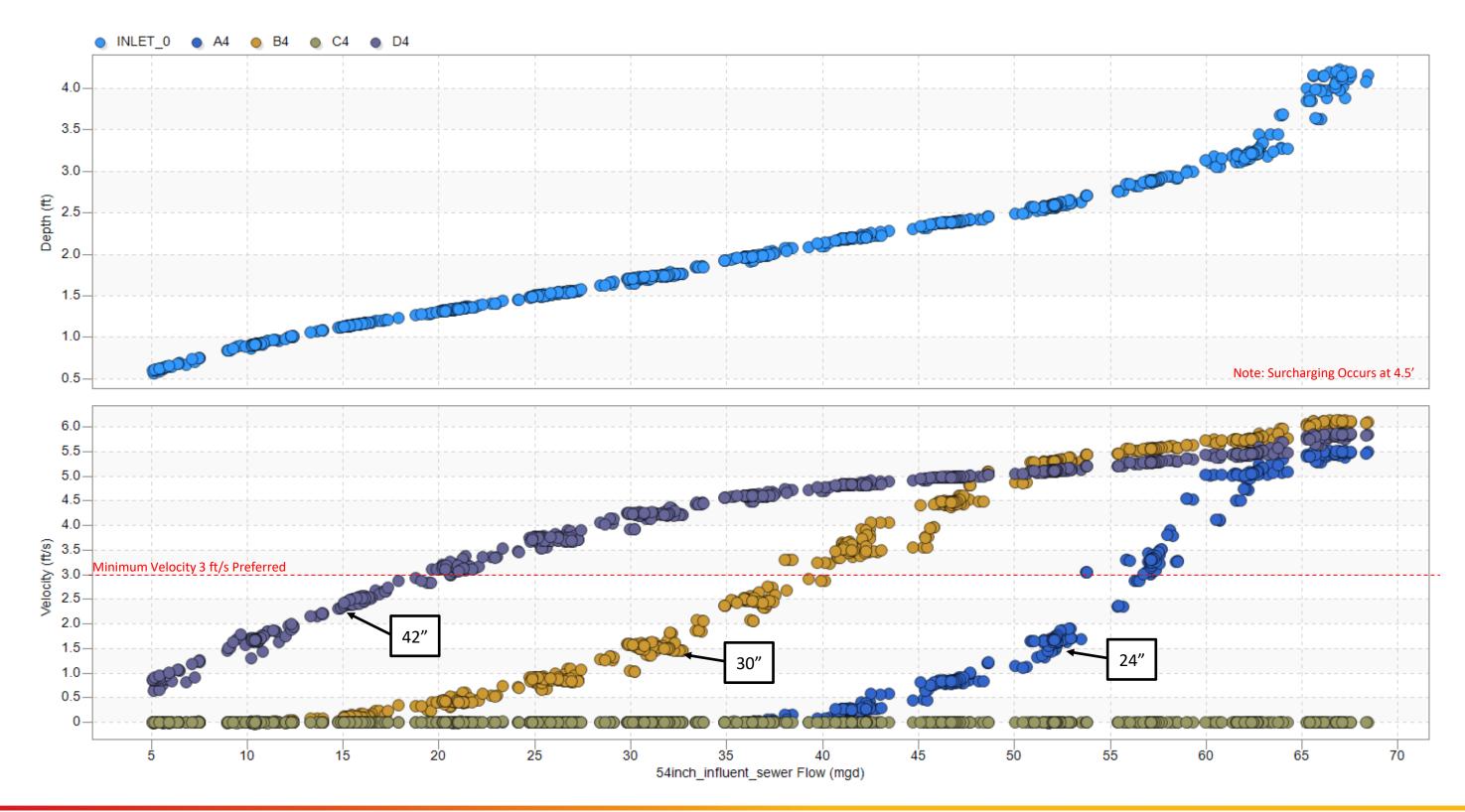

Client/Project
Metropolitan Cour
Lift Station L-32 Sip

Figure Title 9 Hydraulic Gradeline Profile – Option 2 Barrels C & D

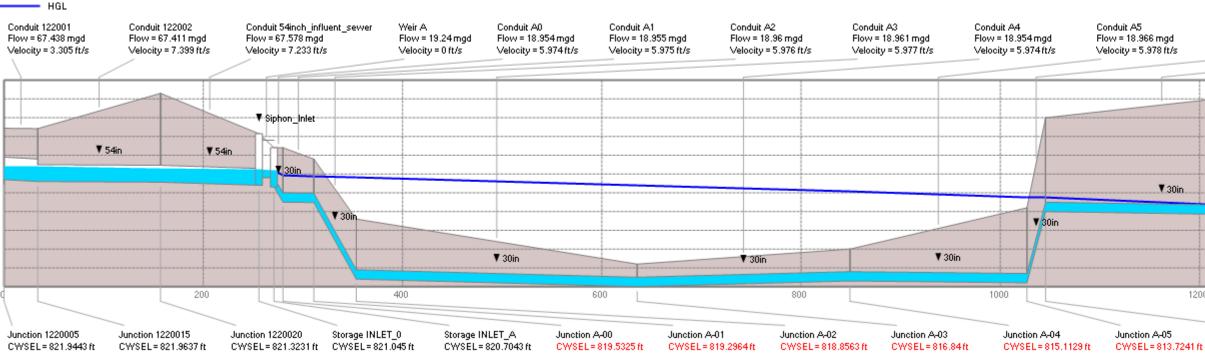
Conduit C7 Flow = 0 mgd Velocity = 0 ft/s

Incil Environmental Services phon Retrofit

Stantec

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	24	2	57	5.5
Barrel B	30	1	37	6.1
Barrel C	42	Closed	0	0.0
Barrel D	42	0	18	5.9


Sufficient Capacity for 67 MGD

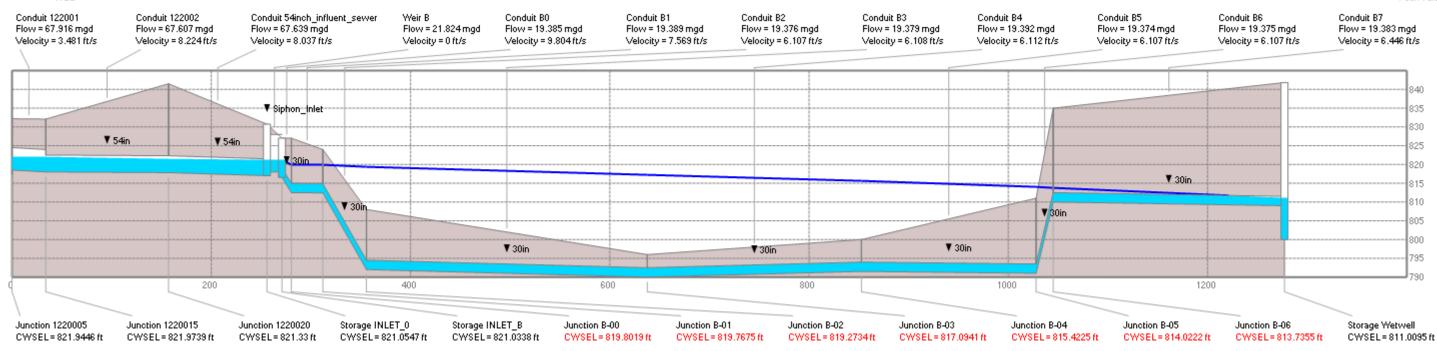

Velocity for Barrel A meets minimum only > 57 MGD

Figure Title **10 Sipt**

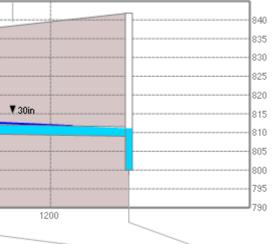
uncil Environmental Services ohon Retrofit

Siphon Velocity Curve – Option 2

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	2	46	6.0
Barrel B	30	1	25	6.1
Barrel C	30	3	65	3.3
Barrel D	30	0	10	5.9

Sufficient Capacity for 67 MGD


Velocity for Barrel C meets minimum only > 65 MGD

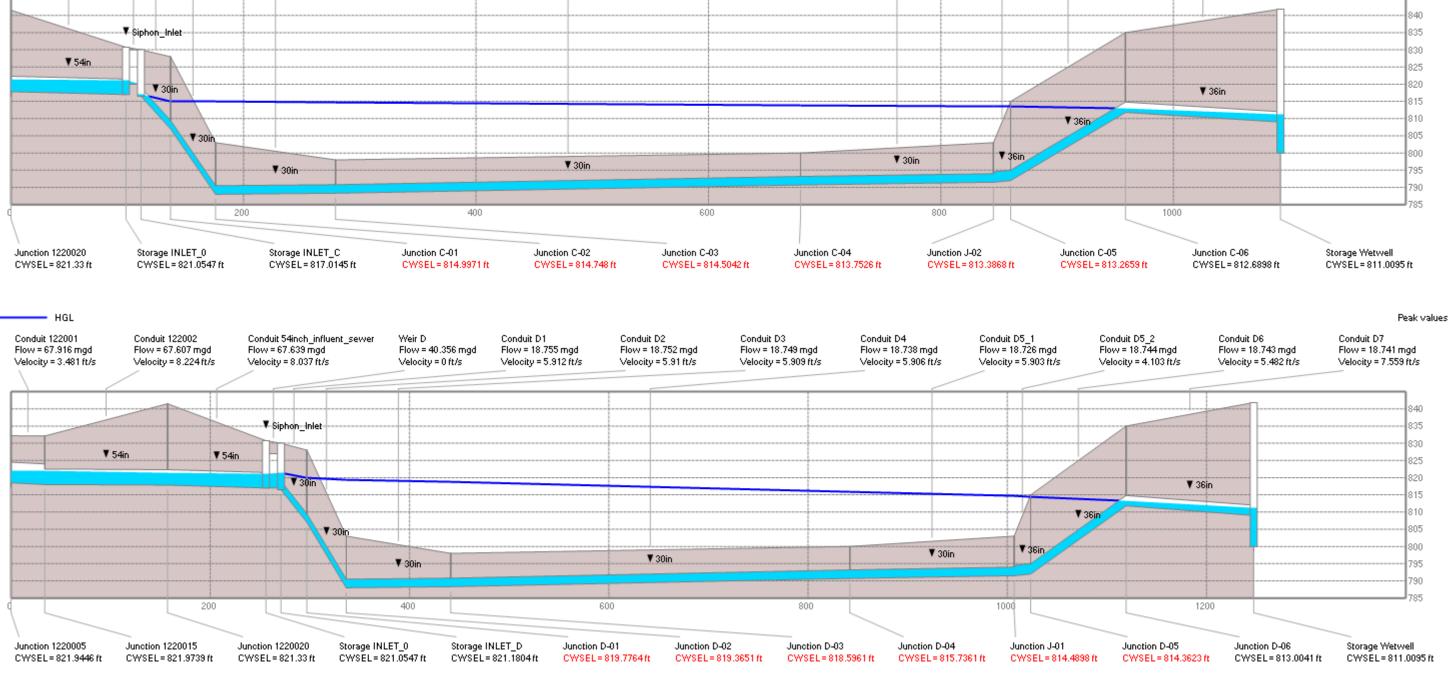
Client/Project Lift Station L-32 Siphon Retrofit

Figure Title 11

Conduit A6 Flow = 18.972 mgd Velocity = 5.98 ft/s

Conduit A7 Flow = 18.96 mgd Velocity = 6.308 ft/s

Junction A-06 CWSEL=813.5813.ft


Storage Wetwell CWSEL = 810.9969 ft

Peak values

Metropolitan Council Environmental Services

Hydraulic Gradeline Profile – Option 3 Barrels A & B

Conduit 54inch_influent_sewer Flow = 67.639 mgd Velocity = 8.037 ft/s	Weir C Flow = 10.512 mgc Velocity = 0 ft/s	Conduit C1 flow = 10.357 n Velocity = 5.183		.353 mgd Flow =	= 10.369 mgd 🛛 🛛 🖡	Conduit C4 Flow = 10.379 mgd velocity = 3.271 ft/s	Conduit C5_1 Flow = 10.373 m Velocity = 3.27 ft	gd Flow = /s Velocity	C5_2 10.366 mgd v = 2.269 ft/s
▼ Sij	ohon_Inlet								
¥ 54in	▼ 30in								
	▼ 30in								▼ 36in
		¥ 30in		▼ 30in			¥ 30in	▼ 36in	
	200		400		600		800	/ <	
	itorage INLET_0 WSEL = 821.0547 ft	Storage INLET_C CWSEL=817.0145 ft	Junction C-01 CWSEL=814.9971 ft	Junction C-02 CWSEL=814.748 ft	Junction C-03 CWSEL=814.5042 f	ft CWSEL=813.			Junction C-05 CWSEL = 813.2659 ft

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	2	46	6.0
Barrel B	30	1	25	6.1
Barrel C	30	3	65	3.3
Barrel D	30	0	10	5.9

Sufficient Capacity for 67 MGD

Velocity for Barrel C meets minimum only > 65 MGD

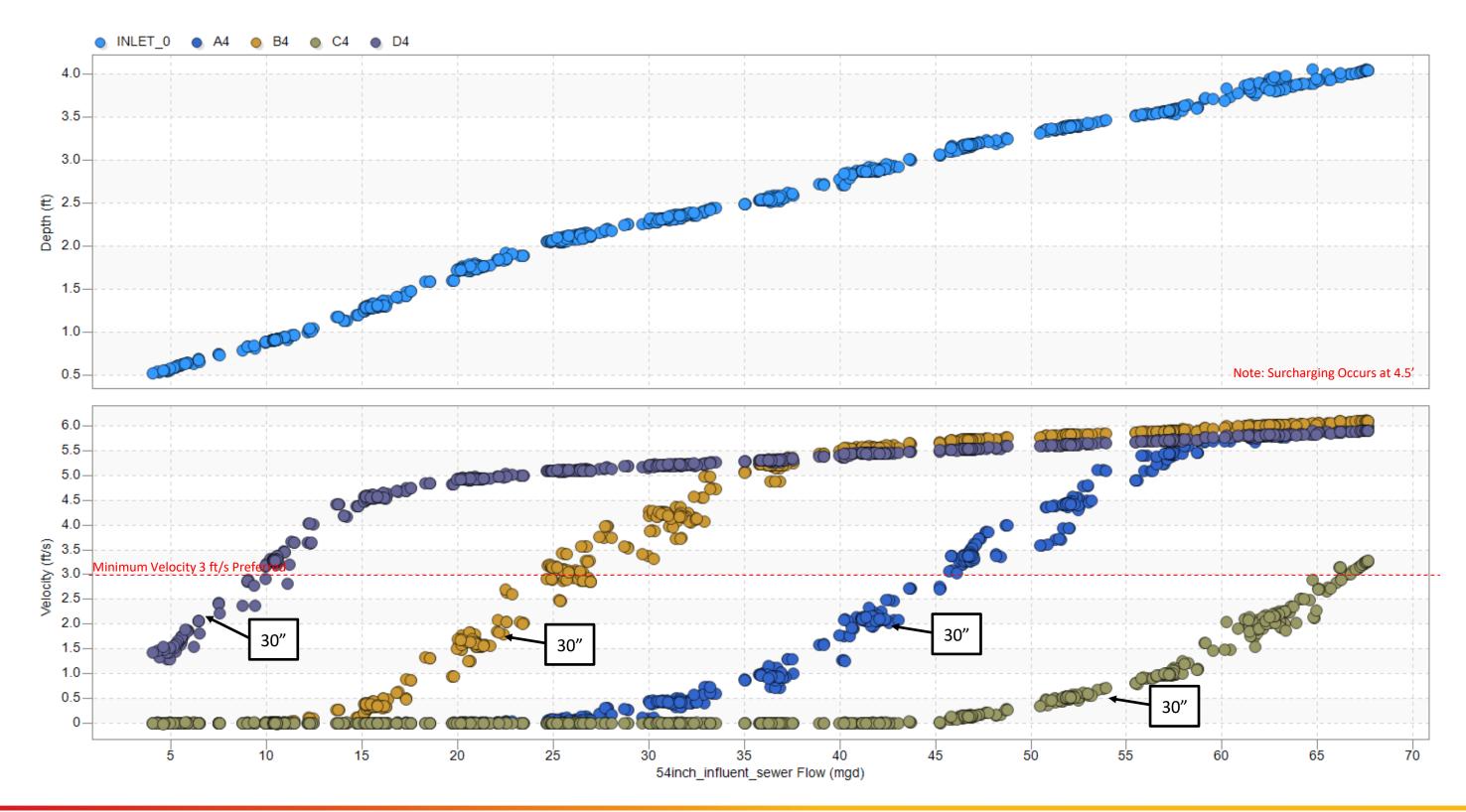

Client/Project
Metropolitan Cour
Lift Station L-32 Sip

Figure Title 12

Conduit C6 Flow = 10.371 mgd Velocity = 3.31 ft/s Conduit C7 Flow = 10.371 mgd Velocity = 4.769 ft/s

incil Environmental Services ohon Retrofit

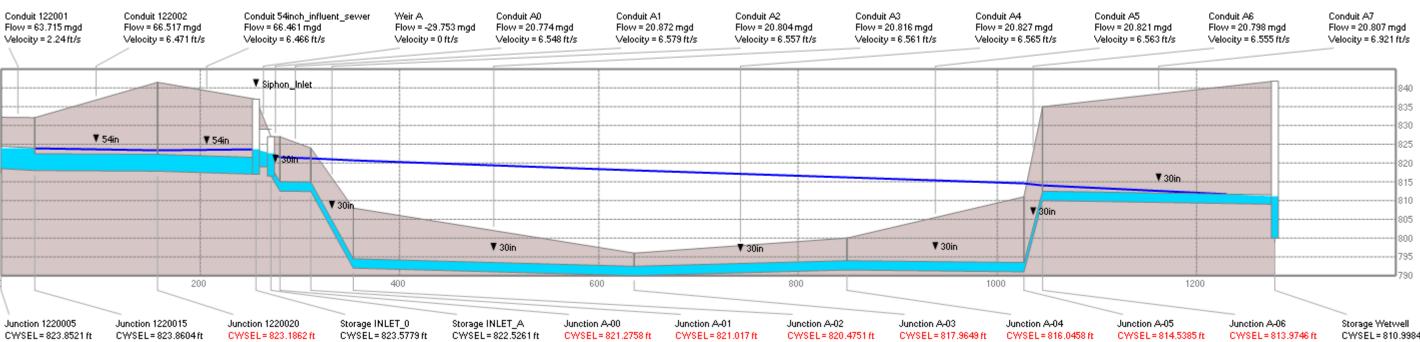
Hydraulic Gradeline Profile – Option 3 Barrels C & D

Stantec

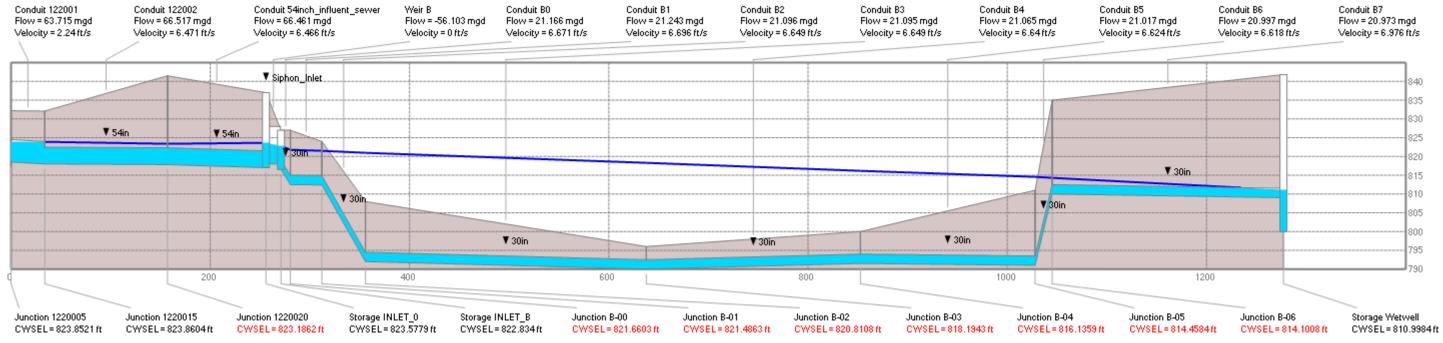
Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	2	46	6.0
Barrel B	30	1	25	6.1
Barrel C	30	3	65	3.3
Barrel D	30	0	10	5.9

Sufficient Capacity for 67 MGD


Velocity for Barrel C meets minimum only > 65 MGD

Client/Project
Metropolitan Cour
Lift Station L-32 Sip


Figure Title 13 Sipt

uncil Environmental Services ohon Retrofit

Siphon Velocity Curve – Option 3

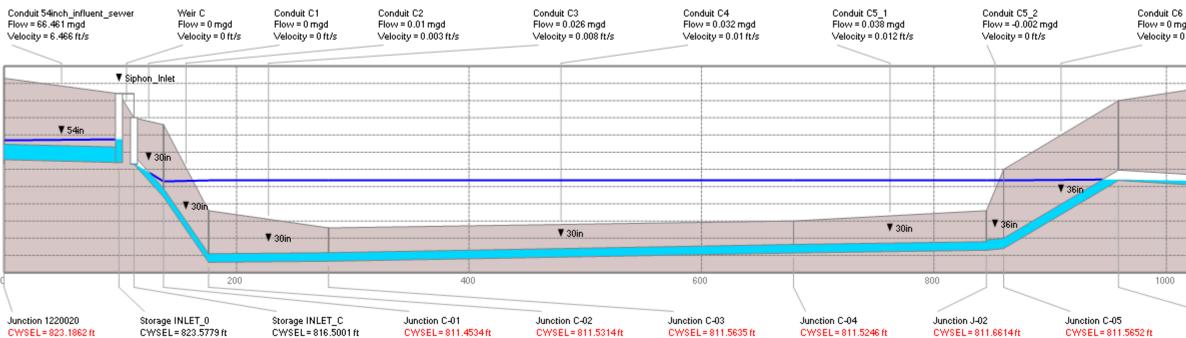
HGL

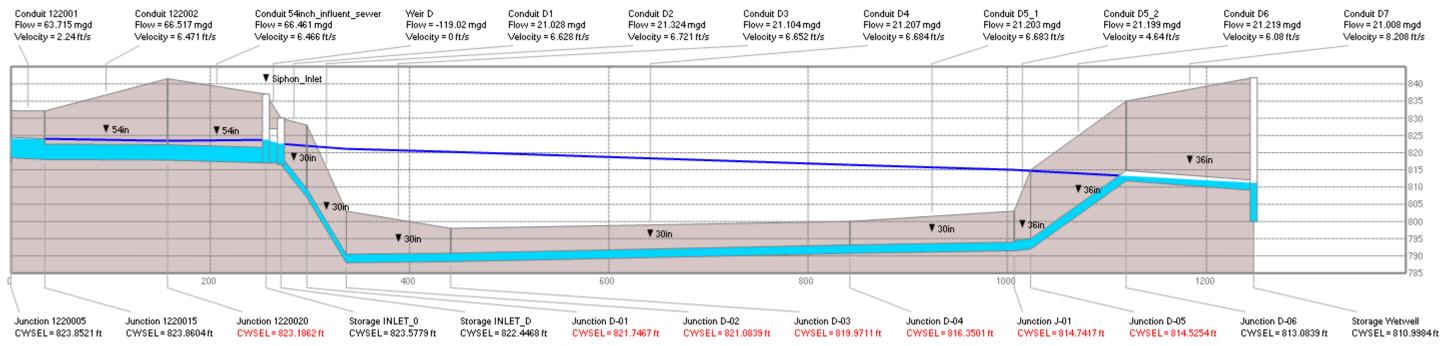
Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD	Maximum Capacity of 57 MGD before surcharging occurs		litan Council Environme
Barrel A	30	2	45	6.6		Lift Static	on L-32 Siphon Retrofit
Barrel B	30	1	25	6.6		Figure	Title
Barrel C	30	CLOSED	-	0.0		14	Hydraulic Gradelir
Barrel D	30	0	10	6.7			Barrels A & B

Date: April 30, 2020

Stantec

1	mg	d
66	53 fi	t/s


CWSEL=810.9984 ft


Time: 4/22/2020 12:50:00 PM

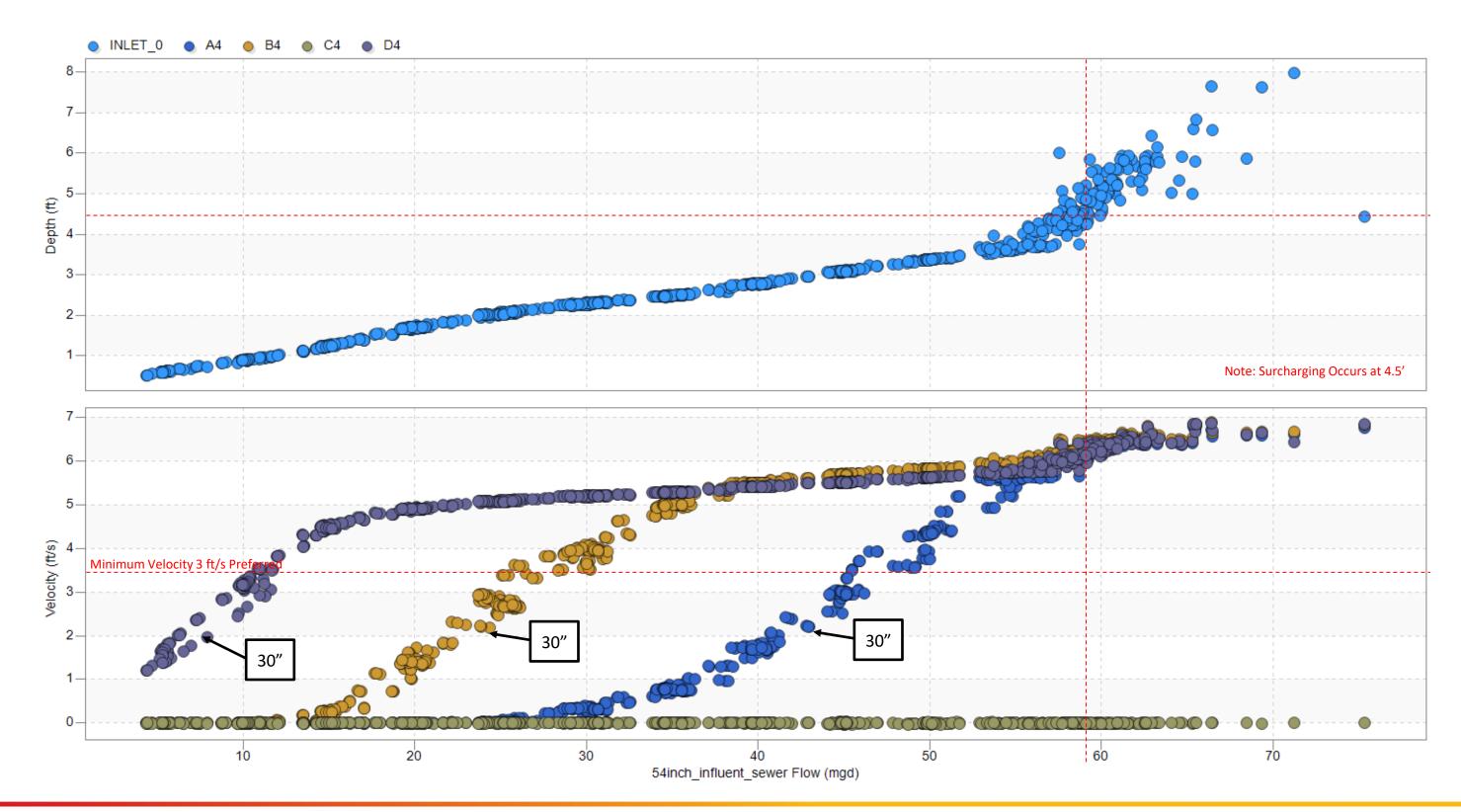
nental Services

line Profile – Option 4

	Stantec
--	---------

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	2	45	6.6
Barrel B	30	1	25	6.6
Barrel C	30	CLOSED	-	0.0
Barrel D	30	0	10	6.7


Maximum Capacity of 57 MGD before surcharging occurs

Client/Project Metropolitan Council Environmental Services Lift Station L-32 Siphon Retrofit

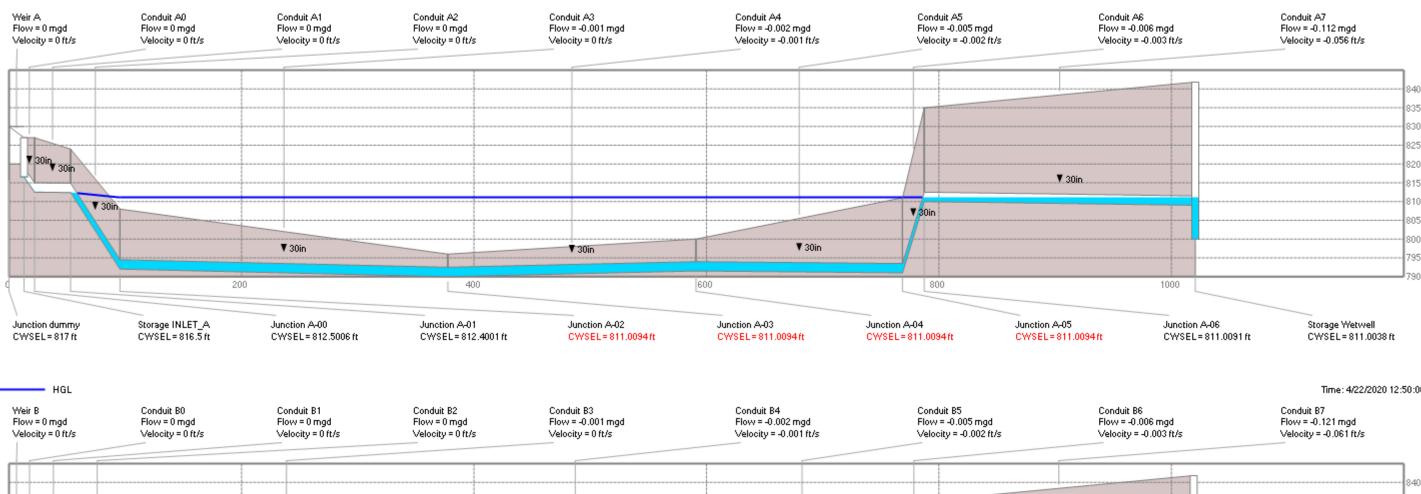
Figure Title 15 Hydr Conduit C7

Flow = 0 mgd Flow = 0 mgd Velocity = 0 ft/s Velocity = 0 ft/s 840 835 825 **V** 36in 15 795 790 785 1000 Junction C-06 Storage Wetwell CWSEL=811.8001 ft CWSEL=810.9984ft Time: 4/22/2020 12:50:00 PM

Hydraulic Gradeline Profile – Option 4 Barrels C & D

Stantec	Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
000000	Barrel A	30	2	45	6.6
20, 0000	Barrel B	30	1	25	6.6
30, 2020	Barrel C	30	CLOSED	-	0.0
	Barrel D	30	0	10	6.7

Date: April 30, 2020


Maximum Capacity of 57 MGD before surcharging occurs

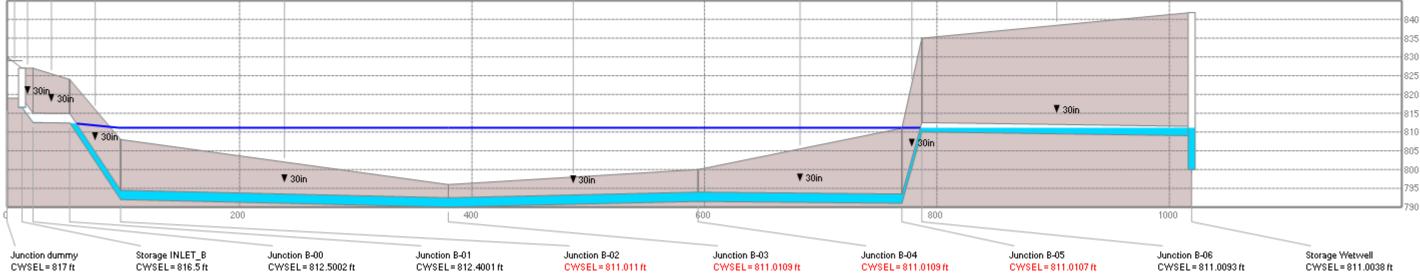

Client/Project Metropolitan Council Environmental Services Lift Station L-32 Siphon Retrofit

Figure Title **16 Siphe**

Siphon Velocity Curve – Option 4

HGL

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	CLOSED	-	0.0
Barrel B	30	CLOSED	-	0.0
Barrel C	30	1	50	5.2
Barrel D	30	0	20	5.6

Sufficient Capacity for 67 MGD

Velocity for Barrel C meets minimum only > 50 MGD

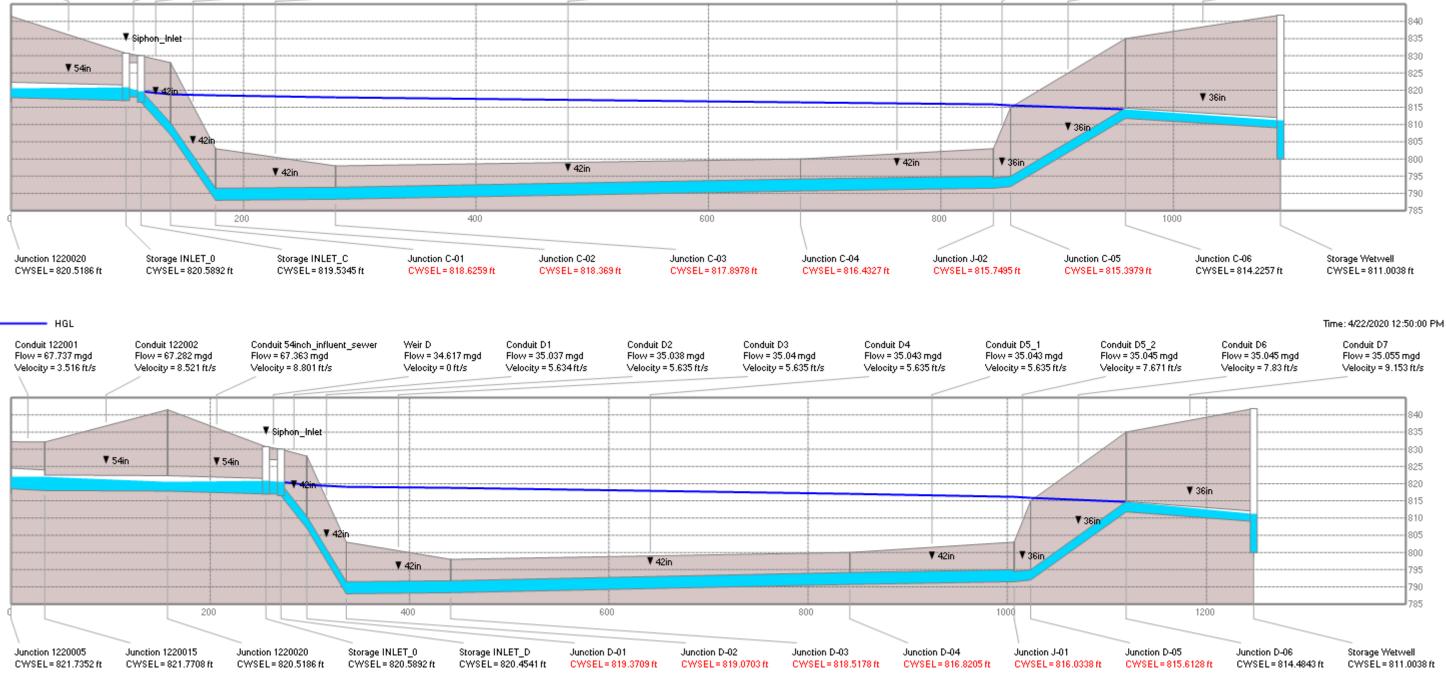

Client/Project Metropolitan Council Environmental Services Lift Station L-32 Siphon Retrofit

Figure Title 17

Time: 4/22/2020 12:50:00 PM

Hydraulic Gradeline Profile – Option 5 Barrels A & B

Conduit 54inch_influent_sewer Flow = 67.363 mgd Velocity = 8.801 ft/s	Weir C Flow = 32.514 mgd Velocity = 0 ft/s	Conduit C1 Flow = 32,573 mgd Velocity = 5,392 ft/s	Conduit C2 Flow = 32.567 r Velocity = 5.23		i66 mgd Flow =	it C4 Ca 32.564mgd Fla yy = 5.237 ft/s Ve	onduit C5_1 ow = 32.561 mgd elocity = 5.236 ft/s	Conduit C5_2 Flow = 32.559 mgd Velocity = 7.127 ft/s
▼ Siphon_li ▼ 54in								
	▼ 42ìn ▼ 4			▼ 42in			▼ 42in	▼ 36in
Junction 1220020 Storag CWSEL = 820.5186 ft CWS	200 200 pe INLET_0 Sto EL = 820.5892 ft CY		400 Junction C-01 CWSEL = 818.6259 ft	Junction C-02 CWSEL = 818.369 ft	600 Junction C-03 CWSEL = 817.8978 ft	Junction C-04 CWSEL=816,4327 ft	800 Junction J-02 CWSEL=815.7	Junction C-05 7495 ft CWSEL= 815,3379 ft

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	CLOSED	-	0.0
Barrel B	30	CLOSED	-	0.0
Barrel C	30	1	50	5.2
Barrel D	30	0	20	5.6

Sufficient Capacity for 67 MGD

Velocity for Barrel C meets minimum only > 50 MGD

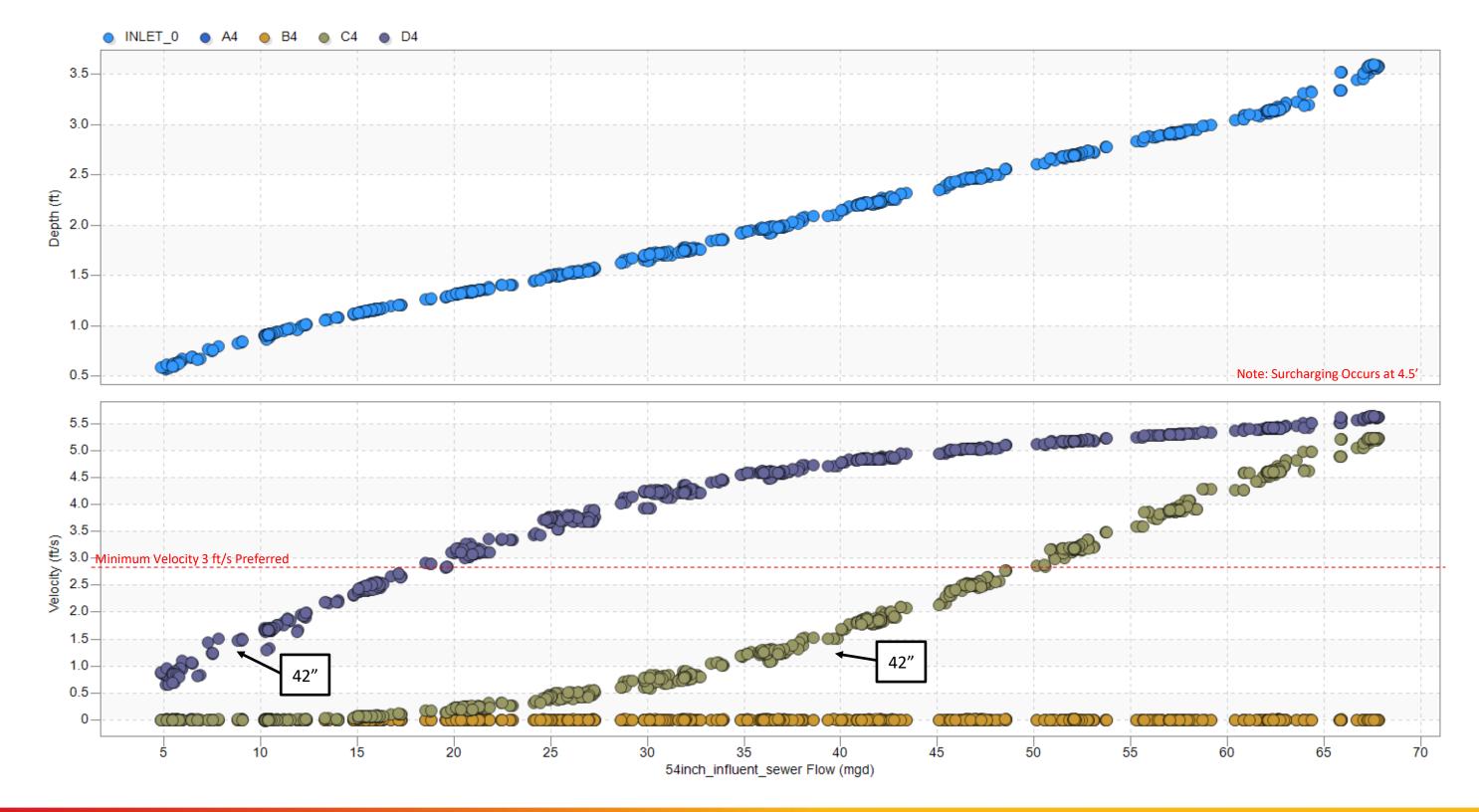

Client/Project
Metropolitan Cour
Lift Station L-32 Sip

Figure Title 18

Conduit C6 Flow = 32.558 mgd Velocity = 7.493 ft/s Conduit C7 Flow = 32.571 mgd Velocity = 9.009 ft/s

incil Environmental Services ohon Retrofit

Hydraulic Gradeline Profile – Option 5 Barrels C & D

Stanted	
----------------	--

Date: April 30, 2020

Option	Diameter	Weir Height	Q @ 3ft/s	V @ 67 MGD
Barrel A	30	CLOSED	-	0.0
Barrel B	30	CLOSED	-	0.0
Barrel C	30	1	50	5.2
Barrel D	30	0	20	5.6

Sufficient Capacity for 67 MGD

Velocity for Barrel C meets minimum only > 50 MGD

Client/Project
Metropolitan Cour
Lift Station L-32 Sip

Figure Title **19 Sip**l

uncil Environmental Services ohon Retrofit

Siphon Velocity Curve – Option 5

APPENDIX C – PUMP CURVES

Stantec APPENDIX C PUMP CURVES

To:	Daryl Kirschenman	From:	Mark Rolfs
	Minneapolis MN Office		Minneapolis MN Office
File:	173420004	Date:	July 16, 2020

Reference: Appendix C Pump Curves- L-32 East Side Hydraulic Model Results

A hydraulic model was completed of the proposed East Side L-32 lift station and forcemains. A separate model was made for the influent siphon piping. The data to populate the model was provided partly by the pipe sizing and configuration of the existing L-32 station located on the west side and partly based on numerous other MCES lift stations that were used to provide for the basic station layout used in this report. The lift station piping, new east side forcemains and the connection to the existing forcemains on the east side of the river are shown on Figure 1 on the next page. As shown on Figure 1, the layout of the hydraulic model includes Reservoir R-1 which represents the lift station wet well and was modeled with a water level at elevation 805 ft based on the drop needed from the west side as calculated in the siphon evaluation. Reservoir R-2 represents the discharge junction box that L-32 is required to pump to at the end of the 42" diameter PCCP forcemains. 839.25 ft is the top of pipe discharge elevation for the L-32 pumps.

The hydraulic model results are based on a wet well level at 805 ft and pipe roughness of C=110 for the existing forcemains and with C=120 for the new DIP piping in and around the new lift station.

To begin the evaluation, a single point generic pump curve was developed by the WaterCad software. This gets the model to a good starting point for pump selection. Once the design point is established, other station operating points are run to see approximately how the pump would respond to less than the number of design points operating.

For this analysis we looked at three options.

- Option 1 A six pump station with 5 pump operating.
- Option 2 An eight pump station with 6 pumps operating
- Option 3 An eight pump station with 7 pumps operating.

The traditional firm capacity definition for an 8 pump station would be Option 3. However due to the split wet well and the critical nature of this lift station it was also decided to consider Option 2 which would in effect provide for firm capacity on each side of a split wet well. Due to the relatively minor change in pump and HP requirements, it is recommended that if an eight pump station is selected for this this critical lift station, then it be considered with 6 pumps operating for firm capacity.

Based on the generic pump, several Cornell pumps were selected for evaluation. After considering cost and size, it was decided to use the 900 rpm Cornell pumps for the final analysis. All of the Cornell pump curves looked at are included in this appendix, but only the three pumps identified in the summary results table were used for complete analysis. These are the three recommended pumps for Options 1,2,3 above.

Option 1 - Cornell Pump Model 16NHG22 with 21.81 inch impeller, 200 HP

Option 2 - Cornell Pump Model 16NHG22 with 20.38 inch impeller, 150 HP

Option 3 – Cornell Pump Model 14NHGA with 18.63 inch impeller, 125 HP

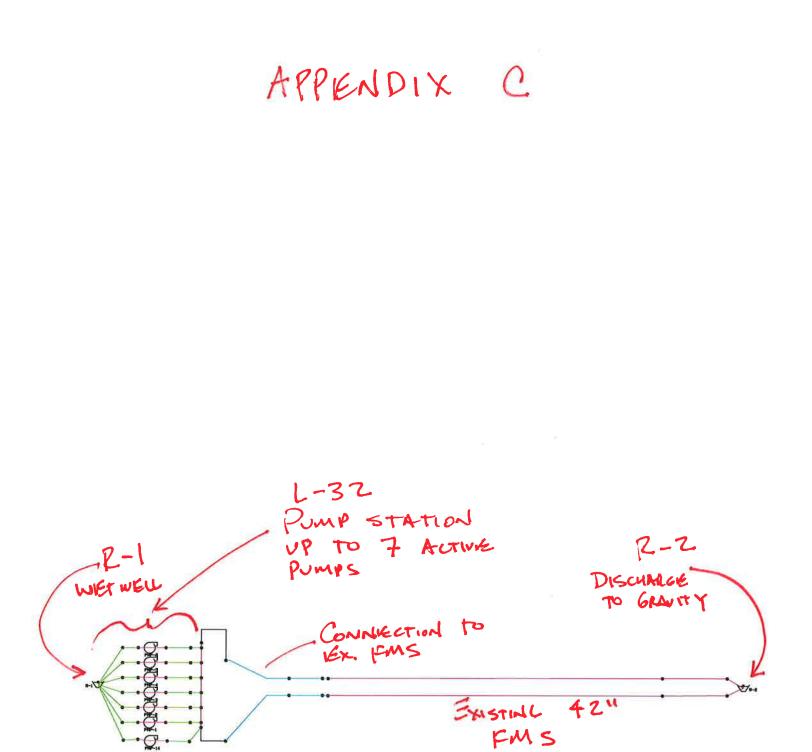


FIGURE 1

HYDRAULIC MODVEL

L32 East Side Pump Station - 67 MGD

Number of	Number of <u>Gene</u>		<u>mp</u>	Station	Flow	<u>C</u>	ornell Pu	Station	Flow	
Pumps Running	Flow per					Flow per				
	Pump (gpm)	TDH (feet)	80% Eff. (HP)	<u>(gpm)</u>	<u>(MGD)</u>	Pump (gpm)	TDH (feet)	Actual (HP)	<u>(gpm)</u>	<u>(MGD)</u>
1	11,067	52.4	183	11,067	15.9	10,679	51.2	171	10,679	15.4
2	10,767	53.9	183	21,534	31.0	10,445	52.8	172	20,890	30.1
3	10,336	56.1	183	31,008	44.7	10,107	55.1	172	30,321	43.7
4	9,845	58.4	181	39,380	56.7	9,718	57.8	173	38,872	56.0
5	9,306	60.8	179	46,530	67.0	9,288	60.6	173	46,440	66.9

TABLE 1 - SIX PUMP STATION (5 Active Pumps)

Notes:

Generic Pump is a single point pump curve created by WaterCad to reflect standard centrifual pump curve Cornell Pump is Model 16NHG22 with 16 inch suction and 16 inch discharge. 885 rpm. 21.81 inch impeller curve 900 rpm Nominal Speed, 200 HP

L32 East Side Pump Station - 67 MGD

TABLE 2 - EIGHT PUMP STATION (6 Active Pumps)

Number of	Generic Pump			Generic Pump Station Flow				<u>c</u>	Cornell Pu	Station	<u>Flow</u>
Pumps Running	Flow per					Flow per					
	Pump (gpm)	TDH <u>(feet)</u>	80% Eff. <u>(HP)</u>	<u>(gpm)</u>	<u>(MGD)</u>	Pump (gpm)	TDH (feet)	Actual (HP)	<u>(gpm)</u>	<u>(MGD)</u>	
1	9,482	47.6	142	9,482	13.7	9,288	47.1	137	9,288	13.4	
2	9,266	48.9	143	18,532	26.7	9,100	48.4	136	18,200	26.2	
3	8,951	50.7	143	26,853	38.7	8,828	50.2	136	26,484	38.1	
4	8,590	52.7	143	34,360	49.5	8,510	52.4	136	34,040	49.0	
5	8,177	54.9	142	40,885	58.9	8,156	54.8	136	40,780	58.7	
6	7,755	57.0	140	46,530	67.0	7,788	57.2	136	46,728	67.3	

Notes:

Generic Pump is a single point pump curve created by WaterCad to reflect standard centrifual pump curve Cornell Pump is Model 16NHG22 with 16 inch suction and 16 inch discharge. 885 rpm. 20.38 inch impeller curve 900 rpm Nominal Speed, 150 HP

L32 East Side Pump Station - 67 MGD

TABLE 3 - EIGHT PUMP STATION (7 Active Pumps)

Number of Generic Pump Station Flow Cornell Pump Pumps Running Flow per Flow per Flow per Pump TDH 80% Eff. Pump TDH

Pumps Running	Flow per					Flow per					
	Pump (gpm)	TDH (feet)	80% Eff. <u>(HP)</u>	<u>(gpm)</u>	<u>(MGD)</u>	Pump (gpm)	TDH (feet)	Actual (HP)	<u>(gpm)</u>	<u>(MGD)</u>	
1	8,301	44.5	117	8,301	12.0	7,971	43.7	115	7,971	11.5	
2	8,142	45.6	117	16,284	23.4	7,851	44.8	114	15,702	22.6	
3	7,907	47.1	118	23,721	34.2	7,671	46.4	113	23,013	33.1	
4	7,630	48.9	118	30,520	43.9	7,457	48.2	112	29,828	43.0	
5	7,315	50.9	118	36,575	52.7	7,209	50.4	112	36,045	51.9	
6	6,989	52.8	116	41,934	60.4	6,942	52.6	111	41,652	60.0	
7	6,647	54.7	115	46,529	67.0	6,675	54.9	111	46,725	67.3	

Station

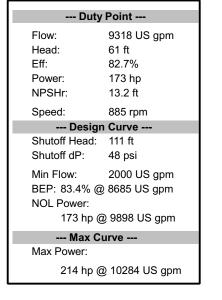
Flow

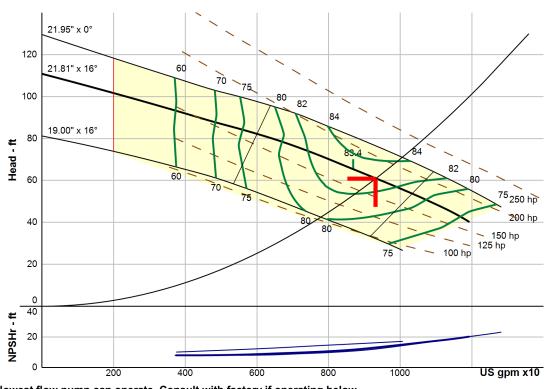
Notes:

Generic Pump is a single point pump curve created by WaterCad to reflect standard centrifual pump curve Cornell Pump is Model 14NHGA with 16 inch suction and 14 inch discharge. 889 rpm. 18.63 inch impeller curve 900 rpm Nominal Speed, 125 HP. The single pump operation is pretty far to the right side of the curve.

Pump:			
Size:	16NHG22	Dimensions:	
Туре:	Encl Solids Handling	Suction:	16 in
Synch Speed:	900 rpm	Discharge:	16 in
Line:	21.81" x 16°		
Curve:	16NHG229		

Search Criteria:

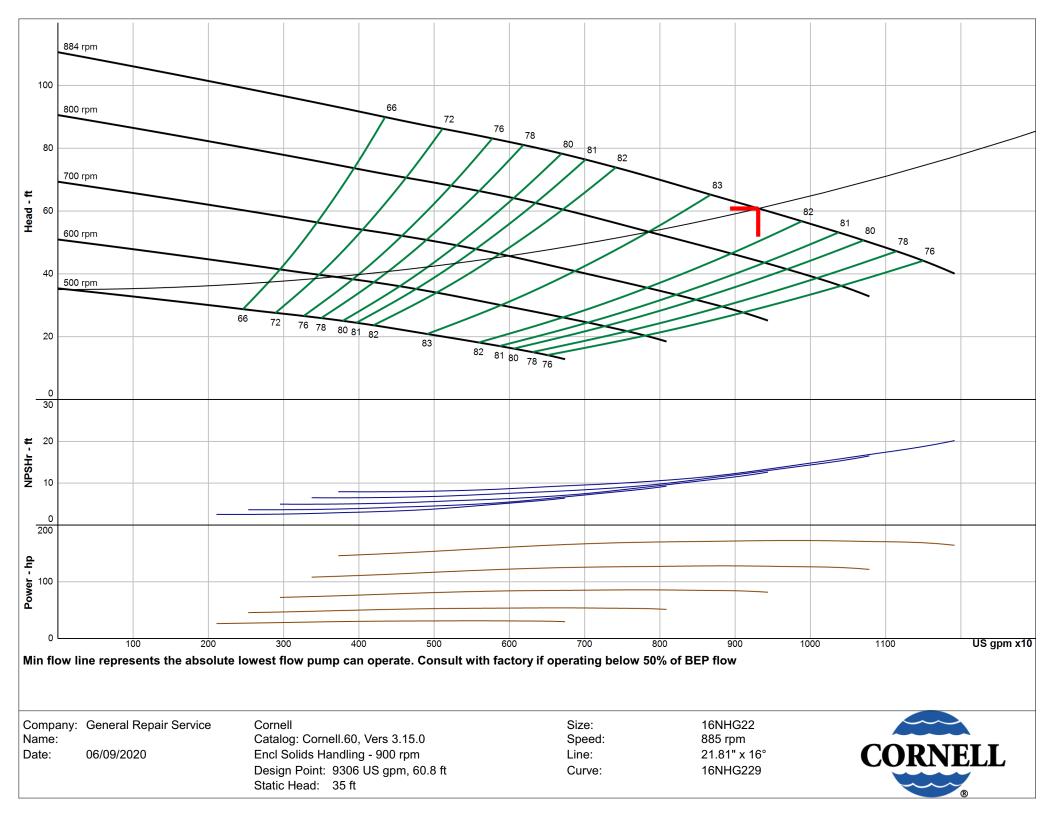

Flow:	9306 US gprr	Near Miss:	
Head:	60.8 ft	Static Head:	0 ft


Fluid:					
Name:	Water				
SG:	1	Vapor Pressure:	0.256 psi a		
Density:	62.4 lb/ft ³	Atm Pressure:	14.7 psi a		
Viscosity:	1.1 cP				
Temperature:	60 °F	Margin Ratio:	1		
Pump Limits:					
Temperature:	250 °F	Sphere Size:	4.5 in		
Wkg Pressure:	125 psi g				
Motor:					
Standard:	NEMA	Size:	200 hp		
Enclosure:	TEFC	Speed:	900 rpm		
Frame:	449T				
Sizing Criteria:	Max Power on D	Max Power on Design Curve			

Preferred Operating Region: 70% - 120% BEP

Pump Selection Warnings:

None



Min flow line represents the absolute lowest flow pump can operate. Consult with factory if operating below 50% of BEP flow

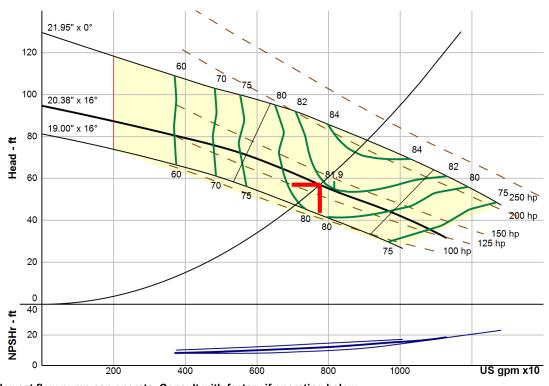
Performance Evaluation

Speed	Head	Efficiency	Power	NPSHr	
rpm	ft	%	hp	ft	
885	47	78	170	17.9	
885	61	83	173	13.1	
885	73.9	82	169	10	
885	84.3	75	159	8.41	
885	93.4	60	146	8	
	Speed rpm 885 885 885 885 885	Speed Head rpm ft 885 47 885 61 885 73.9 885 84.3	Speed Head Efficiency rpm ft % 885 47 78 885 61 83 885 73.9 82 885 84.3 75	Speed Head Efficiency Power rpm ft % hp 885 47 78 170 885 61 83 173 885 73.9 82 169 885 84.3 75 159	Speed Head Efficiency Power NPSHr rpm ft % hp ft 885 47 78 170 17.9 885 61 83 173 13.1 885 73.9 82 169 10 885 84.3 75 159 8.41

Pump Data Sheet - Cornell

Pump:			
Size: Type:	16NHG22 Encl Solids Handling	<u>Dimensions:</u> Suction:	16 in
Synch Speed: Line:	900 rpm 20.38" x 16°	Discharge:	16 in
Curve:	16NHG229		

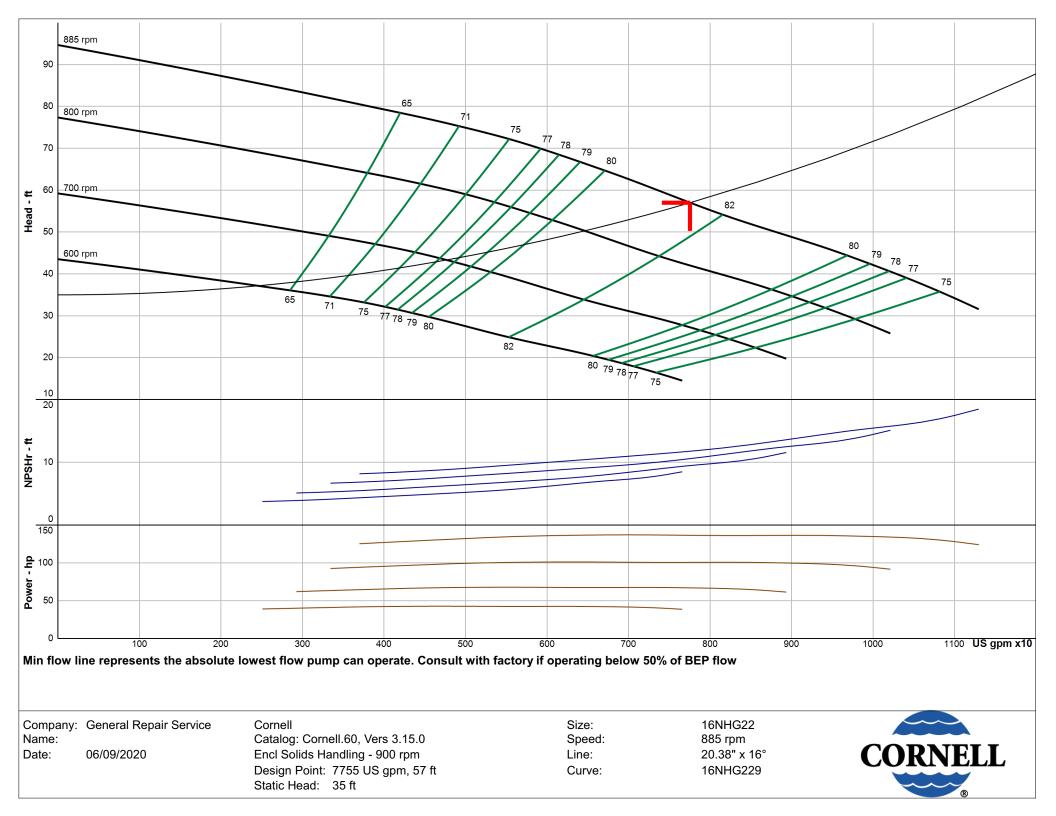
Search Criteria:

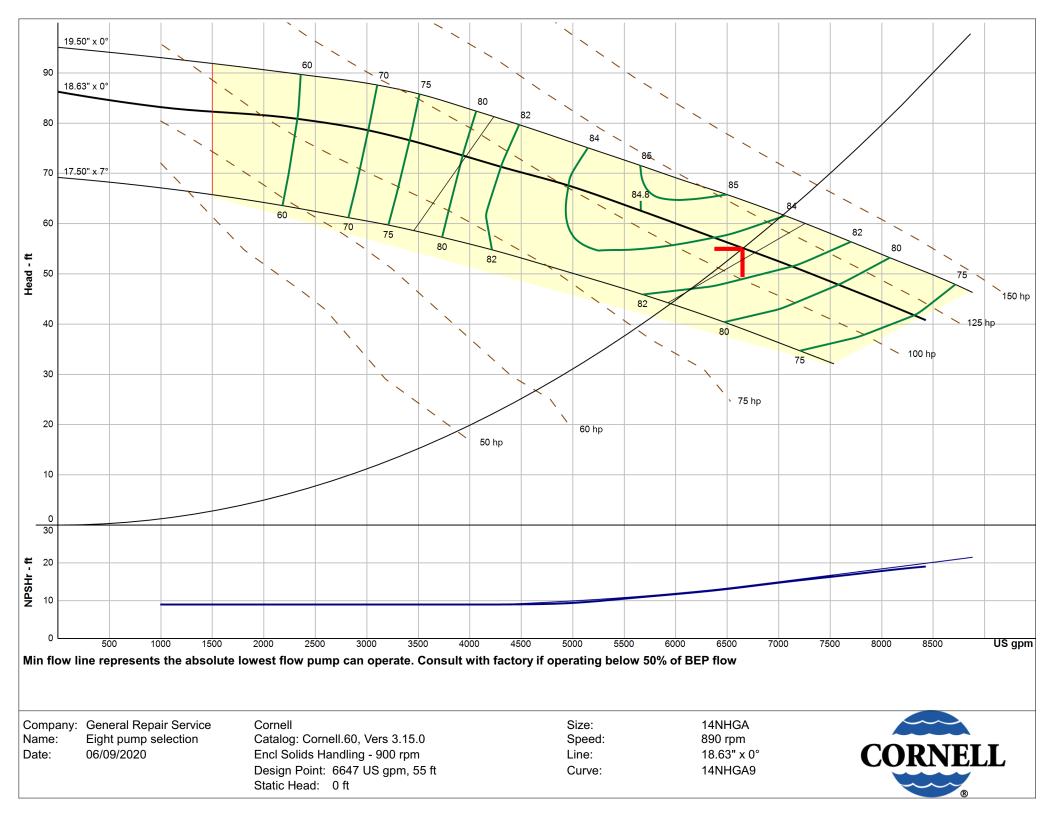

Flow:	7755 US gpm	Near Miss:	
Head:	57 ft	Static Head:	0 ft

Fluid:				
Name:	Water			
SG:	1	Vapor Pressure:	0.256 psi a	
Density:	62.4 lb/ft ³	Atm Pressure:	14.7 psi a	
Viscosity:	1.1 cP			
Temperature:	60 °F	Margin Ratio:	1	
Pump Limits:				
Temperature:	250 °F	Sphere Size:	4.5 in	
Wkg Pressure:	125 psi g			
Motor:				
Standard:	NEMA	Size:	150 hp	
Enclosure:	TEFC	Speed:	900 rpm	
Frame:	449T			
Sizing Criteria:	Max Power on D	Max Power on Design Curve		

Preferred Operating Region: 70% - 120% BEP Pump Selection Warnings:

None


Dut	ty Point			
Flow: Head: Eff: Power: NPSHr:	7758 US gpm 57 ft 81.4% 136 hp 11.8 ft			
Speed:	885 rpm			
Desig	gn Curve			
Shutoff Head Shutoff dP:				
BEP: 81.9% NOL Power:	2000 US gpm @ 8157 US gpm @ 6709 US gpm			
Max Curve				
Max Power:				
214 hp	@ 10284 US gpm			

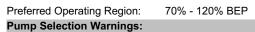


Min flow line represents the absolute lowest flow pump can operate. Consult with factory if operating below 50% of BEP flow

Performance Evaluation

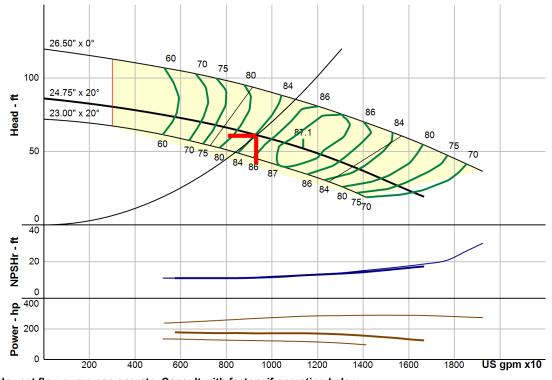
renormance Evaluation.						
Flow	Speed	Head	Efficiency	Power	NPSHr	
US gpm	rpm	ft	%	hp	ft	
9306	885	46.8	80	136	14.3	
7755	885	57.1	81	136	11.8	
6204	885	67.9	78	136	10.2	
4653	885	76.5	69	130	8.77	
3102	885	82.8	55	122	8.17	

Pump Data Sheet - Cornell


Pump:			
Size: Type:	18NHFL Encl Solids Handling	<u>Dimensions:</u> Suction:	20 in
Synch Speed:	720 rpm	Discharge:	18 in
Line:	24.75" x 20°		
Curve:	18NHFL7		

Search Criteria:

Flow:	9306 US gpm	Near Miss:	
Head:	60.8 ft	Static Head:	0 ft


			3
Fluid:			
Name:	Water		
SG:	1	Vapor Pressure:	0.256 psi a
Density:	62.4 lb/ft ³	Atm Pressure:	14.7 psi a
Viscosity:	1.1 cP		
Temperature:	60 °F	Margin Ratio:	1
Pump Limits:			
Temperature:	250 °F	Sphere Size:	3.5 in
Wkg Pressure:	125 psi g		
Motor:			

Consult Cornell to select a motor for this pump.

None

Duty Point				
Flow: 9334 US gpm Head: 61.2 ft Eff: 84.2% Power: 171 hp NPSHr: 11.3 ft				
Speed: 705 rpm Design Curve				
Shutoff Head: 86.1 ft Shutoff dP: 37.3 psi				
Min Flow: 3000 US gpm BEP: 87.1% @ 11367 US gpm NOL Power: 178 hp @ 5741 US gpm				
Max Curve				
Max Power:				
290 hp @ 15288 US gpm				

Min flow line represents the absolute lowest flow pump can operate. Consult with factory if operating below 50% of BEP flow

Performance Evaluation:

Flow	Speed	Head	Efficiency	Power	NPSHr
US gpm	rpm	ft	%	hp	ft
11167	705	53	87	172	12.4
9306	705	61.3	84	171	11.3
7445	705	68.3	74	173	11
5584	705	73.9	59	178	11
3722	705	78	42	184	11
	US gpm 11167 9306 7445 5584	US gpm rpm 11167 705 9306 705 7445 705 5584 705	US gpm rpm ft 11167 705 53 9306 705 61.3 7445 705 68.3 5584 705 73.9	US gpmrpmft%111677055387930670561.384744570568.374558470573.959	US gpmrpmft%hp111677055387172930670561.384171744570568.374173558470573.959178

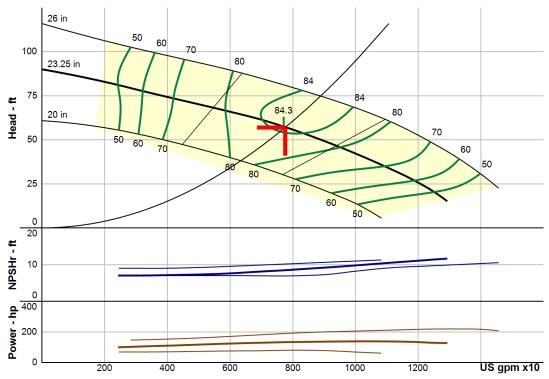
Company: General Repair Service Name: 7755 at 57 705rpm Date: 06/09/2020

Pump Data Sheet - Cornell

Pump:				
Size: Type:	16NHG26 Encl Solids Handling	<u>Dimensions:</u> Suction:	16 in	
Synch Speed:	720 rpm	Discharge:	16 in	
Dia: Curve:	23.25 in 16NHG267			
Curve.	1010110207			

Search Criteria:

Flow:	7755 US gpm	Near Miss:	
Head:	57 ft	Static Head:	0 ft


			B
Fluid:			
Name:	Water		
SG:	1	Vapor Pressure:	0.256 psi a
Density:	62.4 lb/ft ³	Atm Pressure:	14.7 psi a
Viscosity:	1.1 cP		
Temperature:	60 °F	Margin Ratio:	1
Pump Limits:			
Temperature:		Sphere Size:	4.5 in
Wkg Pressure:			
Motor:			

Consult Cornell to select a motor for this pump.

Preferred Operating Region: 70% - 120% BEP Pump Selection Warnings:

None

Duty Point				
Flow: Head: Eff: Power: NPSHr:	7766 US gpm 57.2 ft 84.3% 133 hp 8.48 ft			
Speed:	705 rpm			
	OC #			
Shutoff Head: Shutoff dP:				
Min Flow: BEP: 84.3% @ NOL Power: 138 hp @	•••			
Max Curve				
Max Power:				
219 hp @ 13308 US gpm				

Min flow line represents the absolute lowest flow pump can operate. Consult with factory if operating below 50% of BEP flow

Performance Evaluation:

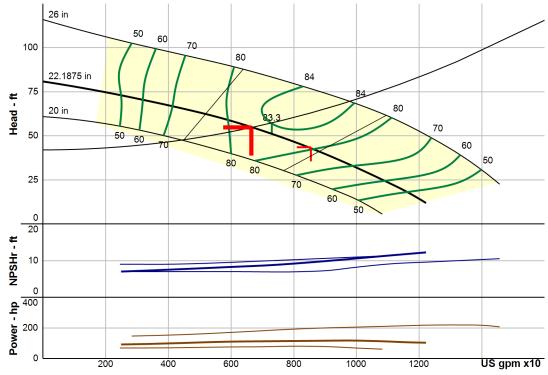
	011.					
Flow	Speed	Head	Efficiency	Power	NPSHr	
US gpm	rpm	ft	%	hp	ft	
9306	705	47.2	81	137	9.35	
7755	705	57.2	84	133	8.48	
6204	705	65	81	125	7.72	
4653	705	71.6	73	115	7.27	
3102	705	78.2	59	104	7.03	
7755 6204 4653	705 705 705	57.2 65 71.6	84 81 73	133 125 115	8.48 7.72 7.27	

Pump Data Sheet - Cornell

Pump:				
Size: Type:	16NHG26 Encl Solids Handling	<u>Dimensions:</u> Suction:	16 in	
Synch Speed:	720 rpm	Discharge:	16 in	
Dia:	22.1875 in			
Curve:	16NHG267			

Search Criteria:

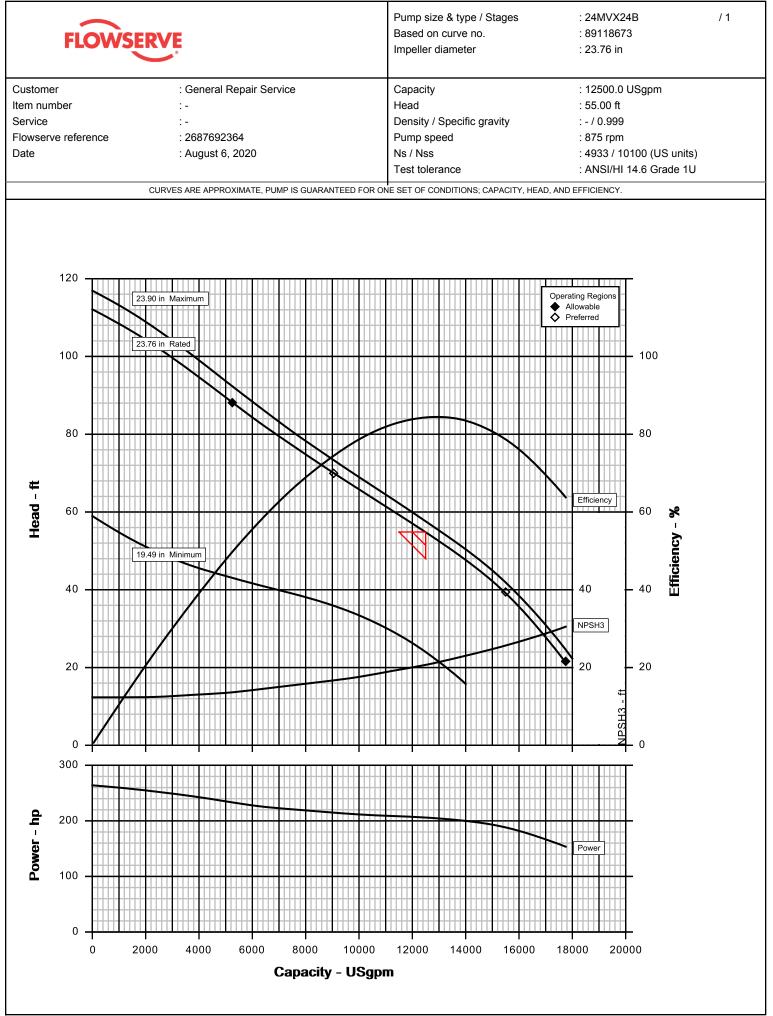
Flow:	6647 US gpm	Near Miss:	
Head:	54.7 ft	Static Head:	42 ft


			3
Fluid:			
Name:	Water		
SG:	1	Vapor Pressure:	0.256 psi a
Density:	62.4 lb/ft ³	Atm Pressure:	14.7 psi a
Viscosity:	1.1 cP		
Temperature:	60 °F	Margin Ratio:	1
Pump Limits:			
Temperature:		Sphere Size:	4.5 in
Wkg Pressure:			
Motor:			

Consult Cornell to select a motor for this pump.

Preferred Operating Region: 70% - 120% BEP Pump Selection Warnings:

None


Duty Point				
Flow: Head: Eff: Power: NPSHr:	6658 US gpm 54.7 ft 81.8% 112 hp 8.53 ft			
Speed:	705 rpm			
Desigr	n Curve			
Shutoff Head: Shutoff dP:				
NOL Power:	US gpm 0 7298 US gpm 0 9878 US gpm			
Max Curve				
Max Power:				
219 hp @	2) 13308 US gpm			

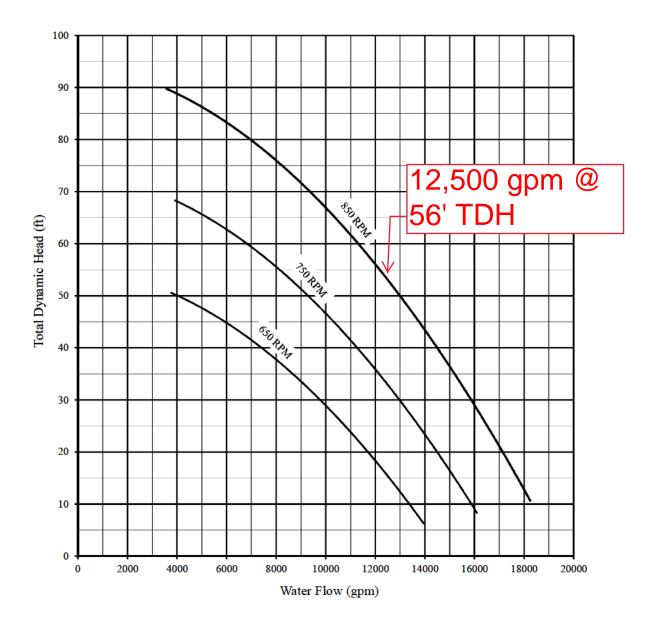
Min flow line represents the absolute lowest flow pump can operate. Consult with factory if operating below 50% of BEP flow

Operating	Points:	

operating romts.							
Data Point	Speed	Flow	Head	NPSHr	Efficiency	Power	Min Flow
	rpm	US gpm	п	п	%	hp	US gpm
Primary	705	6658	54.7	8.53	81.8	112	
1	705	8464	43.5	9.49	80.4	115	

Hydraulic Datasheet

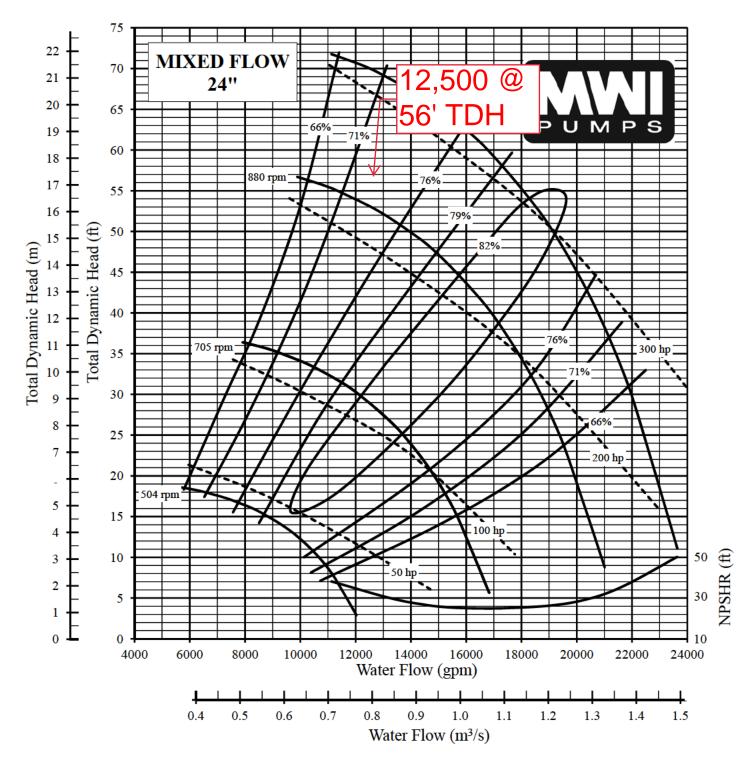
			: Gene	eral Re	epair	Serv	ice				np / St							4MVX			/ 1
Customer reference		:	: -							Based on curve no. : 89118673 Flowserve reference : 2687692364											
tem number Service			:- :-							Date : August 6, 2020											
	000	rating C	-	tions						Materials / Specification											
Capacity (rated/norm		aung	Jonun			0.0 L	JSgpm	n / -		Ma	aterial	colun	n coo	le	wate	11015	: C		lion		
Nater capacity (CQ=					-		- 51			Pu	imp sp	ecific	ation				: -				
Fotal developed hea				:	55.00	0 ft									Ot	her R	equi	remen	ts		
Water head (CH=1.0)0)			:	-					Hy	/drauli	c sele	ction	: No s							
IPSHa/NPSHa less margin : 33.4 ft / -				Co	onstruc	ction :	No s	pecific	ation												
Maximum suction pr	essure			:	0.0 p	osig					est tole						1U				
		Liqu	uid							Dr	iver Si	zing :	Max	Powe	r + 39	%					
_iquid type						h wat	.er														
Liquid description					-	_															
Temperature					60 °F																
Density / Specific gra Solid Size - Actual /	-				- / 0.9		6.00 in														
Viscosity / Vapor pre							0.26 p														
					1.00	0017	0.20		Perfo	I											
lydraulic power				:	173	hp			- en lo		peller	diam	eter								
Pump speed					875 1	•					Rated								: 23.7	6 in	
Pump overall efficier	ncy (CE=1.0	0)			84.7	•					Maxim	um							: 23.9		
NPSH required (NP	•			:	20.7	ft				1	Minimu	ım							: 19.4	9 in	
Rated brake power				:	205 I	hp				Ns	s / Nss								: 4933	3 / 101	00 (US un
										Mi	nimun	n cont	inuou	s flow					: 5243	3.9 US	gpm
Maximum brake pow	ver				262 I	•				Ma	aximur	n hea	d at r	ated d	liame	ter			: 112.	24 ft	
Driver power rating						•	86 kV	V			ow at E									12.4 U	Sgpm
Casing working pres				:	48.5	psig				Flow as % of BEP: 96.8 %Efficiency at normal flow: -											
(based on shut off	@ cut dia/ra	ated SG	3)		05.0							-							:-	0/	
Maximum allowable					65.0					Impeller diameter ratio (rated/max): 99.4 %Head rise to shut off: 104.1 %											
Hydrostatic test pres Estimated rated sea					82.0 -	psig					ead ris otal hea					(may	/ roto				05.0 %
	•	RVES ARE				JMP IS	GUAR		D FOR											707 10	55.0 70
													-		-						
			kimum 📘																	г	
120 •	23	3.90 in Max																			
120 ·	23	3.90 in Max	+++++++++++++++++++++++++++++++++++++++																	- 100	
120 · 100 ·		3.90 in Max	ed	_																	
100				$\overline{}$																	
100 -				\searrow		//								1						80	. •
100 - 80 -				N	//	//		X												- 80	*
100 - 80 -			ed	N				\mathbb{N}	\bigvee									Efficie	ncy	- 80 - 60	I
100 - # 80 - 7		3.76 in Rate						X										Efficie	ncy		I
100 - 80 -																		Efficie 40	ncy		I
- 100 - 80 - 60 - - 60 -		3.76 in Rate																		- 60	I
- 100 - 80 - 60 - - 60 -		3.76 in Rate																40		- 60	Efficiency - %
100 - 80 - H - Pegu 60 - 40 -		3.76 in Rate																40 NPSH		60 - 40	I
100 - 80 - 60 - 40 -		3.76 in Rate																40 NPSH		60 - 40	I
100 - 100 - 100 		3.76 in Rate																40 NPSH		60 - 40	I
100 - 100 - 100 		3.76 in Rate																40 NPSH		60 - 40	I
100 - 100 - 100 		3.76 in Rate																40 NPSH		60 - 40	I
100 - 100 - 100 		3.76 in Rate																40 NPSH		60 - 40	I
100 - 100 - 100 		3.76 in Rate																40 NPSH 20		60 - 40	I
100 - 80 - 60 - 40 - 20 - 300 - 200 - 100 -		3.76 in Rate																40 NPSH 20		60 - 40	I
100 - 100 - 100 		3.76 in Rate																40 NPSH 20	3 # # K	- 60 - 40 - 20 - 0	I
100 - 80 - 60 - 40 - 20 - 300 - 200 - 100 -		3.76 in Rate											14		16			40 NPSH 20	3 # # K	60 - 40	I
100 - 80 - 60 - 40 - 20 - 300 - 200 - 100 -		3.76 in Rate													16			40 NPSH 20	3 # # K	- 60 - 40 - 20 - 0	I

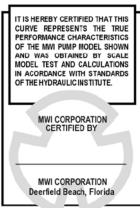


Additional information is required prior to supplying a General Arrangement Drawing. Please refer to Flowserve for further assistance.

Customer	: General Repair Service	Pump size & type	: 24MVX24B	Drawing number	: -
Item number	:-	Pump speed / Stages	: 875 rpm / 1	Date	: August 6, 2020
Service	:-	Flow / Head	: 12500.0 USgpm / 55.00 ft	Certified by / Date :	:-
Customer PO #	:-	Driver power / Frame	: 250 hp / 186 kW / -	Seal type	:-
Flowserve reference	: 2687692364	Volts / Phase / Hz	: 480 / - / 60 Hz	Seal flush plan	:-

Copyright © 2016 Flowserve. All rights reserved.




	SPECTIONS: SOXED DIMENSIC	ONS	PROJECT:	STAN	DARD		TITLE:	_		
ТН	IIRD-ANGLE PROJECTION W	/EIGHT: -			WISE SPECIFIED RE AS FOLLOWS: METRIC:		JOB NO.:		APPROVED BY:	BUMPS 33 NORTHWEST ELLER STREET DEERFIELD BEACH, FL 33441
1.	OTES: NOTES 2, 3, INSPECTIONS AN ARE APPLICABLE ONLY TO P DRAWINGS. BREAK / DE-BURR ALL SHAR CORNERS. REMOVE ALL BURRS/RAISEE	PRODUCTION PEDGES AND	.XX .XXX .XXXX FRACTIONAL MACHINED SURFA FINISH: 1	25 🗸	X. .X .XX .XXX MACHINED SUR FINISH:	32 🗸	DRAWN BY: DRAWING NO.:	N/A -		WWW.WMCORP.COM THIS PROPRIETARY DRAWING IS THE INTELLECTUAL PROPERTY OF MM CORPORATION, A FLORIDA CORPORATION, CORPORATION, A FLORIDA CORPORATION, AND IT'S LOANED WITH THE EXPRESS SHALL NOT DISCLOSE CONFIDENTIAL INFORMATION CONTAINS, A CORPORATION CREATE COPES OF ANY KIND FOR THIRD AUTHORIZATION OF MM.
1	DRILLED HOLES AND TAPPEI MARK PART NO. AT LOCATIC	D HOLES.	BOLT PATTERN TO EQUAL SPACING V 0.03 MAX ALL HOL	VARIATION	BOLT PATTERN EQUAL SPACING 0.8 MAX ALL HO	G VARIATION	REV:	SHEET: 1 OF 1	8/6/2020	AUTHORIZATION OF MWI. ADDITIONALLY THIS DRAWING SHALL BE IMMEDIATELY RETURNED AT THE REQUEST OF MWI.
В		С			D			E		F

А

8

PUMP BOWL PERFORMANCE CURVE								
YPE: MIXED FLOW	IMPELLER DIA: 21.1"							
IODEL NO: MF 24-661400SB+	SPEED: As Noted							
NTAKE DIA: 32"	DISCHARGE COLUMN	DIA: 24"						
CURVE NO.: N2466B	Ns: 6600 Code	e B						
NTAKE DIA: 32"	DISCHARGE COLUMN							

APPENDIX D – ODOR CONTROL ANALYSIS

APPENDIX D ODOR CONTROL ANALYSIS

Stantec has conducted a review of the current odor control system at L-32 on the west side of the river as well as preliminary modeling of the interceptors upstream. The purpose of Appendix D is to outline the analysis conducted to this point and provide high level cost estimates and recommendations.

The Odor control upgrades on the west side include the following:

- 1. Reconfiguring the Existing Radial Carbon Unit
- 2. Installing new OC ductwork to siphon structure
- 3. Further investigation into odor issues that may result upstream from modifications

The odor control upgrades on the east side include the following:

- 1. Installation of a new odor control unit
- 2. Duct sizing and configuration

Stantec has not conducted their own odor study in the L-32 area and will be using data and as-builts provided by MCES and conducted by other consultants.

1.1 INTERCEPTOR AIR DRAG MODELING

Stantec developed a model of the interceptors upstream of L-32 (west side) using air drag calculations to provide a baseline for potential air movement. Air drag calculations consider the friction between the sewage flowing through the sewer and the air in the headspace above the sewage, assuming that air can vent in and out of the sewer as needed. The baseline model looks at individual sewer segments rather than the cumulative flow through the system and does not take into account the effects of drop structures or the removal of air by current systems. The table below is a summary of the air drag modeling conducted for the pipes leading into the new siphon head structure on the west side of the river. Note that pipe ID is ordered from upstream to downstream, 122001 will connect into the siphon structure.

					Predicted
Interceptor Pipe ID	Flow Condition	Diameter (in)	Flow Depth (in)	Flow (MGD)	Airflow (cfm)
122003	Average	54	11.38	16	3,075

	Peak/Wet Weather	54	54	67	0
122002	Average	54	11.38	16	3,177
	Peak/Wet Weather	54	23.99	67	4,392
122001	Average	54	11.38	16	3,177
	Peak/Wet Weather	54	23.99	67	4,392

As seen in the table the predicted airflow entering the siphon structure will be receiving roughly 4,400 cfm of odorous air to be ventilated through the proposed odor control duct within the structure. One point of concern is during peak flows the interceptor pipe 122003 upstream of L-32 could experience an airflow pinch point. This causes a block in airflow down the pipe and can result in backup of air creating positive pressure upstream of the pinch point.

1.2 DESIGN CRITERIA-WEST SIDE

The Odor control upgrades on the west side are limited to making the old radial carbon unit functional for treating the siphon structure. This will require that the current blend of carbon within the filter be confirmed as still practical.

A new odor collection duct will have to be constructed from the odor control unit to siphon structure. Given the predicted airflow volumes this duct will need to between 20"-24". The final size will be dependent on the alignment of the ductwork. Stantec is operating under the assumption that the current unit is working efficiently at its designed loads.

Under the current conditions it is not recommended that chemical addition be added to the west side of the river. The siphon is a short distance and the addition of chemical will have little to no effect on odor generation over the residence time. Focusing on maintaining vapor phase odor control on the west and implementing odor control on the east is the recommended approach.

1.3 DESIGN CRITERIA-EAST SIDE

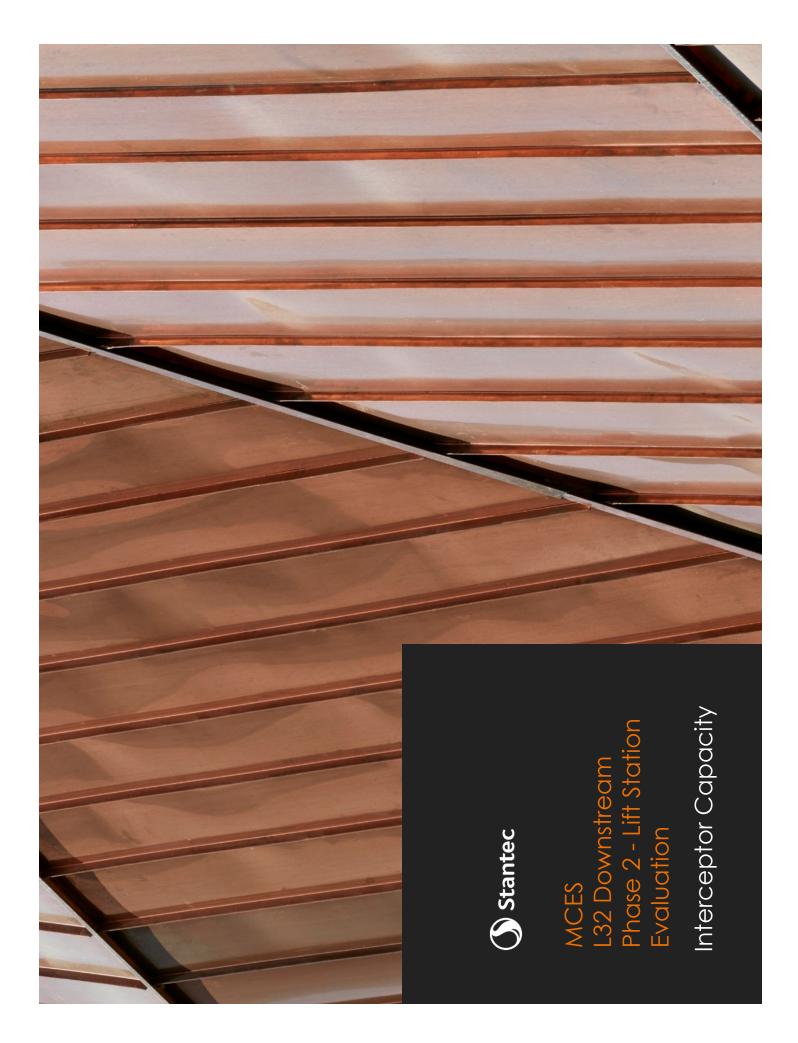
Local odor control will be necessary at the new L-32 Lift Station to provide safe worker access areas exposed to harmful odorous air and well as prevent corrosion inside the lift station. Installing odor control measures will also help to prevent odors from escaping and causing odor complaints in the surrounding neighborhood. There are a wide variety of odor control technologies available in the marketplace. However, not all technologies are suitable for all applications. Generally, the technology is driven by the compounds to be treated and the environmental conditions of the air flow to be treated.

The main odor component that will need to be treated at this lift station is H_2S . The siphon entering the lift station wet well reduces the influent air flow to zero. Therefore, the air that is required to be contained, collected, treated and released will all be from the wet well, pump rooms and storage tank if applicable. Vapor phase treatment will be the most effective way of odor control under these circumstances. Given the 10 ppm average inlet H_2S for the carbon system on the west side of the river, carbon would be the

most effective treatment process for the lift station on the east side as well. Below are the design criteria for the odor system on the west side.

Air collection rates for the odor control system


Area	Area Volume (ft³)	Ventilation rate (air changes per hour)	Airflow (ft³/min)
Wet Well 1		12	5,000
Wet Well 2		12	5,000
Pump Room 1		6	2,500
Pump Room 2		6	2,500
Overflow Tank		6	
Total *Excluding Overflow Tank			15,000


The table below represents the conceptual design for a carbon system capable of treating the air at the new lift station.

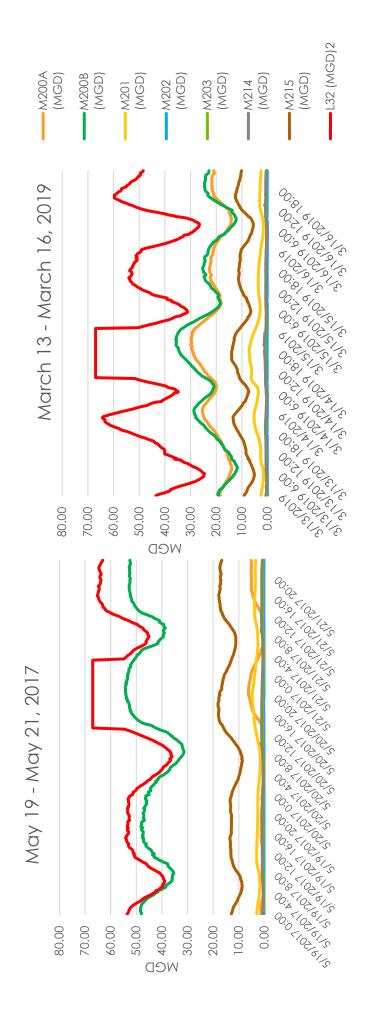
Carbon System								
Vessel Diameter	9 ft							
Vessel Height	15 ft							
Flow Rate	15,000 cfm							
Depth of Carbon	2 ft							
H2S Removal Efficiency	>99%							
Vessel Material of Construction: Fiberglass Reinfo	rced Plastic (FRP)							
Carbon Filter Headloss	8-inches of water column							
FRP Mist Eleminator Headloss	Clean: 0.5" w.c. Dirty: 1.25 w.c.							
Odor Control Supply Fans								
Supply Fans	2 (duty/duty depending on operating condition)							
Flow Rate Capacity	15,000 cfm							
Static Pressure	10-inches of water column							
Material of Construction: Fiberglass reinforced pla	stic (FRP) for corrosion resistance							
Motor	100 HP explosion proof, Class I Division I							
Noise Enclosure	Yes							
Drive Type	Variable Frequency Drive							
Odor Control Due	ctwork							
Dampers: Manual butterfly valves schedule 80 PV	с							
Odor Control Duct	FRP							

APPENDIX E – L32_DOWNSTREAM CAPACITY ANALYSIS

Downstream L32 Interceptors Analysis

Aeeting
MCES N
– Per /
lations
Simul

$$3 \times 2^{*} = 6$$
 sets of results

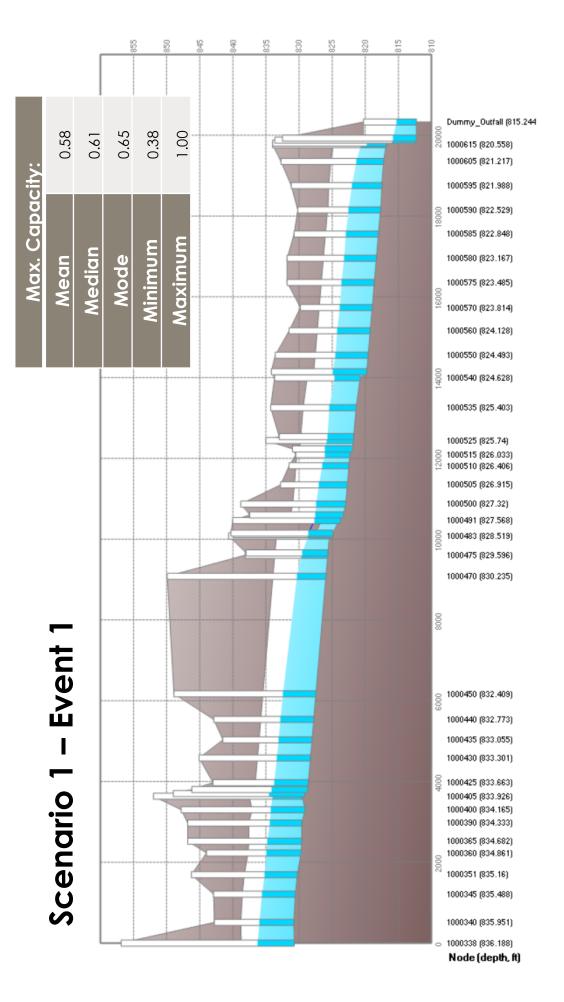

6 sets + 2 peak flow simulations = 8 Total Simulations

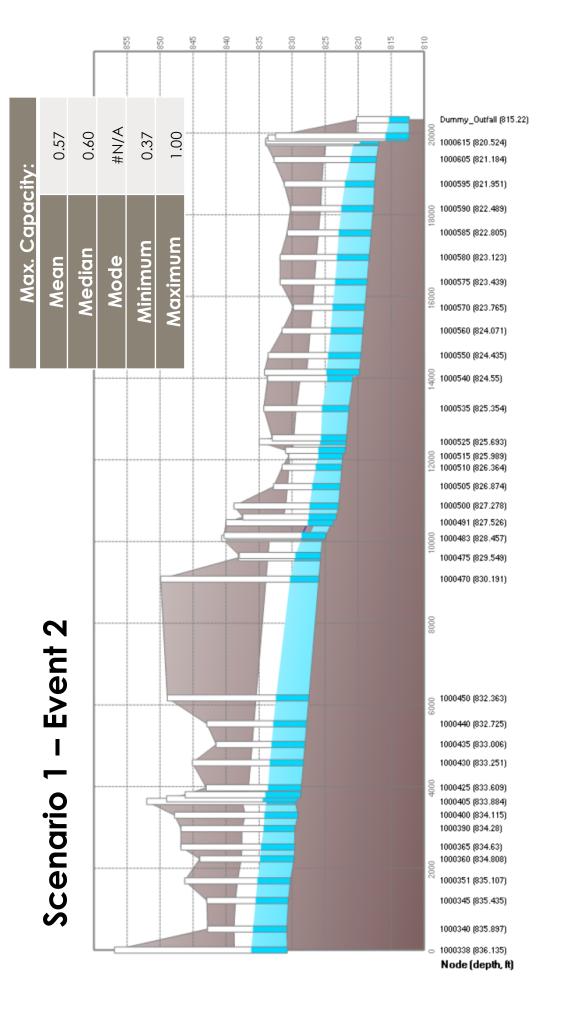
*Two events (5/20/2017 and 3/14/2019)

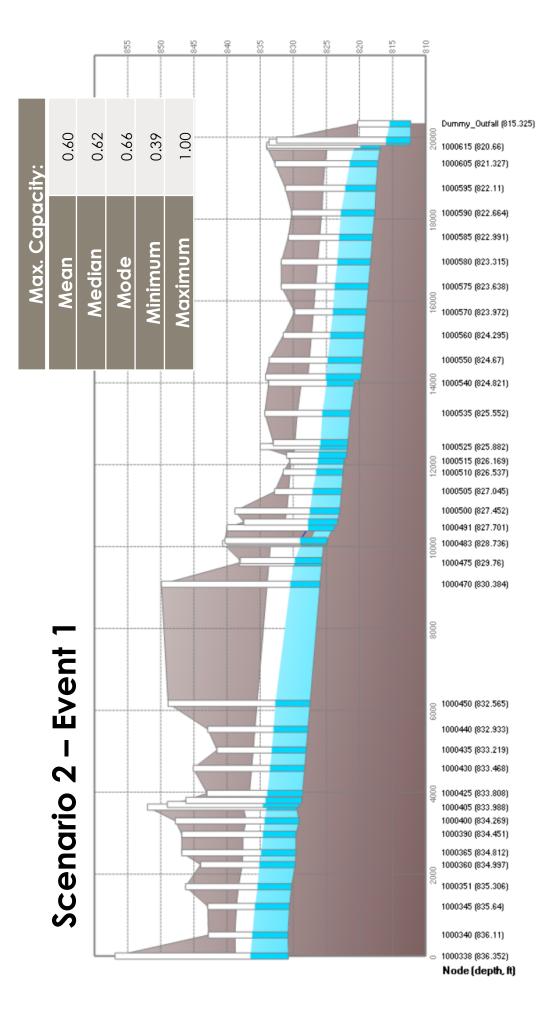
Updated Results

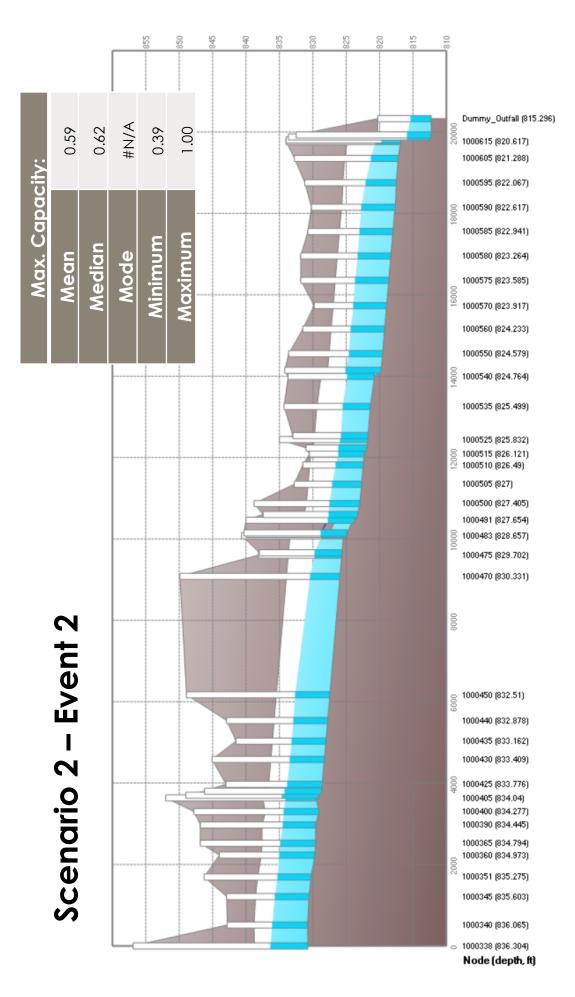
For FM Scenarios:

Jsed extended 67MGD DS of L32.

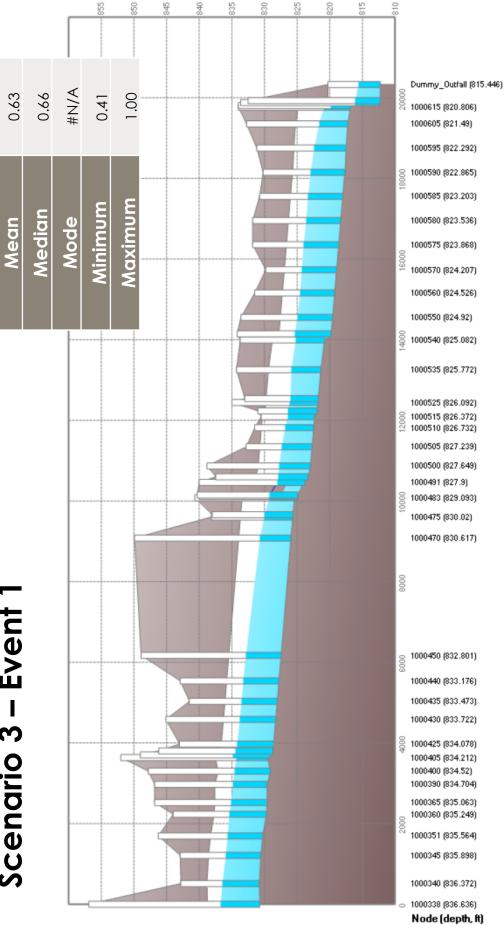

Updated Results

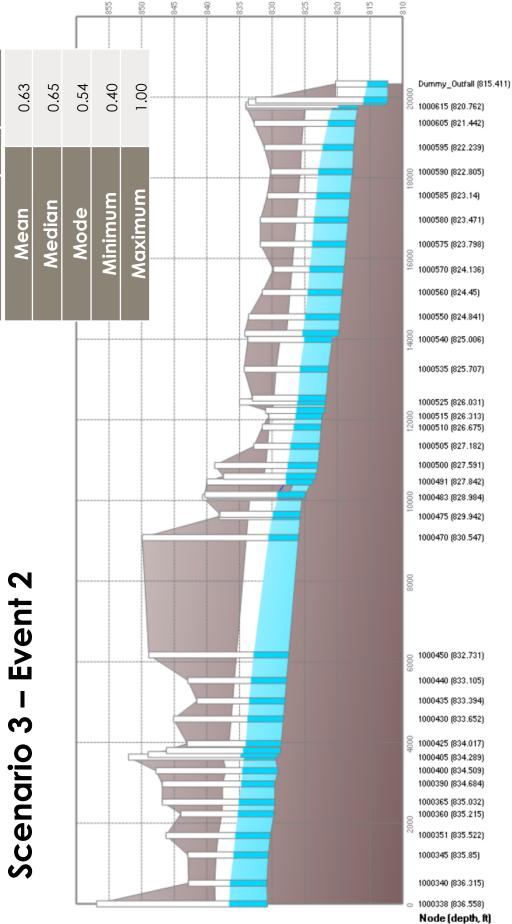

Scenarios:

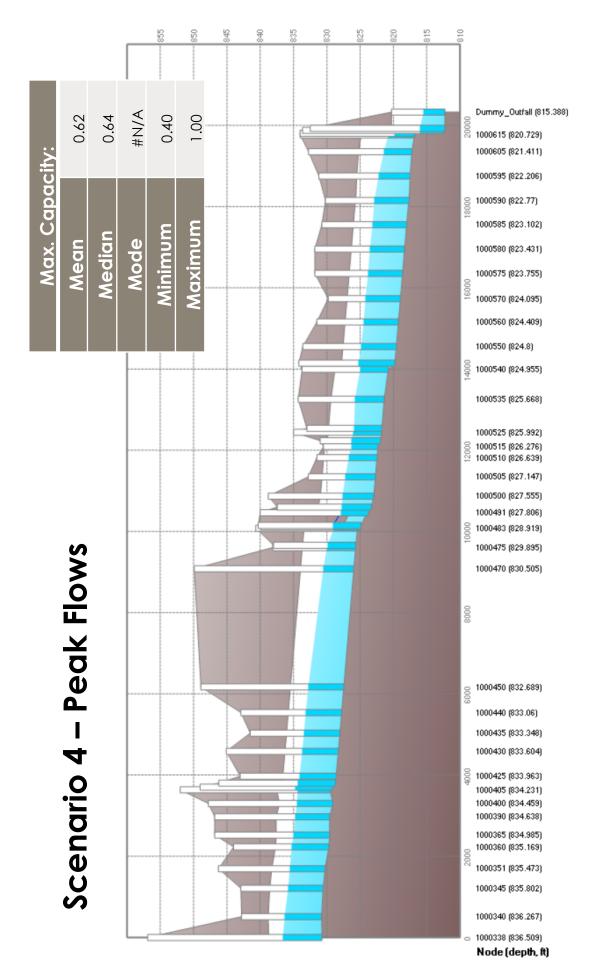

- Scenario 1: Existing Meter Data
 - Scenario 1 Event 1 (5/20/2017)
- Scenario 1 Event 2 (3/14/2019)
- Scenario 2: Existing Meter Data plus 20%
 - Scenario 2 Event 1 (5/20/2017)
 - Scenario 2 Event 2 (3/14/2019)
- Scenario 3: Existing Meter Data plus 50%
 - Scenario 3 Event 1 (5/20/2017)
 Scenario 3 Event 2 (3/14/2019)
 - Scenario 4: Peak Flows*
- Scenario 5: Peak Flows* plus 50%

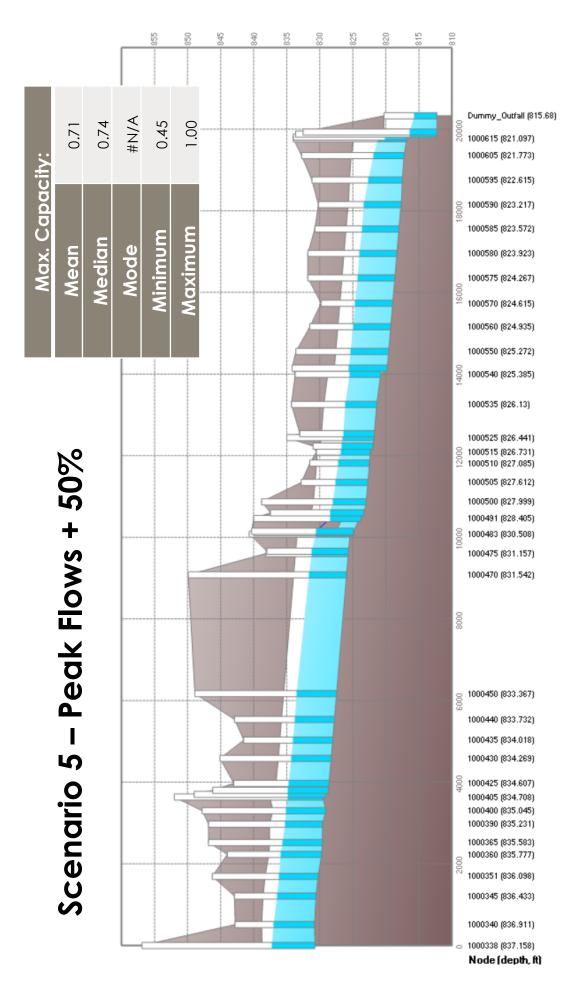

*Peak	Flows	7.16	0.90	4.75	2.85	18.14
-	Meters	M201	M202	M203	M214	M215

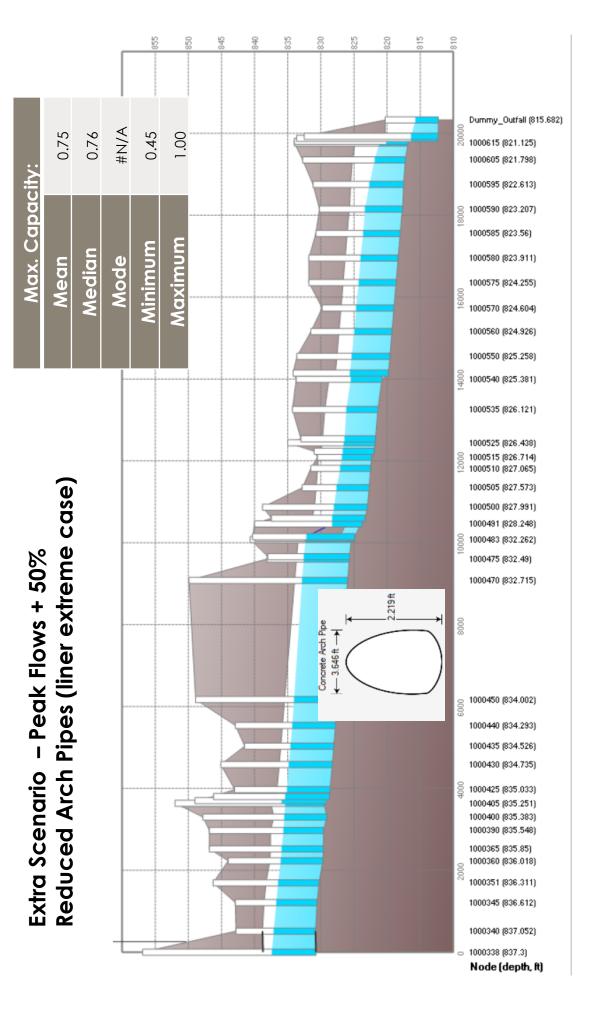
Updated Results

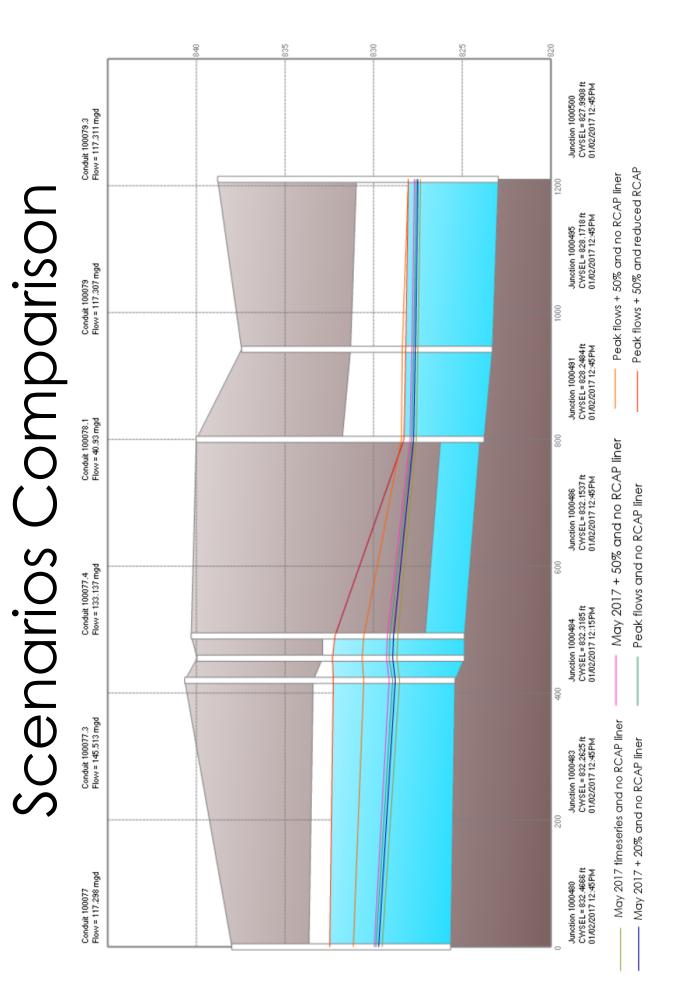


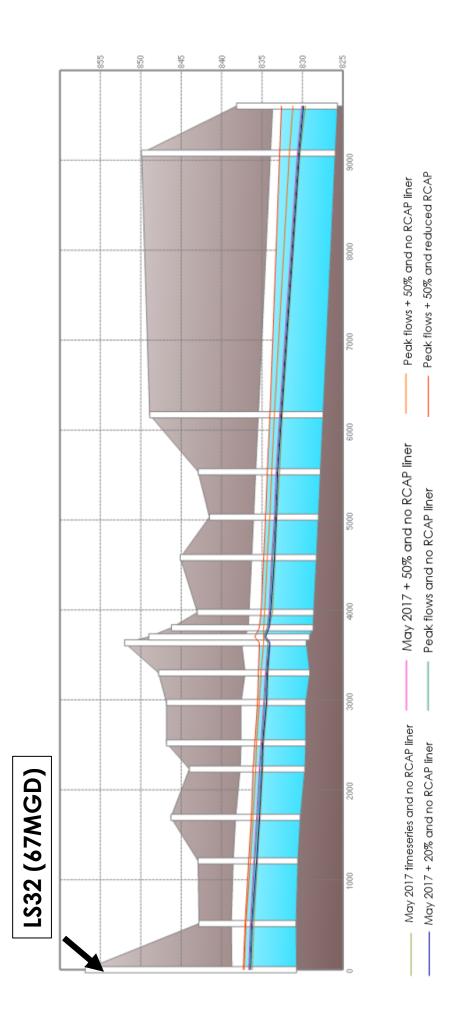

Max. Capacity:

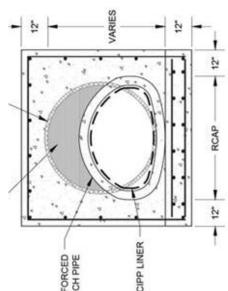







Max. Capacity:




Scenarios Comparison

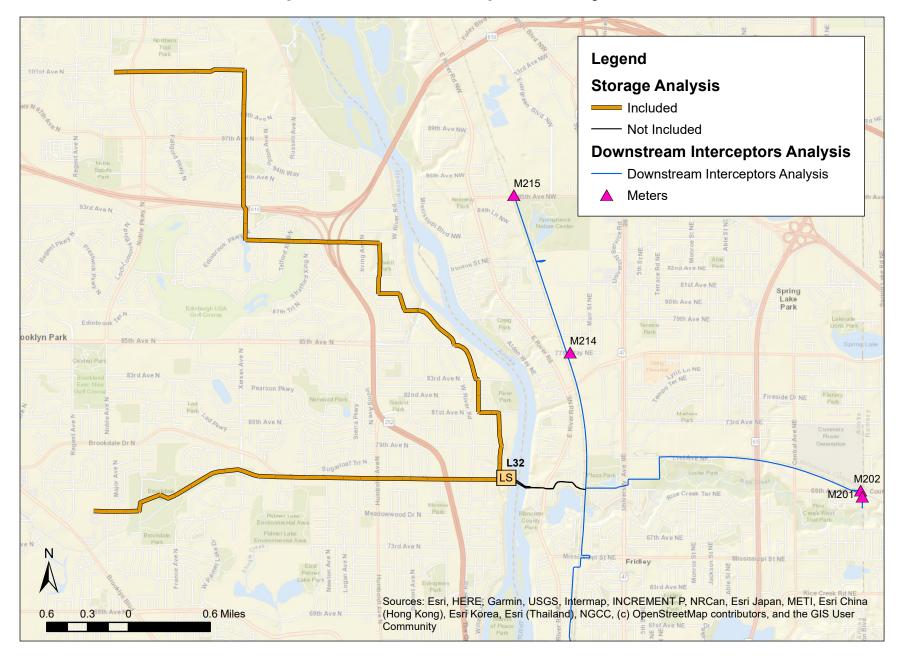
Assumptions

- No significant infiltration in interceptor
- No downstream constraints
- No downstream meter in the interceptor to confirm possible constraints
- Arch pipes sized as shown in record drawings

Assumptions: 4.26' (W) x 2.6' (H) [Standard Size]; Clean / No Debris

Conclusion

Assuming the previous assumptions are the interceptor's capacity is adequate correct, the model results indicate that for all scenarios analyzed under this scope.

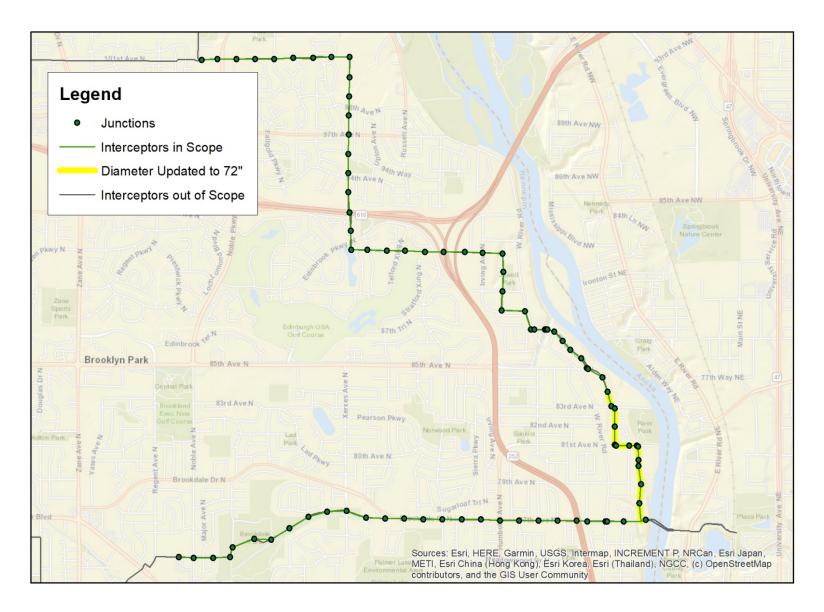

Name	Inlet Node	Outlet Node	Diameter (ft)	Diameter (in)	Slope (ft/ft)	Slope (%)
100032	1000200	1000205	5	60	0.131	13.09
100033	1000205	1000210	5	60	0.005	0.54
100034	1000210	1000215	5	60	0.005	0.45
100035	1000215	1000220	5	60	0.005	0.52
100036	1000220	1000225	5	60	0.008	0.75
100037	1000225	1000230	6	72	0.000	0.04
100038	1000230	1000235	6	72	0.000	0.00
100039	1000235	1000240	6	72	0.001	0.13
100040	1000240	1000245	6	72	0.000	0.04
100041	1000245	1000250	6	72	0.000	0.03
100042	1000250	1000255	6	72	0.000	0.04
100043	1000255	1000260	6	72	0.000	0.04
100044	1000260	1000265	6	72	0.000	0.04
100045	1000265	1000270	6	72	0.000	0.04
100046	1000270	1000275	6	72	0.000	0.04
100047	1000275	1000280	6	72	0.001	0.14
100048	1000280	1000285	6.5	78	0.000	0.02
100049	1000285	1000290	6.5	78	0.000	0.03
100050	1000290	1000295	6.5	78	0.008	0.78
100051	1000295	1000300	6.5	78	0.000	0.02
100052	1000300	1000305	6.5	78	0.000	0.03
100053	1000305	1000310	6.5	78	0.000	0.03
100054	1000310	1000315	6.5	78	0.000	0.03
100055	1000315	1000320	6.5	78	0.000	0.02
100056	1000320	1000325	6.5	78	0.000	-0.02
100057	1000325	1000330	6.5	78	0.000	0.04
100058	1000330	1000336	6.5	78	0.001	0.14
100059.1	1000336	1000338	8	96	0.000	0.00
100059.2	1000338	1000340	8	96	0.000	-0.01
100060	1000340	1000345	8	96	0.000	0.03
100061	1000345	1000351	8	96	0.001	0.06
100062	1000351	1000360	8	96	0.001	0.11
100063	1000360	1000365	8	96	0.000	0.04
100064	1000365	1000390	8	96	0.000	0.00
100065	1000390	1000400	8	96	0.002	0.15
100066	1000400	1000405	8	96	-0.001	-0.13
100067	1000405	1000410	8	96	0.006	0.60
100068	1000410	1000415	8	96	0.004	0.44
100069	1000415	1000425	8	96	0.001	0.05
100070	1000425	1000430	8	96	0.001	0.05
100071	1000430	1000435	8	96	0.001	0.05
100072	1000435	1000440	8	96	0.001	0.05
100073	1000440	1000450	8	96	0.001	0.05
100074	1000450	1000470	8	96	0.001	0.05
100075	1000470	1000475	8	96	0.001	0.05
100076	1000475	1000480	8	96	0.001	0.05

Name	Inlet Node	Outlet Node	Diameter (ft)	Diameter (in)	Slope (ft/ft)	Slope (%)
100077	1000480	1000483	8	96	0.001	0.06
100077.3	1000483	1000484	8	96	0.015	1.51
100077.4	1000484	1000486	8	96	0.000	0.00
100078.2	1000486	1000491	7	84	0.003	0.28
100079	1000491	1000495	8	96	0.003	0.33
100079.3	1000495	1000500	8	96	0.001	0.12
100080	1000500	1000505	8	96	0.001	0.06
100081	1000505	1000510	8	96	0.000	0.05
100082	1000510	1000515	8	96	0.001	0.06
100083	1000515	1000520	8	96	0.003	0.28
100084	1000520	1000525	8	96	0.001	0.06
100085	1000525	1000530	8	96	0.001	0.05
100086	1000530	1000535	8	96	0.001	0.05
100087	1000535	1000540	8	96	0.001	0.08
100088	1000540	1000545	8	96	0.007	0.66
100089	1000545	1000550	8	96	0.001	0.05
100090	1000550	1000560	8	96	0.001	0.05
100091	1000560	1000570	8	96	0.001	0.05
100092	1000570	1000575	8	96	0.001	0.05
100093	1000575	1000580	8	96	0.001	0.05
100094	1000580	1000585	8	96	0.001	0.05
100095	1000585	1000590	8	96	0.001	0.05
100096	1000590	1000595	8	96	0.000	0.02
100097	1000595	1000605	8	96	0.000	0.05
100098	1000605	1000615	8	96	0.001	0.10
100099	1000615	1000620	8	96	0.000	0.05
100101	1000620	1000630	6	72	-0.002	-0.24
100102	1000630	1000635	6	72	0.004	0.39
100104	1000620	1000645	6	72	-0.002	-0.24
100105	1000645	1000635	6	72	0.004	0.39
101007	1010035	1000280	1.5	18	0.079	7.95
103113	1030784	1030785	5.5	66	0.016	1.56
103114	1030785	1030795	4	48	0.011	1.07
103115	1030795	1030810	4 5	48	0.000	0.02
103116 103117	1030810 1030815	1030815 1030820	5	60 60	0.006	0.61 0.21
	-		5	60 60	0.002	0.21
103118 103119	1030820 1030825	1030825 1030830	5	60 60	0.001	0.09
103119	1030825	1030830	5	60	0.002	0.18
103120	1030830	1030835	5	60	0.001	0.13
103121	1030833	1030845	5	60	0.002	1.12
103122	1030840	1030843	5	60	0.001	0.17
103123	1030843	1030855	5	60	0.002	0.17
103124	1030855	1030855	5	60	0.002	0.21
103125	1030855	1030865	5	60	0.002	0.15
103120	1030865	1030870	5	60	0.002	0.10
103171	1020902	1020010	J	00	0.005	0.29

Name	Inlet Node	Outlet Node	Diameter (ft)	Diameter (in)	Slope (ft/ft)	Slope (%)
103128	1030870	1030875	5	60	0.002	0.21
103129	1030875	1030880	5	60	0.002	0.17
103130	1030880	1030885	5	60	0.002	0.18
103131	1030885	1030890	5	60	0.002	0.17
103132	1030890	1030895	5	60	0.002	0.19
103133	1030895	1030900	5	60	0.002	0.18
103134	1030900	1030905	5	60	0.002	0.19
103135	1030905	1030915	5	60	0.002	0.17
103136	1030915	1030920	5	60	0.002	0.16
103137	1030920	1030930	5	60	0.002	0.18
103138	1030930	1030935	5	60	0.002	0.20
103139	1030935	1030940	5	60	0.002	0.17
103140	1030940	1030950	5	60	0.002	0.17
103141	1030950	1030970	6	72	0.001	0.08
103142	1030970	1030975	6	72	0.000	0.04
103144	1030975	1000336	6	72	0.002	0.22
122015	1220137	1000338	5	60	-0.001	-0.09
90040	900300	900310	3.5	42	0.002	0.22
90041	900310	1030810	3.5	42	0.001	0.09
Dummy_Outfall	1000635	Dummy_Outfall	8	96	0.000	0.00
L.163	1000530	1000535	8	96	0.001	0.05
100078.1	1000486	1000491	7	84	0.003	0.28
100078.3	1000486	1000491	7	84	0.003	0.28

APPENDIX F – L32_UPSTREAM STORAGE CAPACITY

Upstream L32 Interceptors Analysis

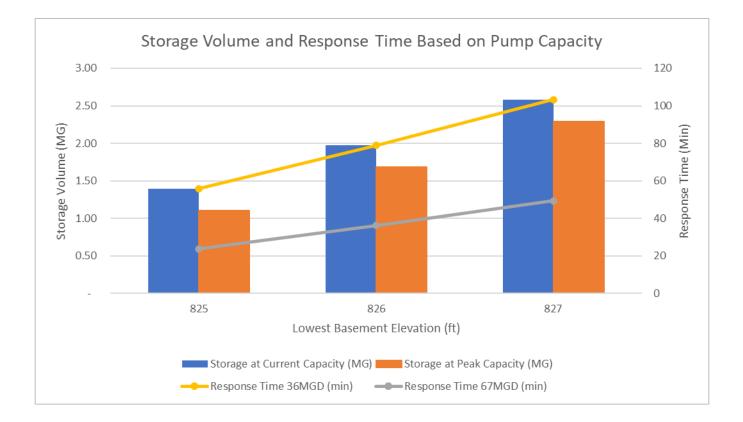

MCES L32 Phase 2 – Lift Station Analysis

Storage and Response Time West Interceptors

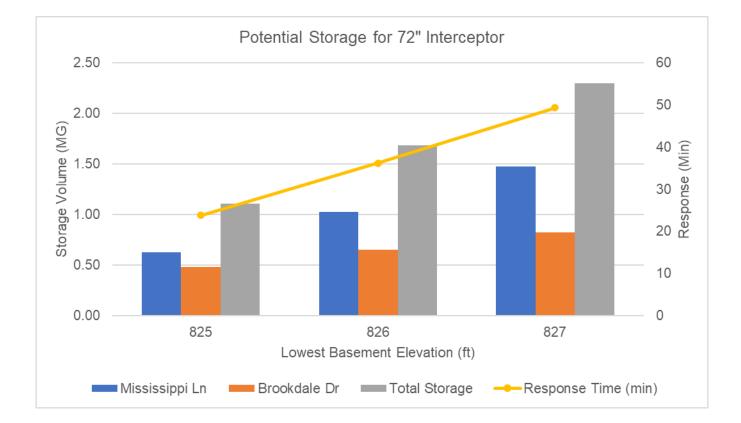
Assumptions

- Free fall conditions (no obstructions downstream of L32)
- No changes in current peak dry weather flow estimated using data from 2018 and 2019. Current capacity of 36MGD from 2018 used
- Peak flow of 67MGD based on projected ultimate flow

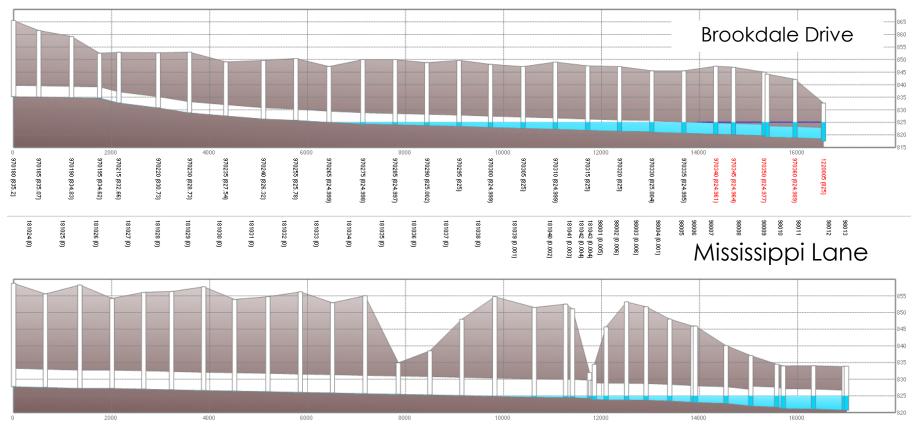
Study Area


Estimated Storage and Response Time

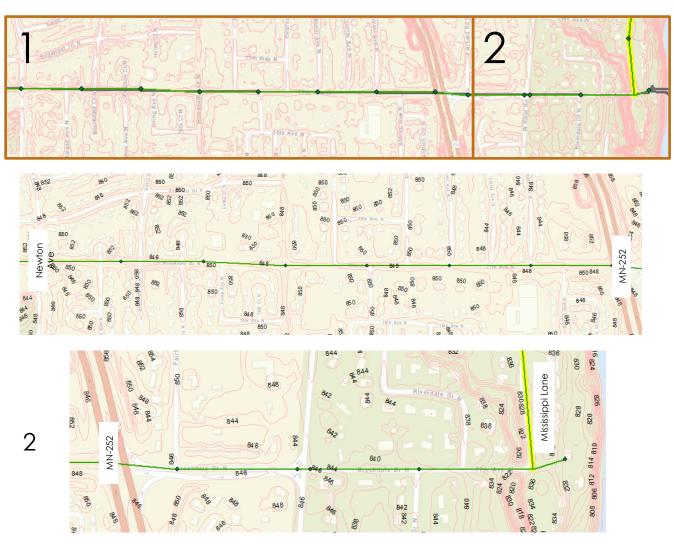
			Volume		Ctorese Augilable at	Storage Available at	
	Initial Conditions	Empty pipes (MG)Incoming flow of 36MGD (MG)Incoming flow of 67MGD (MG)		Storage Available at Current Capacity (MG)	Peak Capacity (MG)		
	Mississippi Lane* (MG)	1.07	0.29	0.45	0.78	0.62	
5ft	Brookdale Dr. (MG)	0.77	0.16	0.29	0.61	0.48	
82.	Lift station pipes (MG)	t station pipes (MG) 0.02		0.02	0.01	0.00	
	Total (MG)	1.87 0.47 0.76		0.76	1.40	1.11	
	Mississippi Lane* (MG)	1.48	0.29	0.45	1.19	1.03	
826ft	Brookdale Dr. (MG)	0.94	0.16	0.29	0.78	0.65	
82	Lift station pipes (MG)	0.02	0.02	0.02	0.01	0.00	
	Total (MG)	2.44	0.47	0.76	1.97	1.68	
	Mississippi Lane* (MG)	1.92	0.29	0.45	1.63	1.47	
7ft	Brookdale Dr. (MG) 1.11 0.16 0.29		0.29	0.94	0.82		
82	Lift station pipes (MG)	0.02	0.02	0.02	0.01	0.00	
	Total (MG)	3.06	0.47	0.76	2.58	2.29	


Basement Elevation (ft)	Storage at Current Capacity (MG)	Current Response Time 36MGD (min)	Storage at Peak Capacity (MG)	Peak Response Time 67MGD (min)	
825	1.40	56	1.11	24	
826	1.97	79	1.68	36	
827	2.58	103	2.29	49	

*Mississippi Lane 72" Diameter


Potential Storage Volume – Current vs. Peak Capacity

Potential Storage Volume at Peak Capacity

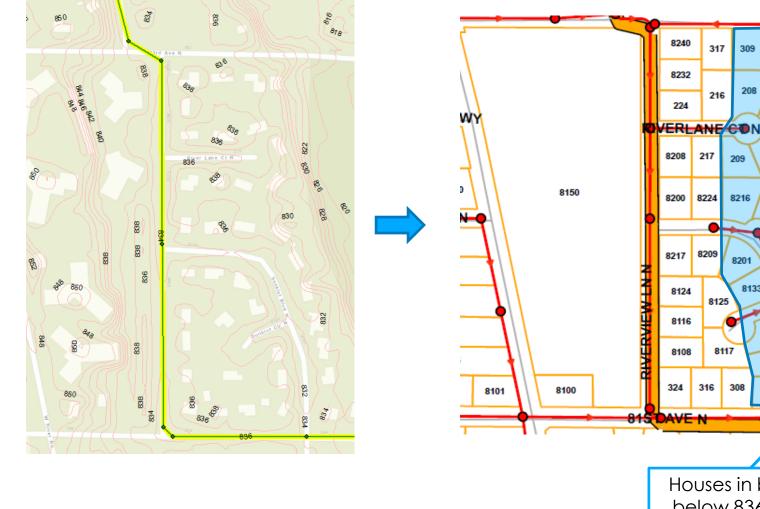


Basements on Brookdale Dr.

Rim elevations indicate that most basement levels on Brookdale Dr. are higher than 835ft. This was confirmed with 2ft-contours information. There are a few locations closer to the lift station that should be verified (areas below 835ft which could result in basement elevation of 827ft).

Surface Elevation on Brookdale Dr

Basements on Brookdale Dr.



Basements on Brookdale Dr. Survey Results

Address	Elevation	Note
48 Brookdale Drive	NA	MetC owns the property and there is no house
92 Brookdale Drive	832.62ft	Level with the Clean out
92 Brookdale Drive	829.52ft	Level that is the deepest. Used this one
108 Brookdale Drive	830.60ft	
109 Brookdale Drive	832.61ft	
7640 Mississippi Lane	822.65ft	

Basements on Mississippi Ln.

Houses in blue are below 836ft. They should be surveyed

B3RD AVE N

826.48

Basements on Mississippi Ln. Survey Results

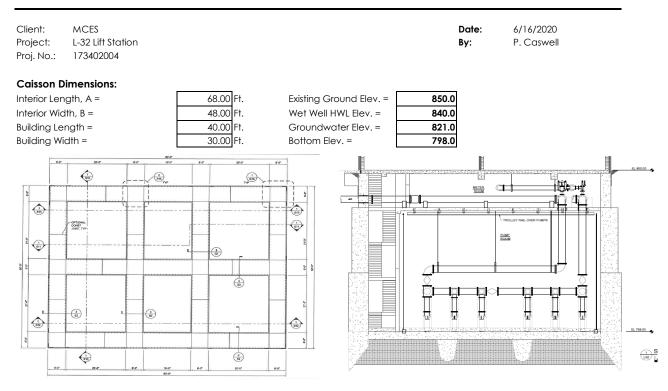
Address	Elevation	Note
208 81st Avenue North	826.12ft	Level that is the deepest. Homeowner mentions the basement did fill up with sewage
8108 Sunkist Boulevard North	830.36ft	Previously reported at 825.7
8116 Sunkist Boulevard North	831.06ft	Previously reported at 826.48
301 83rd Avenue North	826.25ft	Previously reported at 826.68. Homeowner mentions the sewer smell is unbearable
200 River Ln Ct		Pending survey
201 River Ln Ct		Pending survey
208 River Ln Ct		Pending survey
209 River Ln Ct		Pending survey
216 81st Ave N		Pending survey
309 83rd Ave N		Pending survey
8101 Sunkist Blvd		Pending survey
8105 Sunkist Blvd		Pending survey
8109 Sunkist Blvd		Pending survey
8124 Sunkist Blvd		Pending survey
8132 Sunkist Blvd		Pending survey
8133 Sunkist Blvd		Pending survey
8200 Sunkist Blvd		Pending survey
8201 Sunkist Blvd		Pending survey
8208 Sunkist Blvd		Pending survey
8216 Sunkist Blvd		Pending survey

Name	Inlet Node	Outlet Node	Diameter (ft)	Diameter (in)	Slope (ft/ft)	Slope (%)
122002	1220005	1220020	4.5	54	0.0034	0.34
122003	1220020	1220030	4.5	54	0.0021	0.21
98001	980005	980010	5	60	0.0003	0.03
98002	980010	980020	5	60	0.0001	0.01
98003	980020	980025	5	60	0.0002	0.02
98004	980025	980030	5	60	0.0005	0.05
98005	980030	980045	5	60	0.0008	0.08
98006	980045	980050	5	60	0.0012	0.12
98007	980050	980070	5	60	0.0005	0.05
98008	980070	980080	5	60	0.0016	0.16
98009	980080	980085	6	72	0.0006	0.06
98010	980085	980100	6	72	0.0034	0.34
98011	980100	980105	6	72	0.0002	0.02
98012	980105	980110	6	72	0.0006	0.06
98013	980110	980115	6	72	0.0006	0.06
98014	980115	980120	6	72	0.0006	0.06
98015	980120	980125	6	72	0.0005	0.05
98016	980125	980135	6	72	0.0000	0.00
98017	980137	980140	6	72	0.0004	0.04
98017.1	980135	980137	6	72	0.0013	0.13
98018	980140	980150	6	72	0.0004	0.04
98019	980150	980165	6	72	0.0009	0.09
98020	980165	1220005	6	72	0.0003	0.03
181045	1810330	980005	5.5	66	0.0104	1.04
181043	1810320	1810325	5.5	66	0.0008	0.08
181044	1810325	1810330	5.5	66	0.0006	0.06
181042	1810305	1810320	5.5	66	0.0008	0.08
181041	1810295	1810305	5.5	66	0.0000	0.00
181040	1810285	1810295	5.5	66	0.0002	0.02
181039	1810270	1810285	5.5	66	0.0003	0.03
181038	1810255	1810270	5.5	66	0.0003	0.03
181010	1810060	1810065	5.5	66	0.0001	0.01
181011	1810065	1810070	5.5	66	0.0003	0.03
181012	1810070	1810075	5.5	66	0.0002	0.02
181013	1810075	1810080	5.5	66	0.0002	0.02
181014	1810080	1810085	5.5	66	0.0002	0.02
181015	1810085	1810095	5.5	66	0.0001	0.01
181016	1810095	1810105	5.5	66	0.0003	0.03
181017	1810105	1810115	5.5	66	0.0004	0.04
181018	1810115	1810125	5.5	66	0.0001	0.01
181019	1810125	1810130	5.5	66	0.0003	0.03
181020	1810130	1810135	5.5	66	0.0002	0.02
181021	1810135	1810140	5.5	66	0.0004	0.04
181022	1810140	1810145	5.5	66	0.0002	0.02
181023	1810145	1810150	5.5	66	0.0001	0.01
181024	1810150	1810155	5.5	66	0.0004	0.04

Name	Inlet Node	Outlet Node	Diameter (ft)	Diameter (in)	Slope (ft/ft)	Slope (%)
181025	1810155	1810165	5.5	66	0.0004	0.04
181026	1810165	1810175	5.5	66	0.0000	0.00
181027	1810175	1810185	5.5	66	0.0003	0.03
181028	1810185	1810195	5.5	66	0.0004	0.04
181029	1810195	1810200	5.5	66	0.0004	0.04
181030	1810200	1810205	5.5	66	0.0002	0.02
181031	1810205	1810210	5.5	66	0.0003	0.03
181032	1810210	1810215	5.5	66	0.0004	0.04
181033	1810215	1810220	5.5	66	0.0002	0.02
181034	1810220	1810225	5.5	66	0.0004	0.04
181035	1810225	1810235	5.5	66	0.0002	0.02
181036	1810235	1810245	5.5	66	0.0003	0.03
181037	1810245	1810255	5.5	66	0.0003	0.03

Brookdale

Name	Inlet Node	Outlet Node	Diameter (ft)	Diamter (in)	Slope (ft/ft)	Slope (%)
122002	1220005	1220020	4.5	54	0.0034	0.34
122003	1220020	1220030	4.5	54	0.0021	0.21
97025	970180	970185	4.5	54	0.0003	0.03
97026	970185	970190	4.5	54	0.0004	0.04
97027	970190	970195	4.5	54	0.0004	0.04
97028	970195	970215	4.5	54	0.0050	0.50
97029	970215	970220	4.5	54	0.0024	0.24
97030	970220	970230	4.5	54	0.0031	0.31
97031	970230	970235	4.5	54	0.0016	0.16
97032	970235	970240	4.5	54	0.0016	0.16
97033	970240	970255	4.5	54	0.0008	0.08
97034	970255	970265	4.5	54	0.0012	0.12
97035	970265	970275	4.5	54	0.0009	0.09
97036	970275	970285	4.5	54	0.0005	0.05
97037	970285	970290	4.5	54	0.0005	0.05
97038	970290	970295	4.5	54	0.0005	0.05
97039	970295	970300	4.5	54	0.0007	0.07
97040	970300	970305	4.5	54	0.0005	0.05
97041	970305	970310	4.5	54	0.0005	0.05
97042	970310	970315	4.5	54	0.0007	0.07
97043	970315	970320	4.5	54	0.0006	0.06
97044	970320	970330	4.5	54	0.0003	0.03
97046	970330	970335	4.5	54	0.0006	0.06
97047	970335	970340	4.5	54	0.0006	0.06
97048	970340	970345	4.5	54	0.0006	0.06
97049	970345	970350	4.5	54	0.0006	0.06
97050	970350	970355	4.5	54	0.0089	0.89
97051	970355	970360	4.5	54	0.0004	0.04
97052	970360	1220005	4.5	54	0.0007	0.07


Lift Station L-32 Storage and O&M Summary

	Lift Station L-32 Storage and O&M Summary											
Option WEST SIDE STORAGE at 67 MGD Storage Volume Response Time Comment Construction 25% 25% Undeveloped Total Annual							Annual O&M					
Option	ULLTIMATE PEAK FLOW	MGD	Minutes	Comment		Estimate Contingency		Design Details		Total	Annual Ool	
1	Existing Interceptor to Elev. 825	1.1 MG	24 Minutes	Existing Pipes	\$	-	\$	-	\$	-	\$-	\$0
2	Existing Interceptor to Elev. 826	1.68 MG	36 Minutes	Construct Mississippi Ln. LS	\$	650,000.00	\$	162,500.00	\$	162,500.00	\$975,000.00	\$10,000
				Need Additional Survey,								
3	Existing Interceptor to Elev. 827	2.29 MG	49 Minutes	assume 2nd LS	\$	650,000.00	\$	162,500.00	\$	162,500.00	\$975,000.00	\$10,000

APPENDIX G – RESPONSE TANK SIZING EAST

RECTANGULAR CAISSON

DISPLACED VOLUME/BUOYANT FORCE:

Lift Description Top El Lift Ht. Thickness Length, A' Width, B' Vol. Disp. Buoy. Force 4 Perimeter Wall - 1 850.00									
3 Perimeter Wall - 2 835.00 15.00 3.00 74.00 54.00 59,940 3,740 kij 2 Perimeter Wall - 3 820.00 15.00 5.00 78.00 58.00 67,860 4,234 kij 1 Perimeter Wall - 4 798.00 22.00 6.00 80.00 60.00 105,600 6,589 kij 0 Base Slab 790.00 6.00 60.00 80.00 28,800 1,797 262,200 16,361	Lift	Description	Top El	Lift Ht.	Thickness	Length, A'	Width, B'	Vol. Disp.	Buoy. Force
2 Perimeter Wall - 3 820.00 15.00 5.00 78.00 58.00 67,860 4,234 kin 1 Perimeter Wall - 4 798.00 22.00 6.00 80.00 60.00 105,600 6,589 kin 0 Base Slab 790.00 6.00 60.00 80.00 28,800 1,797 262,200 16,361	4	Perimeter Wall - 1	850.00						
1 Perimeter Wall - 4 798.00 22.00 6.00 80.00 60.00 105,600 6,589 kij 0 Base Slab 790.00 6.00 6.00 80.00 60.00 28,800 1,797 262,200 16,361	3	Perimeter Wall - 2	835.00	15.00	3.00	74.00	54.00	59,940	3,740
0 Base Slab 790.00 6.00 6.00 80.00 60.00 28,800 1,797 262,200 16,361	2	Perimeter Wall - 3	820.00	15.00	5.00	78.00	58.00	67,860	4,234
262,200 16,361	1	Perimeter Wall - 4	798.00	22.00	6.00	80.00	60.00	105,600	6,589
	0	Base Slab	790.00	6.00	6.00	80.00	60.00	28,800	1,797
CF kips								262,200	16,361
								CF	kips

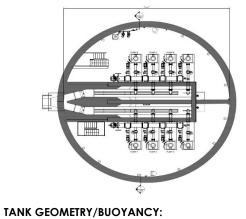
RESISTING FORCE:

No.	Description	Length	Width	Thickness	Height	Area/Vol.	Density	Weight	
1.1	Building	40.00	30.00		10.00	800.0	150.00	180.0	kips
2.1	Caisson Lift 1 Walls	68.00	48.00	3.00	15.00	10,980.0	0.15	1,647.0	kips
2.2	Caisson Lift 2 Walls	68.00	48.00	5.00	15.00	18,900.0	0.15	2,835.0	kips
2.3	Caisson Lift 3 Walls	68.00	48.00	6.00	22.00	33,792.0	0.15	5,068.8	kips
2.4	Intermediate Wall	48.00	0.00	1.50	50.00	7,650.0	0.15	1,147.5	
2.5	Intermediate Wall	28.00	0.00	1.00	50.00	3,000.0	0.15	450.0	
3.1	Slab - Base	68.00	48.00	8.00	-	26,112.0	0.15	3,916.8	kips
3.2	Slab - Structural Base	68.00	48.00	0.00	-	0.0	0.15	0.0	kips
3.3	Slab - Lean Conc. Fill	68.00	48.00	2.00	-	6,528.0	0.15	979.2	kips
3.4	Slab - Intermediate	68.00	48.00	1.33	-	4,352.0	0.15	652.8	kips
3.5	Slab - Main Level	68.00	48.00	1.33	-	4,352.0	0.15	652.8	kips
						116,466		17,530	kips
						4,314	CY		

4,314

STRUCTURE QUANTITIES/COSTS: Buoyant Force = Dead Load Force Provided =		16,361 kips 17,530 kips
Safety Factor =		1.07 FAIL
Anchoring Force Req'd =		7,012 kips
Qty. Helical Piles =	45 kip uplift capacity	156 Piles

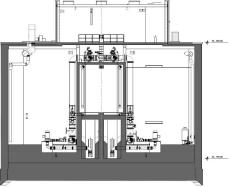
Option /		on A	
Cost Estimate Quantities:	48' x 68'		
Excavation	9,711	CY	
Concrete	4,314	CY	
Liner - Full Height	11,520	SF	
Helical Piles	156	EA	


OPTION B: 68'-0" CIRCULAR CAISSON

Client:	MCES			
Project:	L-32			
Proj. No.:	173420004			

Site/Structure Data:

Existing Ground Elev. = Top of Tank Elev. = Groundwater Elev. = Wet Well HWL Elev. = Top of Base Slab Elev. =


850.00
850.00
821.00
840.00
798.00

Date: 6/16/2020 P. Caswell By:

Soil/Concrete Data:

Soil Density (pcf), gs =	120
Conc. Strength (psi), f'c =	6,000
Lateral Earth Coef. =	0.530

DISPLACED VO	DISPLACED VOLUME:				68.00	ft. Dia.	
Elev.	Shear Vu	Min. t (ft.)		Dsgn t (ft.)	Vol. Disp.	Buoy.Force	Comments
850	N/A	N/A	N/A	3.0	43,009	0	Top of Main Floor Slab
840	N/A	N/A	N/A	3.0	43,009	0	
830	N/A	N/A	N/A	5.0	47,784	0	
820	N/A	N/A	N/A	5.0	47,784	0	HWL = 821
810	N/A	N/A	N/A	5.0	47,784	2,982	
798	N/A	N/A	N/A	5.0	57,340	3,578	Elev. Top of Slab
Slabs	-	9.0	-	8.0	49,876	3,112	7' grade bms/2' slab
Hydrostatic pr	ressure incluc	led below z =	30 ft.		336,585	9,672	
					CF	kips	

CONCRETE RESISTING FORCE:				68.00 ft. Dia.		
Component	Ht./Dia.(ft)	Length (ft)	Thick. (ft)	Conc. Qty.	Conc. Wt.	Comments
Perimeter wall - Lift 3	20	-	3.0	13,383	2,007	
Perimeter wall - Lift 2	32	-	5.0	36,694	5,504	
Perimeter wall - Lift 1	10	-	6.0	13,949	2,092	Driving shoe
Top slab	-	-	1.3	4,842	726	16" slab
Interm. Slab	-	-	0.0	0	0	
Base slabs	-	-	8.0	29,054	4,358	
Other slabs (2)	16	50	1.3	2,133	320	
Interior walls - 1 (2 walls)	42	50	1.3	5,600	840	
Interior walls - 2	16	46	1.3	981	147	
Other	-	-	-	0	0	
	-	•		3,949	15,995	
				CY	kips	

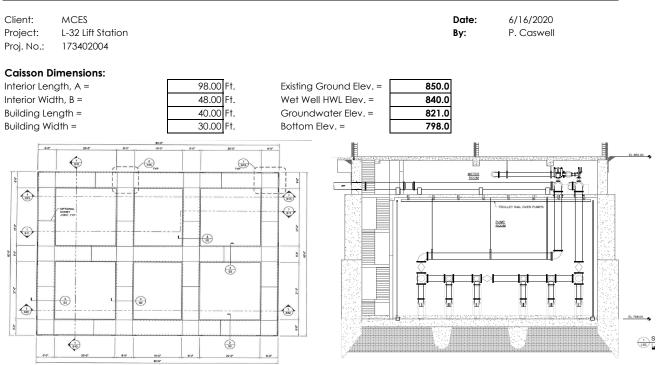
OTHER DEAD LOADS:

Control Building	10.0	40.0	30.0	166	Average 138 psf building DL.
				166	kips

STRUCTURE QUANTITIES/COSTS:

Buoyant Force = Dead Load Force Provided =		9,672 kips 15,995 kips
Safety Factor =		1.65 PASS
Anchoring Force Req'd =		0 kips
Qty. Helical Piles =	45 kip uplift capacity	0 Piles
	Option B	

	Option	ηв
Cost Estimate Quantities:	68.00	Ft.
Excavation	12,466	CY
Concrete	3,949	CY
Liner - Full Height	18,052	SF
Helical Piles	0	EA


Notes:

1. Unreinforced tremie slab cannot span 68'. Base must be dewatered to excavate/construct slab in the dry.

2.

RECTANGULAR CAISSON

DISPLACED VOLUME/BUOYANT FORCE:

Lift	Description	Top El	Lift Ht.	Thickness	Length, A'	Width, B'	Vol. Disp.	Buoy. Force
4	Perimeter Wall - 1	850.00						
3	Perimeter Wall - 2	835.00	15.00	3.00	104.00	54.00	84,240	5,257 k
2	Perimeter Wall - 3	820.00	15.00	5.00	108.00	58.00	93,960	5,863 k
1	Perimeter Wall - 4	798.00	22.00	6.00	110.00	60.00	145,200	9,060 k
0	Base Slab	790.00	8.00	6.00	110.00	60.00	52,800	3,295
							376,200	23,475
							CF	kips

RESISTING FORCE:

No.	Description	Length	Width	Thickness	Height	Area/Vol.	Density	Weight	
1.1	Building	40.00	30.00		10.00	800.0	150.00	180.0	kips
2.1	Caisson Lift 1 Walls	98.00	48.00	3.00	15.00	13,680.0	0.15	2,052.0	kips
2.2	Caisson Lift 2 Walls	98.00	48.00	5.00	15.00	23,400.0	0.15	3,510.0	kips
2.3	Caisson Lift 3 Walls	98.00	48.00	6.00	22.00	41,712.0	0.15	6,256.8	kips
2.4	Intermediate Wall	48.00	0.00	1.50	50.00	7,650.0	0.15	1,147.5	
2.5	Intermediate Wall	28.00	0.00	1.00	50.00	3,000.0	0.15	450.0	
3.1	Slab - Base	98.00	48.00	8.00	-	37,632.0	0.15	5,644.8	kips
3.2	Slab - Structural Base	98.00	48.00	0.00	-	0.0	0.15	0.0	kips
3.3	Slab - Lean Conc. Fill	98.00	48.00	2.00	-	9,408.0	0.15	1,411.2	kips
3.4	Slab - Intermediate	98.00	48.00	1.33	-	6,272.0	0.15	940.8	kips
3.5	Slab - Main Level	98.00	48.00	1.33	-	6,272.0	0.15	940.8	kips
						149,826		22,534	kips

23,475 kips 22,534 kips
22,534 kips
0.96 FAIL

5,549

CY

Anchoring Force Req'd = Qty. Helical Piles =

Buoyant Force =

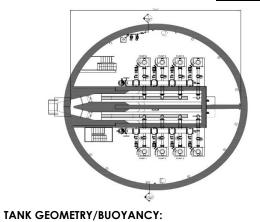
Safety Factor =

STRUCTURE QUANTITIES/COSTS:

Dead Load Force Provided =

45 kip uplift capacity

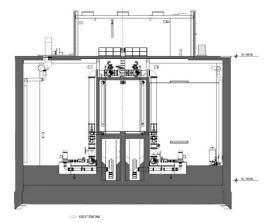
	Option B		
Cost Estimate Quantities:	48' x '	98'	
Excavation	13,933	CY	
Concrete	5,549	CY	
Liner - Full Height	11,520	SF	
Helical Piles	229	EA	



OPTION D: 76'-0" CIRCULAR CAISSON

Client:	MCES
Project:	L-32
Proj. No.:	173420004

Site/Structure Data:


Proposed Ground Elev. =	850.00
Top of Structure Elev. =	850.00
Groundwater Elev. =	821.00
Wet Well HWL Elev. =	840.00
Top of Base Slab Elev. =	798.00

Date: 6/16/2020 P. Caswell By:

Soil/Concrete Data:

Soil Density (pcf), gs =	120
Conc. Strength (psi), f'c =	6,000
Lateral Earth Coef. =	0.530

DISPLACED VO	DLUME:				76.00	ft. Dia.	
Elev.	Shear Vu	Min. t (ft.)		Dsgn t (ft.)	Vol. Disp.	B. Force	Comments
850	N/A	N/A	N/A	3.0	52,810	0	Top of Main Floor Slab
840	N/A	N/A	N/A	3.0	52,810	0	
830	N/A	N/A	N/A	5.0	58,088	0	
820	N/A	N/A	N/A	5.0	58,088	0	HWL = 821
810	N/A	N/A	N/A	5.0	58,088	3,625	
798	N/A	N/A	N/A	5.0	69,706	4,350	Elev. Top of Base Slab
Slabs	-	10.0	-	10.0	72,382	4,517	8' Grade Beams/2' Slab
Hydrostatic pr	ressure incluc	ded below z =	30 ft.		421,973	12,491	
					CF	kips	

CONCRETE RESISTING FOR	CE:			76.00	ft. Dia.	
Component	Ht./Dia.(ft)	Length (ft)	Thick. (ft)	Conc. Qty.	Conc. Wt.	Comments
Perimeter wall - Lift 3	20	-	3.0	14,891	2,234	
Perimeter wall - Lift 2	32	-	5.0	40,715	6,107	
Perimeter wall - Lift 1	10	-	6.0	15,457	2,319	
Top slab	-	-	1.3	6,049	907	
Interm. Slab	-	-	0.0	0	0	N/A
Base slabs	-	-	10.0	45,365	6,805	
Other slabs (2)	16	60	1.3	2,560	384	
Interior walls - 1 (2 walls)	42	60	1.3	6,720	1,008	
Interior walls - 2	16	54	1.3	1,152	173	
Other	-	-	-	0	0	
				4,923	19,936	

CY kips

OTHER DEAD LOADS:

Control Building	10.0	40.0	30.0		166	Assumed min. size
				•		1.1.
			K	sips	166	kips
STRUCTURE QUANTITIES/CO	OSTS:					
Buoyant Force =					12,491	
Dead Load Force Provide	d =				19,936	kips
						1
Safety Factor =					1.60	PASS

Anchoring Force Req'd =

1.60 PASS

0 Piles

Qty. Helical Piles = 45 kip uplift capacity

	Option D
Cost Estimate Quantities:	76.00 Ft.
Excavation	15,629 CY
Concrete	4,923 CY
Liner - Full Height	21,130 SF
Helical Piles	0 EA

Notes:

1. Tremie slab cannot span 76'. Base must be dewatered to excavate/construct slab in the dry.

2.

BASE SLAB SIZING

Client: MCES Project: L-32 Proj. No.: 173420004

5/13/2020 Date: By: P. Caswell

Hydrostatic Pressure Data:

Groundwater Elev. = Top of Slab Elev. = Hydrostatic Head, H =

Soil/Concrete Data:
Conc. Density, pc =

820.00 790.00

30.00 ft

son, concrete bara.	
Conc. Density, pc =	150 pcf
Conc. Strength, f'c =	5,000 psi
Modulus of Rupture, Mr =	530 psi
Allowable MOR =	265 psi

Unreinforced Tremie Slab Thickness Determination: Slab Span - 76 00 Et

siab span –	70.00	FI.									
Hydro Uplift	Slab Thick.	Slab Wt.	Net Hydro	Factored	Fact. Mom.	Slab S.M.	Tensile Stress	PASS/		Fact. Shear	Shear Cap.
q, ksf	t, ft.	qr, ksf	qn, ksf	qu, ksf	Mu, ft-k	Sx, cu.in.	fb, psi	FAIL	Comments	Vu, kips	phi*Vc, k
2.496	10.00	1.50	1.00	2.893	2088.89	28,800	870	FAIL			
2.621	12.00	1.80	0.82	2.835	2047.13	41,472	592	FAIL			
2.746	14.00	2.10	0.65	2.778	2005.37	56,448	426	FAIL			

Reinforced Concrete Slab Thickness Determination:

Slab Span = 76.00 Ft.

Hydro Uplift	Slab Thick.	Slab Wt.	Net Hydro	Factored	Fact. Mom.	Reinf.	Phi*Mn/1.3	PASS/		Fact. Shear	Shear Cap.	PASS/
q, ksf	t, ft.	qr, ksf	qn, ksf	qu, ksf	Mu, ft-k	As (sq.in.)	ft-k	FAIL	Comments	Vu, kips	phi*Vc, k	FAIL
2.246	6.00	0.90	1.35	3.009	2,172	5.08	1,107.4	FAIL	2 mats #10@6" EW	114.3	95.0	FAIL
2.309	7.00	1.05	1.26	2.980	2,152	6.24	1,604.6	FAIL	2 mats #11@6" EW	113.2	112.3	FAIL
2.371	8.00	1.20	1.17	2.951	2,131	6.24	1,863.6	FAIL	2 mats #11@6" EW	112.1	129.6	PASS
2.434	9.00	1.35	1.08	2.922	2,110	6.24	2,122.7	FAIL	2 mats #11@6" EW	111.0	146.9	PASS
2.496	10.00	1.50	1.00	2.893	2,089	6.24	2,381.8	PASS	2 mats #11@6" EW	109.9	164.2	PASS

BAR SIZE	WEIGHT	BAR	CROSS- SECTIONAL	AREA (SQ. IN.) PER FT
DESIGNATION*	(LBS/FOOT)	DIAMETER	AT 12" C.C.	AT 6" C.C.
		(INCHES)		
#3	0.376	0.375	0.11	0.22
#4	0.668	0.500	0.20	0.40
#5	1.043	0.625	0.31	0.62
#6	1.502	0.750	0.44	0.88
#7	2.044	0.875	0.60	1.20
#8	2.670	1.000	0.79	1.58
#9	3.400	1.128	1.00	2.00
#10	4.303	1.270	1.27	2.54
#11	5.313	1.410	1.56	3.12
#14	7.650	1.693	2.25	4.50
#18	13.600	2.257	4.00	8.00

LIFT STATION ESTIMATED COST COMPARISON

 Client:
 MCES

 Project:
 L-32

 Proj. No.:
 173420004

Date: 6/16/2020 By: P. Caswell

				Optio	n A	Optio	n B	Optio	۱C	Option	ו D
Item			Unit	'48' x 68'		68	ft. Dia.	'48' x 9	78'	76	ft. Dia.
No.	Item	Unit	Price	Qty.(1)	Cost	Qty.(1)	Cost	Qty.(1)	Cost	Qty.(1)	Cost
2.1	Excavation	CY	\$50.00	9,711	\$485,550	12,466	\$623,300	13,394	\$669,700	15,629	\$781,450
2.2	Dewatering (2)	LS	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000
2.3	Helical Piles	EA	\$2,000.00	187	\$374,000	0	\$0	229	\$458,000	0	\$0
3.1	Concrete	CY	\$1,000.00	4,193	\$4,193,000	3,949	\$3,949,000	5,549	\$5,549,000	4,923	\$4,923,000
3.2	Concrete Liner - Panels	SF	\$50.00	11,520	\$576,000	18,052	\$902,600	11,520	\$576,000	21,130	\$1,056,500
13.0	Building (30'x40')	SF	\$200.00	1,200	\$240,000	1,200	\$240,000	1,200	\$240,000	1,200	\$240,000
	TOTAL 51 5200.0				\$6,868,550		\$6,714,900		\$8,492,700		\$8,000,950

(1) All quantities are entered manually and are not calculated in this worksheet.

(2) Placeholder cost, not calculated.

(3) All other building costs, systems costs, contingencies, etc. are included elsewhere in the cost estimate total.

3.0MG CIRCULAR RESPONSE TANK

Client:	MCES													Date:	5/19/2020
Project:	L-32													By:	P. Caswell
Proj. No.:	173420004														
Site/Tank Do	ata:								Soil/Concrete	e Data:					
Existing Gro	und Elev. =		850.00	ſ	Gross Storage	e Volume =		Gal.	Soil Density, c	IS =	120	pcf			
Top of Tank	Elev. =		850.00		Net Storage	Volume =	3,000,000	Gal.	Conc. Streng	th, f'c =	6,000	psi			
Groundwate	er Elev. =		821.00			=	401,070	CF	Lateral Earth	Coef. =	0.530				
Max. Tank Ir	nterior Water Ele	ev. =	816.00		Tank Freeboo	ard =	34.0	Ft.							
											⊕EL. 851.0				
	Storage Geome					1					φ				
Inside Dia.		SWD	Bottom EL.	Depth	Gross Vol.							L			
100	7,854	51.1	764.9	85.1											
125 150	12,272	32.7 22.7	783.3 793.3	66.7 56.7			<u></u>	▽			EL. 816.0		821.0		
150	17,672 24,053	16.7	793.3	56.7			Π –	-			Ψ	- H			
200	31,416	10.7	803.2	46.8											
200	31,416	12.8		20.0				TTTTTT	TTTTTT	TTTTT					
200	01,110	12.0	000.0	20.0	1,077,001	J									
TANK GEOM	AETRY/BUOYAN	CY:					*			*****		* * * *	1		
	Wall Thickness			100	ft. Dia.	105	ft. Dia.	TANK DIAN	ft. Dia.	175	ft. Dia.	200	ft. Dia.	Pump in/Gr	ft. Dia.
Depth, Z	Shear Vu	Min. t (ft.)	Dsgn t (ft.)	Vol. Disp.	B. Force	Vol. Disp.	B. Force	Vol. Disp.	B. Force	Vol. Disp.	B. Force	Vol. Disp.	B. Force	Vol. Disp.	B. Force
0	0.0	1.0	1.5				0.10100		0.10100	0.0	0.10100	0.0	0.10100		0.10100
5	1.4	1.0	1.5				0		0	124,423	0		0		0
15	12.2	1.0	1.5	-			0		0	248,846	0		0		0
25	33.8	2.0	3.0	88,248	0	134,782	0	191,135	0	257,305	0	333,292	0	333,292	0
30	48.6	2.8	3.0	44,124	0	67,391	0	95,567	0	128,652	0	166,646	0	166,646	0
35	68.1	3.8	4.0	45,805	2,858	69,465	4,335	98,034	6,117	131,511	8,206	169,898	10,602	0	0
45	127.1	7.0	8.0	105,683	6,595	156,145	9,743	216,425	13,505	286,522	17,879	366,436	22,866	0	0
50	166.6	9.0	9.0	54,680	3,412	80,303	5,011	110,836	6,916	146,277	9,128	0	0	0	0
55	212.7	11.5	10.0	113,098		165,130	10,304	226,981	14,164	0	0	0	0	0	0
65	324.9	17.4	10.0	113,098	7,057	165,130	10,304	0	0	0	0	0	0	0	0
75	463.7	24.7	10.0	113,098		0	0	0	0	0	0	0	0	0	0
85	629.1	33.4	10.0	113,098		0	0	ő	0	0	0	0	0	0	0
Slab		5.0	10.0	56,549		82,565	5,152		7,082	149,324	9,318	190,067	11,860	0	0
	pressure includ	lad balaw z -	20.44		44,623	kins	44,849	kins	47,784	kins	44,531	kins	45,327	kins	0

Wall shear reinforcement reg'd below z = 50 ft.

												Pump in/G	ravity out	
RESISTING FOR	RCE:	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.	200	ft. Dia.	
Depth, Z	Wall t (ft)	Conc. Qty.	Conc. Wt.											
0	1.5	0	0	0	0	0	0	0	0	0	0	0	0	
5	1.5	2,392	359	2,981	447	3,570	535			4,748	712	.,		
15	1.5	4,783	717	5,961	894	7,139	1,071	8,317	1,248		1,424			
25	3.0	9,708	1,456	12,064	1,810	14,420	2,163	16,776			2,870			
30	3.0	4,854	728	6,032	905		1,081	8,388	1,258	9,566	1,435	9,566	1,435	
35	3.0	4,854	728	6,032	905	7,210	1,081	8,388	1,258	9,566	1,435	0	0	
45	5.0	16,493	2,474	20,420	3,063	24,347	3,652	28,274	4,241	32,201	4,830	0	0	
50	5.0	8,247	1,237	10,210	1,532	12,174	1,826	14,137	2,121	0	0	0	0	
55	5.0	8,247	1,237	10,210	1,532	12,174	1,826	0	0	0	0	0	0	
65	5.0	16,493	2,474	20,420	3,063	0	0	0	0	0	0	0	0	
75	6.0	19,981	2,997	0	0	0	0	0	0	0	0	0	0	
85	6.0	19,981	2,997	0	0	0	0	0	0	0	0	0	0	
6' Base Slab	8.0	63,410	9,512	93,687	14,053	129,855	19,478	171,913	25,787	219,862	32,979	73,287	10,993 2'	' thick
		6,646	26,916	6,964	28,203	8,078	32,715	9,643	39,053	11,280	45,686	4,305	17,434 ki	ips
		CY	kips											
oyant Force	e =		44,623	kips	44,849	kips	47,784	kips	44,531	kips	45,327	kips	0 ki	ips
afety Factor	=		1.5		1.5		1.5		1.5		1.5		1.5	
esistance Re	eq'd =		66,934	kips	67,274	kips	71,676	kips	66,796	kips	67,991	kips	0 ki	ips
Add'l Resisting	g Force Req'a	= t	40,018	kips	39,071	kips	38,961	kips	27,743	kips	22,305	kips	0 ki	ips
Qty. Helical Pi	iles (@45k)=	45	889		868	Ι	866]	617]	496]	0	
Other quantiti	ies:	100		125		150		175		200		200		
Excavation	1.11.11.1.01	36,017		41,257		49,194	-	54,550		63,401		36,497		
iner - Above		10,053		12,566		15,080		17,593		20,106		20,106		
iner - Below H	HWL+2'	24,525		25,891		29,309		34,320		40,694		23,876		
Cover		7,854	SF	12,272	SF	17,672	SF	24,053	SF	31,416	SF	31,416	SF	

3.0 MG CIRCULAR RESPONSE TANK COSTS

 Client:
 MCES

 Project:
 L-32

 Proj. No.:
 173420004

 Date:
 6/15/2020

 By:
 P. Caswell

MAJOR ITEM CONSTRUCTION COSTS

Item			Unit	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Price	Qty.(1)	Cost								
2.1	Excavation	CY	\$50.00	36,017	\$1,800,850	41,257	\$2,062,850	49,194	\$2,459,700	54,550	\$2,727,500	63,401	\$3,170,050
2.2	Dewatering (2)	LS	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000
2.3	Helical Piles	EA	\$2,000.00	633	\$1,266,000	675	\$1,350,000	724	\$1,448,000	503	\$1,006,000	412	\$824,000
3.1	Concrete	CY	\$1,000.00	9,494	\$9,494,000	9,116	\$9,116,000	9,654	\$9,654,000	10,905	\$10,905,000	12,210	\$12,210,000
3.2	Liner - Above HWL+2'	SF	\$50.00	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
3.3	Liner - Below HWL+2'	SF	\$50.00	24,525	\$1,226,250	25,891	\$1,294,550	29,309	\$1,465,450	34,320	\$1,716,000	40,694	\$2,034,700
13.0	Aluminum Cover	SF	\$75.00	7,854	\$589,050	12,272	\$920,400	17,672	\$1,325,400	24,053	\$1,803,975	31,416	\$2,356,200
	TOTAL				\$15,376,150		\$15,743,800		\$17,352,550		\$19,158,475		\$21,594,950
	Structure cost per gallon =			-	\$5.13		\$5.25	-	\$5.78		\$6.39	-	\$7.20

(1) All quantities are entered manually and are not calculated in this worksheet.

(2) Dewatering cost is a concept-level estimate, as a place-holder.

SUPPLEMENTAL SYSTEM COSTS

Item			Unit	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200 f	t. Dia.
No.	Item	Unit	Price(3)	Qty.	Cost	Qty.	Cost	Qty.	Cost	Qty.	Cost	Qty.	Cost
	Submersible Pump Station	LS	\$250,000.00	1	\$250,000	1	\$250,000	1	\$250,000	1	\$250,000	1	\$250,000
2	2 Tank Washdown System	LS	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000
	3 Odor Control System	LS	\$300,000.00	1	\$300,000	1	\$300,000	1	\$300,000	1	\$300,000	1	\$300,000
	TOTAL				\$650,000		\$650,000		\$650,000		\$650,000		\$650,000

(3) Costs are concept-level estimates, based upon experience.

Item				100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Amount	Qty.	Cost								
1	Structure Subtotal	LS	N/A	N/A	\$15,376,150	N/A	\$15,743,800	N/A	\$17,352,550	N/A	\$19,158,475	N/A	\$21,594,950
2	Supplemental Systems	LS	N/A	N/A	\$650,000								
	Base Subtotal				\$16,026,150		\$16,393,800		\$18,002,550		\$19,808,475		\$22,244,950
	Contingency - Const. Costs	LS	30%	N/A	\$4,807,845	N/A	\$4,918,140	N/A	\$5,400,765	N/A	\$5,942,543	N/A	\$6,673,485
	Adj. Subtotal				\$20,833,995		\$21,311,940		\$23,403,315		\$25,751,018		\$28,918,435
	Contingency - Undev. Dsgn.	LS	25%	N/A	\$5,208,499	N/A	\$5,327,985	N/A	\$5,850,829	N/A	\$6,437,754	N/A	\$7,229,609
	TOTAL				\$26,042,494		\$26,639,925		\$29,254,144		\$32,188,772		\$36,148,044

1.5MG CIRCULAR RESPONSE TANK

Client: Project: Proj. No.:	MCES L-32 173420004							Date: By:	6/8/2020 P. Caswel
Site/Tank Da t Existing Grou			850.00		Net Storage Volume =	1,500,000 Gal.	Soil/Concrete Data:	120 pcf	
op of Tank E			850.00		= =	200,535 CF	Conc. Strength, f'c =	6,000 psi	
	dwater Elev. =		821.00		Tank Freeboard =	34.0 Ft.	Lateral Earth Coef. =	0.530	
Max. Tank Int	terior Water Ele	ev. =	816.00						
	orage Geome						⊕ ^{EL. 851.0}		
Inside Dia.	Net Area	SWD	Bottom EL.	Depth	Gross Vol.		⊕ ^{EL. 851.0}		
Inside Dia. 100	Net Area 7,854		790.5	Depth 59.5	3,497,429				Φ
Inside Dia.	Net Area	SWD	790.5		3,497,429		FL 816.0	<u><u><u>v</u></u><u>EL.</u> 821.0</u>	Φ
Inside Dia. 100	Net Area 7,854	SWD 25.5	790.5 799.7	59.5	3,497,429 4,620,983		FL 816.0	-	Ð
Inside Dia. 100 125	Net Area 7,854 12,272	SWD 25.5 16.3	790.5 799.7 804.7	59.5 50.3	3,497,429 4,620,983		FL 816.0	<u> </u>	Ŷ
Inside Dia. 100 125 150	Net Area 7,854 12,272 17,672	SWD 25.5 16.3 11.3	790.5 799.7 804.7	59.5 50.3 45.3	3,497,429 4,620,983 5,994,216 7,617,127		FL 816.0	-	Ŷ

TANK GEOMETRY/BUOYANCY:

BUOYANCY		100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.	
Depth, Z	Wall t (ft.)	Vol. Disp.	B. Force	Comment								
0	1.5	0	0	0	0	0	0	0	0	0	0	
10	1.5	83,323	0	128,680	0	183,854	0	248,846	0	323,655	0	
20	1.5	83,323	0	128,680	0	183,854	0	248,846	0	323,655	0	
25	3.0	44,124	0	67,391	0	95,567	0	128,652	0	166,646	0	
30	3.0	44,124	0	67,391	0	95,567	0	128,652	0	166,646	0	HWL = 821
40	3.0	88,248	5,507	134,782	8,410	191,135	11,927	257,305	16,056	333,292	20,797	
42.5	5.0	23,758	1,483	35,785	2,233	50,266	3,137	67,201	4,193	0	0	
45	5.0	23,758	1,483	35,785	2,233	50,266	3,137	0				
50	5.0	47,517	2,965	107,354	6,699	0	0	0	0	0	0	
55	5.0	47,517	2,965	0	0	0	0	0	0	0	0	
60	5.0	47,517	2,965	0	0	0	0	0	0	0	0	
8' Slab	6.0	98,521	6,148	117,929	7,359	164,896	10,290	219,717	13,710	282,392	17,621	
		631,729	23,514	823,778	26,934	1,015,406	28,489	1,299,220	33,960	1,596,288	38,419	
	-	CF	kips	-								

Hydrostatic pressure included below z = 30 ft.

Wall shear reinforcement req'd below z = 50 ft.

	_											Pump in/G	ravity out
RESISTING FOR	CE:	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.	200	ft. Dia.
Depth, Z	Wall t (ft)	Conc. Qty.	Conc. Wt.	Conc. Qty.	Conc. Wt.	Conc. Qty.	Conc. Wt.	Conc. Qty.	Conc. Wt.	Conc. Qty.	Conc. Wt.	Conc. Qty.	Conc. Wt.
0	1.5	0	0	0	0	0	0	0	0	0	0	0	0
10	1.5	4,783	717	5,961	894	7,139	1,071	8,317	1,248	9,495	1,424	9,495	1,424
20	1.5	4,783	717	5,961	894	7,139	1,071	8,317	1,248	9,495	1,424	9,495	1,424
25	3.0	4,854	728	6,032	905	7,210	1,081	8,388	1,258	9,566	1,435	9,566	1,435
30	3.0	4,854	728	6,032	905	7,210	1,081	8,388	1,258	9,566	1,435	9,566	1,435
40	3.0	9,708	1,456	12,064	1,810	14,420	2,163	16,776	2,516	19,132	2,870	0	0
42.5	5.0	4,123	619	5,105	766	6,087	913	7,069	1,060	0	0	0	0
45	5.0	4,123	619	5,105	766	6,087	913	0	0	0	0	0	0
50	5.0	8,247	1,237	10,210	1,532	0	0	0	0	0	0	0	0
55	5.0	8,247	1,237	0	0	0	0	0	0	0	0	0	0
60	5.0	8,247	1,237	0	0	0	0	0	0	0	0	0	0
8' Slab	6.0	78,816	11,822	117,929	17,689	164,896	24,734	219,717	32,958	282,392	42,359	88,248	13,237
		5,214	21,118	6,459	26,160	8,155	33,028	10,258	41,546	12,580	50,947	4,680	18,956
		CY	kips	CY	kips	СҮ	kips	CY	kips	CY	kips	CY	kips
Buoyant Force	9 =		23,514	kips	26,934	kips	28,489	kips	33,960	kips	38,419	kips	
Resisting Force	9 =		21,118	kips	26,160	kips	33,028	kips	41,546	kips	50,947	kips	
Safety Factor	=		0.90	kips	0.97	kips	1.16	kips	1.22	kips	1.33	kips	
Add'l Resistan No. (45k) Piles		45	14,154 315		14,241 316	I	9,706 216		9,393 209]	6,681 148		

Other quantities:	100 Ft.	125 Ft.	150 Ft.	175 Ft.	200 Ft.	200 Ft.
Excavation	23,397 CY	30,510 CY	37,608 CY	48,119 CY	59,122 CY	0 CY
Liner - Above (HWL+2')	10,053 SF	12,566 SF	15,080 SF	17,593 SF	20,106 SF	20,106 SF
Liner - Below (HWL+2')	16,504 SF	19,474 SF	23,962 SF	29,736 SF	36,683 SF	36,683 SF
Cover	7,854 SF	12,272 SF	17,672 SF	24,053 SF	31,416 SF	31,416 SF

1.5 MG CIRCULAR RESPONSE TANK COSTS

 Client:
 MCES
 Date:
 6/15/2020

 Project:
 L-32
 By:
 P. Caswell

 Proj. No.:
 173420004
 From Comparison of Compariso

MAJOR ITEM CONSTRUCTION COSTS

Item			Unit	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Price	Qty.(1)	Cost	Qty.(1)	Cost	Qty.(1)	Cost	Qty.(1)	Cost	Qty.(1)	Cost
2.1	Excavation	CY	\$50.00	23,397	\$1,169,850	30,510	\$1,525,500	37,608	\$1,880,400	48,119	\$2,405,950	59,122	\$2,956,100
2.2	Dewatering (2)	LS	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000
2.3	Helical Piles	EA	\$2,000.00	315	\$630,000	316	\$632,000	216	\$432,000	209	\$418,000	148	\$296,000
3.1	Concrete	CY	\$1,000.00	5,214	\$5,214,000	6,459	\$6,459,000	8,155	\$8,155,000	10,258	\$10,258,000	12,580	\$12,580,000
3.2	Buried Concrete Roof & Cols.	LS	\$7,450,000.00	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
3.3	Liner - Below HWL+2'	SF	\$50.00	16,504	\$825,200	19,474	\$973,700	23,962	\$1,198,100	29,736	\$1,486,800	36,683	\$1,834,150
13.0	Aluminum Cover	SF	\$75.00	7,854	\$589,050	12,272	\$920,400	17,672	\$1,325,400	24,053	\$1,803,975	31,416	\$2,356,200
	TOTAL				\$9,428,100		\$11,510,600		\$13,990,900		\$17,372,725		\$21,022,450
	Structure cost per gallon =				\$3.14	-	\$3.84		\$4.66	-	\$5.79	-	\$7.01

(1) All quantities are entered manually and are not calculated in this worksheet.

(2) Dewatering cost is a concept-level estimate, as a place-holder.

SUPPLEMENTAL SYSTEM COSTS

Item			Unit	100	100 ft. Dia.		ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Price(3)	Qty.	Cost	Qty.	Cost	Qty.	Cost	Qty.	Cost	Qty.	Cost
1	Submersible Pump Station	LS	\$250,000.00	1	\$250,000	1	\$250,000	1	\$250,000	1	\$250,000	1	\$250,000
2	Tank Washdown System	LS	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000
3	Odor Control System	LS	\$300,000.00	1	\$300,000	1	\$300,000	1	\$300,000	1	\$300,000	1	\$300,000
	TOTAL				\$650,000		\$650,000		\$650,000		\$650,000		\$650,000

(3) Costs are concept-level estimates, based upon experience.

Item				100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Amount	Qty.	Cost								
Part 1	Structure Subtotal	LS	N/A	N/A	\$9,428,100	N/A	\$11,510,600	N/A	\$13,990,900	N/A	\$17,372,725	N/A	\$21,022,450
Part 2	Supplemental Systems	LS	N/A	N/A	\$650,000								
	Base Subtotal				\$10,078,100		\$12,160,600		\$14,640,900		\$18,022,725		\$21,672,450
	Contingency - Const. Costs	LS	30%	N/A	\$3,023,430	N/A	\$3,648,180	N/A	\$4,392,270	N/A	\$5,406,818	N/A	\$6,501,735
	Adj. Subtotal				\$13,101,530		\$15,808,780		\$19,033,170		\$23,429,543		\$28,174,185
	Contingency - Undev. Dsgn.	LS	25%	N/A	\$3,275,383	N/A	\$3,952,195	N/A	\$4,758,293	N/A	\$5,857,386	N/A	\$7,043,546
	TOTAL			\$16,376,913		\$19,760,975		\$23,791,463		\$29,286,928		\$35,217,731	

3.0MG CIRCULAR RESPONSE TANK

Client:	MCES								Date:	5/19/2020
Project:	L-32								By:	P. Caswell
Proj. No.:	173420004									
Site/Tank Da	ıta:						Soil/Concrete Data:			
Existing Grou	ind Elev. =		850.00		Gross Storage Volume =	Gal.	Soil Density, gs =	120 pcf		
Top of Tank E	Elev. =		850.00		Net Storage Volume =	3,000,000 Gal.	Conc. Strength, f'c =	6,000 psi		
Groundwate	er Elev. =		821.00		=	401,070 CF	Lateral Earth Coef. =	0.530		
Max. Tank In	terior Water Ele	ev. =	816.00		Tank Freeboard =	34.0 Ft.				
								51 051 0		
Basic Tank St	torage Geome	etries:				調調器		⊕ ^{EL. 851.0}		
Inside Dia.	Net Area	SWD	Bottom EL.	Depth	Gross Vol.	Altime				
100	7,854	51.1	764.9	85.1	4,997,429	Г		Π .		
125	12,272	32.7	783.3	66.7	6,120,983			EL. 821.0		
150	17,672	22.7	793.3	56.7	7,494,216			⊕EL. 816.0		
175	24,053	16.7	799.3	50.7	9,117,127					

TANK GEOMETRY/BUOYANCY:

31,416

31,416

12.8

12.8

803.2

830.0

46.8 10,989,717

4,699,834

20.0

200

200

								TANK DIAM	ETERS					Pump in/Gr	avity out
W	Vall Thickness	es		100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.	200	ft. Dia.
Depth, Z	Shear Vu	Min. t (ft.)	Dsgn t (ft.)	Vol. Disp.	B. Force										
0	0.0	1.0	1.5	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	C
5	1.4	1.0	1.5	41,662	0	64,340	0	91,927	0	124,423	0	161,828	0	161,828	C
15	12.2	1.0	1.5	83,323	0	128,680	0	183,854	0	248,846	0	323,655	0	323,655	C
25	33.8	2.0	3.0	88,248	0	134,782	0	191,135	0	257,305	0	333,292	0	333,292	C
30	48.6	2.8	3.0	44,124	0	67,391	0	95,567	0	128,652	0	166,646	0	166,646	C
35	68.1	3.8	4.0	45,805	2,858	69,465	4,335	98,034	6,117	131,511	8,206	169,898	10,602	0	C
45	127.1	7.0	8.0	105,683	6,595	156,145	9,743	216,425	13,505	286,522	17,879	366,436	22,866	0	C
50	166.6	9.0	9.0	54,680	3,412	80,303	5,011	110,836	6,916	146,277	9,128	0	0	0	C
55	212.7	11.5	10.0	113,098	7,057	165,130	10,304	226,981	14,164	0	0	0	0	0	C
65	324.9	17.4	10.0	113,098	7,057	165,130	10,304	0	0	0	0	0	0	0	C
75	463.7	24.7	10.0	113,098	7,057	0	0	0	0	0	0	0	0	0	C
85	629.1	33.4	10.0	113,098	7,057	0	0	0	0	0	0	0	0	0	C
Slab		5.0	10.0	56,549	3,529	82,565	5,152	113,490	7,082	149,324	9,318	190,067	11,860	0	(
drostatic p	ressure includ	led below z =	30 ft.	-	44,623	kips	44,849	kips	47,784	kips	44,531	kips	45,327	kips	0

Wall shear reinforcement req'd below z = 50 ft.

												Pump in/Gr	avity out
RESISTING FOR	RCE:	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.	200	ft. Dia.
Depth, Z	Wall t (ft)	Conc. Qty.	Conc. Wt.										
0	1.5	0	0	0	0	0	0	0	0	0	0	0	0
5	1.5	2,392	359	2,981	447	3,570	535	4,159	624	4,748	712	4,748	712
15	1.5	4,783	717	5,961	894	7,139	1,071	8,317	1,248	9,495	1,424	9,495	1,424
25	3.0	9,708	1,456	12,064	1,810	14,420	2,163	16,776	2,516	19,132	2,870	19,132	2,870
30	3.0	4,854	728	6,032	905	7,210	1,081	8,388	1,258	9,566	1,435	9,566	1,435
35	3.0	4,854	728	6,032	905	7,210	1,081	8,388	1,258	9,566	1,435	0	0
45	5.0	16,493	2,474	20,420	3,063	24,347	3,652	28,274	4,241	32,201	4,830	0	0

50	5.0	8,247	1,237	10,210	1,532	12,174	1,826	14,137	2,121	0	0	0	0
55	5.0	8,247	1,237	10,210	1,532	12,174	1,826	0	0	0	0	0	0
65	5.0	16,493	2,474	20,420	3,063	0	0	0	0	0	0	0	0
75	6.0	19,981	2,997	0	0	0	0	0	0	0	0	0	0
85	6.0	19,981	2,997	0	0	0	0	0	0	0	0	0	0
6' Base Slab	8.0	63,410	9,512	93,687	14,053	129,855	19,478	171,913	25,787	219,862	32,979	73,287	10,993 2' thick slat
		6,646	26,916	6,964	28,203	8,078	32,715	9,643	39,053	11,280	45,686	4,305	17,434 kips
		CY	kips	CY	kips	CY	kips	CY	kips	CY	kips	CY	kips
Buoyant Force	e =		44,623	kips	44,849	kips	47,784	kips	44,531	kips	45,327	kips	0 kips
Safety Factor =	=		1.5		1.5		1.5		1.5		1.5		1.5
Resistance Rea	q'd =		66,934	kips	67,274	kips	71,676	kips	66,796	kips	67,991	kips	0 kips
Add'I Resisting	Force Req'd	=	40,018	kips	39,071	kips	38,961	kips	27,743	kips	22,305	kips	0 kips
Qty. Helical Pile	les (@45k)=	45	889	[868	[866		617	[496		0
Other quantitie	es:	100 Fi		125	Ft.	150	Ft.	175	Ft.	200	Ft.	200	Ft.
Excavation		36,017 C	Y	41,257	СҮ	49,194	СҮ	54,550	CY	63,401	CY	36,497	CY
Liner - Above H	HWL+2'	10,053 SI		12,566	SF	15,080	SF	17,593	SF	20,106	SF	20,106	SF
Liner - Below H	WL+2	24,525 SI		25,891	SF	29,309	SF	34,320	SF	40,694	SF	23,876	SF
Cover		7,854 SI		12,272	SF	17,672	SF	24,053	SF	31,416	SF	31,416	SF

3.0 MG CIRCULAR RESPONSE TANK COSTS

 Client:
 MCES

 Project:
 L-32

 Proj. No.:
 173420004

 Date:
 6/15/2020

 By:
 P. Caswell

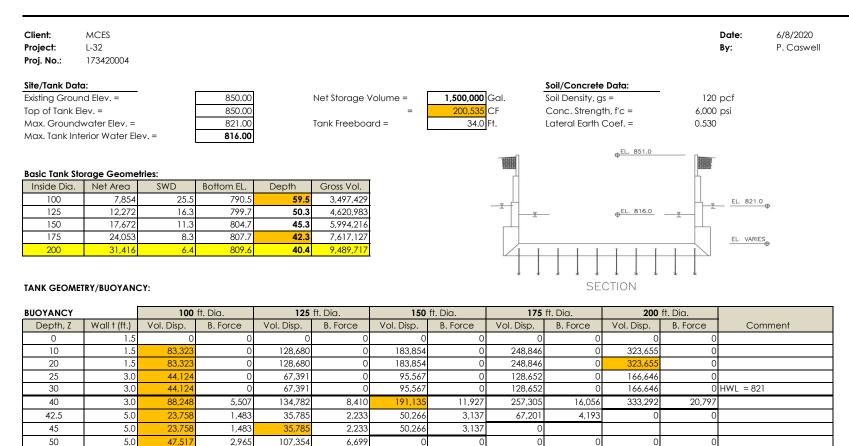
MAJOR ITEM CONSTRUCTION COSTS

Item			Unit	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Price	Qty.(1)	Cost								
2.1	Excavation	CY	\$50.00	36,017	\$1,800,850	41,257	\$2,062,850	49,194	\$2,459,700	54,550	\$2,727,500	63,401	\$3,170,050
2.2	Dewatering (2)	LS	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000
2.3	Helical Piles	EA	\$2,000.00	633	\$1,266,000	675	\$1,350,000	724	\$1,448,000	503	\$1,006,000	412	\$824,000
3.1	Concrete	CY	\$1,000.00	9,494	\$9,494,000	9,116	\$9,116,000	9,654	\$9,654,000	10,905	\$10,905,000	12,210	\$12,210,000
3.2	Liner - Above HWL+2'	SF	\$50.00	0	\$0	0	\$0	0	\$0	0	\$0	0	\$0
3.3	Liner - Below HWL+2'	SF	\$50.00	24,525	\$1,226,250	25,891	\$1,294,550	29,309	\$1,465,450	34,320	\$1,716,000	40,694	\$2,034,700
13.0	Aluminum Cover	SF	\$75.00	7,854	\$589,050	12,272	\$920,400	17,672	\$1,325,400	24,053	\$1,803,975	31,416	\$2,356,200
	TOTAL				\$15,376,150		\$15,743,800		\$17,352,550		\$19,158,475		\$21,594,950
	Structure cost per gallon =				\$5.13		\$5.25	-	\$5.78		\$6.39	-	\$7.20

(1) All quantities are entered manually and are not calculated in this worksheet.

(2) Dewatering cost is a concept-level estimate, as a place-holder.

SUPPLEMENTAL SYSTEM COSTS


Item			Unit	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200 f	t. Dia.
No.	Item	Unit	Price(3)	Qty.	Cost	Qty.	Cost	Qty.	Cost	Qty.	Cost	Qty.	Cost
	Submersible Pump Station	LS	\$250,000.00	1	\$250,000	1	\$250,000	1	\$250,000	1	\$250,000	1	\$250,000
2	2 Tank Washdown System	LS	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000
	3 Odor Control System	LS	\$300,000.00	1	\$300,000	1	\$300,000	1	\$300,000	1	\$300,000	1	\$300,000
	TOTAL				\$650,000		\$650,000		\$650,000		\$650,000		\$650,000

(3) Costs are concept-level estimates, based upon experience.

Item				100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Amount	Qty.	Cost								
1	Structure Subtotal	LS	N/A	N/A	\$15,376,150	N/A	\$15,743,800	N/A	\$17,352,550	N/A	\$19,158,475	N/A	\$21,594,950
2	Supplemental Systems	LS	N/A	N/A	\$650,000								
	Base Subtotal				\$16,026,150		\$16,393,800		\$18,002,550		\$19,808,475		\$22,244,950
	Contingency - Const. Costs	LS	30%	N/A	\$4,807,845	N/A	\$4,918,140	N/A	\$5,400,765	N/A	\$5,942,543	N/A	\$6,673,485
	Adj. Subtotal				\$20,833,995		\$21,311,940		\$23,403,315		\$25,751,018		\$28,918,435
	Contingency - Undev. Dsgn.	LS	25%	N/A	\$5,208,499	N/A	\$5,327,985	N/A	\$5,850,829	N/A	\$6,437,754	N/A	\$7,229,609
	TOTAL		\$26,042,494		\$26,639,925		\$29,254,144		\$32,188,772		\$36,148,044		

Stantec

1.5MG CIRCULAR RESPONSE TANK

 $\begin{array}{c|c} \hline & 631,729 \\ \hline & CF \\ \hline & Kips \\ \hline \\ Hydrostatic pressure included below z = 30 ft. \\ \hline \\ Wall shear reinforcement req'd below z = 50 ft. \\ \end{array}$

5.0

5.0

6.0

47.51

47,51

98,52

2,965

2,965

6,148

117,929

823,778

CF

55

60

8' Slab

	-											Pump in/G	ravity out
RESISTING FOR	CE:	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.	200	ft. Dia.
Depth, Z	Wall t (ft)	Conc. Qty.	Conc. Wt.										
0	1.5	0	0	0	0	0	0	0	0	0	0	0	0
10	1.5	4,783	717	5,961	894	7,139	1,071	8,317	1,248	9,495	1,424	9,495	1,424
20	1.5	4,783	717	5,961	894	7,139	1,071	8,317	1,248	9,495	1,424	9,495	1,424
25	3.0	4,854	728	6,032	905	7,210	1,081	8,388	1,258	9,566	1,435	9,566	1,435

164,896

1,015,406

CF

C

7,359

26,934

kips

0

0

10,290

28,489

kips

0

219,717

1,299,220

CF

0

0

13,710

33,960

kips

0

0

282,392

1,596,288

CF

0

0

17,621

38,419

kips

30	3.0	4,854	728	6,032	905	7,210	1,081	8,388	1,258	9,566	1,435	9,566	1,435
40	3.0	9,708	1,456	12,064	1,810	14,420	2,163	16,776	2,516	19,132	2,870	0	0
42.5	5.0	4,123	619	5,105	766	6,087	913	7,069	1,060	0	0	0	0
45	5.0	4,123	619	5,105	766	6,087	913	0	0	0	0	0	0
50	5.0	8,247	1,237	10,210	1,532	0	0	0	0	0	0	0	0
55	5.0	8,247	1,237	0	0	0	0	0	0	0	0	0	0
60	5.0	8,247	1,237	0	0	0	0	0	0	0	0	0	0
8' Slab	6.0	78,816	11,822	117,929	17,689	164,896	24,734	219,717	32,958	282,392	42,359	88,248	13,237
		5,214	21,118	6,459	26,160	8,155	33,028	10,258	41,546	12,580	50,947	4,680	18,956 kips
		CY	kips	CY	kips	CY	kips	CY	kips	CY	kips	CY	kips
Buoyant Force	9 =		23,514	kips	26,934	kips	28,489	kips	33,960	kips	38,419 k	kips	
Resisting Force	9 =		21,118	kips	26,160	kips	33,028	kips	41,546	kips	50,947 k	kips	
Safety Factor :	=	[0.90	kips	0.97	kips	1.16	kips	1.22	kips	1.33	kips	
Add'l Resistanc	ce Rea'd =		14,154	kips	14,241		9,706		9,393		6,681		

Other quantities:	100 Ft.	125 Ft.	150 Ft.	175 Ft.	200 Ft.	200 Ft.
Excavation	23,397 CY	30,510 CY	37,608 CY	48,119 CY	59,122 CY	0 CY
Liner - Above (HWL+2')	10,053 SF	12,566 SF	15,080 SF	17,593 SF	20,106 SF	20,106 SF
Liner - Below (HWL+2')	16,504 SF	19,474 SF	23,962 SF	29,736 SF	36,683 SF	36,683 SF
Cover	7,854 SF	12,272 SF	17,672 SF	24,053 SF	31,416 SF	31,416 SF

1.5 MG CIRCULAR RESPONSE TANK COSTS

 Client:
 MCES
 Date:
 6/15/2020

 Project:
 L-32
 By:
 P. Caswell

 Proj. No.:
 173420004
 From Comparison of Compariso

MAJOR ITEM CONSTRUCTION COSTS

Item			Unit	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Price	Qty.(1)	Cost	Qty.(1)	Cost	Qty.(1)	Cost	Qty.(1)	Cost	Qty.(1)	Cost
2.1	Excavation	CY	\$50.00	23,397	\$1,169,850	30,510	\$1,525,500	37,608	\$1,880,400	48,119	\$2,405,950	59,122	\$2,956,100
2.2	Dewatering (2)	LS	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000	1.0	\$1,000,000
2.3	Helical Piles	EA	\$2,000.00	315	\$630,000	316	\$632,000	216	\$432,000	209	\$418,000	148	\$296,000
3.1	Concrete	CY	\$1,000.00	5,214	\$5,214,000	6,459	\$6,459,000	8,155	\$8,155,000	10,258	\$10,258,000	12,580	\$12,580,000
3.2	Liner - Above HWL+2'	SF	\$50.00	0	\$0	0	\$0	0	\$0	0	\$0	0	\$O
3.3	Liner - Below HWL+2'	SF	\$50.00	16,504	\$825,200	19,474	\$973,700	23,962	\$1,198,100	29,736	\$1,486,800	36,683	\$1,834,150
13.0	Aluminum Cover	SF	\$75.00	7,854	\$589,050	12,272	\$920,400	17,672	\$1,325,400	24,053	\$1,803,975	31,416	\$2,356,200
	TOTAL				\$9,428,100		\$11,510,600		\$13,990,900		\$17,372,725		\$21,022,450
	Structure cost per gallon =			•	\$3.14	-	\$3.84	•	\$4.66	-	\$5.79	-	\$7.01

(1) All quantities are entered manually and are not calculated in this worksheet.

(2) Dewatering cost is a concept-level estimate, as a place-holder.

SUPPLEMENTAL SYSTEM COSTS

Item			Unit	100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Price(3)	Qty.	Cost								
1	Submersible Pump Station	LS	\$250,000.00	1	\$250,000	1	\$250,000	1	\$250,000	1	\$250,000	1	\$250,000
2	Tank Washdown System	LS	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000	1	\$100,000
3	Odor Control System	LS	\$300,000.00	1	\$300,000	1	\$300,000	1	\$300,000	1	\$300,000	1	\$300,000
	TOTAL				\$650,000		\$650,000		\$650,000		\$650,000		\$650,000

(3) Costs are concept-level estimates, based upon experience.

Item				100	ft. Dia.	125	ft. Dia.	150	ft. Dia.	175	ft. Dia.	200	ft. Dia.
No.	Item	Unit	Amount	Qty.	Cost								
Part 1	Structure Subtotal	LS	N/A	N/A	\$9,428,100	N/A	\$11,510,600	N/A	\$13,990,900	N/A	\$17,372,725	N/A	\$21,022,450
Part 2	Supplemental Systems	LS	N/A	N/A	\$650,000								
	Base Subtotal				\$10,078,100		\$12,160,600		\$14,640,900		\$18,022,725		\$21,672,450
	Contingency - Const. Costs	LS	30%	N/A	\$3,023,430	N/A	\$3,648,180	N/A	\$4,392,270	N/A	\$5,406,818	N/A	\$6,501,735
	Adj. Subtotal				\$13,101,530		\$15,808,780		\$19,033,170		\$23,429,543		\$28,174,185
	Contingency - Undev. Dsgn.	LS	25%	N/A	\$3,275,383	N/A	\$3,952,195	N/A	\$4,758,293	N/A	\$5,857,386	N/A	\$7,043,546
	TOTAL				\$16,376,913		\$19,760,975		\$23,791,463		\$29,286,928		\$35,217,731

APPENDIX H – COST ESTIMATE

	Lift Sta	atio	n L-32 Project Sur	nm	ary				
Section	Description		Construction Estimate		25% Contingency		25% Jndeveloped esign Details		Total
	Rehabilitation West Lift Station Pump and Control Replacement and Storage		Construction Estimate		25% Contingency		% Undeveloped Design Details		Total
West LS1	6 Pump 150 HP. 64 MGD Capacity	\$	7,315,000.00		1,828,750.00	\$	1,828,750.00	\$	10,972,500.00
	6 Pump 200 HP 67 MGD Capacity	\$	7,703,000.00		1,925,750.00	\$	1,925,750.00	\$	11,554,500.00
West Stora		\$	8,060,000.00		2,015,000.00	Ť	\$2,015,000	\$	12,090,000.00
West LS	Mississippi Lane Lift Station	\$	650,000.00	\$		\$	162,500.00	\$	975,000.00
			,	T	- ,	T	- ,	T	,
	River Crossing								
	River Crossing	\$	7,827,000.00	\$	1,956,750.00	\$	1,956,750.00	\$	11,740,500.00
		T	,- ,		,,		, ,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	East Lift Station Options		Construction Estimate		25% Contingency		% Undeveloped Design Details		Total
Option A	6 Pump Rectangular	\$	14,989,000.00		3,747,250.00	\$	3,747,250.00	\$	22,483,500.00
Option B	6 Pump Circular Design	Գ Տ	15,111,800.00		3,777,950.00	\$	3,777,950.00	\$	22,483,300.00
Option B	8 Pump Rectangular Design	۶ \$	18,008,000.00		4,502,000.00	φ \$	4,502,000.00	φ \$	27,012,000.00
Option D	8 Pump Circular Design	۹ \$	16,882,800.00		4,302,000.00	э \$	4,220,700.00	э \$	25,324,200.00
Option K	2 Hydraulic Pumps	φ \$	1,500,000.00	φ \$, -,	φ \$	375,000.00	φ \$	2,250,000.00
	1.5 MG Storage Tanks	¥	Construction Estimate		30 % Contingency	25	% Undeveloped Design Details	Ψ	Total
100 ft.	Diameter	\$	10,078,100.00		3,023,430.00	\$	3,275,383.00	\$	16,376,913.00
125 ft	Diameter	\$	12,160,600.00		3,648,180.00	\$	3,952,195.00	\$	19,760,975.00
150 ft	Diameter	\$	14,640,900.00		4,392,270.00	\$	4,758,293.00	\$	23,791,463.00
150 ft.	Diameter Buried.	\$	22,090,900.00		6,627,270.00	\$	7,179,543.00	\$	35,897,713.00
175 ft	Diameter	\$	18,022,725.00		5,406,817.50	\$	5,857,386.00	\$	29,286,928.50
200 ft	Diameter	\$	21,672,450.00	\$	6,501,735.00	\$	7,043,546.00	\$	35,217,731.00
	3.0 MG Storage Tanks		Construction Estimate		30 % Contingency		% Undeveloped Design Details		Total
100 ft	Diameter	\$	16,026,150.00		4,807,845.00	\$	5,208,499.00	\$	26,042,494.00
125 ft	Diameter	\$	16,393,800.00		4,918,140.00	\$	5,327,985.00	\$	26,639,925.00
150 ft	Diameter	\$	18,002,550.00		5,400,765.00	\$	5,850,829.00	\$	29,254,144.00
175 ft	Diameter	\$	19,808,475.00		5,942,542.50	\$	6,437,754.00	\$	32,188,771.50
200 ft	Diameter	\$	22,244,950.00	\$	6,673,485.00	\$	7,229,609.00	\$	36,148,044.00

	Lift Station L-32 Option A- 6 Pump Co	ost Summary
Section	Description	Total Division Cost
DIV. 1	General Requirements	\$1,767,000
DIV. 2	Site Work	\$779,000
DIV. 3	Concrete	\$4,624,000
DIV. 4	Masonry	\$528,000
DIV. 5	Metals	\$130,000
DIV. 6	Wood and Plastics	\$163,000
DIV. 7	Thermal and Moisture Protection	\$148,000
DIV. 8	Doors and Windows	\$108,000
DIV. 9	Finishes	\$907,000
DIV. 10	Specialties	\$26,000
DIV. 11	Equipment	\$2,160,000
DIV. 13	Specialty Systems	\$400,000
DIV. 14	Conveying Systems	\$60,000
DIV. 15	Mechanical	\$1,178,000
DIV. 16	Electrical	\$2,011,000
SUB-TOT	AL PROJECT COST	\$14,989,000
25%	Contingency	\$3,747,250
25%	Undeveloped Design Details	\$3,747,250
SUB-TOT	AL PROJECT COST	\$22,483,500

Lif	t Station L-32 Option B- 6 Pump Circula	ar Cost Summary
Section	Description	Total Division Cost
DIV. 1	General Requirements	\$1,770,000
DIV. 2	Site Work	\$975,000
DIV. 3	Concrete	\$4,000,000
DIV. 4	Masonry	\$407,000
DIV. 5	Metals	\$553,000
DIV. 6	Wood and Plastics	\$62,000
DIV. 7	Thermal and Moisture Protection	\$238,000
DIV. 8	Doors and Windows	\$49,000
DIV. 9	Finishes	\$1,222,800
DIV. 10	Specialties	\$26,000
DIV. 11	Equipment	\$2,160,000
DIV. 13	Specialty Systems	\$400,000
DIV. 14	Conveying Systems	\$60,000
DIV. 15	Mechanical	\$1,178,000
DIV. 16	Electrical	\$2,011,000
SUB-TOT	AL PROJECT COST	\$15,111,800
25%	Contingency	\$3,777,950
25%	Undeveloped Design Details	\$3,777,950
SUB-TOT	AL PROJECT COST	\$22,667,700

Lift St	tation L-32 Estimate C, 8 Pump Rectan	gular cost Summary
Section	Description	Total Division Cost
DIV. 1	General Requirements	\$2,194,000
DIV. 2	Site Work	\$988,000
DIV. 3	Concrete	\$6,058,000
DIV. 4	Masonry	\$637,000
DIV. 5	Metals	\$130,000
DIV. 6	Wood and Plastics	\$163,000
DIV. 7	Thermal and Moisture Protection	\$195,000
DIV. 8	Doors and Windows	\$108,000
DIV. 9	Finishes	\$1,107,000
DIV. 10	Specialties	\$26,000
DIV. 11	Equipment	\$2,250,000
DIV. 13	Specialty Systems	\$400,000
DIV. 14	Conveying Systems	\$60,000
DIV. 15	Mechanical	\$1,424,000
DIV. 16	Electrical	\$2,268,000
SUB-TOT	AL PROJECT COST	\$18,008,000
25%	Contingency	\$4,502,000
25%	Undeveloped Design Details	\$4,502,000
SUB-TOT	AL PROJECT COST	\$27,012,000

L	ift Station L-32 Estimate D, 8 Pump Cir	cular Summary
Section	Description	Total Division Cost
DIV. 1	General Requirements	\$1,822,000
DIV. 2	Site Work	\$1,192,000
DIV. 3	Concrete	\$4,973,000
DIV. 4	Masonry	\$407,000
DIV. 5	Metals	\$553,000
DIV. 6	Wood and Plastics	\$62,000
DIV. 7	Thermal and Moisture Protection	\$238,000
DIV. 8	Doors and Windows	\$49,000
DIV. 9	Finishes	\$1,382,800
DIV. 10	Specialties	\$26,000
DIV. 11	Equipment	\$2,250,000
DIV. 13	Specialty Systems	\$400,000
DIV. 14	Conveying Systems	\$60,000
DIV. 15	Mechanical	\$1,350,000
DIV. 16	Electrical	\$2,118,000
SUB-TOT	AL PROJECT COST	\$16,882,800
25%	Contingency	\$4,220,700
25%	Undeveloped Design Details	\$4,220,700
SUB-TOT	AL PROJECT COST	\$25,324,200

	Lift Station L-32 Cost E	Stimate	E River C	Crossing /Site P	Piping	
						Total Division
Section	Description	Units	Quantity	Unit Price	Item Cost	Cost
DIV. 1	General Requirements	1	<u> </u>		ated DIV Costs:	\$600,000
	Quality Control	LS	1	\$25,000		
	Mobilization	LS	1	\$50,000		
	Televise Barrels A & B	EA	2 1	\$5,000		
	Dewatering Silt Fence	LS LF	4000	\$100,000		
		LF	4000	\$5 \$350,000		
	Temporary Conveyance Startup (and Testing)	LS	1	\$50,000		
DIV. 2	Site Work and Piping	LS	<u> </u>		ated DIV Costs:	\$5,935,000
	Demolition Meter Vault	LS	1	\$200,000		\$3,333,000
	Demoliton Valve Vault	LS	1	\$200,000		
	Site Preparation	LS	1	\$50,000		
	Excavation Siphon Structure	CY	600	\$25		
	Excavation Diversion Structure	CY	400	\$25		
	Shaft Excavation Near River East	LS	1	\$250,000		
	Backfill & Compaction	CY	1000	\$20		
	Clean Barrels A & B	LS	2	\$50,000		
	Slope Protection & Erosion Control	LS	1	\$25,000		
	Paving	LS	1	\$50,000		
	4" water service East	LS	1	\$10,000		
	21" Odor Control Piping	LF	100	\$400		
	24" DIP Forcemain Pipe Sewer East	LF	400	\$350		
	54" Gravity Sanitary Sewer	LF	120	\$1,000		
	42" Gravity Sanitary Sewer West	LF	100	\$750		
	42" Gravity Sanitary Sewer East	LF	500	\$2,500		
	30" gravity Sanitary Sewer West	LF	100	\$400		
2700	30" Gravity Sanitary Sewer East	LF	700	\$2,000	\$1,400,000	
2700	30" CIPP with restriction liner	LF	830	\$1,000	\$830,000	
2700	30" CIPP with restriction liner	LF	830	\$1,000	\$830,000	
2700	72" Overflow to storage tank	LF	100	\$2,000	\$200,000	
2700	8" DIP Forcemain from stroage tank	LF	100	\$200	\$20,000	
2900	Landscaping					
	Seed	AC	7	\$5,000	\$35,000	
	Trees, Plants, Shrubs	LS	1	\$25,000	\$25,000	
	-					-
DIV. 3	Concrete			Estim	ated DIV Costs:	\$760,000
3300	Cast-in-Place Concrete			#000 000	# 000 000	
	Diversion Structure West	LS	1	\$300,000	\$300,000	
	Siphon Head Structure West		7-	#4 000	A75 000	
	Baseslab	CY	75	\$1,000		
	Walls Tan Stab	CY	100	\$1,000		
	Top Stab	CY	75	\$1,000 \$1,000		
	Interior Walls	CY	50	\$1,000		
	Wiers	LS	1	\$10,000	\$10,000	
	Siphon Tail works structure Base slab 10 x 24	CY	10	ሮኅ ሰሰሳ	\$10,000	
	Dase slav TU X 24		10	\$1,000	\$10,000	

	Lift Station L-32 Cost E	stimate	E River C	rossing /Site P	iping	
						Total Division
Section	Description	Units	Quantity	Unit Price	Item Cost	Cost
			l	• · • • •	• •	
	Walls	CY	50	\$1,000	\$50,000	
	Top Stab	CY	10	\$1,000	\$10,000	
	Concrete thrust blocks-new pipe	CY	80	\$1,000	\$80,000	
DIV. 4	Masonry	I		Estima	ated DIV Costs:	\$0
						• •
DIV. 5	Metals			Estima	ated DIV Costs:	\$75,000
5500	Metal Fabrications					
	Aluminum Railing	LS	1	\$10,000	\$10,000	
	Grating	LS	1	\$25,000	\$25,000	
	Hatches Headworks	EA	2	\$10,000	\$20,000	
	Hatches Tailworks	EA	2	\$10,000	\$20,000	
DIV. 6	Wood and Plastics			Estima	ated DIV Costs:	\$10,000
6600	Weirs	LS	1	\$10,000	\$10,000	
	Thermal and Moisture Protection			Fatima		¢2.000
DIV. 7		05	400		ated DIV Costs:	\$2,000
7210	Insulation below grade	SF	400	\$5	\$2,000	
DIV. 9	Finishes	1	I I	Estima	ated DIV Costs:	\$80,000
9880	Concrete Floor Sealer	SF	1,000	\$20	\$20,000	
9901	Coat Siphn Structure	SF	1200	\$50	\$60,000	
DIV. 10	Specialties			Ectima	ated DIV Costs:	\$20,000
	Louvers and Vents	LS	1	\$20,000	\$20,000	φ20,000
10200		10		φ20,000	φ20,000	
DIV. 11	Equipment		1 1	Estima	ated DIV Costs:	\$210,000
	Sluice Gates Headworks	EA	4	\$20,000	\$80,000	
	Sluice Gates Tailworks	EA	6	\$20,000	\$120,000	
	Bubbler System	EA	1	\$10,000	\$10,000	
DIV. 13	Speacialty Systems			Ectima	ated DIV Costs:	\$0
DIV. 15				Louine		ΨΟ
DIV. 14	Conveying Systems	I	ı I	Estima	ated DIV Costs:	\$0
DIV. 15	Mechanical		· · · ·		ated DIV Costs:	\$115,000
	Mechanical General Provisions	LS	1	\$50,000	\$50,000	
	Mechanical Basic Materials & Methods	LS	1	\$14,500	\$14,500	
15060	Process Piping and Fittings	LS	1	\$50,000	\$50,000	
DIV. 16	Electrical			Fetime	ated DIV Costs:	\$20,000
	General-Wires, Cables, Conduit	LS	1	\$10,000	\$10,000	Ψ20,000
	Lighting, Misc.	LS	1	\$10,000	\$10,000	
	Lighting, mise.	L3	1	φ10,000	φ10,000	

	Lift Station L-32 Cost Estimate E River Crossing /Site Piping							
Section	Description	Units	Quantity	Unit Price	ltem Cost	Total Division Cost		
Section	Description	Units	Quantity	Unit Price	item cost	Cost		
25% Con 25% Und	AL PROJECT COST tingency eveloped Design Details nstruction Cost					\$7,827,000 \$1,956,750 <u>\$1,956,750</u> \$11,740,500		

Estima	te G Lift Station L-32 West 6 150 HP. 6	Pump Cost Summary
Section	Description	Total Division Cost
DIV. 1	General Requirements	\$1,303,000
DIV. 2	Site Work and demolition	\$350,000
DIV. 3	Concrete	\$506,000
DIV. 4	Masonry	\$0
DIV. 5	Metals	\$80,000
DIV. 6	Wood and Plastics	\$50,000
DIV. 7	Thermal and Moisture Protection	\$70,000
DIV. 8	Doors and Windows	\$55,000
DIV. 9	Finishes	\$286,000
DIV. 10	Specialties	\$26,000
DIV. 11	Equipment	\$1,380,000
DIV. 13	Specialty Systems	\$400,000
DIV. 14	Conveying Systems	\$100,000
DIV. 15	Mechanical	\$761,000
DIV. 16	Electrical	\$1,948,000
SUB-TOT	AL PROJECT COST	\$7,315,000
25%	Contingency	\$1,828,750
25%	Undeveloped Design Details	\$1,828,750
SUB-TOT	AL PROJECT COST	\$10,972,500

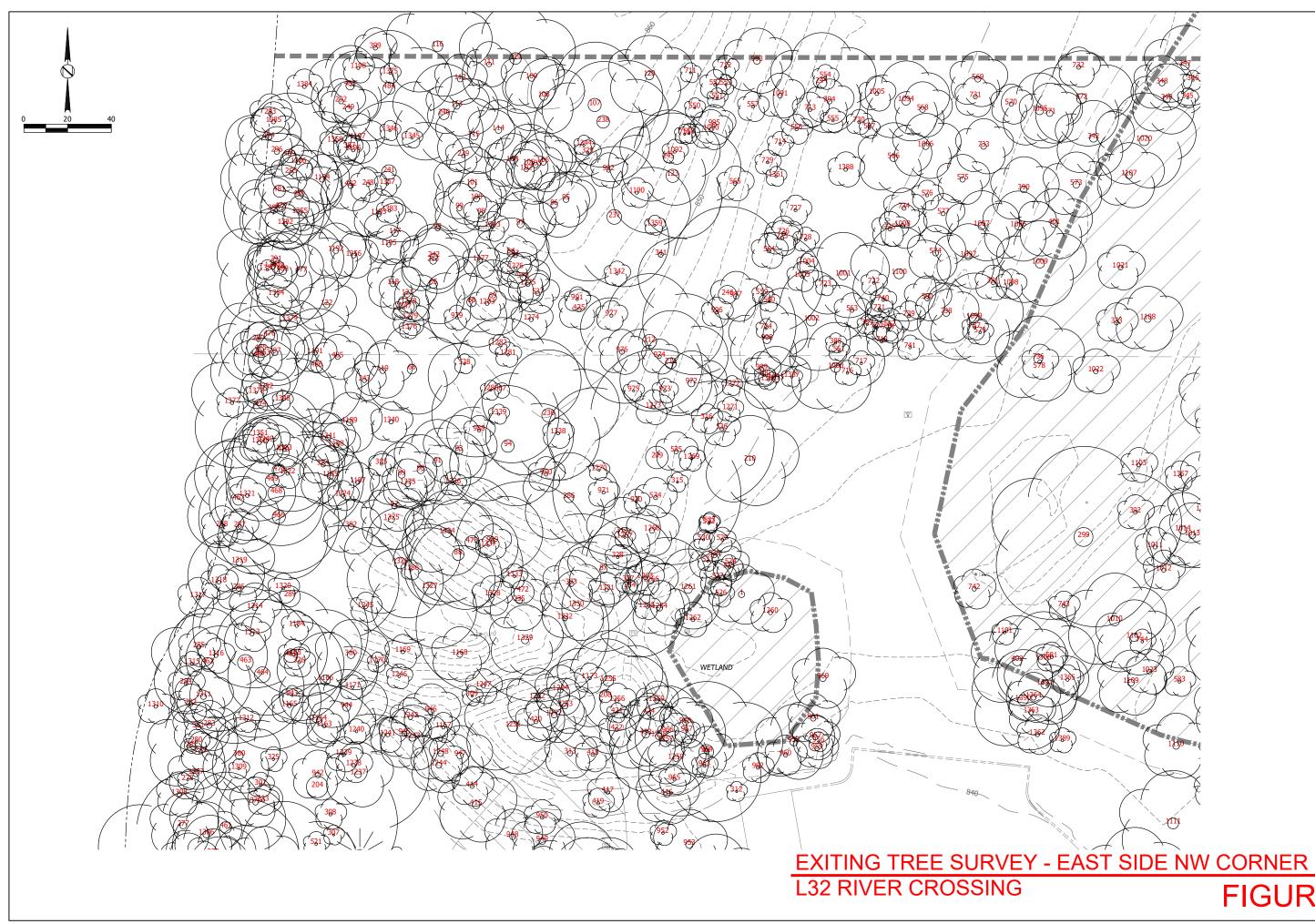
Estima	ate H Lift Station L-32 West 200 HP. 6	Pump Cost Summary
Section	Description	Total Division Cost
DIV. 1	General Requirements	\$1,303,000
DIV. 2	Site Work and Demolition	\$350,000
DIV. 3	Concrete	\$506,000
DIV. 4	Masonry	\$0
DIV. 5	Metals	\$80,000
DIV. 6	Wood and Plastics	\$50,000
DIV. 7	Thermal and Moisture Protection	\$70,000
DIV. 8	Doors and Windows	\$55,000
DIV. 9	Finishes	\$286,000
DIV. 10	Specialties	\$26,000
DIV. 11	Equipment	\$1,650,000
DIV. 13	Specialty Systems	\$400,000
DIV. 14	Conveying Systems	\$100,000
DIV. 15	Mechanical	\$757,000
DIV. 16	Electrical	\$2,070,000
SUB-TOT	AL PROJECT COST	\$7,703,000
25%	Contingency	\$1,925,750
25%	Undeveloped Design Details	\$1,925,750
SUB-TOT	AL PROJECT COST	\$11,554,500

Estimate I West Side 1.0MG Storage Tank					
Section	Description	Total Division Cost			
DIV. 1	General Requirements	\$1,400,000			
DIV. 2	Site Work	\$596,000			
DIV. 3	Concrete	\$4,300,000			
DIV. 4	Masonry	\$0			
DIV. 5	Metals	\$30,000			
DIV. 6	Wood and Plastics	\$0			
DIV. 7	Thermal and Moisture Protection	\$0			
DIV. 8	Doors and Windows	\$0			
DIV. 9	Finishes	\$450,000			
DIV. 10	Specialties	\$0			
DIV. 11	Equipment	\$670,000			
DIV. 13	Specialty Systems	\$50,000			
DIV. 14	Conveying Systems	\$20,000			
DIV. 15	Mechanical	\$244,000			
DIV. 16	Electrical	\$300,000			
SUB-TOTAL PROJECT COST		\$8,060,000			
25%	Contingency	\$2,015,000			
25%	Undeveloped Design Details	\$2,015,000			
SUB-TOT	AL PROJECT COST	\$12,090,000			

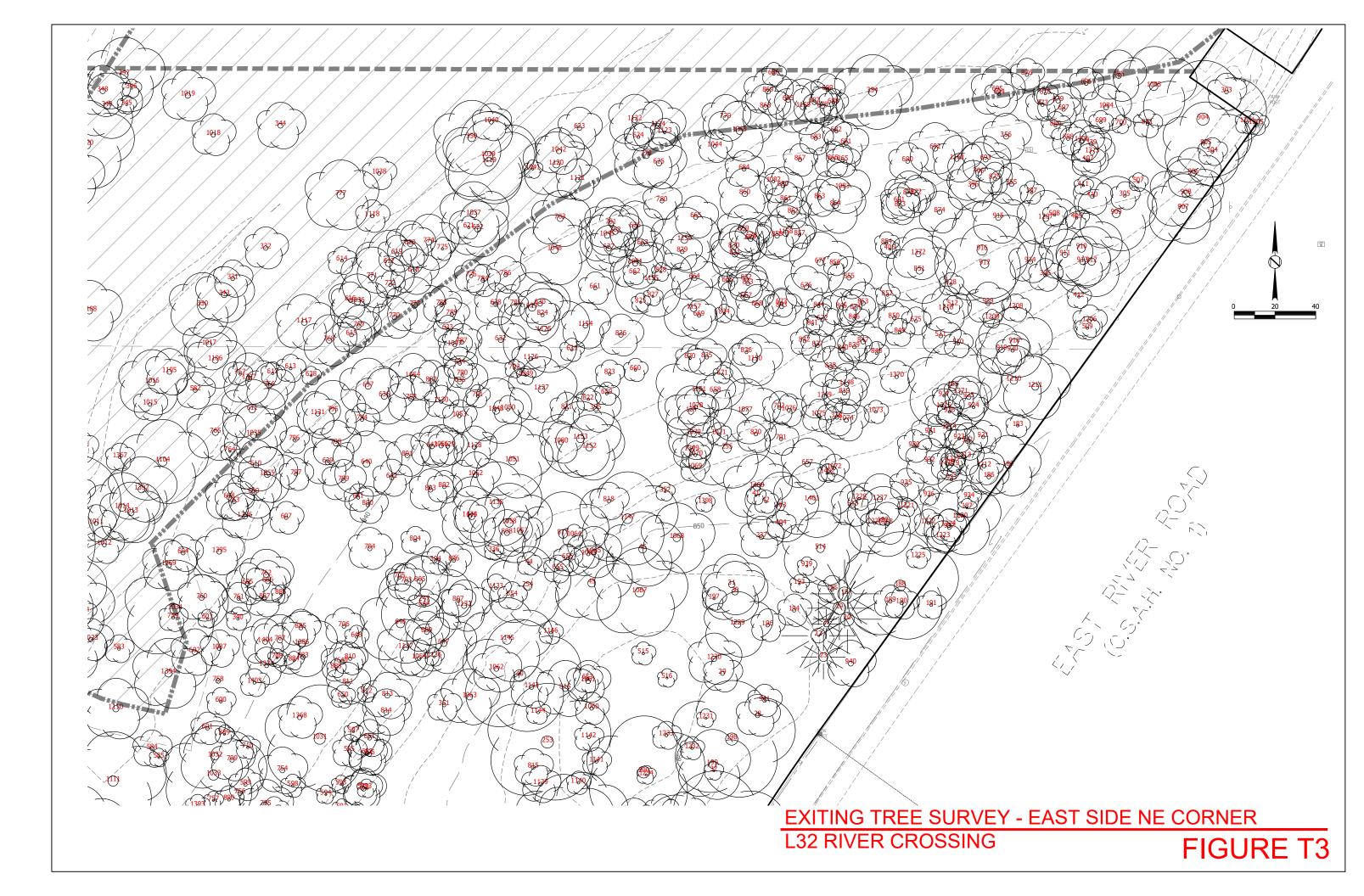
	Estimate J N	lississip	pi Lane Li	ift Station		
						Total Division
Section	Description	Units	Quantity	Unit Price	Item Cost	Cost
	Conoral Deguiremento			Eatim		¢04.000
DIV. 1 General Requirements 1400 Quality Control 1400 Quality Control		LS	1	Estimated DIV Costs: \$25,000 \$25,000		\$91,000
	Mobilization	LS	1	\$23,000 \$5,000	\$25,000 \$5,000	
	Dewatering	LS	1	\$50,000		
	Silt Fence	LS	200	\$30,000 \$5	\$1,000	
	Startup (and Testing)	LS	200	\$0 \$10,000		
DIV. 2	Site Work				ated DIV Costs:	\$78,000
	Site Preparation (Clearing/Grubbing)	LS	1	\$0	\$0	ψ/0,000
	Excavation Lift Station	CY	400	\$50		
	Backfill & Compaction or export	CY	400	\$20	\$8,000	
	Paving	LS	1	\$50,000		
	8" Gravity Sanitary Sewer	LF	50	\$100 \$100	\$5,000	
	4" DIP Forcemain	LF	50 50	\$80	\$4,000	
2000			00	φθθ	φ-1,000	
DIV. 3	Concrete			Estima	ated DIV Costs:	\$150,000
3300	Cast-in-Place Concrete					
	Lift Station Structure	LS	1	\$100,000	\$100,000	
	Valve Vault Structure	LS	1	\$50,000	\$50,000	
DIV. 4	Masonry			Estima	ated DIV Costs:	\$0
4200	Masonry	ļ				
DIV. 5	Metals			Estima	ated DIV Costs:	\$20,000
5500	Metal Fabrications					. ,
	Hatches	LS	2	\$5,000	\$10,000	
	Metal Fab Ladders	LS	2	\$5,000	\$10,000	
				-		
DIV. 6	Wood and Plastics	I	1 1	Estima	ated DIV Costs:	\$0
DIV. 7	Thermal and Moisture Protection			Fstim	ated DIV Costs:	\$0
				LStille	aled DIV Costs.	Ψ
DIV. 8	Doors and Windows	E		Estima	ated DIV Costs:	\$0
DIV. 9	Finishes			Ectim	ated DIV Costs:	\$0
DIV. 3	1 11131103			LStille	aled DIV Cosis.	φU
DIV. 10	Specialties			Estima	ated DIV Costs:	\$0
DIV. 11	Equipment	1	1		ated DIV Costs:	\$16,000
	Submersible pumps	EA	2	\$8,000	\$16,000	
DIV. 13	Speacialty Systems	Į	I I	Estima	ated DIV Costs:	\$50,000
13400	Instrumentation and Controls	LS	1	\$50,000	\$50,000	,
	RTU Panel			,,. . .	,,. . .	
DIV. 14	Conveying Systems	•	<u>. </u>	Estima	ated DIV Costs:	\$0
DIV. 15	Mechanical			Estima	ated DIV Costs:	\$60,000
15010	Mechanical General Provisions	LS	1	\$10,000	\$10,000	

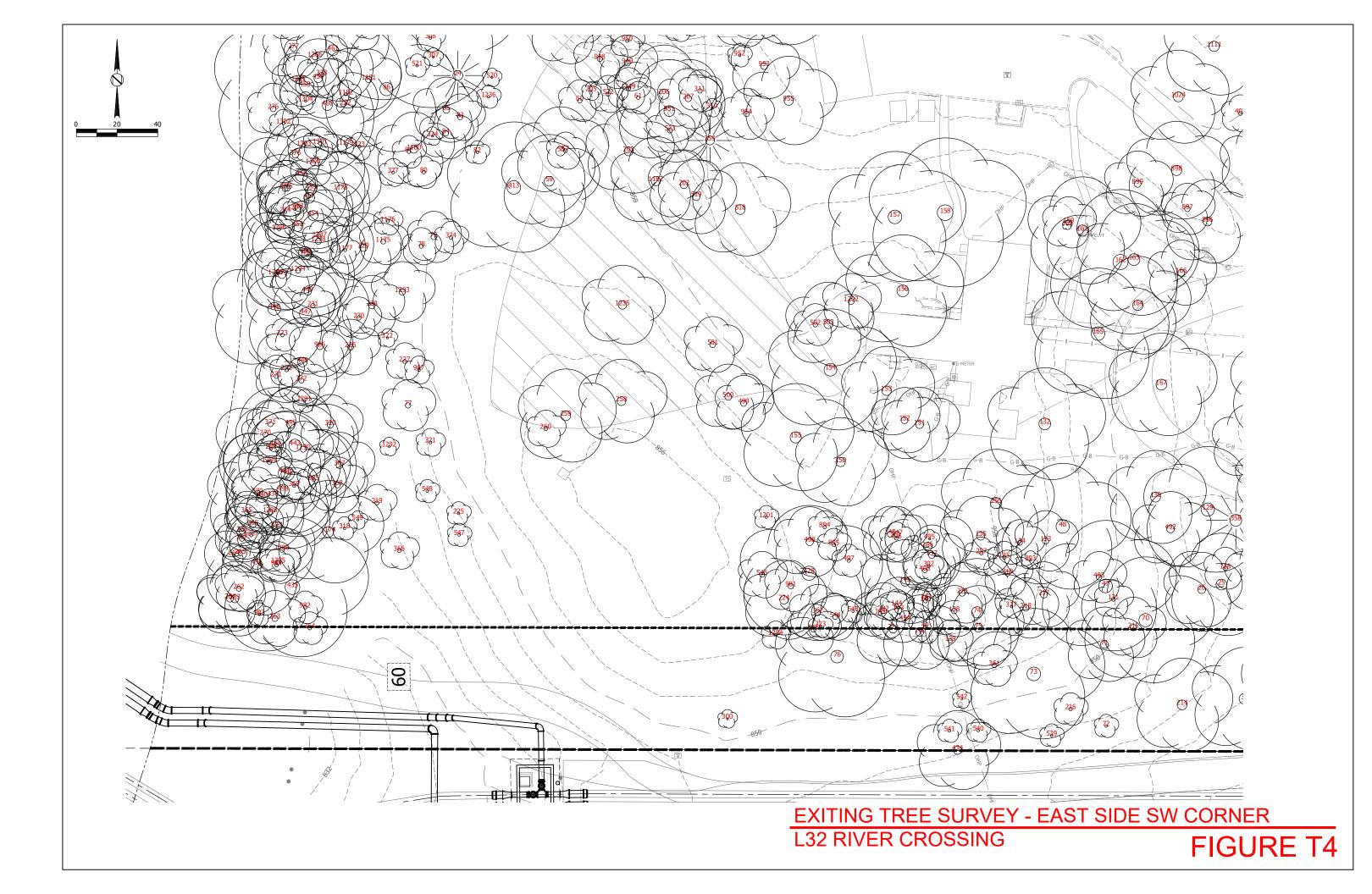
15060 Process Piping and Fittings		1		1	
4" DIP	LF	40	\$120	\$4,800	
4" base elbows	EA	2	\$5,000	\$10,000	
Vent Piping		1	\$500	\$500	
15100 Valves and Accessories					
Flange Coupling Daaptor	EA	2	\$800	\$1,600	
4" CV	EA	2	\$1,200	\$2,400	
4" PV	EA	2	\$3,000	\$6,000	
15990 Startup (and Testing)	LS	1	\$25,000	\$25,000	
DIV. 16 Electrical			Estima	ted DIV Costs:	\$185,000
General-Wires, Cables, Conduit	LS	1	\$10,000	\$10,000	
50KW, Generator, pad, Transfer Switch		1	\$75,000	\$75,000	
Control Panel	LS	1	\$100,000	\$100,000	
SUB-TOTAL PROJECT COST					
25% Contingency					
25% Undeveloped Design Details					
Total Construction Cost					\$975,000

	Estimate K L-	32 Hydr	aulic Pum	p Estimate		
						Total Division
Section	Description	Units	Quantity	Unit Price	Item Cost	Cost
	Decemption	•	duantity			
DIV. 1	General Requirements	-			ated DIV Costs:	\$40,000
	uality Control	LS	1	\$25,000		
	lobilization	LS	1	\$5,000		
	tartup (and Testing) General	LS	1	\$10,000		
DIV. 2	Site Work				ated DIV Costs:	\$0
DIV. 3	Concrete	r	г	Estima	ated DIV Costs:	\$70,000
	ast-in-Place Concrete ift Station Structure Walls	CY	60	\$1,000	\$60,000	
	mall sump pump	LS	2	\$5,000		
DIV. 4	Masonry	L3	2		ated DIV Costs:	\$0
4200 M				Lotine		ΨΟ
DIV. 5	Metals	Į	<u> </u>	Estima	ated DIV Costs:	\$70,000
	letal Fabrications					1 .)
	Hatches	LS	2	\$5,000	\$10,000	
	Metal Fab Ladders	LS	2	\$10,000	\$20,000	
	Roof Hatches	LS	2	\$10,000	\$20,000	
	Sluic Gates	LS	2	\$10,000	\$20,000	
DIV. 6	Wood and Plastics					\$0
		T	<u>г г</u>			
DIV. 7	Thermal and Moisture Protection					\$0
DIV. 8	Doors and Windows					\$0
DIV. 9	Finishes					<u>\$0</u>
DIV. 10 DIV. 11	Specialties Equipment			Fatim	ated DIV Costs:	\$0 \$600,000
	ubmersible Hydraulic pumps	EA	2	\$300,000		\$600,000
DIV. 13	Speacialty Systems		2		ated DIV Costs:	\$25,000
13400	Instrumentation and Controls	LS	1	\$25,000		Ψ20,000
10100	RTU Panel	20		\$20,000	<i>\</i> 20,000	
DIV. 14	Conveying Systems	1	1 1	Estima	ated DIV Costs:	\$0
DIV. 15	Mechanical	-		Estima	ated DIV Costs:	\$285,000
15010 M	lechanical General Provisions	LS	1	\$50,000	\$50,000	
15060	20" DIP	LF	160	\$500	\$80,000	
15060	20" - 90 Bend	LB	1600	\$10		
15,060	24" x 20" tee	LB	3000	\$10	\$30,000	
15100 V	alves and Accessories					
	Flange Coupling Adaptor	EA	2	\$1,800	\$3,600	
	20" Check Valves	EA	2	\$20,000	\$40,000	
45000 0	20" Plug vavles	EA	2	\$20,000	\$40,000	
15990 S	tartup (and Testing) Supplier	LS	1	\$25,000	\$25,000	
DIV. 16	Electrical	L		Fetim	ated DIV Costs:	\$410,000
	eneral-Wires, Cables, Conduit	LS	1	\$10,000	\$10,000	Ψ+10,000
	00 HP. Diesel Engine and enclosure	LS	2	\$150,000	\$300,000	
	control Panel	LS	1	\$100,000	\$100,000	
SUB-TOTA	L PROJECT COST	<u>.</u>	<u> </u>			\$1,500,000
25% Contir						\$375,000
	veloped Design Details					<u>\$375,000</u>
Total Cons	truction Cost					\$2,250,0


	Lift Station L-32 Storage and O&M Summary											
OPTION	WEST SIDE STORAGE at 36 MGD EXISTING PEAK FLOW			Comment	Construction Estimate		25% Contingency				Total	Annual O&M
1	Existing Interceptor to Elev. 825	1.4 MG	56 Minutes	Existing Pipes								\$0
2	Existing Interceptor to Elev. 826	1.97 MG	79 Minutes	Construct Mississippi Ln. LS	\$	650,000.00	\$ 162,500	0.00	\$ 162,500.00	\$	975,000.00	\$10,000
3	Existing Interceptor to Elev. 827	2.29 MG	103 Minutes	Need Additional Survey, assume 2nd LS		650,000.00	\$ 162,500	0.00	\$ 162,500.00	\$	975,000.00	\$10,000
	WEST SIDE STORAGE at 67 MGD ULLTIMATE PEAK FLOW											
4	Existing Interceptor to Elev. 825	1.1 MG	24 Minutes	Existing Pipes								\$0
5	Existing Interceptor to Elev. 826	1.68 MG	36 Minutes	Construct Mississippi Ln. LS	\$	650,000.00	\$ 162,500	0.00	\$ 162,500.00	\$	975,000.00	\$10,000
6	Existing Interceptor to Elev. 827	2.29 MG	49 Minutes	Need Additional Survey, assume 2nd LS	\$	650,000.00	\$ 162,500	0.00	\$ 162,500.00	\$	975,000.00	\$10,000
	WEST SIDE STORAGE											
7	70 Foot Diameter	1.0 MG	20 Minutes	Gravity In/Pump Out	\$	8,060,000.00	\$ 2,015,000	0.00	\$2,015,000	\$ ´	2,090,000.00	
	EAST SIDE PUMPS											
8	Hydraulic pumps.	2 x 12,500 gpm= 25,000 gpm equivalent to 1.5 MG	Continuous	Pump Out	\$	1,500,000.00	\$ 375,000	0.00	\$ 375,000.00	\$	2,250,000.00	
	EAST SIDE STORAGE											
9	150 ft. Diameter Alum. Roof	1.5 MG	30 Minutes	Gravity In/Pump Out	\$	14,640,900.00	\$ 4,392,270		\$ 4,758,293.00		23,791,463.00	
10	150 ft. Diameter Buried Conc. Roof	1.5 MG	30 Minutes	Gravity In/Pump Out	\$	22,090,900.00	\$ 6,627,270	0.00	\$ 7,179,543.00	\$ 3	35,897,713.00	
	EAST SIDE STORAGE				-							
11	150 ft. Diameter	3.0 MG	60 Minutes	Gravity In/Pump Out	\$	18,002,550.00	\$ 5,400,765	5.00	\$ 5,850,829.00	\$ 2	29,254,144.00	

APPENDIX I – TREE SURVEY





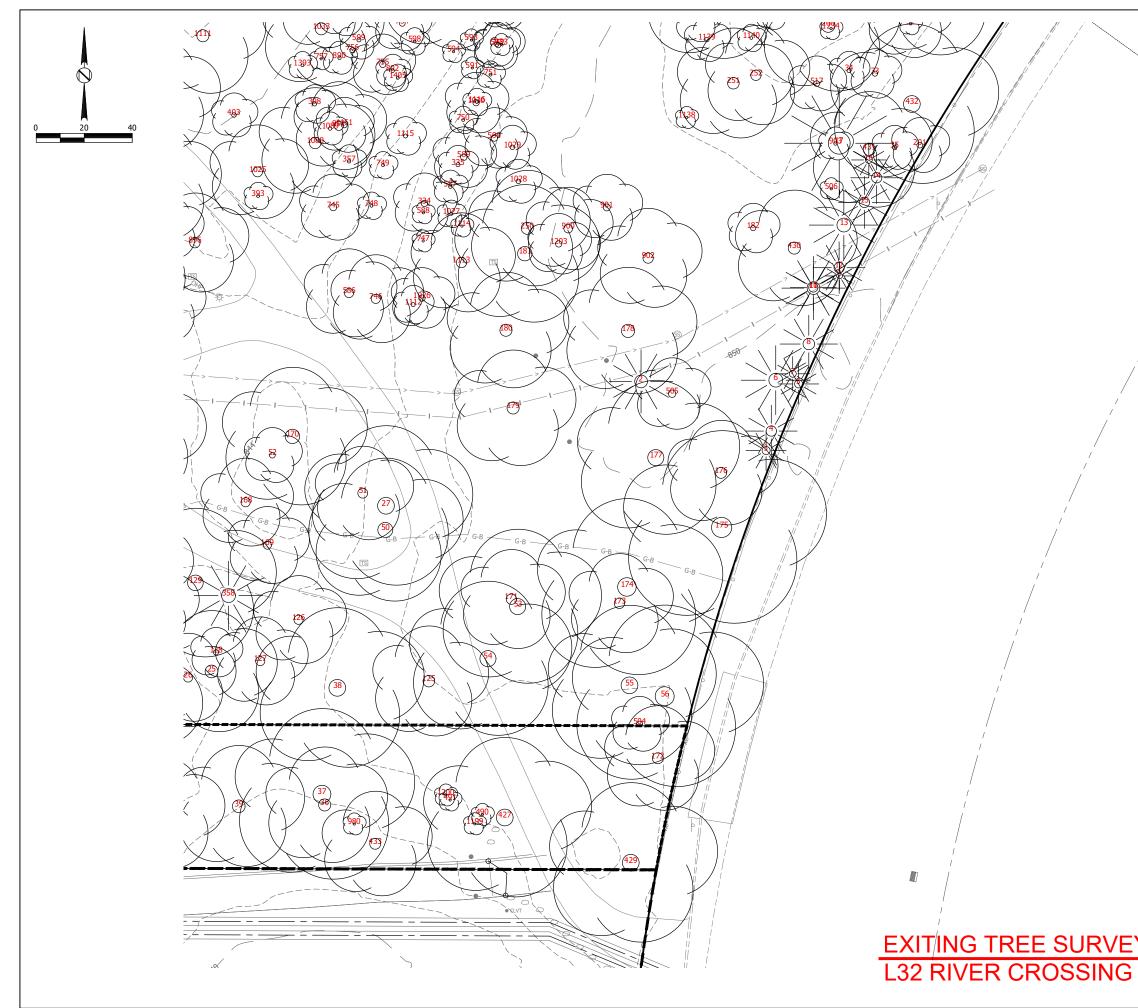

FIGURE T1

FIGURE T2

EXIT/ING TREE SURVEY - EAST SIDE SE CORNER L32 RIVER CROSSING FIGURE T5

		Tree Survey Result	S		
ID Common Name	Species	DBH (inches)	Condition*	Latitude	Longitude
1 Black Walnut	Juglans nigra	12	Good	45.094818790	-93.277102457
2 Norway (red) pine	Pinus resinosa	11	Good	45.094136522	-93.275630877
3 Norway (red) pine	Pinus resinosa	7	Good	45.094057479	-93.275429174
4 Norway (red) pine	Pinus resinosa	9	Good	45.094079838	-93.275420730
5 Norway (red) pine	Pinus resinosa	7	Good	45.094133653	-93.275376761
6 Norway (red) pine	Pinus resinosa	12	Fair	45.094137958	-93.275413565
7 Norway (red) pine	Pinus resinosa	6	Fair	45.094145261	-93.275386149
8 Norway (red) pine	Pinus resinosa	10	Good	45.094179247	-93.275360234
9 Norway (red) pine	Pinus resinosa	5	Poor	45.094257086	-93.275310735
10 Norway (red) pine	Pinus resinosa	11	Good	45.094243158	-93.275352735
11 Norway (red) pine	Pinus resinosa	8	Poor	45.094243817	-93.275352989
12 Norway (red) pine	Pinus resinosa	9	Good	45.094266546	-93.275311327
13 Norway (red) pine	Pinus resinosa	12	Good	45.094315228	-93.275303752
14 Norway (red) pine	Pinus resinosa	9	Fair	45.094369312	-93.275250865
15 Norway (red) pine	Pinus resinosa	9	Poor	45.094341116	-93.275270546
16 Norway (red) pine	Pinus resinosa	6	Poor	45.094389667	-93.275263484
17 Norway (red) pine	Pinus resinosa	19	Good	45.094408783	-93.275311306
18 Norway (red) pine	Pinus resinosa	14	Good	45.094783587	-93.274947445
19 Norway (red) pine	Pinus resinosa	13	Good	45.094764202	-93.274957252
20 Norway (red) pine	Pinus resinosa	14	Good	45.094749381	-93.274942176
21 Norway (red) pine	Pinus resinosa	6	Poor	45.094742967	-93.274981935
22 Norway (red) pine	Pinus resinosa	15	Good	45.094727216	-93.274997168
23 Norway (red) pine	Pinus resinosa	9	Good	45.094698369	-93.274987564
24 Norway (red) pine	Pinus resinosa	10	Poor	45.094492040	-93.277778578
25 Northern red oak	Quercus rubra	22	Good	45.093805040	-93.276323928
26 Northern red oak	Quercus rubra	16	Poor	45.093798180	-93.276361474
27 Northern red oak	Quercus rubra	29	Good	45.093994379	-93.276042413
28 Northern red oak	Quercus rubra	9	Fair	45.094619752	-93.275112728
29 Northern red oak	Quercus rubra	8	Fair	45.094676343	-93.275179433
30 Northern red oak	Quercus rubra	13	Fair	45.094786294	-93.275155749
31 Northern red oak	Quercus rubra	13	Fair	45.094795975	-93.275161797

32 Northern red oak	Quercus rubra	4	Good	45.094545158	-93.275196167
33 Northern red oak	Quercus rubra	9	Good	45.094488329	-93.275253678
34 Northern red oak	Quercus rubra	7	Good	45.094491642	-93.275295564
35 Northern red oak	Quercus rubra	8	Fair	45.094404002	-93.275222004
36 Northern red oak	Quercus rubra	21	Good	45.093652451	-93.276141291
37 Northern red oak	Quercus rubra	31	Fair	45.093664745	-93.276145645
38 Northern red oak	Quercus rubra	29	Fair	45.093786323	-93.276120853
39 Northern red oak	Quercus rubra	22	Fair	45.093650926	-93.276279876
40 Northern red oak	Quercus rubra	24	Good	45.094673358	-93.275564841
41 Northern red oak	Quercus rubra	4	Good	45.094915980	-93.275115912
42 Northern red oak	Quercus rubra	5	Good	45.094907477	-93.275096848
43 Northern red oak	Quercus rubra	1	Fair	45.095278246	-93.277640967
44 Northern red oak	Quercus rubra	5	Poor	45.094824170	-93.275547012
45 Northern red oak	Quercus rubra	16	Fair	45.094797884	-93.275428118
46 Northern red oak	Quercus rubra	16	Fair	45.094843803	-93.275331337
47 Northern pin oak	Quercus ellipsoidalis	28	Fair	45.093803182	-93.276544764
48 Northern pin oak	Quercus ellipsoidalis	27	Poor	45.093883305	-93.276626295
49 Northern pin oak	Quercus ellipsoidalis	7	Fair	45.093747481	-93.276888120
50 Northern pin oak	Quercus ellipsoidalis	26	Fair	45.093966808	-93.276043509
51 Northern pin oak	Quercus ellipsoidalis	17	Poor	45.094008758	-93.276079795
52 Northern pin oak	Quercus ellipsoidalis	10	Good	45.094052151	-93.276225715
53 Northern pin oak	Quercus ellipsoidalis	28	Fair	45.093879207	-93.275829995
54 Northern pin oak	Quercus ellipsoidalis	28	Good	45.093819733	-93.275877849
55 Northern pin oak	Quercus ellipsoidalis	29	Good	45.093789174	-93.275649600
56 Northern pin oak	Quercus ellipsoidalis	33	Good	45.093776730	-93.275592736
57 Northern pin oak	Quercus ellipsoidalis	8	Fair	45.094390432	-93.277573594
58 Northern pin oak	Quercus ellipsoidalis	19	Poor	45.094389711	-93.277583150
59 Northern pin oak	Quercus ellipsoidalis	20	Fair	45.094349259	-93.277604555
60 Northern pin oak	Quercus ellipsoidalis	9	Poor	45.094457896	-93.277546055
61 Northern pin oak	Quercus ellipsoidalis	7	Fair	45.094462046	-93.277434794
62 Northern pin oak	Quercus ellipsoidalis	28	Good	45.094621058	-93.277164889
63 Northern pin oak	Quercus ellipsoidalis	8	Good	45.095244140	-93.277503332
64 Northern pin oak	Quercus ellipsoidalis	14	Good	45.095247122	-93.277510970

65 Northern pin oak	Quercus ellipsoidalis	16	Fair	45.095208341	-93.277648680
66 Northern pin oak	Quercus ellipsoidalis	18	Fair	45.095101301	-93.277686408
67 Northern pin oak	Quercus ellipsoidalis	29	Fair	45.095074642	-93.277526758
68 Northern pin oak	Quercus ellipsoidalis	18	Fair	45.095185567	-93.277580823
69 Northern pin oak	Quercus ellipsoidalis	15	Fair	45.095191204	-93.277543524
70 Northern pin oak	Quercus ellipsoidalis	27	Fair	45.093757027	-93.276468389
71 Northern pin oak	Quercus ellipsoidalis	16	Fair	45.093724184	-93.276546834
72 Northern pin oak	Quercus ellipsoidalis	5	Fair	45.093614131	-93.276543474
73 Northern pin oak	Quercus ellipsoidalis	28	Poor	45.093684364	-93.276681316
74 Northern pin oak	Quercus ellipsoidalis	23	Poor	45.093767516	-93.276789222
75 Northern pin oak	Quercus ellipsoidalis	18	Poor	45.093746788	-93.276786784
76 Northern pin oak	Quercus ellipsoidalis	26	Fair	45.093707718	-93.277055947
77 Northern pin oak	Quercus ellipsoidalis	11	Poor	45.094046614	-93.277873253
78 Northern pin oak	Quercus ellipsoidalis	8	Good	45.094261438	-93.277848029
79 Northern pin oak	Quercus ellipsoidalis	11	Fair	45.094273987	-93.277824560
80 Northern pin oak	Quercus ellipsoidalis	7	Fair	45.094361443	-93.277843386
81 Northern pin oak	Quercus ellipsoidalis	7	Fair	45.094388953	-93.277871827
82 Northern pin oak	Quercus ellipsoidalis	5	Fair	45.094388236	-93.277741230
83 Northern pin oak	Quercus ellipsoidalis	10	Fair	45.094435563	-93.277774130
84 Northern pin oak	Quercus ellipsoidalis	11	Fair	45.094413931	-93.277801428
85 Northern pin oak	Quercus ellipsoidalis	14	Fair	45.094445680	-93.277800465
86 Northern pin oak	Quercus ellipsoidalis	27	Poor	45.094473587	-93.277914420
87 Northern pin oak	Quercus ellipsoidalis	14	Fair	45.094849762	-93.277347217
88 Northern pin oak	Quercus ellipsoidalis	22	Good	45.094868780	-93.277604465
89 Northern pin oak	Quercus ellipsoidalis	13	Good	45.094968847	-93.277704655
90 Northern pin oak	Quercus ellipsoidalis	14	Good	45.094974881	-93.277670799
91 Northern pin oak	Quercus ellipsoidalis	17	Good	45.094984625	-93.277641067
92 Northern pin oak	Quercus ellipsoidalis	10	Good	45.094929244	-93.277717419
93 Northern pin oak	Quercus ellipsoidalis	14	Good	45.094999100	-93.277603076
94 Northern pin oak	Quercus ellipsoidalis	24	Fair	45.095005089	-93.277516500
95 Northern pin oak	Quercus ellipsoidalis	11	Good	45.095314407	-93.277413523
96 Northern pin oak	Quercus ellipsoidalis	13	Good	45.095307797	-93.277434576
97 Northern pin oak	Quercus ellipsoidalis	13	Fair	45.095283265	-93.277494109

98 Northern pin oak	Quercus ellipsoidalis	7	Good	45.095296642	-93.277563600
99 Northern pin oak	Quercus ellipsoidalis	10	Good	45.095303724	-93.277602359
100 Northern pin oak	Quercus ellipsoidalis	11	Good	45.095314959	-93.277572137
101 Northern pin oak	Quercus ellipsoidalis	15	Fair	45.095333336	-93.277579695
102 Northern pin oak	Quercus ellipsoidalis	8	Fair	45.095351784	-93.277483939
103 Northern pin oak	Quercus ellipsoidalis	10	Fair	45.095357696	-93.277467505
104 Northern pin oak	Quercus ellipsoidalis	11	Good	45.095362569	-93.277508123
105 Northern pin oak	Quercus ellipsoidalis	16	Good	45.095358656	-93.277479437
106 Northern pin oak	Quercus ellipsoidalis	12	Good	45.095361500	-93.277454014
107 Northern pin oak	Quercus ellipsoidalis	25	Fair	45.095433098	-93.277362829
108 Northern pin oak	Quercus ellipsoidalis	15	Good	45.095443851	-93.277453167
109 Northern pin oak	Quercus ellipsoidalis	12	Good	45.095466799	-93.277474542
110 Northern pin oak	Quercus ellipsoidalis	22	Fair	45.095491377	-93.277503099
111 Northern pin oak	Quercus ellipsoidalis	9	Good	45.095484102	-93.277549905
112 Northern pin oak	Quercus ellipsoidalis	10	Fair	45.095465327	-93.277601148
113 Northern pin oak	Quercus ellipsoidalis	12	Fair	45.095431723	-93.277607303
114 Northern pin oak	Quercus ellipsoidalis	12	Good	45.095401415	-93.277533121
115 Northern pin oak	Quercus ellipsoidalis	15	Fair	45.095393982	-93.277576708
116 Northern pin oak	Quercus ellipsoidalis	20	Fair	45.095506801	-93.277641032
117 Northern pin oak	Quercus ellipsoidalis	12	Good	45.095272100	-93.277716593
118 Northern pin oak	Quercus ellipsoidalis	10	Good	45.095208221	-93.277720012
119 Northern pin oak	Quercus ellipsoidalis	11	Good	45.095099654	-93.277738310
120 Northern pin oak	Quercus ellipsoidalis	16	Good	45.095469938	-93.277265907
121 Northern pin oak	Quercus ellipsoidalis	11	Fair	45.095195372	-93.277694895
122 Northern pin oak	Quercus ellipsoidalis	11	Fair	45.095181850	-93.277837348
123 Northern pin oak	Quercus ellipsoidalis	25	Fair	45.095344149	-93.277224632
124 Northern pin oak	Quercus ellipsoidalis	11	Fair	45.095028865	-93.275239349
125 Bur oak	Quercus macrocarpa	20	Good	45.093793886	-93.275973269
126 Bur oak	Quercus macrocarpa	16	Fair	45.093864068	-93.276183453
127 Bur oak	Quercus macrocarpa	16	Fair	45.093816871	-93.276245301
128 Bur oak	Quercus macrocarpa	9	Fair	45.093826889	-93.276316669
129 Bur oak	Quercus macrocarpa	27	Good	45.093906192	-93.276349798
130 Bur oak	Quercus macrocarpa	20	Good	45.093923026	-93.276449409

131 Bur oak	Quercus macrocarpa	8	Fair	45.093785180	-93.276529690
132 Bur oak	Quercus macrocarpa	24	Good	45.094021886	-93.276660446
133 Bur oak	Quercus macrocarpa	13	Fair	45.093863855	-93.276658771
134 Bur oak	Quercus macrocarpa	10	Fair	45.093861247	-93.276707692
135 Bur oak	Quercus macrocarpa	7	Fair	45.093841343	-93.276737504
136 Bur oak	Quercus macrocarpa	17	Good	45.093870628	-93.276782466
137 Bur oak	Quercus macrocarpa	13	Fair	45.093844491	-93.276875323
138 Bur oak	Quercus macrocarpa	11	Fair	45.093769089	-93.276832940
139 Bur oak	Quercus macrocarpa	9	Fair	45.093729066	-93.276840303
140 Bur oak	Quercus macrocarpa	8	Good	45.093782832	-93.276887616
141 Bur oak	Quercus macrocarpa	6	Fair	45.093786049	-93.276885751
142 Bur oak	Quercus macrocarpa	16	Good	45.093740482	-93.276898538
143 Bur oak	Quercus macrocarpa	14	Good	45.093770609	-93.276939181
144 Bur oak	Quercus macrocarpa	7	Poor	45.093776810	-93.276942395
145 Bur oak	Quercus macrocarpa	18	Good	45.093808759	-93.276926239
146 Bur oak	Quercus macrocarpa	18	Good	45.093856195	-93.276883688
147 Bur oak	Quercus macrocarpa	12	Fair	45.093872634	-93.276941552
148 Bur oak	Quercus macrocarpa	12	Fair	45.093872818	-93.276954687
149 Bur oak	Quercus macrocarpa	7	Poor	45.093766229	-93.276974121
150 Bur oak	Quercus macrocarpa	19	Good	45.093970388	-93.277049429
151 Bur oak	Quercus macrocarpa	16	Good	45.094020835	-93.276898961
152 Bur oak	Quercus macrocarpa	14	Good	45.094026754	-93.276927534
153 Bur oak	Quercus macrocarpa	19	Fair	45.094066476	-93.276961731
154 Bur oak	Quercus macrocarpa	26	Good	45.094094980	-93.277068766
155 Bur oak	Quercus macrocarpa	23	Poor	45.094003682	-93.277134805
156 Bur oak	Quercus macrocarpa	24	Good	45.094201366	-93.276930861
157 Bur oak	Quercus macrocarpa	28	Good	45.094301221	-93.276945783
158 Bur oak	Quercus macrocarpa	32	Good	45.094306852	-93.276850314
159 Bur oak	Quercus macrocarpa	11	Fair	45.094293736	-93.276614958
160 Bur oak	Quercus macrocarpa	2	Good	45.094290343	-93.276617793
161 Bur oak	Quercus macrocarpa	23	Good	45.094282761	-93.276588523
162 Bur oak	Quercus macrocarpa	31	Good	45.094240418	-93.276516166
163 Bur oak	Quercus macrocarpa	24	Good	45.094243608	-93.276490602

164 Bur oak	Quercus macrocarpa	21	Good	45.094181834	-93.276483285
165 Bur oak	Quercus macrocarpa	28	Good	45.094143763	-93.276559043
166 Bur oak	Quercus macrocarpa	14	Good	45.094225824	-93.276400376
167 Bur oak	Quercus macrocarpa	22	Fair	45.094074895	-93.276438359
168 Bur oak	Quercus macrocarpa	16	Good	45.093998376	-93.276268835
169 Bur oak	Quercus macrocarpa	14	Fair	45.093949276	-93.276233709
170 Bur oak	Quercus macrocarpa	25	Good	45.094073607	-93.276193372
171 Bur oak	Quercus macrocarpa	18	Fair	45.093887584	-93.275840108
172 Bur oak	Quercus macrocarpa	19	Good	45.093705872	-93.275603830
173 Bur oak	Quercus macrocarpa	18	Fair	45.093882857	-93.275665769
174 Bur oak	Quercus macrocarpa	32	Fair	45.093901601	-93.275653664
175 Bur oak	Quercus macrocarpa	35	Poor	45.093969689	-93.275500878
176 Bur oak	Quercus macrocarpa	19	Good	45.094031988	-93.275501770
177 Bur oak	Quercus macrocarpa	28	Good	45.094049443	-93.275607060
178 Bur oak	Quercus macrocarpa	23	Good	45.094194270	-93.275651912
179 Bur oak	Quercus macrocarpa	21	Good	45.094106107	-93.275837382
180 Bur oak	Quercus macrocarpa	21	Good	45.094194969	-93.275848844
181 Bur oak	Quercus macrocarpa	25	Good	45.094282467	-93.275818413
182 Bur oak	Quercus macrocarpa	9	Good	45.094311630	-93.275450163
183 Bur oak	Quercus macrocarpa	5	Poor	45.095009975	-93.274618412
184 Bur oak	Quercus macrocarpa	13	Fair	45.094956216	-93.274636599
185 Bur oak	Quercus macrocarpa	19	Fair	45.095063384	-93.274741643
186 Bur oak	Quercus macrocarpa	8	Fair	45.094940939	-93.274673212
187 Bur oak	Quercus macrocarpa	4	Poor	45.094899303	-93.274714858
188 Bur oak	Quercus macrocarpa	23	Good	45.094794513	-93.274842080
189 Bur oak	Quercus macrocarpa	7	Fair	45.094773306	-93.274860414
190 Bur oak	Quercus macrocarpa	7	Fair	45.094771343	-93.274838838
191 Bur oak	Quercus macrocarpa	6	Poor	45.094768634	-93.274782726
192 Bur oak	Quercus macrocarpa	15	Fair	45.094880835	-93.274874420
193 Bur oak	Quercus macrocarpa	4	Poor	45.094797075	-93.275033342
194 Bur oak	Quercus macrocarpa	7	Poor	45.094761384	-93.275043298
195 Bur oak	Quercus macrocarpa	6	Fair	45.094789410	-93.274970889
196 Bur oak	Quercus macrocarpa	7	Fair	45.094741229	-93.275093596

197 Bur oak	Quercus macrocarpa	5	Fair	45.094777200	-93.275195675
198 Bur oak	Quercus macrocarpa	25	Fair	45.094587930	-93.275161917
199 Bur oak	Quercus macrocarpa	15	Fair	45.094553611	-93.275198510
200 Bur oak	Quercus macrocarpa	24	Good	45.094543400	-93.275329085
201 Bur oak	Quercus macrocarpa	10	Fair	45.094406512	-93.275181257
202 Bur oak	Quercus macrocarpa	15	Fair	45.094344349	-93.277347761
203 Bur oak	Quercus macrocarpa	18	Good	45.094389582	-93.277453092
204 Bur oak	Quercus macrocarpa	41	Poor	45.094577023	-93.277854227
205 Bur oak	Quercus macrocarpa	4	Fair	45.094470936	-93.277524548
206 Bur oak	Quercus macrocarpa	21	Good	45.094466876	-93.277385932
207 Bur oak	Quercus macrocarpa	13	Good	45.094460888	-93.277339563
208 Bur oak	Quercus macrocarpa	23	Fair	45.094690397	-93.277343462
209 Bur oak	Quercus macrocarpa	43	Good	45.094990668	-93.277252553
210 Bur oak	Quercus macrocarpa	18	Fair	45.094986545	-93.277087749
211 Bur oak	Quercus macrocarpa	21	Fair	45.095108782	-93.277227755
212 Bur oak	Quercus macrocarpa	27	Fair	45.095136071	-93.277265732
213 Bur oak	Quercus macrocarpa	13	Fair	45.095237391	-93.277649007
214 Bur oak	Quercus macrocarpa	20	Fair	45.093642647	-93.276398682
215 Bur oak	Quercus macrocarpa	13	Fair	45.093746956	-93.276491700
216 Bur oak	Quercus macrocarpa	7	Good	45.093636864	-93.276611293
217 Bur oak	Quercus macrocarpa	14	Fair	45.093791452	-93.276662098
218 Bur oak	Quercus macrocarpa	13	Fair	45.093773377	-93.276696428
219 Bur oak	Quercus macrocarpa	10	Fair	45.093819898	-93.276731273
220 Bur oak	Quercus macrocarpa	13	Poor	45.093793545	-93.276817802
221 Bur oak	Quercus macrocarpa	16	Fair	45.093744920	-93.276949259
222 Bur oak	Quercus macrocarpa	12	Fair	45.093769659	-93.276967365
223 Bur oak	Quercus macrocarpa	5	Fair	45.093748837	-93.277087762
224 Bur oak	Quercus macrocarpa	17	Fair	45.093784264	-93.277157201
225 Bur oak	Quercus macrocarpa	5	Fair	45.093900982	-93.277776968
226 Bur oak	Quercus macrocarpa	12	Fair	45.094125132	-93.277982933
227 Bur oak	Quercus macrocarpa	8	Good	45.094106038	-93.277879770
228 Bur oak	Quercus macrocarpa	13	Fair	45.094181259	-93.277942150
229 Bur oak	Quercus macrocarpa	15	Poor	45.094259484	-93.277958251

230 Bur oak	Quercus macrocarpa	9	Fair	45.094164618	-93.277967229
231 Bur oak	Quercus macrocarpa	9	Poor	45.094181069	-93.278054485
232 Bur oak	Quercus macrocarpa	4	Poor	45.094453034	-93.277992327
233 Bur oak	Quercus macrocarpa	6	Fair	45.094560119	-93.277950082
234 Bur oak	Quercus macrocarpa	28	Poor	45.094827748	-93.277300608
235 Bur oak	Quercus macrocarpa	12	Fair	45.094810932	-93.277496398
236 Bur oak	Quercus macrocarpa	26	Poor	45.095043516	-93.277444291
237 Bur oak	Quercus macrocarpa	28	Fair	45.095292584	-93.277328055
238 Bur oak	Quercus macrocarpa	24	Fair	45.095412009	-93.277347635
239 Bur oak	Quercus macrocarpa	7	Poor	45.095369319	-93.277595394
240 Bur oak	Quercus macrocarpa	20	Poor	45.095421328	-93.277629864
241 Bur oak	Quercus macrocarpa	28	Fair	45.095348801	-93.277727236
242 Bur oak	Quercus macrocarpa	13	Fair	45.095242645	-93.277647484
243 Bur oak	Quercus macrocarpa	8	Poor	45.095087106	-93.277770629
244 Bur oak	Quercus macrocarpa	20	Fair	45.095460863	-93.276960666
245 Bur oak	Quercus macrocarpa	19	Fair	45.095366828	-93.277232167
246 Bur oak	Quercus macrocarpa	35	Poor	45.095194947	-93.277127487
247 Bur oak	Quercus macrocarpa	19	Fair	45.094774233	-93.275746258
248 Bur oak	Quercus macrocarpa	7	Poor	45.095332935	-93.277764227
249 Bur oak	Quercus macrocarpa	11	Poor	45.095427938	-93.277799228
250 Bur oak	Quercus macrocarpa	21	Good	45.094311438	-93.275814385
251 Bur oak	Quercus macrocarpa	20	Fair	45.094477243	-93.275481946
252 Bur oak	Quercus macrocarpa	18	Fair	45.094486351	-93.275445746
253 Bur oak	Quercus macrocarpa	25	Fair	45.094583958	-93.275512327
254 Bur oak	Quercus macrocarpa	17	Fair	45.094793764	-93.275549720
255 Bur oak	Quercus macrocarpa	17	Good	45.094979248	-93.275170885
256 Sugar maple	Acer saccharum	23	Good	45.093914995	-93.276753298
257 Sugar maple	Acer saccharum	7	Fair	45.093847190	-93.276781217
258 Silver maple	Acer saccharinum	18	Good	45.094052394	-93.277466887
259 Silver maple	Acer saccharinum	20	Fair	45.094032760	-93.277573017
260 Silver maple	Acer saccharinum	8	Fair	45.094015229	-93.277610933
261 Silver maple	Acer saccharinum	14	Poor	45.093785797	-93.278212367
262 Silver maple	Acer saccharinum	10	Poor	45.093799268	-93.278195652

263 Silver maple	Acer saccharinum	12	Fair	45.093759056	-93.278126585
264 Silver maple	Acer saccharinum	5	Fair	45.093844770	-93.278204641
265 Silver maple	Acer saccharinum	8	Fair	45.093846501	-93.278192458
266 Silver maple	Acer saccharinum	12	Fair	45.093876735	-93.278189183
267 Silver maple	Acer saccharinum	10	Fair	45.093866641	-93.278189647
268 Silver maple	Acer saccharinum	12	Fair	45.093885321	-93.278168779
269 Silver maple	Acer saccharinum	6	Fair	45.093988124	-93.278134777
270 Silver maple	Acer saccharinum	10	Fair	45.094007316	-93.278145015
271 Silver maple	Acer saccharinum	9	Good	45.094086056	-93.278124090
272 Silver maple	Acer saccharinum	7	Fair	45.094094336	-93.278104622
273 Silver maple	Acer saccharinum	7	Fair	45.094141549	-93.278112774
274 Silver maple	Acer saccharinum	6	Fair	45.094307649	-93.278107168
275 Silver maple	Acer saccharinum	12	Good	45.094339419	-93.278107575
276 Silver maple	Acer saccharinum	11	Fair	45.094446762	-93.278130226
277 Silver maple	Acer saccharinum	13	Fair	45.094528667	-93.278091485
278 Silver maple	Acer saccharinum	4	Fair	45.094585814	-93.278083757
279 Silver maple	Acer saccharinum	8	Poor	45.094621206	-93.278060312
280 Silver maple	Acer saccharinum	5	Fair	45.094633593	-93.278068050
281 Silver maple	Acer saccharinum	17	Fair	45.094627168	-93.278076926
282 Silver maple	Acer saccharinum	8	Fair	45.094681034	-93.278078059
283 Silver maple	Acer saccharinum	10	Fair	45.094653893	-93.278045099
284 Silver maple	Acer saccharinum	7	Fair	45.094706660	-93.278086549
285 Silver maple	Acer saccharinum	8	Fair	45.094752587	-93.278063706
286 Silver maple	Acer saccharinum	9	Poor	45.094825764	-93.277993281
287 Silver maple	Acer saccharinum	7	Fair	45.094904001	-93.277991489
288 Silver maple	Acer saccharinum	8	Poor	45.094904587	-93.278022988
289 Silver maple	Acer saccharinum	40	Poor	45.094816146	-93.277902735
290 Silver maple	Acer saccharinum	7	Fair	45.095138190	-93.277958548
291 Silver maple	Acer saccharinum	11	Fair	45.095237705	-93.277927312
292 Silver maple	Acer saccharinum	9	Fair	45.095437463	-93.277812032
293 Silver maple	Acer saccharinum	8	Fair	45.095421931	-93.277937492
294 Silver maple	Acer saccharinum	12	Fair	45.095392536	-93.277940360
295 Silver maple	Acer saccharinum	8	Fair	45.095347552	-93.277900267

296 Silver maple	Acer saccharinum	10	Fair	45.095374374	-93.277925735
297 Silver maple	Acer saccharinum	11	Fair	45.095121949	-93.277929319
298 Silver maple	Acer saccharinum	13	Poor	45.095301202	-93.277930795
299 Silver maple	Acer saccharinum	36	Good	45.094890899	-93.276496646
300 Red maple	Acer rubrum	4	Good	45.093623690	-93.277264892
301 Ironwood	Ostrya virginiana	5	Fair	45.094579776	-93.277954174
302 Hackberry	Celtis occidentalis	6	Fair	45.093829977	-93.276881387
303 Hackberry	Celtis occidentalis	8	Good	45.095459629	-93.274221639
304 Hackberry	Celtis occidentalis	6	Fair	45.095379157	-93.274248444
305 Hackberry	Celtis occidentalis	6	Good	45.095319815	-93.274414705
306 Hackberry	Celtis occidentalis	7	Fair	45.095213073	-93.274565981
307 Hackberry	Celtis occidentalis	4	Good	45.094516759	-93.277825216
308 Hackberry	Celtis occidentalis	6	Poor	45.094542701	-93.277830787
309 Hackberry	Celtis occidentalis	4	Poor	45.094691175	-93.277579725
310 Hackberry	Celtis occidentalis	4	Fair	45.094448580	-93.277294091
311 Hackberry	Celtis occidentalis	9	Good	45.094471170	-93.277317314
312 Hackberry	Celtis occidentalis	4	Good	45.094571380	-93.277111129
313 Hackberry	Celtis occidentalis	10	Good	45.094619343	-93.277406102
314 Hackberry	Celtis occidentalis	14	Good	45.094896270	-93.277313850
315 Hackberry	Celtis occidentalis	4	Poor	45.094959548	-93.277216125
316 Hackberry	Celtis occidentalis	6	Fair	45.095039289	-93.277164229
317 Hackberry	Celtis occidentalis	5	Good	45.093775252	-93.276723720
318 Hackberry	Celtis occidentalis	5	Good	45.093880674	-93.277994284
319 Hackberry	Celtis occidentalis	8	Good	45.093915018	-93.277932530
320 Hackberry	Celtis occidentalis	13	Poor	45.094020426	-93.278021341
321 Hackberry	Celtis occidentalis	6	Good	45.093996618	-93.277830741
322 Hackberry	Celtis occidentalis	4	Good	45.094137800	-93.277912521
323 Hackberry	Celtis occidentalis	6	Good	45.094396277	-93.277965882
324 Hackberry	Celtis occidentalis	4	Good	45.094410151	-93.277826655
325 Hackberry	Celtis occidentalis	5	Good	45.094611865	-93.277931865
326 Hackberry	Celtis occidentalis	6	Fair	45.094733637	-93.277886073
327 Hackberry	Celtis occidentalis	5	Fair	45.094835821	-93.277303462
328 Hackberry	Celtis occidentalis	5	Good	45.094865271	-93.277321941

329 Hackberry	Celtis occidentalis	5	Fair	45.095373444	-93.277375218
330 Hackberry	Celtis occidentalis	14	Good	45.095171899	-93.276167683
331 Hackberry	Celtis occidentalis	8	Good	45.095207946	-93.276110509
332 Hackberry	Celtis occidentalis	9	Good	45.095249191	-93.276047736
333 Hackberry	Celtis occidentalis	8	Fair	45.095159661	-93.276438066
334 Hackberry	Celtis occidentalis	11	Good	45.094339873	-93.275980372
335 Hackberry	Celtis occidentalis	7	Good	45.094384106	-93.275926307
336 Hackberry	Celtis occidentalis	4	Fair	45.094841303	-93.275614285
337 Hackberry	Celtis occidentalis	9	Fair	45.094859820	-93.275105444
338 Hackberry	Celtis occidentalis	8	Good	45.095021450	-93.274962197
339 Hackberry	Celtis occidentalis	8	Good	45.095389362	-93.274478507
340 Hackberry	Celtis occidentalis	5	Good	45.094749686	-93.276100494
341 Hackberry	Celtis occidentalis	1	Good	45.095245143	-93.277245458
342 Hackberry	Celtis occidentalis	15	Fair	45.095391526	-93.276479072
343 Hackberry	Celtis occidentalis	12	Fair	45.095186400	-93.276126793
344 Hackberry	Celtis occidentalis	10	Good	45.095413940	-93.276019708
345 Hackberry	Celtis occidentalis	4	Poor	45.095442092	-93.276312174
346 Hackberry	Celtis occidentalis	4	Fair	45.095464240	-93.276302609
347 Hackberry	Celtis occidentalis	16	Good	45.095482588	-93.276316696
348 Hackberry	Celtis occidentalis	11	Fair	45.095460678	-93.276357608
349 Hackberry	Celtis occidentalis	14	Good	45.095440632	-93.276349450
350 Hackberry	Celtis occidentalis	16	Fair	45.095397738	-93.275656243
351 Hackberry	Celtis occidentalis	7	Fair	45.094633669	-93.275708469
352 Hackberry	Celtis occidentalis	4	Fair	45.094921233	-93.275288418
353 Hackberry	Celtis occidentalis	15	Fair	45.094900465	-93.275068732
354 Hackberry	Celtis occidentalis	16	Fair	45.095459294	-93.274894547
355 Hackberry	Celtis occidentalis	9	Fair	45.095335388	-93.274630057
356 Hackberry	Celtis occidentalis	10	Fair	45.095399237	-93.274640389
357 Hackberry	Celtis occidentalis	6	Poor	45.094387918	-93.276102106
358 Balsam fir	Abies balsamea	12	Poor	45.093891716	-93.276296386
359 Balsam fir	Abies balsamea	9	Poor	45.094404327	-93.277298089
360 Red elm, slippery elm	Ulmus rubra	14	Good	45.094742857	-93.277794385
361 Red elm, slippery elm	Ulmus rubra	9	Good	45.093695641	-93.276756053

362 Red elm, slippery elm	Ulmus rubra	12	Good	45.093767210	-93.277092922
363 Red elm, slippery elm	Ulmus rubra	16	Fair	45.093785577	-93.278203048
364 Red elm, slippery elm	Ulmus rubra	7	Good	45.093745955	-93.278060563
365 Red elm, slippery elm	Ulmus rubra	9	Good	45.093902433	-93.278180556
366 Red elm, slippery elm	Ulmus rubra	8	Good	45.093850707	-93.277890016
367 Red elm, slippery elm	Ulmus rubra	14	Fair	45.093966187	-93.278003692
368 Red elm, slippery elm	Ulmus rubra	12	Fair	45.093939365	-93.278007961
369 Red elm, slippery elm	Ulmus rubra	6	Fair	45.093937935	-93.278090261
370 Red elm, slippery elm	Ulmus rubra	11	Fair	45.093928496	-93.278160097
371 Red elm, slippery elm	Ulmus rubra	10	Fair	45.094021165	-93.278135274
372 Red elm, slippery elm	Ulmus rubra	10	Fair	45.094080058	-93.278076444
373 Red elm, slippery elm	Ulmus rubra	15	Fair	45.094222911	-93.278113373
374 Red elm, slippery elm	Ulmus rubra	7	Fair	45.094273209	-93.277791549
375 Red elm, slippery elm	Ulmus rubra	12	Good	45.094339702	-93.278103665
376 Red elm, slippery elm	Ulmus rubra	13	Fair	45.094384782	-93.278088146
377 Red elm, slippery elm	Ulmus rubra	6	Fair	45.094360944	-93.277901811
378 Red elm, slippery elm	Ulmus rubra	10	Fair	45.094492798	-93.278038153
379 Red elm, slippery elm	Ulmus rubra	10	Fair	45.094557601	-93.277963391
380 Red elm, slippery elm	Ulmus rubra	15	Good	45.094616341	-93.277992113
381 Red elm, slippery elm	Ulmus rubra	10	Poor	45.094651909	-93.278064661
382 Red elm, slippery elm	Ulmus rubra	11	Good	45.094903678	-93.277794325
383 Red elm, slippery elm	Ulmus rubra	11	Fair	45.094832131	-93.277404558
384 Red elm, slippery elm	Ulmus rubra	8	Good	45.094981297	-93.277843671
385 Red elm, slippery elm	Ulmus rubra	5	Good	45.094982507	-93.277740347
386 Red elm, slippery elm	Ulmus rubra	18	Good	45.094939939	-93.277408189
387 Red elm, slippery elm	Ulmus rubra	5	Good	45.095379872	-93.277797096
388 Red elm, slippery elm	Ulmus rubra	4	Good	45.095134378	-93.276935919
389 Red elm, slippery elm	Ulmus rubra	4	Good	45.095157540	-93.276879900
390 Red elm, slippery elm	Ulmus rubra	13	Good	45.095327187	-93.276602452
391 Red elm, slippery elm	Ulmus rubra	7	Good	45.095210131	-93.276657036
392 Red elm, slippery elm	Ulmus rubra	7	Good	45.094921791	-93.276404893
393 Red elm, slippery elm	Ulmus rubra	5	Good	45.094348272	-93.276248804
394 Red elm, slippery elm	Ulmus rubra	6	Good	45.094828144	-93.275724635

395 Red elm, slippery elm	Ulmus rubra	10	Good	45.095032483	-93.275420335
396 Red elm, slippery elm	Ulmus rubra	11	Good	45.095332624	-93.274703224
397 Red elm, slippery elm	Ulmus rubra	5	Good	45.095324116	-93.274591847
398 Red elm, slippery elm	Ulmus rubra	7	Good	45.094453481	-93.276157608
399 Red elm, slippery elm	Ulmus rubra	8	Fair	45.095504586	-93.277751372
400 Red elm, slippery elm	Ulmus rubra	4	Fair	45.095093918	-93.277062020
401 Red elm, slippery elm	Ulmus rubra	14	Good	45.095283882	-93.276548438
402 Red elm, slippery elm	Ulmus rubra	18	Good	45.094735183	-93.276614169
403 Red elm, slippery elm	Ulmus rubra	8	Fair	45.094440889	-93.276287752
404 Red elm, slippery elm	Ulmus rubra	6	Fair	45.094877083	-93.275068308
405 Red elm, slippery elm	Ulmus rubra	4	Fair	45.095247708	-93.274861353
406 Red elm, slippery elm	Ulmus rubra	13	Fair	45.095350846	-93.274692571
407 Red elm, slippery elm	Ulmus rubra	7	Fair	45.095367444	-93.274484622
408 American elm	Ulmus americana	9	Fair	45.093823952	-93.276888657
409 American elm	Ulmus americana	5	Fair	45.095289951	-93.274506230
410 American elm	Ulmus americana	8	Poor	45.095318895	-93.274476713
411 American elm	Ulmus americana	4	Poor	45.095333354	-93.274493439
412 American elm	Ulmus americana	5	Poor	45.095183682	-93.274502170
413 American elm	Ulmus americana	28	Fair	45.094340933	-93.277671923
414 American elm	Ulmus americana	8	Fair	45.094577784	-93.277579697
415 American elm	Ulmus americana	15	Fair	45.094554774	-93.277572675
416 American elm	Ulmus americana	12	Good	45.094568008	-93.277234586
417 American elm	Ulmus americana	8	Good	45.094570615	-93.277339460
418 American elm	Ulmus americana	7	Fair	45.094617878	-93.277365858
419 American elm	Ulmus americana	6	Poor	45.094556588	-93.277356553
420 American elm	Ulmus americana	8	Fair	45.094659131	-93.277466613
421 American elm	Ulmus americana	4	Fair	45.094670074	-93.277323101
422 American elm	Ulmus americana	7	Fair	45.094648889	-93.277323640
423 American elm	Ulmus americana	15	Good	45.094643423	-93.277271996
424 American elm	Ulmus americana	8	Fair	45.094669538	-93.277266562
425 American elm	Ulmus americana	8	Fair	45.095176496	-93.277390291
426 American elm	Ulmus americana	11	Fair	45.095481396	-93.274426471
427 Cottonwood	Populus deltoides	29	Poor	45.093638120	-93.275850737

428 Cottonwood	Populus deltoides	29	Good	45.093820232	-93.277109500
429 Cottonwood	Populus deltoides	29	Good	45.093586491	-93.275647429
430 Cottonwood	Populus deltoides	21	Good	45.094288908	-93.275383750
431 Cottonwood	Populus deltoides	21	Good	45.094401454	-93.275262704
432 Cottonwood	Populus deltoides	29	Good	45.094453557	-93.275194064
433 Cottonwood	Populus deltoides	19	Fair	45.093608110	-93.276059654
434 Cottonwood	Populus deltoides	17	Fair	45.093581435	-93.276826461
435 Cottonwood	Populus deltoides	30	Poor	45.093801345	-93.278093428
436 Cottonwood	Populus deltoides	22	Fair	45.093832422	-93.278161653
437 Cottonwood	Populus deltoides	21	Fair	45.093882662	-93.278123326
438 Cottonwood	Populus deltoides	25	Fair	45.093931964	-93.278111549
439 Cottonwood	Populus deltoides	17	Good	45.093925139	-93.278130496
440 Cottonwood	Populus deltoides	23	Poor	45.093923324	-93.278151290
441 Cottonwood	Populus deltoides	26	Fair	45.093955746	-93.278108418
442 Cottonwood	Populus deltoides	27	Fair	45.093954197	-93.278102608
443 Cottonwood	Populus deltoides	25	Poor	45.093992783	-93.278088722
444 Cottonwood	Populus deltoides	25	Poor	45.093992004	-93.278126054
445 Cottonwood	Populus deltoides	16	Poor	45.094021080	-93.278097174
446 Cottonwood	Populus deltoides	19	Fair	45.094105050	-93.278074488
447 Cottonwood	Populus deltoides	25	Fair	45.094170255	-93.278068263
448 Cottonwood	Populus deltoides	26	Fair	45.094177007	-93.278128149
449 Cottonwood	Populus deltoides	15	Good	45.094200476	-93.278064407
450 Cottonwood	Populus deltoides	27	Fair	45.094252090	-93.278069365
451 Cottonwood	Populus deltoides	23	Fair	45.094250620	-93.278065676
452 Cottonwood	Populus deltoides	22	Fair	45.094288789	-93.278083538
453 Cottonwood	Populus deltoides	14	Good	45.094313241	-93.278082572
454 Cottonwood	Populus deltoides	20	Good	45.094302986	-93.278054335
455 Cottonwood	Populus deltoides	23	Good	45.094338344	-93.278058084
456 Cottonwood	Populus deltoides	25	Fair	45.094356992	-93.278076486
457 Cottonwood	Populus deltoides	22	Good	45.094326911	-93.278061656
458 Cottonwood	Populus deltoides	38	Fair	45.094477285	-93.278070231
459 Cottonwood	Populus deltoides	17	Fair	45.094487827	-93.278044543
460 Cottonwood	Populus deltoides	20	Good	45.094451422	-93.278027054

461 Cottonwood	Populus deltoides	22	Good	45.094526167	-93.278016088
462 Cottonwood	Populus deltoides	22	Good	45.094732139	-93.278048535
463 Cottonwood	Populus deltoides	30	Fair	45.094733287	-93.277981411
464 Cottonwood	Populus deltoides	30	Fair	45.094717828	-93.277951496
465 Cottonwood	Populus deltoides	26	Fair	45.094741739	-93.277901000
466 Cottonwood	Populus deltoides	25	Fair	45.094915888	-93.277922241
467 Cottonwood	Populus deltoides	21	Fair	45.094937542	-93.277993780
468 Cottonwood	Populus deltoides	32	Fair	45.094945870	-93.277926875
469 Cottonwood	Populus deltoides	26	Fair	45.094961226	-93.277933926
470 Cottonwood	Populus deltoides	24	Fair	45.094998012	-93.277914680
471 Cottonwood	Populus deltoides	22	Fair	45.094974201	-93.277921345
472 Cottonwood	Populus deltoides	44	Fair	45.094821785	-93.277490261
473 Cottonwood	Populus deltoides	26	Poor	45.094883949	-93.277580122
474 Cottonwood	Populus deltoides	27	Good	45.095054987	-93.277954809
475 Cottonwood	Populus deltoides	11	Fair	45.095125842	-93.277954426
476 Cottonwood	Populus deltoides	20	Fair	45.095143524	-93.277938717
477 Cottonwood	Populus deltoides	19	Fair	45.095223954	-93.277882443
478 Cottonwood	Populus deltoides	24	Good	45.095229071	-93.277923238
479 Cottonwood	Populus deltoides	17	Good	45.095304456	-93.277918530
480 Cottonwood	Populus deltoides	16	Fair	45.095319983	-93.277886417
481 Cottonwood	Populus deltoides	23	Fair	45.095324883	-93.277921421
482 Cottonwood	Populus deltoides	10	Good	45.095331624	-93.277794993
483 Cottonwood	Populus deltoides	16	Poor	45.095457222	-93.277796132
484 Cottonwood	Populus deltoides	23	Fair	45.095453980	-93.277726967
485 Cottonwood	Populus deltoides	9	Fair	45.095116549	-93.277818095
486 Cottonwood	Populus deltoides	23	Good	45.095104953	-93.277855233
487 Cottonwood	Populus deltoides	20	Fair	45.095117641	-93.277957287
488 Cottonwood	Populus deltoides	15	Fair	45.095225180	-93.277915477
489 Cottonwood	Populus deltoides	25	Poor	45.095369179	-93.277903702
490 Wild black cherry	Prunus serotina	4	Poor	45.093641606	-93.275886831
491 Wild black cherry	Prunus serotina	4	Good	45.093658125	-93.275938858
492 Wild black cherry	Prunus serotina	16	Poor	45.093880039	-93.276420833
493 Wild black cherry	Prunus serotina	11	Good	45.093814758	-93.276557131

494 Wild black cherry
495 Wild black cherry
496 Wild black cherry
497 Wild black cherry
498 Wild black cherry
499 Wild black cherry
500 Wild black cherry
501 Wild black cherry
502 Wild black cherry
503 Wild black cherry
504 Wild black cherry
505 Wild black cherry
506 Wild black cherry
507 Wild black cherry
508 Wild black cherry
509 Wild black cherry
510 Wild black cherry
511 Wild black cherry
512 Wild black cherry
513 Wild black cherry
514 Wild black cherry
515 Wild black cherry
516 Wild black cherry
517 Wild black cherry
518 Wild black cherry
519 Wild black cherry
520 Wild black cherry
521 Wild black cherry
522 Wild black cherry
523 Wild black cherry
524 Wild black cherry
525 Wild black cherry
526 Wild black cherry

Prunus serotina	4	Good	45.093757142	-93.276926052
Prunus serotina	4	Fair	45.093866714	-93.276879958
Prunus serotina	7	Good	45.093867330	-93.276943320
Prunus serotina	7	Poor	45.093837305	-93.277033730
Prunus serotina	15	Good	45.093862540	-93.277108223
Prunus serotina	12	Good	45.094049403	-93.277234020
Prunus serotina	14	Fair	45.094058325	-93.277263385
Prunus serotina	12	Good	45.094128767	-93.277293057
Prunus serotina	9	Poor	45.094155599	-93.277097569
Prunus serotina	18	Good	45.094156361	-93.277072643
Prunus serotina	10	Poor	45.093745107	-93.275633207
Prunus serotina	13	Fair	45.094122497	-93.275580792
Prunus serotina	4	Good	45.094356672	-93.275324104
Prunus serotina	4	Good	45.095338050	-93.274389292
Prunus serotina	5	Good	45.095293840	-93.274548313
Prunus serotina	5	Poor	45.095141424	-93.274486034
Prunus serotina	6	Fair	45.095120501	-93.274731870
Prunus serotina	8	Poor	45.095130937	-93.274764559
Prunus serotina	4	Fair	45.095172768	-93.274742267
Prunus serotina	9	Good	45.094902746	-93.274931716
Prunus serotina	16	Fair	45.094844446	-93.274993358
Prunus serotina	5	Good	45.094703147	-93.275329913
Prunus serotina	4	Poor	45.094670265	-93.275284943
Prunus serotina	10	Good	45.094476872	-93.275347554
Prunus serotina	20	Fair	45.094311127	-93.277240639
Prunus serotina	16	Poor	45.094328549	-93.277324492
Prunus serotina	4	Fair	45.094489348	-93.277713601
Prunus serotina	5	Good	45.094505327	-93.277856047
Prunus serotina	8	Fair	45.094467028	-93.277492319
Prunus serotina	10	Poor	45.094417783	-93.277374568
Prunus serotina	7	Poor	45.094857398	-93.277122338
Prunus serotina	5	Poor	45.094852604	-93.277124325
Prunus serotina	5	Poor	45.094818302	-93.277138860

527 Wild black cherry	Prunus serotina	7	Fair	45.094839156	-93.277144667
528 Wild black cherry	Prunus serotina	10	Fair	45.094867977	-93.277151053
529 Wild black cherry	Prunus serotina	5	Poor	45.094887417	-93.277136587
530 Wild black cherry	Prunus serotina	4	Fair	45.094887340	-93.277169819
531 Wild black cherry	Prunus serotina	4	Fair	45.094860571	-93.277162521
532 Wild black cherry	Prunus serotina	4	Fair	45.094907754	-93.277160396
533 Wild black cherry	Prunus serotina	4	Poor	45.094909413	-93.277158969
534 Wild black cherry	Prunus serotina	8	Poor	45.094940242	-93.277254759
535 Wild black cherry	Prunus serotina	8	Fair	45.094997841	-93.277218210
536 Wild black cherry	Prunus serotina	7	Poor	45.095026471	-93.277137548
537 Wild black cherry	Prunus serotina	8	Poor	45.095196494	-93.277463486
538 Wild black cherry	Prunus serotina	4	Fair	45.095108117	-93.277593363
539 Wild black cherry	Prunus serotina	5	Fair	45.093601288	-93.276647237
540 Wild black cherry	Prunus serotina	5	Good	45.093607898	-93.276787072
541 Wild black cherry	Prunus serotina	5	Good	45.093607474	-93.276842022
542 Wild black cherry	Prunus serotina	4	Good	45.093650579	-93.276818178
543 Wild black cherry	Prunus serotina	5	Good	45.093768835	-93.277025524
544 Wild black cherry	Prunus serotina	10	Fair	45.093761146	-93.277059693
545 Wild black cherry	Prunus serotina	11	Fair	45.093744456	-93.277101117
546 Wild black cherry	Prunus serotina	10	Fair	45.093818186	-93.277198870
547 Wild black cherry	Prunus serotina	5	Good	45.093871898	-93.277775852
548 Wild black cherry	Prunus serotina	5	Good	45.093930931	-93.277836726
549 Wild black cherry	Prunus serotina	4	Good	45.093892023	-93.277969055
550 Wild black cherry	Prunus serotina	4	Good	45.095429569	-93.277185602
551 Wild black cherry	Prunus serotina	4	Good	45.095442010	-93.277145777
552 Wild black cherry	Prunus serotina	6	Good	45.095458583	-93.277149351
553 Wild black cherry	Prunus serotina	4	Fair	45.095458746	-93.277130377
554 Wild black cherry	Prunus serotina	5	Fair	45.095468256	-93.276954305
555 Wild black cherry	Prunus serotina	5	Poor	45.095413629	-93.276940422
556 Wild black cherry	Prunus serotina	6	Fair	45.095402615	-93.277005273
557 Wild black cherry	Prunus serotina	6	Fair	45.095431081	-93.277082493
558 Wild black cherry	Prunus serotina	4	Fair	45.095397309	-93.277195719
559 Wild black cherry	Prunus serotina	4	Fair	45.095195833	-93.277065921

) Wild black cherry	Prunus serotina	4	Good	45.095186289	-93.277053273
. Wild black cherry	Prunus serotina	4	Fair	45.095124210	-93.276929917
Wild black cherry	Prunus serotina	7	Poor	45.095155935	-93.276839641
Wild black cherry	Prunus serotina	7	Fair	45.095175127	-93.276906799
Wild black cherry	Prunus serotina	7	Good	45.095249783	-93.277053694
Wild black cherry	Prunus serotina	7	Good	45.095334500	-93.277114024
Wild black cherry	Prunus serotina	14	Good	45.095366689	-93.276833053
' Wild black cherry	Prunus serotina	4	Good	45.095403659	-93.276876214
Wild black cherry	Prunus serotina	11	Fair	45.095427459	-93.276782027
Wild black cherry	Prunus serotina	11	Fair	45.095465560	-93.276683834
Wild black cherry	Prunus serotina	8	Fair	45.095434192	-93.276624885
. Wild black cherry	Prunus serotina	12	Fair	45.095422749	-93.276556413
Wild black cherry	Prunus serotina	19	Fair	45.095441123	-93.276500225
Wild black cherry	Prunus serotina	13	Poor	45.095333175	-93.276509581
Wild black cherry	Prunus serotina	11	Fair	45.095247315	-93.276758703
Wild black cherry	Prunus serotina	10	Fair	45.095339613	-93.276710975
Wild black cherry	Prunus serotina	6	Fair	45.095319769	-93.276773804
' Wild black cherry	Prunus serotina	8	Good	45.095296748	-93.276745397
Wild black cherry	Prunus serotina	7	Fair	45.095110796	-93.276574258
Wild black cherry	Prunus serotina	5	Fair	45.095147626	-93.276679761
Wild black cherry	Prunus serotina	9	Fair	45.095190206	-93.276773569
. Wild black cherry	Prunus serotina	6	Fair	45.094740126	-93.276553045
Wild black cherry	Prunus serotina	8	Good	45.095057386	-93.276181693
Wild black cherry	Prunus serotina	6	Fair	45.094709458	-93.276326543
Wild black cherry	Prunus serotina	8	Good	45.094574905	-93.276263793
Wild black cherry	Prunus serotina	4	Good	45.094562935	-93.276250801
Wild black cherry	Prunus serotina	16	Fair	45.094237472	-93.276102065
' Wild black cherry	Prunus serotina	6	Good	45.094359015	-93.275938618
Wild black cherry	Prunus serotina	4	Fair	45.094329179	-93.275982274
Wild black cherry	Prunus serotina	11	Fair	45.094392652	-93.275916880
Wild black cherry	Prunus serotina	11	Fair	45.094414598	-93.275867638
. Wild black cherry	Prunus serotina	4	Good	45.094494778	-93.275903225
Wild black cherry	Prunus serotina	8	Fair	45.094521781	-93.275863841

593 Wild black cherry
594 Wild black cherry
595 Wild black cherry
596 Wild black cherry
597 Wild black cherry
598 Wild black cherry
599 Wild black cherry
600 Wild black cherry
601 Wild black cherry
602 Wild black cherry
603 Wild black cherry
604 Wild black cherry
605 Wild black cherry
606 Wild black cherry
607 Wild black cherry
608 Wild black cherry
609 Wild black cherry
610 Wild black cherry
611 Wild black cherry
612 Wild black cherry
613 Wild black cherry
614 Wild black cherry
615 Wild black cherry
616 Wild black cherry
617 Wild black cherry
618 Wild black cherry
619 Wild black cherry
620 Wild black cherry
621 Wild black cherry
622 Wild black cherry
623 Wild black cherry
624 Wild black cherry
625 Wild black cherry
•

Prunus serotina	4	Good	45.094526670	-93.275904622
Prunus serotina	4	Fair	45.094513283	-93.275933397
Prunus serotina	7	Fair	45.094571960	-93.275888931
Prunus serotina	9	Fair	45.094567451	-93.275850849
Prunus serotina	4	Good	45.094597778	-93.275881005
Prunus serotina	5	Fair	45.094524923	-93.275996388
Prunus serotina	7	Fair	45.094526729	-93.276086114
Prunus serotina	6	Fair	45.094638455	-93.276132833
Prunus serotina	7	Fair	45.094602243	-93.276158323
Prunus serotina	10	Fair	45.094704866	-93.276182735
Prunus serotina	4	Fair	45.094750128	-93.276158725
Prunus serotina	8	Good	45.094838494	-93.276204574
Prunus serotina	9	Fair	45.094797073	-93.276082079
Prunus serotina	9	Good	45.094800038	-93.276043725
Prunus serotina	7	Fair	45.094885893	-93.276008743
Prunus serotina	10	Good	45.094913051	-93.276117083
Prunus serotina	11	Fair	45.094919571	-93.276070445
Prunus serotina	11	Good	45.094956340	-93.276066258
Prunus serotina	13	Good	45.095031334	-93.276073396
Prunus serotina	5	Poor	45.095080279	-93.276034444
Prunus serotina	6	Fair	45.095087094	-93.276000395
Prunus serotina	6	Fair	45.095232236	-93.275902882
Prunus serotina	8	Poor	45.095132345	-93.275884725
Prunus serotina	8	Good	45.095178499	-93.275886884
Prunus serotina	14	Fair	45.095228825	-93.275813665
Prunus serotina	10	Fair	45.095217914	-93.275766559
Prunus serotina	8	Poor	45.095241491	-93.275798328
Prunus serotina	10	Poor	45.095254363	-93.275773138
Prunus serotina	5	Poor	45.095276833	-93.275661744
Prunus serotina	12	Fair	45.095274631	-93.275644653
Prunus serotina	9	Fair	45.095410580	-93.275451458
Prunus serotina	6	Fair	45.095398776	-93.275339415
Prunus serotina	11	Fair	45.095363461	-93.275300355

626 Wild black cherry	Prunus serotina	11	Good	45.095277837	-93.275345368
627 Wild black cherry	Prunus serotina	10	Good	45.095248278	-93.275395534
628 Wild black cherry	Prunus serotina	9	Fair	45.095173760	-93.275610323
629 Wild black cherry	Prunus serotina	15	Fair	45.095169149	-93.275541505
630 Wild black cherry	Prunus serotina	9	Good	45.095173935	-93.275526147
631 Wild black cherry	Prunus serotina	5	Fair	45.095112110	-93.275465744
632 Wild black cherry	Prunus serotina	10	Fair	45.095125256	-93.275601031
633 Wild black cherry	Prunus serotina	6	Fair	45.095139713	-93.275701868
634 Wild black cherry	Prunus serotina	7	Good	45.095093788	-93.275678826
635 Wild black cherry	Prunus serotina	11	Fair	45.095069234	-93.275678405
636 Wild black cherry	Prunus serotina	12	Fair	45.095049482	-93.275822436
637 Wild black cherry	Prunus serotina	12	Fair	45.095063068	-93.275853037
638 Wild black cherry	Prunus serotina	4	Fair	45.095077340	-93.275961445
639 Wild black cherry	Prunus serotina	10	Fair	45.094960567	-93.275929760
640 Wild black cherry	Prunus serotina	14	Poor	45.094958681	-93.275856246
641 Wild black cherry	Prunus serotina	6	Fair	45.094912927	-93.275871860
642 Wild black cherry	Prunus serotina	8	Fair	45.094939761	-93.275808158
643 Wild black cherry	Prunus serotina	9	Good	45.094981921	-93.275731550
644 Wild black cherry	Prunus serotina	7	Fair	45.094767776	-93.275746097
645 Wild black cherry	Prunus serotina	13	Good	45.094887668	-93.275656271
646 Wild black cherry	Prunus serotina	17	Good	45.094743339	-93.275791653
647 Wild black cherry	Prunus serotina	13	Fair	45.094716751	-93.275709264
648 Wild black cherry	Prunus serotina	5	Fair	45.094725446	-93.275875077
649 Wild black cherry	Prunus serotina	9	Good	45.094691604	-93.275901774
650 Wild black cherry	Prunus serotina	5	Poor	45.094645342	-93.275900897
651 Wild black cherry	Prunus serotina	8	Poor	45.094589177	-93.275850244
652 Wild black cherry	Prunus serotina	8	Fair	45.094568546	-93.275854980
653 Wild black cherry	Prunus serotina	6	Poor	45.094668924	-93.275435898
654 Wild black cherry	Prunus serotina	6	Good	45.094780839	-93.275579249
655 Wild black cherry	Prunus serotina	6	Fair	45.094816878	-93.275492073
656 Wild black cherry	Prunus serotina	6	Poor	45.094831620	-93.275473564
657 Wild black cherry	Prunus serotina	11	Fair	45.094958366	-93.275017946
658 Wild black cherry	Prunus serotina	8	Good	45.095055876	-93.275192918

659 Wild black cherry	Prunus serotina	5	Good	45.095053007	-93.275399453
660 Wild black cherry	Prunus serotina	5	Fair	45.095085030	-93.275345064
661 Wild black cherry	Prunus serotina	7	Fair	45.095195184	-93.275421429
662 Wild black cherry	Prunus serotina	5	Fair	45.095215442	-93.275346235
663 Wild black cherry	Prunus serotina	8	Good	45.095254525	-93.275331099
664 Wild black cherry	Prunus serotina	10	Good	45.095208745	-93.275232695
665 Wild black cherry	Prunus serotina	9	Poor	45.095290977	-93.275230354
666 Wild black cherry	Prunus serotina	4	Fair	45.095204083	-93.275170063
667 Wild black cherry	Prunus serotina	11	Fair	45.095182747	-93.275134069
668 Wild black cherry	Prunus serotina	9	Fair	45.095171873	-93.275113656
669 Wild black cherry	Prunus serotina	7	Fair	45.095158394	-93.275224080
670 Wild black cherry	Prunus serotina	6	Fair	45.095101126	-93.275241658
671 Wild black cherry	Prunus serotina	4	Good	45.095079139	-93.275179379
672 Wild black cherry	Prunus serotina	7	Good	45.095152316	-93.274989797
673 Wild black cherry	Prunus serotina	6	Good	45.095174822	-93.275067166
674 Wild black cherry	Prunus serotina	8	Good	45.095167667	-93.274926915
675 Wild black cherry	Prunus serotina	6	Good	45.095150911	-93.274811949
676 Wild black cherry	Prunus serotina	9	Good	45.095196726	-93.275020454
677 Wild black cherry	Prunus serotina	13	Good	45.095229751	-93.274993527
678 Wild black cherry	Prunus serotina	7	Fair	45.095263887	-93.275124056
679 Wild black cherry	Prunus serotina	9	Good	45.095261169	-93.275125953
680 Wild black cherry	Prunus serotina	8	Good	45.095333198	-93.275064571
681 Wild black cherry	Prunus serotina	9	Good	45.095390393	-93.274944886
682 Wild black cherry	Prunus serotina	6	Fair	45.095406144	-93.274963156
683 Wild black cherry	Prunus serotina	7	Fair	45.095396777	-93.275002233
684 Wild black cherry	Prunus serotina	8	Fair	45.095355563	-93.275138468
685 Wild black cherry	Prunus serotina	9	Good	45.095448464	-93.275054709
686 Wild black cherry	Prunus serotina	5	Fair	45.095483460	-93.275082029
687 Wild black cherry	Prunus serotina	9	Good	45.095445421	-93.275004920
688 Wild black cherry	Prunus serotina	6	Fair	45.095444806	-93.274968640
689 Wild black cherry	Prunus serotina	7	Fair	45.095462038	-93.274979829
690 Wild black cherry	Prunus serotina	8	Good	45.095365974	-93.274827560
691 Wild black cherry	Prunus serotina	8	Fair	45.095311963	-93.274843484

692 Wild black cherry	Prunus serotina	11	Poor	45.095383420	-93.274775526
693 Wild black cherry	Prunus serotina	10	Poor	45.095368393	-93.274679497
694 Wild black cherry	Prunus serotina	6	Fair	45.095456870	-93.274653631
695 Wild black cherry	Prunus serotina	11	Fair	45.095461115	-93.274657023
696 Wild black cherry	Prunus serotina	7	Good	45.095470691	-93.274488200
697 Wild black cherry	Prunus serotina	7	Fair	45.095435837	-93.274531200
698 Wild black cherry	Prunus serotina	7	Fair	45.095396611	-93.274522488
699 Wild black cherry	Prunus serotina	5	Fair	45.095418665	-93.274460420
700 Wild black cherry	Prunus serotina	4	Fair	45.095416147	-93.274421830
701 Wild black cherry	Prunus serotina	7	Poor	45.094992055	-93.275068274
702 Wild black cherry	Prunus serotina	7	Poor	45.095034493	-93.275071652
703 Wild black cherry	Prunus serotina	8	Poor	45.094799738	-93.275780346
704 Wild black cherry	Prunus serotina	9	Fair	45.094844466	-93.275849865
705 Wild black cherry	Prunus serotina	6	Fair	45.094805472	-93.275792710
706 Wild black cherry	Prunus serotina	8	Fair	45.094739727	-93.275898877
707 Wild black cherry	Prunus serotina	11	Fair	45.094720891	-93.276020772
708 Wild black cherry	Prunus serotina	4	Fair	45.094697185	-93.276025980
709 Wild black cherry	Prunus serotina	9	Fair	45.094559714	-93.276111508
710 Wild black cherry	Prunus serotina	5	Fair	45.094576691	-93.276081611
711 Wild black cherry	Prunus serotina	4	Poor	45.095473557	-93.277193007
712 Wild black cherry	Prunus serotina	5	Poor	45.095480092	-93.277130903
713 Wild black cherry	Prunus serotina	7	Fair	45.095427262	-93.276981095
714 Wild black cherry	Prunus serotina	5	Poor	45.095384270	-93.277034141
715 Wild black cherry	Prunus serotina	4	Fair	45.095396404	-93.277203355
716 Wild black cherry	Prunus serotina	5	Fair	45.095096854	-93.276914838
717 Wild black cherry	Prunus serotina	5	Poor	45.095108809	-93.276890269
718 Wild black cherry	Prunus serotina	6	Poor	45.095136328	-93.276854144
719 Wild black cherry	Prunus serotina	5	Poor	45.095152162	-93.276842469
720 Wild black cherry	Prunus serotina	5	Poor	45.095153785	-93.276862463
721 Wild black cherry	Prunus serotina	5	Poor	45.095176626	-93.276858478
722 Wild black cherry	Prunus serotina	5	Poor	45.095209785	-93.276868150
723 Wild black cherry	Prunus serotina	4	Poor	45.095206221	-93.276953819
724 Wild black cherry	Prunus serotina	4	Poor	45.095152374	-93.277059133

725 Wild black cherry	Prunus serotina	7	Fair	45.095266139	-93.277030733
726 Wild black cherry	Prunus serotina	7	Fair	45.095271779	-93.277028052
727 Wild black cherry	Prunus serotina	6	Poor	45.095301151	-93.277006854
728 Wild black cherry	Prunus serotina	5	Fair	45.095264157	-93.276988856
729 Wild black cherry	Prunus serotina	5	Poor	45.095360953	-93.277056227
730 Wild black cherry	Prunus serotina	5	Fair	45.095411739	-93.276894544
731 Wild black cherry	Prunus serotina	8	Fair	45.095443390	-93.276688378
732 Wild black cherry	Prunus serotina	8	Good	45.095480574	-93.276505447
733 Wild black cherry	Prunus serotina	11	Fair	45.095381143	-93.276673609
734 Wild black cherry	Prunus serotina	8	Fair	45.095303562	-93.276814806
735 Wild black cherry	Prunus serotina	7	Fair	45.095277446	-93.276839892
736 Wild black cherry	Prunus serotina	17	Fair	45.095114604	-93.276576846
737 Wild black cherry	Prunus serotina	5	Poor	45.095153615	-93.276689488
738 Wild black cherry	Prunus serotina	12	Fair	45.095171807	-93.276739841
739 Wild black cherry	Prunus serotina	6	Fair	45.095168336	-93.276805552
740 Wild black cherry	Prunus serotina	5	Poor	45.095188101	-93.276851579
741 Wild black cherry	Prunus serotina	5	Poor	45.095128674	-93.276804030
742 Wild black cherry	Prunus serotina	8	Good	45.094825492	-93.276690227
743 Wild black cherry	Prunus serotina	6	Poor	45.094804017	-93.276531396
744 Wild black cherry	Prunus serotina	5	Fair	45.094759513	-93.276392492
745 Wild black cherry	Prunus serotina	12	Fair	45.094335446	-93.276127572
746 Wild black cherry	Prunus serotina	16	Fair	45.094230792	-93.276058823
747 Wild black cherry	Prunus serotina	4	Poor	45.094296966	-93.275982464
748 Wild black cherry	Prunus serotina	5	Poor	45.094337159	-93.276065685
749 Wild black cherry	Prunus serotina	5	Poor	45.094383438	-93.276047305
750 Wild black cherry	Prunus serotina	5	Poor	45.094435222	-93.275918008
751 Wild black cherry	Prunus serotina	5	Fair	45.094486968	-93.275873801
752 Wild black cherry	Prunus serotina	9	Good	45.094520730	-93.275861426
753 Wild black cherry	Prunus serotina	4	Poor	45.094521507	-93.275856261
754 Wild black cherry	Prunus serotina	10	Poor	45.094545651	-93.276016049
755 Wild black cherry	Prunus serotina	11	Fair	45.094498702	-93.276047611
756 Wild black cherry	Prunus serotina	1	Fair	45.094515045	-93.276096407
757 Wild black cherry	Prunus serotina	4	Fair	45.094505154	-93.276147007

758 Wild black cherry	Prunus se
759 Wild black cherry	Prunus se
760 Wild black cherry	Prunus se
761 Wild black cherry	Prunus se
762 Wild black cherry	Prunus se
763 Wild black cherry	Prunus se
764 Wild black cherry	Prunus se
765 Wild black cherry	Prunus se
766 Wild black cherry	Prunus se
767 Wild black cherry	Prunus se
768 Wild black cherry	Prunus se
769 Wild black cherry	Prunus se
770 Wild black cherry	Prunus se
771 Wild black cherry	Prunus se
772 Wild black cherry	Prunus se
773 Wild black cherry	Prunus se
774 Wild black cherry	Prunus se
775 Wild black cherry	Prunus se
776 Wild black cherry	Prunus se
777 Wild black cherry	Prunus se
778 Wild black cherry	Prunus se
779 Wild black cherry	Prunus se
780 Wild black cherry	Prunus se
781 Wild black cherry	Prunus se
782 Wild black cherry	Prunus se
783 Wild black cherry	Prunus se
784 Wild black cherry	Prunus se
785 Wild black cherry	Prunus se
786 Wild black cherry	Prunus se
787 Wild black cherry	Prunus se
788 Wild black cherry	Prunus se
789 Wild black cherry	Prunus se
790 Wild black cherry	Prunus se

us serotina	1	Fair	45.094666228	-93.276138002
us serotina	6	Fair	45.094751474	-93.276223691
us serotina	10	Fair	45.094777920	-93.276169424
us serotina	7	Poor	45.094776968	-93.276099193
us serotina	11	Fair	45.094808874	-93.276046914
us serotina	8	Poor	45.094907535	-93.276107895
us serotina	4	Fair	45.094975295	-93.276115717
us serotina	12	Poor	45.095000800	-93.276143254
us serotina	10	Fair	45.095063386	-93.276040603
us serotina	5	Poor	45.095079634	-93.276096464
us serotina	11	Fair	45.095124719	-93.275927178
us serotina	9	Fair	45.095143752	-93.275870923
us serotina	9	Fair	45.095155647	-93.275803219
us serotina	13	Fair	45.095209585	-93.275845814
us serotina	6	Poor	45.095199493	-93.275811271
us serotina	12	Fair	45.095172221	-93.275764633
us serotina	12	Fair	45.095256990	-93.275737666
us serotina	5	Poor	45.095248117	-93.275711651
us serotina	7	Fair	45.095211414	-93.275657221
us serotina	15	Good	45.095320531	-93.275905188
us serotina	14	Fair	45.095374422	-93.275324669
us serotina	10	Fair	45.095424476	-93.275173597
us serotina	8	Fair	45.095312576	-93.275294626
us serotina	11	Fair	45.095282226	-93.275391652
us serotina	11	Fair	45.095271195	-93.275383378
us serotina	12	Fair	45.095288902	-93.275488184
us serotina	7	Fair	45.095205612	-93.275635154
us serotina	5	Fair	45.095173237	-93.275572621
us serotina	8	Fair	45.095213238	-93.275591547
us serotina	8	Fair	45.095122361	-93.275675075
us serotina	8	Fair	45.095173036	-93.275713646
us serotina	7	Fair	45.095159858	-93.275693869
us serotina	6	Fair	45.095078612	-93.275674242

791 Wild black cherry	Prunus serotina	5	Fair	45.095049677	-93.275644860
792 Wild black cherry	Prunus serotina	4	Fair	45.095087003	-93.275575075
793 Wild black cherry	Prunus serotina	10	Fair	45.095046055	-93.275771093
794 Wild black cherry	Prunus serotina	7	Fair	45.095018065	-93.275864625
795 Wild black cherry	Prunus serotina	13	Fair	45.095029878	-93.275920243
796 Wild black cherry	Prunus serotina	6	Fair	45.094990669	-93.275993518
797 Wild black cherry	Prunus serotina	7	Poor	45.094944610	-93.275990168
798 Wild black cherry	Prunus serotina	10	Fair	45.094985910	-93.275914454
799 Wild black cherry	Prunus serotina	9	Fair	45.094936048	-93.275899947
800 Wild black cherry	Prunus serotina	8	Fair	45.094903241	-93.275853513
801 Wild black cherry	Prunus serotina	9	Poor	45.094969823	-93.275778822
802 Wild black cherry	Prunus serotina	7	Fair	45.094927505	-93.275708370
803 Wild black cherry	Prunus serotina	9	Poor	45.094923368	-93.275734377
804 Wild black cherry	Prunus serotina	6	Poor	45.094855400	-93.275763372
805 Wild black cherry	Prunus serotina	11	Fair	45.094800419	-93.275754513
806 Wild black cherry	Prunus serotina	7	Fair	45.094828421	-93.275690054
807 Wild black cherry	Prunus serotina	7	Fair	45.094774442	-93.275681815
808 Wild black cherry	Prunus serotina	10	Fair	45.094865349	-93.275589008
809 Wild black cherry	Prunus serotina	9	Fair	45.094731850	-93.275741609
810 Wild black cherry	Prunus serotina	7	Fair	45.094696316	-93.275887135
811 Wild black cherry	Prunus serotina	9	Fair	45.094662768	-93.275891756
812 Wild black cherry	Prunus serotina	4	Poor	45.094650027	-93.275855596
813 Wild black cherry	Prunus serotina	10	Fair	45.094646404	-93.275816271
814 Wild black cherry	Prunus serotina	10	Fair	45.094623930	-93.275818428
815 Wild black cherry	Prunus serotina	8	Fair	45.094549824	-93.275539289
816 Wild black cherry	Prunus serotina	12	Good	45.094655967	-93.275478357
817 Wild black cherry	Prunus serotina	18	Good	45.094864120	-93.275482528
818 Wild black cherry	Prunus serotina	8	Fair	45.094908615	-93.275395473
819 Wild black cherry	Prunus serotina	9	Poor	45.095054126	-93.274947904
820 Wild black cherry	Prunus serotina	8	Poor	45.094998894	-93.275116028
821 Wild black cherry	Prunus serotina	7	Fair	45.095033123	-93.275475821
822 Wild black cherry	Prunus serotina	5	Fair	45.095045384	-93.275434596
823 Wild black cherry	Prunus serotina	6	Fair	45.095079736	-93.275393929

		-	F . 1 .	45 005450400	02 275524620
824 Wild black cherry	Prunus serotina	7	Fair	45.095159199	-93.275521638
825 Wild black cherry	Prunus serotina	4	Poor	45.095176061	-93.275334854
826 Wild black cherry	Prunus serotina	9	Fair	45.095132023	-93.275372548
827 Wild black cherry	Prunus serotina	4	Poor	45.095183951	-93.275311786
828 Wild black cherry	Prunus serotina	4	Poor	45.095217092	-93.275296520
829 Wild black cherry	Prunus serotina	8	Poor	45.095244406	-93.275256030
830 Wild black cherry	Prunus serotina	10	Fair	45.095250431	-93.275157604
831 Wild black cherry	Prunus serotina	10	Fair	45.095240324	-93.275156013
832 Wild black cherry	Prunus serotina	8	Fair	45.095207448	-93.275134216
833 Wild black cherry	Prunus serotina	8	Fair	45.095201290	-93.275131296
834 Wild black cherry	Prunus serotina	4	Fair	45.095161126	-93.275176080
835 Wild black cherry	Prunus serotina	8	Fair	45.095102315	-93.275209505
836 Wild black cherry	Prunus serotina	6	Fair	45.095108898	-93.275133990
837 Wild black cherry	Prunus serotina	7	Poor	45.095117723	-93.274998673
838 Wild black cherry	Prunus serotina	9	Poor	45.095088730	-93.274974199
839 Wild black cherry	Prunus serotina	7	Poor	45.095116181	-93.274929064
840 Wild black cherry	Prunus serotina	9	Fair	45.095112751	-93.274950510
841 Wild black cherry	Prunus serotina	4	Poor	45.095146386	-93.275008416
842 Wild black cherry	Prunus serotina	6	Fair	45.095123576	-93.275023408
843 Wild black cherry	Prunus serotina	8	Poor	45.095170090	-93.275067163
844 Wild black cherry	Prunus serotina	5	Poor	45.095170466	-93.274996380
845 Wild black cherry	Prunus serotina	8	Fair	45.095168883	-93.274953170
846 Wild black cherry	Prunus serotina	6	Poor	45.095154069	-93.274929065
847 Wild black cherry	Prunus serotina	9	Fair	45.095123008	-93.274912182
848 Wild black cherry	Prunus serotina	5	Poor	45.095107759	-93.274886803
849 Wild black cherry	Prunus serotina	6	Poor	45.095135596	-93.274842624
850 Wild black cherry	Prunus serotina	7	Fair	45.095155279	-93.274853239
851 Wild black cherry	Prunus serotina	14	Fair	45.095218740	-93.274804954
852 Wild black cherry	Prunus serotina	5	Poor	45.095185786	-93.274866115
853 Wild black cherry	Prunus serotina	9	Fair	45.095174960	-93.274912491
854 Wild black cherry	Prunus serotina	5	Fair	45.095255522	-93.274867599
855 Wild black cherry	Prunus serotina	9	Fair	45.095209142	-93.274938787
856 Wild black cherry	Prunus serotina	5	Poor	45.095227699	-93.274965779

857 Wild black cherry	Prunus serotina	6	Poor	45.095267028	-93.275033012
858 Wild black cherry	Prunus serotina	9	Fair	45.095265523	-93.275075822
859 Wild black cherry	Prunus serotina	11	Fair	45.095273106	-93.275139513
860 Wild black cherry	Prunus serotina	11	Fair	45.095322093	-93.275137008
861 Wild black cherry	Prunus serotina	8	Poor	45.095313475	-93.275059105
862 Wild black cherry	Prunus serotina	7	Poor	45.095297261	-93.275045175
863 Wild black cherry	Prunus serotina	8	Fair	45.095316797	-93.274994709
864 Wild black cherry	Prunus serotina	12	Fair	45.095306600	-93.274964999
865 Wild black cherry	Prunus serotina	7	Fair	45.095367282	-93.274951034
866 Wild black cherry	Prunus serotina	8	Fair	45.095368490	-93.274969977
867 Wild black cherry	Prunus serotina	7	Fair	45.095368000	-93.275032279
868 Wild black cherry	Prunus serotina	10	Fair	45.095438543	-93.275097901
869 Wild black cherry	Prunus serotina	10	Fair	45.095459949	-93.275093225
870 Wild black cherry	Prunus serotina	8	Fair	45.095439730	-93.274989492
871 Wild black cherry	Prunus serotina	10	Fair	45.095321576	-93.274825602
872 Wild black cherry	Prunus serotina	8	Fair	45.095322138	-93.274811426
873 Wild black cherry	Prunus serotina	8	Fair	45.095305649	-93.274841880
874 Wild black cherry	Prunus serotina	9	Poor	45.095297698	-93.274766756
875 Wild black cherry	Prunus serotina	7	Poor	45.095342906	-93.274662149
876 Wild black cherry	Prunus serotina	7	Fair	45.095482780	-93.274600872
877 Wild black cherry	Prunus serotina	7	Fair	45.095442410	-93.274571416
878 Wild black cherry	Prunus serotina	5	Fair	45.095457266	-93.274566043
879 Wild black cherry	Prunus serotina	9	Fair	45.095447461	-93.274541627
880 Wild black cherry	Prunus serotina	6	Poor	45.095414334	-93.274546601
881 Wild black cherry	Prunus serotina	6	Fair	45.095416491	-93.274371779
882 Wild black cherry	Prunus serotina	9	Fair	45.095069842	-93.275732613
883 Wild black cherry	Prunus serotina	1	Fair	45.094698325	-93.275976639
884 Wild black cherry	Prunus serotina	4	Fair	45.094693465	-93.275994046
885 Wild black cherry	Prunus serotina	8	Fair	45.094737580	-93.275981023
886 Wild black cherry	Prunus serotina	4	Fair	45.094783143	-93.276019201
887 Wild black cherry	Prunus serotina	8	Poor	45.094777511	-93.276049706
888 Wild black cherry	Prunus serotina	4	Poor	45.094683165	-93.275913701
889 Wild black cherry	Prunus serotina	4	Fair	45.094594259	-93.276126157

890 Wild black cherry	Prunus serotina	6	Fair	45.094506253	-93.276117546
891 Wild black cherry	Prunus serotina	16	Fair	45.094428518	-93.276118564
892 Wild black cherry	Prunus serotina	6	Poor	45.094491405	-93.276031672
893 Box elder	Acer negundo	4	Poor	45.093837874	-93.276687557
894 Box elder	Acer negundo	7	Poor	45.093882402	-93.277079512
895 Box elder	Acer negundo	7	Fair	45.093858798	-93.277062242
896 Box elder	Acer negundo	18	Fair	45.094294973	-93.276350618
897 Box elder	Acer negundo	11	Poor	45.094311922	-93.276388896
898 Box elder	Acer negundo	21	Good	45.094363998	-93.276409493
899 Box elder	Acer negundo	14	Fair	45.094345912	-93.276483471
900 Box elder	Acer negundo	15	Good	45.094311100	-93.275748438
901 Box elder	Acer negundo	12	Fair	45.094335298	-93.275686286
902 Box elder	Acer negundo	18	Poor	45.094277498	-93.275619557
903 Box elder	Acer negundo	6	Poor	45.094408361	-93.275317272
904 Box elder	Acer negundo	25	Good	45.095422981	-93.274266391
905 Box elder	Acer negundo	18	Poor	45.095389273	-93.274260919
906 Box elder	Acer negundo	11	Poor	45.095349863	-93.274284551
907 Box elder	Acer negundo	15	Fair	45.095302062	-93.274303904
908 Box elder	Acer negundo	15	Good	45.095322071	-93.274298795
909 Box elder	Acer negundo	16	Good	45.095295473	-93.274431156
910 Box elder	Acer negundo	16	Fair	45.095248956	-93.274497130
911 Box elder	Acer negundo	11	Fair	45.095240050	-93.274528566
912 Box elder	Acer negundo	15	Fair	45.095230979	-93.274478002
913 Box elder	Acer negundo	11	Poor	45.095230672	-93.274495270
914 Box elder	Acer negundo	9	Fair	45.095230773	-93.274594419
915 Box elder	Acer negundo	11	Poor	45.095290282	-93.274655261
916 Box elder	Acer negundo	21	Poor	45.095246609	-93.274686155
917 Box elder	Acer negundo	17	Good	45.095227676	-93.274681193
918 Box elder	Acer negundo	15	Good	45.095122396	-93.274624861
919 Box elder	Acer negundo	11	Good	45.095112361	-93.274648855
920 Box elder	Acer negundo	7	Good	45.095111384	-93.274628078
921 Box elder	Acer negundo	7	Fair	45.094994943	-93.274683862
922 Box elder	Acer negundo	8	Fair	45.094988814	-93.274714142

923 Box elder	Acer negundo	6	Fair	45.094992707	-93.274729547
924 Box elder	Acer negundo	6	Fair	45.095034968	-93.274702325
925 Box elder	Acer negundo	9	Fair	45.095048330	-93.274711485
926 Box elder	Acer negundo	5	Poor	45.095028606	-93.274748274
927 Box elder	Acer negundo	5	Poor	45.095050273	-93.274758401
928 Box elder	Acer negundo	5	Poor	45.095200677	-93.274745113
929 Box elder	Acer negundo	9	Poor	45.095175216	-93.274674845
930 Box elder	Acer negundo	7	Fair	45.094982426	-93.274815290
931 Box elder	Acer negundo	8	Fair	45.095000883	-93.274783883
932 Box elder	Acer negundo	10	Good	45.094961657	-93.274786017
933 Box elder	Acer negundo	6	Fair	45.094937850	-93.274744220
934 Box elder	Acer negundo	5	Good	45.094913641	-93.274710613
935 Box elder	Acer negundo	7	Poor	45.094930635	-93.274829889
936 Box elder	Acer negundo	4	Fair	45.094915647	-93.274786743
937 Box elder	Acer negundo	8	Poor	45.094872909	-93.274748281
938 Box elder	Acer negundo	9	Fair	45.094878555	-93.274866292
939 Box elder	Acer negundo	4	Good	45.094820916	-93.275019255
940 Box elder	Acer negundo	10	Fair	45.094689499	-93.274935593
941 Box elder	Acer negundo	7	Good	45.094639728	-93.275099552
942 Box elder	Acer negundo	10	Poor	45.094591800	-93.277853073
943 Box elder	Acer negundo	4	Poor	45.094691758	-93.277898618
944 Box elder	Acer negundo	15	Poor	45.094677116	-93.277802308
945 Box elder	Acer negundo	10	Fair	45.094644043	-93.277699807
946 Box elder	Acer negundo	11	Fair	45.094671887	-93.277652744
947 Box elder	Acer negundo	12	Good	45.094616258	-93.277601084
948 Box elder	Acer negundo	11	Fair	45.094514486	-93.277507963
949 Box elder	Acer negundo	12	Fair	45.094508874	-93.277455529
950 Box elder	Acer negundo	7	Good	45.094538990	-93.277455897
951 Box elder	Acer negundo	22	Good	45.094444100	-93.277375767
952 Box elder	Acer negundo	5	Poor	45.094519209	-93.277241723
953 Box elder	Acer negundo	14	Fair	45.094504642	-93.277194881
954 Box elder	Acer negundo	11	Fair	45.094440159	-93.277228444
955 Box elder	Acer negundo	19	Good	45.094458034	-93.277148133

956 Box elder	Acer negundo	4	Fair	45.094633755	-93.276965756
957 Box elder	Acer negundo	9	Fair	45.094639107	-93.276971351
958 Box elder	Acer negundo	15	Good	45.094633584	-93.277009756
959 Box elder	Acer negundo	8	Fair	45.094625253	-93.276968883
960 Box elder	Acer negundo	8	Good	45.094617148	-93.277024522
961 Box elder	Acer negundo	10	Fair	45.094663028	-93.276975435
962 Box elder	Acer negundo	6	Fair	45.094601244	-93.277073514
963 Box elder	Acer negundo	5	Poor	45.094603744	-93.277168134
964 Box elder	Acer negundo	10	Fair	45.094621561	-93.277163940
965 Box elder	Acer negundo	6	Fair	45.094586428	-93.277221281
966 Box elder	Acer negundo	4	Fair	45.094645952	-93.277233197
967 Box elder	Acer negundo	5	Fair	45.094647391	-93.277199349
968 Box elder	Acer negundo	10	Fair	45.094657517	-93.277202105
969 Box elder	Acer negundo	12	Fair	45.094713385	-93.276958282
970 Box elder	Acer negundo	5	Poor	45.094935372	-93.277288941
971 Box elder	Acer negundo	6	Fair	45.094946704	-93.277346899
972 Box elder	Acer negundo	13	Good	45.095083580	-93.277191311
973 Box elder	Acer negundo	5	Fair	45.095074348	-93.277238476
974 Box elder	Acer negundo	7	Fair	45.095117217	-93.277247944
975 Box elder	Acer negundo	4	Good	45.095074255	-93.277293740
976 Box elder	Acer negundo	9	Good	45.095123050	-93.277314258
977 Box elder	Acer negundo	6	Fair	45.095168719	-93.277333138
978 Box elder	Acer negundo	10	Fair	45.095216160	-93.277489521
979 Box elder	Acer negundo	5	Fair	45.095166145	-93.277606907
980 Box elder	Acer negundo	4	Poor	45.093630749	-93.276093624
981 Box elder	Acer negundo	11	Poor	45.093802826	-93.277144211
982 Box elder	Acer negundo	7	Poor	45.093774126	-93.278069281
983 Box elder	Acer negundo	5	Poor	45.093764592	-93.278156480
984 Box elder	Acer negundo	7	Poor	45.093830983	-93.278123783
985 Box elder	Acer negundo	7	Poor	45.093946154	-93.278052902
986 Box elder	Acer negundo	13	Poor	45.094126113	-93.278041338
987 Box elder	Acer negundo	6	Good	45.094094499	-93.277852669
988 Box elder	Acer negundo	6	Fair	45.095024425	-93.277567475

989 Box elder	Acer negundo	7	Poor	45.094884924	-93.277543690
990 Box elder	Acer negundo	7	Fair	45.094969629	-93.277448784
991 Box elder	Acer negundo	5	Fair	45.095189224	-93.277393663
992 Box elder	Acer negundo	7	Fair	45.095350979	-93.277338213
993 Box elder	Acer negundo	13	Fair	45.095488518	-93.277075178
994 Box elder	Acer negundo	9	Fair	45.095437337	-93.276946696
995 Box elder	Acer negundo	8	Fair	45.095408291	-93.277151109
996 Box elder	Acer negundo	6	Fair	45.095172935	-93.277146053
997 Box elder	Acer negundo	10	Fair	45.095192737	-93.277112117
998 Box elder	Acer negundo	15	Fair	45.095138621	-93.277057589
999 Box elder	Acer negundo	7	Poor	45.095101483	-93.277066494
1000 Box elder	Acer negundo	18	Poor	45.095103375	-93.276935912
1001 Box elder	Acer negundo	17	Poor	45.095219429	-93.276922805
1002 Box elder	Acer negundo	20	Poor	45.095162406	-93.276978667
1003 Box elder	Acer negundo	6	Poor	45.095217586	-93.276995017
1004 Box elder	Acer negundo	4	Poor	45.095234393	-93.276986615
1005 Box elder	Acer negundo	7	Fair	45.095447361	-93.276862935
1006 Box elder	Acer negundo	13	Fair	45.095381540	-93.276776239
1007 Box elder	Acer negundo	14	Fair	45.095281311	-93.276677073
1008 Box elder	Acer negundo	9	Fair	45.095281289	-93.276817375
1009 Box elder	Acer negundo	17	Fair	45.095234103	-93.276573811
1010 Box elder	Acer negundo	19	Fair	45.094785615	-93.276441463
1011 Box elder	Acer negundo	8	Fair	45.094878304	-93.276369818
1012 Box elder	Acer negundo	8	Fair	45.094849322	-93.276354494
1013 Box elder	Acer negundo	13	Fair	45.094892994	-93.276303894
1014 Box elder	Acer negundo	15	Good	45.094899553	-93.276320581
1015 Box elder	Acer negundo	7	Poor	45.095038478	-93.276267706
1016 Box elder	Acer negundo	14	Poor	45.095068122	-93.276263888
1017 Box elder	Acer negundo	11	Fair	45.095119503	-93.276155618
1018 Box elder	Acer negundo	9	Fair	45.095401753	-93.276147600
1019 Box elder	Acer negundo	11	Fair	45.095454548	-93.276195894
1020 Box elder	Acer negundo	19	Fair	45.095388426	-93.276389160
1021 Box elder	Acer negundo	9	Poor	45.095229129	-93.276431019

10	22 Box elder	Acer negundo	9	Poor	45.095098806	-93.276475022
10	23 Box elder	Acer negundo	9	Fair	45.094721859	-93.276379898
10	24 Box elder	Acer negundo	20	Fair	45.094463282	-93.276406171
10	25 Box elder	Acer negundo	17	Fair	45.094375875	-93.276249597
10	26 Box elder	Acer negundo	11	Fair	45.094231714	-93.275984268
10	27 Box elder	Acer negundo	5	Fair	45.094327919	-93.275937133
10	28 Box elder	Acer negundo	8	Fair	45.094365146	-93.275828882
10	29 Box elder	Acer negundo	8	Poor	45.094404014	-93.275838557
10	30 Box elder	Acer negundo	11	Fair	45.094454990	-93.275897103
10	31 Box elder	Acer negundo	23	Fair	45.094588381	-93.275945028
10	32 Box elder	Acer negundo	15	Fair	45.094564731	-93.276143954
10	33 Box elder	Acer negundo	21	Fair	45.094539419	-93.276146756
10	34 Box elder	Acer negundo	21	Poor	45.094762815	-93.276220225
10	35 Box elder	Acer negundo	13	Fair	45.094997384	-93.276070591
10	36 Box elder	Acer negundo	12	Poor	45.095176404	-93.275873378
10	37 Box elder	Acer negundo	14	Fair	45.095294437	-93.275652898
10	38 Box elder	Acer negundo	7	Poor	45.095349730	-93.275832166
10	39 Box elder	Acer negundo	19	Poor	45.095372908	-93.275625040
10	40 Box elder	Acer negundo	8	Poor	45.095418760	-93.275619021
10	41 Box elder	Acer negundo	4	Fair	45.095355582	-93.275540017
10	42 Box elder	Acer negundo	10	Poor	45.095379539	-93.275490393
10	43 Box elder	Acer negundo	13	Poor	45.095406617	-93.275147241
10	44 Box elder	Acer negundo	7	Fair	45.095386431	-93.275194183
10	45 Box elder	Acer negundo	12	Fair	45.095266357	-93.275398554
10	46 Box elder	Acer negundo	15	Poor	45.095246582	-93.275499051
10	47 Box elder	Acer negundo	7	Poor	45.095118298	-93.275688421
10	48 Box elder	Acer negundo	14	Fair	45.095030007	-93.275609675
10	49 Box elder	Acer negundo	4	Poor	45.095077551	-93.275553274
10	50 Box elder	Acer negundo	6	Poor	45.095031845	-93.275587015
10	51 Box elder	Acer negundo	16	Good	45.094962488	-93.275578718
10	52 Box elder	Acer negundo	10	Good	45.094943243	-93.275648588
10	53 Box elder	Acer negundo	7	Fair	45.095022870	-93.275679645
10	54 Box elder	Acer negundo	10	Fair	45.095075692	-93.275767868

1055 Box elder	Acer negundo	12	Fair	45.094944198	-93.276044616
1056 Box elder	Acer negundo	9	Fair	45.094982878	-93.275714388
1057 Box elder	Acer negundo	9	Fair	45.094866516	-93.275563830
1058 Box elder	Acer negundo	17	Fair	45.094878839	-93.275585120
1059 Box elder	Acer negundo	8	Fair	45.094696347	-93.275756191
1060 Box elder	Acer negundo	7	Fair	45.094629153	-93.275428173
1061 Box elder	Acer negundo	9	Fair	45.094665497	-93.275434871
1062 Box elder	Acer negundo	10	Fair	45.094682421	-93.275609294
1063 Box elder	Acer negundo	12	Fair	45.094644538	-93.275660272
1064 Box elder	Acer negundo	5	Fair	45.094861470	-93.275461606
1065 Box elder	Acer negundo	11	Good	45.094839639	-93.275424074
1066 Box elder	Acer negundo	6	Fair	45.094836775	-93.275434498
1067 Box elder	Acer negundo	19	Fair	45.094785523	-93.275337005
1068 Box elder	Acer negundo	15	Fair	45.094858678	-93.275266376
1069 Box elder	Acer negundo	6	Good	45.094953019	-93.275232505
1070 Box elder	Acer negundo	6	Fair	45.094970414	-93.275230846
1071 Box elder	Acer negundo	5	Fair	45.094998651	-93.275186630
1072 Box elder	Acer negundo	6	Good	45.094952890	-93.274967262
1073 Box elder	Acer negundo	5	Good	45.095028547	-93.274887954
1074 Box elder	Acer negundo	9	Fair	45.095017485	-93.274944270
1075 Box elder	Acer negundo	7	Poor	45.095023790	-93.274996851
1076 Box elder	Acer negundo	7	Fair	45.095031047	-93.275053506
1077 Box elder	Acer negundo	14	Good	45.095029361	-93.275136521
1078 Box elder	Acer negundo	8	Fair	45.095035032	-93.275230399
1079 Box elder	Acer negundo	11	Fair	45.094998769	-93.275234527
1080 Box elder	Acer negundo	9	Poor	45.094987519	-93.275486635
1081 Box elder	Acer negundo	11	Poor	45.095228620	-93.275345424
1082 Box elder	Acer negundo	6	Good	45.095338980	-93.275082762
1083 Box elder	Acer negundo	11	Fair	45.095330319	-93.274951735
1084 Box elder	Acer negundo	10	Fair	45.095438766	-93.274450362
1085 Box elder	Acer negundo	17	Fair	45.095467116	-93.274359879
1086 Box elder	Acer negundo	14	Poor	45.094715861	-93.275979131
1087 Box elder	Acer negundo	8	Fair	45.094709754	-93.276135998

1088 Box elder	Acer negundo	20	Fair	45.094408917	-93.276156771
1089 Box elder	Acer negundo	6	Fair	45.094425384	-93.276132542
1090 Box elder	Acer negundo	8	Poor	45.095402090	-93.277156429
1091 Box elder	Acer negundo	9	Fair	45.095444782	-93.277034248
1092 Box elder	Acer negundo	5	Poor	45.095374314	-93.277220620
1093 Box elder	Acer negundo	13	Poor	45.095089085	-93.277041651
1094 Box elder	Acer negundo	16	Fair	45.095438072	-93.276811101
1095 Box elder	Acer negundo	15	Good	45.095425968	-93.276574519
1096 Box elder	Acer negundo	14	Fair	45.095280974	-93.276611882
1097 Box elder	Acer negundo	13	Good	45.095243117	-93.276700511
1098 Box elder	Acer negundo	6	Poor	45.095208074	-93.276625665
1099 Box elder	Acer negundo	18	Fair	45.095165331	-93.276690238
1100 Box elder	Acer negundo	19	Fair	45.095221226	-93.276823544
1101 Box elder	Acer negundo	5	Poor	45.094770990	-93.276636350
1102 Box elder	Acer negundo	15	Fair	45.094764695	-93.276406977
1103 Box elder	Acer negundo	7	Poor	45.094981202	-93.276398842
1104 Box elder	Acer negundo	18	Fair	45.094961438	-93.276243660
1105 Box elder	Acer negundo	10	Fair	45.095082385	-93.276230711
1106 Box elder	Acer negundo	12	Fair	45.095098080	-93.276143624
1107 Box elder	Acer negundo	13	Poor	45.095344882	-93.276416252
1108 Box elder	Acer negundo	13	Fair	45.095164621	-93.276382882
1109 Box elder	Acer negundo	13	Fair	45.094707958	-93.276412700
1110 Box elder	Acer negundo	13	Fair	45.094628733	-93.276332464
1111 Box elder	Acer negundo	21	Fair	45.094531444	-93.276337801
1112 Box elder	Acer negundo	7	Poor	45.094224247	-93.275998588
1113 Box elder	Acer negundo	18	Good	45.094272308	-93.275920701
1114 Box elder	Acer negundo	4	Fair	45.094314030	-93.275919848
1115 Box elder	Acer negundo	7	Fair	45.094416959	-93.276011064
1116 Box elder	Acer negundo	5	Fair	45.094455698	-93.275895887
1117 Box elder	Acer negundo	12	Poor	45.095149097	-93.275974445
1118 Box elder	Acer negundo	7	Fair	45.095292203	-93.275845330
1119 Box elder	Acer negundo	18	Fair	45.095365244	-93.275623400
1120 Box elder	Acer negundo	14	Fair	45.095361648	-93.275495439

1121 Box elder	Acer negundo	9	Fair	45.095341237	-93.275454918
1122 Box elder	Acer negundo	11	Fair	45.095421625	-93.275346422
1123 Box elder	Acer negundo	6	Poor	45.095405242	-93.275289676
1124 Box elder	Acer negundo	11	Poor	45.095413812	-93.275302049
1125 Box elder	Acer negundo	18	Fair	45.095137934	-93.275518809
1126 Box elder	Acer negundo	8	Poor	45.095100143	-93.275543774
1127 Box elder	Acer negundo	14	Fair	45.095058592	-93.275523469
1128 Box elder	Acer negundo	9	Fair	45.094981179	-93.275651277
1129 Box elder	Acer negundo	8	Fair	45.094982128	-93.275701864
1130 Box elder	Acer negundo	7	Fair	45.095042407	-93.275714144
1131 Box elder	Acer negundo	9	Poor	45.095025911	-93.275948938
1132 Box elder	Acer negundo	11	Fair	45.094767448	-93.275670573
1133 Box elder	Acer negundo	6	Poor	45.094791175	-93.275609857
1134 Box elder	Acer negundo	7	Poor	45.094887896	-93.275659663
1135 Box elder	Acer negundo	18	Good	45.094904509	-93.275610037
1136 Box elder	Acer negundo	4	Fair	45.094698607	-93.275727293
1137 Box elder	Acer negundo	12	Poor	45.094711087	-93.275781415
1138 Box elder	Acer negundo	4	Fair	45.094438161	-93.275557293
1139 Box elder	Acer negundo	8	Fair	45.094527205	-93.275524896
1140 Box elder	Acer negundo	5	Fair	45.094528999	-93.275453154
1141 Box elder	Acer negundo	6	Poor	45.094557528	-93.275418990
1142 Box elder	Acer negundo	6	Fair	45.094590301	-93.275433599
1143 Box elder	Acer negundo	9	Poor	45.094657801	-93.275542453
1144 Box elder	Acer negundo	5	Poor	45.094623609	-93.275529934
1145 Box elder	Acer negundo	18	Fair	45.094721571	-93.275589271
1146 Box elder	Acer negundo	5	Fair	45.094731275	-93.275505936
1147 Box elder	Acer negundo	20	Fair	45.094884711	-93.275360132
1148 Box elder	Acer negundo	9	Fair	45.095065752	-93.274943767
1149 Box elder	Acer negundo	10	Fair	45.095048952	-93.274985950
1150 Box elder	Acer negundo	11	Poor	45.095098421	-93.275118227
1151 Box elder	Acer negundo	18	Fair	45.095056442	-93.275224553
1152 Box elder	Acer negundo	14	Fair	45.094980568	-93.275432913
1153 Box elder	Acer negundo	16	Fair	45.094992364	-93.275449519

1154 Box elder	Acer negundo	10	Poor	45.095144755	-93.275439972
1155 Box elder	Acer negundo	16	Fair	45.095206429	-93.275314923
1156 Box elder	Acer negundo	14	Poor	45.095260184	-93.275252041
1157 Box elder	Acer negundo	13	Fair	45.095167827	-93.275234341
1158 Box elder	Acer negundo	12	Fair	45.095268925	-93.275059418
1159 Box elder	Acer negundo	12	Fair	45.095439439	-93.275026457
1160 Box elder	Acer negundo	10	Poor	45.095369243	-93.274734459
1161 Box elder	Acer negundo	10	Poor	45.094429552	-93.276109721
1162 Basswood	Tilia americana	19	Good	45.094349565	-93.277401311
1163 Basswood	Tilia americana	7	Fair	45.094653499	-93.277841939
1164 Basswood	Tilia americana	11	Good	45.094660779	-93.277850727
1165 Basswood	Tilia americana	7	Fair	45.094678838	-93.277903544
1166 Basswood	Tilia americana	19	Fair	45.094711132	-93.277839558
1167 Basswood	Tilia americana	6	Good	45.094651637	-93.277630746
1168 Basswood	Tilia americana	11	Good	45.094743412	-93.277601594
1169 Basswood	Tilia americana	7	Good	45.094746482	-93.277702553
1170 Basswood	Tilia americana	4	Fair	45.094733538	-93.277747441
1171 Basswood	Tilia americana	5	Fair	45.094702088	-93.277791438
1172 Basswood	Tilia americana	11	Fair	45.094667216	-93.277434421
1173 Basswood	Tilia americana	6	Fair	45.094713599	-93.277371407
1174 Basswood	Tilia americana	22	Poor	45.093875803	-93.278025598
1175 Basswood	Tilia americana	10	Fair	45.094267897	-93.277920513
1176 Basswood	Tilia americana	6	Fair	45.094295307	-93.277911715
1177 Basswood	Tilia americana	6	Good	45.094256105	-93.277993129
1178 Basswood	Tilia americana	16	Fair	45.094338480	-93.278001912
1179 Basswood	Tilia americana	4	Good	45.094398350	-93.277991050
1180 Basswood	Tilia americana	16	Fair	45.094392344	-93.277862271
1181 Basswood	Tilia americana	13	Fair	45.094486538	-93.277948348
1182 Basswood	Tilia americana	6	Fair	45.094466634	-93.277991787
1183 Basswood	Tilia americana	6	Good	45.094743037	-93.277896244
1184 Basswood	Tilia americana	6	Fair	45.094779220	-93.277890609
1185 Basswood	Tilia americana	12	Fair	45.094967074	-93.277831093
1186 Basswood	Tilia americana	4	Fair	45.094849566	-93.277688000

1187 Basswood	Tilia americana	8	Good	45.094959423	-93.277782387
1188 Basswood	Tilia americana	9	Fair	45.095005752	-93.277820924
1189 Basswood	Tilia americana	12	Fair	45.095034482	-93.277796941
1190 Basswood	Tilia americana	6	Good	45.095323015	-93.277288051
1191 Basswood	Tilia americana	8	Good	45.095121500	-93.277857893
1192 Basswood	Tilia americana	11	Good	45.095250174	-93.277821300
1193 Basswood	Tilia americana	10	Fair	45.095296095	-93.277745642
1194 Basswood	Tilia americana	10	Good	45.095339568	-93.277845690
1195 Basswood	Tilia americana	8	Fair	45.095257545	-93.277727526
1196 Basswood	Tilia americana	6	Fair	45.095376075	-93.277790414
1197 Basswood	Tilia americana	10	Fair	45.095391084	-93.277782551
1198 Basswood	Tilia americana	6	Fair	45.095479459	-93.277781554
1199 Green ash	Fraxinus pennsylvanica	4	Good	45.093630925	-93.275899093
1200 Green ash	Fraxinus pennsylvanica	4	Fair	45.093663859	-93.275945883
1201 Green ash	Fraxinus pennsylvanica	5	Fair	45.093895963	-93.277190967
1202 Green ash	Fraxinus pennsylvanica	12	Good	45.094187008	-93.277029334
1203 Green ash	Fraxinus pennsylvanica	11	Good	45.094293638	-93.275763901
1204 Green ash	Fraxinus pennsylvanica	5	Fair	45.095418582	-93.274182609
1205 Green ash	Fraxinus pennsylvanica	5	Fair	45.095416873	-93.274164899
1206 Green ash	Fraxinus pennsylvanica	7	Fair	45.095150871	-93.274481945
1207 Green ash	Fraxinus pennsylvanica	12	Fair	45.095288958	-93.274565082
1208 Green ash	Fraxinus pennsylvanica	6	Poor	45.095168780	-93.274622011
1209 Green ash	Fraxinus pennsylvanica	4	Poor	45.095154100	-93.274666980
1210 Green ash	Fraxinus pennsylvanica	15	Poor	45.095070740	-93.274625707
1211 Green ash	Fraxinus pennsylvanica	14	Poor	45.095062419	-93.274585233
1212 Green ash	Fraxinus pennsylvanica	8	Good	45.094955548	-93.274682579
1213 Green ash	Fraxinus pennsylvanica	8	Fair	45.094968150	-93.274720620
1214 Green ash	Fraxinus pennsylvanica	9	Poor	45.095006223	-93.274748643
1215 Green ash	Fraxinus pennsylvanica	8	Poor	45.095034644	-93.274758555
1216 Green ash	Fraxinus pennsylvanica	10	Good	45.095166673	-93.274754687
1217 Green ash	Fraxinus pennsylvanica	5	Fair	45.094962989	-93.274741144
1218 Green ash	Fraxinus pennsylvanica	7	Good	45.094958643	-93.274752278
1219 Green ash	Fraxinus pennsylvanica	5	Fair	45.094957455	-93.274743553

1220 Green ash	Fraxinus pennsylvanica	16	Poor	45.094886085	-93.274727336
1221 Green ash	Fraxinus pennsylvanica	4	Good	45.094900124	-93.274828465
1222 Green ash	Fraxinus pennsylvanica	6	Fair	45.094878893	-93.274788062
1223 Green ash	Fraxinus pennsylvanica	7	Good	45.094859950	-93.274760919
1224 Green ash	Fraxinus pennsylvanica	7	Poor	45.094875585	-93.274749775
1225 Green ash	Fraxinus pennsylvanica	5	Fair	45.094833219	-93.274807437
1226 Green ash	Fraxinus pennsylvanica	6	Fair	45.094878974	-93.274890092
1227 Green ash	Fraxinus pennsylvanica	11	Good	45.094910580	-93.274880399
1228 Green ash	Fraxinus pennsylvanica	5	Poor	45.094911785	-93.274919627
1229 Green ash	Fraxinus pennsylvanica	14	Fair	45.094742285	-93.275151050
1230 Green ash	Fraxinus pennsylvanica	11	Good	45.094695993	-93.275195597
1231 Green ash	Fraxinus pennsylvanica	4	Fair	45.094616004	-93.275210822
1232 Green ash	Fraxinus pennsylvanica	5	Fair	45.094575605	-93.275237463
1233 Green ash	Fraxinus pennsylvanica	6	Fair	45.094592905	-93.275286138
1234 Green ash	Fraxinus pennsylvanica	4	Poor	45.094539722	-93.275324450
1235 Green ash	Fraxinus pennsylvanica	17	Fair	45.094182266	-93.277465041
1236 Green ash	Fraxinus pennsylvanica	5	Poor	45.094463328	-93.277719871
1237 Green ash	Fraxinus pennsylvanica	13	Good	45.094592715	-93.277781814
1238 Green ash	Fraxinus pennsylvanica	7	Good	45.094604293	-93.277789703
1239 Green ash	Fraxinus pennsylvanica	7	Fair	45.094617835	-93.277807146
1240 Green ash	Fraxinus pennsylvanica	5	Fair	45.094646691	-93.277784632
1241 Green ash	Fraxinus pennsylvanica	7	Poor	45.094642287	-93.277729352
1242 Green ash	Fraxinus pennsylvanica	8	Good	45.094664120	-93.277689050
1243 Green ash	Fraxinus pennsylvanica	13	Good	45.094638785	-93.277685627
1244 Green ash	Fraxinus pennsylvanica	11	Good	45.094604206	-93.277638725
1245 Green ash	Fraxinus pennsylvanica	6	Good	45.094802652	-93.277768248
1246 Green ash	Fraxinus pennsylvanica	5	Fair	45.094715801	-93.277708888
1247 Green ash	Fraxinus pennsylvanica	7	Fair	45.094703463	-93.277559892
1248 Green ash	Fraxinus pennsylvanica	11	Good	45.094618894	-93.277635337
1249 Green ash	Fraxinus pennsylvanica	9	Poor	45.094474402	-93.277453745
1250 Green ash	Fraxinus pennsylvanica	11	Good	45.094612587	-93.277218372
1251 Green ash	Fraxinus pennsylvanica	19	Fair	45.094652775	-93.277507485
1252 Green ash	Fraxinus pennsylvanica	12	Good	45.094688511	-93.277464684

1253 Green ash	Fraxinus pennsylvanica	11	Good	45.094678585	-93.277415247
1254 Green ash	Fraxinus pennsylvanica	10	Good	45.094698496	-93.277423147
1255 Green ash	Fraxinus pennsylvanica	20	Good	45.094710160	-93.277338483
1256 Green ash	Fraxinus pennsylvanica	7	Poor	45.094685293	-93.277322802
1257 Green ash	Fraxinus pennsylvanica	22	Fair	45.094634954	-93.277237054
1258 Green ash	Fraxinus pennsylvanica	13	Fair	45.094640761	-93.277249138
1259 Green ash	Fraxinus pennsylvanica	8	Fair	45.094684826	-93.277252772
1260 Green ash	Fraxinus pennsylvanica	8	Good	45.094795896	-93.277051222
1261 Green ash	Fraxinus pennsylvanica	16	Good	45.094825399	-93.277197088
1262 Green ash	Fraxinus pennsylvanica	7	Fair	45.094786961	-93.277188396
1263 Green ash	Fraxinus pennsylvanica	7	Fair	45.094839523	-93.277272922
1264 Green ash	Fraxinus pennsylvanica	11	Fair	45.094801475	-93.277247421
1265 Green ash	Fraxinus pennsylvanica	5	Fair	45.094802885	-93.277269639
1266 Green ash	Fraxinus pennsylvanica	10	Good	45.094835323	-93.277262623
1267 Green ash	Fraxinus pennsylvanica	4	Poor	45.094890332	-93.277309290
1268 Green ash	Fraxinus pennsylvanica	10	Fair	45.094898999	-93.277261078
1269 Green ash	Fraxinus pennsylvanica	5	Poor	45.094989168	-93.277190842
1270 Green ash	Fraxinus pennsylvanica	4	Fair	45.094974625	-93.277354925
1271 Green ash	Fraxinus pennsylvanica	5	Good	45.095051282	-93.277122687
1272 Green ash	Fraxinus pennsylvanica	4	Good	45.095080859	-93.277119289
1273 Green ash	Fraxinus pennsylvanica	7	Fair	45.095053688	-93.277258809
1274 Green ash	Fraxinus pennsylvanica	8	Fair	45.095163814	-93.277474980
1275 Green ash	Fraxinus pennsylvanica	8	Good	45.095207916	-93.277480875
1276 Green ash	Fraxinus pennsylvanica	6	Fair	45.095228213	-93.277502896
1277 Green ash	Fraxinus pennsylvanica	7	Fair	45.095237944	-93.277564553
1278 Green ash	Fraxinus pennsylvanica	4	Good	45.095184340	-93.277692002
1279 Green ash	Fraxinus pennsylvanica	7	Good	45.095165546	-93.277689571
1280 Green ash	Fraxinus pennsylvanica	4	Fair	45.095074977	-93.277547079
1281 Green ash	Fraxinus pennsylvanica	5	Fair	45.095119630	-93.277516108
1282 Green ash	Fraxinus pennsylvanica	4	Fair	45.095132590	-93.277531922
1283 Green ash	Fraxinus pennsylvanica	7	Fair	45.095183846	-93.277553228
1284 Green ash	Fraxinus pennsylvanica	6	Good	45.093736708	-93.277173138
1285 Green ash	Fraxinus pennsylvanica	9	Fair	45.093834484	-93.278120791

1286 Green ash	Fraxinus pennsylvanica	10	Good	45.093851745	-93.278113439
1287 Green ash	Fraxinus pennsylvanica	6	Poor	45.093871158	-93.278172046
1288 Green ash	Fraxinus pennsylvanica	10	Fair	45.093902666	-93.278136343
1289 Green ash	Fraxinus pennsylvanica	9	Fair	45.093970145	-93.278137481
1290 Green ash	Fraxinus pennsylvanica	12	Fair	45.093987578	-93.278072966
1291 Green ash	Fraxinus pennsylvanica	5	Good	45.094052627	-93.278070909
1292 Green ash	Fraxinus pennsylvanica	4	Good	45.093991181	-93.277909272
1293 Green ash	Fraxinus pennsylvanica	13	Fair	45.094199813	-93.277884349
1294 Green ash	Fraxinus pennsylvanica	10	Good	45.094228498	-93.278082713
1295 Green ash	Fraxinus pennsylvanica	6	Good	45.094223470	-93.278125255
1296 Green ash	Fraxinus pennsylvanica	6	Fair	45.094284411	-93.278119081
1297 Green ash	Fraxinus pennsylvanica	7	Fair	45.094274434	-93.278042148
1298 Green ash	Fraxinus pennsylvanica	12	Good	45.094268049	-93.278044324
1299 Green ash	Fraxinus pennsylvanica	5	Good	45.094311263	-93.278089028
1300 Green ash	Fraxinus pennsylvanica	10	Good	45.094373571	-93.278054452
1301 Green ash	Fraxinus pennsylvanica	7	Good	45.094400297	-93.278041068
1302 Green ash	Fraxinus pennsylvanica	6	Fair	45.094427389	-93.278110737
1303 Green ash	Fraxinus pennsylvanica	7	Fair	45.094397460	-93.278071955
1304 Green ash	Fraxinus pennsylvanica	4	Fair	45.094457246	-93.278068610
1305 Green ash	Fraxinus pennsylvanica	11	Poor	45.094484569	-93.278082549
1306 Green ash	Fraxinus pennsylvanica	13	Fair	45.094517301	-93.278050593
1307 Green ash	Fraxinus pennsylvanica	11	Fair	45.094593363	-93.278068879
1308 Green ash	Fraxinus pennsylvanica	9	Fair	45.094567564	-93.278098247
1309 Green ash	Fraxinus pennsylvanica	4	Good	45.094599757	-93.277992993
1310 Green ash	Fraxinus pennsylvanica	7	Poor	45.094678085	-93.278140202
1311 Green ash	Fraxinus pennsylvanica	11	Fair	45.094690410	-93.278055785
1312 Green ash	Fraxinus pennsylvanica	5	Good	45.094661061	-93.277979983
1313 Green ash	Fraxinus pennsylvanica	7	Good	45.094768822	-93.277969653
1314 Green ash	Fraxinus pennsylvanica	10	Good	45.094801772	-93.277964584
1315 Green ash	Fraxinus pennsylvanica	5	Fair	45.094731724	-93.278075957
1316 Green ash	Fraxinus pennsylvanica	7	Poor	45.094741800	-93.278033396
1317 Green ash	Fraxinus pennsylvanica	8	Fair	45.094814964	-93.278065092
1318 Green ash	Fraxinus pennsylvanica	7	Poor	45.094834089	-93.278028296

1319 Green ash	Fraxinus pennsylvanica	13	Fair	45.094859232	-93.277992222
1320 Green ash	Fraxinus pennsylvanica	6	Good	45.094826448	-93.277914324
1321 Green ash	Fraxinus pennsylvanica	7	Poor	45.094942725	-93.277978048
1322 Green ash	Fraxinus pennsylvanica	6	Fair	45.094970333	-93.277906868
1323 Green ash	Fraxinus pennsylvanica	7	Good	45.095000401	-93.277912701
1324 Green ash	Fraxinus pennsylvanica	6	Good	45.094942666	-93.277808891
1325 Green ash	Fraxinus pennsylvanica	12	Fair	45.094913020	-93.277722845
1326 Green ash	Fraxinus pennsylvanica	22	Good	45.094858066	-93.277706966
1327 Green ash	Fraxinus pennsylvanica	24	Fair	45.094826559	-93.277655140
1328 Green ash	Fraxinus pennsylvanica	8	Good	45.094817304	-93.277543557
1329 Green ash	Fraxinus pennsylvanica	14	Good	45.094761385	-93.277485929
1330 Green ash	Fraxinus pennsylvanica	14	Fair	45.094804693	-93.277395489
1331 Green ash	Fraxinus pennsylvanica	7	Fair	45.094824549	-93.277341507
1332 Green ash	Fraxinus pennsylvanica	1	Fair	45.094788693	-93.277415355
1333 Green ash	Fraxinus pennsylvanica	5	Good	45.094841544	-93.277504840
1334 Green ash	Fraxinus pennsylvanica	17	Good	45.094895684	-93.277624353
1335 Green ash	Fraxinus pennsylvanica	10	Good	45.094957349	-93.277693735
1336 Green ash	Fraxinus pennsylvanica	5	Fair	45.094957950	-93.277613466
1337 Green ash	Fraxinus pennsylvanica	4	Good	45.094880063	-93.277551068
1338 Green ash	Fraxinus pennsylvanica	6	Fair	45.095020880	-93.277427649
1339 Green ash	Fraxinus pennsylvanica	4	Good	45.095044945	-93.277532747
1340 Green ash	Fraxinus pennsylvanica	8	Fair	45.095035253	-93.277723372
1341 Green ash	Fraxinus pennsylvanica	10	Fair	45.095015238	-93.277834721
1342 Green ash	Fraxinus pennsylvanica	5	Fair	45.095221371	-93.277323130
1343 Green ash	Fraxinus pennsylvanica	6	Fair	45.095280616	-93.277543435
1344 Green ash	Fraxinus pennsylvanica	4	Good	45.095382617	-93.277381769
1345 Green ash	Fraxinus pennsylvanica	4	Good	45.095391550	-93.277686294
1346 Green ash	Fraxinus pennsylvanica	4	Poor	45.095400879	-93.277725381
1347 Green ash	Fraxinus pennsylvanica	4	Good	45.095177861	-93.277701255
1348 Green ash	Fraxinus pennsylvanica	4	Fair	45.095062352	-93.277915807
1349 Green ash	Fraxinus pennsylvanica	9	Poor	45.095011298	-93.277945584
1350 Green ash	Fraxinus pennsylvanica	8	Fair	45.095009300	-93.277956674
1351 Green ash	Fraxinus pennsylvanica	7	Fair	45.095018508	-93.277955241

1352 Green ash	Fraxinus pennsylvanica	9	Fair	45.095077707	-93.277945888
1353 Green ash	Fraxinus pennsylvanica	4	Fair	45.095119911	-93.277951165
1354 Green ash	Fraxinus pennsylvanica	8	Good	45.095194591	-93.277926597
1355 Green ash	Fraxinus pennsylvanica	7	Good	45.095297166	-93.277884797
1356 Green ash	Fraxinus pennsylvanica	9	Good	45.095244024	-93.277789717
1357 Green ash	Fraxinus pennsylvanica	5	Fair	45.095334118	-93.277730177
1358 Green ash	Fraxinus pennsylvanica	6	Good	45.095387000	-93.277822682
1359 Green ash	Fraxinus pennsylvanica	4	Good	45.095282197	-93.277256290
1360 Green ash	Fraxinus pennsylvanica	4	Good	45.095088064	-93.277054908
1361 Green ash	Fraxinus pennsylvanica	4	Fair	45.095343467	-93.277041481
1362 Green ash	Fraxinus pennsylvanica	8	Fair	45.094642817	-93.276578346
1363 Green ash	Fraxinus pennsylvanica	9	Good	45.094670619	-93.276589380
1364 Green ash	Fraxinus pennsylvanica	10	Good	45.094689414	-93.276585290
1365 Green ash	Fraxinus pennsylvanica	6	Poor	45.094711673	-93.276524991
1366 Green ash	Fraxinus pennsylvanica	19	Poor	45.094737089	-93.276567994
1367 Green ash	Fraxinus pennsylvanica	6	Poor	45.094967610	-93.276324942
1368 Green ash	Fraxinus pennsylvanica	9	Good	45.094617040	-93.275983160
1369 Green ash	Fraxinus pennsylvanica	11	Good	45.094822078	-93.276231987
1370 Green ash	Fraxinus pennsylvanica	7	Good	45.095075726	-93.274848587
1371 Green ash	Fraxinus pennsylvanica	7	Fair	45.095054507	-93.274726508
1372 Green ash	Fraxinus pennsylvanica	11	Good	45.095241172	-93.274807344
1373 Green ash	Fraxinus pennsylvanica	9	Good	45.095378130	-93.274476960
1374 Green ash	Fraxinus pennsylvanica	8	Good	45.094686596	-93.276046070
1375 Green ash	Fraxinus pennsylvanica	4	Poor	45.095472732	-93.277725088
1376 Green ash	Fraxinus pennsylvanica	4	Fair	45.095152129	-93.277691012
1377 Green ash	Fraxinus pennsylvanica	6	Fair	45.095059023	-93.278005124
1378 Green ash	Fraxinus pennsylvanica	4	Fair	45.095071897	-93.277962235
1379 Green ash	Fraxinus pennsylvanica	4	Fair	45.095162795	-93.277902799
1380 Green ash	Fraxinus pennsylvanica	4	Fair	45.095226083	-93.277942748
1381 Green ash	Fraxinus pennsylvanica	10	Fair	45.095230150	-93.277933093
1382 Green ash	Fraxinus pennsylvanica	8	Fair	45.095283933	-93.277910648
1383 Green ash	Fraxinus pennsylvanica	5	Fair	45.095300223	-93.277726334
1384 Green ash	Fraxinus pennsylvanica	7	Poor	45.095456069	-93.277877114

1385 Green ash	Fraxinus pennsylvanica	8	Fair	45.095411929	-93.277931704
1386 Green ash	Fraxinus pennsylvanica	7	Poor	45.095360430	-93.277887531
1387 Green ash	Fraxinus pennsylvanica	4	Fair	45.095091552	-93.277013585
1388 Green ash	Fraxinus pennsylvanica	7	Fair	45.095352220	-93.276917984
1389 Green ash	Fraxinus pennsylvanica	5	Fair	45.094635578	-93.276534017
1390 Green ash	Fraxinus pennsylvanica	20	Fair	45.094686255	-93.276603608
1391 Green ash	Fraxinus pennsylvanica	16	Fair	45.094705914	-93.276564741
1392 Green ash	Fraxinus pennsylvanica	14	Fair	45.094924028	-93.276283752
1393 Green ash	Fraxinus pennsylvanica	5	Fair	45.094497724	-93.276177135
1394 Green ash	Fraxinus pennsylvanica	15	Fair	45.094676294	-93.276232409
1395 Green ash	Fraxinus pennsylvanica	10	Fair	45.094840165	-93.276135945
1396 Green ash	Fraxinus pennsylvanica	10	Fair	45.094887628	-93.276087168
1397 Green ash	Fraxinus pennsylvanica	11	Fair	45.095073214	-93.276079618
1398 Green ash	Fraxinus pennsylvanica	4	Poor	45.094906410	-93.275212649
1399 Green ash	Fraxinus pennsylvanica	8	Fair	45.094977089	-93.275237862
1400 Green ash	Fraxinus pennsylvanica	14	Good	45.094927311	-93.275114146
1401 Green ash	Fraxinus pennsylvanica	16	Good	45.094909674	-93.275009728
1402 Green ash	Fraxinus pennsylvanica	4	Poor	45.094946269	-93.274980222
1403 Green ash	Fraxinus pennsylvanica	6	Fair	45.094663773	-93.276069137
1404 Green ash	Fraxinus pennsylvanica	10	Fair	45.094718788	-93.276048540
1405 Green ash	Fraxinus pennsylvanica	5	Fair	45.094483280	-93.276023564
1406 Apple	Malus sp.	9	Fair	45.095393468	-93.274496966

*Good –Intact or very nearly intact crown (less than ~10% crown die-off), good form, no or minimal structural damage; no or limited structural issues; little or no signs of diseases, storm damage, or leaning.

Fair –Somewhat impacted crown (die back or canopy damage up to one fourth to one third of crown), minimal structural damage such as broken limbs, form is fair (2 or more stems, leaning bole, or similar), structural issues such as included bark on main stem(s); some signs of storm damage and/or signs of disease impacting the tree.

Poor –Damage of more than one third of the crown, form is poor (multiple stems, arching or severely leaning boles), structural issuessuch as splitting at included bark, moderate to significant structural damage (e.g. storm damage, heart rot), evidence of systemic disease issues (e.g. oak wilt, EAB).

Appendix B

Geotechnical Report

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

June 21, 2019

Stantec 733 Marquette Avenue, Suite 1000 Minneapolis, MN 55402

Attn: Daryl Kirschenman, PE

RE: Geotechnical Exploration and Preliminary Opinions Lift Station L-32 Improvements Fridley, Minnesota AET No. 01-20475

Dear Mr. Kirschenman:

This letter report presents the results of the geotechnical exploration performed at the referenced site and presents our preliminary opinions pertaining installation of below-grade tanks/structures. This work is being performed per our March 14, 2019 proposal, which was authorized by you on May 2, 2019. The authorized scope consists of four standard penetration test borings, soil laboratory testing, and preparation of this preliminary report.

1.0 Project Information

The project site currently serves as a Girl Scout camp at 6900 East River Road. An existing lift station is located in the southwest corner of the site. New below grade structures/storage tanks are proposed to be located to the east/northeast of this existing station as shown on attached Figure 1. Currently estimated structure bottom elevations are around 790 feet.

2.0 Site Exploration and Testing

Four standard penetration test borings (SB-1 to SB-4) were drilled and sampled at the site from May 28 to 31, 2019. The logs of the test borings are attached. The boring locations graphically appear on attached Figure 1. The Ramsey County coordinates appear on the logs. The final locations and surface elevations were surveyed by others.

The boring logs contain information concerning soil layering, soil classification, geologic description, and moisture condition. Relative density or consistency is also noted for the natural soils, which is based on the standard penetration resistance (N-value). We refer you to the standard sheet entitled "Exploration/Classification Methods" for details on the drilling and sampling methods, the classification methods, and the water level measurement methods. Data sheets concerning the Unified Soils Classification System, the descriptive terminology, and the symbols used on the boring logs are also attached.

The laboratory test program included two Atterberg Limits tests, ten sieve analysis tests, and numerous water content tests. The test results appear on the individual boring logs adjacent to the samples upon which they were performed and/or on the data sheets following the boring logs.

3.0 Conditions Encountered

3.1 Soil Profile

The generalized geologic profile consists of 1 to 2 feet of surficial topsoil/fill overlying granular water-deposited (alluvial) sandy soils, which then includes substantial deposits of glacially-deposited till soils and fine alluvial soils interlayered below depths of about 13 to 24 feet. The depths and thicknesses of the till and fine alluvium vary, as represented on the fence diagram (profile view) attached as Figure 2. The till is predominantly represented by the SC and CL soils. The fine alluvial soils are found below elevation 790 feet and are represented by CL and CL-ML soils. Therefore, the planned structures will mainly penetrate though the granular alluvium and till deposits.

The granular alluvium is mostly sand (SP) and sand with silt (SP-SM), with some zones of silty sand (SM). The upper granular alluvium is primarily loose to medium dense. The deeper-seated alluvium (below the upper till deposit) is somewhat denser; being medium dense to dense.

The glacial tills are mostly sandy lean clay (CL) and clayey sand (SC), with lesser zones of silty sand (SM). Many soils are borderline cases (e.g., CL/SC). The cohesive till soils are very stiff to hard, with zones of stiff soils sometimes present at the top of the till deposit.

3.2 Groundwater

Groundwater appeared in the boreholes at depths ranging from 8.8 feet (Boring SB-3) to 39.6 feet (Boring SB-2). Review of the data suggests there are two significant groundwater levels. The shallower level represented by Borings SB-1, SB-3, and SB-4 is considered to be perched or held up over the slow-draining glacial till deposit. This level was found to be in the elevation range of about 835½ to 837 feet. The level at Boring SB-2 is also somewhat perched upon slow draining stratifications, as the underlying sands to about elevation 811 feet are moist before becoming waterbearing. The lower groundwater level at this location is then considered to be at approximate elevation 811 feet. It is expected that this lower level is hydraulically connected to the Mississippi River to the west. Based on the plans for the existing lift station, the OHWL of the river near this project location is elevation 809.5 feet, although measurements available to us show more normal levels may be on the order of 803 to 805 feet. Therefore, there does appear to be a gradient towards the river, as would be expected. Water levels will fluctuate seasonally and annually.

4.0 Opinions/Recommendations

4.2 Soil Support Suitability

The existing natural soils are considered suitable for support of the below grade structures and piping systems. The soils around elevation 790 feet are either the granular alluvium or the glacial

Report of Geotechnical Exploration Lift Station L-32 Improvements Fridley, Minnesota June 21, 2019

till. The fine alluvium appears below this elevation; but does have a hard consistency. For design of bottom slabs, a modulus of subgrade reaction (k-value) of 200 psi/inch can be assumed.

4.2 Installation Method

We understand you are considering structure installation using a caisson method. This appears to be preferable compared to an open cut method, as open excavations to elevation 790 feet would penetrate the lower groundwater level, resulting in a hydraulic conduit from the Mississippi River. Boring SB-3 shows the granular alluvium extends to a substantial depth below elevation 790 feet, and it would be very difficult to cut-off/seal groundwater migration from the river and surrounding sand deposits.

A caisson installation would have to be done using "wet" methods. Fluid would need to be maintained within the structure, particularly as it approaches and extends into the deeper granular alluvial layer. Without the interior "fluid hold-down," the bottom would be expected to heave due to hydrostatic forces within the granular soils.

Note that the caisson installation method may be complicated by the presence of very stiff to hard cohesive soils, soils with substantial gravel content, and possible cobbles/boulders.

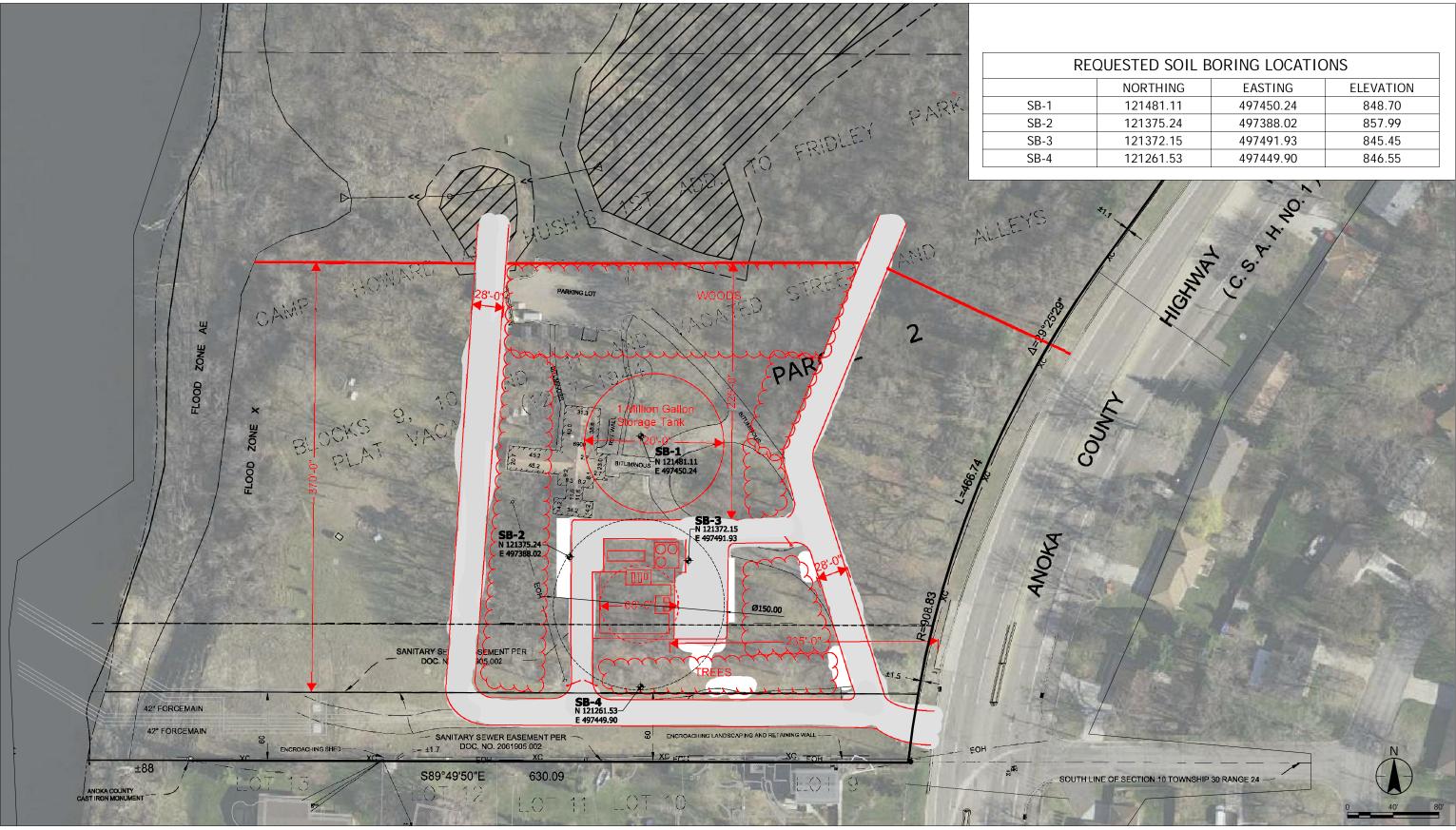
5.0 Additional Review

We are available to conduct additional geotechnical review as the project design progresses. There may be additional considerations based on the design, the installation method chosen, and support of piping pending their installation method.

6.0 Limitations

Within the limitations of scope, budget, and schedule, we have endeavored to provide our services according to generally accepted geotechnical engineering practices at this time and location. Other than this, no warranty, express or implied, is intended.

Authored By, American Engineering Testing, Inc.

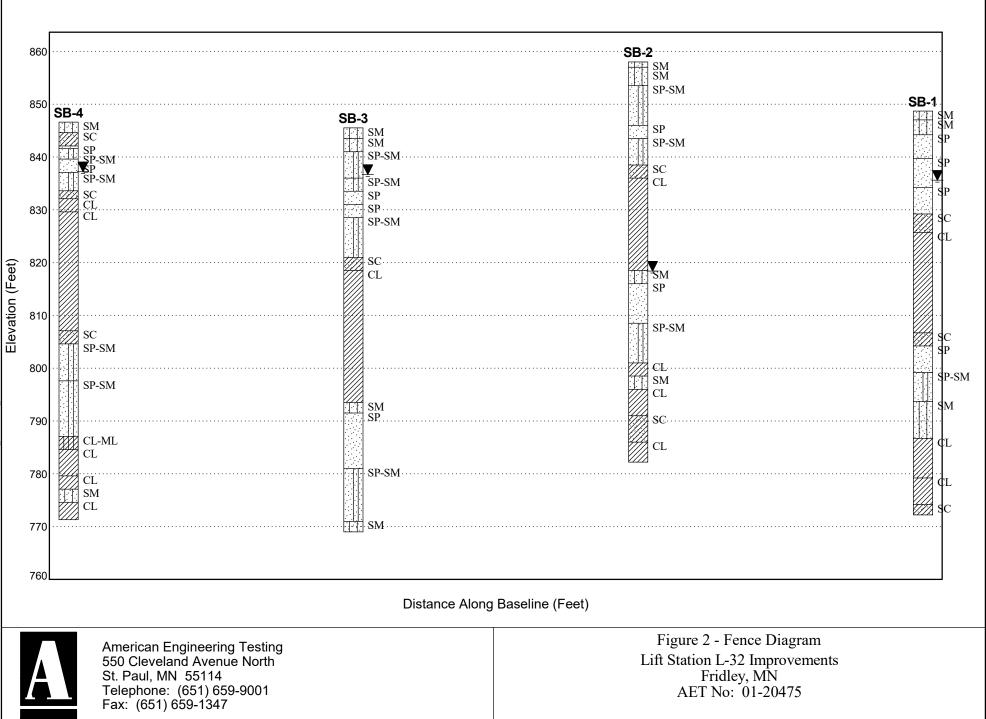

Jeffery K. Voyen, PE Vice President/Principal Engineer (651) 659-1305 direct (612) 961-9186 cell jvoyen@amengtest.com Reviewed By, American/Engineering Testing, Inc.

Gregory R. Reuter, PE, PG Vice President/Principal Engineer

Attachments:

Figure 1 – Boring Locations Figure 2 – Fence Diagram Subsurface Boring Logs Sieve Analysis Test Results Exploration/Classification Methods Boring Log Notes Unified Soil Classification System

REQUESTED SOIL BORING LOCATIONS (as surveyed)


METROPOLITAN COUNCIL ENVIRONMENTAL SERVICES MCES L-32

REQUESTED SOIL BORING LOCATIONS										
NORTHING	EASTING	ELEVATION								
121481.11 497450.24 848.70										
121375.24 497388.02 857.99										
121372.15 497491.93 845.45										
121261.53	497449.90	846.55								
	NORTHING 121481.11 121375.24 121372.15	NORTHINGEASTING121481.11497450.24121375.24497388.02121372.15497491.93								

FIGURE 1 **BORING LOCATIONS** AET 01-20475

733 Marquette Avenue, Suite 1000 Minneapolis, MN 55402 www.stantec.com

AET	AET No: 01-20475						Log of Boring No. SB-1 (p. 1 of 2					f 2)				
Projec	ct:	Lift Station L-32	2 Improve	ments; Fi	ridley, M	N										
Surface	e Elevati	on 848.7		Anoka Co.	Coordinate	es: <u>1</u>	<u>v 1</u>	2148	1		E	49745	0			
DEPTH IN		MATERIAL I	DESCRIPTIC	DN		EOLOGY	N	MC	SA	MPLE	REC			BORAT	ORY '	TESTS
IN FEET								inic		YPE	IN.	WC	DEN	LL	PL	%- #200
1 -	SILT fine g	Y SAND, with organ: rained, dark brown, r	ic fines, tra noist, verv	ice roots, loose (SM		DPSOIL OR	4	М	M	SS	24					
2 -	-[\(possi	ible fill)			_/ CO	DARSE	-		\mathbb{H}							
3 -	- SILT	Y SAND, a little grav fine grained, brown,	el, trace w	ood and se (SM)	AI	LUVIUM	6	М	X	SS	20					
4 -									Þ							
5 - 6 -	mediu	D WITH SILT, a little im grained, brown, m	oist, loose	to medium	1		10	М	X	SS	18					
7 -	dense	(SP-SM)							Þ							
8 -	-						11	М	M	SS	20					
9 -	SANI	D, fine grained, light	brownish to	o orav					Þ							
10 -	moist	to waterbearing, loos	se (SP)	o gruj,			10	М	М	SS	20					
11 -									A							
12 - 13 -							7	MW	,M	SS	20					
14 -	_						'	141/14	Д	55	20					
15 -		D, fine grained, brown					2	w	\square	SS	18					
16 -	water	bearing, very loose to	loose (SP)			2	w	Д	22	18					
17 -	-								М	~~						
18 -	1						9	W	M	SS	12	25				2
19 - 20 -	CLAY	YEY SAND, a little g	ravel, grav	stiff (SC)) //// TI	LL	-		Ħ							
21 -	_						9	М	М	SS	24	15				
22 -		ed 22'-24' sample due rilling	to inadvert	tent					\sum							
23 -		DY LEAN CLAY, a 1	little gravel	, gray, ver	v				$\left \right\rangle$							
24 -		CL/SC)	U						А							
25 - 5 26 -							20	М	X	SS	2					
2	-								þ							
28 -	-						22	М	X	SS	24	17				
27 28 - 28 - 29 - 30 - 30 - 31 - 31 - 32 - 33 - 33 - 32 - 33 - 33 - 34 - 34 - 35 - 36 - 36 - 36 - 0-1 DEI 0-1 - 0-1 DEI 0-1 - 0-1 COMP - -	-								Б							
- 00 - 30 - 31	1						20	М		SS	20	18				
31 − 32 −									В							
	-						21	М	\mathbb{N}	SS	24	18				
5 <u>−</u> 34 –	-								А							
ਬ ਜੂ 35 –	-						27	М	\mathbb{N}	SS	12	30				
- 36 – 36 –	1							141	Д	55	12					
DEI	PTH: 1	DRILLING METHOD			WATER	LEVEL MEA	SURE	EMEN	TS					NOTE:	REFE	R TO
ATES 1	1/1/1	3.25" HSA	DATE	TIME	SAMPLED DEPTH	CASING DEPTH	CAV	/E-IN PTH	E FI I	DRILLIN JID LE	NG VEI	WATE LEVE		THE A		
Z U-1 2020 14 ¹ /2-7		5.25° HSA RDF w/DM	5/28/19	10:10	16.5	14.5		3.8				13.1		SHEET	'S FOF	R AN
ŏ <u>1≒/2-/</u> ≥	-1 /2		5/28/19	10:10	16.5	14.5		3.7	+		-+	13.1		EXPLA	NATIO	ON OF
BORIN	NG PLETED:	5/28/19						-						ERMIN	IOLOG	GY ON
$\frac{1}{2} DR: S$		GH Rig: 91C												TH	IS LOO	3

AET N	No: 01-20475		Lo	og of	Boı	ring No	o	S	B-1 ()	p. 2 o	f 2)		
Projec	t: Lift Station L-32 Improvements; Frid	lley,	MN										
	Anoka Co. C	oordi	nates: <u> </u>	v 1	21481	1		E '	49745	0			
DEPTH	MATERIAL DESCRIPTION		GEOLOGY	N	MC	SA	MPLE	REC	FIELI) & LAI	BORAT	ORY	FESTS
IN FEET			GLOLOGI	IN	MC]]	ГҮРЕ	IN.	WC	DEN	LL	PL	%- #200
38 -	SANDY LEAN CLAY, a little gravel, gray, very stiff (CL/SC) <i>(continued)</i>			25	М	М	SS	24	19				
39 -	sun (CL/SC) (commed)					Д							
40 -				23	М	M	SS	24	19				
41 -				23	IVI	Д	22	24	19				
42 —	CLAYEY SAND, a little gravel, gravish brown,					М							
43 -	hard (SC)			40	M	M	SS	24	10				
44 – 45 –	SAND, fine to medium grained, brown,		COARSE	-		Ħ							
45 -	waterbearing, medium dense to dense (SP)		ALLUVIUM	21	W	X	SS	24					
47 -						þ							
48 —				24	W		SS	24					
49 —						Ю							
50 —	SAND WITH SILT, fine grained, brown, waterbearing, dense (SP-SM)			20	W	М	SS	18					
51 —	waterbearing, dense (SP-Sivi)					Д	55	10					
52 -				21	XX 7	M	00	1.4					
53 — 54 —				21	W	\square	SS	14					
55 -						R							
56 -	SILTY SAND, a little gravel, fine grained, brown, wet, dense (SM)			33	W	X	SS	18					
57 —	brown, wet, dense (SM)					Þ							
58 —				35	W	X	SS	20					
59 —						В							
60 -				30	W	М	SS	20	25				37
61 -						Д							
62 -	LEAN CLAY, brown, hard, laminations of silt		FINE	22	м	M	SS	24	29				
63 — 64 —	below 64' (CL)		ALLUVIUM	33	M	Д	22	24	29				
65 -						H							
66 -	Note: WC not our lists I an arms mutine f			37	M	M	SS	24	26		26	18	
67 —	Note: WC not conducted on same portion of sample as LL/PL. Mixing of lensed					Ħ							
68 -	sample also affects results.			66	М	X	SS	22	28				
69 -			TUI	-		Б							
70 -	SANDY LEAN CLAY, a little gravel, reddish brown, hard (CL)		TILL	60	М	$ \chi $	SS	23	12				
71						Ю							
72 — 73 —				53	М	\mathbb{N}	SS	24	13				
73 74					1.11	Д	55	- T					
75 —	CLAYEY SAND, a little gravel, gray, hard,						66		1.2				
76 –	lenses and laminations of silty sand (SC)			65	М	Ŵ	SS	24	13				
	END OF BORING												
03/2011		1			1				I	I		01 D	HR-06

SLL Y SAND, with organic fines, a little gravel, fine grained, dark brown, morst, weight (possible fill) 5 M SS 20 SIL TY SAND, a little gravel, fine grained, filte gravel, fine grained, filte gravel, fine grained, filte gravel, fine grained, filte gravel, grav, moist, weight (SC/SM) 5 M SS 20 SAND WITH SULT, fine grained, light brownish grave, or stiff (SC/SM) 5 M SS 20 11 M SS 20 CLAVEY SAND, a little gravel, brown, very stiff (CL/SC) 11 M SS 24 14 5 14 M SS 24 SANDY LEAN CLAY, a little gravel, grav, hard 22 M SS 24 14 50 10 5 M SS 24 14 14 14 14 14 14 14 14 14 14 14 14<	AET N	AET No: 01-20475						L	og of	Bo	ring No).	SI	B-2	(p. 1 o	f 2)	
Durprint THET MATERIAL DESCRIPTION GEOLOGY N NC SAMPLE TWPEF REC PELD & LABORATORY TEST WC PLOAD COMMENT 1 SILTY SAND, with organic fines, a little gravel, trace roots, fine grained, dark brown, moist, 2 TOPSOIL OR MATERIAL DESCRIPTION GEOLOGY N NC SAMPLE TWPEF REC PLOAD CASE WC PLOAD CASE WC N N SS 20 N L PL PL <td< td=""><td>Project</td><td>t:</td><td>Lift Station L-32</td><td>2 Improve</td><td>ments; Fi</td><td>ridley,</td><td>MN</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Project	t:	Lift Station L-32	2 Improve	ments; Fi	ridley,	MN										
IN. MATERIAL DESCRIPTION GEOLOGY N MC SAMPLe NC WC DIV 11. PL ##2 SILTY SAND, with organic flacs, a little gravel, fine dark bown, moist, loose (SM) TOPSOLOR, CARSE 5 M SS 20 1 PL ##2 SAND WITH SULT, a little gravel, fine grained, brown, moist, loose (SP-SM) 7 M SS 24 1 1 PL ##2 SAND WITH SULT, a little gravel, fine grained, mosist, very loose (SP-SM) 6 M SS 24 1 <t< td=""><td>Surface</td><td>Eleva</td><td>ation858.0</td><td></td><td>Anoka Co.</td><td>Coordi</td><td>nates: <u>N</u></td><td>J 1</td><td>121375</td><td>5</td><td></td><td>E</td><td>497388</td><td>8</td><td></td><td></td><td></td></t<>	Surface	Eleva	ation858.0		Anoka Co.	Coordi	nates: <u>N</u>	J 1	121375	5		E	497388	8			
THET Integrated, and shown, moist, trace roots, fine grained, dark brown, moist, trace roots, fine grained, dark brown, moist, and the gravel, fine grained, brown, moist, loose to very TopSOLLOR S M SS 20 I <td>DEPTH</td> <td></td> <td>MATERIALI</td> <td>DESCRIPTIC</td> <td>N</td> <td></td> <td>GEOLOGY</td> <td>N</td> <td>MC</td> <td>SA</td> <td>MPLE</td> <td>REC</td> <td>FIELD</td> <td>) & LA</td> <td>BORAT</td> <td>FORY '</td> <td>TESTS</td>	DEPTH		MATERIALI	DESCRIPTIC	N		GEOLOGY	N	MC	SA	MPLE	REC	FIELD) & LA	BORAT	FORY '	TESTS
1 trace roots, fine grained, dark brown, moist, brown, moist, brown, moist, loose (SM) (possible fill) 5 M SS 20 3 brown, moist, very loose (SM) 5 M SS 20 4 brown, moist, very loose (SM) 7 M SS 24 5 SAND WITH SILT, a little gravel, fine to medium grained, brown, moist, loose to very 7 M SS 24 6 M SS 24 5 M SS 24 9 - - 6 M SS 24 10 - - 5 M SS 12 5 SAND, a little gravel, medium to fine grained, moist, very loose (SP) 11 M SS 20 11 M SS 20 - - - - 14 M SS 20 - - - - 12 SAND WITH SILT, fine grained, inpit brownish medium dense (SP-SM) 11 M SS 20 14 M SS 24 - - - - -	FÉÉT							1	NIC		ГҮРЕ	IN.	WC	DEN	LL	PL	%- #200
3 Juli 1 July 2 Multiple gravel, me granted, model (Multiple Gravel, model (Multiple Gravel, model (Multiple Gravel, Multiple Gravel, Gravel, Multiple Gravel, Gravel, Multiple Gravel, Gravel, Multiple Gravel, Multiple Gravel, Multiple Gravel, Gravel, Multiple Gravel, G		∖ trac	e roots, fine grained, da	ic fines, a l ark brown,	ittle gravel moist,	·, · · · · · · · · · · · · · · · · · ·	FILL / COARSE	5	М	M	SS	20					
a medium grained, brown, moist, loose to very loose (SP-SM) 7 M M SS 24 a 6 M SS 24 5 M SS 24 10 - 5 M SS 24 5 M SS 24 11 - - 5 M SS 18 5 11 M SS 20 11 - - 5 M SS 20 11 M SS 24 12 12 11 M SS 24 12 13 14 M SS 24 14 50 14 M SS 24					ined,		ALLUVIUM	4	М	R H	SS	20					
7 - 6 M SS 24 9 - 5 M SS 24 10 - 5 M SS 14 11 - - 5 M SS 12 13 - - - 3 M SS 12 14 - - - - 11 M SS 20 14 M SS 20 -		med	lium grained, brown, m					7	М		SS	24					
10 - 5 M SS 18 - - 11 - </td <td>8 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>М</td> <td>X</td> <td>SS</td> <td>24</td> <td></td> <td></td> <td></td> <td></td> <td></td>	8 -							6	М	X	SS	24					
12 SAND, a little gravel, medium to fine grained, light brownish gray, moist, wery loose (SP) 3 M X SS 12 14 M SS 20 11 M SS 20 17 gray, moist, medium dense (SP-SM) 14 M SS 20 14 19 10 K SS 20 14 M SS 20 20 CLAYEY SAND, a little gravel, brown, very stiff (SC/SM) TILL 22 M SS 24 21 SANDY LEAN CLAY, a little gravel, gray, hard to very stiff (CL/SC) 42 M SS 24 13 22 SANDY LEAN CLAY, a little gravel, gray, hard to very stiff (CL/SC) 42 M SS 24 14 50 23 50 46 M SS 24 14 50 33 - - - - 27 M SS 24 14 50 23 - - - - 27 M SS 24 14 50 34 - - <td< td=""><td>10 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>М</td><td>P</td><td>SS</td><td>18</td><td></td><td></td><td></td><td></td><td></td></td<>	10 -							5	М	P	SS	18					
15 SAND WITH SILT, fine grained, light brownish gray, moist, medium dense (SP-SM) 11 M SS 20 17 14 M SS 20 14 M SS 20 20 CLAYEY SAND, a little gravel, brown, very stiff (SC/SM) TILL 22 M SS 24 23 SANDY LEAN CLAY, a little gravel, gray, hard to very stiff (CL/SC) TILL 22 M SS 24 13 24 25 22 M SS 24 14 50 26 22 M SS 24 14 50 29 M SS 24 14 50 30 24 22 M SS 24 14 50 31 33 34 27 M SS 24 14 50 33 34 25 M SS 24 14 50 14 50 34 35 32.5 M SS 24 14 50 14 14 14 14 14	12 — 13 —	SAN moi	ND, a little gravel, med st, very loose (SP)	ium to fine	grained,			3	М	Þ	SS	12					
18 14 M SS 20 14 M SS 24 14 14 14 M SS 24 14	15 -	SA1 gray	ND WITH SILT, fine g , moist, medium dense	grained, ligh (SP-SM)	nt brownisl	n		11	М	P	SS	20					
21 stiff (SC/SM) 22 M SS 24 22 SANDY LEAN CLAY, a little gravel, gray, hard 42 M SS 24 23 to very stiff (CL/SC) 42 M SS 24 13 24 22 M SS 24 13 14 50 26 27 M SS 24 14 50 27 M SS 24 14 50 30 30 31 27 M SS 24 14 50 33 33 33 33 35 36 25 M SS 24 14 50 DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO THE ATTACHED 16	18 -							14	М	P	SS	20					
33 - 22 M SS 24 13 25 - 22 M SS 24 13 26 - 22 M SS 24 13 27 - 22 M SS 24 14 50 28 - 27 M SS 24 14 50 30 - 46 M SS 24 14 50 30 - 46 M SS 24 14 50 31 - 46 M SS 24 14 50 32 - 29 M SS 24 14 50 33 - 29 M SS 24 14 50 34 - 29 M SS 24 16 16 34 - 25 M SS 24 16 16 35 - 36 - 25 M SS 24 13 16 49/2-74/2' Borne 5/29/19 9:58 41.5 39.5 39.8 N	21 -			gravel, brov	vn, very		TILL	22	М		SS	24					
26 - 22 M SS 24 13 50 27 - 27 M SS 24 14 50 29 - 30 - 46 M SS 24 14 50 30 - 46 M SS 24 14 50 31 - 46 M SS 24 14 50 33 - 29 M SS 24 14 50 34 - 29 M SS 24 16 50 34 - 25 M SS 24 16 50 35 - 36 - 25 M SS 24 16 36 - 25 M SS 24 13 16 9/2-74/2' 3.25" HSA DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER 49/2-74/2' RDF w/DM 5/29/19 9:58 41.5 39.5 39.8 39.6 SHEETS FOR AN BORING 5/29/19 10:44 49.0 47.0	23 -			little gravel	, gray, har	d		42	М		SS	24					
32 - 33 - 29 M SS 24 16 34 - 35 - 25 M SS 24 16 36 - 25 M SS 24 13 NOTE: REFER TO 0-49½' 3.25" HSA DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER LEVEL MEASUREMENTS NOTE: REFER TO 49½-74½' RDF w/DM 5/29/19 9:58 41.5 39.5 39.8 None SHEETS FOR AN BORING 5/29/19 10:15 41.5 39.5 39.8 39.6 EXPLANATION OF BORING COMPLETED: 5/29/19 10:44 49.0 47.0 47.2 46.7 THE ATO OF	26 -							22	М	P	SS	24	13				
32 - 33 - 29 M SS 24 16 34 - 35 - 25 M SS 24 16 36 - 25 M SS 24 13 NOTE: REFER TO 0-49½' 3.25" HSA DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER LEVEL MEASUREMENTS NOTE: REFER TO 49½-74½' RDF w/DM 5/29/19 9:58 41.5 39.5 39.8 None SHEETS FOR AN BORING 5/29/19 10:15 41.5 39.5 39.8 39.6 EXPLANATION OF BORING COMPLETED: 5/29/19 10:44 49.0 47.0 47.2 46.7 THE ATO OF	28 -							27	М	R	SS	24	14				50
35 - 36 - 25 M SS 24 13 NOTE: REFER TO DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO 0-49½' 3.25" HSA DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER LEVEL NOTE: REFER TO 49½-74½' RDF w/DM 5/29/19 9:58 41.5 39.5 39.8 None SHEETS FOR AN BORING COMPLETED: 5/29/19 10:15 41.5 39.5 39.8 39.6 EXPLANATION OF BORING COMPLETED: 5/29/19 10:44 49.0 47.0 47.2 46.7 TERMINOLOGY OF								46	М	R	SS	24	14				
35 - 36 - 25 M SS 24 13 NOTE: REFER TO DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO 0-49½' 3.25" HSA DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING WATER LEVEL NOTE: REFER TO 49½-74½' RDF w/DM 5/29/19 9:58 41.5 39.5 39.8 None SHEETS FOR AN BORING COMPLETED: 5/29/19 10:15 41.5 39.5 39.8 39.6 EXPLANATION OF BORING COMPLETED: 5/29/19 10:44 49.0 47.0 47.2 46.7 TERMINOLOGY OF	33 —							29	М		SS	24	16				
0-49½' 3.25" HSA DATE TIME SAMPLED DEPTH CASING DEPTH DRILLING DEPTH WATER LEVEL 49½-74½' RDF w/DM 5/29/19 9:58 41.5 39.5 39.8 None SHEETS FOR AN BORING COMPLETED: 5/29/19 10:15 41.5 39.5 39.8 39.6 EXPLANATION OF BORING COMPLETED: 5/29/19 10:44 49.0 47.0 47.2 46.7 TERMINOLOGY OF	35 -							25	М		SS	24	13				
0-49½' 3.25" HSA DATE TIME SAMPLED DEPTH CASING DEPTH CAVE-IN DEPTH DRILLING FLUID LEVEL WATER LEVEL THE ATTACHED 49½-74½' RDF w/DM 5/29/19 9:58 41.5 39.5 39.8 None SHEETS FOR AN BORING COMPLETED: 5/29/19 10:15 41.5 39.5 39.8 39.6 EXPLANATION OF TERMINOLOGY OF	DEP'	TH:	DRILLING METHOD			WATI	ER LEVEL MEA	SUR	EMEN'	TS			I		NOTE	REFF	R TO
49½-74½' RDF w/DM 5/29/19 9:58 41.5 39.5 39.8 None SHEETS FOR AN 5/29/19 10:15 41.5 39.5 39.8 39.6 EXPLANATION OF BORING COMPLETED: 5/29/19 10:44 49.0 47.0 47.2 46.7 TERMINOLOGY OF	0-49	0-49%' 3 25" HSA DATE TIME SAMPLED CAT		ED CASING	CA	VE-IN	FI		NG VEI	WATE							
49/2-74/2 RDF W/DM 3/2/10 7/30 41.5 39.5 37.0 1 voic 5/29/19 10:15 41.5 39.5 39.8 39.6 EXPLANATION OF BORING COMPLETED: 5/29/19 10:44 49.0 47.0 47.2 46.7 TERMINOLOGY OF												V EL					
BORING COMPLETED: 5/29/19 10:44 49.0 47.0 47.2 46.7 TERMINOLOGY OF	47/2-/4	t /2								-				<u> </u>	EXPLA	NATIO	ON OF
	BORIN	BORING 5/20/10 10.44 40.0										ERMIN	IOLOG	GY ON			
DK: SG LG: GH Kig: YIC 3/47/17 10.33 47.0 47.0 47.4 40.7 40.7	DR: SC		G: GH Rig: 91C	5/29/19	10:55	49.0			7.2				46.7		TH	IS LO	G

AET_CORP W-COORDINATES 01-20475.GPJ AET+CPT+WELL_20181012_JG.GDT 6/18/19

AET N	No: 01-20475		Log of Boring No. SB-2 (p. 2 of 2)										
Projec	t: Lift Station L-32 Improvements; Frid	lley,	MN										
	Anoka Co. C	oordi	nates:	N 1	21375	5		E	49738	8			
DEPTH	MATERIAL DESCRIPTION		GEOLOGY			SA	MPLE	REC	FIELI) & LA	BORA	TORY 7	FESTS
IN FEET	MATERIAL DESCRIPTION		GEOLOGY	N	MC	Ĩ	MPLE TYPE	ĪN.	WC	DEN	LL	PL	%- #20
38 -	SANDY LEAN CLAY, a little gravel, gray, hard			44	М	М	SS	24	13				
39 -	to very stiff (CL/SC) (continued)					Д	55	2.					
40 -	SILTY SAND, a little gravel, fine grained, gray,		COARSE	95	 M/W	M	SS	24					
41 -	moist, very dense, laminations of clayey sand (SM)		ALLUVIUM OR TILL	95		Д	22	24					
42 -	SAND, fine grained, brown, moist to		COARSE	1 22	N	\square	00	20					
43 - 44 -	waterbearing, dense to medium dense (SP)		ALLUVIUM	33	M	М	SS	20	2				
45 -						P							
46 -				22	M	M	SS	24	4				
47 —						P							
48 -				19	W	X	SS	20	15				
49 -	SAND WITH SILT, fine grained, brown,					Þ							
50 - 51 -	waterbearing, dense (SP-SM)		· ·	34	W	XI	SS	24	22				6
52 -						Б							
53 -				48	W	M	SS	24	26				7
54 —						Д							
55 —				46	W	Μ	SS	24					
56 -						Д	55	2.					
57 —	SANDY LEAN CLAY WITH GRAVEL,		TILL	69	M/W	M	SS	12	16				
58 — 59 —	reddish brown, hard, lenses of silty sand (CL/SC)			09		Д	33	12	10				
60 -	SILTY SAND WITH GRAVEL, brown, very		2 - -	50/.3	M	\square	SS	8					
61 -	dense (SM/SC)					\mathbb{Z}							
62 —	SANDY LEAN CLAY, a little gravel, gray,					H							
63 -	hard, lenses of silty sand (CL/SC)			43	M	М	SS	20					
64 - 65 -						Ħ							
66 -				69	Μ	XI	SS	24					
67 -	CLAVEN CAND - 141					Þ							
68 -	CLAYEY SAND, a little gravel, brownish gray, medium dense to dense (SC/SM)			23	Μ	XI	SS	24	11				
69 -						Ы							
70 -				45	M	M	SS	24	10				
71 — 72 —						Ю							
72 - 73 -	LEAN CLAY, a little gravel, gray, hard (CL) *29/.5 + 52/.5 + 50/.4		FINE ALLUVIUM	*	М	\mathbb{N}	SS	16	12				
74 —	**30/.5 + 51/.5 + 50/.3					$[\mathcal{T}]$							
75 —				**	М	[SS	14	15				
	END OF BORING		1			$ \uparrow $							
												01-D	

AETN	No:		Log of Boring No. SB					B-3 (B-3 (p. 1 of 2)							
Projec	t:	Lift Station L-32	2 Improve	ments; F	ridley, N	/IN										
Surface	Elevation	n 845.5		Anoka Co.	Coordina	ates: _l	N 1	21372	2		E	49749	2			
DEPTH		MATERIAL I	DESCRIPTIC	N		GEOLOGY	N	MC	SA	MPLE	REC	FIELI) & LA	BORA	FORY	TESTS
IN FEET								IVIC		YPE	IN.	WC	DEN	LL	PL	%- #200
1 -		SAND, with organ ained, black to dark				FOPSOIL OR	4	М	М	SS	24					
2 -		SM) (possible fill)	010 will, 110	ist, very		COARSE	-		\mathbb{H}							
3 -	SILTY	SAND, a little grav moist, loose (SM) (vel, fine gra	uined,		ALLUVIUM	5	Μ	X	SS	20					
4 -			a			OR FILL			Þ							
5 -	SILTY	SAND, a little grav n grained, dark brov	vel, trace ro	ots, fine to	•		15	М	M	SS	24					
6 -	mediun	n dense to loose (SN	Л) (possibl	e fill)					H							
7 - 8 -							9	<u> </u>	\square	SS	14					
9 -								 <u>▼</u> _	Д	55	17					
10 -		WITH SILT, fine to		grained,		COARSE			\square	00	10					
11 -	brown,	waterbearing, loose	e (SP-SM)			ALLUVIUM	6	W	М	SS	18					
12 -	SAND.	, medium to fine gra	uned, grav.						H							
13 -		earing, loose (SP)					7	W	X	SS	14	19				4
14 -	SAND	, fine to medium gra	ined grav						Ħ							
15 - 16 -	waterbe	earing, loose (SP)	uneu, gray,				7	W	X	SS	12					
17 -	GAND		• •						Б							
18 -		WITH SILT, fine g earing, medium den					15	W	$ \mathbf{X} $	SS	16					
19 -		g,		(21 2111)					Н							
20 -							30	W	Μ	SS	18	22				7
21 -									Д	55	10					
22 -							20		\square	00	10					
23 - 24 -							39	W	Д	SS	18					
24	CLAY	EY SAND, a little g	ravel, gray	, stiff (SC))	FILL	1		R							
26 -		, ,		, , , ,			14	M	М	SS	24	13				
27 -	SAND	Y LEAN CLAY, a	little grave	orav har	d				Ħ							
28 -		stiff (CL)	intie gravel	, gray, 11al			37	М	X	SS	24	12				
29 -									Б							
30 - 31 - 31 - 31 - 31 - 31 - 31 - 31 -							54	М	X	SS	24	13				
									Н							
$\frac{32}{33}$ -							46	M	\mathbb{N}	SS	24	17				
34 -								_	Щ							
35 -							36	M	\square	SS	24	15				
36 -							30		Д	22	24	15				
27 - 28 - 29 - 30 - 29 - 30 - 31 - 32 - 33 - 33 - 33 - 33 - 33 - 34 - 33 - 34 - 35 - 36 - 36 - 36 - 36 - 36 - 36 - 36	TH: D	RILLING METHOD			WATE	R LEVEL MEA	SURE	EMEN'	TS			1		NOTE:	BEEE	
			DATE	TIME	SAMPLE DEPTH			/E-IN PTH	-	RILLIN JID LE	NG_	WATE LEVE		THE A		
0-		25" HSA							FLU	JID LE	VEL		L	SHEET		
91/2-7	4½' R	DF w/DM	5/30/19	8:40	11.5	9.5		.7	<u> </u>			9.2		EXPLA		
BORIN	G		5/30/19	8:50	11.5	9.5	9	.5				8.8		ERMIN		
	LETED:	5/30/19							-				¹		IS LO	
DR: S	G LG:	GH Rig: 91C												IH	13 LU	Ľ

AET N	No: 01-20475		Log of Boring No. SB-3 (p. 2 of 2)										
Projec	t: Lift Station L-32 Improvements; Frid	dley,	MN										
	Anoka Co. C	oordi	nates:	N 1	21372	2]	E 4	49749	2			
DEPTH						54	MDIE	REC	FIELI) & LA	BORAT	FORY 1	TESTS
DEPTH IN FEET	MATERIAL DESCRIPTION		GEOLOGY	N	MC		MPLE TYPE	IN.	WC	DEN	LL	PL	%- #200
38 -	SANDY LEAN CLAY, a little gravel, gray, hard			30	М	М	SS	24	17				
39 -	to very stiff (CL) (continued)			50	IVI	Д	22	24	1/				
40 -						Н							
41 -				25	M	X	SS	18	22				
42 -						Þ							
43 -				22	Μ	M	SS	24	19				
44 -						ĥ							
45 -				22	М	M	SS	24	17				
46 -					IVI	\square	22	24	1/				
47 —						Н							
48 -				26	Μ	X	SS	24	16				
49 -						Ð							
50 -				34	M	M	SS	12	28				
51 -						Д							
52 -	SILTY SAND, a little gravel, brownish gray,			41		M	00	20					
53 -	dense (SM/SC)			41	M	M	SS	20					
54 — 55 —	SAND, fine to medium grained, gray,		COARSE	1		P							
56 -	waterbearing, medium dense to dense (SP)		ALLUVIUM	22	W	IXI	SS	14	20				3
57 -						Ы							
58 -				25	W	M	SS	12					
59 -						Д	55	12					
60 -						М							
61 -				31	W	M	SS	14					
62 -						Þ							
63 -				29	W	IXI	SS	18					
64 -						Ы							
65 -	SAND WITH SILT, fine grained, gray, waterbearing, medium dense to dense (SP-SM)			23	W	М	SS	18					
	waterbearing, medium dense to dense (SP-SM)					Д	55	10					
67 - 68 -						\mathbb{H}							
				26	W	X	SS	20					
69 -						Þ							
70 -				28	W		SS	20					
71 -						Н							
72 - 73 -				31	w	\mathbb{N}	SS	24					
69 70 71 72 73 74					vv	Д	ەد	∠+					
74	SILTY SAND, a little gravel, fine to medium					Н							
76 -	grained, gray, wet, dense (SM)			31	W	X	SS	24					
75 — 76 —	END OF BORING	<u> </u>				[]							
03/2011												01-D	

AETN	No: 01-20475					Lo	og of	Boı	ring No	o	SI	B-4 ((p. 1 o	f 2)	
Projec	t: Lift Station L-32	2 Improve	ments; Fr	idley,	MN										
Surface	e Elevation 846.6		Anoka Co.	Coordi	nates: <u>N</u>	<u>1</u>	21262	2	. <u> </u>	E	49745				
DEPTH IN FEET	MATERIAL I	DESCRIPTIC	DN		GEOLOGY	N	MC	SA 1	MPLE TYPE	REC IN.	FIELD WC) & LA DEN	BORAT		TESTS %-#200
1 -	SILTY SAND, with organ trace roots, fine to medium	n grained, d	ark brown,		TOPSOIL OR FILL	13	М		SS	6					
2 - 3 - 4 - 4	Moist, medium dense (SM) CLAYEY SAND WITH ((SC) (possible fill)				MIXED ALLUVIUM OR FILL	11	M		SS	12					
5 - 6 -	SAND, a little gravel, fine brown, moist, loose (SP)		-		COARSE ALLUVIUM	10	М		SS	10					
7 — 8 —	SAND WITH SILT, a littl reddish brown, moist, loos SAND, fine grained, light	e (SP-SM)		/		10	M	F	SS	12					
9 — 10 —	 to waterbearing, loose (SP SAND WITH SILT, fine gray, waterbearing, medium) grained, ligh	nt brownish			15		F	SS	16					
11 - 12 - 13 - 13 - 13	-	X	,			12	W/M	R R N	SS	16					
13 14 15	CLAYEY SAND, a little g SANDY LEAN CLAY, a	little gravel			TILL			मि	SS	10	14				
16 — 17 —	stiff, a lens of sand (CL/SC SANDY LEAN CLAY, a	,	, gray, very			30	M	R							
18 - 19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	stiff to hard (CL/SC)					24	M	Å	SS	14	19				
20 21 - 22 -	-					26	M	Å	SS	24	16				
23 — 24 —	-					30	-	Å	SS	0					
25 - 26 - 27	-					32	-	Å	SS	0					
27 - 28 - 29 - 30 - 31 - 31 - 31 - 31 - 31 - 31 - 31	-					23	M	Å	SS	10	19				
30 - 31 -	-					19	M	Á	SS	24	18		31	14	
32 33 34 35 36 DEP						20	M	Å	SS	24	19				
35 - 36 - 36 - 36 - 36 - 36 - 36 - 36 -	-					26	М	\mathbb{X}	SS	24	15				
DEP	PTH: DRILLING METHOD			WATI	ER LEVEL MEA	SUR SUR	 FMEN'								
		DATE	TRAF	SAMPL			/E-IN	1	ORILLIN	NG	WATF		NOTE:		
0-1	6½' 3.25" HSA	DATE	THVIL	DEPT	H DEPTH	DE	PTH	FĹ	DRILLIN UID LE	VEL	WATE LEVE	L	THE A		
161/2-74	24 ¹ / ₂ ' RDF w/DM	5/31/19	9:00	11.5			0.7	-			9.5	,	SHEET		
BORIN	JG	5/31/19	9:10	11.5	9.5	9	0.7				9.4		EXPLA		
1	NG LETED: 5/31/19											¹	ERMIN TH	IS LO	
DR: S	G LG: CJ Rig: 91C												111		J HR-06

AET N	No: 01-20475		Log of Boring No. SB-4 (p. 2 of 2)										
Projec	t: Lift Station L-32 Improvements; Frid	dley,	MN										
	Anoka Co. C	oordi	nates:	<u>N 1</u>	21262	2		Е '	49745	0			
DEPTH	MATERIAL DESCRIPTION		GEOLOGY	N	MC	SA	MPLE	REC	FIELI) & LA	BORAT	ORY 1	ESTS
IN FEET				1	WIC		YPE	IN.	WC	DEN	LL	PL 9	%-#20
38 —	SANDY LEAN CLAY, a little gravel, gray, very stiff to hard (CL/SC) <i>(continued)</i>			45	М	М	SS	24	17				
39 —	suit to hard (CL/SC) (commund)					Ą			13				
40 —	CLAYEY SAND, a little gravel, gray, hard (SC)			53	М	M	SS	24					
41 —					141	Д	00	27					
42 -	SAND WITH SILT, a little gravel, fine to		COARSE	15	W/	M	CC	20					
43 — 44 —	medium grained, gray to grayish brown, waterbearing, dense (SP-SM)		ALLUVIUM	45	W	Д	SS	20					
45 -						М							
46 -				45	W	M	SS	14	17				5
47 —						Ħ							
48 —				34	W	X	SS	12					
49 —	SAND WITH SILT, fine grained, grayish					Þ							
50 — 51 —	brown, waterbearing, very dense to medium dense (SP-SM)			52	W	XI	SS	20					
52 -						Ы							
53 -				30	W	М	SS	18	23				6
54 —						Ą							
55 —				80	w	M	SS	18					
56 —				80	vv	Д		10					
57 —				100/.1	-		SS						
58 — 59 —													
59 - 60 -	SILTY CLAY, grayish brown, hard (CL-ML)		FINE	-		Ю							
61 -			ALLUVIUM	64	M	M	SS	24					
62 —	LEAN CLAY, brownish gray, hard (CL)					Þ							
63 —	LEAN CEAT, blownish gray, haid (CE)			96	М	X	SS	24	16				
64 —						Б							
65 -				86	М	X	SS	20	24				
66 — 67 —						В							
68 -	LEAN CLAY, brown, hard, laminations of silty sand (CL)			95	М	М	SS	22	26				
69 -	sand (CL)					В							
70 -	SILTY SAND, reddish brown, very dense (SM)		TILL	*	М	М	SS	16					
71 —	*48/.5 + 86/.5 + 50/.4					Д							
72 —	SANDY LEAN CLAY, a little gravel, brownish			100/.3	М	Ø	SS	8	21				
73 — 74 —	gray, hard, laminations of sand (CL)					$\left \right\rangle$							
74 75 —				100/.3	М	\bowtie	SS	8	12				
	END OF BORING					\square							
3/2011		1	1	1	I				1	I	I	01-DI	

SIEVE ANALYSIS TEST RESULTS

PROJECT:	AET NO.: 01-20475
Lift Station L-32 Improvements	
Fridley, Minnesota	DATE: June 18, 2019

TEST METHOD: General conformance with ASTM:D6913, Method A

RESULTS:

Boring Number	SB-1	SB-1 SB-2		SB-2	SB-2	
Sample Depth	17'-19'	591/2'-611/2'	27'-29'	491/2'-511/2'	52'-54'	
Dry Sample Weight (gms)	195.85	183.57	183.57 163.88		229.06	
Sieve Size or Number	Percent Passing By Weight					
3/4"	/4" 100 100		100	100	100	
5/8"	100	94	100	100	100	
1/2"	100	94	98	100	100	
3/8"	100	94	98	100	100	
#4	100	94	96	100	100	
#10	100	93	92	100	100	
#20	99	92	87	100	100	
#40	#40 78 88		80	99	99	
#100	5.2	74	59	24	37	
#200	2.2	36.6	50.2	5.8	7.1	

Note: The small sample size limits the accuracy of the test, and the sample may not necessarily be representative of the entire layer shown on the boring log.

SIEVE ANALYSIS TEST RESULTS

PROJECT:	AET NO.: 01-20475
Lift Station L-32 Improvements	
Fridley, Minnesota	DATE: June 18, 2019

TEST METHOD: General conformance with ASTM:D6913, Method A

RESULTS:

Boring Number	SB-3	SB-3	SB-3 SB-3		SB-4	
Sample Depth	12'-14'	191⁄2'-211⁄2'	541/2'-561/2'	441/2'-461/2'	52'-54'	
Dry Sample Weight (gms)	268.78	241.42	241.42 294.23		206.52	
Sieve Size or Number	Percent Passing By Weight					
3/4"	100	100	100	100	100	
5/8"	100	100	100	100	100	
1/2"	99	100	100	100	100	
3/8"	94	100	100	100	100	
#4	89	100	100	100	100	
#10	81	100	100	99	100	
#20	69	100	98	96	100	
#40	#40 39 99		60	54	97	
#100	6.7	35	4.8	4.8 7.7		
#200	3.9	7.3	3.4	5.0	5.9	

Note: The small sample size limits the accuracy of the test, and the sample may not necessarily be representative of the entire layer shown on the boring log.

SAMPLING METHODS

Split-Spoon Samples (SS) - Calibrated to N₆₀ Values

Standard penetration (split-spoon) samples were collected in general accordance with ASTM: D1586 with one primary modification. The ASTM test method consists of driving a 2" O.D. split-barrel sampler into the in-situ soil with a 140-pound hammer dropped from a height of 30". The sampler is driven a total of 18" into the soil. After an initial set of 6", the number of hammer blows to drive the sampler the final 12" is known as the standard penetration resistance or N-value. Our method uses a modified hammer weight, which is determined by measuring the system energy using a Pile Driving Analyzer (PDA) and an instrumented rod.

In the past, standard penetration N-value tests were performed using a rope and cathead for the lift and drop system. The energy transferred to the split-spoon sampler was typically limited to about 60% of its potential energy due to the friction inherent in this system. This converted energy then provides what is known as an N_{60} blow count.

AET's drill rigs incorporate an automatic hammer lift and drop system, which has higher energy efficiency and subsequently results in lower N-values than the traditional N_{60} values. By using the PDA energy measurement equipment, we are able to determine actual energy generated by the drop hammer. With the various hammer systems available, we have found highly variable energies ranging from 55% to over 100%. Therefore, the intent of AET's hammer calibrations is to vary the hammer weight such that hammer energies lie within about 60% to 65% of the theoretical energy of a 140-pound weight falling 30". The current ASTM procedure acknowledges the wide variation in N-values, stating that N-values of 100% or more have been observed. Although we have not yet determined the statistical measurement uncertainty of our calibrated method to date, we can state that the accuracy deviations of the N-values using this method are significantly better than the standard ASTM Method.

Disturbed Samples (DS)/Spin-up Samples (SU)

Sample types described as "DS" or "SU" on the boring logs are disturbed samples, which are taken from the flights of the auger. Because the auger disturbs the samples, possible soil layering and contact depths should be considered approximate.

Sampling Limitations

Unless actually observed in a sample, contacts between soil layers are estimated based on the spacing of samples and the action of drilling tools. Cobbles, boulders, and other large objects generally cannot be recovered from test borings, and they may be present in the ground even if they are not noted on the boring logs.

CLASSIFICATION METHODS

Soil classifications shown on the boring logs are based on the Unified Soil Classification (USC) system. The USC system is described in ASTM: D2487 and D2488. Where laboratory classification tests (sieve analysis or Atterberg Limits) have been performed, accurate classifications per ASTM: D2487 are possible. Otherwise, soil classifications shown on the boring logs are visual-manual judgments. Charts are attached which provide information on the USC system, the descriptive terminology, and the symbols used on the boring logs.

The boring logs include descriptions of apparent geology. The geologic depositional origin of each soil layer is interpreted primarily by observation of the soil samples, which can be limited. Observations of the surrounding topography, vegetation, and development can sometimes aid this judgment.

WATER LEVEL MEASUREMENTS

The ground water level measurements are shown at the bottom of the boring logs. The following information appears under "Water Level Measurements" on the logs:

- Date and Time of measurement
- Sampled Depth: lowest depth of soil sampling at the time of measurement
- Casing Depth: depth to bottom of casing or hollow-stem auger at time of measurement
- Cave-in Depth: depth at which measuring tape stops in the borehole
- Water Level: depth in the borehole where free water is encountered
- Drilling Fluid Level: same as Water Level, except that the liquid in the borehole is drilling fluid

The true location of the water table at the boring locations may be different than the water levels measured in the boreholes. This is possible because there are several factors that can affect the water level measurements in the borehole. Some of these factors include: permeability of each soil layer in profile, presence of perched water, amount of time between water level readings, presence of drilling fluid, weather conditions, and use of borehole casing.

SAMPLE STORAGE

Unless notified to do otherwise, we routinely retain representative samples of the soils recovered from the borings for a period of 30 days.

DRILLING AND SAMPLING SYMBOLS

Symbol	Definition				
AR:	Sample of material obtained from cuttings blown out				
	the top of the borehole during air rotary procedure.				
B, H, N:	Size of flush-joint casing				
CAS:	Pipe casing, number indicates nominal diameter in				
	inches				
COT:	Clean-out tube				
DC:	Drive casing; number indicates diameter in inches				
DM:	Drilling mud or bentonite slurry				
DR:	Driller (initials)				
DS:	Disturbed sample from auger flights				
DP:	Direct push drilling; a 2.125 inch OD outer casing				
	with an inner 11/2 inch ID plastic tube is driven				
	continuously into the ground.				
FA:	Flight auger; number indicates outside diameter in				
	inches				
HA:	Hand auger; number indicates outside diameter				
HSA:	Hollow stem auger; number indicates inside diameter				
	in inches				
LG:	Field logger (initials)				
MC:	Column used to describe moisture condition of				
	samples and for the ground water level symbols				
N (BPF):	Standard penetration resistance (N-value) in blows per				
	foot (see notes)				
NQ:	NQ wireline core barrel				
PQ:	PQ wireline core barrel				
RDA:	Rotary drilling with compressed air and roller or drag bit.				
RDF:	Rotary drilling with drilling fluid and roller or drag bit				
REC:	In split-spoon (see notes), direct push and thin-walled				
	tube sampling, the recovered length (in inches) of				
	sample. In rock coring, the length of core recovered				
	(expressed as percent of the total core run). Zero				
	indicates no sample recovered.				
SS:	Standard split-spoon sampler (steel; 1.5" is inside				
	diameter; 2" outside diameter); unless indicated				
	otherwise				
SU	Spin-up sample from hollow stem auger				
TW:	Thin-walled tube; number indicates inside diameter in				
	inches				
WASH	Sample of material obtained by screening returning				

- WASH: Sample of material obtained by screening returning rotary drilling fluid or by which has collected inside the borehole after "falling" through drilling fluid
- WH: Sampler advanced by static weight of drill rod and hammer
- WR: Sampler advanced by static weight of drill rod
- 94mm: 94 millimeter wireline core barrel
- ▼: Water level directly measured in boring
- $\overline{\nabla}$: Estimated water level based solely on sample appearance

TEST SYMBOLS

Symbol	Definition
CONS:	One-dimensional consolidation test
DEN:	Dry density, pcf
DST:	Direct shear test
E:	Pressuremeter Modulus, tsf
HYD:	Hydrometer analysis
LL:	Liquid Limit, %
LP:	Pressuremeter Limit Pressure, tsf
OC:	Organic Content, %
PERM:	Coefficient of permeability (K) test; F - Field;
	L - Laboratory
PL:	Plastic Limit, %
q _p :	Pocket Penetrometer strength, tsf (approximate)
q _c :	Static cone bearing pressure, tsf
q _u :	Unconfined compressive strength, psf
R:	Electrical Resistivity, ohm-cms
RQD:	Rock Quality Designation of Rock Core, in percent
	(aggregate length of core pieces 4" or more in length
	as a percent of total core run)
SA:	Sieve analysis
TRX:	Triaxial compression test
VSR:	Vane shear strength, remolded (field), psf
VSU:	Vane shear strength, undisturbed (field), psf
WC:	Water content, as percent of dry weight
%-200:	Percent of material finer than #200 sieve

STANDARD PENETRATION TEST NOTES (Calibrated Hammer Weight)

The standard penetration test consists of driving a split-spoon sampler with a drop hammer (calibrated weight varies to provide N_{60} values) and counting the number of blows applied in each of three 6" increments of penetration. If the sampler is driven less than 18" (usually in highly resistant material), permitted in ASTM: D1586, the blows for each complete 6" increment and for each partial increment is on the boring log. For partial increments, the number of blows is shown to the nearest 0.1' below the slash.

The length of sample recovered, as shown on the "REC" column, may be greater than the distance indicated in the N column. The disparity is because the N-value is recorded below the initial 6" set (unless partial penetration defined in ASTM: D1586 is encountered) whereas the length of sample recovered is for the entire sampler drive (which may even extend more than 18").

UNIFIED SOIL CLASSIFICATION SYSTEM ASTM Designations: D 2487, D2488

AMERICAN ENGINEERING

			Since of the second sec				TESTING, INC.
Critorio fo	n Assisting Crown See	whole and Crown N	amaa IJaina I ah	anatany TaataA		Soil Classification	AD I I I I I I I I I I I I I I I I I I I
Criteria for Assigning Group Symbols and Grou		noois and Group N	Names Using Laboratory Tests ^A		Group Symbol	Group Name ^B	(75-mm) sieve.
Coarse-Grained Soils More	Gravels More than 50% coarse	Clean Gravels Less than 5%	$Cu \ge 4$ and $1 \le 3$	≤Cc≤3 ^E	GW	Well graded gravel ^F	^F ^B If field sample contained cobbles or boulders, or both, add "with cobbles or
than 50% fraction	fraction retained on No. 4 sieve	fines ^C	Cu<4 and/or	r 1>Cc>3 ^E	GP	Poorly graded grave	el ^F boulders, or both" to group name. ^C Gravels with 5 to 12% fines require dual
	on no. 4 sieve	Gravels with Fines more	Fines classif	fy as ML or MH	GM	Silty gravel ^{F.G.H}	symbols: GW-GM well-graded gravel with silt
		than 12% fines ^C	Fines classif	fy as CL or CH	GC	Clayey gravel ^{F.G.H}	GW-GC well-graded gravel with silt GP-GM poorly graded gravel with silt
	Sands 50% or more of coarse	Clean Sands Less than 5%	$Cu \ge 6$ and $1 \le 1$	$\leq Cc \leq 3^{E}$	SW	Well-graded sand ^I	GP-GC poorly graded gravel with sht DSands with 5 to 12% fines require dual
	fraction passes No. 4 sieve	fines ^D	Cu<6 and/or	r 1>Cc>3 ^E	SP	Poorly-graded sand	
		Sands with Fines more	Fines classif	fy as ML or MH	SM	Silty sand ^{G.H.I}	SW-SC well-graded sand with clay SP-SM poorly graded sand with silt
		than 12% fines ^D		fy as CL or CH	SC	Clayey sand ^{G.H.I}	SP-SC poorly graded sand with clay
Fine-Grained Soils 50% or	Silts and Clays Liquid limit less	inorganic	PI>7 and plo "A" line ^J	ots on or above	CL	Lean clay ^{K.L.M}	$(D_{30})^2$
more passes the No. 200	than 50		PI<4 or plot "A" line ^J	s below	ML	Silt ^{K.L.M}	$^{E}Cu = D_{60} / D_{10}, Cc = $
sieve		organic	Liquid limit	-oven dried <0.75	, OL	Organic clay ^{K.L.M.N}	FIf soil contains $\geq 15\%$ sand, add "with
(see Plasticity Chart below)			Liquid limit – not dried			Organic silt ^{K.L.M.O}	sand" to group name. GIf fines classify as CL-ML, use dual
Chart below)	Silts and Clays Liquid limit 50	inorganic	PI plots on o	or above "A" line	СН	Fat clay ^{K.L.M}	symbol GC-GM, or SC-SM. ^H If fines are organic, add "with organic
	or more		PI plots belo	ow "A" line	МН	Elastic silt ^{K.L.M}	fines" to group name. If soil contains \geq 15% gravel, add "with
		organic		-oven dried <0.75	, OH	Organic clay ^{K.L.M.P}	gravel" to group name. ^J If Atterberg limits plot is hatched area,
			Liquid limit	- not dried		Organic silt ^{K.L.M.Q}	soils is a CL-ML silty clay.
Highly organic				organic matter,		Peat ^R	^K If soil contains 15 to 29% plus No. 200 add "with sand" or "with gravel",
soil			in color, an	d organic in odo)ľ		whichever is predominant.
:	SIEVE ANALYSIS		.60		/		^L If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to
Screen Opening	(in.) Sieve Number	00		ation of fine-grained soils and fraction of coarse-grained so	<u>i</u> ils.		group name.
.100		. 0	Equation of "	A"-line PI = 4 to LL = 25.5.	JU INTE OH		^M If soil contains ≥30% plus No. 200, predominantly gravel, add "gravelly"
.80		. ²⁰	then PI = 0.	.73 (LL-20)	, unit OH	-H-LINE	to group name.
	Deo = 15mm	IAINE	Equation of Vertical at LL , then PI = 0.	= 16 to PI = 7.	/ [ch]/		^N Pl≥4 and plots on or above "A" line. ^O Pl<4 or plots below "A" line.
00. DEEKCENT		09. 04. 04. 04. 04. 04. 04. 04. 04. 04. 04	Image: Constraint of the second se				^P Pl plots on or above "A" line.
40 .40	D ₈₀ = 2.5mm	CEE 00.	20-		»		^Q Pl plots below "A" line. ^R Fiber Content description shown below.
.20		.80			r		
		$D_{10} = 0.075$ mm	10- .7	M.ZZZZ ML OR	OL		
	0 5 1:0 0:5 0:1	100	.0 0 .10 .1	16 20 ,30 ,40	.50 .60	70 80 90 100	
	E SIZE IN MILLIMETERS 200 $C_0 = \frac{(D_{30})^2}{D_{10} \times D_{00}} = \frac{2.5^2}{0.075 \times 15} =$		LIQUID LIMIT (LL)				
$D_{10} = \frac{1}{D_{10}} = \frac{1}{0.075} = \frac{1}{0.075}$					Plasticity Chart		
		IONAL TERMIN			ī	ENTIFICATION AND	
Term	<u>Grain Size</u> Particle S	lize	<u>Gravel Per</u> Term	<u>Percent</u>	<u>Consistenc</u> <u>Term</u>	<u>y of Plastic Soils</u> <u>N-Value, BPF</u>	Relative Density of Non-Plastic SoilsTermN-Value, BPF
Boulders	Over 1		Little Gravel	3% - 14%	Very Soft	less than 2	Very Loose 0 - 4
Cobbles Gravel	3" to 12 #4 sieve	-	Vith Gravel Travelly	15% - 29% 30% - 50%	Soft Firm	2 - 4 5 - 8	Loose 5 - 10 Medium Dense 11 - 30
Sand	#200 to #4	sieve	-		Stiff	9 - 15	Dense 31 - 50
Fines (silt & cl	ay) Pass #200	sieve			Very Stiff Hard	16 - 30 Greater than 30	Very Dense Greater than 50
Moisture/Frost Condition			Layering Notes			Description	Organic Description (if no lab tests)
D (Dry):	(MC Column) Absence of moisture	, dusty, dry to	aminational I	are loss than		Fiber Content	Soils are described as <i>organic</i> , if soil is not peat and is judged to have sufficient organic fines
M (Moist):	touch. Damp, although free		aminations: Lay ¹ /2"	thick of	Term	(Visual Estimate)	content to influence the Liquid Limit properties. <i>Slightly organic</i> used for borderline cases.
141 (1410151).	visible. Soil may sti	ll have a high		fering material	Eibria Deste	Greater than 670	Root Inclusions
W/ (W-+/	water content (over		or	color.	Fibric Peat: Hemic Peat:	Greater than 67% 33 – 67%	With roots: Judged to have sufficient quantity
W (Wet/ Waterbearing):	Free water visible in describe non-plastic			ckets or layers	Sapric Peat:	Less than 33%	of roots to influence the soil properties.
	Waterbearing usuall	y relates to		ater than ¹ /2" ck of differing			Trace roots: Small roots present, but not judged
F (Frozen):	sands and sand with Soil frozen	silt.		terial or color.			to be in sufficient quantity to significantly affect soil properties.

01CLS021 (07/08)

Soil frozen

F (Frozen):

significantly affect soil properties.

Appendix C

Environmental Assessment Worksheet (EAW)

MCES L32A Lift Station

Environmental Assessment Worksheet (EAW)

Prepared for the Metropolitan Council Environmental Services (MCES)

By Stantec Consulting Services, Inc.

February 24, 2021

Table of Contents

1.	Project Title
2.	Proposer1
3.	RGU1
4.	Reason for EAW Preparation1
5.	Project Location1
6.	Project Description
7.	Cover Types4
8.	Permits and Approvals Required5
9.	Land Use6
10.	Geologic Hazards and Soil Conditions8
11.	Water Resources10
12.	Solid Wastes, Hazardous Wastes, Storage Tanks18
13.	Fish, Wildlife, Plant Communities, and Sensitive Ecological Resources (rare features)21
14.	Historic Properties
15.	Visual
16.	Air
17.	Noise
18.	Transportation
19.	Cumulative Potential Effects

List of Appendices

Appendix A	Figures
Appendix B	Wetland Delineation Report

List of Figures (Appendix A)

- 5-1 Project Location
- 5-2 USGS Topo Map
- 5-3 EAW Boundary
- 6-1 Lift Station Site Plan
- 7-1 Existing Land Cover
- 9-1 Existing Land Use
- 9-2 2040 Planned Land Use
- 9-3 Floodplain Areas
- 9-4 MRCCA Area
- 9-5 Zoning Map
- 10-1 Soil Map
- 11-1 Well Locations
- 11-2 Site Topography
- 11-3 Approximate Location of Lift Station
- 11-4 Concept Site Development
- 13-1 EAW Site Biodiversity
- 14-1 SHPO Designated Historic Properties

List of Tables/Charts

Table 6-1: Proposed Acreage Assumptions for L32A Lift Station	3
Table 7-1: Existing Land Cover in the EAW Area	4
Table 8-1: Anticipated Permit Requirements	
Table 10-1: Soil Types	
Table 11-1: Impaired Waters Within One Mile of the Project Site	11
Table 11-2: DNR Public Waters Within One Mile of the Project Site	11

1. Project Title

MCES L32A Lift Station Environmental Assessment Worksheet (EAW)

2. Proposer

Proposer	Metropolitan Council Environmental Services (MCES)
Contact	Jeannine Clancy
Title	Assistant General Manager, Technical Services
Address	390 Robert St N
	St. Paul, MN 55101
Phone	651-602-1210
Email	Jeannine.Clancy@metc.state.mn.us

3. RGU

RGU:	Minnesota Pollution Control Agency (MPCA)
Contact:	Dan Card
Title	Supervisor, Environmental Review Unit
Address	520 Lafayette Road
	St. Paul, MN 55155
Phone	651-757-2261
Email	dan.card@state.mn.us

4. Reason for EAW Preparation: (check one)

Required:	Discretionary:
EIS Scoping	Citizen petition
X Mandatory EAW Minnesota Rules 4410.4300 Subp. 18B	□ RGU discretion
	Proposer initiated

5. Project Location

County: Anoka County

City: Fridley

PLS Location (¼, ¼, Section, Township, Range): Section 10, Township 30, Range 24 Watershed (81 major watershed scale): Mississippi River – Twin Cities Watershed GPS Coordinates: Approximately 45.094154,-93.2780001 Tax Parcel Number: 103024430021, 103024430001, 103024430002, 103024420003

At a minimum attach each of the following to the EAW:

- County map showing the general location of the project.
- U.S. Geological Survey 7.5 minute, 1:24,000 scale map indicating project boundaries (photocopy acceptable); and
- Site plans showing all significant project and natural features. Pre-construction site plan and post-construction site plan.

All required maps and additional full-page maps displaying relevant information are found in Appendix A. The County map, USGS Map and EAW Boundary map are shown in Figure 5-1, 5-2 and 5-3.

6. Project Description

- a. Provide a project summary of 50 words or less to be published in the EQB Monitor. Metropolitan Council Environmental Services (MCES) is proposing to construct a new sanitary sewer lift station (L32A) at 6900 East River Road in the City of Fridley. The lift station is proposed to have a capacity of 67 million gallons per day (mgd) and will involve construction of a single-story control building.
- b. Give a complete description of the proposed project and related new construction, including infrastructure needs. If the project is an expansion include a description of the existing facility. Emphasize: 1) construction, operation methods and features that will cause physical manipulation of the environment or will produce wastes, 2) modifications to existing equipment or industrial processes, 3) significant demolition, removal or remodeling of existing structures, and 4) timing and duration of construction activities.

Metropolitan Council Environmental Services (MCES) is proposing to construct a new lift station L32A. MCES has purchased the former Girl Scout Camp Lockeslea site, located along the eastern banks of the Mississippi River in the City of Fridley, for the purpose of constructing and operating a sanitary sewer lift station. The facility will occupy approximately seven acres of the 22-acre site.

The new lift station in Fridley is to replace the aging facility in Brooklyn Park that is 50 years old and has a maximum capacity of 43 MGD and has reached the end of its useful life. Extensive rehabilitation to the existing lift station requires more space than what is available at the current site. Additionally, it lacks adequate storage to allow for response time during power outages which may lead to sewer backups. The new L32A is one part of MCES's multi-phase approach to preserve wastewater assets in the Fridley area and will provide additional capacity to accommodate future population growth in the area. Wastewater from this facility will be pumped to the Metropolitan Wastewater Treatment Plant in St. Paul.

The Camp Lockeslea site was purchased by MCES in March 2016 with the intent to serve as the site for the new lift station, located at 6900 East River Road. The Girl Scouts requested a lease termination as of October 1, 2020. The existing Brooklyn Park lift station site will continue to be used for an odor control facility and pipe access structures. Limited site work will be conducted at the existing Brooklyn Park lift station site to make the connection to the new lift station in Fridley.

Planning for L32A in Fridley began in 2019 with collecting site information and creating a concept plan for the lift station within the site. The design of the lift station and site will occur in 2021-2022 with construction beginning in 2022. The lift station is anticipated to be operational in 2026.

Figure 6-1 illustrates the proposed construction area and site plan for the L32A Lift Station.

c. Project Magnitude

Table 6-1:	Proposed	Acreaae	Assumptions	for L32A	Lift Station
		/.e.e.ge			

Total Project Acreage	7 acres
Linear project length	710 feet
Number and type of residential units	0
Commercial building area (in square feet)	0
Industrial building area (in square feet)	6,000 square feet ¹
Other uses – specify (in square feet)	-
Lift Station	6,000 square feet
Structure height(s)	One story

d. Explain the project purpose; if the project will be carried out by a governmental unit, explain the need for the project and identify its beneficiaries.

The new lift station in Fridley is to replace the aging facility in Brooklyn Park that is 50 years old and has reached the end of its useful life. Extensive rehabilitation to the existing lift station requires more space than what is available at the current site. Additionally, it lacks adequate storage to allow for response time during power outages which may lead to sewer backups. The new facility will preserve wastewater system assets and will accommodate growth within local communities. The new L32A is one part of MCES's multiphase approach to preserve wastewater assets in the Fridley area and will provide additional capacity to accommodate future population growth in the area. Wastewater from this facility will be pumped to the Metropolitan Wastewater Treatment Plant in St. Paul.

e. Are future stages of this development including development on any other property planned or likely to happen? If yes, briefly describe future stages, relationship to present project, timeline and plans for environmental review.

No. Future stages of the Lift Station L32A improvements are not currently planned. However, this project is one part of a larger asset renewal plan and there is additional work in the area going through the design phase. These future projects would be subject to their own environmental review at the time of their proposal.

f. Is this project a subsequent stage of an earlier project? If yes, briefly describe the past development, timeline and any past environmental review.

No

¹ A single-story control building will be constructed over the lift station. Square-footage is listed twice, but will only occupy 6,000 square feet of land in total.

7. Cover Types: Estimate the acreage of the site with each of the following cover types before and after development.

Land cover in the EAW area was determined based on the Minnesota Land Cover Classification System (MLCCS) data from 2008. The MLCCS is a natural resource inventory classification system used to standardize land cover identification and interpretation in Minnesota. MLCCS data for the EAW area was developed by the Anoka Conservation District (ACD) in coordination with the Minnesota DNR and other local partners. The system categorizes open and developed areas in terms of land cover, rather than land use, using a 16-class land cover classification scheme. This EAW categorizes land cover boundaries based upon the National Land Cover Database (NLCD). For example, land cover identified as "wetlands" is calculated based on vegetation viewed from a high altitude and from a 30-meter resolution. It is not delineated wetlands but instead vegetative cover inside a grid that fits into categories of "woody wetland" and "emergent herbaceous wetlands."

As illustrated in Table 7-1 and Figure 7-1, cover types vary minimally within the EAW area, with most land currently covered by forests. There is a segment of land leading from East River Road and ballooning into the site that is classified as artificial surfaces and associated areas, representing the functional areas of Camp Lockeslea. Another portion of land cover running along the site's northern boundary is classified as planted or cultivated vegetation. Current land cover is illustrated in Figure 7-1.

MLCCS Land Cover	Before	After	MLCCS Land Cover	Before	After
Wetlands	3.42	3.4	Lawn/ landscaping	2.1	2.1
Deep water/streams	0	0	Impervious surface	3.7	4.2
Wooded/forest	12.9	12.4	Stormwater Pond	0	0
Brush/Grassland	0	0	Other (describe)	0	0
Cropland	0	0			
			TOTAL	22.1	22.1

Table 7-1: Existing Land Cover in the EAW Area

² There is a delineated wetland on site, which is not designated in the MLCCS Land Cover Data. The wetland is included in table 7.1 above and is discussed in Question 11 iv.a. surface waters. A wetland delineation report is also included as Appendix B.

8. Permits and Approvals Required

List all known local, state and federal permits, approvals, certifications and financial assistance for the project. Include modifications of any existing permits, governmental review of plans and all direct and indirect forms of public financial assistance including bond guarantees, Tax Increment Financing and infrastructure. All of these final decisions are prohibited until all appropriate environmental review has been completed. See Minnesota Rules, Chapter 4410.3100.

Table 8-1 lists all permits that are anticipated to be required or may be required depending on the specific project type, for development in the EAW area.

Unit of Government	Type of Approval or Permit	Status	
	Site Plan Review	Not submitted	
	Conditional Use Permit	Not submitted	
	Grading Permit	Not submitted	
	Sewer Connection Permit	Not submitted	
	Water Connection Permit	Not submitted	
City of Fridley	Building Permits	Not submitted	
	MN Local/State/Federal Application for	Not submitted	
	Water/Wetland Projects and the Wetland		
	Replacement Plan Supplement, if needed		
	Floodplain Permit, if needed	Not submitted	
	Critical Area District Site Plan Approval	Not submitted	
Rice Creek Watershed District	Project Review Approval	Not submitted	
	County Roadway Access permits	Not submitted	
Anaka County	Sanitary Sewer Plan Approval	Not submitted	
Anoka County	Small Generator Hazardous Waste Permits	Not submitted	
	Utility Permit	Not submitted	
	Water Main Plan Review	Not submitted	
Minnesota Department of Health	Notification or Permit for Well Construction or Alteration	Not submitted	
	Notification or Permit for Well Sealing	Not submitted	
Minnesota Department	Public Waters Work Permit	Not submitted	
Minnesota Department of Natural Resources	Temporary Water Appropriation Permit for construction dewatering	Not submitted	
	Air Emission Facility Permit	Not submitted	
Minnesseter Dellution	401 Water Quality Certification	Not submitted	
Minnesota Pollution	NPDES MS4 Stormwater Discharge Permit	Not submitted	
Control Agency	NPDES Stormwater Permit	Not submitted	
	Sanitary Sewer Extension Permit	Not submitted	
Metropolitan Council	Wastewater System Nonobjection Decision MCES connection permit	Not submitted	
	Comprehensive Plan Amendment	Pending	

Table 8-1: Anticipated Permit Requirements

9. Land Use

a. Describe:

i. Existing land use of the site as well as areas adjacent to and near the site, including parks, trails, prime or unique farmlands.

Existing land use within the project site is Institutional. As stated in previous questions, the prior use of the property was Camp Lockeslea Girl Scout Camp. There is existing utility infrastructure on the south side of the project site, located within a 60-foot utility easement.

The surrounding land use is predominately single-family residential. The project site is bordered by single-family homes to the north and south. The Mississippi River borders the project site to the west, and East River Road forms the eastern boundary of the site.

There are no parks or trails located within or adjacent to the site. The area surrounding the site is developed as single-family residential and does not have prime or unique farmlands.

Existing land use is illustrated in Figure 9-1.

ii. Plans. Describe planned land use as identified in comprehensive plan (if available) and any other applicable plan for land use, water, or resources management by a local, regional, state, or federal agency.

The City of Fridley is currently in the final steps of updating their 2040 Comprehensive Plan which addresses planned future land uses and policies for the entire city. Land within the project site is guided Utility on the southern 1/3 of the site, and Park and Recreation on the northern 2/3 of the site. The northern portion of the site includes a wetland, which is further described in Question 11, Water Resources. The planned land uses surrounding and adjacent to the site are single-family residential.

The planned land use for the site is illustrated in Figure 9-2.

iii. Zoning, including special districts or overlays such as shoreland, floodplain, wild and scenic rivers, critical area, agricultural preserves, etc.

Land within the project site is zoned Public Facilities District (P). The adjacent land is zoned One Family Dwelling District (R-1). Permitted uses in the Public Facilities District include public buildings and uses, as well as public drains, sewers, water lines, water storage, treatment and pumping facilities and other public utility service facilities. Due to the site's proximity to the Mississippi River, there are also several special overlay districts that apply to the site including the Floodplain Management Overlay District, Critical Area Overlay District, Wetland Overlay District and Shoreland Overlay District. The base zoning map for the site is illustrated in Figure 9-5.

The City of Fridley has established three floodplain management overlay districts in the City. These districts include:

1. Floodway District: areas designated as a floodway by FEMA.

- 2. Flood Fringe District: areas designated as a 100-year floodplain (Zone AE) by FEMA that are adjacent to a floodway, but outside a floodway.
- 3. General Floodplain District: areas designated as a 100-year floodplain (Zone A or Zone AE) by FEMA without a floodplain.

The western portion of the project site adjacent to the River is designated as a floodway by FEMA, and a small portion of the area is designated Flood Fringe, or within the 100-year floodplain (Zone AE). Within these areas, special regulations are in place to protect from flooding. Permitted uses include agricultural uses, industrial and commercial loading areas, parking areas, private and public park, utilities, and recreational areas (excluding buildings), and lawns or gardens. Generally, any uses in these areas will have a low flood damage potential and will not obstruct flood flows or increase flood elevations. More information about the floodplain regulations can be found in the City's Zoning Code §205.27 O-1. The floodplain is shown in Figure 9-3.

The Mississippi River Corridor Critical Area (MRCCA) and corresponding Critical Area Overlay District are also applicable within the EAW boundary. The project site has both the CA-RN (River Neighborhood District) and CA-SR (Separated from River District) management districts. The CA-RN district is characterized by residential neighborhoods that are riparian, readily visible from the river, or that abut riparian parkland. The CA-SR district is characterized by its physical and visual distance from the Mississippi River and includes land separated from the River by distance, topography, development, or a transportation corridor. More information about the Critical Area Overlay district can be found in the City's Zoning Code §205.28 O-2. The zoning code requires that a site plan be submitted per requirements in §205.28 (7) prior to approval of any building or zoning permit. The MRCCA and Critical Area Overlay is illustrated in Figure 9-4.

The Shoreland Overlay District applies to the project area due to the proximity to the Mississippi River. The shoreland district is overlaid upon zoning districts, and the regulations and requirements are applied in addition to those established by the base zoning district (P - Public Facilities). In the shoreland overlay district, certain setbacks apply for structures within the shore and bluff areas. Per Fridley City Code, structures must be setback 100 feet from the ordinary high water level of the river, and 40 feet from the top of the bluff. A permit will be required from the City for all work within the shoreland overlay district and will be sought as part of the permitting process. The shoreland overlay district is described further in the City of Fridley Zoning Code §205.32 O-7, and shown in Figure 9-3

Finally, the EAW area also contains a wetland outside of the 7-acre project site and is within the wetland overlay district. A wetland delineation has been conducted as part of this project, which is discussed in Question 11 and the full delineation report can be seen in Appendix B.

b. Discuss the project's compatibility with nearby land uses, zoning, and plans listed in Item 9a above, concentrating on implications for environmental effects.

The construction of a lift station is consistent with existing land use, planned future land use and base zoning of the EAW area. The City previously considered development of residential on the northern half of the subject property. The proposed 2040 Comprehensive Plan guides this area as park, which is a more compatible use to the proposed lift station. The northern portion of the EAW site is guided as park on the future land use map, as the lift station development is anticipated to be confined to the southern 1/3 of the site, leaving the northern 2/3 of the site for park development.

The EAW project site is bordered to the north and south by land zoned, guided and developed as single-family residential. There may be potential impacts between the proposed project and the single-family land uses. The project should minimize the impacts on single-family homes through odor mitigation and by actively addressing any other identified impacts to single-family homes.

Several zoning overlays also apply to portions or the entirety of the EAW area, as discussed above. The entire site is within the Critical Area Overlay District (MRCCA) and portions of the site are designated CA-RN and CA-SR. Standards defined in the City's zoning code §205.28 O-2 regarding building, views, setbacks and other requirements specific to this district will need to be met by the project. Specifically, new structures must be placed not less than 40 feet from the top of the bluff line, and not less than 100 feet from the Mississippi river ordinary high water line. An exception to this is approved river crossings of essential services and distribution services. A portion of the EAW site is also in the 100-year floodplain (Zone AE). A coffer dam may need to be installed in the river during construction to access the existing forcemain. This work will be regulated as part of the permitting process for work within the floodplain/shoreland district.

c. Identify measures incorporated into the proposed project to mitigate any potential incompatibility as discussed in Item 9b above.

The proposed project will include two measures aimed at mitigating any potential incompatibility with the surrounding uses. Given the nature of the project, the proposed lift station will involve odor control methods to mitigate the effect of the project on neighboring properties. The City has also guided the land north of the proposed project as park to provide a buffer between the residential area to the north and the proposed lift station project. This land was initially guided for residential development and has since been guided as park to be more compatible with the proposed lift station.

10. Geologic Hazards and Soil Conditions

a. Geology - Describe the geology underlying the project area and identify and map any susceptible geologic features such as sinkholes, shallow limestone formations, unconfined/shallow aquifers, or karst conditions. Discuss any limitations of these features for the project and any effects the project could have on these features. Identify any project designs or mitigation measures to address effects to geologic features.

The surficial geology across the project site is comprised of Richfield terrace sands and gravelly sands, deposited during the Wisconsin episode of glaciation. This material is typically found 50 to 70 feet above the modern floodplain, at an elevation of 870 feet in the Fridley area. This material is underlain by New Ulm Formation deposits of mixed till, comprised of loam to sandy-loam textured sediments along with an unsorted mixture of pebbles, cobbles, and boulders.

Depth to bedrock is estimated to be 150-200 feet over most of the project site, with the depth being 100-150 feet along the river's edge. The uppermost bedrock unit, as mapped by the Anoka County Geologic Atlas, is the Jordan sandstone. Small sub-croppings of Prairie du Chien dolomite are mapped to the north and south of the project site, but not at the site itself.

Karst conditions most generally occur where carbonate bedrock (limestone, dolomite) is present within 50 feet of the land surface. Since those conditions do not appear to exist at the project site, the likelihood of karst conditions is low.

b. Soils and topography - Describe the soils on the site, giving NRCS (SCS) classifications and descriptions, including limitations of soils. Describe topography, any special site conditions relating to erosion potential, soil stability or other soils limitations, such as steep slopes, highly permeable soils. Provide estimated volume and acreage of soil excavation and/or grading. Discuss impacts from project activities (distinguish between construction and operational activities) related to soils and topography. Identify measures during and after project construction to address soil limitations including stabilization, soil corrections or other measures. Erosion/sedimentation control related to stormwater runoff should be addressed in response to Item 11.b.ii.

The following soil types were identified within project site, using the NRCS Web Soil Survey online application provided by the US Department of Agriculture. Figure 10-1 shows the mapped soil types present.

Map Unit Symbol	Map Unit Name	Hydrologic Soil Group	Aquifer Sensitivity	Drainage	Percent of Area
D64B	Urban land – Hubbard complex, Mississippi River Valley, 0-8% slopes	A	Not rated	Excessively drained	4.4%
Ма	Markey muck, occasionally ponded, 0-1% slopes	A/D	Sensitive	Very poorly drained	30.6%
UhdD	Urban land – Hayden complex, 15-25% slopes	В	Not rated	Well Drained	0.5%
UzB	Urban land – Zimmerman complex, 0-8% slopes	A	Not rated	Excessively drained	63.4%
W	Water				1.2%

Table 10-1: Soil Types

Topography in the project site is variable, with a slight to moderate slope over the majority of the site, except along the western edge of the site bordering the Mississippi River, where steeper slopes are present. A flat area is also present where the wetland has been delineated. Drainage is towards the Mississippi River to the west. Soils are generally highly permeable and well-drained, except for the Markey Muck, which is present under the delineated wetland.

Soil hydrologic groups are mostly Group A, which have a high infiltration rate and low runoff potential. These soils are typically deep, well-drained sandy or gravelly soils with a high rate of water transmission. Approximately 68% of the project site is overlain by Group A soils. Group B soils have a moderate infiltration rate and are somewhat finer to moderately coarse textures. Less than 1% of the project site is overlain by Group B soils. Group A/D soils have a high infiltration rate when they are drained but have a very slow infiltration rate when saturated. Approximately 31% of the project site is overlain by Group A/D soils. Since the A/D soils are represented by the Markey Muck, which is present under the delineated wetland, it should be assumed that the soils are generally saturated and will have a slow infiltration rate.

While most of the soils types present do not have an identified sensitivity rating for the underlying aquifer, the high rates of infiltration present with Group A soils tend to have a higher sensitivity. Therefore, it should be assumed the underlying aquifer is sensitive to infiltration across much of the project site.

Soil erosion hazards were not well defined for the soil types, except for the Markey Muck which has a low erosion potential. For the other soil types, erosion potential should be assumed to be higher in areas where topography is steeper, particularly along the edge of the Mississippi River valley.

The volume of excavation will vary from 36,000 cubic yards to 63,000 cubic yards, depending on the final design chosen for the lift station. Approximately 75% of the excavated soils will be exported off site for disposal. The remaining soil will be stockpiled on site and used to fill in excavated areas around the completed lift station. To reduce soil erosion and runoff, silt fence will be employed around the excavated areas and the stockpiled soil. The stockpile will also be seeded and/or covered as necessary to prevent runoff of loose soil.

11. Water Resources

- a. Describe surface water and groundwater features on or near the site in a.i. and a.ii. below.
 - i. Surface water lakes, streams, wetlands, intermittent channels, and county/judicial ditches. Include any special designations such as public waters, trout stream/lake, wildlife lakes, migratory waterfowl feeding/resting lake, and outstanding resource value water. Include water quality impairments or special designations listed on the current MPCA 303d Impaired Waters List that are within 1 mile of the project. Include DNR Public Waters Inventory number(s), if any.

Surface waters within one mile of the project site include Locke Lake, the Mississippi River, Rice Creek, and multiple wetlands of various designations. Tables 11-1 and 11-2 below list impaired waters from the MPCA's Impaired Waters List and public waters from the DNR's Public Waters Inventory (PWI) List. According to the Minnesota Wild and Scenic Rivers System, the Upper Mississippi River is classified as "recreational" in the section running along the site.

Impaired Water	Distance to Project Boundary	Impairment
Stream from Long Lake to Locke Lake	0.5 miles from Eastern site border	Benthic Macroinvertebrates Bioassessments, Fish Bioassessments
Silver Creek from Locke Lake to the Mississippi River Mississippi River	0.25 miles from Southern site border 0.05 miles from Western	Benthic Macroinvertebrates Bioassessments, Dissolved Oxygen, Fish Bioassessments PCBs in Fish Tissue, Nutrients,
Between Crow River and Upper St. Anthony Falls	site border	Fecal Coliform
County Ditch Number Seventeen	0.98 miles from Northern site border	Benthic Macroinvertebrates Bioassessment, Escherichia coli (E. coli)

Table 11-1: Impaired Waters Within One Mile of the Project Site

Table 11-2: DNR Public	Waters Within	One Mile c	of the Project Site
Table 11-2. Divk Fublic		One Mile C	ine riojeci sile

Name	DNR Public Waters Inventory Number	Distance to Project Boundary
Locke Lake	02007700	0.17 miles from Southern site border

Within a one-mile radius of the site, there are over 150 acres of wetlands, including 3.37 acres on the project site itself. More wetland delineation information is detailed in Section *iv*, a below.

ii. Groundwater – aquifers, springs, seeps. Include: 1) depth to groundwater; 2) if project is within a MDH wellhead protection area; 3) identification of any onsite and/or nearby wells, including unique numbers and well logs if available. If there are no wells known on site or nearby, explain the methodology used to determine this.

The water table aquifer in the project site is located within the Prairie du Chien dolomite bedrock. No springs or seeps were identified on the property.

1. Depth to groundwater: Groundwater at the project site ranges between 0 feet and 50 feet in depth, based on nearby well data and soil borings. Groundwater is expected to be at or near the surface in the vicinity of the delineated wetland. Soil

borings completed at the proposed site of the lift station construction show two different depths to groundwater. Some borings show what appears to be a perched water table at approximately 7-9 feet below the ground surface. Depth to water in the sand-and-gravel aquifer appears to be 30-50 feet, reflecting the water elevation of the Mississippi River, which the aquifer is hydraulically connected to. Based on the estimated excavation depths, it is likely that dewatering will be required to complete the project construction.

2. MDH wellhead protection area: The entire project site falls within the wellhead protection area for the City of Brooklyn Center. This wellhead protection area is considered to be "vulnerable" to contamination from spills occurring at or near the land surface. Vulnerability is generally based on the lack of low-permeability layers existing between the land surface and the aquifer. Brooklyn Center's wells utilize the Jordan aquifer, which is located approximately 150-200 feet below the land surface at the project site.

No wells were identified at the project site, following a search of the County Well Index database. However, this does not rule out the possibility that wells may exist on the project site, as the database often does not include older wells that pre-date the Minnesota Well Code. Most of the properties surrounding the project site are connected to municipal water, so it is believed that very few private wells exist in the surrounding neighborhood. Well locations within ½ mile of the site are shown in Figure 11-1.

- b. Describe effects from project activities on water resources and measures to minimize or mitigate the effects in Item b.i. through Item b.iv. below.
 - i. Wastewater For each of the following, describe the sources, quantities and composition of all sanitary, municipal/domestic and industrial wastewater produced or treated at the site.
 - 1. If the wastewater discharge is to a publicly owned treatment facility, identify any pretreatment measures and the ability of the facility to handle the added water and waste loadings, including any effects on, or required expansion of, municipal wastewater infrastructure.
 - 2. If the wastewater discharge is to a subsurface sewage treatment systems (SSTS), describe the system used, the design flow, and suitability of site conditions for such a system.
 - 3. If the wastewater discharge is to surface water, identify the wastewater treatment methods and identify discharge points and proposed effluent limitations to mitigate impacts. Discuss any effects to surface or groundwater from wastewater discharges.

The Metropolitan Council Environmental Services (MCES) Lift Station L32A proposed to be built at Camp Lockeslea in Fridley is intended to provide additional pumping capacity for the MCES wastewater system, moving 67 million gallons per day. Wastewater will flow by gravity through the existing forcemains which will be converted to gravity siphon pipes allowing flow to be diverted by gravity to the new lift station on the east side of the river at Camp Lockeslea. The water stored at this lift station is ultimately treated at the MCES Metropolitan Wastewater Treatment Plant and discharged to the Mississippi River. This plant is located at 2400 Childs Rd., St Paul, MN 55106, about 16 miles from the site. Expanding the capacity of wastewater lifting is necessary in this area because the existing lift station is reaching the end of its useful life and storage and pumping capacity need to be increased to better mitigate power outages and future population growth. Adding a new lift station is proposed rather than rehabilitating the existing site because the Brooklyn Park site lacks adequate space for the desired capacity.

Wastewater discharge from Lift Station L32A will not be discharged to surface water or to a subsurface sewage treatment system. Instead, it will flow to the publicly owned treatment facility, MCES Metropolitan Wastewater Treatment Plant (Childs Road, St. Paul). Wastewater will flow directly into the wet-well without pre-treatment. The proposed lift station will contribute minimal wastewater discharge. The EPA estimated wastewater discharges for residential users to be 300 gallons per unit per day, and discharges for parks to be 50 gallons per acre per day, which at seven acres, would be 350 gallons per day. Projected discharge from the lift station property will likely be less than 350 gallons per day. The discharge should not significantly impact the quantity of water flowing into the MCES Metropolitan Wastewater Treatment Plant, which is designed to treat 251 million gallons per day.

Wastewater discharges from this site will be typical domestic wastewater discharges. There is no industrial wastewater produced on site. There is no required expansion of municipal wastewater infrastructure to accommodate the wastewater discharge of this project.

ii. Stormwater - Describe the quantity and quality of stormwater runoff at the site prior to and post construction. Include the routes and receiving water bodies for runoff from the site (major downstream water bodies as well as the immediate receiving waters). Discuss any environmental effects from stormwater discharges. Describe stormwater pollution prevention plans including temporary and permanent runoff controls and potential BMP site locations to manage or treat stormwater runoff. Identify specific erosion control, sedimentation control or stabilization measures to address soil limitations during and after project construction.

Regulatory Context: Under proposed conditions, a stormwater management system will be implemented to address local, state, and federal requirements, as discussed below. This system will generally consist of Best Management Practices (BMPs) that provide rate control, volume control, and/or water quality treatment. A variety of permanent and temporary stormwater management features may be used, including but not limited to channels, vegetative restoration, silt fencing, and detention ponds, depending on the features of the site.

Among others, the proposed project must consider regulations including the NPDES Construction General Permit, MPCA regulations, Rice Creek Watershed District (RCWD) standards, and relevant municipal regulations (City of Fridley). The City of Fridley's stormwater system is a small municipal separate storm sewer system (MS4) permitted

through the Minnesota Pollution Control Agency, which must comply with the MS4 general permit for stormwater management and discharge control. A stormwater Pollution Prevention Plan (SWPPP) outlines the activities that a city undertakes as part of this Permit, specific to its respective watershed district. Common stormwater discharge concerns within the Rice Creek Watershed Management Plan include increased nutrient flow, accelerated sedimentation, and the health of wetlands. Water quality treatment on-site will be designed to meet Rice Creek Watershed District Standards, including maximum TSS removal, at least 85% of reconstructed impervious surface treated for phosphorous, and a detention pond depth of 1.1 inches times the area of impervious surface. Further information on detention volumes and preliminary sizing of detention facility for this site is described below in the Best Management Practices section.

Site Context: In monitoring and estimating the flow of stormwater, there are six main topographic highs on the west and east portion of the site, indicated in the topographic map found in Figure 11-2. Starting with the two easternmost highpoints, most of the water will likely flow down the steep grade indicated in orange, leading directly into the onsite wetland. A small portion of the eastern flow will go towards East River Road, which will be conveyed by storm sewer. Water coming from the other four highpoints, located in the western portion of the site, will largely flow west towards the Mississippi River, with a small portion also flowing into the on-site wetland, which exists as a low point. Overall, most of the water flowing through the site will drain to the Mississippi River, with a small portion draining into the on-site wetland, and an even smaller portion draining towards East River Road.

Addition of impervious surfaces will be minimal on the site, as most of the site's natural features will be preserved. New impervious surfaces will include the lifting station, a small parking lot, a picnic area, a short turnaround, and a footpath. Any increase in impervious surface area on site (i.e. the addition of a road) may potentially increase runoff rates and volumes, so stormwater BMPs must be considered. The largest potential source of pollution from the site would be the new parking lot and turnaround leading to the lift station, which could include oil, exhaust, and trash. However, this has limited access and will not be heavily used daily, so pollution concerns are relatively small.

Figures 11-3 and 11-4 show the approximate location of the lift station, as well as a concept development of the site described above.

Best Management Practices: Best Management Practices implemented on the site must address both permanent and temporary runoff controls. Permanent BMPs to address erosion and pollution mitigation may include a detention pond, bioretention pond, or a similar structure, following the guidelines provided by the Rice Creek Watershed District. The Rice Creek Watershed District's water quality treatment standard is determined by the new or reconstructed impervious acreage on the site. The standard is 1.1 inches of water retained for each acre of new or reconstructed impervious surface on site. Based on preliminary estimates, the site has roughly 2.5 acres of impervious surface which in order to treat according to Rice Creek standards, would require a detention facility of roughly 400 square feet to treat all of the impervious surfaces on site. Minimizing the damage and removal of natural trees and vegetation on the plot is the most important sedimentation control and stabilization measure for the project, as most of the plot will be kept in its natural state to buffer the effects of development. Channels and ditches, especially along the constructed road, can be used if needed.

Temporary erosion controls will also be used for the period during and immediately after construction. These temporary BMPs include erosion control blankets and silt fences, which help prevent large-scale sediment removal during the project process itself and would likely be built on the steep slope leading into the Mississippi River on the west side of the site. This is where runoff velocity is expected to be the highest.

iii. Water appropriation - Describe if the project proposes to appropriate surface or groundwater (including dewatering). Describe the source, quantity, duration, use and purpose of the water use and if a DNR water appropriation permit is required. Describe any well abandonment. If connecting to an existing municipal water supply, identify the wells to be used as a water source and any effects on, or required expansion of, municipal water infrastructure. Discuss environmental effects from water appropriation, including an assessment of the water resources available for appropriation. Identify any measures to avoid, minimize, or mitigate environmental effects from the water appropriation.

During construction activities, it is anticipated that dewatering to an elevation of 780 feet will be required. A series of temporary dewatering wells will likely need to be constructed in a circular pattern around the construction site. These temporary wells would likely be 100 feet in depth and spaced every 50-100 feet around the project site.

Any dewatering activity that exceeds 10,000 gallons per day or 1 million gallons per year requires a DNR Water Appropriation permit. A continuous dewatering rate of 7gpm exceeds this threshold, so it is anticipated that this permit will be required, as the actual pumping rate is expected to be much higher. Two private domestic water supply wells are located within 0.5 miles of the proposed site of dewatering on the east side of the Mississippi River. The unique numbers of these wells are 206655 and 223735. Both of these wells are completed in the deeper bedrock aquifers and are not anticipated to be negatively affected by the dewatering activities, as the dewatering wells are not expected to reach the bedrock nor will they draw groundwater below the top of the bedrock. A number of private domestic wells are located on the west side of the Mississippi River near the project site. The river acts as a major hydrogeologic boundary for the unconsolidated aquifer, however, so dewatering activities at the project site is unlikely to have any measurable impacts to wells west of the river.

Following completion of dewatering activities, the temporary dewatering wells will need to be sealed with grout by a licensed well contractor. This is required by the Well Code to ensure the wells do not become a potential pathway for contaminants to enter the aquifer.

The completed facility will have a water connection with the City of Fridley capable of delivering an estimated 200gpm of water to the facility for washing and maintenance. This water would only be used periodically and would not represent a significant increase in annual water pumped by the City's wells. The current City of Fridley water supply

system has sufficient capacity to supply this need without any additional infrastructure or increases in the annual water appropriation permit.

iv. Surface Waters

a) Wetlands - Describe any anticipated physical effects or alterations to wetland features such as draining, filling, permanent inundation, dredging and vegetative removal. Discuss direct and indirect environmental effects from physical modification of wetlands, including the anticipated effects that any proposed wetland alterations may have to the host watershed. Identify measures to avoid (e.g., available alternatives that were considered), minimize, or mitigate environmental effects to wetlands. Discuss whether any required compensatory wetland mitigation for unavoidable wetland impacts will occur in the same minor or major watershed, and identify those probable locations.

A field survey was completed October 2018 to locate and verify the presence of wetlands within the of the Project area using the Routine On-Site Determination Method defined in the USACE Wetland Delineation Manual (USACE, 1987), subsequent guidance documents (USACE, 1991 and 1992), and the Midwest Regional Supplement (USACE, 2010). A copy of the wetland delineation report is included in Appendix B. The wetland delineation report identified two wetlands within the property, totaling about 3.37 acres of site area. The largest wetland area, located in the center of the property, was determined to be a shrub-scrub, broad-level deciduous, seasonally saturated (PSS1B) type wetland. On the west central portion of the property, a smaller wetland area was identified as an isolated, depressional, fresh meadow (PEMB) type wetland.

Within one mile of the site, over 150 acres of wetland delineated areas were identified using the National Wetlands Inventory database. This largely consists of freshwater and forested shrub wetland, as well as freshwater emergent wetland.

Non-isolated wetlands and most waterways are considered Waters of the United States (WOTUS); therefore, they are subject to regulation by the U.S. Army Corps of Engineers (USACE) under the Clean Water Act (CWA) and the jurisdictional regulatory authority lies with the USACE. The MNDNR has regulatory authority over certain wetlands, navigable waters, and adjacent lands under Statute 103G and Rule 6115.0250. All wetlands are protected under the Wetland Conservation Act Rules Chapter 8420 and administered by a local government unit (LGU). An LGU can be a city, county, watershed district or soil and water conservation district depending on project location.

The project will likely not result in any direct temporary or operational impact, as the Lift Station is located outside of the designated wetlands area, towards the south of the site. The parking lot, picnic area, and footpath on the site intentionally avoid the wetland area as to minimize wetland disturbance. However, due to the project location being so close to wetland areas, indirect impacts are possible.

During construction, all reasonable measures must be taken to prevent mixing of topsoil and subsoil in wetland delineated areas during grubbing and trenching. Significant dewatering may be needed to construct the piping and lift station. Permanent erosion controls may be installed in adjacent upland areas during construction and restoration and may include slope breakers, interceptor diversion devices, and/or vegetative cover to minimize long-term sedimentation into the wetlands. Energy dissipation devices may be installed at the down-slope end of surface water diversion devices to prevent erosion off the site into wetlands. After the completion of construction, wetland areas will generally be allowed to revegetate naturally. Emergent wetlands will revert to pre-existing conditions within one to two growing seasons following construction and should be monitored for a minimum of three years after the completion of construction to ensure successful revegetation of the project area.

The Rice Creek Watershed District (RCWD) recognizes the importance of healthy wetlands. In its 2020 Watershed Management Plan, the RCWD lists Water Quality Goal 3 to manage wetlands in a manner which improves diversity and ecological integrity on a District-wide basis, consistent with the Wetland Conservation Act and augmenting Comprehensive Wetland Protection and Management Plans (CWPMP) and local opportunities for preservation, enhancement, and restoration, while balancing multiple resource issues.

b) Other surface waters- Describe any anticipated physical effects or alterations to surface water features (lakes, streams, ponds, intermittent channels, county/judicial ditches) such as draining, filling, permanent inundation, dredging, diking, stream diversion, impoundment, aquatic plant removal and riparian alteration. Discuss direct and indirect environmental effects from physical modification of water features. Identify measures to avoid, minimize, or mitigate environmental effects to surface water features, including inwater Best Management Practices that are proposed to avoid or minimize turbidity/sedimentation while physically altering the water features. Discuss how the project will change the number or type of watercraft on any water body, including current and projected watercraft usage.

Three ephemeral streams run within the project site itself, totaling 0.04 acres of site area as shown on Figure 3 above. Two of these act as surface water outlets from the on-site wetlands to the Mississippi River and are located on the eastern and western edges of the wetland area. The third ephemeral stream acts as a surface water outlet between a culvert on-site and the Mississippi River. These streams are all categorized as unnamed tributaries and should not be modified or physically altered during or after project construction.

The Mississippi River is the most vulnerable surface water area for this project. The River runs directly adjacent to the site, 0.05 miles west of the site boundary. The project will require that four 42" forcemain barrels on opposite sides of the river be connected by piping that runs through the riverbed. These connections will be made close to the riverbank, where the slope approaches or exceeds 12% grade. The use of sheeting or a cofferdam may be required to prevent erosion both during and after construction. Aquatic plant removal and riparian alteration should be kept to a minimum during construction to provide prevention of erosion.

Another physical effect of this project on the Mississippi River is the potential for increased runoff and sedimentation due to site grading and construction from the main area of the site into the river. This could potentially cause an increase in turbidity and nutrient concentrations. In addition to the use of detention ponds, trenches, or bioretention on the site, the use of erosion blankets or other projects that increase vegetation on the slope leading directly into the Mississippi River will also provide prevention of erosion.

Watercraft usage on the adjacent section of the Mississippi River will likely remain unchanged, as the proposed practices and alterations will do little to change the features of the river itself. No permanent or temporary impact to navigation or watercraft use will occur. An intensive study on current and projected watercraft usage was not conducted as part of this EAW, as impacts are expected to be minimal.

12. Solid Wastes, Hazardous Wastes, Storage Tanks

a. Pre-project site conditions – Describe existing contamination or potential environmental hazards on or in close proximity to the project site such as soil or ground water contamination, abandoned dumps, closed landfills, existing or abandoned storage tanks, and hazardous liquid or gas pipelines. Discuss any potential environmental effects from pre-project site conditions that would be caused or exacerbated by project construction and operation. Identify measures to avoid, minimize or mitigate adverse effects from existing contamination or potential environmental hazards. Include development of a Contingency Plan or Response Action Plan.

A Phase I Environmental Site Assessment (ESA) was conducted by Terracon and published on February 1, 2016. A summary of its Findings are as follows:

The report did not identify any known or suspect recognized environmental conditions (RECs), controlled recognized environmental conditions (CRECs), or historical recognized conditions (HRECs) in connection with the Site. The following findings are based on the results of our assessment:

• Since prior to 1937, the majority of the Site has consisted of undeveloped and agricultural land with a structure near the southern portion of the parcel. Additions to the building were constructed in the 1960s and 1980s. At the time of the reconnaissance, the Site was operated as a Girl Scout camp and consisted of a parcel totaling approximately 20 acres including two structures, a parking lot, and forested area. The majority of the Site consisted of wooded and grass-covered areas.

• At the time of the reconnaissance, the Site was developed with one approximately 8,000 square foot two story building with offices, meeting rooms, and dorms and one approximately 500 square foot building used as storage and a garage. The site is heated by a natural gas furnace and is connected to the City water and sanitary sewer system. It is not known if there was a heating source for the building prior to 1937 or a septic system prior to the current connections.

• A small amount of staining was observed on pavement within the garage. The staining was approximately two feet in diameter near the parking bay for the camp manager's vehicle and appeared to be a *de minimis* condition to the site.

• The government database records review identified one listing at the Site consisting of a construction stormwater permit issued during reconstruction of the sanitary sewer line on the south side of the property.

The following databases were also reviewed to evaluate on-site or nearby potential sources of contamination or environmental hazards: the Minnesota Pollution Control Agency (MPCA) "What's in My Neighborhood", the Minnesota Department of Agriculture (MDA) "County Spill Records" and the MPCA Petroleum Remediation Program (PRP) online maps.

A search of MPCA's What's in My Neighborhood database revealed the following sites within 500 feet, but not in the EAW area:

MCES Interceptor MSB 69U1 Forcemain – 6900 East River Road, Fridley:

- Inactive Construction Stormwater Permit (C00036455) issued July 27, 2013 and terminated September 11, 2015. Two Letters of Warning (LOW) issued March 18, 2014 and April 3, 2014.

CSAH1 Reconstruction - Latitude 45.0940126, Longitude -93.27508794

- Inactive Construction Stomwater Permit (C00005694) issued March 21, 1999 and terminated April 1, 2009.

Dennis Scheller – 7121 Riverview Terrace, Fridley:

- Inactive Underground Storage Tank (UST) Site (TS0018066). One 4000-gallon fuel oil UST installed in 1974 and has since been removed with no releases identified.

The MDA County Spill Records, MPCA PRP online maps, and the National Pipeline Mapping System (NPMS) did not reveal any sites in the EAW area or nearby potential sources of contamination or environmental hazards.

b. Project related generation/storage of solid wastes – Describe solid wastes generated/stored during construction and/or operation of the project. Indicate method of disposal. Discuss potential environmental effects from solid waste handling, storage and disposal. Identify measures to avoid, minimize or mitigate adverse effects from the generation/storage of solid waste including source reduction and recycling.

Construction

Construction wastes will be typical relative to the construction of utilities, roads, and commercial/industrial structures. Construction wastes will be primarily nonhazardous and can be managed as municipal solid waste (MSW) or construction/demolition debris. However, hazardous wastes in the form of used oils/lubricants, waste paints or other materials may be generated during construction. Potential environmental effects from solid waste handling, storage, and disposal may include windblown debris and spills or releases of non-hazardous materials. Through the development review process, the City will require that all MPCA and other applicable regulatory requirements be met regarding the management and disposal of construction-related wastes. Recycling and source reduction of non-recyclable wastes will be strongly encouraged, but this will be the responsibility of the developer and/or the construction contractor.

Post-Construction

It is estimated that the lift station will largely be unmanned. Technicians will perform daily checks on the equipment for approximately one hour per day, Monday through Friday. Typical residential or commercial non-hazardous wastes are not expected to be produced and there will not be a dedicated storage/trash or recycling area at the property. In the event limited post-construction waste is generated at the lift station, it would be primarily managed as MSW. Recycling for the lift station will be conducted in accordance with the 2016 Recycling Law (Minnesota Statutes Chapter 115A, Section 115A.151).

c. Project related use/storage of hazardous materials – Describe chemicals/hazardous materials used/stored during construction and/or operation of the project including

method of storage. Indicate the number, location and size of any above or below ground tanks to store petroleum or other materials. Discuss potential environmental effects from accidental spill or release of hazardous materials. Identify measures to avoid, minimize or mitigate adverse effects from the use/storage of chemicals/hazardous materials including source reduction and recycling. Include development of a spill prevention plan.

Construction

Hazardous materials in the form of used oils/lubricants, paints or other maintenance-related materials may be used/stored during construction in small and large quantities. Location of hazardous materials is expected to vary throughout the construction process. Through the development review process, the City will require that all MPCA and other regulatory requirements be met regarding use and storage of hazardous materials. Equipment fueling activities during construction will comply with MPCA operating and containment requirements. Prior to construction activities a spill prevention plan will be prepared to provide best management plans to minimize and mitigated petroleum and hazardous materials spills.

Potential Impacts

Potential impacts of accidental spill or release of hazardous materials:

 A release of petroleum hydrocarbons from the construction site activities to the soil and/or groundwater. Nearby sensitive receptors include residences which are located adjacent to the south, a girl scout camp adjacent to the north, residences to the east across East River Road Northeast, and the Mississippi River located adjacent to the west.

Post-Construction

Hazardous materials in the form of used oils/lubricants and small amounts of paints or other maintenance materials may be used/stored during lift station operation. No above or below ground tanks will be installed within the EAW area as part of post-construction operations.

Potential Impacts

Potential impacts of accidental spill or release of hazardous materials:

 A release of petroleum hydrocarbons from potential site equipment to the soil and/or groundwater. Nearby sensitive receptors include residences which are located adjacent to the north and south, residences to the east across East River Road Northeast, and the Mississippi River located adjacent to the west.

d. Project related generation/storage of hazardous wastes – Describe hazardous wastes generated/stored during construction and/or operation of the project. Indicate method of disposal. Discuss potential environmental effects from hazardous waste handling, storage, and disposal. Identify measures to avoid, minimize or mitigate adverse effects from the generation/storage of hazardous waste including source reduction and recycling.

Construction

Hazardous waste in the form of used oils/lubricants, paints or other maintenance-related materials may be generated during construction in small quantities. Location of hazardous wastes is expected to vary throughout the construction process. Through the development review process, the City will require that all MPCA and other regulatory requirements be met regarding storage and disposal of hazardous wastes.

The following databases were reviewed to evaluate on-site or nearby potential sources of contamination or environmental hazards: the MPCA "What's in My Neighborhood", the MDA "County Spill Records" and the MPCA PRP online maps. The databases and online maps did not reveal any potential sources of contamination or environmental hazards within the EAW or the surrounding area. If soil contamination is discovered through due diligence testing or during development, the developer or other responsible party will be required to appropriately mitigate the contaminants according to the type of development planned and in compliance with MPCA rules. Fueling activities during construction will comply with MPCA operating and containment requirements. Based on our current understanding of the development no permanent tanks will be installed within the EAW area as part of post-construction operations.

Potential Impacts

Potential impacts of hazardous waste handling, storage, and disposal:

- A release of petroleum hydrocarbons from the construction site activities to the soil and/or groundwater. Nearby sensitive receptors include residences which are located adjacent to the south, a girl scout camp adjacent to the north, residences to the east across East River Road Northeast, and the Mississippi River located adjacent to the west.
- Identification of a historical release or abandoned UST during construction activities.

Post-Construction

Very small amounts of hazardous wastes in the form of used oils/lubricants, waste paints or other maintenance materials may be generated during lift station operation. Through the development review process, the City will require that all MPCA and other regulatory requirements be met regarding storage and disposal of hazardous wastes. Certain types of hazardous wastes such as universal wastes and electronic wastes will be recycled.

13. Fish, Wildlife, Plant Communities, and Sensitive Ecological Resources (rare features)

a. Describe fish and wildlife resources as well as habitats and vegetation on or near the site.

The site was formerly used as a Girl Scout camp and buildings, parking lot and driveway are present on the southern portion of the site. A 60-foot wide utility corridor and an existing junction structure is present along the southern boundary of the project site. A field survey for wetlands and waterbodies was conducted for the project in October 2018. Results of the survey determined that vegetation within the project site consists of upland woodland, wet meadow wetland, and scrub-shrub type wetland. Upland woodlands were dominated by bur oak (*Quercus macrocarpa*), American Basswood (*Tilia americana*), prickly gooseberry (Ribes cynosbati), and large-leaved aster (*Eurybia macrophylla*). Woodland adjacent to the Mississippi River consisted of floodplain forest species including Cottonwood (*Populus deltoides*) and silver maple (Acer saccharinum). Dominant plant species within the wetland areas consisted of common buckthorn (*Rhamnus cathartica*), reed canary grass (*Phalaris arundinacea*), stinging nettle (*Urtica dioica*), small-spike false nettle (*Boehmeria cylindrica*) and garlic mustard (*Alliaria petiolate*). Three ephemeral streams are present within the project site,

and the Mississippi River is present on the western boundary of the site.

Some of the major wildlife species that are common in the project site are white-tailed deer, eastern cottontail rabbit, red squirrel, and chipmunk. Muskrat and beaver may be present occasionally near the Mississippi River. House wrens, northern cardinals, American goldfinches, blue jays, song sparrows and common yellowthroats are some of the bird species common to the area. Game birds include Canada goose and wild turkey. Waterfowl such as wood ducks, mallards, blue-winged teal, ruddy duck and hooded mergansers may be found in and around the wetlands and waterways within the project site. Raptor species include sharp-shinned hawk, Cooper's hawk, broad-winged hawk, and great horned owl.

Fisheries Resource

Mississippi River is a designated National River and Recreation Area. The Mississippi River, Locke Lake and Rice Creek are Minnesota Department of Natural Resources (MDNR) Protected Waters (PWI). The MDNR regulates water development activities below the ordinary high water level (OHWL) that affect the course, current, or cross-section of a PWI lake, wetland, river or stream.

There are no designated trout streams within one mile of the project site. There are no Designated Outstanding Resource Value Waters (ORVW) as defined by Minnesota Statutes Chapter 7050.0335 Subpart 1.D(6). The Mississippi River is designated as ORVW from County State-Aid Highway 7 bridge in Saint Cloud to the northwestern city limits of Anoka but not within the limits of the project site.

No federal or state-listed fish species are known to occur within one mile of the project site. Mussel surveys have been conducted within the Mississippi River. Species identified within one mile of the project site include Amblema plicata, Lampsilis cardium, Lampsilis siliquoidea, Fusconaia flava, Potamilus alatus, Quadrula quadrula, Oliquaria reflexa, Truncilla truncate, and Ligumia recta. Ligumia recta is designated as state special concern. See Item 13.b for further discussion regarding rare features

Wildlife Resource

Data was obtained from the Minnesota Geospatial Commons website to determine the presence or absence of known native plant communities within the project site. This includes an evaluation of RSEAs, which are natural areas or ecologically significant terrestrial, or wetland areas identified by the MDNR. No RSEAs are located within or adjacent to the project site. The nearest RSEA is located approximately 0.73-mile downstream within the Mississippi River (Durnam Island) and another is 0.75-mile east of the project site associated with Rice Creek. A portion of the Mississippi River, Locke Lake and Rice Creek comprise a regionally significant ecological corridor and is approximately 0.1-mile south of the project site at its closest point.

The project lies within an Important Bird Area (IBA.) IBAs are discrete sites that provide essential habitat for one or more bird species and include habitat for breeding, wintering, and/or migrating birds (Audubon, 2020). The project lies within the North Metro Mississippi River IBA which is a corridor along the Mississippi River, Locke Lake and Rice Creek.

There is a site of biological significance to the south of the project site, within a mile of the site. There are no sites of biological significance within the project site. Sites of biological significance and other important ecological areas are shown in Figure 13-1.

There are no designated wildlife management areas or waterfowl production areas within the project site.

b. Describe rare features such as state-listed (endangered, threatened or special concern) species, native plant communities, Minnesota County Biological Survey Sites of Biodiversity Significance, and other sensitive ecological resources on or within close proximity to the site. Provide the license agreement number (LA-760) and/or correspondence number (ERDB) from which the data were obtained and attach the Natural Heritage letter from the DNR. Indicate if any additional habitat or species survey work has been conducted within the site and describe the results.

The USFWS IPaC Environmental Conservation Online System was accessed to obtain a list of federally listed T&E, proposed and candidate species and federally designated critical habitat that may be present within the project site. The Minnesota Department of Natural Resources (MDNR) Natural Heritage Inventory System (NHIS) database was also reviewed for state-listed T&E species with the potential to occur within the project sites.

Available data describing the life history, critical habitat and conservation measures associated with each species was used to help determine if the project may have an adverse effect on listed species. Data was retrieved from sources including the USFWS Region 3 website, NatureServe Explorer Online Encyclopedia of Life (NatureServe, 2020), MDNR T&E species information available online (MDNR, 2020a), and relevant scientific journals and publications referenced below.

There are three known occurrences of rare species or natural communities in one mile of the project site, northern long-eared bat (*Myotis septentrionalis*), federally threatened; Blanding's turtle (*Emydoidiea blandingii*), state threatened; and black sandshell musssell (*Ligumia recta*), state special concern.

Northern long-eared bat

During winter, NLEBs use large caves and mines that have large passages and entrances, constant temperatures, and high humidity with no air currents. No bats were observed within the project site during the field survey. The project is not within 0.25 mile of a known, occupied hibernaculum, or within 150 feet of a known, occupied maternity roost tree. However, the project site may contain suitable summer habitat for the NLEB.

Blandings turtle

Wetland complexes and adjacent sandy uplands are necessary to support viable populations of Blanding's turtles. Calm, shallow waters, including wetlands associated with rivers and streams with rich aquatic vegetation, are especially preferred. In Minnesota, this species appears fairly adaptable, utilizing a wide variety of wetland types and riverine habitats in different regions of the state. Open marshes and bottomland wetlands provide summer and winter habitat. Ephemeral wetlands are utilized in spring and early summer, while deeper marshes and backwater pools are utilized in both the summer and winter. One Blanding's turtle was observed approximately 0.5 mile northeast of the project site in 1994.

Black Sandshell

This mussel species prefers riffle and run areas of medium to large rivers where substrates are dominated by sand or gravel. Eight live individuals were found within the Mississippi River near the project site during the Statewide Mussel Survey in 2007.

c. Discuss how the identified fish, wildlife, plant communities, rare features and ecosystems may be affected by the project. Include a discussion on introduction and spread of invasive species from the project construction and operation. Separately discuss effects to known threatened and endangered species.

Direct impacts on common and special status birds, mammals, fish, and reptiles from construction and operation of the project may include limited mortality of eggs, nests, young, and less mobile species. Indirect impacts on wildlife species may include the incremental reduction of forest cover, habitat fragmentation, temporarily augmented noise levels, and dust effects from construction access. However, mobile species will most likely return following construction.

Northern long-eared bat

Potential impacts to individual bats may occur if clearing or construction takes place when the species is breeding, foraging, or raising pups in its summer habitat. Bats may be injured or killed if occupied trees are cleared during this active window, and the species may be disturbed during clearing or construction activities due to noise or human presence.

Anoka County is listed as a county within the white nose syndrome buffer zone per the Final 4(d) Rule (USFWS, 2020). The MDNR NHIS database was queried for occurrences and locations for known maternity roost trees and hibernacula. According to the NHIS database, the project site is not within 0.25 mile of a known, occupied hibernaculum, or within 150 feet of a known, occupied maternity roost tree. Tree clearing is planned for the project.

Blandings turtle

The Blanding's turtle population is declining due to factors such as wetland drainage and degradation, development on upland nesting areas, encounters with vehicles when trying to cross roads, and possibly collection for the pet trade. The project site does not include prime habitat for the Blanding's turtle. However, the potential exists for the turtle to be present.

Black sandshell

This species is of special concern status and are particularly vulnerable to deterioration in water quality, such as caused by increased siltation. It is imperative that sound erosion and sediment control practices be implemented and maintained throughout the duration of the project.

Migratory birds

Construction of the project has the potential to impact birds protected under the MBTA. Under the MBTA, construction activities in grassland, roadsides, wetland, riparian, shrubland, or woodland habitats, and construction activities that occur on bridges or culverts that would otherwise result in the taking of migratory birds, eggs, young, and/or active nests should be avoided. Although the provisions of the MBTA are applicable throughout the entire year, most migratory bird nesting activity in Minnesota occurs mid-April to mid-July. MCES has not identified when construction plans to begin and end but necessary efforts will be made to avoid impacts to migratory birds.

Invasive Species

Invasive species including common buckthorn, reed canary grass and garlic mustard were observed to be present throughout the project site during the wetland and waterbody delineation conducted for the project in October 2018.

MCES will implement the following measures during construction to minimize the spread of noxious weeds:

- A pre-construction meeting will be held to provide project contractors with information and training regarding noxious weed identification and management. Contractors will be informed about measures to be taken to prevent the spread of noxious weeds in uncontaminated areas and about controlling the proliferation of weeds present in the project site. Qualified Els will conduct on-site monitoring before and during construction.
- Silt fence will be installed around noxious weed areas in the proposed construction footprint, which will initially limit construction access to these areas.
- The construction contractor will stockpile cleared noxious weeds and salvaged topsoil adjacent to the area from which they were stripped to prevent the transport of noxious weed seeds, roots, or rhizomes with the soil. Stockpiled soil from noxious weed areas will be marked with signage and will be returned to the areas from which they were stripped. Soil and vegetation from noxious weed areas would not be moved outside of the identified and marked noxious weed infestation areas.
- In areas where full topsoil stripping cannot occur (e.g., wetlands), a layer of geotextile fabric, or a functional equivalent will installed at the boundaries of areas containing noxious weeds. Then, a layer of construction mats will be installed. The contractor will utilize the mat to traverse the noxious weed area, limiting direct contract with the area. The mats and fabric will be removed as part of final clean up. The mats will be sprayed and the fabric will be disposed of at a landfill.
- MCES will place cleaning at the project site if needed, to best minimize the spread of noxious weeds. Construction equipment and vehicles that are used to move vegetation and topsoil during clearing and restoration phases of the project that come into contact with vegetation or disturbed soil in areas where noxious weeds have been identified will be cleaned before being allowed to work in non-noxious weed areas of the site. Equipment traveling out of noxious weed areas will be cleaned free of soil and plant

debris prior to proceeding into an area without invasive plants. Water from the cleaning stations will be collected and transported off-site to an appropriate disposal facility.

- All ground disturbing equipment will be clean and free of soil or plant debris prior to arriving onsite. The on-site El will inspect all equipment upon arrival and maintain a log of such inspections. In the event that equipment arrives in a manner not consistent with the above requirement(s), the El will direct the contractor to clean the equipment at an off-site location prior to its use on the project.
- Construction areas that contain noxious weeds may be mowed prior to equipment access. The mower will be cleaned prior to leaving the noxious weed area. As an additional measure, MCES may elect to treat the noxious weed areas with an herbicide. MCES will not utilize herbicides within 100 feet of a wetland or waterbody. A licensed herbicide applicator will conduct the spraying.
- Prior to excavation activities within wetlands with noxious weeds, a row of silt fencing will be installed at the boundaries of areas containing noxious weeds, and the fencing will be removed upon establishment of permanent vegetative cover.
- Restoration-specific BMPs include the following.
- MCES will revegetate disturbed areas as soon as possible. Revegetation includes topsoil replacement, planting, seeding, fertilizing, and weed free mulching as necessary Seeding will be conducted on disturbed areas that have reached final grade or that will remain undisturbed for 30 days.
- MCES will use seed and other plant materials that have been certified as weed free.

MCES does not propose any eradication measures within the identified areas. MCES will monitor the construction area to ensure that the noxious weeds do not spread outside of the areas where they have been documented during pre-construction surveys.

MDNR tracks oak wilt in Minnesota (MDNR, 2020b). Oak wilt is caused by an invasive fungus that may affect and kill all species of oak trees. MDNR maintains a map of the county distribution of oak wilt in Minnesota. According to the mapping, all of the project site is within the oak-wilt infected area. The high-risk time when oaks are most susceptible to infection is from April 1 through July 15 in the southern half of Minnesota, and April 15 through July 15 in the northern half of Minnesota. If the spring is unusually warm, the risk of oak wilt can occur before April. If the daily high temperature is about 60 degrees Fahrenheit or higher for six consecutive days, there may be a risk of oak wilt.

MDA also recognizes Dutch elm disease as a fungus that can kill elm trees and other species (MDA, 2020c). MDA does not have regulations or quarantine zones for Dutch elm disease but recommends limiting removal and disposal of elm trees.

The project is inside the Emerald Ash Borer (EAB) county quarantine area and the generally infested area as mapped by the MDA.

d. Identify measures that will be taken to avoid, minimize, or mitigate adverse effects to fish, wildlife, plant communities, and sensitive ecological resources.

MCES has avoided the wetlands, forested areas and waterbodies within the project sites to the extent practicable to minimize habitat disturbance and fragmentation. The proposed lift station is to be located primarily within an existing utility easement containing an existing junction structure and area developed as Girl Scout Camp facilities. No dredging or filling within

wetlands or below the OHWL of waterbodies will be conducted and is further discussed in Question 11.

MCES will limit tree clearing to the extent practicable. The high-risk time when oaks are most susceptible to oak wilt infection is from April 1 through July 15 in the southern half of Minnesota, and April 15 through July 15 in the northern half of Minnesota. MCES will attempt to limit disturbance to oak stands during this time; however, avoidance of all oak removal may not be possible. If MCES removes oaks between April 1 and July 15, MCES will comply with MDNR recommendations to apply water-based paint or shellac immediately to the cuts. If an infected oak tree is cut, MCES will not remove it from the property but instead burn or tarp the infected tree to prevent the spread of the disease.

MCES will not transport cut elm trees outside of the counties where they originated. Further, if a tree is suspected to be infected with Dutch elm disease, MCES will follow MDNR recommendations and chip, burn or bury the tree.

MCES will comply with the MDA EAB quarantine regulations and not transport ash trees (limbs, branches, stumps or chips) outside of the quarantine zone. MCES will leave cut trees on the property. If MCES removes cut trees, MCES will find a disposal location within each EAB county quarantine area to prevent moving potentially infected wood outside of the quarantine area.

Stormwater management and erosion control measures (as required by the permits listed in Table 8-1) will help to minimize impact to the common as well as sensitive wildlife species and their habitat.

Northern long-eared bat

Tree clearing has been avoided to the extent practicable by locating the lift station facilities within the existing utility corridor and area occupied the existing Girl Scout Camp facilities. Tree clearing will be done outside of the NLEB pupping season from June 1 to July 31. The NLEB 4(d) Rule Streamlined Consultation Form will be utilized to ensure that any incidental take of the NLEB is not prohibited by the Final 4(d) Rule.

Blanding's turtle

MCES will coordinate with the MDNR regarding avoidance protocol and protocols for Blanding's turtle surveys if necessary during the NHI review process. Measures that will be conducted to avoid and minimize impacts on Blanding's turtles should they occur within the project site include the following.

- Turtles that are in imminent danger should be moved, by hand, out of the project site;
- Turtles that are not in imminent danger should be left undisturbed;
- No nests should be disturbed;
- Silt fencing should be used to keep turtles out of construction areas, where necessary, and removed after the area has been revegetated;
- No dredging, deepening, or filling of wetlands should occur;
- Wetlands should be protected from pollutants such as fuels and lubricants;

- Erosion and sediment control devices should be used to prevent silt and sediment from reaching wetlands and waterbodies;
- Erosion control mesh, if used, should be limited to wildlife-friendly materials;
- Trenches should be checked for turtles prior to being backfilled and the sites should be returned to original grade;
- Culverts under access roads crossing wetland areas, between wetland areas, or between wetland and nesting areas should be at least 36 inches in diameter and flatbottomed or elliptical;
- Construction areas should be returned to preconstruction conditions;
- Keep utility access and maintenance roads to a minimum in order to reduce the potential for road kill;
- Return below-ground utility construction sites to original grade (trenches can trap turtles);
- Re-vegetate graded areas with native grasses and forbs;
- If necessary, use mechanical methods (not chemical) to manage vegetation in infrequently mowed areas such as ditches, along utility access roads, and under power lines; and
- Perform work fall through spring (after October 1 and before June 1).

MCES will implement the practices above and will train construction personnel regarding identification of the Blanding's turtle and the proper implementation of the MDNR recommendations. These recommendations will be written into the construction plans and specifications for the project. Regular inspection will ensure that the recommendations are being followed. These mitigation measures will minimize potential impacts on the Blanding's turtle.

Black sandshell

Sound erosion and sediment control practices be implemented and maintained throughout the duration of the project. Erosion control methods are discussed in Question 11. Erosion and sediment control plans will be submitted to the MPCA and the Rice Creek Watershed District for review and approval as required during the permitting process.

Migratory Birds

MCES will attempt to limit removal or impacts to vegetation during primary nesting season of breeding birds. If construction work cannot be avoided during peak breeding season (mid-April to mid-July), MCES will have a biologist conduct a pre-construction nest survey for breeding birds within the project construction area. The nest survey will determine the absence or presence of breeding birds and their nests. Pre-construction nest surveys will be completed according to the following procedures.

- No more than two days before construction activities commence, pre-construction nest surveys for migratory birds will be completed by a qualified avian biologist. The area surveyed will include the proposed workspaces or areas where potentially suitable habitat has been identified.
- If an occupied raptor nest is observed during the survey, construction activities will not be permitted within a 660-foot buffer of the raptor nest site during the breeding season or until the fledglings have left the area. MCES will complete consultation with the USFWS and MDNR if an active raptor nest is observed.

- If a nest, other than a raptor nest, is observed during the survey, construction activities will not be permitted within a 100-foot buffer of the nest until consultation with MDNR and USFWS occurs. MCES will implement buffers and practices recommended by agencies during the consultation.
- Upon completion, the survey results will be submitted to the USFWS and MDNR, as appropriate. If breeding birds are not present, construction can proceed with no restrictions. If breeding birds or active nests are present, additional consultation will be completed.

If any nests are observed, MCES will contact the USFWS to determine any necessary avoidance or mitigation measures. MCES will consult with the USFWS Twin Cities Ecological Services Field Office regarding impacts on migratory birds. Due to the use of pre-construction nesting bird surveys, which will minimize any potential effect of the project on nesting migratory birds, the project will his expected to have no effect on birds protected under the MBTA.

14. Historic Properties

Describe any historic structures, archeological sites, and/or traditional cultural properties on or in close proximity to the site. Include: 1) historic designations, 2) known artifact areas, and 3) architectural features. Attach letter received from the State Historic Preservation Office (SHPO). Discuss any anticipated effects to historic properties during project construction and operation. Identify measures that will be taken to avoid, minimize, or mitigate adverse effects to historic properties.

1) Historic Designations

The Banfill Tavern, also known as the Locke House, was listed on the National Register of Historic Places on December 12, 1976. It was built in 1847 and has been used as an inn, logging camp office, private home, dairy farm, post office, and summer home. It is currently owned by Anoka County and home to the Banfill-Locke Center for the Arts. The address of the property is 666 East River Road in Fridley, MN. The property is approximately 0.4 miles from the proposed location of the lift station, separated by an established single-family neighborhood.

A review of State Historic Preservation Office (SHPO) files shows potentially historic properties to the east of the property on the other side of East River Road. Another property is identified approximately 0.4 miles north of the subject site along the west side of East River Road. No impacts are anticipated to the integrity of these properties from the construction or operation of the lift station. Figure 14-1 shows the location of potentially historic properties based on SHPO files, and the location of the Banfill Tavern.

2) Known Artifact Areas

This Project must comply with applicable state mandates governing cultural resources, including the Minnesota Historic Sites Act, Minnesota Field Archaeology Act, and Minnesota Private Cemeteries Act.

During May and June 2020, 106 Group conducted Phase I and II archaeological investigations for the Project (Rufledt and Bray 2020). Because Project details were still

being refined at the time of the Phase I and II investigations, the study area for archaeology was defined to include all potential areas of ground disturbing activities associated with construction. The archaeological study area, which totaled 14 acres, was larger than the current 7-acre project area but completely encompasses it.

An archaeological literature review and assessment was prepared, which included research at the Minnesota Office of the State Archaeologist (OSA) and the Minnesota State Historic Preservation Office (SHPO), and historical map and aerial photograph research. No previously recorded archaeological sites or historic properties were identified within the project area. Subsequently, a Phase I archaeological field survey was conducted within areas of moderate to high archaeological potential within the study area. The primary objective of the Phase I archaeological survey was to identify whether the area to be affected by the proposed Project contained any intact archaeological resources, and if so, whether those resources are potentially eligible for listing in the National Register of Historic Places (NRHP). The Phase I survey included visual assessment, pedestrian survey, and excavation of shovel tests. During the Phase I archaeological survey, one previously unrecorded precontact archaeological site (21AN0185) was identified and assessed as potentially eligible for listing in the NRHP. A Phase II archaeological evaluation was conducted to evaluate the eligibility of site 21AN0185 for listing in the NRHP. This investigation consisted of additional close-interval shovel testing, the excavation of test excavation units, and subsequent evaluation of the site's eligibility for listing in the NRHP.

Based on the results of the Phase I survey and Phase II evaluation, the site contained a small number of artifacts (objects made or used by humans in the past) and no below-surface archeological features. The artifacts found within the site did not have any characteristics that allow them to be associated with a specific time period or culture. Because of this, the site has not yielded, nor does it have the potential to yield, information important to an understanding of prehistory. As a result of Phase II investigations, site 21AN0185 was recommended as not eligible for listing in the NRHP and, therefore, does not qualify as a historic property. No other archaeological site or known historic properties are located within proximity to the project area; therefore, there are there will be no anticipated effects to historic properties as a result of project construction and operation.

Reference

Rufledt, Jason, and Madeleine Bray

2020 Phase I and II Archaeological Investigations for the MCES L32 Facility Plan Project. Prepared by 106 Group for Stantec, July 2020.

3) Architectural Features

There are no properties on the National or State Registers, or listed in the State Historic Sites Network, that could be affected by this project, and therefore no further cultural features work is required for compliance with state cultural resources laws. However, the project must also comply with Section 106 and therefore, as discussed with SHPO, additional study of historical architectural properties is required. The additional historic architectural review for Section 106 compliance is being completed.

15. Visual

Describe any scenic views or vistas on or near the project site. Describe any project related visual effects such as vapor plumes or glare from intense lights. Discuss the potential visual effects from the project. Identify any measures to avoid, minimize, or mitigate visual effects.

Scenic Views

The EAW project site is partially developed as the Girl Scout Camp Lockslea and is located on the eastern bank of the Mississippi River. The site also has an existing utility easement on the southern portion of the property. The property itself is bordered by the Mississippi River to the west, East River Road to the east, and single-family homes to the north and south. There are a variety of views from each of these vantage points. The views are summarized below.

North: The area north of the EAW site is predominately single-family homes. Because the entire northern part of the EAW site is wooded, there is dense screening between the project site on the southern part of the site and these homes. There is also dense screening between the single-family homes and the Mississippi River, limiting scenic views towards and across the river.

East: The EAW site is bordered to the east by East River Road, a 4-lane Minor Arterial roadway. Across the street (further to the east) are single family homes. Again, because of the existing tree coverage on the EAW site, views of the site and to the river are obscured. Some of these homes have scenic views of Locke Lake, which is to the southeast of the EAW site.

South: The area south of the EAW site is also predominately single-family homes. There is an existing 60-foot utility easement on the southern portion of the site, abutting the single-family homes. There is very little screening between these homes and the EAW site. There is also less dense vegetation between these homes and the Mississippi river, meaning that the homes nearest to the river likely have a scenic view.

West: The Mississippi River abuts the site to the west. The impacts to the homes across the river are likely to be minimal.

Visual Effects

The properties most impacted by the project are the five single-family homes abutting the southern portion of the site. While there is an existing utility easement, and very little screening or vegetation currently, the construction of additional utility infrastructure is likely to have an impact on the views of these homeowners. Impacts could include light pollution from additional lighting on site, visual obstruction and a limited timeframe of unsightly construction views.

The residential neighborhoods to the north and east (across East River Road) are unlikely to have their views impacted by the Lift Station project. The homes to the north have existing dense forest and vegetation protecting them from visual impacts of construction and utility infrastructure. The City has designated the land on the northern 2/3 of the EAW site as park and recreation on their Future Land Use Map, further protecting the views of the single-family

homes to the north. The project will also not impact any existing views of the Mississippi River. The single-family homes across East River Road likely do not currently have a view of the River due to the amount of land between them and the river and exiting vegetation. The project is unlikely to have an impact on their scenic views.

The views from the Mississippi River and from homes across the river may be slightly impacted by the project. Potential impacts include visible utility infrastructure and construction (timelimited).

16. Air

a. Stationary source emissions - Describe the type, sources, quantities and compositions of any emissions from stationary sources such as boilers or exhaust stacks. Include any hazardous air pollutants, criteria pollutants, and any greenhouse gases. Discuss effects to air quality including any sensitive receptors, human health or applicable regulatory criteria. Include a discussion of any methods used assess the project's effect on air quality and the results of that assessment. Identify pollution control equipment and other measures that will be taken to avoid, minimize, or mitigate adverse effects from stationary source emissions.

No permanent stationary sources of air emissions are anticipated.

Two 650 KW generators will be located at the lift station building to power the pumps in the event of an extended power outage, a diesel fuel powered permanently mounted generator would be used to temporarily operate the lift station. The lift station generator will be equipped with mufflers and standard emissions control apparatus to minimize air and noise pollution.

While "peaking" is not anticipated at this lift station, if it does become an option, MCES may sign an agreement with the electric utility allowing the power company to use the standby generator to help meet peak power demands in the summer.

If used for peaking, a stationary source air emissions permit from the MPCA may be required for Nitrogen Oxides (NOx) if use exceeds 300 hours in any 12-month period. A stationary source air permit is not required for a generator that will be used only for emergency power, regardless of the generator size. If applicable, a stationary source permit will be obtained from the MPCA.

b. Vehicle emissions - Describe the effect of the project's traffic generation on air emissions. Discuss the project's vehicle-related emissions effect on air quality. Identify measures (e.g. traffic operational improvements, diesel idling minimization plan) that will be taken to minimize or mitigate vehicle-related emissions.

Construction vehicles and heavy equipment will be used during construction of the project. Exhaust emissions during construction could cause temporary impacts to ambient air quality within the area directly surrounding the project site but will not be significant.

Following construction, the project does not propose to permanently alter traffic levels, therefore vehicle emissions directly associated with the project will not have a significant effect on air quality. The project may enable development which could result in measurable impacts to air quality. Traffic increases due to local development will be reviewed as the development occurs.

c. Dust and odors - Describe sources, characteristics, duration, quantities, and intensity of dust and odors generated during project construction and operation. (Fugitive dust may be discussed under item 16a). Discuss the effect of dust and odors in the vicinity of the project including nearby sensitive receptors and quality of life. Identify measures that will be taken to minimize or mitigate the effects of dust and odors.

Dust:

Dust will be generated by equipment and machinery during construction. The construction contractor will be required to provide dust control measures, such as spraying water on the construction site to reduce airborne dust and avoiding construction activities during periods of high winds. The contractor shall take special care in providing and maintaining dust control operations appropriate for the proximity of the site to residential homes and other nearby facilities. To reduce the dust, sweeping and watering of haul roads and construction sites will be performed as needed. Additional dust control measures available to contractors include minimizing the amount of open graded areas and scheduling regular watering in areas that may have soils susceptible to wind erosion.

Following completion of construction, the City's contractors will establish final grade, seed and mulch the project site.

Dust impacts will be temporary and confined to the immediate vicinity of the project site. Operation of the Lift Station is not expected to generate dust.

Odors:

During construction, some vehicle exhaust odors from heavy equipment and construction vehicles will be released. However, construction equipment will have factory-installed mufflers or their equivalent in good working order during the life of the construction contract. Additionally, odors from diesel fuel exhaust generated by the construction equipment is temporary and will occur during daytime construction hours. Therefore, significant impacts from diesel fuel exhaust odors are not anticipated.

As with any sanitary sewer system, a potential for odors to form during operation of the proposed system exists. During the design process, odor mitigation will be considered for including reconfiguring the existing radial carbon unit, installing new OC ductwork to siphon structure on the west side of the river, and installing a new odor control unit on the east side of the river. The decision on what odor control to include will be made during the design phase. Any increase to the existing average ambient air quality conditions due to the project are not expected to cause exceedances to human health standards.

17. Noise

Describe sources, characteristics, duration, quantities, and intensity of noise generated during project construction and operation. Discuss the effect of noise in the vicinity of the project including 1) existing noise levels/sources in the area, 2) nearby sensitive receptors, 3) conformance to state noise standards, and 4) quality of life. Identify measures that will be taken to minimize or mitigate the effects of noise.

The project is situated adjacent to residential neighborhoods and along East River Road, a busy four-lane, divided roadway. The residential homes within the surrounding area make up the sensitive receptors in the vicinity of the project. According to the MPCA Minnesota Noise rules, Minn. R. ch. 7030, these residential receptors are included in Noise Area Classification Zone 1 and the project is subject to the applicable state noise standards during construction and operation.

During construction, the primary source of noise is from construction vehicles entering and leaving and during operation of heavy construction equipment. Construction equipment will have factory-installed mufflers or their equivalent in good working order during the life of the construction contracts. Noise impacts from construction equipment will be controlled by restricting the hours of operation to daylight hours, or those permitted by local ordinances.

Construction noise impacts will be temporary and will generally be confined to the immediate vicinity of the project site. By state law, the project must comply with state noise standards. The City does not expect noise above state standards related to the operation of the lift station. There is no expected reduction to quality of life based on project-generated noise.

18. Transportation

a. Describe traffic-related aspects of project construction and operation. Include: 1) existing and proposed additional parking spaces, 2) estimated total average daily traffic generated, 3) estimated maximum peak hour traffic generated and time of occurrence,
4) indicate source of trip generation rates used in the estimates, and 5) availability of transit and/or other alternative transportation modes.

The project is located along East River Road, a four-lane Minor Arterial roadway, designated as no parking. The proposed project will require approximately 10 parking spaces. Additional vehicles during construction will temporarily increase traffic as construction vehicles utilize area roads to access the site. Temporary traffic control will be implemented during construction as needed.

Traffic during construction and, to a lesser degree, after construction is anticipated to add to the total average daily traffic generated. However, in either case, no significant peak hour traffic will be generated.

The project will not affect alternative transportation modes or transit availability.

b. Discuss the effect on traffic congestion on affected roads, and describe any traffic improvements necessary. The analysis must discuss the project's impact on the regional

transportation system. If the peak hour traffic generated exceeds 250 vehicles or the total daily trips exceed 2,500, a traffic impact study must be prepared as a part of the EAW. Use the format and procedures described in the Minnesota Department of Transportation's <u>Access Management Manual</u>, Chapter 5 or a similar local guidance.

Temporary traffic restrictions or closures are not anticipated during construction of the project. Peak hour traffic in both construction and post-construction conditions will not exceed 250 vehicles or 2,500 daily trips. There will be no notable increase in traffic or changes to the transportation system following completion of the project. No long-term traffic impacts or impacts to the regional transportation system will occur.

c. Identify measures that will be taken to minimize or mitigate project related transportation effects.

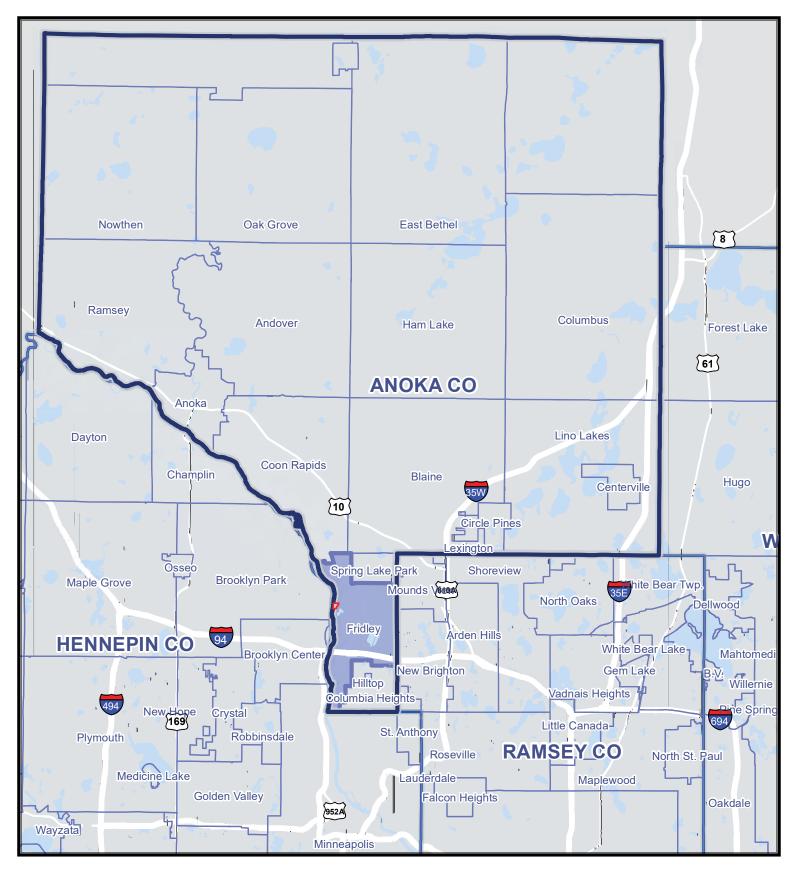
Traffic accessing the site during and after construction will need to follow federal, state, and local requirements, including seasonal and/or weight restrictions, as well as debris management and control.

19. Cumulative Potential Effects

a. Describe the geographic scales and timeframes of the project related environmental effects that could combine with other environmental effects resulting in cumulative potential effects.

This lift station is one component of the wastewater conveyance system that serves the Metropolitan Area, by collecting and conveying wastewater to be treated before discharging into the Mississippi River, it is by its nature a form of environmental mitigation. This facility will replace the existing facility in Brooklyn Park, which is outdated, lacks enough capacity and has recurring odor issues.

The L32A lift station will eliminate the risk of sewer backups due to inadequate capacity and will substantially reduce the odor issues on the west side of the River. Odor Control on the west side of the River will still be required, and additional odor control equipment will also be installed on the East side of the river.


b. Describe any reasonably foreseeable future projects (for which a basis of expectation has been laid) that may interact with environmental effects of the proposed project within the geographic scales and timeframes identified above.

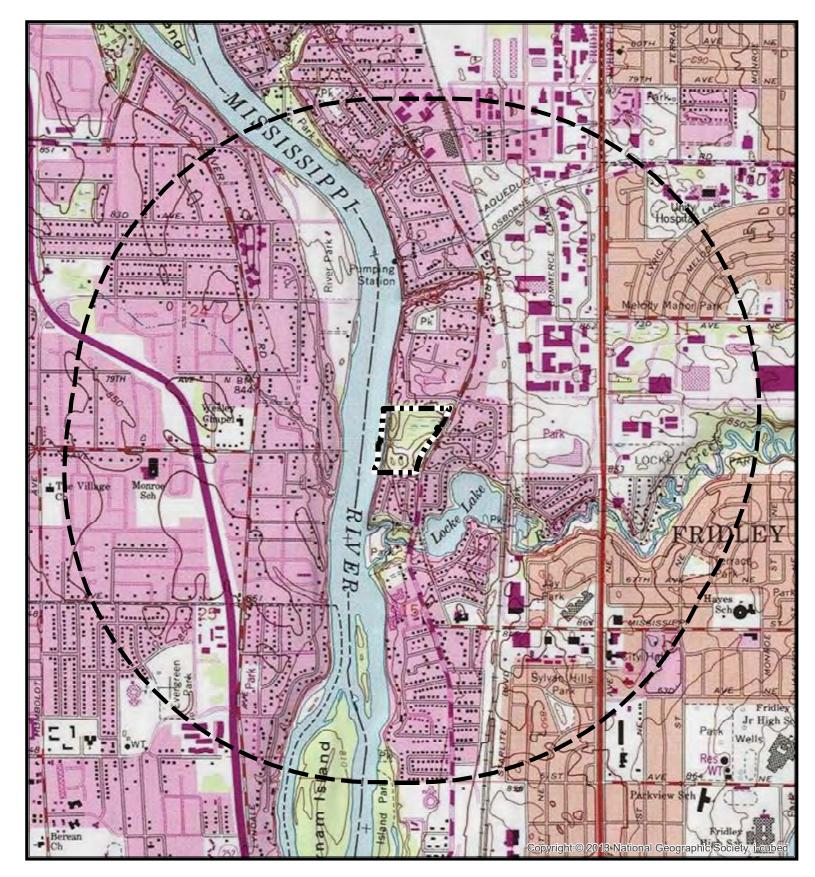
The facility is part of a connected and integrated wastewater conveyance system, but the L32A project itself will not cause or require the completion of additional projects.

c. Discuss the nature of the cumulative potential effects and summarize any other available information relevant to determining whether there is potential for significant environmental effects due to these cumulative effects.

This project will provide improved wastewater service to the large drainage area. This area is planned to continue to grow and develop, which will have inherent environmental effects. The development that will be supported by this facility will all be consistent with the local comprehensive plans in the cities it serves. All of that development will be subject to local zoning and all applicable federal, State and local permits.

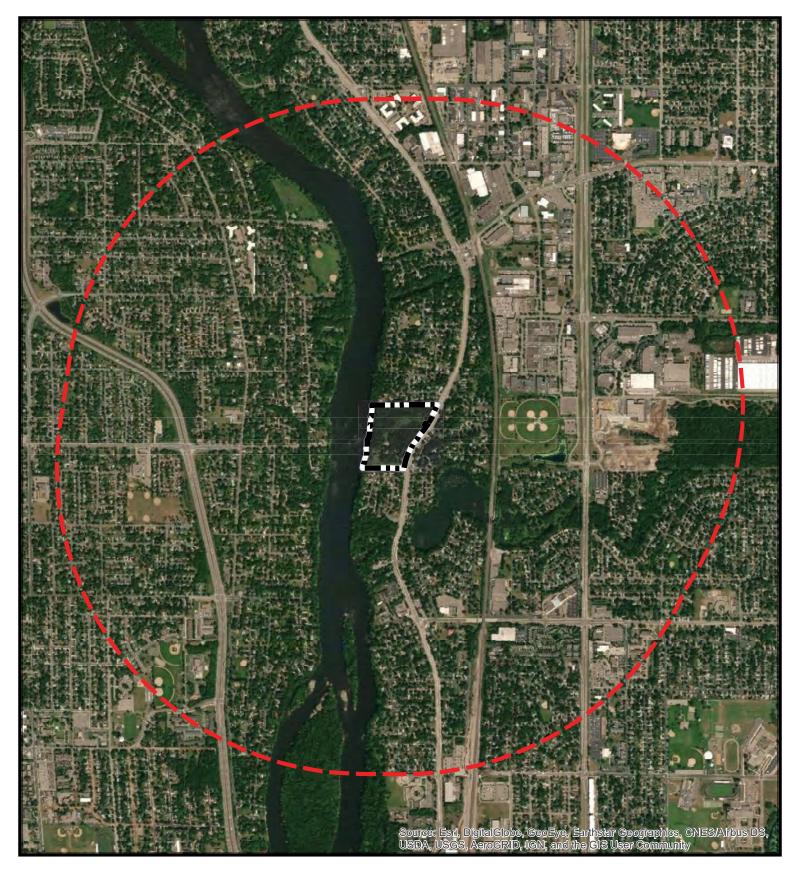
Appendix A Figures

Project Location - Figure 5-1

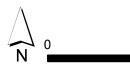


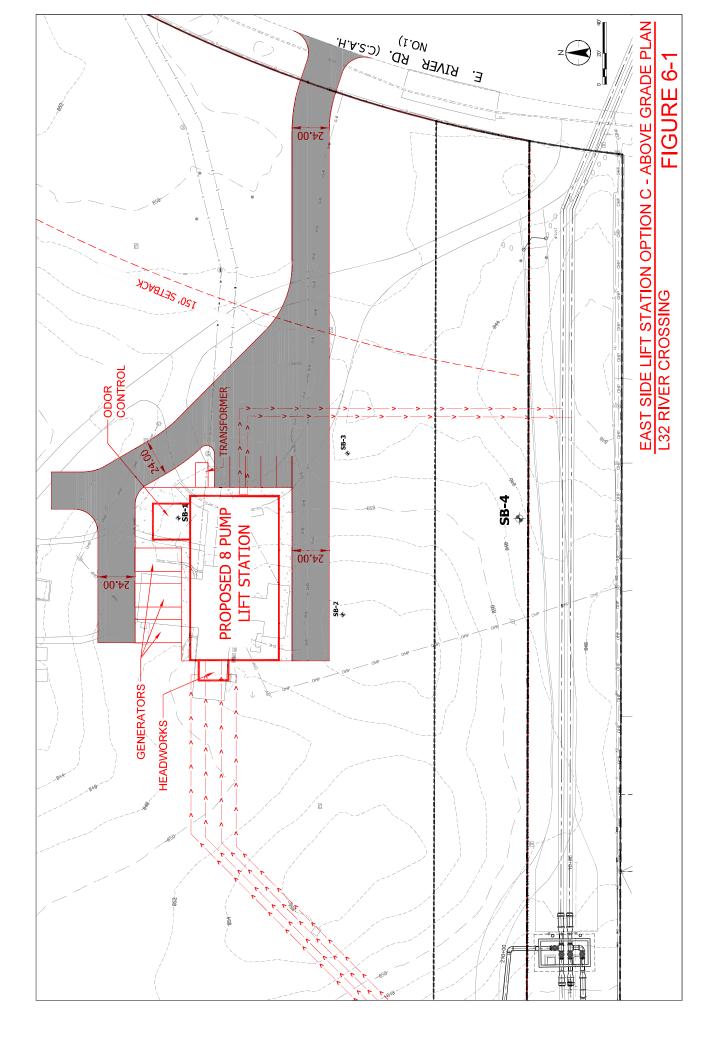
10 Miles

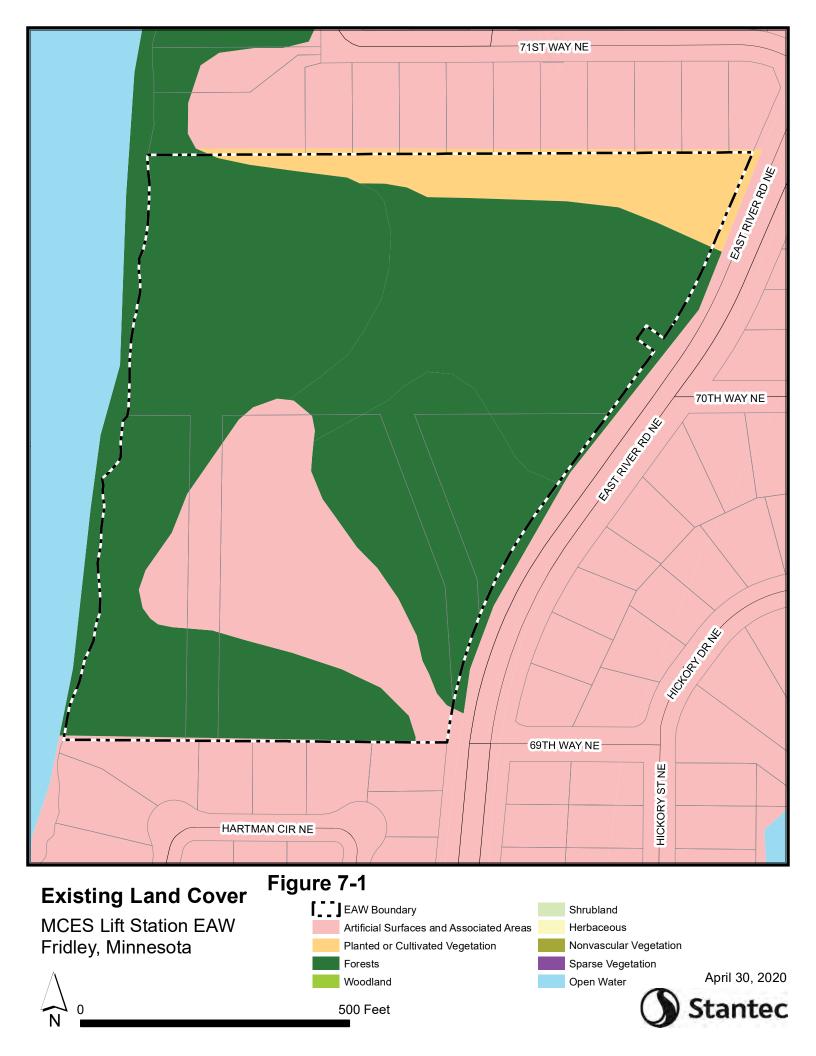
EAW Area
Anoka County Boundary
Other County Boundaries
Open Water
City of Fridley

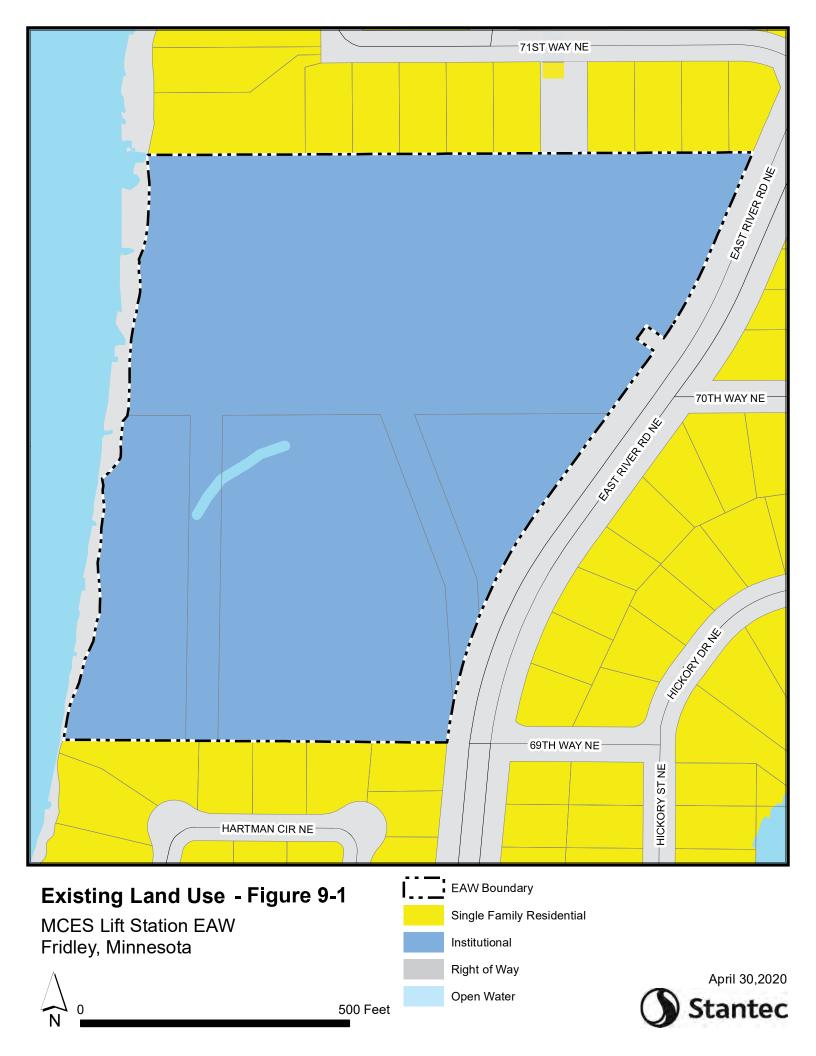

USGS Topo Map - Figure 5-2

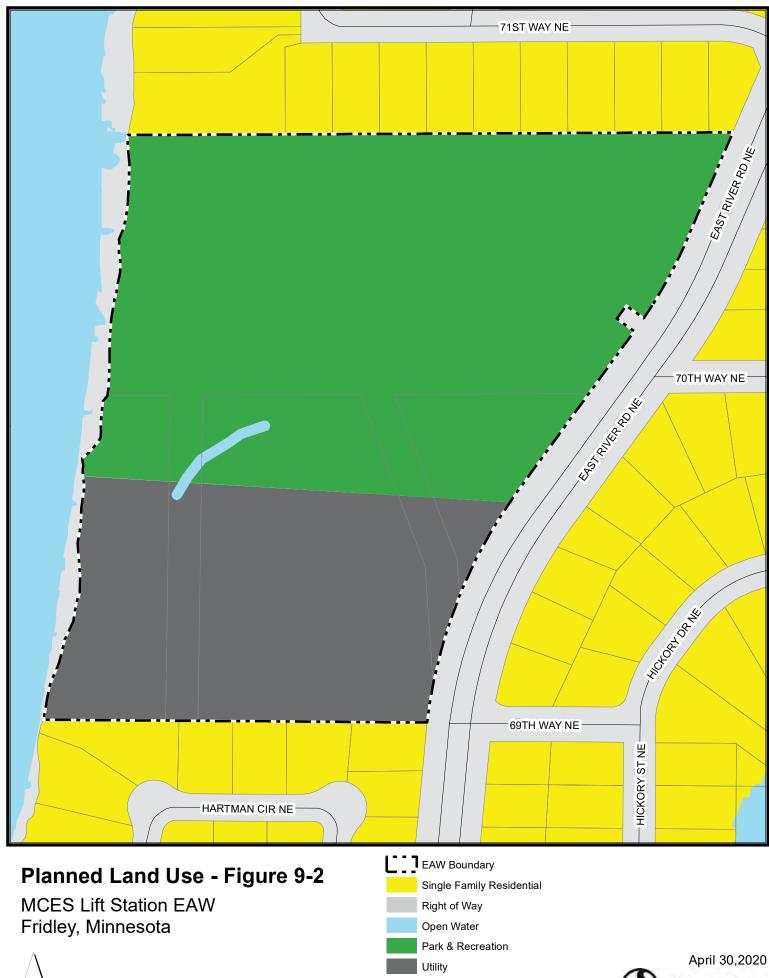
MCES Lift Station EAW Fridley, Minnesota

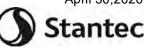


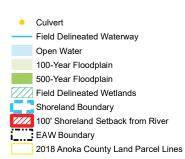

Aerial Map - Figure 5-3


MCES Lift Station EAW Fridley, Minnesota



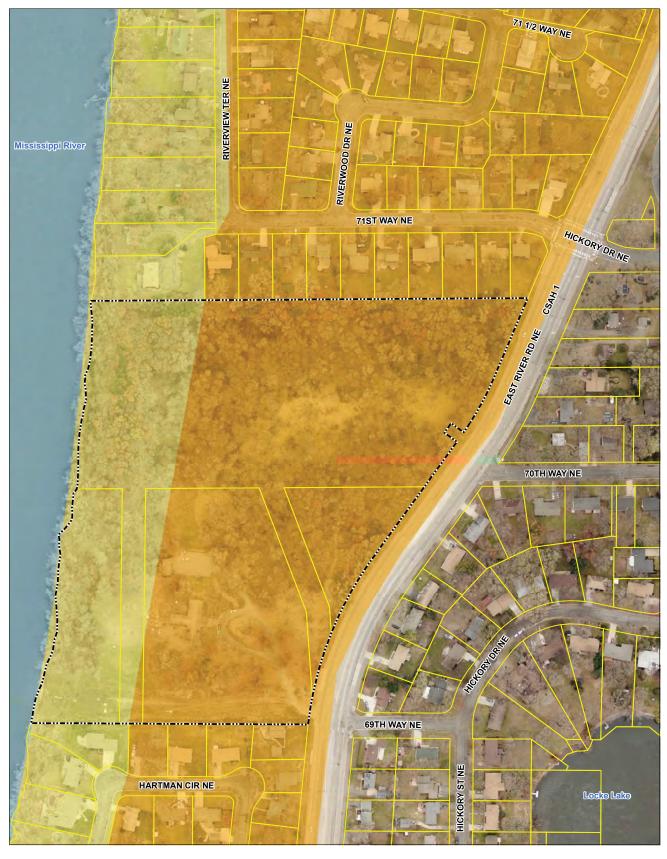




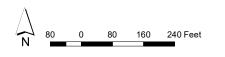


Water Features - Figure 9-3

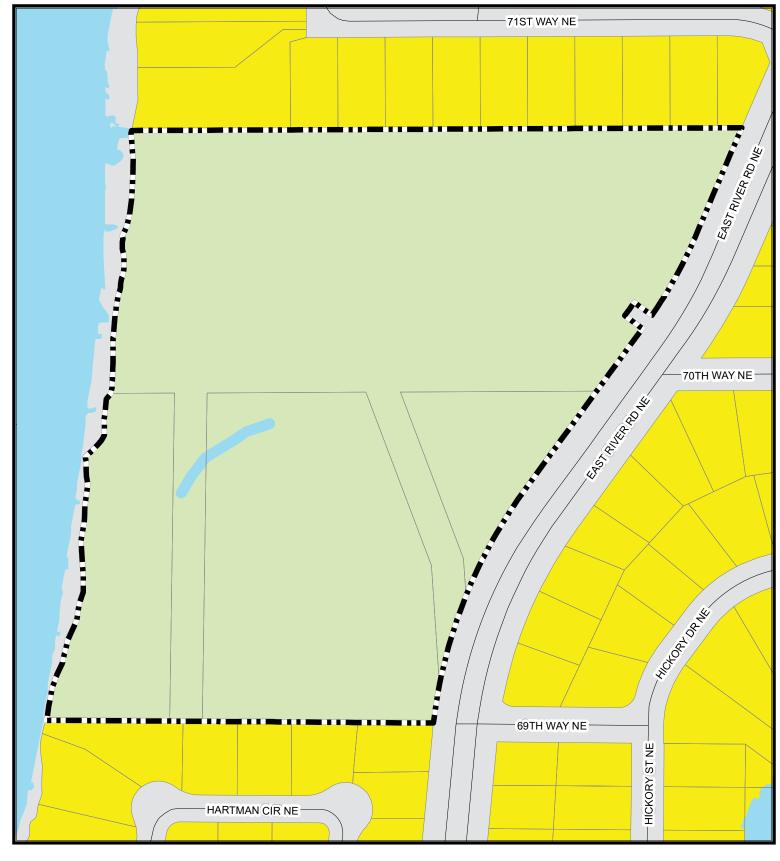
Girl Scout Camp, Fridley MN



October 31, 2018

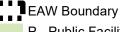


V:\1938\active\193804409\GIS\Projects\Reference_Files\Water Features.mxd


Mississippi River Critical Areas - Figure 9-4

Girl Scout Camp, Fridley MN

River Neighborhood District (CA-RN) Separated from River District (CA-SR) Mississippi River EAW Boundary 2018 Anoka County Land Parcel Lines



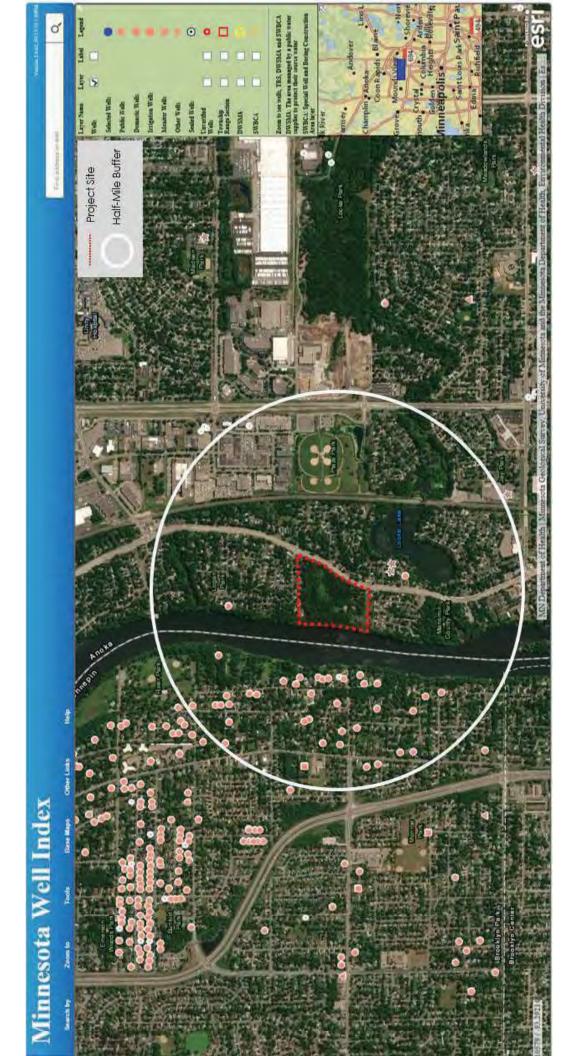
Zoning Map - Figure 9-5

MCES Lift Station EAW Fridley, Minnesota

- P Public Facilities District
- R-1 One-Family Dwelling District
- Right of Way
 - Open Water

Fridley, Minnesota

500 Feet


W - Water

Un - Urban land-Lino complex, 0 to 3 percent slopes

UzB - Urban land-Zimmerman complex, 0 to 8 percent slopes

April 30, 2020

Well Locations - Figure 11-1

Site Topography - Figure 11-2

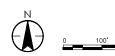
Girl Scout Camp, Fridley MN

October 31, 2018
Stantec
V/1938/active/193804409/GISProject/sReference Files/Sile Topo.mxd

2017 Anoka County Aerial Photo - Figure 11-3

Girl Scout Camp, Fridley MN

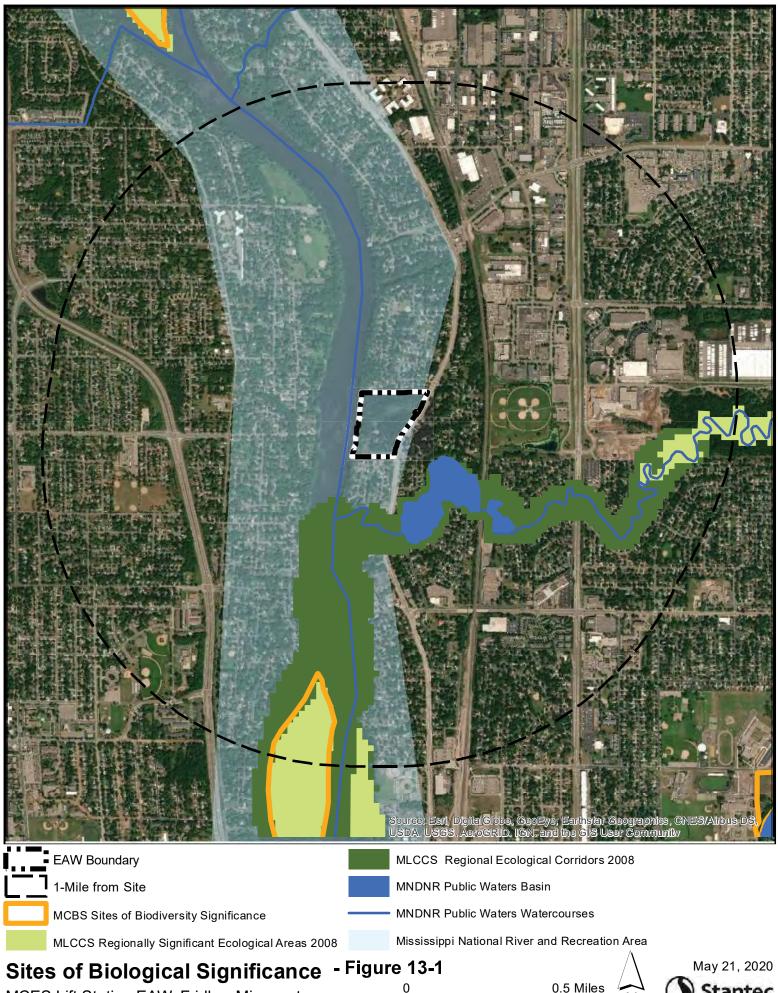
Site Boundary 2018 Anoka County Land Parcel Lines



V11936*nesource/plaua/Due/Dingence/Fndaey/2017 Aenal mxc

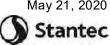
Concept Site Development - Figure 11-4 Girl Scout Camp, Fridley MN

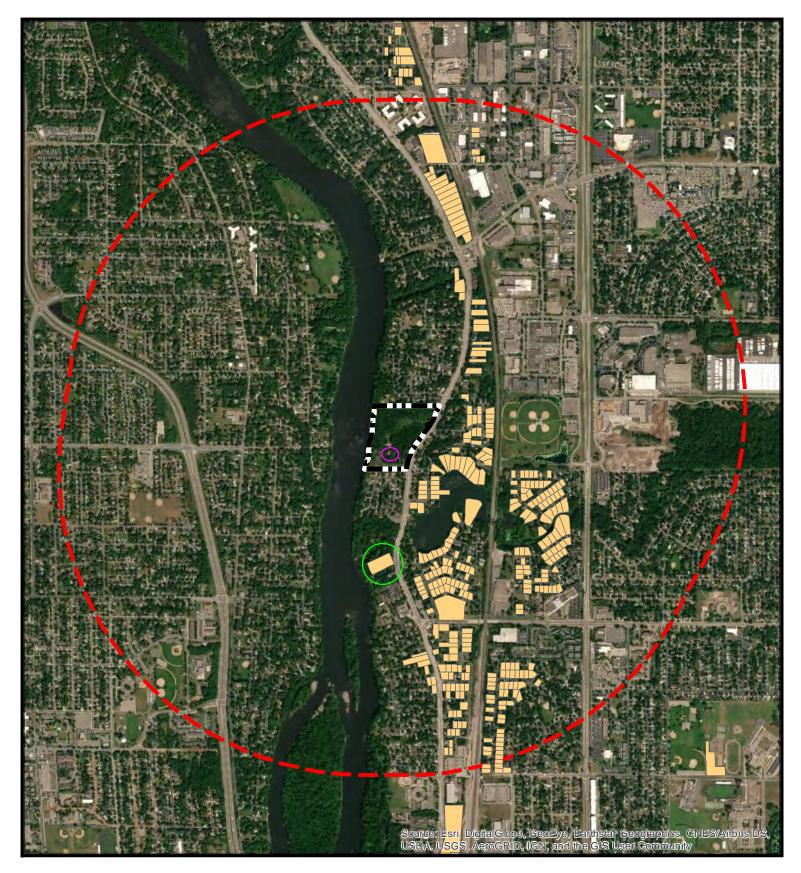
200


Site Boundaries

Г

- 2018 Anoka County Land Parcel Lines
- Potential Site Development Parcel Lines


December 6, 2018



MCES Lift Station EAW, Fridley, Minnesota

0.5 Miles

SHPO Identified Historic Properties - Figure 14-1

MCES Lift Station EAW Fridley, Minnesota

0.5 Miles

AUAR Boundary

1-Mile from Site Historic Parcels

Historic Parcels (as designated by SHPO) Banfill Tavern

Former Camp Lockslea Girl Scout

Buildings (not historically designated)

Appendix B Wetland Delineation Report

Wetland Delineation Report

MCES New Lift Station L32A Phase 1 Project City of Fridley, Minnesota Stantec Project #: 193804409

Prepared for: Metropolitan Council Environmental Services

Jeny Shah Metropolitan Council Environmental Services 3565 Kennebec Drive Saint Paul, MN 55112

Prepared by: Stantec Consulting Services Inc. 2335 Highway 36 West St. Paul, Minnesota 55113 Phone: (651) 636-4600 Fax: (651) 636-1311

Sign-off Sheet

This document entitled Wetland Delineation Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of the Metropolitan Council Environmental Services (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by	Joniefor Zamm
	(signature)
Jennifer Kamm, Env	vironmental Scientist, WDC#1253
Reviewed by	Mike Redeson
	(signature)
Mike Pederson, Env	rironmental Scientist, WDC#1265
Reviewed by	Julident
	V (signature)
Julia Millet, Ecologi	st, WDC#1280

Table of Contents

1.0	INTRODU	JCTION	1.1
2.0	METHOD	DS	2.2
2.1	WETLAN	DS	2.2
2.2	WATERW	VAYS	2.2
3.0	RESULTS		3.4
3.1	SITE DES	CRIPTION	3.4
3.2	WETLAN	D	
	3.2.1	Wetland 1 (WL-1)	
	3.2.2	Wetland 2 (WL-2)	
3.3		VAYS	
	3.3.1	Stream 1 (ST-1)	
	3.3.2	Stream 2 (ST-2)	
	3.3.3	Stream 3 (ST-3)	
	3.3.4	Stream 4 (ST-4)	
3.4	OTHER E	INVIRONMENTAL CONSIDERATIONS	3.8
4.0	CONCLU	USION	4.9
5.0	REFEREN	ICES	5.10
LIST C	OF TABLES		
Table	1. NRCS /	Mapped Soils Within the Property	3.4
Table	2. Summe	ary of Wetlands Delineated within the Property	3.5
Table	3. Summe	ary of Waterways Delineated within the Property	3.7
LIST C	OF APPEND	DICES	
APPE	NDIX A	– FIGURES	A.1
APPE	NDIX B	- WETLAND AND WATERBODY DATA FORMS	B.2
APPE	NDIX C	– SITE PHOTOGRAPHS	C.3
APPE	NDIX D	– WETS ANALYSIS	D.4

MCES New Lift Station L32A Phase 1 Project INTRODUCTION November 9, 2018

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) performed a wetland determination and delineation of the MCES New Lift Station L-32A Phase 1 property ("Property") on behalf of the Metropolitan Council Environmental Services (MCES). The Project is located in the City of Fridley in Anoka County, Minnesota (See Appendix A, Figure 1). The Property consists of 22.5 acres situated on the east bank of the Mississippi River (Figure 1).

The purpose and objective of the wetland determination and delineation was to identify the extent and spatial arrangement of wetlands and waterways within the Property. The wetland delineation was completed by Jennifer Kamm of Stantec on October 11th, 2018. Two wetland areas and four streams were identified on the Property.

Wetlands and waterways that are considered waters of the U.S. are subject to regulation under Section 404 of the Clean Water Act (CWA) and the jurisdictional regulatory authority lies with the U.S. Army Corps of Engineers (USACE). The Minnesota Department of Natural Resources (MNDNR) has regulatory authority over certain wetlands, navigable waters and adjacent lands under Statute 103G and Rule 6115.0250. All wetlands are protected under the Wetland Conservation Act Rules Chapter 8420 and administered by a Local Governmental Unit (LGU). LGUs can be a City, County, Watershed District or Soil and Water Conservation District depending on project location. For this Property the LGU is the Coon Creek Watershed District. Stantec recommends this report be submitted to the LGU and USACE for a preliminary or an approved jurisdictional review and concurrence.

MCES New Lift Station L32A Phase 1 Project METHODS November 9, 2018

2.0 METHODS

2.1 WETLANDS

Wetland determinations were based on the criteria and methods outlined in the U.S. Army Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1 (1987) and subsequent guidance documents (USACE 1991, 1992), and the Regional Supplement to the Corps of Engineers Wetlands Determination Manual: Northcentral Northeast Version 2.0, Technical Report ERDC/EL TR-12-1 (2012).

The wetland determination involved the use of available resources to assist in the assessment such as U.S. Geological Survey (USGS) topographic maps, U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) soil survey, Minnesota Department of Natural Resources (MDNR) National Wetland Inventory (NWI) update mapping, MNDNR Protected/Public Waters mapping, US Geological Survey National Hydrography Data (NHD), and recent and historic publicly available aerial photography.

On-site wetland determinations were made using the three criteria (vegetation, soil, and hydrology) and technical approach defined in the USACE 1987 Manual and applicable Regional Supplement. According to procedures described in the 1987 Manual and applicable Regional Supplement, areas that under normal circumstances reflect a predominance of hydrophytic vegetation, hydric soils, and wetland hydrology (e.g., inundated or saturated soils) are considered wetlands.

Additionally, as climate plays an important role in the formation and identification of wetlands, the antecedent precipitation in the months leading up to the field investigations was reviewed. The current year's precipitation data was compared to long-term (30-year) precipitation averages and standard deviation to determine if precipitation was normal, wet, or dry for the area using a WETS analysis as developed by the NRCS.

The uppermost wetland boundary and sampling points were surveyed with a Global Positioning System (GPS) capable of sub-meter accuracy and mapped using Geographical Information System (GIS) software.

2.2 WATERWAYS

The ordinary high-water mark for waterways was determined and surveyed along with culverts, and/or other connections to off-site wetland or aquatic features that may be under federal or state authority using a Global Positioning System (GPS) and mapped using Geographic Information System (GIS) software. Waterbodies (i.e., ponds, creeks, streams, rivers) were identified by the presence of an ordinary high-water mark (OHWM). Common identifiable indicators of an OHWM include open water or evidence of a clear, natural line visible on the bank, shelving, changes in soil characteristics, destruction of terrestrial vegetation, the presence of litter and debris, and watermarks on structures that are inundated during normal high-water conditions. Streams were classified as perennial, intermittent, or ephemeral based on field observations and review of depth to water table and flood frequency data available from the USDA NRCS. The

MCES New Lift Station L32A Phase 1 Project METHODS November 9, 2018

OHWM typically represents the potential limits of the USACE jurisdiction. The USACE has full discretion in determining the jurisdictional status of referenced wetlands and waterbodies.

MCES New Lift Station L32A Phase 1 Project RESULTS November 9, 2018

3.0 **RESULTS**

3.1 SITE DESCRIPTION

The Property is comprised of an approximate 22.5-acre site located in Section 10, Township 30 North, Range 24 West, in the City of Fridley, Anoka County, Minnesota (see Figure 4). The Property consisted primarily of upland woodland, wetlands, and streams. Developed area consisted of two buildings and a parking lot.

Soils present within the Property and their hydric status are summarized in Table 1. Wetlands identified during the field investigation are located primarily within areas mapped as hydric soils. An NRCS Soil Survey map showing the extent of these soils within the Property is provided Figure 2 of Appendix A.

Soil Symbol	Soil Unit Name	Drainage Class	Hydric Soil?
D64B	Urban land-Hubbard complex, Mississippi River Valley, 0 to 8 percent slopes	Excessively Drained	No
Ма	Markey muck, occasionally ponded, 0 to 1 percent slopes	Very Poorly Drained	Yes
UhdD	Urban land-Hayden complex, 15 to 25 percent slopes	Well Drained	No
UzB Urban land-Zimmerman complex, 0 to 8 percent slopes		Excessively Drained	No

Table 1. NRCS Mapped Soils Within the Property

The NWI map identifies one palustrine, emergent, persistent wetland bordered by forested, broadleaved deciduous temporarily flooded wetland (PEM1A and PFO1A) within the Property. The field delineated wetland (WL-1) is within the same vicinity as wetlands identified on the NWI map. The field delineated wetland (WL-2) is not identified on the NWI map (Appendix A, Figure 5). The MNDNR Protected/Public Waters map identified the Mississippi River, a perennial waterbody, on the western boundary of the Property (Figure 3, Appendix A).

Average precipitation for the investigation area was obtained from the Anoka, Fridley, MN National Weather Service (NWS) weather station and used for the WETS analysis. A total of 12.24 inches of precipitation occurred in the three-month time prior to the delineation in 2018 compared to the average of 10.68 inches. Based on the WETS analysis, conditions were wetter than normal (Appendix D).

MCES New Lift Station L32A Phase 1 Project RESULTS November 9, 2018

3.2 WETLAND

Two wetlands were identified and delineated within the Property during the 2018 site visit. Wetland determination data forms were completed for four sample points along transects through the wetlands and adjacent uplands and are provided in Appendix B. Photographs of the wetlands and adjacent lands are contained in Appendix C. The wetland boundary and sample point locations are shown on Figure 5 (Appendix A). The wetlands are summarized in Table 2 and described in detail in the following sections.

Table 2. Summary of Wetlands Delineated within the Property

Wetland ID	Eggers & Reed	Circular 39	Cowardin Class	Adjacent Surface Waters	Acreage (on-site)
Wetland 1 (WL-1)	Shrub-Carr	6	PSS1B	Surface water outlet via ephemeral stream to the Mississippi River	3.279
Wetland 2 (WL-2)	Fresh (Wet) Meadow	2	PEMB	Isolated	0.094
TOTAL					3.373

3.2.1 Wetland 1 (WL-1)

Wetland 1 (WL-1) was determined to be a shrub-scrub, broad-leaved deciduous, seasonally saturated (PSS1B) type wetland located in the center of the Property. WL-1 is directly connected to two unnamed ephemeral tributaries that flow through the wetland. The ephemeral tributaries are located at the eastern and western edges of WL-1 and are field delineated as Stream 1 and Stream 2 which are described below and shown on Figure 5 in Appendix A. The unnamed ephemeral tributaries associated with WL-1 flow west through culverts and eventually discharge into the Mississippi River.

Vegetation

Dominant plant species identified at sample points completed within WL-1 consist of buckthorn (*Rhamnus cathartica*), reed canary grass (*Phalaris arundinacea*), stinging nettle (*Urtica dioica*), and small-spike false nettle (*Boehmeria cylindrica*). Other common species identified in the wetland are listed on the data forms contained in Appendix B. The dominant species within the wetland are comprised mostly of hydrophytic vegetation (OBL, FACW, and/or FAC) and meet the hydrophytic vegetation criterion.

Hydrology

Wetland hydrology was met with primary indicators of High Water Table (A2) and Saturation (A3). It also had secondary indicators that included Drainage Patterns (B10), Geomorphic Position (D2) and the FAC-Neutral Test (D5). Therefore, the wetland hydrology criterion was met.

Soils

MCES New Lift Station L32A Phase 1 Project RESULTS November 9, 2018

Soils within the wetland are mapped by the NRCS as Markey muck (Appendix A, Figure 2). The soils identified at sample point WL1-1W met the NRCS Field Indicator A3-Black Histic. Therefore, the wetland hydrology criterion was met.

Wetland Boundary

The wetland boundary was determined based on distinct differences in vegetation, hydrology, soils and topography consisting of the following: 1) Transition from a scrub-shrub wetland community dominated by buckthorn and reed canary grass to a mesic woodland upland community dominated by black cherry (*Prunus serotina*), bur oak (*Quercus macrocarpa*), prickly gooseberry (*Ribes cynosbati*), and large-leaved aster (*Eurybia macrophylla*); 2) Transition from saturated soils within the wetland to lack of wetland hydrology indicators within the adjacent upland; and 3) Transition from poorly drained hydric soils to somewhat poorly drained non-hydric soils.

3.2.2 Wetland 2 (WL-2)

Wetland 2 (WL-2) is an isolated, depressional, fresh (wet) meadow (PEMB) type wetland on the west central portion of the Property.

Vegetation

Dominant plant species identified at sample points completed within WL-2 consist of reed canary grass, small-spike false nettle, and garlic mustard (*Alliaria petiolate*). Other common species identified in the wetland are listed on the data forms contained in Appendix B. The dominant species within the wetland are comprised mostly of hydrophytic vegetation (OBL, FACW, and/or FAC) and meet the hydrophytic vegetation criterion.

Hydrology

Hydrology was met with a primary indicator of Saturation (A3). It also had secondary indicators of Geomorphic Position (D2) and the FAC-Neutral Test (D5). Therefore, the wetland hydrology criterion was met.

Soils

Soils within the wetland are mapped by the NRCS as Urban land (Appendix A, Figure 2). NRCS Field Indicators of hydric soils identified at sample point WL2-1W consisted of F6-Redox Dark surface. Therefore, the hydric soil criterion was satisfied.

Wetland Boundary

The wetland boundary was determined based on distinct differences in vegetation, hydrology, soils and topography consisting of the following: 1) Transition from a wet meadow wetland community dominated by reed canary grass and small-spike false nettle to a mesic woodland upland community dominated by as bur oak, American Basswood (*Tilia americana*), prickly gooseberry, and large-leaved aster; 2) Transition from saturated soils within the wetland to lack of wetland hydrology indicators within the adjacent upland; and 3) Transition from poorly drained hydric soils to somewhat poorly drained non-hydric soils.

MCES New Lift Station L32A Phase 1 Project RESULTS November 9, 2018

3.3 WATERWAYS

Four waterways were delineated within the Property; their descriptions are detailed below and summarized in Table 3. All culvert locations were located with a GPS capable of sub-meter accuracy. The locations of the waterways are shown on the aerial photo-based map included as Figure 5 in Appendix A. Photographs of the waterways are provided in Appendix C.

Waterway ID	Name	Classification	Cowardin	Preliminary Jurisdictional Status	Length within Property (feet)	Acres
ST-1	Unnamed tributary	Ephemeral	R4UB	Jurisdictional	157.3	0.01
ST-2	Unnamed tributary	Ephemeral	R4UB	Jurisdictional	273.3	0.02
ST-3	Unnamed tributary	Ephemeral	R4UB	Jurisdictional	128.8	0.01
ST-4	Mississippi River	Perennial	R2UBH	Jurisdictional	1,333	NA
TOTAL					1,892.4	0.04 ¹
¹ Sum includes ST-1, ST-2, and ST-3. ST-4 was located on Property boundary and not included in total acres.						

Table 3. Summary of Waterways Delineated within the Property

3.3.1 Stream 1 (ST-1)

Stream ST-1 is not an NHD, PWI, or NWI mapped waterbody. This ephemeral stream originates at a culvert at East River Road on the east side of the Property and flows west into WL-1 where it becomes diffuse and no longer exhibits a bed or bank. This stream is part of a flow through system which is hydrologically connected the Mississippi River, a Waters of the U.S., and is not isolated. Based on professional judgement, ST-1 is jurisdictional; however, the USACE has full discretion in determining the jurisdictional status of referenced wetlands and waterbodies.

3.3.2 Stream 2 (ST-2)

Stream ST-2 is not an NHD, PWI, or NWI mapped waterbody. This ephemeral stream originates within WL-1. A culvert is present at the western terminus of the waterbody. Standing water was present in the stream at the time of the survey and was stagnant. It is assumed that the stream flows west through the culvert and is part of a flow through system which is hydrologically connected the Mississippi River, a Waters of the U.S., and not isolated. Based on professional judgement, ST-2 is jurisdictional; however, the USACE has full discretion in determining the jurisdictional status of referenced wetlands and waterbodies.

3.3.3 Stream 3 (ST-3)

Stream ST-3 is not an NHD, PWI, or NWI mapped waterbody. This ephemeral stream originates at a culvert and flows west 1,069.9 feet to its confluence with the Mississippi River. This stream is hydrologically connected the Mississippi River, a Waters of the U.S., and not isolated. Based on

MCES New Lift Station L32A Phase 1 Project RESULTS November 9, 2018

professional judgment, ST-3 is jurisdictional; however, the USACE has full discretion in determining the jurisdictional status of referenced wetlands and waterbodies.

3.3.4 Stream 4 (ST-4)

ST-4 is the Mississippi River, an NHD, PWI, and NWI mapped lower perennial unconsolidated bottom, permanently flooded (R2UBH) waterbody. PWI mapped waterbodies are protected waters of the State and are subject to Minnesota Statutes, Section 105.42, which requires that a permit be obtained before making any alteration in the course, current or cross-section of these waters. This segment of the Mississippi River is EPA 303(d) listed as impaired for mercury in fish tissue, PCB(s) in fish tissue, and fecal coliform. A TMDL is completed for mercury. The Mississippi River is a Waters of the U.S., and therefore is jurisdictional.

3.4 OTHER ENVIRONMENTAL CONSIDERATIONS

This report is limited to the identification of state and/or federally regulated wetlands and waterways within the Property. However, there may be other regulated environmental features within the Property, including, but not limited to, historical or archeological features, endangered or threatened species, and/or floodplains, etc. Federal, state, and local units of government and regional planning organizations may have regulatory authority to control or restrict land uses within or in proximity to these features. Stantec can assist with identification and/or assessment of additional regulated resources at your request, to the extent that the work is within our range of expertise.

MCES New Lift Station L32A Phase 1 Project CONCLUSION November 9, 2018

4.0 CONCLUSION

Stantec performed a wetland determination and delineation of the MCES New Lift Station L32A Phase 1 Project on behalf of the MCES. The purpose and objective of the wetland determination and delineation was to identify the extent and spatial arrangement of wetlands and waterways within the Property.

Two wetlands were identified and delineated in the Property in accordance with state and federal guidelines and were surveyed with GPS and mapped using GIS software. There was a combined total of 3.373 acres of wetlands in the Property. Wetlands were composed of seasonally flooded (PEMA) and scrub-shrub (PSS1C) type wetlands. Adjacent uplands were composed of upland woodland. Additionally, four waterways were mapped in the Property for a total of approximately 1,892. linear feet of streams. Combined these streams consisted of approximately 0.04 acre.

The USACE has regulatory authority over Waters of the U.S. including adjacent wetlands, and the MNDNR has regulatory authority over certain wetlands, navigable waters and adjacent lands under Statute 103G and Rule 6115.0250. All wetlands are protected under the Wetland Conservation Act Rules Chapter 8420 and administered by a Local Governmental Unit. Local Government Units can be a City, County, Watershed District or Soil and Water Conservation District depending on project location. Stantec recommends this report be submitted to Local Governmental Unit and USACE for final jurisdictional review and concurrence. Finally, counties, townships and municipalities may have local zoning authority over certain types of wetlands and waterways.

Prior to beginning work at this site or disturbing or altering wetlands, waterways, or adjacent lands in any way, Stantec recommends that the owner obtain the necessary permits or other agency regulatory review and concurrence with regard to the proposed work to comply with applicable regulations. Stantec can assist with identification and/or assessment of additional regulated resources at your request, to the extent that the work is within our range of expertise.

The information provided by Stantec regarding wetland boundaries is a scientific-based analysis of the wetland and upland conditions present on the Property at the time of the fieldwork. The delineation was performed by experienced and qualified professionals using standard practices and sound professional judgment. The ultimate decision on wetland boundaries rests with the USACE and LGU, in some cases, the MNDNR as well. As a result, there may be adjustments to boundaries based upon review by a regulatory agency. An agency determination can vary from time to time depending on various factors including, but not limited to recent precipitation patterns and the season of the year. In addition, the physical characteristics of the Property can change over time, depending on the weather, vegetation patterns, drainage activities on adjacent parcels, or other events. Any of these factors can change the nature and extent of wetlands on the site. This wetland delineation report and the associated wetland boundaries cannot be depended on until they are approved by the U.S. Army Corps of Engineers and Wetland Conservation Act. It is recommended to review and confirm these approvals before depending on this report.

MCES New Lift Station L32A Phase 1 Project REFERENCES November 9, 2018

5.0 **REFERENCES**

Cowardin, L.M., V. Carter, F. Golet, and E. LaRoe. (1979). *Classification of Wetlands and Deepwater Habitats of the United States*. FWS/OBS-79/31. U.S. Department of the Interior, Fish and Wildlife Service, Biological Services Program, Washington, D.C. Jamestown, ND: Northern Prairie Wildlife Research Center Home Page. http://www.npwrc.usgs.gov/resource/1998/classwet/classwet.htm (Version 04DEC98).

Environmental Laboratory. (1987). Corps of Engineers Wetlands Delineation Manual. (TR Y-87-1). Vicksburg, MS: U.S. Army Engineers Waterways Experiment Station.

Lichvar, R.W., M. Butterwick, N.C. Melvin, and W. N. Kirchner. 2014. *The National Wetland Plant List*: 2018 Update of Wetland Ratings. Phytoneuron 2013-49:1-241. <u>http://rsgisias.crrel.usace.army.mil/NWPL/</u>.

Munsell® color. 2009. Munsell Soil-Color Charts. Grand Rapids, Ml.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database. Available online at http://websoilsurvey.nrcs.usda.gov/ or http://datagateway.nrcs.usda.gov/. Accessed [October/10/2018].

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed [October/10/2018].

U.S. Army Corps of Engineers (USACE). "Clarification and Interpretation of the 1987 Manual," memorandum from Major General Arthur E. Williams dated 6 March 1992.

USACE. (2005). Guidance on Ordinary High-Water Mark Identification. (Regulatory Guidance Letter, No. 05-05). Retrieved from http://www.usace.army.mil/Missions/CivilWorks/RegulatoryProgramandPermits/GuidanceLetters.aspx.

USACE. "Implementation of the 1987 Corps Wetland Delineation Manual," memorandum from John P. Elmore dated 27 August 1991.

USACE. (2007). Jurisdictional Determination Form Instructional Guidebook. Retrieved from http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/cwa_guide/jd_guidebook_0512 http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/cwa_guide/jd_guidebook_0512 http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/cwa_guide/jd_guidebook_0512 http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/cwa_guide/jd_guidebook_0512 http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/cwa_guidebook_0512

USACE. 2016. National Wetland Plant List, version 3.2. USACE Engineer Research and Development Center, Cold Water Regions Research and Engineering Laboratory, Hanover, N.H. Retrieved from <u>http://wetland_plants.usace.army.mil/</u>.

USACE. "Questions & Answers on the 1987 Manual," memorandum from John F. Study dated 7

MCES New Lift Station L32A Phase 1 Project REFERENCES November 9, 2018

October 1991.

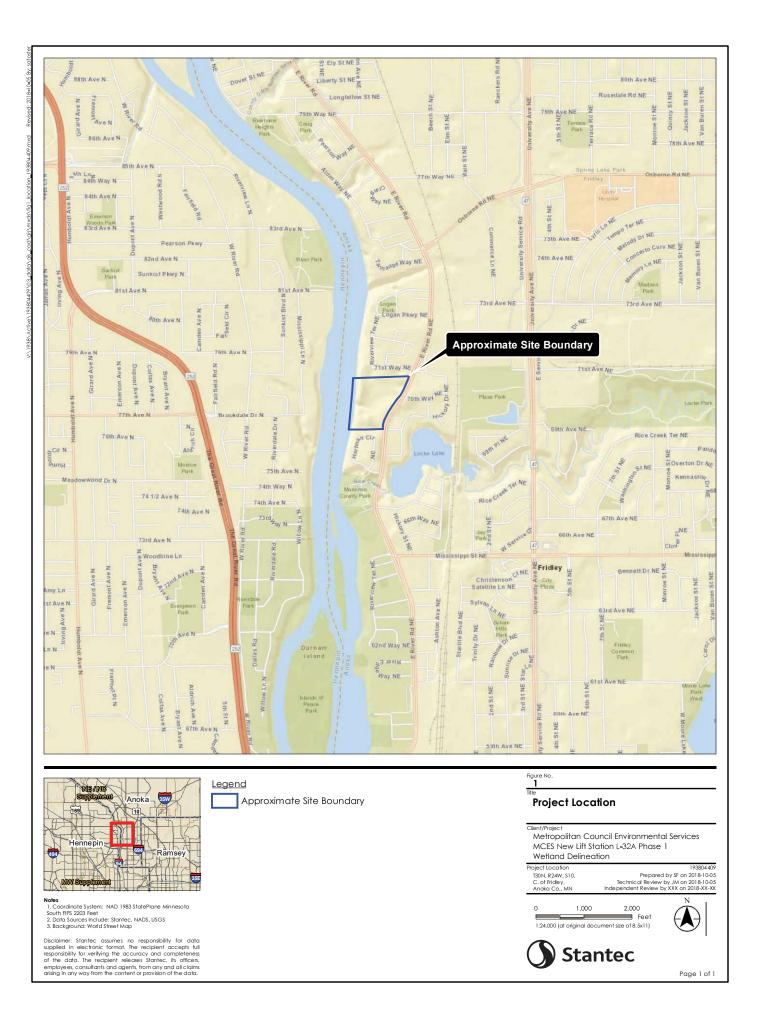
USACE. 2011. Regional Supplement to the Corps of Engineers Wetland delineation Manual: Northcentral and Northeast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, C. V. Noble, and J. F. Berkowitz. ERDC/EL TR-12-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

USACE St. Paul District and Minnesota Board of Water and Soil Resources (BWSR). 2016. Guidance for Offsite Hydrology/Wetland Determinations, ed C. Koniskson and J. Jaschke.

U.S. Department of Agriculture, Natural Resource Conservation Service (USDA, NRCS). 2010. Field Indicators of Hydric Soils in the United States, Version 8.0. L.M. Vasilas, G.W. Hurt, and C.V. Noble (eds.). USDA, NRCS in cooperation with the National Technical Committee for Hydric Soils.

U.S. Fish and Wildlife Service (USFWS). (2012). [Wetlands Spatial Data Layer]. Wetland Geodatabase, National Wetlands Inventory.

United States Geological Survey (USGS). *Minnesota 7.5 Minute Series (Topographic) Maps.* 1:24,000. Reston, VA: United States Department of the Interior, USGS.


MCES New Lift Station L32A Phase 1 Project Appendix A– Figures November 9, 2018

Appendix A – Figures

Figure	1. Project	Location
--------	------------	----------

- Figure 2. NRCS Soil Survey Data w/Hydric Rating
- Figure 3. MN Protected/Public Waters
- Figure 4. National Wetlands Inventory
- Figure 5. Field Collected Data and Topography

Page 1 of 1

WETLAND DELINEATION REPORT

MCES New Lift Station L32A Phase 1 Project Appendix B– Wetland and Waterbody Data Forms November 9, 2018

Appendix B – Wetland and Waterbody Data Forms

WETLAND DETERMINATION DATA FORM Northcentral and Northeast Region

Project/Site: Applicant: Investigator #1:	Metropolitan	L-32A Lift Station Council Environr			igator #2:		Stantec Project #:			Date: County: State:	10/11/18 Anoka Minnesota
Soil Unit:	Markey much	¢.			10.00	Mappe	d NWI Classification:	PFO1A/PEM	11A	Wetland ID:	W1
Landform:	Depression				al Relief:					Sample Point:	W1-1W
Slope (%):		owardin Classific		PSS1B			ular 39 Classification:			Community ID:	Shrub-carr
and the state of t		tions on the site t				(If no, caple		☑ Yes □		Section	10
		Hydrology 🗆 sig					Are normal circumsta		15	Township:	3014
		Hydrology 🗆 na	iturally pri	oblemat	ic?	-	Yes	DNo		Range	.24VV
SUMMARY OF											
Hydrophytic Ver		ent?			No No			Hydric Soils			Yes I No
Wetland Hydrol Remarks:	ogy Present?	1		⊡ Yes				Is This Sam	bling Point	Within A Wetla	nd? 🛛 Yes 🔳 No
HYDROLOGY Wetland Hydr	ology Indicat	ors (Check here	if indicate	ors are r	not nrese	nt 🗆).					
Primary: 0 0 0 0 0 0 0	A1 - Surface W A2 - High Wate A3 - Saturation B1 - Water Ma B2 - Sediment B3 - Drift Depo B4 - Algal Mat B5 - Iron Depo	/ater ar Table rks Deposits sits or Crust			B9 - Wate B13 - Aqu B15 - Mar C1 - Hydr C3 - Oxid C4 - Pres	er-Stained latic Fauna I Deposits ogen Sulfin ized Rhizo ence of Re ent Iron Re Muck Surf	l de Odor spheres on Living Roots iduced Iron duction in Tilled Soils ace			B6 - Surface Soil B10 - Drainage P B16 - Moss Trim C2 - Dry-Season C8 - Crayfish Bur C9 - Saturation V D1 - Stunted or S D2 - Geomorphic D3 - Shallow Aqu	tatterns Lines Water Table rows fisible on Aerial Imagery stressed Plants : Position
		/egetated Concave				piain in Re	marks)			D4 - Microtopogr D5 - FAC-Neutra	aphic Relief
Field Observat Surface Water I Water Table Pro Saturation Pres	Present? esent?	□Yes □ No ☑Yes □ No ☑Yes □ No	Depth: Depth: Depth:	8	(in.) (in.) (in.)			Wetland Hy	drology Pi	resent? 🛛	Yes 🗆 No
Describe Percent	ad Data (stras	m aquiae monitor	ing wall a	orial ab		oue mena	ctions), if available:	-	N/A		
SOILS Map Unit Name Taxonomy:	:: N S	larkey muck andy or sandy-sk	eletal, mi	ixed, eu	ic, frigid T	S erric Haj		: Very poorly o	drained		
Profile Descrip		depth needed to document the i	ndicator or confirm	the absence	of indicators.) (Ty	pe: C=Concentre	tion: D=Depletion, RM=Reduced Matrix, I	CS=Covered/Coaled Sand	d Grains; Location: F	L=Pore Lining, M=Matrix)	
Тор	Bottom		· · · · · · · · · · · · · · · · · · ·	Matrix			Re	dox Features			Texture
Depth	Depth	Horizon	_	(Moist)	%	-	Color (Moist)	%	Туре	Location	(e.g. clay, sand, loam)
0	9	1	10YR	2/1	100	-	4		*	-	muck
9	13	2	10YR	2/1	90	10YR	5/6	5	C	M	CONTRACTOR AND
-	-	<u> </u>		-	-		5/0	5			muck
-	+		-			-	-	-	-		muck -
-				-	-	-				-	
	- + · · ·	-	1		-		-		-		-
+	+		-		1 . 	-	-			-	-
+		-	1	-	+ +	+ +	-		1 1 1	-	-
+ +	-	-		1111		1 1 1 1		1 1 1 7 1	1 1 1 1 1		
	Soil Field Inc A1- Histosol A2 - Histic Epir A3 - Black Hist A4 - Hydrogen A5 - Stratified I A11 - Depleted A12 - Thick Da S1 - Sandy Mu S4 - Sandy Gle S5 - Sandy Re S6 - Stripped N S7 - Dark Surfa	Iicators (check h bedon ic Sulfide ayers Below Dark Surface rk Surface ck Mineral syed Matrix dox Aatrix ace _(LRR R, MLRA 1488)	e		are not pro S8 - Poly S9 - Thin F1 - Loan F2 - Loan F3 - Depl F6 - Redo F7 - Depl F8 - Redo		- - - - y Surface (LRR R, MLRA 1498) (ce (LRR R, MLRA 1498) Mineral (LRR K, L) Matrix (face Surface Surface	Indicator		matic Soils 1 Muck (LRR K, L, MLRA Prairie Redox (LR yeat of Peat ucky Peat of Peat ucky Peat of Peat ucky Peat of Peat urface (LRR K, L, M) ue Below Surface ark Surface (LRR K, I langanese Masse ont Floodplain Soo arent, Material Spodic (MLRA 144A, Shallow Dark Sur aton and wetland hydrolog;	
 NRCS Hydric	Soil Field Inc A1- Histosol A2 - Histic Epir A3 - Black Hist A4 - Hydrogen A5 - Stratified I A11 - Depleted A12 - Thick Da S1 - Sandy Mu S4 - Sandy Gu S5 - Sandy Re S6 - Stripped N	Iicators (check h bedon ic Sulfide ayers Below Dark Surface rk Surface ck Mineral syed Matrix dox Aatrix ace _(LRR R, MLRA 1488)	e		are not pri S8 - Poly S9 - Thin F1 - Loan F2 - Loan F3 - Depl F6 - Redd F7 - Depl	esent alue Belon Dark Surfa hy Mucky M hy Gleyed ted Matrix x Dark Su	- - - - y Surface (LRR R, MLRA 1498) (ce (LRR R, MLRA 1498) Mineral (LRR K, L) Matrix (face Surface Surface			matic Soils 1 Muck (LRR K, L, MLRA Prairie Redox (LR yeat of Peat ucky Peat of Peat ucky Peat of Peat ucky Peat of Peat urface (LRR K, L, M) ue Below Surface ark Surface (LRR K, I langanese Masse ont Floodplain Soo arent, Material Spodic (MLRA 144A, Shallow Dark Sur aton and wetland hydrolog;	

WETLAND DETERMINATION DATA FORM

Northcentral and Northeast Region

Project/Site:	MCES New L-32A Lift Station			Wetland ID: W1 Sample Point: W1-1W
		tive species.)		
Tree Stratum (P	lot size: 10 meter radius) Species Name	<u>% Cover</u> Dominar	t Ind.Status	Dominance Test Worksheet
1.	Celtis occidentalis	<u>1</u>	FAC	
2.				Number of Dominant Species that are OBL, FACW, or FAC: 2 (A)
3.				
4.				Total Number of Dominant Species Across All Strata: 2 (B)
5.				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)
7.				
8.				Prevalence Index Worksheet
9.				
10.		4		$OBL spp. 10 \qquad x 1 = 10$
	Total Cover =	1		FACW spp. 101 $\times 2 = 202$
				FAC spp. 42 x 3 = 126
	ratum (Plot size: 5 meter radius)	30 Y	FAC	FACU spp. 0 $x 4 = 0$
1.	RHAMNUS CATHARTICA	30 Y	FAC	UPL spp x 5 = 0
2.				
3.				Total <u>153</u> (A) <u>338</u> (B)
4.				
5.				Prevalence Index = B/A = 2.209
6.				
7.				
8.				Hydrophytic Vegetation Indicators:
9.				Yes Do Rapid Test for Hydrophytic Vegetation
10.				🗾 Yes 🔲 No 🛛 Dominance Test is > 50%
	Total Cover =	30		✓ Yes
				🔲 Yes 🛛 No 🛛 Morphological Adaptations (Explain) *
Herb Stratum (P	ot size: 2 meter radius)			🗌 Yes 🛛 No 🛛 Problem Hydrophytic Vegetation (Explain) *
1.	PHALARIS ARUNDINACEA	100 Y	FACW	* Indicators of hydric soil and wetland hydrology must be
2.	Boehmeria cylindrica	10 N	OBL	present, unless disturbed or problematic.
3.	PERSICARIA MACULOSA	5 N	FAC	
4.	Urtica dioica	5 N	FAC	Definitions of Vegetation Strata:
5.	Solidago gigantea	1 N	FACW	
6				Tree - Woody plants 3 in. (7.6cm) or more in diameter at breast
7.				height (DBH), regardless of height.
8.				
9.				Sapling/Shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft.
10.				tall.
11.				
12.				Herb - All herbaceous (non-woody) plants, regardless of size, and
13.				woody plants less than 3.28 ft. tall.
14.				
15.				Woody Vines - All woody vines greater than 3.28 ft. in height.
	Total Cover =	121		
Woody Vine Stra	tum (Plot size: 10 meter radius)			
1.	Vitis riparia	1	FAC	
2.				
3.				Hydrophytic Vegetation Present Ves No
4.				
5.	 Total Covor -	1		
Remarks:	Total Cover =	1		
rtemarks:				
Additional Re	marks:			

Page 2 of 2

WETLAND DETERMINATION DATA FORM Northcentral and Northeast Region

Top Depth 0 NRCS Hydric	Sption (Describe to the Depth 9 17 - - - Soil Field Ind A1- Histosol A2 - Histosol A2 - Histosol A3 - Black Hist A4 - Hydrogen A15 - Stratified I A11 - Depleted A12 - Thick Da S1 - Sandy Mu S4 - Sandy Gle S5 - Sandy Re S6 - Stripped M	Horizon	detate or confirm Color (10YR 10YR 10YR 	the absence of Matrix (Moist) 2/1 2/1 7/2 	et indicators.) (Ty % 100 40 55 are not pro S8 - Polyn S9 - Thin F1 - Loan F2 - Loan F3 - Deplk F6 - Redo F7 - Deplk F8 - Redo	erric Hap 	Ion. D=Depletion, RM=Reduced Matrix. Re Color (Moist) 	CS=Covered/Coaled San adox Features % 5	d Grains: Localion P Type C C 	Location M 	R K, L, R) (LRR K, L, R) L) S (LRR K, L, R) ills (MLRA 1498) 145, 1488) fface
Map Unit Name Taxonomy: Profile Descrij Top Depth 0 9 NRCS Hydric	S ption (Describe to the Bottom Depth 9 17 Soil Field Inco A1- Histosol A2 - Histic Epip A3 - Black Hist A4 - Hydrogen A5 - Stratified I A11 - Depleted A12 - Thick Da S1 - Sandy Mu S4 - Sandy Gle S5 - Sandy Re S6 - Stripped N S7 - Dark Surfa	Andy or sandy-sk a depth needed to document the in Horizon 1 2 2 	detate or confirm Color (10YR 10YR 10YR 	the abtence Matrix Moist) 2/1 2/1 7/2 cators a 0 0 0	et indicators.) (Ty % 100 40 55 are not pro S8 - Polyn S9 - Thin F1 - Loan F2 - Loan F3 - Deplk F6 - Redo F7 - Deplk F8 - Redo	erric Hap 	Nosaprists Ion. D=Depletion, RM=Reduced Matrix. Re Color (Moist) 6/6	CS=Covered/Coaled San adox Features % 5 5 Indicator	d Grains: Localion P Type C C 	Location M 	(e.g. clay, sand, loam silt loam
Map Unit Name Taxonomy: Profile Descri Top Depth 0 9 NRCS Hydric	Soll Field Inco A1- Histosol A2 - Histosol A3 - Black Hist A4 - Hydrogen A5 - Stratified I A11 - Depleted A12 - Thick Da	Andy or sandy-sk a depth needed to document the in Horizon 1 2 2 	detate or confirm	the abtence of Matrix (Moist) 2/1 2/1 7/2 	et indicators.) (Ty % 100 40 55 	erric Hap 	Nosaprists Ion. D=Depletion, RM=Reduced Matrix. Re Color (Moist) 6/6	CS=Covered/Coaled San adox Features % 5 5 Indicator	d Grains; Localien P Type C 	Location M 	(e.g. clay, sand, loam silt loam
Map Unit Name Taxonomy: Profile Descri Top Depth 0 9 	S ption (Describe to the Depth 9 17 	Sandy or sandy-sk a depth needed to document the in Horizon 1 2 2 2 	Color (10YR 10YR 10YR 	Matrix Moist) 2/1 2/1 7/2 	of indicators.) (Ty % 100 40 55 		Nosaprists Ion. D=Depietion, RM=Reduced Matrix, Re Color (Moist) 	CS=CoversdlCoaled San edox Features % 5 	d Grains; Location: P Type 	Location M 	(e.g. clay, sand, loam silt loam sand
Map Unit Name Taxonomy: Profile Descrij Top Depth 0 9 	S ption (Describe to the Depth 9 17 	andy or sandy-sk a depth needed to document the in Horizon 1 2 2 2 	Color (10YR 10YR 10YR 10YR 	Matrix Moist) 2/1 2/1 7/2	of indicators.) (Ty % 100 40 55 	erric Hap ar C=Concentrat 10YR 	Nosaprists Ion. D=Depletion, RM=Reduced Matrix, Re Color (Moist) 6/6 	CS=Covered/Coaled San edox Features % 5 	d Grains; Location P Type C 	Location — — — — — —	(e.g. clay, sand, loam silt loam sand
Map Unit Name Taxonomy: Profile Descrij Top Depth 0 9 	S ption (Describe to the Depth 9 17 	andy or sandy-sk a depth needed to document the in Horizon 1 2 2 2 	Color (10YR 10YR 10YR 10YR 	Matrix Moist) 2/1 2/1 7/2	of indicators.) (Ty % 100 40 55 	erric Hap ar C=Concentrat 10YR 	Nosaprists Ion. D=Depletion, RM=Reduced Matrix, Re Color (Moist) 6/6 	CS=Covered/Coaled San edox Features % 5 	d Grains; Location P Type C 	Location — — — — — —	(e.g. clay, sand, loam silt loam sand
Map Unit Name Taxonomy: Profile Descri Top Depth 0 9 	S ption (Describe to the Depth 9 17 	andy or sandy-sk a depth needed to document the in Horizon 1 2 2 2 	Color (10YR 10YR 10YR 	Matrix Moist) 2/1 2/1 7/2 -	of indicators.) (Ty % 100 40 55 	erric Hap a. C=Concentral 10YR 	Nosaprists Ion. D=Depletion, RM=Reduced Matrix, Re Color (Moist) 6/6 	CS=Covered/Coaled San edox Features % 5 	d Grains; Location: P 	Location M 	(e.g. clay, sand, loam silt loam sand
Map Unit Name Taxonomy: Profile Descrij Top Depth 0 9 	S ption (Describe to the Bottom Depth 9 17 -	andy or sandy-sk a depth needed to document the in Horizon 1 2 2 2	Color (10YR 10YR 10YR	Matrix Moist) 2/1 2/1 7/2	of indicators.) (Ty % 100 40 55	erric Hap a. C=Concentrel 10YR 	Nosaprists Ion. D=Depletion, RM=Reduced Matrix, Re Color (Moist) 	CS=Covered/Coaled Sam edox Features % 	d Grains; Location: P Type C 	Location M	(e.g. clay, sand, loam silt loam sand -
Map Unit Name Taxonomy: Profile Descri Top Depth 0 9	S ption (Describe to the Bottom Depth 9 17	Sandy or sandy-sk a depth needed to document the in Horizon 1 2	Color (10YR 10YR	Matrix Moist) 2/1 2/1	of indicators.) (Ty % 100 40	erric Hap er C=Concentrat 	Nosaprists Ion. D=Depletion, RM=Reduced Matrix, Re Color (Moist) 6/6	CS=Covered/Coaled San edox Features % 5	d Grains, Location P Type C	Location — M	(e.g. clay, sand, loam silt loam sand
Map Unit Name Taxonomy: Profile Descrip Top Depth 0	S ption (Describe to the Bottom Depth 9	a depth needed to document the in Horizon 1	Color (Matrix Moist) 2/1	of indicators.) (Ty % 100	erric Hap be: C=Concentre	losaprists ion. D=Depletion, RM=Reduced Matrix. Re Color (Moist)	cs=covered/Coaled San edox Features %	d Grains; Location: P	Location	(e.g. clay, sand, loam silt loam
Map Unit Name Taxonomy: Profile Descri Top Depth	S ption (Describe to the Bottom Depth	andy or sandy-sk a depth needed to document the in Horizon	Color (Matrix Moist)	of indicators.) (Ty	erric Hap pr: C=Concentral	Nosaprists ion. D=Depletion, RM=Reduced Matrix, Re Color (Moist)	cs=covered/Coaled San edox Features %	d Grains; Location: P	Location	(e.g. clay, sand, loam
Map Unit Name Taxonomy: Profile Descrip Top	S ption (Describe to the Bottom	andy or sandy-sk	ndicator or confirm	Matrix	of indicators.) (Ty	erric Hap pe: C=Cencentrel	losaprists ion. D=Depletion, RM=Reduced Matrix. Re	cs=covered/Coaled San edox Features	d Grains, Location P		
Map Unit Name Taxonomy:	S	andy or sandy-sk				erric Hap	losaprists			L=Pore Lining, M=Matrix)	
Map Unit Name Taxonomy:	S	andy or sandy-sk				erric Hap	losaprists				
	e: N	Aarkey muck				S	eries Drainage Class	Very poorly	drained		
Remarks:	Sample poin	t located in hill sid	leslope in	mesic	rorest adj	acent to o	depressional wetland.				
							ctions), if available:		N/A		
Field Observa Surface Water Water Table Pr Saturation Pres	Present? resent?	□Yes ☑ No □Yes ☑ No □Yes ☑ No	Depth: Depth: Depth:		(in.) (in.) (in.)			Wetland Hy	drology Pr	esent? 🗆	Yes 🛛 No
	B4 - Algal Mat or Crust C6 - Recent Iron Reduction in Tilled B5 - Iron Deposits C7 - Thin Muck Surface B7 - Inundation Visible on Aerial Imagery Other (Explain in Remarks) B8 - Sparsely Vegetated Concave Surface					ace			D1 - Stunted or S D2 - Geomorphic D3 - Shallow Aqu D4 - Microtopogr D5 - FAC-Neutra	: Position iitard aphic Relief	
	B2 - Sediment B3 - Drift Depo	Deposits osits			C3 - Oxid C4 - Pres	zed Rhizon ence of Re	spheres on Living Roots duced Iron		8	C8 - Crayfish Bur C9 - Saturation V	rrows /isible on Aerial Imagery
A1 - Surface Water A2 - High Water Table A3 - Saturation B1 - Water Marks					B13 - Aqu B15 - Mar C1 - Hydr	atic Fauna Deposits		☐ Bo - Suirace Soii Cracks ☐ B10 - Drainage Patterns ☐ B16 - Moss Trim Lines ☐ C2 - Dry-Season Water Table			
Wetland Hydr		tors (Check here	if indicato		10t preser B9 - Wate	,	eaves		Secondary:	B6 - Surface Soil	Cracks
HYDROLOGY											
Wetland Hydro Remarks:	logy Present?	2		□ Yes	s ⊡ No			Is This Sam	pling Point V	Within A Wetla	nd? 🔳 Yes 🛛 No
Hydrophytic Ve	·			□ Yes	and the second	<u>.</u>		Hydric Soils			Yes I No
SUMMARY OF		1.12.51231 [] 112	itemping pro							, settiges	
		r Hydrology ⊟ sig r Hydrology ⊟ na					Are normal circumst Ves	ances presen □No	te.	Township: Range	30N 24W
		tions on the site ty				(If no, expla			No	Section	10
	3-5 C	owardin Classific					ular 39 Classification:				
Slope (%):	Side slope			Loc	al Relief:		u nuvn olassineadon.			Sample Point:	W1-1U
Landform:	Markey much			Invest	igator #2:	Manna	d NWI Classification:	PEOTA		State: Wetland ID:	Minnesota W2
Soil Unit: Landform:			nental Se							County:	Anoka
Landform:	Metropolitan						Stantec Project #:	193804409	1	Date:	10/11/18

Page 1 of 2

WETLAND DETERMINATION DATA FORM

Northcentral and Northeast Region

Project/Site:	MCES New L-32A Lift Station				Wetland ID: W2 Sample Point: W1-1U
VEOFTATION					
VEGETATION	(Species identified in all uppercase are non-nat ot size: 10 meter radius)	ive spec	ies.)		
		% Cover	Dominant	Ind.Status	Dominance Test Worksheet
1.	Prunus serotina	30	Y	FACU	
2.					Number of Dominant Species that are OBL, FACW, or FAC: 1 (A)
3.					
4.					Total Number of Dominant Species Across All Strata: 4 (B)
5.					
6.					Percent of Dominant Species That Are OBL, FACW, or FAC: 25% (A/B)
7.					
8.					Prevalence Index Worksheet
9.					Total % Cover of: <u>Multiply by:</u>
10.					OBL spp. 0 $x 1 = 0$
	Total Cover =	30			FACW spp. 0 $x 2 = 0$
					FAC spp. 13 x $3 = 39$
	ratum (Plot size: 5 meter radius)	5	Y	FAC	FACU spp. 102 x 4 = 408
1.	RHAMNUS CATHARTICA	5	Y	FAC	UPL spp6 x 5 =30
3.					Total 101 (A) 477 (D)
4.					Total <u>121</u> (A) <u>477</u> (B)
5.					Prevalence Index = B/A = 3.942
6.					
7.					
8.					Hydrophytic Vegetation Indicators:
9.					Yes I No Rapid Test for Hydrophytic Vegetation
10.					\square Yes \square No Dominance Test is > 50%
	Total Cover =	5			☐ Yes No Prevalence Index is ≤ 3.0 *
					☐ Yes ☑ No Morphological Adaptations (Explain) *
Herb Stratum (Pl	ot size: 2 meter radius)				☐ Yes ☑ No Problem Hydrophytic Vegetation (Explain) *
1.	Festuca subverticillata	40	Y	FACU	
2.	ALLIARIA PETIOLATA	30	Y	FACU	 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
3.	Eurybia macrophylla	5	Ν	UPL	
4.	Matteuccia struthiopteris	5	N	FAC	Definitions of Vegetation Strata:
5.	Ribes cynosbati	2	Ν	FACU	
6	Matteuccia struthiopteris	2	N	FAC	Tree - Woody plants 3 in. (7.6cm) or more in diameter at breast
7.	LEONURUS CARDIACA	1	N	UPL	height (DBH), regardless of height.
8.	Geum canadense	1	N	FAC	
9.					Sapling/Shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft. tall.
10.					
11.					
12.					Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft, tall.
13.					
14.					Woody Vines - All woody vines greater than 3.28 ft. in height.
15.	 Tatal Cavan -	00			WOOUS VIIIES = / III WOOUS VIIIES greater than 0.20 it, in height,
	Total Cover =	86			
Moody Mine Char	tum (Plot size: 10 motor radius)				
1.	tum (Plot size: 10 meter radius)				
2.					
3.					Hydrophytic Vegetation Present Yes No
4.					nyarophyto rogetation resent in rea into
5.					
<u> </u>	Total Cover =	0			
Remarks:		-			
L					
Additional Re	marks:				

WETLAND DETERMINATION DATA FORM Northcentral and Northeast Region

Project/Site: Applicant: Investigator #1:	Metropolitar	L-32A Lift Station n Council Environn mm			igator #2		Stantec Project #:	[E.g. 19370	0096]	Date: County: State:	10/11/18 Anoka Minnesota
Soil Unit: Landform:	Urban land Depression	1		-	al Relief	Mappe	ed NWI Classification:	PUBF		Wetland ID: Sample Point:	W2 W2-1W
Slope (%):		Cowardin Classific	ation:	PEMB			ular 39 Classification:	Type 2		Community ID:	Fresh wet meadow
Are climatic/hyd		litions on the site ty		this time	e of year'	(If no, expl	ain in remarks)	☑ Yes □	No	Section	10
Are Vegetation	D, Soil D, C	or Hydrology 🗖 sig	gnificantly	disturb	ed?		Are normal circumsta	ances presen	12	Township:	3014
Are Vegetation	D. Soil D. C	or Hydrology 🗖 na	turally pro	oblemat	ic?		Yes	DNo .		Range.	.Z4VV
SUMMARY OF											
Hydrophytic Ve								Hydric Soils	The second se		Yes No
Wetland Hydrol Remarks:	ogy Present	1		☑ Yes				Is This Sam	pling Point	Within A Wetla	nd? 🛛 Yes 🔲 No
HYDROLOGY		tore (Check here	if indicate								
		ators (Check here	if indicato	ors are r	tot prese	nt□):			Secondary:		
Primary: A1 - Surface Water A2 - High Water Table A3 - Saturation B1 - Water Marks B2 - Sediment Deposits B3 - Drift Deposits B4 - Algal Mat or Crust B5 - Iron Deposits B7 - Inundation Visible on Aerial Imagery B8 - Sparsely Vegetated Concave Surface					C4 - Pres C6 - Rec	uatic Faun I Deposits rogen Sulfi lized Rhizo sence of Re ent Iron Re Muck Sur	a de Odor Ispheres on Living Roots educed Iron eduction in Tilled Soils face			D1 - Stunted or S D2 - Geomorphic D3 - Shallow Aqu D4 - Microtopogr	tatterns Lines Water Table Tows fisible on Aerial Imagery Stressed Plants Position itard aphic Relief
									Z	D5 - FAC-Neutra	Test
Field Observal Surface Water Water Table Pr Saturation Pres	Present? resent?	□Yes □ No □Yes □ No ☑Yes □ No	Depth: Depth: Depth:	9	(in.) (in.) (in.)			Wetland Hy	drology Pi	resent? 🖸	Yes 🗆 No
	(address)		2.6.20			Sum Start	ections), if available:		N/A		
Remarks: SOILS			w depres	ision sui	rounded	d	: forest. Point approxi		t lower in el	evation than su	rrounding upland.
Map Unit Name Taxonomy:	6 -	Urban land	0			5	eries Drainage Class:	U			
	tion (Describe to f			n Bur absence :	(Indicators) (T)	na CaConcento	ition: D=Depletion: RM=Reduced Matter, I	CSeCoursed/Couled Sec	d Grainer Location F	a Proved Intern Mathematica	
Тор	Bottom			Matrix		I contraction		dox Features		The second second second	Texture
Depth	Depth	Horizon	Color	(Moist)	%	-	Color (Moist)	%	Туре	Location	(e.g. clay, sand, loam)
0	4	1	10YR	2/1	100	-	-		+		silt loam
4	12	2	10YR	2/1	95	10YR	4/6	5	C	M	silt loam
-	-	<u> </u>	-	+	+	-	-		-	-	-
-	-	-	-	-	-	-	-		-	-	<u> </u>
-		÷.	-	-	+	-	-		-		-
+		-	1.000	-	-	-		-	-		
+	-			-			· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·		-
*	-				-	1	· · · ·			-	
	A1- Histosol A2 - Histic Ep A3 - Black His A4 - Hydrogei A5 - Stratified A11 - Deplete A12 - Thick D S1 - Sandy M S4 - Sandy G S5 - Sandy R S6 - Stripped	stic n Sulfide I Layers ed Below Dark Surface Park Surface luck Mineral leyed Matrix edox.			S8 - Poly S9 - Thin F1 - Loar F2 - Loar F3 - Depl F6 - Rede	value Belo Dark Surf ny Mucky I ny Gleyed eted Matri ox Dark Su eted Dark	w Surface (LRR R, MLRA 1498) ace (LRR R, MLRA 1498) Mineral (LRR K, L) Matrix x frace Surface		A10 - 2 cm I A16 - Coast S3 - 5cm Mi S7 - Dark S S8 - Polyval S9 - Thin Da F12 - Iron-M F19 - Piedm F21 - Red P TA6 - Mesic TF12 - Very Other (Expla	matic Soils ¹ Muck (LRR K, L, MLRA Prairie Redox (LRi Lucky Peat of Peat urface (LRR K, L, M) ue Below Surface ark Surface (LRR K, I langanese Masse tont Floodplain So arrent, Material Spodic (MLRA 144A, Shallow Dark Sur ain in Remarks) atten and wetland hydrologi	R K, L, R) (LRR K, L, R) L) S (LRR K, L, R) ils (MLRA 1498) 145, 1488) face
Restrictive Layer	Type:	Rock		Depth:	12 inches			Hydric Soil		R	Yes D No
(If Observed)	(Mps.)	in the second se		Dobur	TE ITOTOS			inguine boli	resenti		
Remarks:											

WETLAND DETERMINATION DATA FORM

Northcentral and Northeast Region

Project/Site:	MCES New L-32A Lift Station			Wetland ID: W2 Sample Point: W2-1W
		tive species.)		
Tree Stratum (P	ot size: 10 meter radius) Species Name	% Cover Dominant	Ind.Status	Dominance Test Worksheet
1.		<u>- % Cover</u> <u>Dominant</u>	<u></u>	Dominance rest worksheet
2.				Number of Dominant Species that are OBL, FACW, or FAC: 2 (A)
3.				
4.				Total Number of Dominant Species Across All Strata: 2 (B)
5.				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)
7.				
8.				Prevalence Index Worksheet
9.				Total % Cover of: Multiply by:
10.				OBL spp. 30 x 1 = 30
	Total Cover =	0		FACW spp. 52 x 2 = 104
				FAC spp. 1 $x 3 = 3$
Sapling/Shrub St	ratum (Plot size: 5 meter radius)			FACU spp. 10 x 4 = 40
1.				UPL spp. 7 x 5 = 35
2.				
3.				Total 100 (A) 212 (B)
4.				
5.				Prevalence Index = B/A = 2.120
6.				
7.				
8.				Hydrophytic Vegetation Indicators:
9.				Yes No Rapid Test for Hydrophytic Vegetation
10.				✓ Yes
	Total Cover =	0		✓ Yes
				Yes Z No Morphological Adaptations (Explain) *
	ot size: 2 meter radius)			🔲 Yes 🛛 No 🛛 Problem Hydrophytic Vegetation (Explain) *
1.	PHALARIS ARUNDINACEA	50 Y	FACW	* Indicators of hydric soil and wetland hydrology must be
2.	Boehmeria cylindrica	30 Y	OBL	present, unless disturbed or problematic
3.	ALLIARIA PETIOLATA	10 N	FACU	
4.	Symphyotrichum cordifolium	7 N	UPL	Definitions of Vegetation Strata:
5.	Symphyotrichum lanceolatum	2 N	FACW	T
6	Matteuccia struthiopteris	1 N	FAC	Tree - Woody plants 3 in. (7.6cm) or more in diameter at breast height (DBH), regardless of height.
7.				
8.				Sapling/Shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft.
9.				tall.
10.				
11.				Herb - All herbaceous (non-woody) plants, regardless of size, and
12.				woody plants less than 3.28 ft, tall.
13.				
14.				Woody Vines - All woody vines greater than 3.28 ft. in height.
¹³ .		100		WOODY VIIIGA - A A A
	Total Cover =	100		
Woody Vino Stro	tum (Plot size: 10 meter radius)			
1.				
2.				
3.				Hydrophytic Vegetation Present Ves 🗆 No
4.				
5.				
	Total Cover =	0		
Remarks:		~		
L				
Additional Re	marks:			

Page 2 of 2

WETLAND DETERMINATION DATA FORM Northcentral and Northeast Region

Project/Site: Applicant: Investigator #1: Soil Unit:	Metropolitar	L-32A Lift Station Council Environm	nental Se		ligator #2:	Марр	Stantec Project #: ed NWI Classification:	193804409		Date: County: State: Wetland ID:	10/11/18 Anoka Minnesota W2
Landform:	Side slope			Lo	cal Relief:					Sample Point:	W2-1U
Slope (%):	5-10 (Cowardin Classific:			a the period		cular 39 Classification:			Community ID:	Upland
Are climatic/hyd	trologic cond	itions on the site ty	pical for	this tim	e of year?	(If no, exp	lain in remarks)	🖾 Yes 🖸	No	Section	10
Are Vegetation	D, Soil D, c	or Hydrology 🗖 sig	nificantly	disturt	ed?		Are normal circumsta	ances present	2	Township:	3014
Are Vegetation	D. Soil D. C	or Hydrology 🗆 nat	turally pro	oblema	tic?		Yes	DNo		Range.	.24WV
SUMMARY OF	FINDINGS										
Hydrophytic Ve	getation Pres	ent?		O Yes	s 🛛 No	1		Hydric Soils F	Present?		🗆 Yes 🗵 No
Wetland Hydrol	ogy Present?			□ Yes	s 🖸 No	÷				Within A Wetlar	nd? 🔲 Yes 🖾 No
Remarks:											
HYDROLOGY											
Wetland Hydr	ology Indica	tors (Check here i	f indicato	ors are	not preser	ntıı):					
Primary		(Secondary		
	A1 - Surface Water B9 - Water-S									B6 - Surface Soil	
	A2 - High Wat A3 - Saturation				B13 - Aqu B15 - Mar					B10 - Drainage P B16 - Moss Trim	
H					C1 - Hydr					C2 - Dry-Season	
	B2 - Sediment						ospheres on Living Roots			C8 - Crayfish Bur	
ē							educed Iron				sible on Aerial Imagery
	B4 - Algal Mat						eduction in Tilled Soils				
	B5 - Iron Depo				C7 - Thin					D2 - Geomorphic	
		n Visible on Aerial Ima Vegetated Concave S			Other (Ex	plain in R	emarks)			D3 - Shallow Aqu D4 - Microtopogra	
	Bo - Sparsely	vegetated Concave a	burlace							D5 - FAC-Neutral	
Field Observat	lone						Í.			3 4 27 21 2 1 3	- with
Surface Water		main main	Transla		/in %						
Water Table Pr		TYes INO	Depth:		(in.)			Wetland Hyd	rology P	resent?	Yes 🖸 No
A new years, the provider of the		Yes INa	Depth:		(in.)						
Saturation Pres	Contract of Contra	🗆 Yes 🖸 No	Depth:		(in.)						
Describe Record	ed Data (stre	am gauge, monitori	ng well, a	erial ph	otos, previ	ous insp	ections), if available:	1	WA.		
Remarks:			esiope ii	mesic	lorest auj		depressional wetland.				
Map Unit Name		Urban land				5	Series Drainage Class:	U			
Taxonomy:	Man									a contractor	
		e depth needed to document the inc	dicates or confirm			an G=Concent	etion: D=Depletion: RM=Reduced Matux		Grainw, Location	PL=Pow Lining, M=Matrix)	Texture
Top	Bottom	Linderer	Oslas	Matrix	-	-		dox Features	Tree	Leasting	(e.g. clay, sand, loam)
Depth	Depth	Horizon		(Moist)	%		Color (Moist)	%	Туре	Location	
0	14	1	10YR	2/1	100			-	-	1	silt loam
-	-	~	-	-	-	-	-	-	-		-
-	-	-	-	-	-	-	-	-	1	-	
-	-	÷-		-		-		-	(m)	-	
-		-	1 mm	-		-	-	-	-	1 - X-	
-	1	-	544	1.000	-		-	-	-		· · · · · · · · · · · · · · · · · · ·
÷	÷	÷.	i para	-	+	- 200	· · · · · · · · · · · · · · · · · · ·	-	- H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
+	H-1		5000	-	-			-	-	-	
NRCS Hydric	Soil Field In	dicators (check he	ere if indi	cators a	are not pre	esent 🖸):	Indicators	for Proble	ematic Soils ¹	
	A12 - Thick D S1 - Sandy M S4 - Sandy G S5 - Sandy R S6 - Stripped	tic 1 Sulfide Layers d Below Dark Surface ark Surface uck Mineral eyed Matrix adox			S9 - Thin F1 - Loam F2 - Loam F3 - Deple F6 - Redo F7 - Deple	Dark Sur by Mucky by Gleyed eted Matri ox Dark Si eted Dark	x urface Surface		A16 - Coas S3 - 5cm M S7 - Dark S S8 - Polyva S9 - Thin D 512 - Iron-N 519 - Piedn 521 - Red F TA6 - Mesic IF12 - Very Dither (Expl hydrophysic waa	Muck (LRR K, L, MLRA t Prairie Redox (LRR kucky Peat of Peat uucky Peat of Peat uurface (LRR K, L, M) lue Below Surface ark Surface (LRR K, L Manganese Masse- nont Floodplain So arent Material 5 Spodic (MLRA 1444 7 Shallow Dark Sur ain In Remarks) autori and witland hydrologi	R K L, R) (LRR K, L, R) -) S (LRR K, L, R) ils (MLRA 1498) 145, 1488) face
Restrictive Layer (If Observed)	Type: h	NA		Depth:	N/A			Hydric Soil P	resent?		Yes 🖸 No
						_	-	a start of the start	and the second s		
Remarks:											

WETLAND DETERMINATION DATA FORM

Northcentral and Northeast Region

Project/Site:	MCES New L-32A Lift Station				Wetland ID: W2 Sample Point: W2-1U
VEGETATION		tive spec	ies.)		
Tree Stratum (P	ot size: 10 meter radius) <u>Species Name</u>		Denvirent	In al Obstan	Dominance Test Worksheet
1.	Quercus macrocarpa	<u>% Cover</u> 30	<u>Dominant</u> Y	Ind.Status FACU	Dominance rest worksheet
2.	Celtis occidentalis	10	Y	FAC	Number of Dominant Species that are OBL, FACW, or FAC: 3 (A)
3.	Tilia americana	10	Ý	FACU	
4.	Populus deltoides	10		FAC	Total Number of Dominant Species Across All Strata: 8 (B)
5.	Fraxinus pennsylvanica	5	 N	FAC	
6.		0	IN	FACVV	Descent of Deminent Species That $Are ODI = FACIAL or FAC: 200/ (A/D)$
7.					Percent of Dominant Species That Are OBL, FACW, or FAC: <u>38%</u> (A/B)
8.					Prevalence Index Worksheet
9.					
					Total % Cover of: Multiply by: OBL spp. 0 x 1 = 0
10.	 Total Cover =	<u>CE</u>			
	Total Cover -	65			
	atum (Plot size: 5 meter radius) Ribes cynosbati	5	Y	EACU	FACU spp. 85 x 4 = 340
1.	RHAMNUS CATHARTICA	5 5	Y	FACU	UPL spp. 10 X 5 = 50
		 		FAC	
3.	Celtis occidentalis	1	N	FAC	Total 131 (A) 493 (B)
4.					
5.					Prevalence Index = B/A = <u>3.763</u>
6.					
7.					
8.					Hydrophytic Vegetation Indicators:
9.					Yes I No Rapid Test for Hydrophytic Vegetation
10.					☐ Yes
	Total Cover =	11			□ Yes $ extsf{W}$ No Prevalence Index is $\leq 3.0^{*}$
					☐ Yes ☑ No Morphological Adaptations (Explain) *
	ot size: 2 meter radius)			EAOU	🔲 Yes 🛛 No 🛛 Problem Hydrophytic Vegetation (Explain) *
1.	ALLIARIA PETIOLATA	20	Y	FACU	* Indicators of hydric soil and wetland hydrology must be
2.	Festuca subverticillata	20	Y	FACU	present, unless disturbed or problematic.
3.	Eurybia macrophylla	10	N	UPL	
4.	Matteuccia struthiopteris	5	Ν	FAC	Definitions of Vegetation Strata:
5.					-
6					Tree - Woody plants 3 in. (7.6cm) or more in diameter at breast height (DBH), regardless of height.
7.					
8.					•
9.					Sapling/Shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft. tall.
10.					
11.					The second se
12.					Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3,28 ft, tall.
13.					
14.					
15.					Woody Vines - All woody vines greater than 3.28 ft. in height.
	Total Cover =	55			
	um (Plot size: 10 meter radius)				
1.					
2.					
3.					Hydrophytic Vegetation Present 🛛 Yes 🗹 No
4.					
5.					
L	Total Cover =	0			
Remarks:					

Additional Remarks:

WETLAND DELINEATION REPORT

MCES New Lift Station L32A Phase 1 Project Appendix C– Site Photographs November 9, 2018

Appendix C – Site Photographs

Photo 1. Sample Point W1-1W, wetland facing east

Photo 3. Sample Point W1-1W, wetland facing south

Photo 5. Sample Point W1-1U, upland facing south

Photo 2. Sample Point W1-1W, wetland facing north

Photo 4. Sample Point W1-1W, wetland facing west

Photo 6. Sample Point W1-1U, upland facing southeast

Photo 7. Sample Point W1-1U, upland facing southwest

Photo 9. Sample Point W2-1U, upland facing northwest

Photo 11. Stream 1, Sample Point S1-P1, facing south

Photo 8. Sample Point W2-1W, wetland facing east

Photo 10. Stream 1, Sample Point S1-P1, facing east

Photo 12. Stream 1, Sample Point S1-P1, facing west

Photo 13. Stream 2, Sample Point S2-P1, facing northwest

Photo 15. Stream 2, Sample Point S2-P1, facing west

Photo 17. Stream 3, Sample Point S3-P1, facing southeast

Photo 14. Stream 2, Sample Point S2-P1, facing southwest

Photo 16. Stream 3, Sample Point S3-P1, facing northwest

Photo 18. Stream 3, Sample Point S3-P1, facing southwest

Photo 19. Stream 4, Sample Point S4-P1, facing north

Photo 21. Stream 4, Sample Point S4-P1, facing west

Photo 20. Stream 4, Sample Point S4-P1, facing south

Photo 22. Utility right-of-way, upland facing west

Photo 23. Utility right-of-way, upland facing east

WETLAND DELINEATION REPORT

MCES New Lift Station L32A Phase 1 Project Appendix D– WETS Analysis November 9, 2018

Appendix D – WETS Analysis

ksheet
5
0
2
>
/sis
-
ື
2
٩
S
\vdash
ш
<u></u>
5

MCES New L-32A Lift Station Anoka County, Minnesota Phase | 193804409 July - September Anoka, Fridley Period of interest: Project Name: Project Number: County: Station:

Long-term rainfall records (from WETS table)

Site determination	Condition**	Value	3	2	2	
Site de	Condition	Rainfall (in) Dry/Normal*/Wet	Wet	Normal	Normal	
	Site	Rainfall (in)	4.59	3.64	4.01	12.24
						Sum =
le)	3 years in 10	greater than	3.80	4.54	4.60	
WETS tab		Normal	3.14	3.69	3.85	10.68
nfall records (from WETS table)	3 years in 10	less than	1.99	2.81	2.51	Sum =
Long-term rainfall		Month	September	August	July	
Long			1st month prior:	2nd month prior:	3rd month prior:	

Product

Weight Month

თ 4 2

ന

*Normal precipitation with 30% to 70% probability of occurrence

	6 to 9 then period has been drier than normal	then period has been normal	15 to 18 then period has been wetter than normal
***If sum is:	6 to 9	10 to 14	15 to 18
**Condition value:	Dry = 1	Normal = 2	Wet = 3

______ ___________

Wet

×

Determination:

15

Sum*** =

Precipitation data source:

http://climateapps.dnr.state.mn.us/gridded_data/precip/wetland/wetland.asp

Donald E.Woodward, ed. 1997. *Hydrology Tools for Wetland Determination*, Chapter 19. Engineering Field Handbook. U.S. Department of Agriculture, Natural Resources Conservation Service, Fort Worth, TX. Reference:

Appendix D

Summary of Public Hearing Presentation, Public Comments Received, and Actions

Appendix D. Summary of Public Hearing Noticing, Presentation, Public Comments Received, and Actions

Contents:

- Public Hearing Notice
 - Version of notice for MCES project webpage posting and for newspaper publication.
 - Version of notice for mailing to property owners near project route.
- Publication of Public Hearing Notice
 - Star Tribune, November 15, 2020
- Virtual Public Hearing, December 17, 2020
 - Agenda and public hearing purpose
 - Sign-in Sheet (List of registrants)
 - Presentation
 - Location of project sites, p. 12
 - Alternatives evaluation, p. 18-29
 - Estimated sewer service charges, p. 33
 - Transcript
 - Video of public hearing (available upon request)
- Documentation of Comments from Public and Other Agencies:
 - Discussions with public hearing attendees focused on building location, odor mitigation methods and expectations, spill prevention, facility façade, and plans for the unused land (see attached public hearing transcript).
 - Project-related emailed and mailed comments/questions and responses are available in the attached public comments log.
 - We heard no major opposition to the project.
- Mailing Lists
 - o SERP Form
 - o Government/Community Stakeholder List
 - Citizens/Property Owners List
 - The mailing lists are also available as Excel spreadsheets by contacting Tim O'Donnell, Metropolitan Council Environmental Services, at <u>tim.odonnell@metc.state.mn.us</u>

Metropolitan Council Public Hearing:

Fridley Area Lift Station (L-32A) Draft Facility Plan

Date: Thursday, December 17, 2020 Time: 4:00 p.m. Location: Online

The Metropolitan Council will hold an online public hearing to inform the public about and to accept comments on its Draft Facility Plan for constructing a new regional wastewater lift station (to be named L-32A) in Fridley. The Metropolitan Council's Environmental Services Division (MCES) prepared the Draft Facility Plan.

For information about the project and instructions for logging into or calling into the online public hearing on Dec. 17, go to <u>www.metrocouncil.org/sewerconstruction/fridley</u> or call the project phone number at 763-520-8650.

The Draft Facility Plan for this project outlines the issues at the existing lift station in Brooklyn Park, why a new lift station is needed, various alternatives studied for the lift station, and the reasons that support MCES's resulting recommendations. The new lift station will allow MCES to continue to provide sufficient and reliable wastewater conveyance from the Champlin, Anoka, Brooklyn Park and Fridley area to the MCES regional wastewater collection system for the period 2020 to 2040. The Draft Facility Plan also addresses the ultimate wastewater flow anticipated at built-out conditions in these cities.

Wastewater generated in Champlin, Anoka and Brooklyn Park currently is conveyed to the existing L-32 lift station in Brooklyn Park through a series of regional sanitary sewers, which then convey the wastewater through Fridley, Minneapolis and Saint Paul to MCES's Metropolitan Wastewater Treatment Plant (Metro Plant) in Saint Paul. The existing lift station, located on the west side of the Mississippi River, must be upgraded or replaced due to its aging and deteriorating infrastructure and to provide sufficient capacity for future growth and provide reliable wastewater conveyance for the region. The existing L-32 site is limited in size, making it challenging to upgrade the existing lift station and build new structures while keeping the existing lift station running and meeting community needs.

MCES owns property on the east side of the Mississippi River in Fridley, which was formerly known as Girl Scouts Camp Lockeslea. This site is large enough to build a new lift station with required wastewater storage, an odor control facility, and other related structures to meet future community needs, while having less construction impacts to the community than other alternatives. MCES recommends constructing the new lift station on the east side of Mississippi River in Fridley.

Copies of the Draft Facility Plan, a plan summary, a project area map for the new Lift Station L-32A, and a recent public information meeting presentation will be available for the public to review after Nov. 17, 2020, at the project webpage: <u>www.metrocouncil.org/sewerconstruction/fridley</u>. The Draft Facility Plan also will be available for the **public to review** during regular business hours at:

- Fridley City Hall, 7071 University Ave. N.E., Fridley
- Brooklyn Park City Hall, 5200 85th Ave. N., Brooklyn Park

390 Robert Street North | St. Paul, MN 55101-1805 Phone 651.602.1000 | Fax 651.602.1550 | TTY 651.291.0904 | metrocouncil.org *An Equal Opportunity Employer*

- Anoka County Library Mississippi Library, 410 Mississippi St. N.E., Fridley
- Hennepin County Library Brooklyn Park Library, 8500 W. Broadway Ave., Brooklyn Park

All interested people are encouraged to attend the online public hearing and offer comments on Thursday, Dec. 17, 2020, at 4 p.m. This hearing will be streamed live and recorded. In addition to providing comments during the online public hearing, you also may provide comments in the following ways by 5 p.m. Dec. 28, 2020:

- Mail written comments to: Tim O'Donnell at Metropolitan Council Environmental Services, 390 Robert St. N., Saint Paul, MN 55101-1805
- Email comments to: *public.info@metc.state.mn.us*
- Record comments on: Metropolitan Council Public Comment Line at 651-602-1500
- Send TTY comments to 651-291-0904

Comments submitted prior to the public hearing will be read into the public record during the online public hearing.

Upon request, MCES will provide reasonable accommodations to persons with disabilities at the public hearing. Please submit such requests to Tim O'Donnell before Dec. 7, 2020, by email at <u>tim.odonnell@metc.state.mn.us</u> or by phone at 651-602-1269.

Next steps: MCES staff will review public comments and evaluate changes to the Draft Facility Plan to address the comments submitted by the public. A recommendation for final adoption of the Facility Plan will be considered by the Metropolitan Council in January 2021.

Fridley Area Lift Station (L32A)

Join us for a virtual public hearing!

Provide comments and learn more about the proposed draft Facility Plan for the Fridley Area Lift Station (L32A) project.

Thursday, December 17, 2020 Hearing starts at 4 p.m. Presentation at 4:05 p.m. To join the virtual public hearing, please register in advance. To register, please visit the project website: *metrocouncil.org/sewerconstruction/fridley*

Review the Fridley Area lift station draft Facility Plan, which compares the options for the lift station and the potential impacts. You can review the Facility Plan and other materials on the project website. Printed versions are also available for the public to review at the following locations:

- Fridley City Hall, 7071 University Avenue NE, Fridley
- Brooklyn Park City Hall, 5200 85th Avenue N, Brooklyn Park
- Anoka County Library Mississippi Library, 410 Mississippi Street NE, Fridley
- Hennepin County Library Brooklyn Park Library, 8500 W Broadway Avenue, Brooklyn Park

Provide your comments

Submit your comments on the draft Facility Plan by 5 p.m. on December 28, 2020. You can provide your comments through:

- Attendance at the December 17 virtual public hearing
- Mail: Tim O'Donnell, Met Council Environmental Services, 390 Robert Street N, Saint Paul MN 55101-1805
- Email: public.info@metc.state.mn.us
- Recording on the Met Council Public Comment line: 651-602-1500
- TTY text: 651-291-0904

About the Fridley Area Lift Station Project

Metropolitan Council Environmental Services (MCES), operator of the metro-area wastewater collection and treatment system, plans to build a new lift station at 6900 East River Road in Fridley. The new facility will be built across the Mississippi River from the existing facility in Brooklyn Park. The existing lift station in Brooklyn Park will be converted to an odor control facility and will provide access to the regional sanitary sewer pipes that cross under the river.

NOTICE OF MORTGAGE FORE-

CLOSURE SALE THE RIGHT TO VERIFICATION OF THE DEBT AND IDENTITY OF THE ORIGINAL CREDITOR WITHIN THE TIME PROVIDED BY LAW IS NOT

NOTICE IS HEREBY GIVEN, that de-

fault has occurred in the conditions of the following described mort-

gage: Mortgagor:Dale H. Peterson and Teresa A. Peterson, husband and

Mortgagee: Ameriquest Mortgage

Company Dated: April 22, 2003 Recorded: October 20, 2003 Anoka County Recorder Document No. 1864435 Assigned To: Deutsche Bank Na-tional Trust Company, as Trustee, in trust for the registered Holders of Ameriquest Mortage Securities

in trust for the registered Holders of Ameriquest Mortgage Securities Inc., Asset-Backed Pass-Through Certificates, Series 2003-11 Dated: January 20, 2009 Recorded: February 11, 2009 Anoka County Recorder Document No. 2005451.016 Assigned To: Deutsche Bank Na-tional Trust Company, as Trustee for Ameriquest Mortgage Securities Inc., Asset-Backed Pass-Through Certificates, Series 2003-11 Dated: September 16, 2014 Recorded: October 1, 2014 Anoka County Recorder Document

Anoka County Recorder Document No. 2091491.001

No. 209 (49):001 Transaction Agent: N/A Transaction Agent Mortgage Identi-fication Number: N/A Lender or Broker: Ameriquest Mort-gage Company Residential Mortgage Servicer: PHH Mortgage Compartion

Mortgage Corporation Mortgage Originator: Ameriquest

Mortgage Originator: Ameriquest Mortgage Company LEGAL DESCRIPTION OF PROPER-TY: THAT PART OF THE WEST 430 FEET OF NORTHWEST 1/4 OF SOUTHWEST 1/4 OF SECTION 2, TOWNSHIP 33, RANGE 25 LYING NORTH OF THE SOUTH 300 FEET

THEREOF, ANOKA COUNTY, MIN This is Abstract Property. TAX PARCEL NO.: 02-33-25-32-

ADDRESS OF PROPERTY: 22333 Xeenon St NW Nowthen, MN 55330 COUNTY IN WHICH PROPERTY IS LOCATED: Anoka ORIGINAL PRINCIPAL AMOUNT OF MORTGAGE: \$192,000.00 AMOUNT DUE AND CLAIMED TO BE DUE AS OF DATE OF NOTICE: \$166,737.41 That orige to the commencement of

\$166,737,41 That prior to the commencement of this mortgage foreclosure proceed-ing Mortgagee/Assignee of Mortgagee complied with all notice requirements as required by statute; that no action or proceeding has been instituted at law or otherwise to recover the debt secured by said mortgage or any mart thereof:

mortgage, or any part thereof; PURSUANT to the power of sale contained in said mortgage, the above described property will be sold by the Sheriff of said county as

DATE AND TIME OF SALE: January

DATE AND TIME OF SALE: January 8, 2021, 10:00 AM PLACE OF SALE: Sheriff's Office, 13301 Hanson Boulevard NW, And-over, MN to pay the debt then se-cured by said Mortgage, and taxes, if any, on said premises, and the costs and disbursements, including attorneys' fees allowed by law sub-ject to redemption within 6 Months from the date of said sale by the mortgagor(s), their personal repre-

mortgagor(s), their personal repre-

sentatives or assigns. DATE TO VACATE PROPERTY: The

DATE TO VACATÉ PROPERTY: The date on or before which the mortga-gor must vacate the property if the mortgage is not reinstated under Minnesota Statutes section 580.30 or the property redeemed under Minnesota Statutes section 580.23 is July 8, 2021 at 11:59 p.m. If the foregoing date is a Saturday, Sun-day or legal holiday, then the date to vacate is the next business day at 11:59 p.m.

MORTGAGOR(S) RELEASED FROM FINANCIAL OBLIGATION ON MORT-

GAGE: NONE

0003 ADDRESS OF PROPERTY:

AFFECTED BY THIS ACTION

Company Dated:

H-4-AII

Section-Page-Zone(s)

Description

13.94

Col x

0

Φ

Public ouncil Ŭ Metropolitan

Heal

Mortgage Foreclosures Mortgage Foreclosures Mortgage Foreclosures

LOCATED: Hennepin ORIGINAL PRINCIPAL AMOUNT OF ORIGINAL PRINCIPAL AMUUNI UF MORTGAGE: \$104,000.00 AMOUNT DUE AND CLAIMED TO BE DUE AS OF DATE OF NOTICE, INCLUDING TAXES, IF ANY, PAID BY MORTGAGEE: \$86,246.98 That prior to the commencement of this mortgage foreclosure proceed-ing Mortgagee/Assignee of

ing Mortgagee/Assignee of Mortgagee complied with all notice requirements as required by statute; That no action or proceeding has been instituted at law or otherwise to recover the debt secured by said

mortgage, or any part thereof; PURSUANT to the power of sale contained in said mortgage, the above described property will be sold by the Sheriff of said county as follows:

follows: DATE AND TIME OF SALE: January 5, 2021 at 11:00 AM PLACE OF SALE: Hennepin County Sheriff's Office, Civil Division, Room 30, 350 South 5th Street, Minneapolis, MN to pay the debt then se-cured by said Mortgage, and taxes, if any, on said premises, and the costs and disbursements, including costs and disbursements, including attorneys' fees allowed by law sub-ject to redemption within six (6) months from the date of said sale by the mortgagor(s), their personal representatives or assigns unless reduced to Five (5) weeks under MN Stat. §580.07. TIME AND DATE TO VACATE PROP-ERTY: If the real estate is an owner-occupied, single-family dwelling.

cocupied, single-family dwelling, unless otherwise provided by law, the date on or before which the mortgagor(s) must vacate the prop-erty if the mortgage is not reinstated under section 580.30 or the properunder section 580.30 or the proper-ty is not redeemed under section 58 0.23 is 11:59 p.m. on July 6, 2021, unless that date falls on a weekend or legal holiday, in which case it is the next weekday, and unless the redemption period is reduced to 5 weeks under MN Stat. Secs. 580.07 or 582.032. MORTGAGOR(S) RELEASED FROM FINANCIAL OBLIGATION ON MORTGAGE:None "THE TIME ALLOWED BY LAW FOR REDEMPTION BY THE MORTGA-GOR, THE MORTGAGOR'S PER-SONAL REPRESENTATIVES OR AS-SIGNS, MAY BE REDUCED TO FIVE

SONAL REPRESENTATIVES OR AS-SIGNS, MAY BE REDUCED TO FIVE WEEKS IF A JUDICIAL ORDER IS ENTERED UNDER MINNESOTA STATUTES, SECTION 582.032, DE-TERMINING, AMONG OTHER THINGS, THAT THE MORTGAGED PREMISES ARE IMPROVED WITH A RESIDENTIAL DWELLING OF LESS THAN FIVE UNITS, ARE NOT PROP-FRTY LISED IN AGRICULTURAL ERTY USED IN AGRICULTURAL PRODUCTION, AND ARE ABAN-DONED

Dated: October 28, 2020

NewRez LLC dba Shelpoint Mort-gage Servicing Mortgagee/Assignee of Mortgagee USSET, WEINGARDEN AND LIEBO,

USSET, WEINGÄRDEN AND LEBO, P.L.I.P. Attorneys for Mortgagee/Assignee of Mortgagee 4500 Park Glen Road #300 Minneapolis, MN 55416 (952) 925-6888 164 - 20-005560 FC THIS IS A COMMUNICATION FROM A DEBT COLLECTOR. 11/8, 11/5, 11/22, 11/29, 12/6, 12/13/20 Star Tribune

NOTICE OF MORTGAGE FORE-

CLOSURE SALE THE RIGHT TO VERIFICATION OF THE DEBT AND IDENTITY OF THE ORIGINAL CREDITOR WITHIN THE TIME PROVIDED BY LAW IS NOT AFFECTED BY THIS ACTION. NOTICE IS HEREBY GIVEN, that de-tault has occurred in conditions of

Author as occurred in conditions of the following described mortgage: DATE OF MORTGAGE: May 17, 2006 MORTGAGOR: Steven P Neumann and Nancy Nordloef Neumann nka Nancy A Neumann, husband and wife as joint tenants. MORTGAGEE: Wells Fargo Financial Minnesota, Inc. DATE AND PLACE OF RECORDING: Filed June 27, 2006, Hennepin County Registrar of Titles, Docu-ment No. 1074906. ASSIGNMENTS OF MORTGAGE: Assigned to: MTGLQ Investors, L.P. Dated November 27, 2017 Filed De-cember 1, 2017, as Document No. 105495215. And thereafter as-signed to: Wilnington Savings Fund fault has occurred in conditions of

signed to: Wilmington Savings Fund Society, FSB, d/b/a Christiana Society, FSB, d/b/a Christiana Trust, not individually but as trustee for Pretium Mortgage Acquisition Trust. Dated January 28, 2018 Filed February 6, 2018, as Document No. T05510297.

Wilmington Savings Fund Society, FSB d/b/a Christiana Trust, as Mortgagee/Assignee of Mortgagee USSET, WEINGARDEN AND LIEBO, P.L.L.P.

Attorneys for Mortgagee/Assignee of Mortgagee 4500 Park Glen Road #300

Minneapolis, MN 55416 (952) 925-6888 (952) 925-6888 107 - 20-005619 FC THIS IS A COMMUNICATION FROM A DEBT COLLECTOR. 11/8, 11/5, 11/22, 11/29, 12/6, 12/13/20 Star Tribune

NOTICE OF MORTGAGE FORE-

NOTICE UP MORTGAGE FORE-CLOSURE SALE THE RIGHT TO VERIFICATION OF THE DEBT AND IDENTITY OF THE ORIGINAL CREDITOR WITHIN THE TIME PROVIDED BY LAW IS NOT AFFECTED BY THIS ACTION. NOTICE IS HEREBY GIVEN, that de-fault has occurred in the conditions of the following described most

of the following described mortgage: Mortgagor: GG Home Investments,

Mortgagee: Pine Financial Group,

Inc. Dated: 07/20/2018 Recorded: 07/23/2018 HENNEPIN County Recorder Docu-ment No. A10575421 Transaction Anopti N/A

Transaction Agent: N/A Transaction Agent Mortgage Identification Numbe

Lender or Broker: Pine Financial Group, Inc.

Group, Inc. Residential Mortgage Servicer: Pine Financial Group, Inc.. Mortgage Originator: Pine Financial Group, Inc. LEGAL DESCRIPTION OF PROPER-TY: Lot 43, West End Addition to Minneapolis, Second Division, Hennepin County, Minnesota This is Abstract Property. TAX PARCEL NO.: 32-029-24-33-0124

ADDRESS OF PROPERTY: 2936 Chowen Avenue South Minneapolis, MN 55416 COUNTY IN WHICH PROPERTY IS

COUNTY IN WHICH PROPERTY IS LOCATED: HENNEPIN ORIGINAL PRINCIPAL AMOUNT OF MORTGAGE: \$688,800.00 AMOUNT DUE AND CLAIMED TO BE DUE AS OF DATE OF NOTICE: \$989,625.36 That prior to the commencement of this mortgage foreclosure proceed-

this mortgage foreclosure proceed-ing Mortgagee/Assignee of Mortgagee complied with all notice

to recover the debt secured by said

sold by the Sheriff of said county as follows: DATE AND TIME OF SALE: Decem-ber 16, 2020, 10:00AM PLACE OF SALE: Hennepin County Sheriff's Office, Civil Unit, 350 South Fifth Street, Room 30, Minne-apolis, MN 55415 to pay the debt then secured by said Mortgage, and taxes, if any, on said premises, and the costs and disbursements, in-cluding attorneys' fees allowed by law subject to redemption within 6 Months from the date of said sale by the mortgagor(s), their personal representatives or assigns. DATE TO VACATE PROPERTY: The date on or before which the mortga-gor must vacate the property if the mortgage is not reinstated under Migneerta Statutes section 580 30

mortgage is not reinstated under Minnesota Statutes section 580.30 Minifesora Statutes section 300.50 or the property redeemed under Minnesota Statutes section 580.23 is June 16, 2021 at 11:59 p.m. If the foregoing date is a Saturday, Sunday or legal holiday, then the date to vacate is the next business day at 11:59 p.m. MORTGAGOR(S) RELEASED FROM

MORTGAGOR(S): RELEASED FROM FINANCIAL OBLIGATION ON MORT-GAGE: NONE THE TIME ALLOWED BY LAW FOR REDEMPTION BY THE MORTGA-GOR, THE MORTGAGOR'S PER-SONAL REPRESENTATIVES OR AS-SIGNS, MAY BE REDUCED TO FIVE WEEKS IF A JUDICIAL ORDER IS ENTERED UNDER MINNESOTA STATUTES SECTION 582.032, DE-TERMINING, AMONG OTHER THINGS, THAT THE MORTGAGED PREMISES ARE IMPROVED WITH A RESIDENTIAL DWELLING OF LESS RESIDENTIAL DWELLING OF LESS THAN FIVE UNITS, ARE NOT PROP

Mortgage Foreclosures 7595 Currell Blvd St. Paul, MN 55125

Attorney for Plaintiff 11/1, 11/8, 11/15, 11/22, 11/29, 12/6/2020 Star Tribune

Probates

StarTribune

CLASSIFIEDS + JOBS + UBLIC NOTICES

GOODS • CARS • JOBS • MORTGAGE FORECLOSURES • LEGAL, CTICES • 612.673.7000 • 800.927.9233

NOTICE OF INFORMAL PROBATE OF WILL AND APPOINTMENT OF PERSONAL REPRESENTATIVE AND NOTICE TO CREDITORS TU CREDITURS STATE OF MINNESOTA FOURTH JUDICIAL DISTRICT COURT COUNTY OF HENNEPIN PROBATE MENTAL HEALTH

DIVISION In Re: Estate of James Gardin Christianson, James G. Christianson, James Christianson

Jim Christianson FILE NO. 27-PA-PR-20-1365

Deceased TO ALL INTERESTED PERSONS

TO ALL INTERESTED PERSONS AND CREDITORS: Notice is hereby given, that an ap-plication for informal probate of the above named decedent's last will dated April 21st, 2020 has been filed with the Registrar herein, and the application has been granted in-formally probating such will App formally probating such will. Any objections may be filed in the above, and the same will be heard by the Court upon notice of hearing

by the Court upon notice of hearing fixed for such purpose. Notice is hereby further given that informal appointment of Mark Carl Christianson, whose address is 8805 Stanley Trail, Eden Prairie, MN, 55347, as personal representa-tive of the estate of the above-named decedent, has been made. Any heir, devisee or other interested person may be entitled to appoint-ment as personal representative or may object to the appointment of may object to the appointment of the personal representative and the the personal representative and the personal representative are empow-ered to fully administer the estate including, after 28 days from the date of issuance of letters, the pow-er to sell, encumber, lease or dis-tribute real estate, unless objections thereto are filed with the Court (pur-suant to Section 524.3-607) and the Court otherwise orders. Notice is further given that ALL CREDITORS having claims against said estate are required to present the same to said personal represen-tative or to the Probate Court Ad-ministrator within four months after the date of this notice or said claims

Wastewater Treatment Plant (Metro Plant) in Saint Paul. The ex-isting lift station, located on the west side of the Mississippi River, must be upgraded or replaced due to its aging and deteriorating in-frastructure and to provide suffi-cient capacity for future growth and provide reliable wastewater conveyance for the region. The ex-isting L-32 site is limited in size, making it challenging to upgrade the existing lift station and build new structures while keeping the existing lift station running and meeting community needs. MCES owns property on the east side of the Mississippi River in Fridley, which was formerly known as Girl Scouts Camp Lockeslea. This site is large enough to build a new lift station with required wastewater storage, an odor conthe date of this notice or said claims will be barred.

Dated: November 12th, 2020 Alonna J. Warns Registrar ProSe

Sarah Lindahl-Pfieffer District Court Administrator

LEGAL NOTICES General Notices Cert. of Assumed Name Mortgage Foreclosures osals for Bids GARAGE SALES Minneapolis North Suburbs South of the River Suburbs NW, SW and West Suburbs East Suburbs St. Paul nage Sales/Odds 'n Ends SERVICES ofessional Services Home/Commercial Services.. Health & Wellness Services ...

Home Health Care Therapeutic Massage Miscellaneous Services **BUSINESS & FINANCIAL OPPORTUNITIES** Business for Sale

Business Opportunities ... Financial

ANNOUNCEMENTS

.186 Celebrations! (See Sunday Variety) Lost & Found . General Announcements . ..216 Adult Entertainment . .226 MFRCHANDISE Auctions/Liquidations .313 Festivals/Crafts/Flea Markets.....

Fridley City Hall, 7071 University Ave. N.E., Fridley
Brooklyn Park City Hall, 5200 85th Ave. N., Brooklyn Park
Anoka County Library – Mississippi Library, 410 Mississippi St. N. E., Fridley
Hennepin County Library – Brook-lyn Park Library, 8500 W. Broadway Ave., Brooklyn Park315 nterested people are encour-t to attend the online public

.002

.115

134

.150

Legal Notices

Metropolitan Council Public Hearing: Fridley Area Lift Station (L-32A) Draft Facility Plan Lake Minnetonka Area Regional Date: Thursday, December 17, 2020

Legal Notices

Wastewater Treatment Plant (Metro Plant) in Saint Paul. The ex-

public record during the online public hearing. Upon request, MCES will provide reasonable accommodations to persons with disabilities at the public hearing. Please submit such requests to Tim O'Donnell before Dec. 7, 2020, by email at tim. donnell@metc.state.mn.us or by phone at 651-602-1269.

Next steps: MCES staff will review

Next steps: Nots stall will review public comments and evaluate changes to the Draft Facility Plan to address the comments submit-ted by the public. A recommenda-tion for final adoption of the Facili-ty Plan will be considered by the

More

ty

2021.

Plan will be considered by the etropolitan Council in January

time for the family.

Turn to Weekend at Home —

every Saturday

in VARIETY.

K.

Plant

Metropolitan Council

Public Hearing:

Time: 4:00 p.m.

Location: Online

Interceptor Improvements **Draft Facility Plan**

The Metropolitan Council will hold an online public hearing to inform the public about and to accept comments on its Draft Facility Plan for constructing a new regional wastewater lift station (to be named L-32A) in Fridley. The Met-ropolitan Council's Environmental Services Division (MCES) prepared the Draft Facility Plan. Date: Tuesday, December 15, 2020 Time: 7:00 p.m. Location: Online

The Metropolitan Council will hold a public hearing to inform the pub-lic about and to accept comments on its Draft Facility Plan for improvements to the regional waste-water system in the Lake Minnetonka area. The Metropoli-tan Council's Environmental Serv-ices Division (MCES) prepared the praff Facility Plan Draft Facility Plan.

For information about the project and instructions for logging into or calling into the online public hearing on Dec. 17, go to www. metrocouncil.org/ sewerconstruction/fridley or call the project phone number at 763-520-8650.

For information about the project and instructions for logging into or calling into the online public hearing on Dec. 15, go to w w w.metrocouncil.org/ sewerconstruction/ LakeMtkaFacilityPlan or call the project phone number at 952-960-7765.

The Draft Facility Plan for this proj-ect outlines the existing condi-tions of MCES's wastewater collection infrastructure, identifies needed improvement projects, dis-cusses alternatives studied for the cusses alternatives studied for the projects, and provides the reasons that support our resulting recom-mendations. These projects will allow MCES to continue to provide sufficient and reliable wastewater collection for the period 2020 to 2030. The Draft Facility Plan also provides projections for anticipatprovides projections for anticipated 2040 wastewater flows.

Wastewater from the Lake Wastewater from the Lake Minnetonka area is conveyed through a series of regional sani-tary sewers within the local com-munities to the MCES regional wastewater treatment plant (Blue Lake Plant) in Shakopee. This sys-tem of regional sanitary sewers Lake Plant) in Shakopee. This sys-tem of regional sanitary sewers consists of sewer pipes and pumping stations. To provide suf-ficient capacity for future growth and provide reliable wastewater conveyance for the region, this system needs to be maintained and upgraded due to age and wear. No expansion of the regional sanitary sewer system is prosanitary sewer system is posed in this Draft Facility Plan. pro

Alternatives considered for the (maintaining the system as-is), 2) rehabilitation of the facilities, and 3) replacement of the facilities with new facilities.

Copies of the Draft Facility Plan, a Copies of the Draft Facility Plan, a plan summary, project area maps, and the public hearing presenta-tion slides will be available for the public to review after Nov. 15, 2020, at the project webpage: ww w.metrocouncil.org/ sewerconstruction/ LakeMtkaFacilityPlan. The Draft Facility Plan also will be available for the **public to review** during reg-ular business hours at: ular business hours at:

new lift station with required wastewater storage, an odor con-trol facility, and other related structures to meet future com-munity needs, while having less construction impacts to the com-munity than other alternatives. MCES recommends constructing the new lift station on the east side of Mississippi River in Fridley. Copies of the Draft Facility Plan, a plan summary. a project area map Deephaven City Hall, 20225 Cottagewood Rd., Deephaven
 Orono City Hall, 2750 Kelley Pkwy., Orono
 Shorewood City Hall, 5755 Coun-try Club Rd., Shorewood
 Excelsior Library, 337 Water St., Fxcelsior Copies of the Draft Facility Plan, a plan summary, a project area map for the new Lift Station L-32A, and a recent public information meet-ing presentation will be available for the public to review after Nov. 17, 2020, at the project webpage: w w w. m e t r o c o u n c i l. o r g / sewerconstruction/fridley. The Draft Facility Plan also will be available for the public to review during regular business hours at:

Excelsior

All interested people are encour-aged to attend the online public hearing and offer comments on Tuesday, Dec. 15, 2020, at 7 p.m. This hearing will be streamed live and recorded. In addition to pro-viding comments during the online public hearing, you also may pro-vide comments in the following ways by 5 p.m. Dec. 28, 2020: • Mail written comments to: Tim Mail written comments to: Tim O'Donnell at Metropolitan Council Environmental Services, 390 Rob-ert St. N., Saint Paul, MN 55101-1805

requirements as required by statute; that no action or proceeding has been instituted at law or otherwise mortgage, or any part thereof; PURSUANT to the power of sale contained in said mortgage, the above described property will be sold by the Sheriff of said county as follow:

The Draft Facility Plan for this proj-ect outlines the issues at the ex-isting lift station in Brooklyn Park, why a new lift station is needed, various alternatives studied for the lift station, and the reasons that support MCES's resulting rec-ommendations. The new lift sta-tion will allow MCES to continue to provide sufficient and reliable wastewater conveyance from the wastewater conveyance from the wastewater conveyance from the Champlin, Anoka, Brooklyn Park and Fridley area to the MCES re-gional wastewater collection sys-tem for the period 2020 to 2040. The Draft Facility Plan also ad-dresses the ultimate wastewater flow anticipated at built-out condi-tions in these cities. Wastewater generated in Champlin, Anoka and Brooklyn Park currently is conveyed to the existing L-32 lift station in Brook-lyn Park through a series of re-gional sanitary sewers, which then convey the wastewater through Fridley, Minneapolis and Saint Paul to MCES's Metropolitan Wastewater Treatment Plant

Classified Index

Insertion Nun Ad Number: Typ(Color Size:

Sunday, November 15, 2020 StarTribune

GAGE: NONE THE TIME ALLOWED BY LAW FOR REDEMPTION BY THE MORTGA-GOR, THE MORTGAGOR'S PER-SONAL REPRESENTATIVES OR AS-SIGNS, MAY BE REDUCED TO FIVE WEEKS IF A JUDICIAL ORDER IS WEEKS IF A JUDICIAL ORDER IS ENTERED UNDER MINNESOTA STATUTES SECTION 582.032, DE-TERMINING, AMONG OTHER THINGS, THAT THE MORTGAGED PREMISES ARE IMPROVED WITH A RESIDENTIAL DWELLING OF LESS THAN FIVE UNITS, ARE NOT PROP-ERTY USED IN AGRICULTURAL PRODUCTION, AND ARE ABAN-DONED. MINNESOTA DONED

DUNED. Dated: October 8, 2020 Deutsche Bank National Trust Com-pany, as Trustee for Ameriquest Mortgage Securities Inc., Asset-backed Pass-Through Certificates, Series 2003-11, Assignee of Mortgage

Series 2000 ..., Mortgagee By: HALLIDAY, WATKINS & MANN,

Attorneys for: Deutsche Bank Na-tional Trust Company, as Trustee tional for Ameriquest Mortgage Securities Inc., Asset-backed Pass-Through Series 2003-11, As Certificates. signee of Mortgagee 101 Fifth Street East St. Paul, MN 55101 ast, Suite 2626

St. Paul, MN 55101 651-291-8955 651-228-1753 (fax) THIS COMMUNICATION IS FROM A DEBT COLLECTOR ATTEMPTING TO COLLECT A DEBT. ANY INFOR-MATION OBTAINED WILL BE USED FOR THAT PURPOSE. MN10048 10/11, 10/18, 10/25, 11/1, 11/8, 11/15/20 Star Tribune

11/15/20 Star Tribune

NOTICE OF MORTGAGE FORE-CLOSURE SALE

THE RIGHT TO VERIFICATION OF THE DEBT AND IDENTITY OF THE ORIGINAL CREDITOR WITHIN THE TIME PROVIDED BY LAW IS NOT AFFECTED BY THIS ACTION. NOTICE IS HEREBY GIVEN, that de-fault has occurred in conditions of the following described mortgage DATE OF MORTGAGE: June 24

2005 MORTGAGOR: Nicholas Penner, a

MORTGAGOR: Nicholas Penner, a single person. MORTGAGEE: Mortgage Electronic Registration Systems, Inc., as mortgagee, as nominee for Voyager Bank its successors and assigns. DATE AND PLACE OF RECORDING: Recorded September 15, 2005 Hennepin County Recorder, Docu-ment No. 8654336. ASSIGNMENTS OF MORTGAGE: Assigned to: Ditech Financial LLC. Dated September 26, 2019 Record-

Assigned to: Ditech Financial LLC. Dated September 26, 2019 Record-ed September 26, 2019, as Docu-ment No. A10706316. And there-after assigned to: New Residential Mortgage LLC. Dated December 12, 2019 Recorded December 12, 2019, as Document No. A10735309. And thereafter assigned to: NewRez LLC d/b/a Shellpoint Mortgage Servic-ing. Dated February 21, 2020 Re-corded February 25, 2020, as Docu-ment No. A10759955 and by Docu-ment Dated March 31, 2020 Re-corded April 13, 2020, as Docu-

corded April 13, 2020, as Document No. A10779345. TRANSACTION AGENT: Mortgage Electronic Registration Systems,

TRANSACTION AGENT'S MORT GAGE IDENTIFICATION NUMBER ON MORTGAGE: 1000389-

ON MORTGAGE: 1000389-0001001714-8 LENDER OR BROKER AND MORT-GAGE ORIGINATOR STATED ON MORTGAGE: Voyager Bank RESIDENTIAL MORTGAGE SERVICER: NewRez LLC d/b/a Shellpoint Mortgage Servicing MORTGAGED PROPERTY AD-DRESS: 2827 Bryant Avenue North #2, Minneapolis, MN 55411 TAX PARCEL I.D. #: 09-029-24-44-0256 0256

LEGAL DESCRIPTION OF PROPER-TY: CIC No. 1460, Urban Home-works Bryant Unit #2, Hennepin County, MN

County, MN COUNTY IN WHICH PROPERTY IS

Said Mortgage being upon Regis-

TRANSACTION AGENT: NONE TRANSACTION AGENT: NONE TRANSACTION AGENT: MORT-GAGE IDENTIFICATION NUMBER ON MORTGAGE: NONE LENDER OR BROKER AND MORT-GAGE ORIGINATOR STATED ON MORTGAGE: Wells Fargo Financial

MORTGAGE: Wells Fargo Financial Minnesota, Inc.

Minnesota, Inc. RESIDENTIAL MORTGAGE SERVICER: Selene Finance LP MORTGAGED PROPERTY AD-DRESS: 3338 Polk Street Northeast, Minneapolis, MN 55418 TAX PARCEL I.D. #: 01-029-24-23-0114

LEGAL DESCRIPTION OF PROPER-TY: Lot 6, Block 10, Arlington Heights, Minneapolis, Hennepin Heights, Minneapolis, Hennepin County, Minnesota. COUNTY IN WHICH PROPERTY IS

I OCATED: Hennepin

ORIGINAL PRINCIPAL AMOUNT OF MORTGAGE: \$167.692.30 ORIGINAL PRINCIPAL AMOUNT OF MORTGAGE: \$167,692.30 AMOUNT DUE AND CLAIMED TO BE DUE AS OF DATE OF NOTICE, INCLUDING TAXES, IF ANY, PAID BY MORTGAGEE: \$114,022.49 That prior to the commencement of this mortgage force/losure proceed. this mortgage foreclosure proceed-ing Mortgagee/Assignee of

Mortgagee complied with all notice requirements as required by statute; That no action or proceeding has been instituted at law or otherwise to recover the debt secured by said

nortgage, or any part thereof; PURSUANT to the power of sale contained in said mortgage, the above described property will be sold by the Sheriff of said county as follows:

billows: DATE AND TIME OF SALE: January 5,2021 at 11:00 AM PLACE OF SALE: Hennepin County Sheriff's Office, Civil Division, Room 30, 350 South 5th Street, Minneap-olis, MN to pay the debt then se-cured by said Mortgage, and taxes, if any, on said premises, and the costs and disbursements, including attorneys' fees allowed by law sub-ject to redemption within six (6)

attorneys' fees allowed by law sub-ject to redemption within six (6) months from the date of said sale by the mortgagor(s), their personal representatives or assigns unless reduced to Five (5) weeks under MN Stat. §580.07. TIME AND DATE TO VACATE PROP-ERTY: If the real estate is an owner-occupied, single-family dwelling, unless otherwise provided by law, the date on or before which the mortgagor(s) must vacate the propmortgagor(s) must vacate the prop-erty if the mortgage is not reinstated under section 580.30 or the properthis not redeemed under section 58 0.23 is 11:59 p.m. on July 6, 2021, unless that date falls on a weekend or legal holiday, in which case it is the next weekday, and unless the redemption period is reduced to 5 weeks under MN Stat. Secs. 580.07 or 582.032. MORTGAGOR(S) RELEASED FROM FINANCIAL OBLIGATION ON MORTGAGE:None "THE TIME ALLOWED BY LAW FOR REDEMPTION BY THE MORTGA-GOR, THE MORTGAGOR'S PER-SONAL REPRESENTATIVES OR AS-SIGNS, MAY BE REDUCED TO FIVE WEEKS IF A JUDICIAL ORDER IS ty is not redeemed under section 58

SIGNS, MAY BE REDUCED TO FIVE WEEKS IF A JUDICIAL ORDER IS ENTERED UNDER MINNESOTA STATUTES, SECTION 582.032, DE-TERMINING, AMONG OTHER THINGS, THAT THE MORTGAGED PREMISES ARE IMPROVED WITH A RESIDENTIAL DWELLING OF LESS THAN FIVE UNITS, ARE NOT PROP-ERTY USED IN AGRICULTURAL PRODUCTION, AND ARE ABAN-DONED."

DONED Dated: November 2, 2020 ERTY USED IN A PRODUCTION, AND AGRICULTURAL ARE DONED Dated: October 22, 2020 Pine Financial Group,

Mortgagee Goerlitz Law, PLLC By: Jared M. Goerlitz P.O. Box 25194

7595 Currell Blvd St. Paul, MN 55125 (651)237-3494 Attorneys for: Pine Financial Group, Inc. Mortgagee THIS COMMUNICATION IS FROM A

THIS COMMUNICATION IS FROM A DEBT COLLECTOR ATTEMPTING TO COLLECT A DEBT. ANY INFOR-MATION OBTAINED WILL BE USED FOR THAT PURPOSE. 09/2020-1.00018 Pine Financial Group, Inc. 10/25, 11/1, 11/4, 11/15, 11/22, 11/29/2020 Star Tribune

STATE OF MINNESOTA STATE OF MINNESOTA COUNTY OF HENNEPIN DISTRICT COURT FOURTH JUDICIAL DISTRICT COURT FILE NO.: 27-CV-20-7447 CASE TYPE: 14. OTHER CIVIL JUDGE KAREN A. JANISCH NOTICE OF SHERIFF'S SALE UN-DED WIDOMENT AND DEODER DER JUDGMENT AND DECREE

Superior Financing, Inc., Plai vs. Savage Land Company Limited Lia-Savage Land Company Limited Lia-bility Company, Dajuan M. Savage, John Doe, Mary Roe and ABC Cor-poration, Defendant(s). NOTICE IS HEREBY GIVEN, that un-der and by virtue of a Judgment and Decree entered in the above entitled action on August 24, 2020, a certi-fied copy of which has been deliv-ered to me directing the sale of the premises hereinafter described to premises hereinafter described to satisfy the amount found and adjudged due to said Plaintiff in the

adjudged due to said Plaintiff in the above entitled action from Defend-ant, Savage Land Company Limited Liability Company, the Sheriff of Hennepin County, will sell at public auction to the highest bidder for cash, on December 17, 2020 at 10:00 a.m., at Hennepin County Sheriff's Office, Civil Unit, 350 South Fifth Street, Room 30, Minne-apolis, MN 55415, said county and state, the premises and real estate state, the premises and real estate described in said Judgment and Decree, to-wit: Lot 12, Block 29, Fairmont Park Ad-

dition to Minneapolis, Hennepin County, Minnesota,

County, Minnesota, being also known and numbered as 2618 Humboldt Avenue North, Min-neapolis, MN 55412. THE TIME ALLOWED BY LAW FOR REDEMPTION BY THE MORTGA-GOR, THE MORTGAGOR'S PER-SONAL REPRESENTATIVES OR AS-SIGNS, MAY BE REDUCED TO FIVE WEEKS IF A JUDICIAL ORDER IS ENTERED UNDER MINNESOTA STATUTES SECTION 582.032 DE-TERMINING, AMONG OTHER THINGS, THAT THE MORTGAGED PREMISES ARE IMPROVED WITH A RESIDENTIAL DWELLING OF LESS THAN, 5 UNITS, ARE NOT PROPER-THAN 5 UNITS, ARE NOT PROPER-TY USED FOR AGRICULTURAL

PRODUCTION, AND ARE DONED DONED. Hennepin County Sheriff Date: 10/16/2020 By: Dep. T. Braesch Print: Dep. T. Braesch Deputy Sheriff Date: October 5, 2020 GOERLITZ LAW, PLLC By: Jared M. Goerlitz By: Jared M. Goerlitz Jared M. Goerlitz (#386714) jgoerlitz@goerlitzlaw.com P.O. Box 25194

Place a classified ad today.

Art & Art Goods	All interested people are encour- aged to attend the online public hearing and offer comments on
Collectibles	Thursday, Dec. 17, 2020, at 4 p.m. This hearing will be streamed live
Handicapped/Medical Equip	and recorded. In addition to pro-
Misc. Equipment & Supplies	viding comments during the online
Restaurant Equipment	public hearing, you also may pro-
Furnishings & Appliances - New	vide comments in the following
Furnishings & Appliances - Used	ways by 5 p.m. Dec. 28, 2020:
Jewelry & Precious Metals	Mail written comments to: Tim
Musical Instruments/Other	O'Donnell at Metropolitan Council
Tickets	Environmental Services, 390 Rob- ert St. N., Saint Paul, MN 55101-
Miscellaneous for Sale & Wanted	1805
PETS & LIVESTOCK	• Email comments to: public.info@
Birds, Fish & Exotic Pets	metc.state.mn.us
Cats403	 Record comments on: Metropoli-
Dogs404	tan Council Public Comment Line
Pets - Miscellaneous406	at 651-602-1500
Horses & Livestock	• Send TTY comments to 651-291-
RECREATION	0904
Campgrounds & RV Parks420	Comments submitted prior to the
Fishing & Hunting Vacations422	public hearing will be read into the
Vacation Guide430	public record during the online
Sports & Fitness Equipment	public hearing.

Fishing & Hunting Vacations .422 Vacation Guide .. .430 Sports & Fitness Equipment .442 Hunting & Fishing Equip 448

General Policies

Review your ad on the first day of publication. If there are mis-takes, notify us immediately. We will make changes for errors and adjust your bill, but only if we receive notice on the first day the ad is published. We limit our liability in this way, and we do not accept liability for any other damages which may reother damages which may re sult from error or omission in or of an ad. All ad copy must be approved by the newspaper, which reserves the right to request charges, reject or proper-ly classify an ad. The advertis-er, and not the newspaper, is re-sponsible for the truthful con-tent of the ad. Advertising is also subject to credit approval.

Legal Notices

PUBLIC ANNOUNCEMENT

YMCA of the North will be accept-ing bids for daily catered meals for youth of all ages (Early Age Child Care, Preschool, Youth and Young Adults). In order for a bid to be considered, your proposal must meet all HEPA and NAEYC Standar ds/ Requirements. If you would ds/ Requirements. If you would like to be considered for an invita-tion, please request a brief meettion, please request a brief meet-ing by emailing Heidi Murphy at Heidi.Murphy@ymcamn.org.No phone calls will be accepted, all questions are to be emailed. All bids will need to be sent electroni-cally to Heidi.Murphy@ymcamn. org by 5:00 p.m. CDT on November 30th, 2020.

Liability Carrier International Inc. will be permanently closed as of November 20, 2020. Address 4141 West 44th Street Edina MN 55424

324

337 Firewood

PREMIUM DRY OAK OR MIXED 4'x8'x16'' \$200, 2 for \$365. Quick de-livery. Cash/Credit. 320-390-0217

Email comments to: public.info@metc.state.mn.us Record comments on: Metropoli-tan Council Public Comment Line

at 651-602-1500 Send TTY comments to 651-291 0904

Comments submitted prior to the public hearing will be read into the public record during the online public hearing.

Upon request, MCES will provide reasonable accommodations to persons with disabilities at the public hearing. Please submit such requests to Tim O'Donnell before Dec. 7, 2020, by email at tim. odonnell@metc.state.mn.us or by phone at 651-602-1269.

Next steps: MCES staff will review public comments and evaluate changes to the Draft Facility Plan to address the comments submit ted by the public. A recommenda-tion for final adoption of the Facili-ty Plan will be considered by the Metropolitan Council in January 2021.

107 Home & Commercial Services

LAWN & LANDSCAPING www.HappyYardMN.com

Clean-ups, gutter cleaning, shrub & brush removal, tree/shrub trim-ming, sod installation & landscaping, river rocks, topsoil, garden weeding, trees, patio installation, fencing installation & repairs.

Residential & Commercial 20% Off Competitors! 612-990-0945

PAINTING - G.R.'s Painting

Wallpaper Removal. Woodworking.. Int/Ext. Free Est. Low Rates. 20 Yrs Exp. In Fridley. Grant 763-789-2510

170 **Business for Sale**

MOVE TO NEBRASKA! CALL MARV HEGGE REAL ESTATE CO. Interested in a good business in NE? We have good schools, hunting, fishing & friendly people! No riots here & no major crimes. Call Marv Hegge & I will find you a good business. will find you a good business. 402-640-3966, 402-388-2601 No texts

313 Auctions/Liquidations

AUCTION of Impounded Vehicles OPEN TO LICENSED SCRAP METAL PROCESSORS & USED MOTOR VEHICLE PARTS DEALERSHIPS ONLY 51 N. Colfax, 2 Blocks So of Glenwood on Colfax. Thursday 11/19/2020 10:30 AM. Lot open fo

BEER COLLECTIBLES - VINTAGE SNOWMOBILES AUCTION NOV. 21 10 A.M. Casey McDonald Est. TrockeAuctions.Com Lic 52-20-07 507-382-8092

Collectibles

AMERICAN FLYER AND LIONEL Pay Cash. Call Jerry 763-572-0238

STATE OF MINNESOTA COUNTY OF HENNEPIN)

650 3rd Ave. S, Suite 1300 | Mineapolis, MN | 55488

Terri Swanson, being first duly sworn, on oath states as follows:

)

1. (S)He is and during all times herein stated has been an employee of the Star Tribune Media Company LLC, a Delaware limited liability company with offices at 650 Third Ave. S., Suite 1300, Minneapolis, Minnesota 55488, or the publisher's designated agent. I have personal knowledge of the facts stated in this Affidavit, which is made pursuant to Minnesota Statutes §331A.07.

2. The newspaper has complied with all of the requirements to constitute a qualified newspaper under Minnesota law, including those requirements found in Minnesota Statutes §331A.02.

3. The dates of the month and the year and day of the week upon which the public notice attached/copied below was published in the newspaper are as follows:

Dates of Publication		<u>Advertiser</u>	Account #	Order #
StarTribune	11/15/2020	METROPOLITAN COUNCIL	1000016545	374127

4. The publisher's lowest classified rate paid by commercial users for comparable space, as determined pursuant to § 331A.06, is as follows: **\$890.40**

5. <u>Mortgage Foreclosure Notices</u>. Pursuant to Minnesota Statutes §580.033 relating to the publication of mortgage foreclosure notices: The newspaper's known office of issue is located in Hennepin County. The newspaper complies with the conditions described in §580.033, subd. 1, clause (1) or (2). If the newspaper's known office of issue is located in a county adjoining the county where the mortgaged premises or some part of the mortgaged premises described in the notice are located, a substantial portion of the newspaper's circulation is in the latter county.

FURTHER YOUR AFFIANT SAITH NOT.

Terrí Swanson

Subscribed and sworn to before me on: 11/16/2020

Aplane K. Houst

Notary Public

Welcome and Introductions

Presentation

About MCES

Facility Plan and Definitions

Project Background and Drivers for the Project

Different Alternatives Evaluated

Proposed Cost Estimates, Limitations and Recommendations for each alternative

Next Steps

Public Comments and Questions

Public Hearing Purpose

- Summarize the proposed Fridley Area Lift Station project and explain alternative approaches that we evaluated
- Answer your questions
- Receive your comments for the public record

Fridley Area Lift Station

Virtual public hearing registrants

December 17, 2020, 4-5:30 p.m. Number of registrants: 46

Community Members

- Amy Dritz
- Ann Postera
- Bailey Larson
- Barbara Guhanick
- Barbara Severni
- Colleen O'Connor Toberman (Friends of the Mississippi River)
- David Hoffman
- Heather Carlson
- Heidi Ferris
- Joe Tessier
- John Glatzmaier

Council Members

- Ann Bolkcom (City of Fridley)
- Stephen Eggert (City of Fridley)
- Mandy Meisner (Anoka County)
- Peter Lindstrom (Met Council)
- Reva Chamblis (Met Council)

Staff

- Adam Gordon (MCES)
- Jeannine Clancy (MCES)
- Jeny Baroda (MCES)
- John Hemming (MCES)
- Anna Bessel (MCES)
- Kate Nyquist (MCES)
- Tim O'Donnell (MCES)
- Tim Wedin (MCES)
- Brian Strand (City of Fridley)

- Justin Foell
- Katie Voss
- Lorna Jacobson
- Margaret Pillsbury
- Martin Gavic
- Nicholas Olderding
- Patti Craddock
- Paul & Andi Kimlinger
- Richard Snyder
- Roland Diederich
- Steve Wolsfeld
- William Lueck

- Curtis Pribula (City of Fridley)
- Jim Kosluchar (City of Fridley)
- Rachel Workin (City of Fridley)
- Stacy Stromberg (City of Fridley)
- Craig Runnakko (City of Brooklyn Park)
- Jerry Auge (Anoka County)
- Joe MacPherson (Anoka County)
- Angela Klein (Zan Associates)
- Ashley Osteraas (Zan Associates)

Welcome!

Fridley Lift Station Virtual Public Hearing

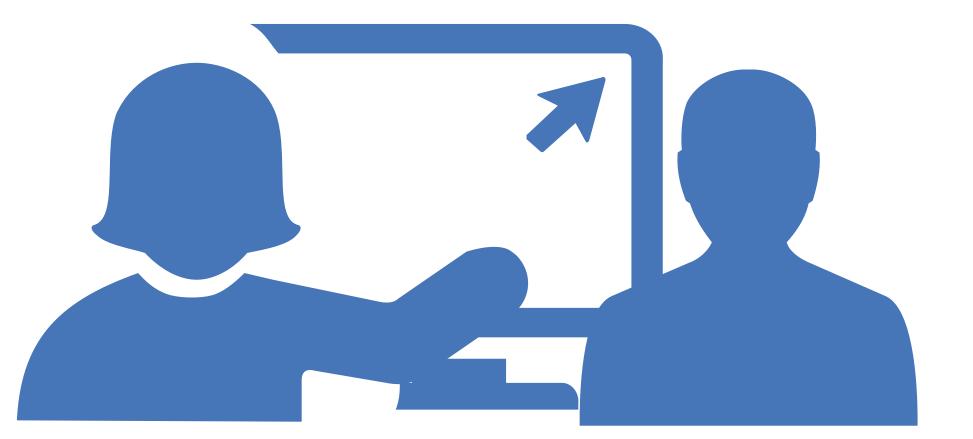
December 17, 2020

You are muted and your video is disabled upon entry. Please utilize the "chat" function (bottom menu bar) if you want to submit comments or questions at this time.

The public hearing will start at 4:00 p.m. Music is playing. If you do not hear music, please check your audio settings.

Fridley Lift Station (L32A)

Tim Wedin, Assistant Manager, Interceptor Engineering Wastewater Planning & Capital Project Delivery Metropolitan Council Environmental Services



Introductions

- **Peter Lindstrom** Metropolitan Council Member District 10 Chair, Environment Committee
- Tim O'Donnell

Metropolitan Council Environmental Services (MCES) Senior Information Coordinator and Project Citizen Liaison

- Tim Wedin MCES Assistant Manager **Interceptor Engineering**
- Jeny Baroda **MCES** Principal Engineer **Interceptor Engineering**
- **Ashley Osteraas & Angela Klein** Zan Associates (MCES Project Communications)

Public Hearing Purpose

- Summarize the proposed Fridley Area Lift Station project and explain alternative approaches that we evaluated
- Answer your questions
- Receive your comments for the public record

Comment Period

- Draft Facility Plan report available for review at:
 - Fridley City Hall, 7071 University Avenue NE, Fridley Ο
 - Brooklyn Park City Hall, 5200 85th Avenue N, Brooklyn Park Ο
 - Anoka County Library Mississippi Library, 410 Mississippi Ο Street NE, Fridley
 - Hennepin County Library Brooklyn Park Library, 8500 W \bigcirc

Broadway Avenue, Brooklyn Park

Metropolitan Council Website:


metrocouncil.org/sewerconstruction/fridley

Comment Period (Cont.)

- Submit comments no later than 5 p.m. on Monday, December 28, 2020
- Submit comments to Tim O'Donnell at Metropolitan Council Environmental Services, 390 Robert Street North, Saint Paul, MN 55101-1805
 - Email comments to: <u>public.info@metc.state.mn.us</u>
 - Record comments on: Metropolitan Council Public Comment Line at 651-602-1500
 - Send TTY comments to 651-291-0904

Public Notices & Schedule Nov 15, 2020 Star Tribune notice Dec 4, 2020 Postcard notice mailed Email invitations & social media posts **Dec 2020** Public hearing Dec 17, 2020 **Jan/Feb 2021** Metropolitan Council adoption of Facility Plan Mar 2021

Submit Plan to Minnesota Pollution Control Agency (MPCA) with application for Clean Water Revolving Fund Project Priority List

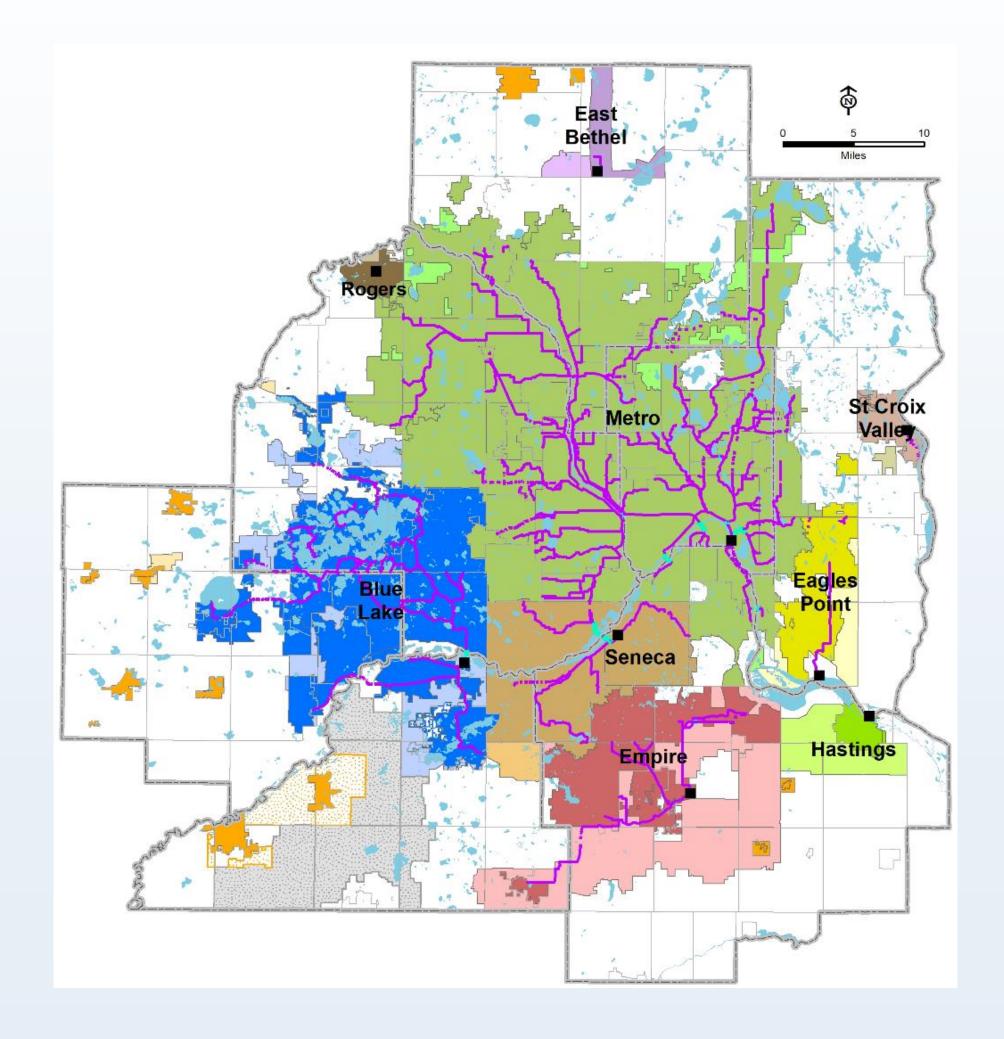
Welcome and Introductions

Presentation

About MCES

Facility Plan and Definitions

Project Background and Drivers for the Project


Different Alternatives Evaluated

Proposed Cost Estimates, Limitations and Recommendations for each alternative

Next Steps

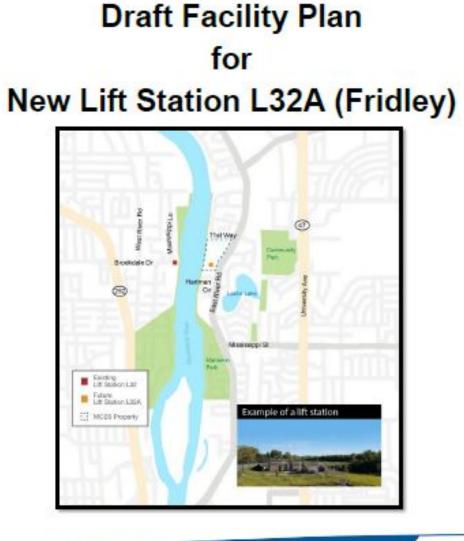
Public Comments and Questions

Metropolitan Council **Environmental Services**

WHO WE SERVE

7-county Twin Cities Metro Area **110** communities 2,700,000+ people

OUR FACILITIES


9 wastewater treatment plants 640 miles of interceptors **\$7** billion in valued assets

OUR ORGANIZATION

600+ employees **250** million gallons per day (avg) **\$150** million / year capital program

What is a Facility Plan?

December 2020

MCES Facility Plan

fees. The MCES Facility Plan:

- Summarizes the current state of the existing MCES wastewater sewer system
- Identifies the need for rehabilitating existing facilities or constructing new facilities
- Determines the potential environmental impacts of new facilities
- Evaluates alternatives and recommends a course of action

This document is a prerequisite to qualify for financing through the Minnesota Public Facilities Authority. The project is funded by using utility

Definitions

Wastewater Sewer System

A system of underground pipes that carries wastewater (or sewage) away from buildings. Cities operate their own local wastewater sewer systems within a community. MCES operates the regional wastewater sewer system that carries wastewater from city systems to our treatment plants, similar to how a freeway system carries regional traffic.

MCES Interceptor

The large underground pipes that make up the regional sewer system. These pipes can be either gravity pipes or forcemains.

Gravity Pipe

A sloped pipe that carries wastewater downhill (by gravity) without mechanical assistance.

Forcemain

A pipe that carries wastewater being pumped (or forced) uphill, as opposed to wastewater flowing by gravity.

Flow Meter


A device MCES uses to measure the quantity of wastewater a customer (city) sends to the regional sewer system, similar to how a city water meter measures water usage in a home.

Lift Station

A lift station or pumping station pumps wastewater from low points in the sanitary sewer system to higher points allowing the flow to be carried by regional gravity pipes to the wastewater treatment plant.

Siphon

Pipes that convey flow beneath low lying areas such as rivers, utilities, or other obstructions.

Project Location

- Existing Lift Station L32
 - Located in Brooklyn Park at 7700 Ο Mississippi Lane North
- Proposed Lift Station L32A
 - 6900 E River Road in Fridley, on MCES Ο property which previously was the site of **Camp Lockeslea**
 - Located across the Mississippi River from Ο the existing lift station

Rd Mississippi Ln West Rive 71st Way Community Park Brookdale Dr Hartman River | Cir (252) Locke Lake Mississippi St Missi Manomin Park Existing Lift Station L32 Future Lift Station L32A MCES Property

Existing Conditions

- L32 (Brooklyn Park) is 50 years old
- Components such as the structure, piping, and controls show signs of deterioration, requiring replacement
- Failures at the lift station have resulted in back-ups of wastewater into neighboring homes
- There are odor complaints due to inability to address air flow at the current facility

Lift station is almost at full capacity with the existing flow conditions

Existing and Future Flow

Year	Average Day Flow MGD	Peak Day Flow MGD
2016*	16.55	38.4
2019*	17.28	26.93
2040	25	48
Ultimate	34	67

Note: *from metered data

Current L32 Peak Capacity – 43 MGD

Drivers for the Project

The existing lift station is 50 years old and has reached the end of its useful life. Condition assessments have documented structural mechanical, and electrical deficiencies which has led to system failures – Backups and odor issues.

The lift station is almost to its full pumping capacity. L32 does not have sufficient capacity to serve the current and future needs of the area.

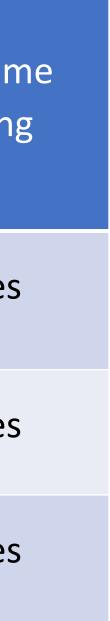
Overall System Analyses


Upstream System Capacity Analysis

Enough capacity in the pipe for future flow

Downstream System Capacity Analysis

No capacity concerns



Spill Prevention Analysis

- MCES Design Guidelines recommends 60 mil response time under peak flows
 - Additional 30 min response time recomme Ο for ultimate flow
- Spill prevention items analyzed
 - In-line storage \bigcirc
 - Two new small submersible pump station
 - Independent pumping system for additional \bigcirc response time
 - Additional resiliency addition split wet well \bigcirc system, redundant pumps, automatic bar screen and grinders, etc.

nin ended	Peak Flows	Available Storage with Existing System	Response Tir with Existin System
	Existing Flows (38 MGD)	1.4 MG	53 minutes
	2040 Flows (48 MGD)	~1.3 MG	41 minutes
n	Ultimate Flows (67 MGD)	1.1 MG	24 minutes
al			

Alternatives Evaluated

No Change

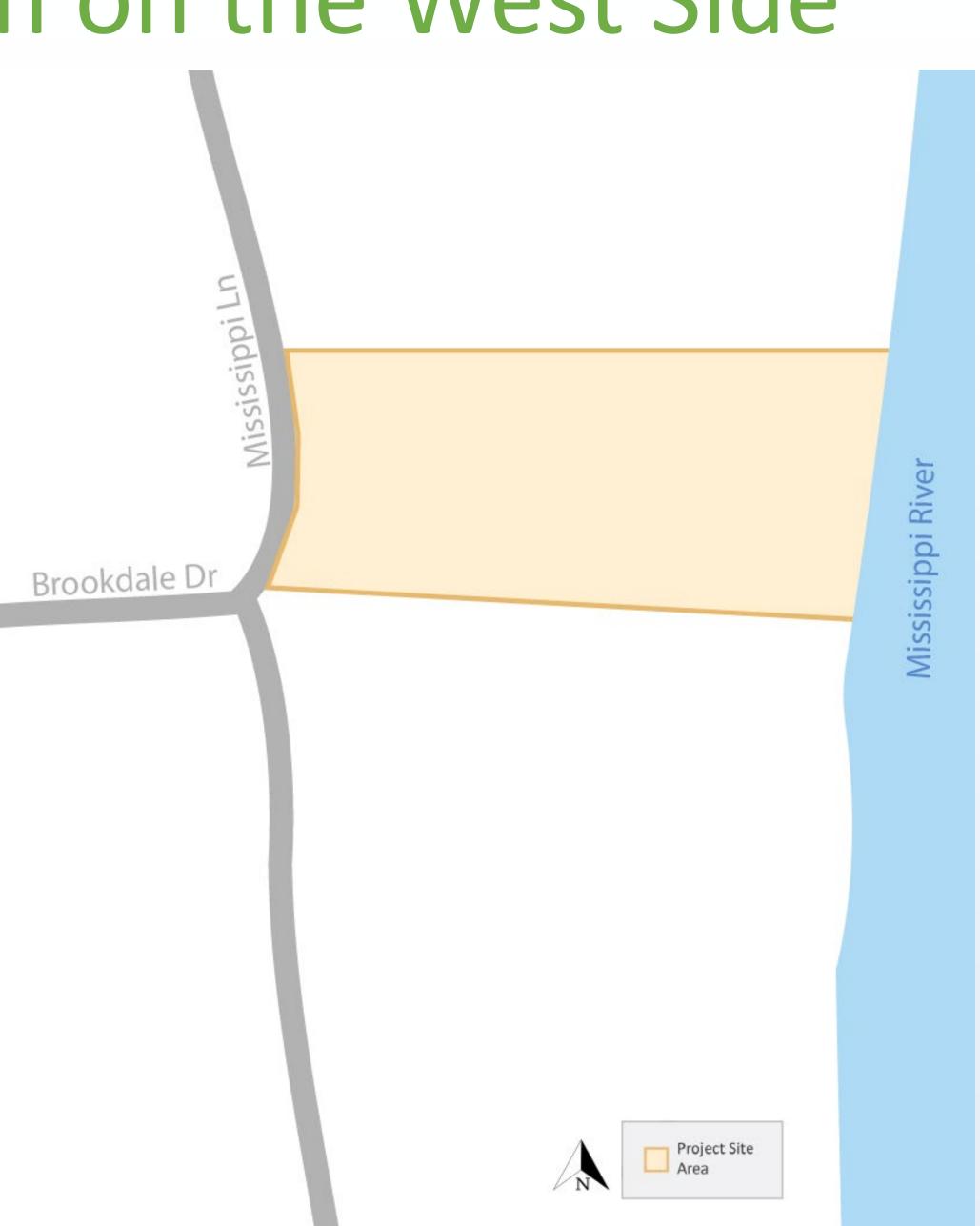
• Do nothing

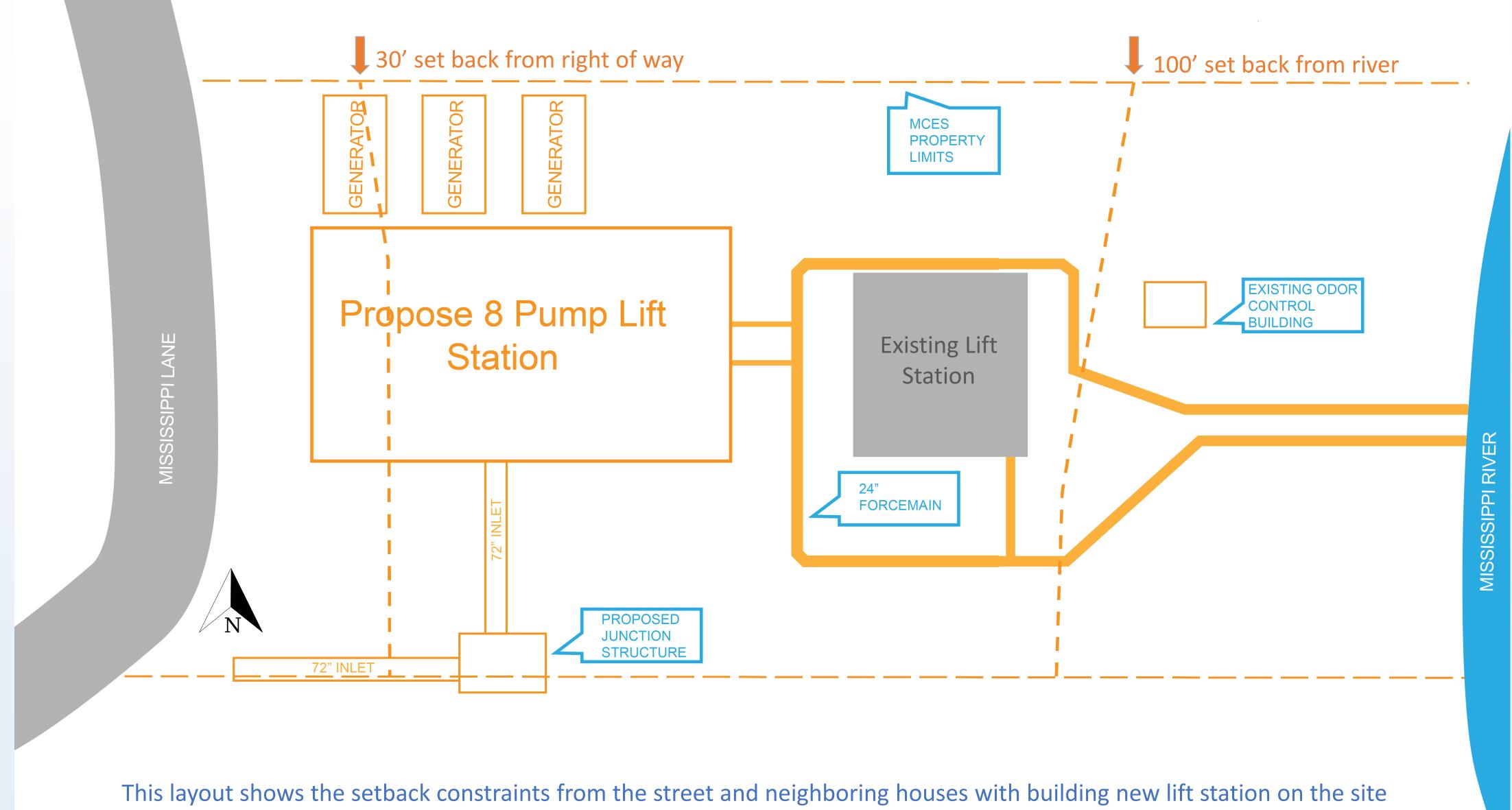
Replace

 Replace the lift station with a new larger lift station on the existing site in Brooklyn Park

 Construct a new larger lift station on the east side of the river in Fridley

Alternative 1 - Do Nothing


- Keep existing lift station the same size without any upgrades
- Limitations
 - Lift station will continue to deteriorate
 - Require excessive maintenance in the future Ο Eventually lead to failure, back-up in residential basements and overflow/spill into the
 - \bigcirc environment and Mississippi River
- Not a recommended option
 - Does not address environmental health and safety hazards, such as spills \bigcirc
 - Does not meet MCES customer level of service goals \bigcirc
 - Not recommended per MCES policy of providing continued and best customer services to the 0 communities they serve



Alternative 2 – New Lift Station on the West Side

This alternative includes:

- Construct a new larger pump station to meet future flow and resiliency needs
- Independent pump system inside the new lift station
- Two new submersible lift stations
- Other resiliency additions
- Upgrades to the existing odor control system
- Maintain operation of existing lift station while constructing a new facility.
 - The existing lift station will be demolished once the new lift station is in operation

Alternative 2 – West Side Property Layout Constraints

Alternative 2 – Estimated Projected Construction Cost

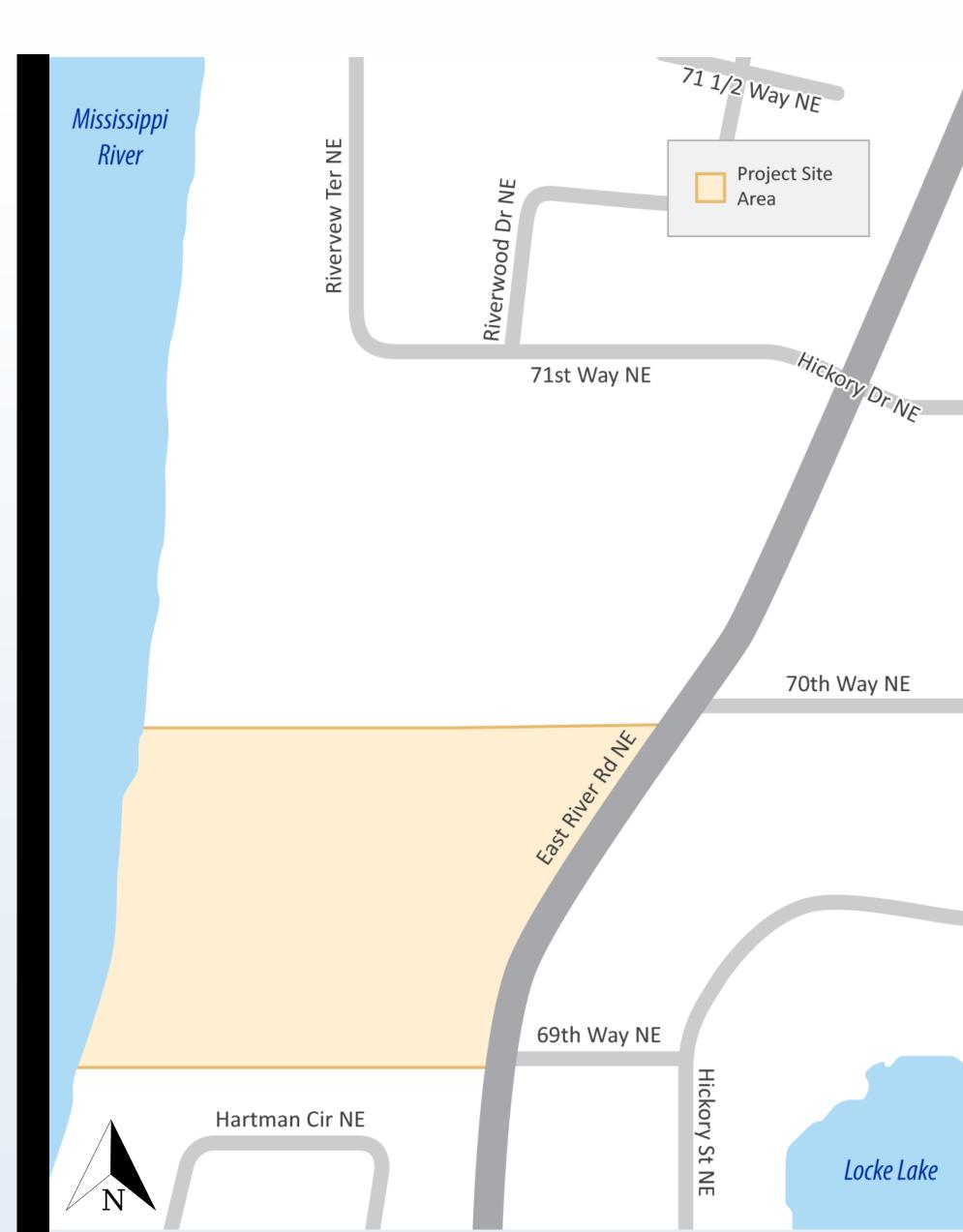
Sr. No.	Description	Estimated Cost
1	New pump station	\$19,200,000
2	Addition of 2 new smaller submersible pump station	\$1,560,000
3	Dedicated pumps at lift station	\$1,800,000
4	Odor control upgrades	\$240,000
5	Property Acquisition + Temporary easements	\$960,000
	Subtotal	\$23,760,000
	22% Engineering and Administration	\$5,227,200
	30% Construction Contingency	\$7,128,000
	Total Project Cost (in 2020-dollar amount)	\$36,115,200

Alternative 2 – Limitations and Recommendations

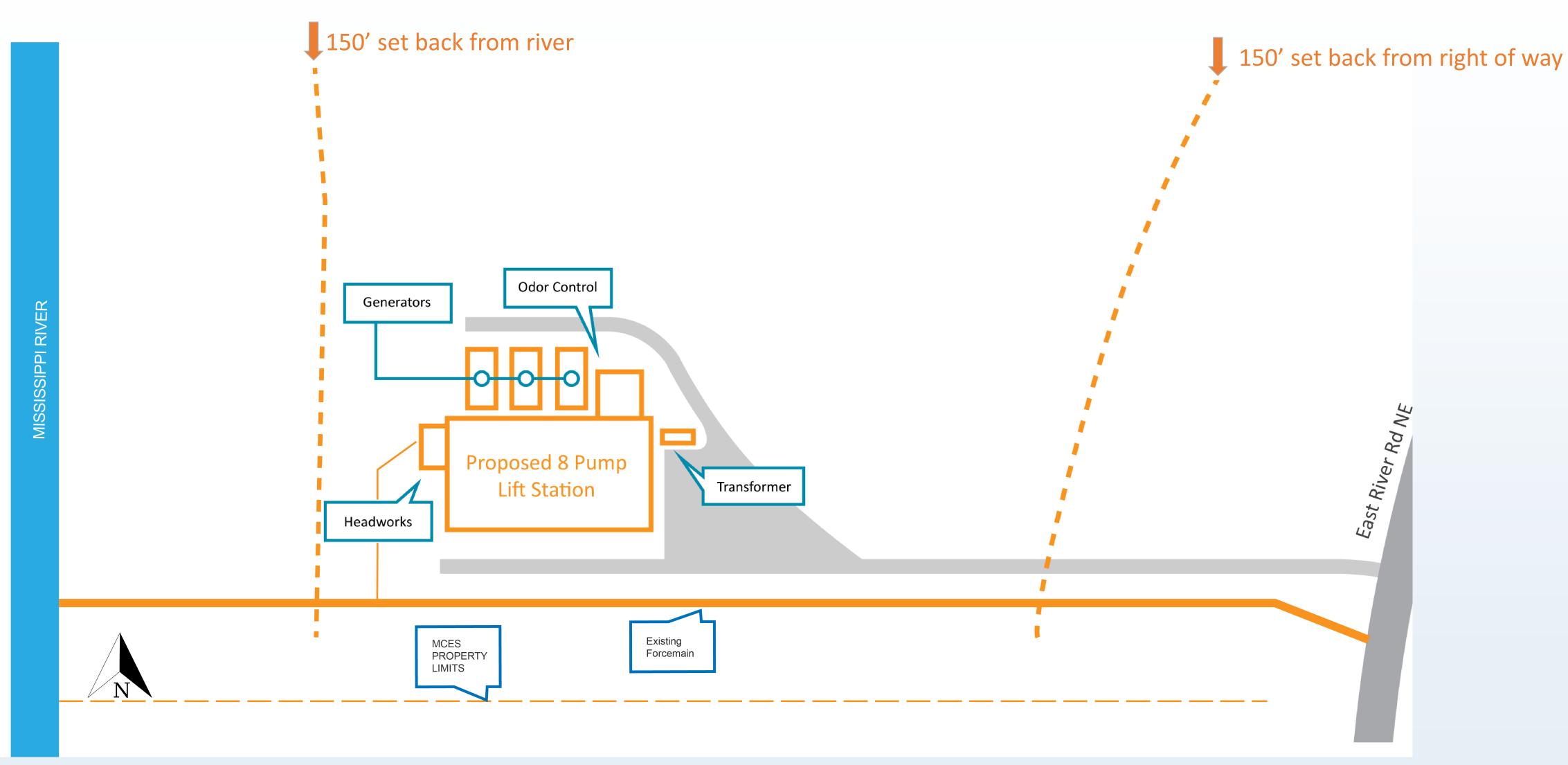
Limitations

- Need to keep existing lift station in operation during construction limiting the available space on site \bigcirc
- Additional property acquisition is required for new lift station + temporary easements for staging \bigcirc
- Construction difficulties due to depth sheeting may be required to protect neighboring properties and \bigcirc street
- Adequate screening may not be possible due to space limitations \bigcirc
- Not a recommended option
 - Space constraints due to set back requirements from the river, bluffs, streets and neighboring properties Challenging to build a new lift station while keeping the exiting lift station in operation \bigcirc

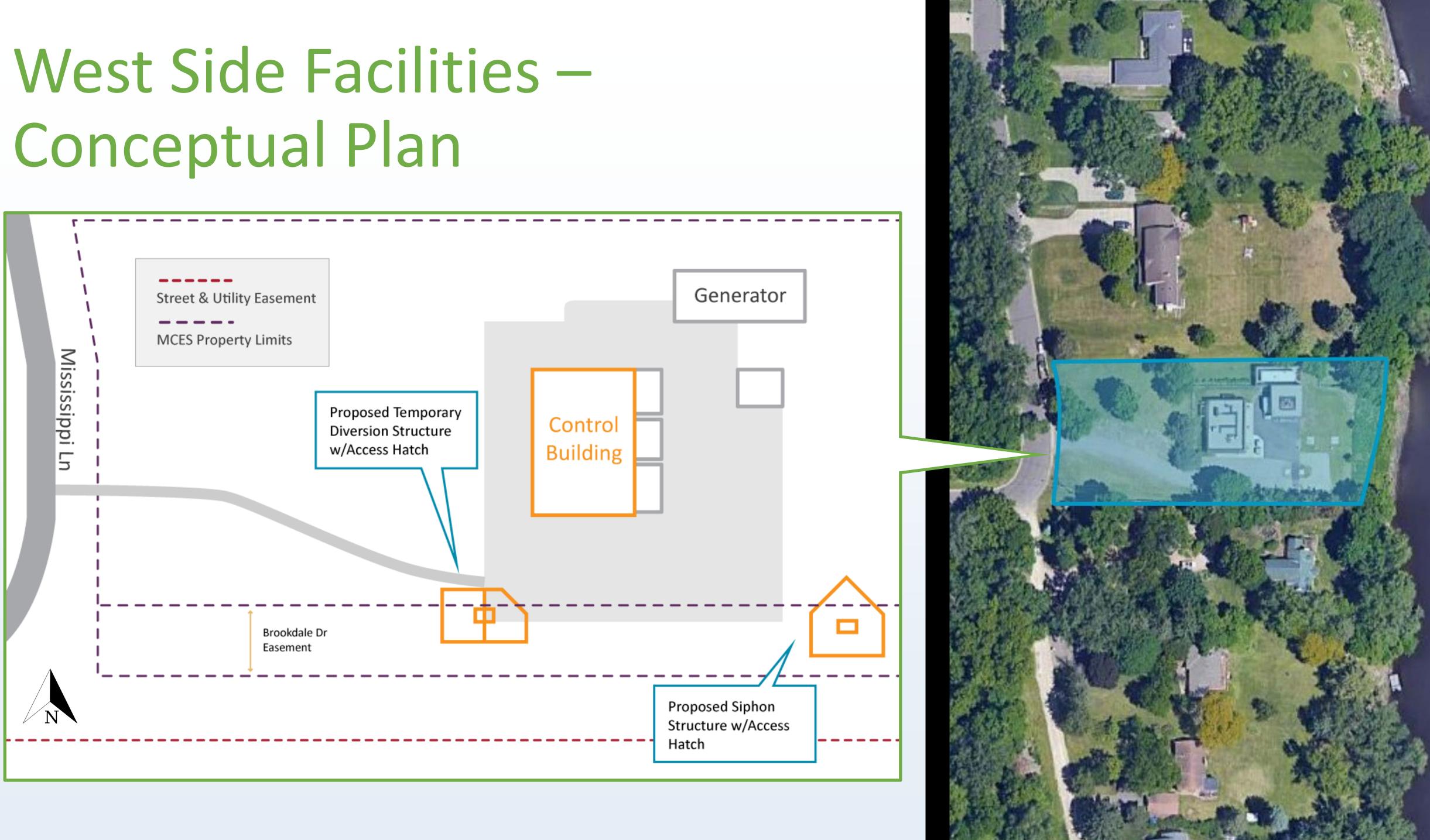
 - Require purchasing additional property near the site

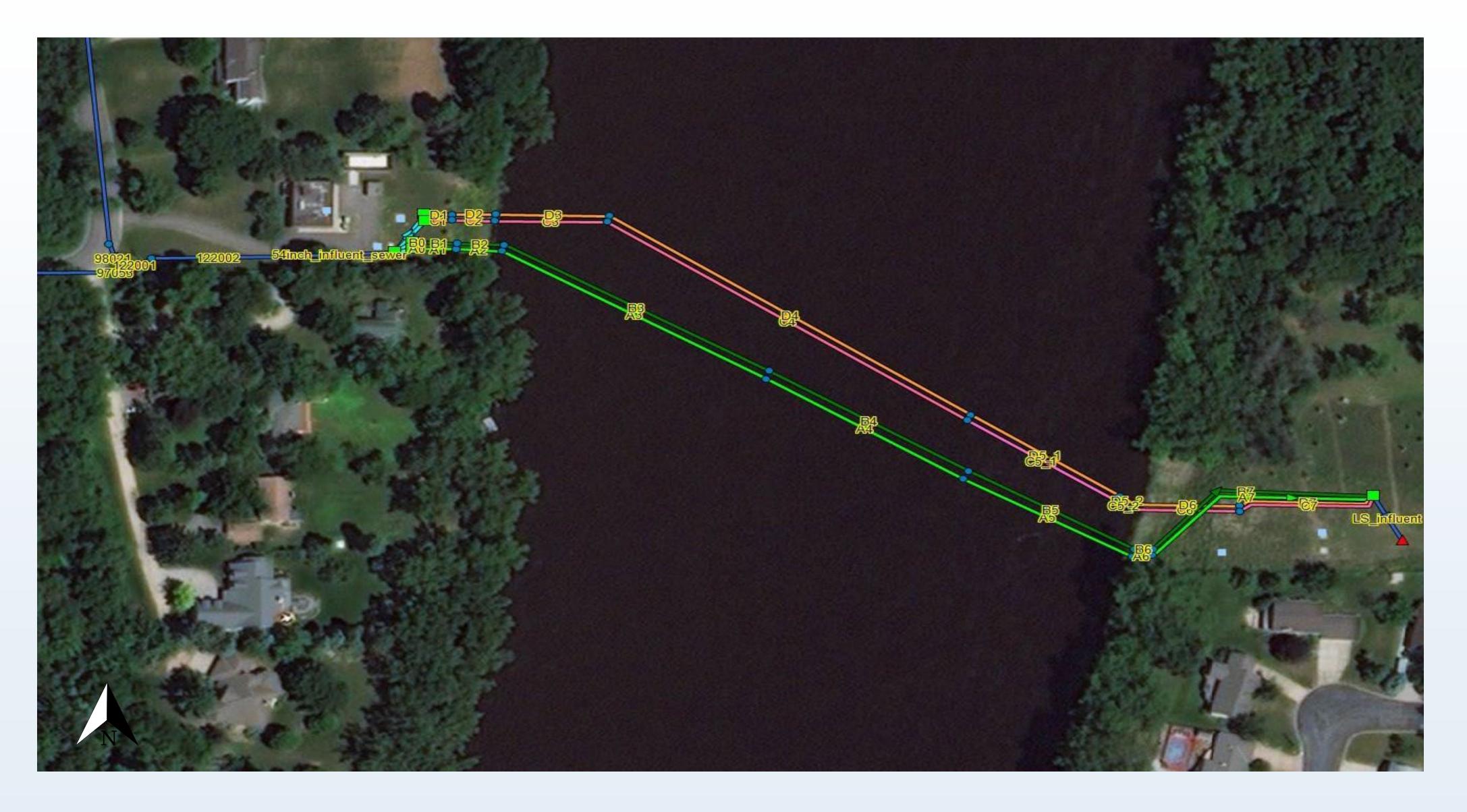


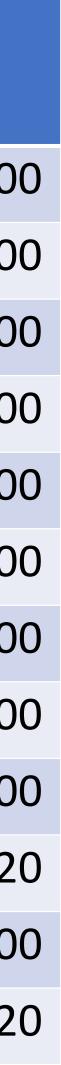
Alternative 3 – New Lift Station on the East Side


This alternative includes:

- East Side Facilities
 - O New pump station to meet future flow and resiliency needs
 - Independent pump system + other resiliency additions
 - O Odor control system
 - Flow meter station
- West Side Facilities
 - O Control building
 - O Siphon structure/headhouse
 - Odor control structure
 - O Two new small submersible lift stations
- River crossing
 - Rehabilitate the two existing forcemains


esiliency needs


East Side Facilities – Conceptual Plan


River Crossing – Upgrade Two Existing Forcemains

Alternative 3 – Estimated Projected Construction Cost

Sr. No.	Description	Estimated Cost
1	New pump station (8-pump circular foundation)	\$20,400,000
2	Addition of 2 new smaller submersible pump station	\$1,560,000
3	Dedicated pumps at lift station	\$1,800,000
4	New odor control system on East Side	\$360,000
5	Flow metering	\$36,000
6	Siphon system	\$6,900,000
7	Odor control system modification on West side	\$120,000
8	River Crossing forcemain pipe rehab	\$2,400,000
	Subtotal	\$33,576,000
	22% Engineering and Administration	\$7,386,720
	30% Construction Contingency	\$10,072,800
	Total Project Cost (in 2020-dollar amount)	\$51,035,520

Alternative 3 – Limitations and Recommendations

Limitations


- Construction challenges due to vicinity of river and depth required for construction 0
- Highest construction cost
- **Recommended** option
 - Large open space: 22-acre property, big enough for new lift station and all other requirements Ο
 - No additional easements required for construction Ο
 - Large space will allow for adequate screening of the facility from its neighbor \bigcirc
 - Provide sustainable long-term solution for conveying wastewater in the region \bigcirc
 - Lift station structures will be designed for 67 MGD and other mechanical and electrical equipment be \bigcirc designed for interim capacity of 48 MGD

Existing MCES Lift Station Examples in Residential Area

MCES will work to develop a facility that architecturally integrates into the neighborhood.

L 27 - Hopkins

L 73 - Woodbury

L 60 – Long Lake

L 76 - Champlin

Information Included in the Report

- Background information and past studies done to date
- Detailed analyses and comparison of alternatives
- **Environmental Review of Fridley Site**
 - Wetland delineation \bigcirc
 - Archeological and historic sites Ο
 - **Environmental Assessment Worksheet (EAW)** Ο
- Geotechnical report for Fridley Site
 - Project delivery schedule

Financing

- MCES Project Financing
 - O Loan from the Minnesota Public Facilities Authority
 - Below market-rate loans used to finance eligible projects which helps keep wastewater rates low
 - Paid for through existing municipal and industrial wastewater rates.

Total Cost and Rate Impacts

- MCES project funding: Public Facilities Authority (PFA) loans (20-year term)
- Loans for these projects are paid from two funding sources:
 - Municipal Wastewater Charges (MWC): This is the MCES portion of your sewer bill.
 - Sewer Availability Charge (SAC): This is a one-time charge for new connections.
- Impact to rates from \$51.04 million in loans*:
 - \$1.38 = amount included in the annual sewer billing per household (\$188 annual average MCES wholesale rate charged to communities).
 - \$64.08 = amount paid per year (for 20 years) from the SAC fund per new household connection (or equivalent).

* This project is included in MCES capital improvement plan, so loan payments are already built into future increases to MWC and SAC rates. These figures show the relative impact on rates and how the project will be paid for over time.

Design-Phase Considerations

Engineering studies will investigate:

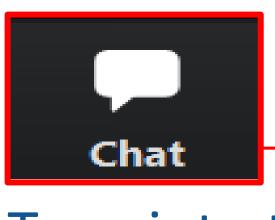
- Construction method
- Odor control mitigation
- Design of lift station
- Physical and conceptual model of the new lift station and odor control system
 Permits requirements by different regulatory agencies
- Architectural design

- Coordination with local entities and stakeholders
- Set back requirements from bluffs, river, streets and neighboring properties

• Site restoration on new lift station site

Next Steps

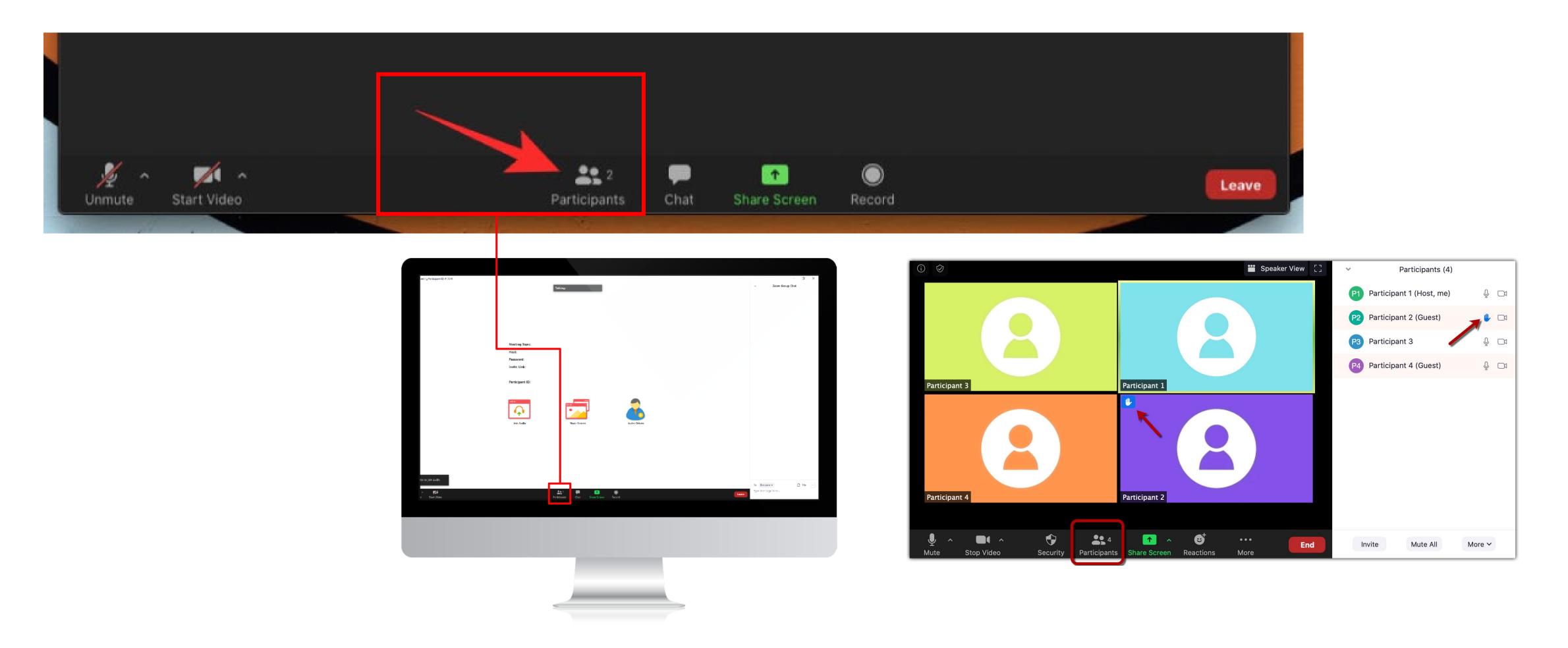
- Dec 28, 2020
- Jan/Feb 2021
- Mar 2021


- Due date for written comments on draft Facility Plan
- Metropolitan Council Adoption of Facility Plan
- Submit Plan final Facility Plan to Minnesota Pollution Control Agency (MPCA) with application for Clean Water Revolving Fund Project Priority List

Project Schedule

Public comments and questions

- Participants will be muted during the presentation
- To ask questions or provide comments:
 - Computer, Smartphone and Tablet Users:
 - Use the Chat box to type in questions and comments


A

Type into the chat box

Public comments and questions

Use the raise hand function to be unmuted and speak aloud. Select the 'Raise Hand' option inside the "Participants" panel from the right-hand side of the screen.

Comment Period

- Draft Facility Plan report available for review at:
 - Fridley City Hall, 7071 University Avenue NE, Fridley Ο
 - Brooklyn Park City Hall, 5200 85th Avenue N, Brooklyn Park Ο
 - Anoka County Library Mississippi Library, 410 Mississippi Ο Street NE, Fridley
 - Hennepin County Library Brooklyn Park Library, 8500 W \bigcirc

Broadway Avenue, Brooklyn Park

Metropolitan Council Website:


metrocouncil.org/sewerconstruction/fridley

Comment Period (Cont.)

- Submit comments no later than 5 p.m. on Monday, December 28, 2020
- Submit comments to Tim O'Donnell at Metropolitan Council Environmental Services, 390 Robert Street North, Saint Paul, MN 55101-1805
 - Email comments to: <u>public.info@metc.state.mn.us</u>
 - Record comments on: Metropolitan Council Public Comment Line at 651-602-1500
 - Send TTY comments to 651-291-0904

Project Contacts

Website

metrocouncil.org/sewerconstruction/fridley

Phone (763) 520-8650

Email

info@fridleyarealiftstation.com

Visit our project website for more information and to sign up to receive our project email updates.

Thank you for participating in our public hearing

	Page 1
**************************************	****
**************************************	k***
TRANSCRIPT OF PROCEEDINGS	
Date: December 17, 2020 Time: 4:01 o'clock p.m.	
REPORTER: Lorna D. Jacobson, Notary Public Registered Professional Reporter	
ON BEHALF OF BENCHMARK REPORTING AGENCY 612.338.3376	

!	Page 2
1	
2	APPEARANCES
3	
4	Peter Lindstrom
5	Metropolitan Council Member District 10
6	Chair, Environment Committee
7	
8	Tim O'Donnell
9	Metropolitan Council Enviromental Services (MCES)
10	Senior Information Coordinator and Project Citizen Liaison
11	
12	Tim Wedin
13	MCES Assistant Manager
14	Interceptor Engineering
15	
16	Jeny Baroda
17	MCES Principal Engineer
18	Interceptor Engineering
19	
20	Ashley Osteraas
21	Zan Associates (MCES Project Communications)
22	
23	Angela Klein
24	Zan Associates (MCES Project Communications)
25	

Page 3 1 2 MR. O'DONNELL: Thank you for 3 bearing with us. I think we're going to go ahead 4 and get started. 5 I'm from Metropolitan Council 6 Environmental Services, and my name is 7 Tim O'Donnell. And for the public hearing record, 8 I'll spell my name. It's T-i-m, O-'D-o-n-n-e-I-l. 9 What we're going to start --10 before we start the hearing we're going to have 11 Ashley Osteraas, on our project team, go through 12 some brief instructions on how to use the Zoom 13 platform so you can submit questions or comments 14 through a chat box or through a raise-your-hand 15 function; and then we will address them during the 16 public comment period of the hearing. 17 So, at this point, I'll turn it 18 over to Ashley to get that part of our hearing 19 started. 20 MS. OSTERAAS: Great. Thank you. 21 Good afternoon. My name is Ashley Osteraas, 22 A-s-h-l-e-y, O-s-t-e-r-a-a-s. 23 I'm a communications consultant 24 helping Metropolitan Council Environmental Services 25 with today's online public hearing.

	Page 4
1	So, before we begin, I want to
2	provide you some instructions for how to use the
3	Zoom videoconference platform we are using today,
4	as well as go over how you can submit questions and
5	comments during our public hearing.
6	Next slide, please.
7	So, this public hearing is being
8	recorded for documentation and note-taking
9	purposes. If you have any audio issues throughout
10	the first of the public hearing, we do have an
11	option to dial in on your phone and listen in, and
12	we can provide those numbers in the chat box, as
13	well.
14	Next slide, please.
15	So, how to submit comments and
16	questions. So, as you noticed, you'll be muted
17	during the presentation. But feel free to ask
18	comments or questions at any time. And you'll be
19	doing that by, at the bottom of your menu there's a
20	chat icon. If you click that and make sure you
21	highlight "Everyone" when providing any comments or
22	questions. You can do that in the chat box.
23	Next slide, please.
24	If you prefer speaking verbally,
25	providing your questions or comments that way, you

	Page 5
1	can certainly do that at the end of the
2	presentation. So, again, at the bottom of your
3	menu bar, if you scroll over "Participants," you
4	can see the list of the people that are on the
5	meeting on the right-hand corner and there should be
6	a little icon that says, "Raise hand." So, by
7	clicking that feature means that you want to speak
8	verbally at the end of the presentation, during the
9	public comment period and you can present that way.
10	Next slide, please.
11	In the red icon at the bottom of
12	your menu is the "Leave Meeting." So, you can do
13	so at any time during the public meeting.
14	And now I will pass it off to
15	Council Member Lindstrom to kick things off.
16	MR. LINDSTROM: Thank you,
17	Ashley. And good afternoon, everyone.
18	This is Peter Lindstrom. And
19	that's spelled P-e-t-e-r, Lindstrom,
20	L-i-n-d-s-t-r-o-m. And I'm a Met Council Member.
21	I'm chair of the Environment Committee; and I want
22	to welcome you to today's public hearing.
23	I'm a chair of the Environment
24	Committee, as I mentioned, and the Environment
25	Committee deals with our Metropolitan Council

		Page 6
1	Environmental Services Division. And you'll hear	
2	us use the acronym, "MCES," in referring to this	
3	division of the Met Council.	
4	So, at this time, I would like to	
5	call the public hearing to order. Now, the subject	
6	of this public hearing is the MCES Draft Facility	
7	Plan. This plan outlines our recommendations for	
8	the Fridley Area Lift Station L32A Project.	
9	With this project we propose to	
10	rehabilitate and upgrade our regional sanitary	
11	sewer lift station currently located in	
12	Brooklyn Park, on the west side of the Mississippi.	
13	The lift station is 50 years old	
14	and has reached the end of its useful life. It is	
15	also nearing its full capacity, and will not be	
16	able to convey future wastewater flows.	
17	Constructing a new larger lift	
18	station on the east side of the river in Fridley	
19	will help us to continue providing sufficient and	ł
20	reliable wastewater service for the northwest part	i
21	of the region.	
22	Our staff will provide more	
23	details during the presentation.	
24	Next slide, please.	i
25	As we begin our public hearing	

	Page 7
1	today we'd like to welcome a few local officials.
2	Tim, do you have a few names out there? I know
3	there's a few of them.
4	MR. O'DONNELL: Yes. This is
5	Tim O'Donnell again. And we have from the Fridley
6	City Council, Council Members, Ann Bolkcom and
7	Stephen Eggert are here. From Anoka County, we have
8	County Commissioner, Mandy Meisner, from
9	District 4.
10	MR. LINDSTROM: Fantastic.
11	Council Members, Commissioner, welcome to the
12	public hearing.
13	MR. O'DONNELL: This is Tim
14	again. I just wanted to add we have some City and
15	County staff with us, too. From the City of
16	Fridley, Brian Strand and Stacy Stromberg; from
17	Brooklyn Park, Craig Runnakko; and from Anoka County,
18	Jerry Auge.
19	MR. LINDSTROM: Fantastic.
20	Welcome to all our City and County officials.
21	We also have several MCES staff
22	with us today to present the Draft Facility Plan
23	for this project and to collect comments. I'll
24	have them unmute and turn on their video and
25	introduce themselves. We've heard from Tim

		Page 8
1	already.	
2	Tim, hello.	
3	MR. O'DONNELL: Hi, again. This	
4	is Tim O'Donnell, T-i-m, O-D-o-n-n-e-l-l. And I'm	
5	a Senior Information Coordinator and Project	
6	Citizen Liaison for Met Council Environmental	
7	Services. Basically, I assist with our public	
8	outreach efforts on our sewer construction	
9	projects.	
10	Good to be here tonight.	
11	MR. LINDSTROM: Thank you. We	
12	have another Tim with us, as well, Tim Wedin.	
13	MR. WEDIN: Thank you, Council	
14	Member Lindstrom. My name is Tim Wedin, spelled	
15	T-i-m, last name, capital W-e-d-i-n. I am an	
16	assistant manager with Interceptor Engineering, at	
17	Met Council Environmental Services. And I'll be	
18	part of the project team for the lift station, L32A	
19	Project.	
20	MR. LINDSTROM: Thank you.	
21	Jeny Baroda, would you like to	
22	say, "Hello"?	
23	MS. BARODA: Hi. This is	
24	Jeny Baroda. And I'm a principal engineer at	
25	Interceptor Engineering, with Metro Council	

	Page 9
1	Environmental Services. And I'll be working with
2	Tim Wedin on this project.
3	MR. LINDSTROM: Excellent. Thank
4	you. And assisting us behind the scenes today are
5	our Communications Consultants, Ashley Osteraas and
6	Angela Klein.
7	Would the two of you like to say,
8	"Hello"?
9	MS. OSTERAAS: Sure. My name is
10	Ashley Osteraas, A-s-h-l-e-y, O-s-t-e-r-a-a-s.
11	And I'm assisting with the project communications.
12	MR. LINDSTROM: Well, thanks,
13	everybody. And welcome again.
14	Next slide, please.
15	The purpose of this public
16	hearing is to, 1, summarize the proposed lift
17	station improvements project and explain
18	alternative approaches that we have evaluated;
19	Number 2, to answer any questions that you may have
20	about the proposed project; and last, but not
21	least, receive your comments for the public record.
22	In addition, we have a
23	transcriber recording the proceedings for our
24	official public record. The transcription and
25	video recording of the presentation will be posted

Transcript of Proceedings 12/17/2020 MCES Fridley Area Lift Station (L32A) Virtual Public Hearing on the Draft Facility Report

		Page 10
1	on the project website in early January.	
2	As we conduct this public hearing	
3	there are a few things I'd like to point out.	
4	All interested persons may	
5	present comments or opinions as they relate to the	
6	Draft Facility Plan. We will read your comments	
7	and questions posted in the online chat box in the	
8	order they are entered. If you would like to speak	
9	out loud, we will call on you and unmute your	
10	microphone in the order you have clicked your	
11	raised hand symbol.	
12	We ask that you state and spell	
13	your first and last name each time you speak.	
14	Also, please include your address and the	
15	organization you represent, if any.	
16	Individuals will have three	
17	minutes to offer their remarks. Designated	
18	representatives of groups or organizations will	
19	have five minutes.	
20	We also welcome written comments,	
21	and we'll provide you instructions on how to submit	
22	them. We also will read into the public record any	
23	comments we have received prior to today's public	
24	hearing.	
25	Next slide.	

	Page 11
1	For the last couple of weeks a
2	paper copy of the Draft Facility Plan has been
3	available for the public to review at the Fridley
4	and Brooklyn Park City Halls, the Mississippi
5	Library in Fridley, and the Brooklyn Park Library.
6	An electronic copy of the
7	Draft Facility Plan is available on our project
8	website, on the Metropolitan Council website.
9	Next slide.
10	We will continue to have the
11	Draft Facility Plan available for review through
12	December 28th, which is the end of the public
13	comment period.
14	On the screen you can see the
15	various ways you can submit comments, in addition
16	to commenting during this public hearing today. We
17	will show you this again at the end of the hearing.
18	Next slide.
19	Our project implementation
20	schedule includes these key dates and time frames.
21	We published a legal notice of the public hearing
22	in the Star Tribune on November 15th. We mailed
23	the public hearing notice on December 4th to
24	property owners in the proposed project areas, as
25	well as numerous government and community

	Page 12
1	stakeholders. We sent email invitations and did
2	social media posts in December.
3	We are holding the public hearing
4	today, December 17th. The Metropolitan Council
5	review and adoption of the final facility plan is
6	scheduled for January and February, 2021. And in
7	March we will submit the plan to the Minnesota
8	Pollution Control Agency and we'll include our
9	application to be included on a priority funding
10	list.
11	This funding would be in the form
12	of low-interest loans that MCES would pay off over
13	a 20-year period.
14	Next slide, please.
15	For our agenda today, we've
16	already covered the welcome and introductions. Our
17	presentation will describe our organization and
18	what we do for the region, explain what a facility
19	plan is and define terms that we use in the
20	wastewater industry, look at the need for this
21	project, discuss our proposed facility improvements
22	for Fridley and Brooklyn Park, and our evaluations
23	that led us to this recommendation; cover the cost
24	implications of these regional sanitary sewer
25	improvements and go over our public outreach and

Transcript of Proceedings 12/17/2020 MCES Fridley Area Lift Station (L32A) Virtual Public Hearing on the Draft Facility Report

	Page 13
1	facility plan schedule. Then after our
2	presentation we will open it up to comments and
3	questions.
4	At this time, I'd like to turn it
5	over to Tim O'Donnell to begin our presentation.
6	MR. O'DONNELL: Thank you,
7	Council Member Lindstrom.
8	Again, my name is Tim O'Donnell,
9	spelled T-i-m, O'-D-o-n-n-e-l-l, and I work at
10	Metropolitan Council Environmental Services, or
11	MCES.
12	I'd like to begin our
13	presentation with a brief overview of the Regional
14	Wastewater System and our service area and
15	facilities. After that, we will zero in on the
16	improvements we are planning for our regional
17	sanitary sewer facilities in Fridley and in
18	Brooklyn Park.
19	The Regional Wastewater System is
20	run by MCES and we are an operating division of the
21	Metropolitan Council.
22	The map on your screen is of the
23	seven-county Twin Cities Metro area. It shows our
24	wastewater service area and the regional sanitary
25	sewer facilities.

	Page 14
1	The color shading on the map
2	shows the areas that we serve. It's basically the
3	urban and suburban portions of the Metro area.
4	Each color-shaded area
5	corresponds to one of our nine regional wastewater
6	treatment plants.
7	Our wastewater collection system
8	consists of approximately 640 miles of regional
9	sanitary sewers, which we also call "interceptor
10	sewers." These are shown as purple lines on the
11	map. We also have 61 pump stations, also known as
12	"lift stations;" and we have 190 meter stations to
13	measure the volume of wastewater flowing from each
14	community that we serve.
15	These interceptor sewers that you
16	see on the map are, in effect, they intercept the
17	flow of wastewater from 110 communities in the
18	metro area and carry it to our treatment plants.
19	In addition to these sewers that
20	MCES operates for the region, these 110 communities
21	combined operate more than 5,000 miles of local
22	sanitary sewer pipes.
23	The small black squares on the
24	map indicate the location of our wastewater
25	treatment plants. The nine plants combined treat

	Page 15
1	250 million gallons of wastewater every single day.
2	They discharge the resulting clean water to the
3	Mississippi, Minnesota and the St. Croix Rivers.
4	Now, to put this volume of
5	wastewater into some perspective, 250 million
6	gallons of wastewater would easily fill the Empire
7	State Building every day.
8	The wastewater from the northwest
9	suburban area, shaded green on the map, flows
10	through a series of regional sanitary sewers
11	through Minneapolis and St. Paul, then arrives at
12	our Metropolitan Wastewater Treatment Plant, which
13	is about three miles southeast of downtown
14	St. Paul.
15	It's important to remember that
16	MCES's primary role is collecting and treating
17	wastewater; also known as "sewage." And that's,
18	essentially, everything that goes down your drains.
19	Your cities, on the other hand,
20	in addition to their local collection of
21	wastewater, they are responsible for the drinking
22	water treatment and distribution, as well as storm
23	water management.
24	So, our primary role, again, is
25	wastewater collection and treatment. We're often

	Page 16
1	asked in public hearings like this, "How does MCES
2	finance this system?"
3	What we do is, we bill the
4	110 communities that are connected to the system to
5	pay for our operation, maintenance and capital
6	improvement costs. The cities, in turn, bill these
7	costs and their local costs to the property owners
8	who are connected to their local sewer system. In
9	the end, about 60% of your sewer bill pays for
10	MCES's regional system costs, and about 40% stays
11	in your community to pay for your local sewer
12	system costs.
13	The sewer user fees that we
14	collect are enough to fund the regional wastewater
15	system without the need for tax dollars. We also
16	do not levy special assessments on properties near
17	sewer projects like we're talking about today.
18	These projects have a broader
19	public impact, and so their costs are paid for
20	region-wide.
21	And now, after this broad
22	overview into who we are and what we do for the
23	region, I'd like to turn it over to my colleague,
24	Tim Wedin. And he'll focus on our plans for the
25	Fridley and Brooklyn Park areas.

	Page 17
1	Thank you.
2	MR. WEDIN: Thank you, Tim.
3	To begin, we would like to
4	explain what a facility plan is. This document
5	that summarizes the current state of the existing
6	MCES wastewater facilities that identifies the need
7	for rehabilitating the existing facilities or
8	constructing new facilities. It also determines
9	the potential environmental and other impacts of
10	new facilities. It considers those factors and
11	recommends a course of action.
12	This document is a prerequisite
13	to qualify for financing from the Minnesota Public
14	Facilities Authority.
15	Next slide, please.
16	There are several terms that we
17	use during our presentation and in our facility
18	plan. A wastewater sewer system is a system of
19	underground pipes that carries wastewater or sewage
20	away from buildings. Cities operate their own
21	local wastewater sewer systems within the
22	community. MCES operates the regional wastewater
23	sewer system that carries wastewater from city
24	systems to our treatment plants, similar to how a
25	freeway system carries the regional traffic. MCES

	Page 18
1	interceptors are large underground pipes that make
2	up the regional sewer system. These pipes can be
3	either gravity pipes or forcemains.
4	A gravity pipe is a sloped pipe
5	that carries wastewater down a hill, or by gravity,
6	without mechanical assistance. A forcemain, on the
7	other hand, is a pipe that carries wastewater being
8	pumped or forced uphill, as opposed to wastewater
9	flowing by gravity. Flow meters are devices that
10	MCES uses to measure the quantity of wastewater a
11	city sends to the regional wastewater treatment
12	system, similar to how a city water meter measures
13	water usage in a home. Lift stations or pumping
14	stations pump wastewater from low points in this
15	local sanitary sewer system to higher points,
16	allowing the flow to be carried by gravity pipes to
17	a wastewater treatment plant.
18	Finally, a siphon is a pipe that
19	conveys flow beneath a low-lying area, such as a
20	river, other utilities or other obstructions.
21	Next slide, please.
22	Lift Station L32 is located in
23	Brooklyn Park, at 7700 Mississippi Lane North. Our
24	proposed lift station, L32A, is located at
25	6900 East River Road in Fridley, on MCES property.

	Page 19
1	This was previously the site of Camp Lockeslea and
2	is located across the Mississippi River from the
3	existing lift station.
4	Next slide, please.
5	Lift Station L32 is about
6	50 years old. Components, such as the structure,
7	piping and controls are showing signs of
8	deterioration and require replacement.
9	Failures at the lift station have
10	resulted in backups of wastewater into nearby
11	homes. There have been odor complaints due to the
12	inability to address air flow at the current
13	facility. The lift station is almost at full
14	capacity with the existing flow conditions.
15	Next slide, please.
16	This slide summarizes the flows
17	that we have conveyed through the lift station over
18	the past several years. In 2016, our average daily
19	flow was 16.5 million gallons per day, with peak
20	flows reaching up to 38.4 million gallons per day.
21	Flows continue to increase as communities grow.
22	Our flow projections for 2040 are for an average
23	daily flow of 25 million gallons per day, with a
24	peak daily flow of 48 million gallons per day.
25	Ultimate capacity projections for the area are for

Page 20 34 million gallons per day, average daily flow, 1 2 with a peak daily flow rate of 67 million gallons 3 per day. As a comparison, our current peak flow 4 capacity at Lift Station L32 is 43 million gallons 5 per day. 6 Next slide, please. 7 The conditions that are driving 8 us to complete this construction for this project 9 include the fact that the existing lift station is 10 50 years old and has reached the end of its useful 11 life. Condition assessments have documented 12 structural, mechanical and electrical deficiencies 13 that have led to system failures, such as backups 14 and odor issues. The lift station is almost at its 15 full pumping capacity. L32 does not have 16 sufficient capacity to serve the current or future needs of the area. 17 18 Next slide, please. 19 As part of our evaluation we 20 performed an overall system analysis of the pipes 21 leading to and from Lift Station L32. We 22 determined that there is sufficient capacity 23 upstream of L32 for future growth. We've also 24 determined that downstream capacity is sufficient 25 to support future growth.

		Page 21
1	Next slide, please.	
2	Our facility plan includes an	
3	analysis of various alternatives for preventing	
4	spills at the lift station. Our design guidelines	
5	recommend a 60-minute response time under peak	
6	flows. That allows time for our staff to address	
7	any issues at a lift station that may cause the	
8	pumps to shut down unexpectedly.	
9	Under current flows we have about	
10	53 minutes of response time. We have determined	
11	that we need an additional 30 minutes of response	
12	time for the ultimate flow of 67 million gallons	
13	per day under peak flow conditions. We analyzed	
14	several options to provide this spill prevention.	
15	Inline storage, or storage in the	
16	pipes, themselves, is typically how we accomplish	
17	this. To provide that additional inline storage we	
18	determined that two small submersible lift stations	
19	could be added upstream of L32 to address lower	
20	interceptor connections. We are also evaluating an	
21	independent pumping system to be included in the	
22	lift station that would provide for additional	
23	response time. This would include high-capacity	
24	pumps that would operate independently of the	
25	standard pumps in the event of a failure. The lift	

Page 22 1 station would also include traditional resiliency 2 features, such as a split wet well system, 3 redundant pumps and other features that will help 4 improve resiliency and prevent spills at the lift 5 station. 6 Next slide, please. 7 For the lift station project, we 8 evaluated three different alternatives. The first 9 was to do nothing; to leave things as they are 10 right now. The second alternative was to replace 11 the lift station in its current location with a new 12 larger lift station that would be suitably sized to handle the flows that are projected through the 13 14 area. The final option was to construct a new 15 larger lift station on the east side of the river 16 in Fridley; again, to handle the higher flows that 17 are projected for the area. 18 Next slide, please. 19 Alternative 1, the do-nothing 20 alternative, keeps the existing lift station the 21 same size without any upgrades. The limitation to 22 this alternative is that the station will continue 23 to deteriorate if we do nothing. We're not fixing 24 the problem that we currently have. Because of the 25 continued deterioration, excessive maintenance will

23

		Page
1	be needed at the lift station in the future. This	
2	will lead to increased failures at the lift	
3	station. Failures would include an increased	
4	frequency of backups in the area, a potential for	
5	an overflow or spill into the environment,	
6	including into the Mississippi River. Because of	
7	this, this is not a recommended option. This does	
8	not address environmental health and safety	
9	concerns, such as spills. It does not meet our	
10	customer service goals. It is not recommended per	
11	our policy of providing continued and best customer	
12	services to the communities that we serve.	
13	Next slide, please.	
14	Alternative 2 includes the	
15	construction of a new lift station on the west side	
16	of the Mississippi River at the existing lift	
17	station location. It would include construction of	
18	a new larger pump station that would meet future	
19	flow and resiliency needs. It includes an	
20	independent pump system inside of the new lift	
21	station to help mitigate spills. Two new submersible	5
22	lift stations would be added upstream of this	
23	existing lift station. Other resiliency features	
24	that we have previously discussed, such as the	
25	split wet well would also be included. The project	

	Page 24
1	would upgrade the existing odor control system. We
2	would need to maintain operation of existing of
3	the existing lift station while we are
4	constructing a new facility. Once the new lift
5	station has been completed, we would demolish the
6	old facilities.
7	Next slide, please.
8	This slide shows an approximate
9	layout of where our facilities could be located if
10	we were to try to keep them on the west side of the
11	Mississippi River. The facilities are very large
12	compared to the property. Setback requirements
13	limit the space that we have available to construct
14	the new facility at this location.
15	Next slide, please.
16	Our cost estimate for this new
17	facility includes the new pump station, new
18	submersible pump stations upstream of L32,
19	dedicated pumps at the lift station, odor control
20	upgrades and acquisition of temporary easements to
21	allow us to construct these facilities. We
22	estimate that this alternative would cost
23	approximately \$36,000,000.
24	Next slide, please.
25	There are several limitations

Page 25

		Pag
1	with Alternative 2. We need to keep the existing	
2	lift station in operation during construction.	
3	That limits the space that we have available onsite	
4	to construct the new facility. In order to	
5	construct the facility, we need to acquire	
6	additional property. That would include temporary	
7	easements around our facility in order to stage	
8	equipment and to stockpile materials.	
9	Additionally, there would be a lot of construction	
10	difficulties that we would have, due to the depth	
11	of the facility. We would need to provide sheeting	
12	that would protect the neighboring properties and	
13	the street during construction. Space limitations	
14	would also limit the screening through the area.	
15	This is not the recommended option. Space	
16	constraints due to setback requirements from the	
17	river, the bluffs, the streets and the neighboring	
18	properties limit the area that we can work in. It	
19	is very challenging to build a new lift station on	
20	this site while keeping that existing in operation.	
21	Likely, we would need to purchase more property	
22	near the site to provide screening and to construct	
23	the new facility. Because of these limitations, we	
24	do not recommend moving forward with the option	of
25	constructing the new facility on the existing site.	

		Page 26
1	Next slide, please.	
2	Our third alternative is the	
3	construction of a new lift station on the east side	
4	of the Mississippi River. This alternative	
5	includes construction of a new pump station in	
6	Fridley, an independent pumping system, and other	
7	resiliency features that we've previously	
8	discussed, odor control and flow metering. The	
9	west side would still require some facilities.	
10	These would include a control building, or an odor	
11	control building, a siphon structure or head house	
12	to conduct wastewater underneath the Mississippi	
13	River, an odor control structure to manage the	
14	odorous air that accumulates at the siphon	
15	structure, and two small submersible lift stations	
16	to service city connections to our interceptor	
17	system. The project would also include	
18	rehabilitating the two ductile iron pipe forcemains	
19	that cross the Mississippi River.	
20	Next slide, please.	
21	This is our conceptual plan that	
22	shows the location of our new pump station on the	
23	east side of the river and what it would include.	
24	Our main concern would be ensuring that we meet	the
25	required setbacks from the right-of-way to the	

Page 27 east, as well as the setbacks to the west from the 1 2 Mississippi River. This space that we have here 3 also allows us to provide adequate screening of our 4 facility. 5 Next slide, please. 6 This shows the facility that will 7 be located on the west side of the river. The odor 8 control building would be constructed in 9 approximately the same location as the existing 10 lift station. We would include a siphon structure 11 that would allow wastewater to enter the siphons, 12 which would conduct flow underneath the Mississippi 13 River. Other minor improvements would also be 14 included on the west side of the river, such as 15 site screening. 16 Next slide, please. Wastewater would continue to be 17 18 conveyed underneath the Mississippi River through 19 the four pipes that are located here. These four 20 pipes would be converted into siphons, which would 21 allow wastewater to flow underneath the river. The 22 two pipes that are shown in red would be 23 rehabilitated. 24 Next slide, please. 25 The estimated cost for

	Page 28
1	Alternative 3 includes a new pump station, two
2	smaller submersible pump stations, dedicated pumps
3	in the lift station for spill prevention, a new
4	odor control system on the east side of the river,
5	flow metering, the siphon head box, odor control
6	modifications on the west side of the river, and
7	rehabilitation of the pipes crossing the river.
8	Our estimate for the entire project is
9	approximately \$51,000,000.
10	Next slide, please.
11	Alternative 3 has some
12	limitations. There are a number of construction
13	challenges due to the proximity of the river and
14	the depth required for construction of the lift
15	station. It is also the highest construction cost
16	of the three alternatives that we have considered.
17	However, it is our recommended option. The large
18	available space that we have on the east side of
19	the river allows us to meet all of the requirements
20	for building a lift station in this area. The
21	22-acre parcel that we own is large enough for the
22	new lift station. We would not need to acquire any
23	additional easements or any additional property to
24	allow for construction. The large space will allow
25	for adequate screening of the facility from our

		Page 29
1	neighbors. This alternative will provide a	
2	sustainable, long-term solution for conveying	
3	wastewater in the region. The lift station	
4	structures will be designed for the ultimate peak	
5	flow rate of 67 million gallons per day. Other	
6	mechanical and electrical equipment, such as the	
7	pumps, pipes and controls will be designed to	
8	convey our interim capacity of 48 million gallons	
9	per day. Again, this is our recommended and most	
10	preferred alternative.	
11	Next slide, please.	
12	This slide includes some images	
13	of some other lift stations that we have	
14	constructed in or near residential areas, as well	
15	as what cities they are located in. These	
16	facilities all include the same features that we	
17	are planning for the new L32A project, such as	
18	spill prevention measures and odor control systems.	
19	As you can see from these images, none of our lift	
20	stations really looks the same. We try to design	
21	them such that they fit into the character of the	
22	area in which they are built.	
23	Next slide, please.	
24	Additional information is	
25	included in the Draft Facility Plan. Background	

	Page 30
1	information and past studies that have been done to
2	date related to Lift Station L32 and the system
3	that leads to L32 are included with the report. A
4	detailed analysis and comparison of each of these
5	alternatives is also included. The complete report
6	also includes an environmental review of each
7	alternative, including wetland delineations,
8	evaluation of archeological and historic sites and
9	the draft discretionary environmental assessment
10	worksheet that we prepared as a part of this
11	project. We also included a geotechnical report of
12	the Fridley site and a project delivery schedule.
13	Next slide, please.
14	Financing for this project will
15	be provided through a low-interest loan from the
16	Minnesota Public Facilities Authority. These
17	below-market-rate loans are used to finance
18	eligible projects and keep wastewater rates low.
19	These loans are paid for through existing municipal
20	and industrial wastewater rates.
21	Next slide, please.
22	The public facilities authority
23	loan has a 20-year term. Loans for these projects
24	are paid for from two funding sources. The first
25	is the municipal wastewater charge, which is the

Page 31

1	MCES portion of your sewer bill. The second is the
2	sewer availability charge, or SAC, which is a
3	one-time charge for new connections. The
4	\$51,000,000 loan for the project will be paid for
5	through existing sewer rates. Of the \$188 annual
6	average MCES wholesale rate that is currently
7	charged to communities, \$1.38 will pay for this
8	project; one dollar and thirty-eight cents. When a
9	builder or development constructs a new building,
10	\$64.08 of the total SAC charge pays for this
11	project over the next 20 years. This project is
12	already included in the MCES capital improvement
13	plan. These loan payments are already built into
14	future increases to municipal wastewater charges
15	and SAC rates. These figures just show the
16	relative impact on rates and how the product will
17	be paid for over time. These numbers do not
18	reflect an increase in sewer rates due to this
19	project.
20	Next slide, please.
21	With the completion of our
22	facility plan, we will move forward with the
23	design phase of the project. The design phase will
24	include engineering studies that will investigate
25	the construction methods or how the facility will

		Page 32
1	be built. Studies will also consider what odor	
2	control technologies will best mitigate odors. We	
3	will investigate the design of the lift station and	
4	create a physical and conceptual model of the new	
5	lift station and odor control system. We will work	
6	on the architectural design of the buildings and	
7	how they fit with the character of the area. We	
8	will coordinate with local entities and	
9	stakeholders, such as the cities of Fridley and	
10	Brooklyn Park, as well as other regulatory agencies	
11	and interested parties. We will consider various	
12	land use requirements to site our buildings. We	
13	will begin to secure permits that are required by	
14	different regulatory agencies. We will study site	
15	restoration needs on both the east and west sides	
16	of the river. These factors will all be considered	
17	during the design phase of the project.	
18	Next slide, please.	
19	Our next steps include collecting	
20	written comments on the Draft Facility Plan.	
21	Written comments are due on December 28th, by	
22	5:00 p.m. In January and February of 2021, the	
23	Metropolitan Council will review the final facility	
24	plan, which will include these written comments,	
25	comments from tonight's meeting and our response	S

	Page 33
1	to these comments, and adopt the facility plan.
2	Once the Metropolitan Council has adopted a
3	facility plan, we will submit it to the Minnesota
4	Pollution Control Agency, with an application for a
5	clean water revolving fund project priority list.
6	At the same time, we will move forward with design
7	of the project. That design is scheduled to last
8	for the next two years, from 2021 through 2023.
9	Construction is anticipated to begin in 2023 and
10	last through 2026.
11	Next slide, please.
12	With that, I will return the
13	meeting to Council Member Peter Lindstrom, who will
14	guide us through our public comments and question
15	period.
16	MR. LINDSTROM: Fantastic. Thank
17	you, Tim O'Donnell and Tim Wedin for your
18	presentations.
19	And, yes, at this time I would
20	like to open it up to public hearing attendees for
21	your comments and questions on the facility plan.
22	I'd like to remind you to state and spell your
23	first and last name each time you speak; also,
24	please include your address and your organization
25	you represent, if any, for the record. You can

	Page 34
1	follow the instructions now on the screen to type
2	into the chat box or click the "Raise Hand" symbol.
3	So, at this time, I'll keep my
4	eye out for comments and questions.
5	MR. O'DONNELL: Council Member
6	Lindstrom, this is Tim O'Donnell, from the MCES
7	staff. While we're waiting to see if there are
8	some questions from people in the audience, we did
9	get one question that we received in advance of the
10	hearing by email, and that is from Martin Gavic,
11	spelled M-a-r-t-i-n, G-a-v-i-c. And he lives at
12	141 Hartman Circle, in Fridley. Mr. Gavic asks us,
13	"Will there be any odors emitted from this lift
14	station? And if so, how will you control them?
15	And where is the exact location of the lift station
16	on the property?"
17	I believe Tim Wedin covered this
18	in the presentation. But, Tim, if you could just
19	briefly repeat some of this information to answer
20	Mr. Gavic's questions.
21	MR. WEDIN: Thank you, Tim; and
22	thank you, Mr. Gavic, for the question. I'll take
23	them in the reverse order.
24	As far as the location of the
25	proposed lift station, right now we are proposing

35

	Page
1	that the building, itself, will be very close to
2	where the existing girl scout building was. So, it
3	will be fairly far away from the homes in the area,
4	fairly far away from the property boundaries of the
5	property, try to remove it as much as we can from
6	the area. We do need to maintain some proximity to
7	the existing pipes, but we are trying to be
8	considerate of our neighbors in the area.
9	As far as the odors, we will
10	include odor management as a part of the project.
11	There's a number of different technologies that are
12	out there that are available for us to take care of
13	odors at this facility. There may be momentary
14	periods where we will still see odors from that
15	facility, and that may be because the media that is
16	being used to mitigate these odors has reached the
17	end of its useful life. It more likely will be
18	during times when we are changing out the media at
19	this odor control equipment. So, likely, there
20	will be some momentary, temporary odors at that
21	site. But, for the most part, the odor control
22	system will prevent any odors at the facility.
23	MR. LINDSTROM: Excellent. Thank
24	you.
25	Scanning for other questions or

	Page 36
1	comments. I don't see any questions in the chat.
2	I see Joe MacPherson, from Anoka County, let us all
3	know that Anoka County submitted comments in the
4	form of an email and does not have any further
5	comments at this time and thanks us for the
6	detailed information.
7	Looking for any sort of raised
8	hands or additional comments.
9	MR. O'DONNELL: Council Member
10	Lindstrom, we do have a couple of additional
11	comments in the chat box from Fridley City Council
12	Member, Ann Bolkcom; and also, from Anoka County
13	Commissioner, Mandy Meisner.
14	MR. LINDSTROM: I see that.
15	Thank you. Great.
16	A comment from Ann Bolkcom about
17	great news about the girl scout spot. And from the
18	Commissioner, it says, "Agree. I know the camp is
19	a beloved place for a lot of Fridley residents.
20	Thank you for the detailed presentation."
21	And we have a question from
22	Barb Bergseth, on 71st Way Northeast; 146 71st Way.
23	"How much noise and smell are generated from the
24	lift station?" That's Question Number 1; and
25	Question Number 2, "What is the expected start date

		Page 37
1	of construction if approved?"	
2	Is there someone from our team	
3	that would like to take on those two great	
4	questions?	
5	MR. WEDIN: Council Member	
6	Lindstrom, I think I can answer those questions.	
7	And thank you, Ms. Bergseth, for the questions.	:
8	As far as how much noise and	
9	smell are generated from the lift station, we will	
10	be required to meet the City of Fridley code	
11	requirements. They do set forth limitations as far	
12	as the level of noise that can be generated at the	
13	facility and how many decibels can be heard at the	
14	property boundary. With our	1
15	separating that, pushing that back from the	
16	property line, that will help mitigate that issue.	
17	Also, the planting of trees and other greenery in	
18	the area will also help mitigate a lot of that	
19	sound issue. Most of the equipment, itself,	
20	especially the pumps and other equipment that will	
21	be used for operation of the lift station will be	
22	located inside of the building. So, that will also	
23	help mitigate a lot of the noise in the area.	
24	Odors, like I mentioned	
25	previously, the level of the odors will be very	

38

		Page
1	minor. Most of the time, it will be noticed when	
2	we are changing out our filter media as part of the	
3	odor control system. I'm not sure that I can	
4	really quantify what the odor will be, but we're	
5	definitely mindful of that with this facility, as	
6	with all of our other facilities.	
7	As far as when the construction	
8	will commence, I think right now it's too early for	
9	us to give an exact date of when construction will	
10	begin. We're still in the planning phase of the	
11	project and there's still a number of things that	
12	can affect when the shovels hit the ground. But	
13	right now, we are projecting a 2023 start date for	
14	construction activities.	
15	MR. LINDSTROM: Great question.	
16	And I see we have another	
17	question from Tom Kimlinger, 109 Hartman Circle,	
18	"What is the planned use for the rest of the	
19	property not covered by the buildings?"	
20	Great question.	
21	MR. WEDIN: Thank you, Council	
22	Member Lindstrom and thank you, Mr. Kimlinger.	
23	That is still a question that is being discussed.	
24	At this point in time, we don't have a solid answer	
25	for what the remainder of the property will be	

Page 39 1 or what will be done with the remainder of the 2 property. 3 Part of the reason for that is, 4 we don't know how much of the property we're exactly going to need to use. We've estimated of 5 6 the 22-acre parcel we will need to use about seven 7 acres of it, which will mean that there's still 8 another 15 acres that we don't need. There's still 9 a lot of discussion with the City of Fridley that we're having as far as what options are available 10 11 to that parcel. 12 Those options include developing 13 the area for residential housing. Those options 14 include Metropolitan Council retaining ownership of 15 the area as a buffer, and including some public 16 space. But at this point in time, it's too early 17 for us to determine what that property is going to be used for in the future. That will be something 18 19 that we will continue to discuss with the City of 20 Fridley and come to a conclusion with them on 21 moving forward. 22 MR. LINDSTROM: Excellent. 23 Commissioner Meisner asks a good 24 question, "If approved, will there be community 25 meetings offered either to gain feedback from

		Page 40
1	residents, or simply to communicate the plans	
2	before you break ground?"	
3	Is there a member of our team	
4	that would like to address that good question?	
5	MR. WEDIN: Thank you, Council	
6	Member Lindstrom, and thank you, Commissioner	
7	Meisner. This is a very important question.	
8	Public outreach is a very	
9	important part of all our projects, and we will	
10	continue to involve the public in the project as we	
11	move forward. It may be a while before you hear	
12	from us, as far as project breaking ground. Like I	
13	said, it will be 2023 before we break ground. But,	
14	we will be working closely with the City of Fridley	
15	on design of the project. That typically includes	
16	sitting down with City Planning Committees to	
17	discuss how the project is going to look; not only	
18	the building, but also, landscaping and restoration	
19	of the site.	
20	I'm trying to think if there's	
21	somebody else on the team right now that can help)
22	speak a little more to project communication as we	
23	move forward here.	
24	Is there anybody else that would	
25	like to add to what I've included here?	

Page 41

	ray
1	MR. LINDSTROM: I would just add
2	that as Chair of the Environment Committee for the
3	Met Council, I'd be delighted, Commissioner, to
4	come to a County Board meeting or any other public
5	forum and help talk about the project and extend
6	that to the Fridley staff and City Council
7	officials, or any sort of neighborhood groups out
8	there. I know I'd be willing to address those
9	groups. And your local council member, I'm sure,
10	would join me in those meetings, as well.
11	Anybody else from our team like
12	to chime in on that one?
13	MS. BARODA: Council Member
14	Lindstrom, this is Jeny Baroda. I would like to
15	add that we will also be working with other
16	stakeholders, like Friends of Mississippi and
17	Department of Natural Resources as progress to
18	design of this project. So, we will be working
19	with them to determine how the site would look
20	like, what are the site requirements and all that
21	good stuff.
22	Thank you.
23	MR. LINDSTROM: Excellent. Thank
24	you.
25	MR. O'DONNELL: This is

		Page 42
1	Tim O'Donnell. I'll jump in here, too, from the	
2	aspect of our community outreach.	
3	We can certainly hold additional	
4	local public information meetings as we move	
5	through the design process to start to show you	
6	what we're looking at for design of the project.	
7	And then certainly again, before construction would	
8	begin, that's the point that we will have the most	
9	detail that we can offer to the public on the final	
10	designs and construction schedules, what we would	
11	be doing to try to mitigate the impact of the	
12	construction while it's taking place. So, yes,	
13	definitely; we will hold additional meetings to	
14	keep informing the public about our project.	
15	Thank you.	
16	MR. LINDSTROM: Thank you.	
17	Michael McCarthy asked the	
18	question, "Will there be any effluent storage on	
19	the site?"	
20	MR. WEDIN: Thank you,	
21	Council Member Lindstrom. And thank you,	
22	Mr. McCarthy, for your question.	
23	We will not be storing effluent	
24	on the site. One of the things that we know is	
25	when we store wastewater at a location, that can	

	Page 43
1	cause odors. And we're trying to do all we can to
2	limit the odor-causing areas. So, one of the
3	evaluations that we did as we went through and
4	looked at spill prevention for this location was an
5	evaluation of storing wastewater at that site. And
6	we quickly determined that that was not a viable
7	alternative.
8	MR. LINDSTROM: Great question.
9	Keeping on the theme of odors,
10	Stephen Eggert asked the question, "What is the
11	typical amount of time needed to change out media
12	for odor control?"
13	I expect there is a range for
14	different or newer systems.
15	Tim, would you like to handle
16	that one, as well?
17	MR. WEDIN: Certainly, Council
18	Member Lindstrom. Thank you, Mr. Eggert, for your
19	question.
20	I believe, as I recall I think
21	you are correct it really does depend on the
22	size of the odor control system and the type of the
23	odor control system that we use for managing odors.
24	As I recall, the time for change-out of the media
25	for a lot of our odor control systems is on the

	Page 44
1	order of magnitude of about a half a day. So, four
2	to six hours.
3	MR. LINDSTROM: Excellent.
4	Another question that just came
5	in from Barb Bergseth, 146 71st Way Northeast, "As
6	a residential homeowner on the north side, we like
7	the option of a buffer by the Met Council for the
8	15 acres not used for the lift station."
9	So, not necessarily a question,
10	but a great comment from Barb Bergseth. All right.
11	Did I miss any questions in the
12	group chat? And I will scan for raised hands, as
13	well.
14	Team members, if you see
15	something that I missed, let me know.
16	MR. O'DONNELL: Sure. This is
17	Tim O'Donnell. We do have one person who has
18	joined our public hearing by their phone. The
19	phone number begins 612-382. Could we unmute them
20	just to see if they have a comment or question, or
21	whether they're here just to listen to the
22	presentation? They're at the bottom end of the
23	participant list.
24	MR. DIEDERICH: Yes. Can you
25	hear me now?

	Page 45
1	MR. O'DONNELL: Yes. We can hear
2	you.
3	MR. DIEDERICH: Hi. My name is
4	Roland Diederich. I live in Fridley, Minnesota,
5	on 66th Way; 40-year resident. And my question is:
6	If there's a breakdown on the Fridley side of the
7	river, are you going to then start trucking the
8	waste away from that area on to St. Paul?
9	MR. LINDSTROM: Great
10	question.
11	So, if there's a breakdown
12	just to repeat the question, "If there's a
13	breakdown on the Fridley side, how would that be
14	handled? Will it be trucked to St. Paul?"
15	MR. DIEDERICH: Yeah. I'm
16	visualizing some kind of breakdown. Things do
17	break down and you need to move that waste. I
18	envision trucks driving down East River Road,
19	heading their way towards Pig's Eye Island.
20	MR. O'DONNELL: Sir, could I ask
21	you to state your name and spell your name again,
22	please?
23	MR. DIEDERICH: It's Roland,
24	R-o-l-a-n-d, last name is Diederich,
25	D-i-e-d-e-r-i-c-h.

	Page 46
1	MR. WEDIN: Thank you,
2	Mr. Diederich, for your question. I think it's an
3	important one.
4	I mentioned earlier on in our
5	presentation about spill prevention. That's really
6	a key thing for us; something that we really try to
7	factor into the design of our projects. We talked
8	about redundant pumping systems, redundant pumps at
9	the lift station. So, when we design our pumps, we
10	design or design our lift stations, we design
11	them such that one pump is out of service. So,
12	when we look at our facility, if we've got an
13	eight-pump facility, that we proposed here, we look
14	at it as if one of those pumps is down for
15	servicing. So, we're designing it based on seven
16	pumps being in operation. We're also designing our
17	facilities such that they include emergency
18	generator backups so that if something does happen,
19	where we lose power to the facility, we have an
20	emergency diesel generator at that location that
21	immediately starts up and starts the pumps
22	operating again.
23	We also talked a little bit about
24	an independent pumping system that would be
25	included as a part of this facility. These would

Page 47 1 be larger pumps, either diesel-driven, or that 2 include a dedicated diesel generator set that would 3 be able to pump the wastewater at a higher rate. 4 We also talked a little bit about 5 including some lift stations upstream of this facility that would allow us to store --6 7 temporarily store wastewater inside of our pipes, 8 so we're not spilling into the environment. 9 Worst case scenario, I have seen 10 where we have had to use tanker trucks, not 11 necessarily to pump from the facility and route it 12 down to Pig's Eye, to the Metropolitan Wastewater 13 Treatment Facility, but maybe down to -- well, down 14 to a receiving facility. 15 I know Fridley has a liquid waste 16 receiving facility that we operate nearby that we 17 could bring waste to. That would be absolutely the 18 worst case scenario for a situation like this. And 19 we really try to design our facilities such that we 20 never have to get to that worst case scenario. 21 MR. DIEDERICH: Okay. I quess that's my main concern, because we had a railroad 22 23 bridge go out here a few years ago -- maybe ten 24 years ago -- when we got five inches of rain per 25 hour. And so things do happen that we can't plan

Page 48 for. 1 2 That's a statement, I quess. 3 It's not a question. 4 Thank you. 5 MR. WEDIN: Thank you. 6 MR. LINDSTROM: That's a great 7 question and comment. These are machines and 8 technology, right? So, occasionally, they go a bit 9 haywire and we need to be prepared for that. 10 Other questions or comments? 11 MR. O'DONNELL: Council Member 12 Lindstrom, this is Tim O'Donnell again. We had a 13 question. It kind of got buried into the chat box, 14 but we could go back to this one from City Council 15 Member, Ann Bolkcom. She wants to know can we 16 expound on some of the options for the extra 17 property that we would not be using for the lift 18 station site. MR. LINDSTROM: Tim, could you 19 20 handle -- Tim Wedin, could you handle that? 21 MR. WEDIN: Certainly. Thank you 22 very much, and Council Member Bolkcom, thank you 23 very much for the question. 24 There are two options that we 25 have looked at currently for the use of that

		Page 49
1	additional 15 acres of land in that area.	
2	One of the options that we looked	
3	at was the development of some single-family	
4	housing around that area. There are some	
5	limitations to that site. There is a fairly	
6	significant wetland in that area that has some	
7	impacts on that. Again, a lot of the same	
8	limitations that we have with sighting our lift	
9	station would also be imposed on any building in	
10	that area. So, the setbacks from the	
11	Mississippi River, the setbacks from the bluff, the	
12	setbacks from the right-of-way of East River Road;	
13	and also, the property line setbacks would impact	
14	on where that single-family housing could be built	
15	out.	
16	We've talked with the City of	
17	Fridley staff about some ideas related to that, and	
18	we looked at some of the potential for where that	
19	single-family housing could be built, the	
20	limitations for where that single-family housing	
21	could be built and the requirements for building	
22	out the roads and the utilities that would need to	
23	be included as a part of that construction. So,	
24	that's one option that we've looked at.	
25	The other option that we've	

Page 50

1	looked at is, again, keeping that area as a buffer
2	and looking at it as more of a public-use space,
3	we have talked with the City of Fridley. And one
4	of the things that they have brought up with us is
5	that they are a river community with no access to
6	the river. So, we've discussed the idea of
7	including trails, possibly a canoe and kayak launch
8	at that location. So, those are the two options
9	that we've really looked at moving forward with the
10	site.
11	At this point in time, it's still
12	fairly early to make a final decision on what it is
13	that we want to do there. We want to work very
14	closely with the City of Fridley and help determine
15	what's in everyone's best interest moving forward
16	with that location.
17	MR. LINDSTROM: Thank you, Tim,
18	and Council Member Bolkcom.
19	Seeking a little bit more
20	clarification on what the building would look like,
21	exactly, I suspect it may be a little early to have
22	a determined answer on that. Obviously, we would
23	work with the City of Fridley on that. But
24	anything further we can say about what the
25	building, itself, would look like at this point?

		Page 51
1	MR. WEDIN: Thank you	
2	Council Member Lindstrom, and thank you, Council	
3	Member Bolkcom.	
4	It's really hard for me to say	
5	what the building will look like. I'll give you	
6	some answers that may help direct you toward our	
7	line of thinking.	
8	If you'll reflect back to that	
9	slide that I shared that showed the different	
10	buildings that we have, the different lift stations	
11	that we have. The Chaska lift station that we	
12	have, that was something that we worked very	
13	closely with Chaska and Carver County on the look	
14	of that building. So, that's the building on the	
15	lower left of the image that we're showing you	
16	right now. Just to the left of that building is	
17	the Carver County Government Center. And so, we	
18	worked very closely with the City of Chaska and	
19	Carver County to build a facility that would look	
20	very similar to the Carver County Government	
21	Center.	
22	The City of Chaska also asked	
23	and I believe this is part of their building code	
24	requirement that we use a specific brick; what	
25	they refer to as a "Chaska brick," that has a very	

Page 52 1 distinct look to it, as a part of the exterior of 2 our facility. 3 L73, up on the top section there 4 in the middle, that was, again, something that we 5 worked very closely with the City of Woodbury on as 6 we designed that facility. They were aware that 7 the area of the -- the nature of the area where we 8 were building this facility was being developed as 9 we were moving forward. So, we wanted something 10 that would fit in with that character of the 11 surrounding area. So, that's why we built 12 something that looked more of like an upper-scale 13 house. 14 So, as far as what our facility 15 will look like, I don't know. But, there will be a 16 lot of things that we will have to factor in as we 17 move forward. And those things will include 18 building code requirements from the City of Fridley. Those things will include requirements 19 20 for building in -- close to the 21 Mississippi River. There will be some requirements 22 that will be in place because we're going to -- a 23 flyway. We've talked about designing the building 24 and lighting for bird safety. 25 There are a number of things that

	Page 53
1	we'll have to factor into that design. And we'll
2	work with the City of Fridley on moving that
3	forward and how that building is going to look.
4	MR. LINDSTROM: Thank you, Tim.
5	Tom Kimlinger asked a further
6	question, "Is it possible to move the pump building
7	as close to the center of the property? That would
8	make the largest buffer in all directions."
9	Tim?
10	MR. WEDIN: Thank you,
11	Council Member Lindstrom. Thank you, Mr. Junco
12	or thank you, Mr. Kimlinger. I apologize for that.
13	That's definitely something that
14	we want to look at, as far as sighting the
15	facility. Again, we're trying to keep our lift
16	station as close to the existing pipes as we can.
17	As we separate it from those pipes, we run into
18	some hydraulic issues of being able to move
19	wastewater from that siphon or that siphon crossing
20	of the Mississippi River to the new location of the
21	building. And so, that has an affect on how far
22	north we can put that.
23	There are also other site
24	limitations that I mentioned previously about the
25	area; not only the setbacks from the

		Page 54								
1	Mississippi River and East River Road, but I also									
2	alluded to a wetland that is onsite. We need to									
3	make sure that we're far enough away from that									
4	wetland when we construct the facility, so we're									
5	not adversely impacting it.									
6	So, there are a lot of things									
7	that we'll need to factor in as we move forward									
8	with the design of the facility. Obviously, like									
9	you say, the further away we are from our									
10	residents, the less impact that we will have on our									
11	neighbors. But there are other things that we can									
12	do to help mitigate that impact, as well; that									
13	would be a lot of screening that we move forward									
14	with as we move forward with the project, too.									
15	MR. LINDSTROM: Thank you.									
16	I don't see any other questions									
17	at this time in the chat. I'll give it a few									
18	seconds here.									
19	I don't see any raised hands.									
20	Okay. Any other questions via									
21	chat or raised hands?									
22	Seeing none, one last call. Any									
23	other questions out there?									
24	Okay. Very good. Seeing none,									
25	at this time, I would like to remind folks where									

	Page 55
1	you can review a copy of our Draft Facility Plan at
2	these various locations, and I would like to remind
3	folks next slide, please.
4	I would like to remind folks that
5	the public hearing record will remain open until
6	5:00 p.m. on Monday, December 28th. So, if we get
7	off the line here and you remember one additional
8	comment that you want to make, or a question, you
9	have until December 28th. And you may submit
10	comments through any of the methods now showing on
11	the screen: by mail, by email, by the Council's
12	public comment line, or by TTY, text, telephone.
13	Next slide, please.
14	So, from now through the next
15	several years, as we design and construct our
16	projects, here's how you can contact us; and also,
17	see the latest project information. This is also
18	where we will post information from this public
19	hearing and from our project open house that was in
20	November.
21	So, I'll make a final-final call.
22	Is there anyone else who wishes to speak on this
23	matter today? Scanning the chat
24	MR. O'DONNELL: Council
25	Member Lindstrom, I don't see any other raised

Page 56 1 hands or comments in the chat. 2 MR. LINDSTROM: Very good. And I 3 will reiterate that we're happy to come to a 4 Council meeting -- a City Council meeting or work 5 with the County to help get the word out on this 6 really important project. 7 So, seeing no further comments we will adjourn the public hearing. And thank you so 8 9 much for participating this evening on this public 10 hearing. And I just want to say your input is so 11 important. We really appreciate you taking the 12 time to learn about this Draft Facility Plan and 13 appreciate your feedback. Look forward to working with our County and local partners and with the 14 15 neighborhood on making this project a great success. And we hope you enjoy the rest of your 16 17 day. 18 Thank you very much. 19 20 ****** 21 22 (Whereupon at 5:22 o'clock p.m., 23 this hearing was concluded.) 24 25

Page 57 1 2 STATE OF MINNESOTA) 3) SS: 4 COUNTY OF BELTRAMI) 5 6 7 **REPORTER'S CERTIFICATE** 8 I, Lorna D. Jacobson, a Registered Professional Reporter and Notary Public in and for 9 the County of Beltrami and State of Minnesota, do hereby certify that I reported the foregoing Public 10 Hearing on the 17th day of December, 2020, by Zoom teleconferencing; 11 THAT the hearing was thereafter under my 12 direction transcribed into computer-assisted transcription, and is a true record of the hearing; 13 THAT the cost of the original has been charged to the party who ordered the transcript, 14 and that all parties who ordered copies have been 15 charged at the same rate for such copies; 16 THAT I am not a relative or employee or attorney or counsel of any of the parties, or a 17 relative or employee of such attorney or counsel; 18 THAT I am not financially interested in the action and have no contract with the parties, 19 attorneys, or persons with an interest in the action that affects or has a substantial tendency 20 to affect my impartiality; 21 WITNESS MY HAND AND SEAL this 30th day of December, 2020. 22 23 LORNA D JACOBSON Notary Public Minnesota orna D. Jacobson/ Notary Public ommission Expires 24 Registered Professional Reporter Jan 31 202* 25 My Commission Expires: 01/31/2025

> Benchmark Reporting Agency 612.338.3376

Fridley Lift Station – Draft Facility Plan

Public Comments Log

Date	Name	Contact Information	Method Received	Question/Comment	Response	Additional Follow Up/Notes
12/15/20	Craig Runnakko	craig.runnakko@brooklynpark.o rg 763-493-8109 Construction Engineer Operations & Maintenance Department City of Brooklyn Park	Email	Anna, I'm sure this will be covered in the meeting. What is the timeline for the project? What type of impacts will there be to BP residents when the current L32 is being converted to an odor control facility? See you there. Thanks! Craig	Craig indicated with a chat message at the end of the public hearing that MCES staff addressed his questions during their presentation and with answers to other questions.	
12/16/20	Marty Gavic 141 Hartman Cir Fridley	martygavic@gmail.com 763-571-1219	Email	Will there be any odors emitted from this lift station? Where is the exact location of the lift station?	12/16 – Staff called Martin to confirm that he would like his questions read during the public hearing tomorrow. Forwarded this request to MCES staff to include as part of the public comments period.	12/16 – Forwarded email to Tim O'Donnell with summary of conversation with Martin: Hi Tim, Just received an email with a couple questions. Martin also called, so I called him back to see if he wanted this read during the hearing tomorrow and he does. He said he lives next to the previous Girl Scout camp and has odor concerns. He wants to know where the lift station will be on the property, not just the address. Martin also mentioned that 90% of the winds come from the NW direction, so he wants to be sure there will be odor control mitigation on the Fridley site as well.

Date	Name	Contact Information	Method Received	Question/Comment	Response
12/17/20	Michael McCarthy	mjmccarthy763@comcast.net	Email	What is the current plan for effluent storage at the site of the new pumping station?	Michael also submitted this question during public hearing. Below is a copy of the respo from the public hearing.
					We will not be storing effluent on the site. O the things that we know is when we store wastewater at a location, that can cause odd
					And we're trying to do all we can to limit the

Additional Follow Up/Notes

Response to Martin from the public
hearing on December 17:

As far as the location of the proposed lift station, right now we are proposing that the building, itself, will be very close to where the existing girl scout building was. So, it will be fairly far away from the homes in the area, fairly far away from the property boundaries. We do need to maintain some proximity to the existing pipes, but we are trying to be considerate of our neighbors in the area.

As far as the odors, we will include odor management as a part of the project. There's a number of different technologies that are out there that are available for us to take care of odors at this facility. There may be momentary periods where we will still see odors from that facility, and that may be because the media that is being used to mitigate these odors has reached the end of its useful life. It is more likely during times when we are changing out the media at this odor control equipment that you will notice some odors. So, likely, there will be some momentary, temporary odors at that site. But, for the most part, the odor control system will prevent any odors at the facility.

luring the	
response	
site. One of	
ore	
se odors.	
nit the odor-	

Date	Name	Contact Information	Method Received	Question/Comment	Response	Additional Follow Up/Notes
			Received		causing areas. So, one of the evaluations that we	
					did as we went through and looked at spill	
					prevention for this location was an evaluation of	
					storing wastewater at that site. And we quickly	
					determined that that was not a viable alternative.	
12/17/20	Roland	lanny03@comcast.net	Email	If there is a break down on the east side will	Roland called in to the public hearing and asked	
	Diederich			you start trucking the waste to St Paul?	this question during the hearing, below is a copy	
	46 66th Way NE Fridley			,	of the transcript from the public hearing.	
	Thatey				MR. DIEDERICH: Hi. My name is Roland	
					Diederich. I live in Fridley, Minnesota, on 66th	
					Way; 40-year resident. And my question is: If	
					there's a breakdown on the Fridley side of the	
					river, are you going to then start trucking the	
					waste away from that area on to St. Paul?	
					MR. LINDSTROM: Great question. So, if there's	
					a breakdown just to repeat the question, "If	
					there's a breakdown on the Fridley side, how	
					would that be handled? Will it be trucked to St.	
					Paul?"	
					MR. DIEDERICH: Yeah. I'm visualizing some	
					kind of breakdown. Things do break down and	
					you need to move that waste. I envision trucks	
					driving down East River Road, heading their way	
					towards Pig's Eye Island.	
					MR. O'DONNELL: Sir, could I ask you to state	
					your name and spell your name again, please?	
					MR. DIEDERICH: It's Roland, R-o-l-a-n-d, last	
					name is Diederich, D-i-e-d-e-r-i-c-h.	
					MR. WEDIN: Thank you, Mr. Diederich, for your	
					question. I think it's an important one. I	
					mentioned earlier on in our presentation about	
					spill prevention. That's really a key thing for us;	
					something that we really try to factor into the	
					design of our projects. We talked about	
					redundant pumping systems, redundant pumps	
					at the lift station. So, when we design our pumps,	
					or design our lift stations, we design them such	

Date	Name	Contact Information	Method Received	Question/Comment	Response	Additional Follow Up/Notes
					that one pump is out of service. So, when we	
					look at our facility, if we've got an eight-pump	
					facility, that we proposed here, we look at it as if	
					one of those pumps is down for servicing. So,	
					we're designing it based on seven pumps being	
					in operation. We're also designing our facilities	
					such that they include emergency generator	
					backups so that if something does happen, that	
					will remove power to the facility, we have an	
					emergency diesel generator at that location that	
					immediately starts up and starts the pumps	
					operating again. We also talked a little bit about	
					an independent pumping system that would be	
					included as a part of this facility. These would be	
					larger pumps, either diesel-driven or natural gas,	
					that include a dedicated generator set that would	
					be able to pump the wastewater at a higher rate.	
					We also talked a little bit about including some lift	
					stations upstream of this facility that would allow	
					us to temporarily store wastewater inside of our	
					pipes, so we're not spilling into the environment.	
					Worst case scenario, I have seen where we have	
					had to use tanker trucks, not necessarily to pump	
					from the facility and route it down to Pig's Eye, to	
					the Metropolitan Wastewater Treatment Facility,	
					but maybe down to a receiving facility. I know	
					Fridley has a liquid waste receiving facility that	
					we operate nearby that we could bring waste to.	
					That would be absolutely the worst-case scenario	
					for a situation like this. And we really try to design	
					our facilities such that we never have to get to	
					that worst case scenario.	
					MR. DIEDERICH: Okay. I guess that's my main	
					concern, because we had a railroad bridge go	
					out here a few years ago maybe ten years ago	
					when we got five inches of rain per hour. And	
					so things do happen that we can't plan for. That's	
					a statement, I guess. It's not a question. Thank	
					you.	
2/17/20	Ann Bolkom	City of Fridley Council Member	Public	Great news of locating building near the girl		
2/11/20				Creat news of locating building field the gill		

Date	Name	Contact Information	Method Received	Question/Comment	Response	Additional Follow Up/Notes
12/17/20	Mandy Meisner	Anoka County Commissioner	Public Hearing	I know the Camp is a beloved place for a lot of Fridley residents. Thank you for the detailed presentation.		
12/17/20	Joe MacPherson	Engineer Anoka County	Public Hearing	Hi, this is Joe MacPherson with Anoka County. We've submitted our comments in the form of an email. No further comments at this time. Thanks for the detailed information tonight.	 1/11/21 – No email was received from Joe MacPherson or Anoka County. MCES followed up with Joe to see if he had any comments for the public comment period. Hello Joe, Thanks for participating in our public hearing meeting for Fridley Lift Station L32A on December 17th. During the meeting, you commented that you will submit your comments via email. We have not received any email from Anoka County so just checking to see if you have any comments so we can document and answer your question if you have any. Please let me know by the end of this Wednesday if you have any comments. Thanks. Jeny 	 Original email below was sent to an incorrect email address on 12/8/20. Gentlemen, We just received the attached notice regarding the proposed Met Council lift station project coming to your community. I noticed the 72" diameter inlet pipe to the facility, wow! Many people don't realize how elaborate our sanitary sewer collection and water distribution infrastructure has become. I took a quick look at the plans located on the project website as it relates to East River Rd and have a few preliminary comments: One of the potential improvement options includes relocating the access drive north of its existing location. Knowing that these facilities receive weekly and daily deliveries/visits by chemical suppliers and operations workers, the existing access location allows access to the facility from the north and south via an existing median break at the intersection of 69th Way NE. The county will not provide an additional median break along this corridor as it could negatively impact the traffic operations and safety along East River Rd, so we recommend maintaining the existing access location. If the project will include any work within the East River Rd right-of-way, please reach out to us early so we can discuss traffic control, construction staging, and construction

Date	Name	Contact Information	Method Received	Question/Comment	Response

Additional Follow Up/Notes

schedules. This roadway is an important arterial roadway for the surrounding communities.

If you have any additional questions or comments related to Anoka County right-of-way requirements, engineering standards, or permitting processes, please contact Jane Rose (Traffic Engineering Manager) or Michelle Pritchard (Design Engineer).

Sincerely,

Joe MacPherson

1/13/21 – *Tim Wedin wrote a letter response to Joe MacPherson:*

Dear Joe,

Thank you for providing us with your comments on the Fridley Area Lift Station L32A Draft Facility Plan.

We appreciate your comments related to the access to the site from East River Road, and coordinating any work within the East River Road Right-of-Way. We anticipate that there will be several permits and reviews that will be needed to advance this project. We plan to coordinate with the County during design to ensure that proper access to the new lift station site is provided in a suitable location. We look forward to coordinating with the County to address traffic control, construction staging, and construction scheduling needs.

We appreciate your continued collaboration as this project moves forward. If you have any questions, please feel free to contact me. Sincerely,

Date	Name	Contact Information	Method	Question/Comment	Response	Additional Follow Up/Notes
			Received			
						Tim Wedin
12/17/20	Barb Bergseth		Public	How much noise and smell are generated	As far as how much noise and smell are	
	146 71st Way		Hearing	from the lift station? What is the expected	generated from the lift station, we will be required	
	NE			start date of construction if approved?	to meet the City of Fridley code requirements.	
	Fridley				They do set forth limitations as far as the level of	
					noise that can be generated at the facility and	
					how many decibels can be heard at the property	
					boundary. With our screening and pushing that	
					back from the property line, that will help mitigate	
					that issue. Also, the planting of trees and other	
					greenery in the area will also help mitigate a lot	
					of that sound issue. Most of the equipment, itself,	
					especially the pumps and other equipment that	
					will be used for operation of the lift station will be	
					located inside of the building. So, that will also help mitigate a lot of the noise in the area.	
					help miligate a lot of the holse in the area.	
					Odors, like I mentioned previously, the level of	
					the odors will be very minor. Most of the time, it	
					will be noticed when we are changing out our	
					filter media as part of the odor control system. I'm	
					not sure that I can really quantify what the odor	
					will be, but we're definitely mindful of that with	
					this facility, as with all of our other facilities.	
					As far as when the construction will commence, I	
					think right now it's too early for us to give an	
					exact date of when construction will begin. We're	
					still in the planning phase of the project and	
					there's still a number of things that can affect	
					when the shovels hit the ground. But right now,	
					we are projecting a 2023 start date for	
					construction activities.	
12/17/20	Tom Kimlinger		Public	Tom Kimlinger 109 Hartman circle: What is	That is still a question that is being discussed. At	
	109 Hartman Cir		Hearing	the planned use for the rest of the property	this point in time, we don't have a solid answer	
	Fridley			not covered by the buildings?	for what the remainder of the property will be or	
					what will be done with the remainder of the	
					property.	
					Part of the reason for that is, we don't know how	
					much of the property we're exactly going to need	
					to use. We've estimated of the 22-acre parcel we	

Date	Name	Contact Information	Method Received	Question/Comment	Response	Additional Follow Up/Notes
					will need to use about seven acres of it, which will mean that there's still another 15 acres that we don't need. There's still a lot of discussion with the City of Fridley that we're having as far as what options are available to that parcel.	
					Those options include developing the area for residential housing. Those options include Metropolitan Council retaining ownership of the area as a buffer, and including some public space. But at this point in time, it's too early for us to determine what that property is going to be used for in the future. That will be something that we will continue to discuss with the City of Fridley and come to a conclusion with them on moving forward.	
12/17/20	Mandy Meisner	Anoka County Commissioner	Public Hearing	If approved, will there be community meetings offered either to gain feedback from residents or simply to communicate the plans before you break ground?	 Public outreach is a very important part of all our projects, and we will continue to involve the public in the project as we move forward. It may be a while before you hear from us, as far as project breaking ground. Like I said, it will be 2023 before we break ground. But, we will be working closely with the City of Fridley on design of the project. That typically includes sitting down with City Planning Committees to discuss how the project is going to look; not only the building, but also, landscaping and restoration of the site. I'm trying to think if there's somebody else on the team right now that can help speak a little more to project communication as we move forward here. 	MR. LINDSTROM: I would just add that as Chair of the Environment Committee for the Met Council, I'd be delighted, Commissioner, to come to a County Board meeting or any other public forum and help talk about the project and extend that to the Fridley staff and City Council officials, or any sort of neighborhood groups out there. I know I'd be willing to address those groups. And your local council member, I'm sure, would join me in those meetings, as well. Anybody else from our team like to chime in on that one?
						MS. BARODA: Council Member Lindstrom, this is Jeny Baroda. I would like to add that we will also be working with other stakeholders, like Friends of Mississippi and Department of Natural Resources as we progress with the design of this project. We will be working with them to determine how the site would look like, what are the site

Date	Name	Contact Information	Method Received	Question/Comment	Response
12/17/20	Mandy Meisner	Anoka County Commissioner	Public	Thank you. I think that's important and	
12/17/20	Ann Bolkom	City of Fridley Council Member	Hearing Public Hearing	appreciate a joint effort. Yes, City would welcome to make presentation at city council meeting. Also, we have a newsletter that can be utilized.	
12/17/20	Barb Bergseth 146 71st Way NE Fridley		Public Hearing	As a residential homeowner on the north side, we like the option of a buffer by the Met Council for the 15 acres not used for the lift station."	
12/17/20	Stephen Eggert	City of Fridley Council Member	Public Hearing	What is the typical amount of time needed to change out media for odor control? I expect there is a range for different or newer systems.	Thank you, Mr. Eggert, for your question. I believe, as I recall I think you are correct really does depend on the size of the odor co system and the type of the odor control syste that we use for managing odors. As I recall, t time for change-out of the media for a lot of o odor control systems is on the order of magnitude of about a half a day. So, four to s hours.

	Additional Follow Up/Notes
	requirements and how much buffer is required.
	MR. O'DONNELL: This is Tim O'Donnell. I'll jump in here, too, from the aspect of our community outreach. We can certainly hold additional local public information meetings as we move through the design process to start to show you what we're looking at for design of the project. And then certainly again, before construction would begin, that's the point that we will have the most detail that we can offer to the public on the final designs and construction schedules, what we would be doing to try to mitigate the impact of the construction while it's taking place. So, yes, definitely; we will hold additional meetings to keep informing the public about our project.
ion. I orrect it odor control ol system recall, the a lot of our of four to six	Well done. Thank you.

Date	Name	Contact Information	Method Received	Question/Comment	Response	Additional Follow Up/Notes
12/17/20	Ann Bolkom	City of Fridley Council Member	Public Hearing	Can you expound some of options?	There are two options that we have looked at currently for the use of that additional 15 acres of land in that area.	
					One of the options that we looked at was the development of some single-family housing around that area. There are some limitations to that site. There is a fairly significant wetland in that area that has some impacts on that. Again, a lot of the same limitations that we have with sighting our lift station would also be imposed on any building in that area. So, the setbacks from the Mississippi River, the setbacks from the bluff, the setbacks from the right-of-way of East River Road; and also, the property line setbacks would impact on where that single-family housing could	
					be built out. We've talked with the City of Fridley staff about some ideas related to that, and we looked at some of the potential for where that single-family housing could be built, the limitations for where that single-family housing could be built and the requirements for building out the roads and the utilities that would need to be included as a part of that construction. So, that's one option that we've looked at.	
					The other option that we've looked at is, again, keeping that area as a buffer and looking at it as more of a public-use space, we have talked with the City of Fridley. And one of the things that they have brought up with us is that they are a river community with no access to the river. So, we've discussed the idea of including playground, trails, possibly a canoe and kayak launch at that location. So, those are the two options that we've really looked at moving forward with the site.	
					At this point in time, it's still fairly early to make a final decision on what it is that we want to do there. We want to work very closely with the City of Fridley and help determine what's in	

Date	Name	Contact Information	Method Received	Question/Comment	Response	Additional Follow Up/Notes
					everyone's best interest moving forward with that location.	
12/17/20	Ann Bolkom	City of Fridley Council Member	Public Hearing	Sorry my comment can you talk what building would look like. Can you share some of buildings in other cities?	MR. LINDSTROM: I suspect it may be a little early to have a determined answer on that. Obviously, we would work with the City of Fridley on that. But anything further we can say about what the building, itself, would look like at this point?	MR. WEDIN: Thank you Council Member Lindstrom, and thank you, Council Member Bolkcom. It's really hard for me to say what the building will look like. I'll give you some answers that may help direct you toward our line of thinking. If you'll reflect back to that slide that I shared that showed the different buildings that we have, the different lift stations that we have. The Chaska lift stations that we have, was something that we worked very closely with Chaska and Carver County on the look of that building. So, that's the building on the lower left of the image that we're showing you right now. Just to the left of that building is the Carver County Government Center. And so, we worked very closely with the City of Chaska and Carver County to build a facility that would look very similar to the Carver County Government Center.
						The City of Chaska also asked, and I believe this is part of their building code requirement, that we use a specific brick; what they refer to as a "Chaska brick," that has a very distinct look to it, as a part of the exterior of our facility. L73, up on the top section there in the middle, that was, again, something that we worked very closely with the City of Woodbury on as we designed that facility. They were aware that the area and the nature of the area where we were building this facility was being developed as we were moving forward.

Date	Name	Contact Information	Method Received	Question/Comment	Response
12/17/20	Tom Kimlinger 109 Hartman Cir Fridley		Public Hearing	Is it possible to move the pump building as close to the center of the property - that would make the largest buffer in all directions?	That's definitely something that we want to lo at, as far as sighting the facility. Again, we're trying to keep our lift station as close to the existing pipes as we can. As we separate it fr those pipes, we run into some hydraulic issue being able to move wastewater from that siph or that siphon crossing of the Mississippi Rive the new location of the building. And so, that an affect on how far north we can put that.
					There are also other site limitations that I mentioned previously about the area; not only setbacks from the Mississippi River and East River Road, but I also alluded to a wetland th

	Additional Follow Up/Notes
	So, we wanted something that would fit in with that character of the surrounding area. So, that's why we built something that looked more of like an upper-scale house.
	So, as far as what our facility will look like, I don't know. But, there will be a lot of things that we will have to factor in as we move forward. And those things will include building code requirements from the City of Fridley. Those things will include requirements for building in close proximity to the Mississippi River. There will be some requirements that will be in place because we're within a bird flyway. We've talked about designing the building and lighting for bird safety.
	There are a number of things that we'll have to factor into that design. And we'll work with the City of Fridley on moving that forward and how that building is going to look.
	MS. BOLKOM: We like white bear one that looks like a single family home.
ant to look n, we're to the arate it from ulic issues of that siphon ippi River to so, that has t that.	
nat I ; not only the ind East etland that is	

Date	Name	Contact Information	Method Received	Question/Comment	Response	Additional F
					onsite. We need to make sure that we're far enough away from that wetland when we construct the facility, so we're not adversely impacting it.	
					So, there are a lot of things that we'll need to factor in as we move forward with the design of the facility. Obviously, like you say, the further away we are from our residents, the less impact that we will have on our neighbors. But there are other things that we can do to help mitigate that impact, as well; that would be a lot of screening that we move forward with as we move forward with the project, too.	
12/17/20	Jerry Auge	Assistant County Engineer Anoka County	Public Hearing	Thank you MCES team for the very well done informative presentation and explanation of the project. I have no comments.		
12/17/20	Barb Bergseth 146 71st Way NE Fridley		Public Hearing	Thank you for the helpful presentation!		
12/22/20	Colleen O'Connor Toberman 101 E 5th St, Ste 2000 St. Paul, 55101	ctoberman@fmr.org 651-222-2193 x29 River Corridor Director Friends of the Mississippi River	Mail	December 22, 2020 Tim O'Donnell Metropolitan Council Environmental Services 390 Robert St. N Saint Paul, MN 55101 Dear Tim:	 1/12/21 – Tim Wedin wrote a letter response to Collen O'Connor: Dear Colleen, Thank you for providing us with your comments on the Fridley Area Lift Station L32A Draft Facility Plan. 	
				Thank you for the opportunity to comment on the Fridley Area Lift Station Draft Facility Plan. We appreciate the time that you and your colleagues have given to meeting with us	As we move forward with the design phase of the project, we will continue to collaborate with you on the siting and design of the lift station facilities. The facility will be designed to meet all applicable City, State, and National standards, including environmental standards.	
				and soliciting our feedback about this project. FMR supports investments in water infrastructure and supports the proposed location for the Fridley lift station. Our	We appreciate your continued collaboration as this project moves forward. If you have any questions, please feel free to contact me.	
				growing metro-area population, our aging	Sincerely,	

	Additional Follow Up/Notes
te sure that we're far wetland when we we're not adversely	
ings that we'll need to rward with the design of ke you say, the further esidents, the less impact neighbors. But there are n do to help mitigate that uld be a lot of screening vith as we move forward	
er response to Collen	
g us with your comments t Station L32A Draft	
with the design phase of atinue to collaborate with lesign of the lift station ill be designed to meet te, and National nvironmental standards.	
ntinued collaboration as vard. If you have any free to contact me.	

Date	Name	Contact Information	Method	Question/Comment	Response
			Received		
				infrastructure, and the realities of climate change all require ongoing investments in resilient wastewater systems before we experience catastrophic system failures.	Tim Wedin
				The Fridley lift station project offers opportunities to protect and enhance the Mississippi River's critical ecological functions as well as its recreational value. As project planning continues, we expect to see MCES on the leading edge of sustainable and context-sensitive design. We appreciate MCES' commitment to meeting the following standards:	
				 State of Minnesota Mississippi River Corridor Critical Area (MRCCA) rules (6106.0010 – 6106.0180) City of Fridley MRCCA Plan and forthcoming MRCCA ordinance State of Minnesota B3 building guidelines 	
				We also encourage MCES to explore other ways to enhance the riverfront along both sides of the river through this project. For instance, we hope there might be native vegetation options that would better screen the Brooklyn Park facilities from view along the river (without causing infrastructure damage from root systems, etc.).	
				We are also interested in participating in the planning process for the remainder of the Fridley property after facility design is complete. We hope that MCES and the city of Fridley will work together to enhance wildlife habitat and community river access at this site.	
				We look forward to continued collaboration as this project moves forward.	

Additional	Follow	Up/Notes
------------	--------	-----------------

Date	Name	Contact Information	Method Received	Question/Comment	Response	Additional Follow Up/Notes
				In partnership, Colleen O'Connor Toberman River Corridor Director		

State Environmental Review Process (SERP) Mailing List Form

Clean Water State Revolving Fund Program

Minnesota Rules 7077.0272, subp. 2.a.A. Minnesota Rules 7077.0277, subp. 3.B.

Doc Type: Wastewater Point Source

Instructions: This is the complete mailing list that the Minnesota Pollution Control Agency (MPCA) will use to public notice the Environmental Summary or other environmental review documents. Please type names and addresses on this form and return to the MPCA staff engineer. This list should be considered minimum. If a more substantial mailing list is available for the Public Participation Program, it should be added to this mailing list. **Please return this mailing list in MS Word format only.**

Example address blocks:

The Honorable Mark Anderson Minnesota State Senator 135 State Office Building St. Paul, MN 55113 Marv Johnson, City Administrator City of Willmar 236 Oriole Avenue Willmar, MN 55699

Municipality name:	Metropolitan Council Environmental Services	Project number: 809400
Contact name:	Tim O'Donnell	Phone number: 651-602-1269
	(person completing the form)	

Public notice address information

1.	The Honorable State Senator:	6.	City Administrator/Clerk:
	See attached Government/Community stakeholder list		See attached Government/Community stakeholder list
2.	The Honorable State Representative:	7.	Engineering Consultant:
	See attached Government/Community stakeholder list		Not applicable.
3.	The Honorable County Board Chair:	8.	County Planning and Zoning Office:
	See attached Government/Community stakeholder list		See attached Government/Community stakeholder list
4.	The Honorable Mayor:	9.	Watershed District (if established):
	See attached Government/Community stakeholder list		See attached Government/Community stakeholder list
5.	Township Board Clerk:*		Regional Development Commission:
	See attached Government/Community stakeholder list		Metropolitan Council Attn: Lisa Barajas 390 Robert St. N. St. Paul, MN 55101-1805

*Include if any portion of the project (including the facility, interceptor, influent or outfall lines) will be located in the township(s).

To add rows, place your cursor in the last row of the second column and hit tab.

Interested citizens:	Interested groups: (i.e., homeowners associations, environmental, business, civic, etc., organizations)
See attached Citizen/Property Owners list	See attached Government/Community stakeholder list

To add rows, place your cursor in the last row of the second column and hit tab.

Property owners:

Property owner list should include all property owners of the site to be, or which has been previously acquired. For pond systems, include the property owner(s) of the pond site, spray irrigation site(s) and all property owners of homes within one-fourth mile of the pond site and any clusters of homes within one-half mile of the pond site.

See attached Citizen/Property Owners list	

Federal agencies:

ATTN: Field Supervisor U.S. Fish and Wildlife Service Twin Cities Field Office 4101 American Boulevard East Bloomington, MN 55425-1665

ATTN: Environmental Compliance Chief U.S. Army Corps of Engineers St. Paul District 180 Fifth Street East, Suite 700 St. Paul, MN 55101-1678

ATTN: Regional Environmental Officer Federal Emergency Management Agency Region V Office 536 South Clark Street, 6th Floor Chicago, IL 60605

MPCA regional office(s):

State agencies:

ATTN: Environmental Review Supervisor MN Department of Natural Resources Division of Ecological and Water Resources 500 Lafayette Road, Box 25 St. Paul, MN 55155 -4025

ATTN: Manager of Government Programs and Compliance MN Historical Society Minnesota Historic Preservation Office 345 West Kellogg Boulevard St. Paul, MN 55102-1906

ATTN: Cultural Resource Director MN Indian Affairs Council 161 St. Anthony Avenue, Suite 919 St. Paul, MN 55103

Jesse Struve City of Brooklyn Park 5200 85th Ave N Brooklyn Park, MN 55443

Dan Ruiz City of Brooklyn Park 5201 85th Ave N Brooklyn Park, MN 55443

Jeffrey Lunde City of Brooklyn Park 5200 85th Ave N Brooklyn Park, MN 55443

Jim Kosluchar City of Fridley 7071 University Ave NE Fridley, MN 55432

Ann Bolkcom City of Fridley 7071 University Ave NE Fridley, MN 55432

Wally Wysopal City of Fridley 7071 University Ave NE Fridley, MN 55432

West Mississippi River Watershed District 3235 Fernbrook LN N Plymouth, MN 55447

Reva Chamblis Metropolitan Council 390 Robert St N St. Paul, MN 55101

David Sahli Minnesota Pollution Control Agency 520 Lafayette Rd N St. Paul, MN 55155

Doug Borglund Anoka County - Community Development Department 2015 1st Ave N Anoka, MN 55303 Craig Runnakko City of Brooklyn Park 5200 85th Ave N Brooklyn Park, MN 55443

Lisa Jacobson City of Brooklyn Park 5200 85th Ave N Brooklyn Park, MN 55443

Jay Stroebel City of Brooklyn Park 5200 85th Ave N Brooklyn Park, MN 55443

Scott Hickok City of Fridley 7071 University Ave NE Fridley, MN 55432

Scott Lund City of Fridley 7071 University Ave NE Fridley, MN 55432

Leah Hall The Nature Conservancy 1101 West River Pkwy Suite 200 Fridley, MN 55432

Whitney Clark Friends of the Mississippi River 101 East Fifth Street, Suite 2000 St. Paul, MN 55101

Peter Lindstrom Metropolitan Council 390 Robert St N St. Paul, MN 55101

Mandy Meisner Anoka County 2100 3rd Ave Anoka, MN 55303

Clark Palmer Anoka County - Community Development Department 2015 1st Ave N Anoka, MN 55303 Jon Watson City of Brooklyn Park 5200 85th Ave N Brooklyn Park, MN 55443

Terry Parks City of Brooklyn Park 5200 85th Ave N Brooklyn Park, MN 55443

Cindy Sherman City of Brooklyn Park 5201 85th Ave N Brooklyn Park, MN 55443

Dave Ostwald City of Fridley 7071 University Ave NE Fridley, MN 55432

Luke Cardona City of Fridley 7071 University Ave NE Fridley, MN 55432

Matthew Danzl Coon Creek Watershed District 13632 Van Buren St NE Ham Lake, MN 55304

Colleen O'Connor Toberman Friends of the Mississippi River 101 East Fifth Street, Suite 2000 St. Paul, MN 55101

Lucas Youngsma Minnesota Department of Natural Resources - Eco/Waters 1200 Warner Rd St. Paul, MN 55106 Scott Schulte Anoka County 2101 3rd Ave Anoka, MN 55303

Community Works Hennepin County 701 4th Ave S #400 Minneapolis, MN 55415 Marion Greene Hennepin County A2400 Government Center 300 S 6th St Minneapolis, MN 55487 Sen. Chris Eaton Minnesota State Senate 95 University Avenue W Minnesota Senate Bldg, Rm 2303 St. Paul, MN 55155 Jeffrey Lunde Hennepin County A2400 Government Center 300 6th St S Minneapolis, MN 55487 Rep. Connie Bernardy Minnestota State Representative 563 State Office Building St. Paul, MN 55155 Sen. Mary K. Kunesh Minnesota State Senate 95 University Avenue W Minnesota Senate Bldg, Rm 2323 St. Paul, MN 55155 Rep. Samantha Vang Minnestota State Representative 527 State Office Building St. Paul, MN 55155 Resident 7234 E River Rd Minneapolis, MN 55432-3031

Resident 7136 E River Rd Minneapolis, MN 55432-3027

Resident 6775 E River Rd Minneapolis, MN 55432-4114

Resident 6819 E River Rd Minneapolis, MN 55432-4117

Resident 6831 E River Rd Minneapolis, MN 55432-4117

Resident 6931 E River Rd Minneapolis, MN 55432-4129

Resident 7035 E River Rd Minneapolis, MN 55432-4120

Resident 7065 E River Rd Minneapolis, MN 55432-4120

Resident 7181 E River Rd Minneapolis, MN 55432-3029

Resident 7215 E River Rd Minneapolis, MN 55432-3032 Resident 7210 E River Rd Minneapolis, MN 55432-3031

Resident 6880 E River Rd Minneapolis, MN 55432-4115

Resident 6785 E River Rd Minneapolis, MN 55432-4114

Resident 6823 E River Rd Minneapolis, MN 55432-4117

Resident 6911 E River Rd Minneapolis, MN 55432-4129

Resident 6941 E River Rd Minneapolis, MN 55432-4129

Resident 7045 E River Rd Minneapolis, MN 55432-4120

Resident 7155 E River Rd Minneapolis, MN 55432-3029

Resident 7191 E River Rd Minneapolis, MN 55432-3029

Resident 7217 E River Rd Minneapolis, MN 55432-3032 Resident 7180 E River Rd Minneapolis, MN 55432-3027

Resident 6755 E River Rd Minneapolis, MN 55432-4114

Resident 6795 E River Rd Minneapolis, MN 55432-4114

Resident 6827 E River Rd Minneapolis, MN 55432-4117

Resident 6921 E River Rd Minneapolis, MN 55432-4129

Resident 6951 E River Rd Minneapolis, MN 55432-4129

Resident 7055 E River Rd Minneapolis, MN 55432-4120

Resident 7165 E River Rd Minneapolis, MN 55432-3029

Resident 7201 E River Rd Minneapolis, MN 55432-3032

Resident 7221 E River Rd Minneapolis, MN 55432-3032 Resident 7231 E River Rd Minneapolis, MN 55432-3032

Resident 7315 E River Rd Minneapolis, MN 55432-3034

Resident 7595 Alden Way NE Minneapolis, MN 55432-3068

Resident 7641 Alden Way NE Minneapolis, MN 55432-3007

Resident 7680 Alden Way NE Minneapolis, MN 55432-3006

Resident 159 Logan Pkwy NE Minneapolis, MN 55432-3041

Resident 123 Glen Creek Rd NE Minneapolis, MN 55432-3036

Resident 139 Glen Creek Rd NE Minneapolis, MN 55432-3036

Resident 136 Glen Creek Rd NE Minneapolis, MN 55432-3035

Resident 100 Glen Creek Rd NE Minneapolis, MN 55432-3035 Resident 7235 E River Rd Minneapolis, MN 55432-3032

Resident 7321 E River Rd Minneapolis, MN 55432-3034

Resident 7601 Alden Way NE Minneapolis, MN 55432-3007

Resident 97 Craig Way NE Minneapolis, MN 55432-3062

Resident 7650 Alden Way NE Minneapolis, MN 55432-3006

Resident 7340 E River Rd Minneapolis, MN 55432-3033

Resident 115 Glen Creek Rd NE Minneapolis, MN 55432-3036

Resident 151 Glen Creek Rd NE Minneapolis, MN 55432-3036

Resident 124 Glen Creek Rd NE Minneapolis, MN 55432-3035

Resident 7300 E River Rd Minneapolis, MN 55432-3033 Resident 7271 E River Rd Minneapolis, MN 55432-3032

Resident 7335 E River Rd Minneapolis, MN 55432-3034

Resident 7635 Alden Way NE Minneapolis, MN 55432-3007

Resident 90 Craig Way NE Minneapolis, MN 55432-3008

Resident 7610 Alden Way NE Minneapolis, MN 55432-3006

Resident 109 Glen Creek Rd NE Minneapolis, MN 55432-3036

Resident 135 Glen Creek Rd NE Minneapolis, MN 55432-3036

Resident 148 Glen Creek Rd NE Minneapolis, MN 55432-3035

Resident 112 Glen Creek Rd NE Minneapolis, MN 55432-3035

Resident 123 Chesney Way NE Minneapolis, MN 55432-3026 Resident 147 Chesney Way NE Minneapolis, MN 55432-3013

Resident 59 Logan Pkwy NE Minneapolis, MN 55432-3038

Resident 115 Logan Pkwy NE Minneapolis, MN 55432-3040

Resident 175 Logan Pkwy NE Minneapolis, MN 55432-3041

Resident 211 Logan Pkwy NE Minneapolis, MN 55432-3056

Resident 200 Logan Pkwy NE Minneapolis, MN 55432-3042

Resident 7170 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7154 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7132 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7110 Riverview Ter NE Minneapolis, MN 55432-3045 Resident 29 Logan Pkwy NE Minneapolis, MN 55432-3038

Resident 79 Logan Pkwy NE Minneapolis, MN 55432-3038

Resident 129 Logan Pkwy NE Minneapolis, MN 55432-3040

Resident 189 Logan Pkwy NE Minneapolis, MN 55432-3041

Resident 219 Logan Pkwy NE Minneapolis, MN 55432-3056

Resident 7190 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7162 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7144 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7130 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7100 Riverview Ter NE Minneapolis, MN 55432-3045 Resident 39 Logan Pkwy NE Minneapolis, MN 55432-3038

Resident 101 Logan Pkwy NE Minneapolis, MN 55432-3040

Resident 145 Logan Pkwy NE Minneapolis, MN 55432-3040

Resident 235 Logan Pkwy NE Minneapolis, MN 55432-3056

Resident 323 Logan Pkwy NE Minneapolis, MN 55432-3055

Resident 7180 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7158 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7138 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 7120 Riverview Ter NE Minneapolis, MN 55432-3045

Resident 188 71st Way NE Minneapolis, MN 55432-3021 Resident 184 71st Way NE Minneapolis, MN 55432-3021

Resident 158 71st Way NE Minneapolis, MN 55432-3021

Resident 124 71st Way NE Minneapolis, MN 55432-3021

Resident 101 71st Way NE Minneapolis, MN 55432-3069

Resident 131 71st Way NE Minneapolis, MN 55432-3069

Resident 7115 Riverwood Dr NE Minneapolis, MN 55432-3072

Resident 7133 Riverwood Dr NE Minneapolis, MN 55432-3072

Resident 7130 Riverwood Dr NE Minneapolis, MN 55432-3071

Resident 7110 Riverwood Dr NE Minneapolis, MN 55432-3071

Resident 7104 Riverwood Dr NE Minneapolis, MN 55432-3071 Resident 180 71st Way NE Minneapolis, MN 55432-3021

Resident 146 71st Way NE Minneapolis, MN 55432-3021

Resident 114 71st Way NE Minneapolis, MN 55432-3021

Resident 111 71st Way NE Minneapolis, MN 55432-3069

Resident 141 71st Way NE Minneapolis, MN 55432-3069

Resident 7121 Riverwood Dr NE Minneapolis, MN 55432-3072

Resident 7139 Riverwood Dr NE Minneapolis, MN 55432-3072

Resident 7126 Riverwood Dr NE Minneapolis, MN 55432-3071

Resident 7108 Riverwood Dr NE Minneapolis, MN 55432-3071

Resident 7102 Riverwood Dr NE Minneapolis, MN 55432-3071 Resident 168 71st Way NE Minneapolis, MN 55432-3021

Resident 136 71st Way NE Minneapolis, MN 55432-3021

Resident 102 71st Way NE Minneapolis, MN 55432-3021

Resident 121 71st Way NE Minneapolis, MN 55432-3069

Resident 151 71st Way NE Minneapolis, MN 55432-3069

Resident 7127 Riverwood Dr NE Minneapolis, MN 55432-3072

Resident 7145 Riverwood Dr NE Minneapolis, MN 55432-3072

Resident 7120 Riverwood Dr NE Minneapolis, MN 55432-3071

Resident 7106 Riverwood Dr NE Minneapolis, MN 55432-3071

Resident 7100 Riverwood Dr NE Minneapolis, MN 55432-3071 Resident 7105 Riverview Ter NE Minneapolis, MN 55432-3046

Resident 7145 Riverview Ter NE Minneapolis, MN 55432-3046

Resident 7161 Riverview Ter NE Minneapolis, MN 55432-3046

Resident 142 71 1/2 Way NE Minneapolis, MN 55432-3064

Resident 124 71 1/2 Way NE Minneapolis, MN 55432-3064

Resident 106 71 1/2 Way NE Minneapolis, MN 55432-3063

Resident 105 71 1/2 Way NE Minneapolis, MN 55432-3022

Resident 100 Alden Cir NE Minneapolis, MN 55432-3025

Resident 61 Alden Cir NE Minneapolis, MN 55432-3024

Resident 111 Alden Cir NE Minneapolis, MN 55432-3025 Resident 7121 Riverview Ter NE Minneapolis, MN 55432-3046

Resident 7153 Riverview Ter NE Minneapolis, MN 55432-3046

Resident 154 71 1/2 Way NE Minneapolis, MN 55432-3064

Resident 136 71 1/2 Way NE Minneapolis, MN 55432-3064

Resident 7151 Riverwood Dr NE Minneapolis, MN 55432-3072

Resident 100 71 1/2 Way NE Minneapolis, MN 55432-3063

Resident 132 Alden Cir NE Minneapolis, MN 55432-3025

Resident 80 Alden Cir NE Minneapolis, MN 55432-3023

Resident 81 Alden Cir NE Minneapolis, MN 55432-3024

Resident 117 Alden Cir NE Minneapolis, MN 55432-3025 Resident 7131 Riverview Ter NE Minneapolis, MN 55432-3046

Resident 7157 Riverview Ter NE Minneapolis, MN 55432-3046

Resident 148 71 1/2 Way NE Minneapolis, MN 55432-3064

Resident 130 71 1/2 Way NE Minneapolis, MN 55432-3064

Resident 112 71 1/2 Way NE Minneapolis, MN 55432-3063

Resident 103 71 1/2 Way NE Minneapolis, MN 55432-3022

Resident 110 Alden Cir NE Minneapolis, MN 55432-3025

Resident 60 Alden Cir NE Minneapolis, MN 55432-3023

Resident 101 Alden Cir NE Minneapolis, MN 55432-3025

Resident 125 Alden Cir NE Minneapolis, MN 55432-3025 Resident 133 Alden Cir NE Minneapolis, MN 55432-3025

Resident 7179 Riverview Ter NE Minneapolis, MN 55432-3047

Resident 144 Logan Pkwy NE Minneapolis, MN 55432-3039

Resident 100 Logan Pkwy NE Minneapolis, MN 55432-3039

Resident 40 Logan Pkwy NE Minneapolis, MN 55432-3037

Resident 70 70th Way NE Minneapolis, MN 55432-4111

Resident 60 70th Way NE Minneapolis, MN 55432-4111

Resident 41 70th Way NE Minneapolis, MN 55432-4110

Resident 21 70th Way NE Minneapolis, MN 55432-4110

Resident 7027 Hickory Dr NE Minneapolis, MN 55432-4132 Resident 7169 Riverview Ter NE Minneapolis, MN 55432-3047

Resident 172 Logan Pkwy NE Minneapolis, MN 55432-3039

Resident 130 Logan Pkwy NE Minneapolis, MN 55432-3039

Resident 80 Logan Pkwy NE Minneapolis, MN 55432-3037

Resident 120 70th Way NE Minneapolis, MN 55432-4113

Resident 7029 E River Rd Minneapolis, MN 55432-4120

Resident 55 70th Way NE Minneapolis, MN 55432-4110

Resident 36 70th Way NE Minneapolis, MN 55432-4109

Resident 20 70th Way NE Minneapolis, MN 55432-4109

Resident 7035 Hickory Dr NE Minneapolis, MN 55432-4132 Resident 7175 Riverview Ter NE Minneapolis, MN 55432-3047

Resident 158 Logan Pkwy NE Minneapolis, MN 55432-3039

Resident 116 Logan Pkwy NE Minneapolis, MN 55432-3039

Resident 60 Logan Pkwy NE Minneapolis, MN 55432-3037

Resident 80 70th Way NE Minneapolis, MN 55432-4111

Resident 61 70th Way NE Minneapolis, MN 55432-4110

Resident 50 70th Way NE Minneapolis, MN 55432-4111

Resident 31 70th Way NE Minneapolis, MN 55432-4110

Resident 7019 Hickory Dr NE Minneapolis, MN 55432-4132

Resident 7043 Hickory Dr NE Minneapolis, MN 55432-4132 Resident 7053 Hickory Dr NE Minneapolis, MN 55432-4132

Resident 7075 Hickory Dr NE Minneapolis, MN 55432-4132

Resident 7107 Ashton Ave NE Minneapolis, MN 55432-3067

Resident 7119 Ashton Ave NE Minneapolis, MN 55432-3067

Resident 7135 E River Rd Minneapolis, MN 55432-3017

Resident 7084 Hickory Dr NE Minneapolis, MN 55432-4134

Resident 7030 Hickory Dr NE Minneapolis, MN 55432-4134

Resident 7003 Hickory Dr NE Minneapolis, MN 55432-4132

Resident 6987 Hickory Dr NE Minneapolis, MN 55432-4130

Resident 6971 Hickory Cir NE Minneapolis, MN 55432-4123 Resident 7061 Hickory Dr NE Minneapolis, MN 55432-4132

Resident 7083 Hickory Dr NE Minneapolis, MN 55432-4132

Resident 7109 Ashton Ave NE Minneapolis, MN 55432-3067

Resident 7125 Ashton Ave NE Minneapolis, MN 55432-3067

Resident 7105 E River Rd Minneapolis, MN 55432-3028

Resident 7076 Hickory Dr NE Minneapolis, MN 55432-4134

Resident 7010 Hickory Dr NE Minneapolis, MN 55432-4131

Resident 6999 Hickory Dr NE Minneapolis, MN 55432-4130

Resident 6988 Hickory Dr NE Minneapolis, MN 55432-4128

Resident 6972 Hickory Dr NE Minneapolis, MN 55432-4128 Resident 7067 Hickory Dr NE Minneapolis, MN 55432-4132

Resident 7091 Hickory Dr NE Minneapolis, MN 55432-4132

Resident 7115 Ashton Ave NE Minneapolis, MN 55432-3067

Resident 7129 Ashton Ave NE Minneapolis, MN 55432-3067

Resident 7092 Hickory Dr NE Minneapolis, MN 55432-4134

Resident 7068 Hickory Dr NE Minneapolis, MN 55432-4134

Resident 7011 Hickory Dr NE Minneapolis, MN 55432-4132

Resident 6996 Hickory Dr NE Minneapolis, MN 55432-4128

Resident 6979 Hickory Dr NE Minneapolis, MN 55432-4130

Resident 6957 Hickory Dr NE Minneapolis, MN 55432-4127 Resident 6959 Hickory Cir NE Minneapolis, MN 55432-4123

Resident 6965 Hickory Cir NE Minneapolis, MN 55432-4123

Resident 6949 Hickory Dr NE Minneapolis, MN 55432-4127

Resident 6961 Hickory Pl NE Minneapolis, MN 55432-4135

Resident 6940 Hickory Dr NE Minneapolis, MN 55432-4126

Resident 6926 Hickory Dr NE Minneapolis, MN 55432-4126

Resident 6917 Hickory Dr NE Minneapolis, MN 55432-4127

Resident 6909 Hickory Dr NE Minneapolis, MN 55432-4127

Resident 6900 Hickory Dr NE Minneapolis, MN 55432-4126

Resident 48 69th Way NE Minneapolis, MN 55432-4108 Resident 6961 Hickory Cir NE Minneapolis, MN 55432-4123

Resident 6967 Hickory Cir NE Minneapolis, MN 55432-4123

Resident 6950 Hickory Dr NE Minneapolis, MN 55432-4128

Resident 6952 Hickory Pl NE Minneapolis, MN 55432-4143

Resident 6933 Hickory Dr NE Minneapolis, MN 55432-4127

Resident 6925 Hickory Dr NE Minneapolis, MN 55432-4127

Resident 6918 Hickory Dr NE Minneapolis, MN 55432-4126

Resident 6906 Hickory Dr NE Minneapolis, MN 55432-4126

Resident 6901 E River Rd Minneapolis, MN 55432-4101

Resident 6825 Hickory St NE Minneapolis, MN 55432-4125 Resident 6963 Hickory Cir NE Minneapolis, MN 55432-4123

Resident 6969 Hickory Cir NE Minneapolis, MN 55432-4123

Resident 6951 Hickory Pl NE Minneapolis, MN 55432-4135

Resident 6941 Hickory Dr NE Minneapolis, MN 55432-4127

Resident 6930 Hickory Dr NE Minneapolis, MN 55432-4126

Resident 6922 Hickory Dr NE Minneapolis, MN 55432-4126

Resident 6912 Hickory Dr NE Minneapolis, MN 55432-4126

Resident 6901 Hickory Dr NE Minneapolis, MN 55432-4127

Resident 6835 E River Rd Minneapolis, MN 55432-4144

Resident 6820 Hickory St NE Minneapolis, MN 55432-4124 Resident 6821 Hickory St NE Minneapolis, MN 55432-4125

Resident 6813 Hickory St NE Minneapolis, MN 55432-4125

Resident 6807 Hickory St NE Minneapolis, MN 55432-4125

Resident 44 Locke Lake Rd NE Minneapolis, MN 55432-4136

Resident 6811 E River Rd Minneapolis, MN 55432-4116

Business Occupant 203 Mississippi St NE Ste 1 Minneapolis, MN 55432-4352

Business Occupant 6501 E River Rd Ste 200 Minneapolis, MN 55432-4211

Resident 6551 E River Rd Apt 102 Minneapolis, MN 55432-4278

Resident 6551 E River Rd Apt 202 Minneapolis, MN 55432-4276

Resident 6551 E River Rd Apt 301 Minneapolis, MN 55432-4277 Resident 6814 Hickory St NE Minneapolis, MN 55432-4124

Resident 6809 Hickory St NE Minneapolis, MN 55432-4125

Resident 6801 Hickory St NE Minneapolis, MN 55432-4125

Resident 6802 Hickory St NE Minneapolis, MN 55432-4124

Business Occupant 7365 E River Rd Minneapolis, MN 55432-3034

Business Occupant 201 Mississippi St NE Minneapolis, MN 55432-4322

Business Occupant 6501 E River Rd Ste 202 Minneapolis, MN 55432-4211

Resident 6551 E River Rd Apt 103 Minneapolis, MN 55432-4278

Resident 6551 E River Rd Apt 203 Minneapolis, MN 55432-4276

Resident 6551 E River Rd Apt 302 Minneapolis, MN 55432-4277 Resident 6817 Hickory St NE Minneapolis, MN 55432-4125

Resident 6806 Hickory St NE Minneapolis, MN 55432-4124

Resident 54 Locke Lake Rd NE Minneapolis, MN 55432-4136

Resident 6815 E River Rd Minneapolis, MN 55432-4100

Business Occupant 205 Mississippi St NE Minneapolis, MN 55432-4322

Business Occupant 6501 E River Rd Ste 100 Minneapolis, MN 55432-4211

Resident 6551 E River Rd Apt 101 Minneapolis, MN 55432-4278

Resident 6551 E River Rd Apt 201 Minneapolis, MN 55432-4276

Resident 6551 E River Rd Apt 204 Minneapolis, MN 55432-4276

Resident 6551 E River Rd Apt 303 Minneapolis, MN 55432-4277 Resident 6551 E River Rd Apt 304 Minneapolis, MN 55432-4277

Resident 6675 E River Rd Minneapolis, MN 55432-4231

Resident 6640 Hickory St NE Minneapolis, MN 55432-4234

Resident 6570 Hickory St NE Minneapolis, MN 55432-4233

Resident 6530 Hickory St NE Minneapolis, MN 55432-4233

Resident 95 Mississippi St NE Minneapolis, MN 55432-4319

Resident 21 65 1/2 Way NE Minneapolis, MN 55432-4241

Resident 61 65 1/2 Way NE Minneapolis, MN 55432-4241

Resident 91 65 1/2 Way NE Minneapolis, MN 55432-4241

Resident 81 66th Way NE Minneapolis, MN 55432-4202 Resident 6631 E River Rd Minneapolis, MN 55432-4230

Resident 98 Rice Creek Way NE Minneapolis, MN 55432-4239

Resident 6600 Hickory St NE Minneapolis, MN 55432-4234

Resident 6560 Hickory St NE Minneapolis, MN 55432-4233

Resident 6506 Hickory St NE Minneapolis, MN 55432-4233

Business Occupant 61 Mississippi St NE Minneapolis, MN 55432-4318

Resident 31 65 1/2 Way NE Minneapolis, MN 55432-4241

Resident 71 65 1/2 Way NE Minneapolis, MN 55432-4241

Resident 90 66th Way NE Minneapolis, MN 55432-4201

Resident 80 66th Way NE Minneapolis, MN 55432-4201 Resident 6661 E River Rd Minneapolis, MN 55432-4230

Resident 6660 Hickory St NE Minneapolis, MN 55432-4234

Resident 6580 Hickory St NE Minneapolis, MN 55432-4233

Resident 6544 Hickory St NE Minneapolis, MN 55432-4233

Resident 6502 Hickory St NE Minneapolis, MN 55432-4233

Resident 11 65 1/2 Way NE Minneapolis, MN 55432-4241

Resident 51 65 1/2 Way NE Minneapolis, MN 55432-4241

Resident 81 65 1/2 Way NE Minneapolis, MN 55432-4241

Resident 91 66th Way NE Minneapolis, MN 55432-4202

Resident 71 66th Way NE Minneapolis, MN 55432-4202 Resident 65 66th Way NE Minneapolis, MN 55432-4202

Resident 55 66th Way NE Minneapolis, MN 55432-4202

Resident 54 66th Way NE Minneapolis, MN 55432-4201

Resident 38 66th Way NE Minneapolis, MN 55432-4201

Resident 17 66th Way NE Minneapolis, MN 55432-4202

Resident 10 66th Way NE Minneapolis, MN 55432-4201

Resident 16 66 1/2 Way NE Minneapolis, MN 55432-4203

Resident 25 66 1/2 Way NE Minneapolis, MN 55432-4204

Resident 40 66 1/2 Way NE Minneapolis, MN 55432-4203

Resident 56 66 1/2 Way NE Minneapolis, MN 55432-4203 Resident 70 66th Way NE Minneapolis, MN 55432-4201

Resident 49 66th Way NE Minneapolis, MN 55432-4202

Resident 46 66th Way NE Minneapolis, MN 55432-4201

Resident 25 66th Way NE Minneapolis, MN 55432-4202

Resident 18 66th Way NE Minneapolis, MN 55432-4201

Resident 10 66 1/2 Way NE Minneapolis, MN 55432-4203

Resident 17 66 1/2 Way NE Minneapolis, MN 55432-4204

Resident 33 66 1/2 Way NE Minneapolis, MN 55432-4204

Resident 41 66 1/2 Way NE Minneapolis, MN 55432-4204

Resident 58 Rice Creek Way NE Minneapolis, MN 55432-4237 Resident 62 66th Way NE Minneapolis, MN 55432-4201

Resident 41 66th Way NE Minneapolis, MN 55432-4202

Resident 33 66th Way NE Minneapolis, MN 55432-4202

Resident 28 66th Way NE Minneapolis, MN 55432-4201

Resident 11 66th Way NE Minneapolis, MN 55432-4202

Resident 11 66 1/2 Way NE Minneapolis, MN 55432-4204

Resident 24 66 1/2 Way NE Minneapolis, MN 55432-4203

Resident 32 66 1/2 Way NE Minneapolis, MN 55432-4203

Resident 48 66 1/2 Way NE Minneapolis, MN 55432-4203

Resident 40 Rice Creek Way NE Minneapolis, MN 55432-4237 Resident 22 Rice Creek Way NE Minneapolis, MN 55432-4235

Resident 16 67th Way NE Minneapolis, MN 55432-4205

Resident 25 67th Way NE Minneapolis, MN 55432-4206

Resident 35 67th Way NE Minneapolis, MN 55432-4206

Resident 6685 Ashton Ave NE Minneapolis, MN 55432-4207

Resident 6701 Ashton Ave NE Minneapolis, MN 55432-4208

Resident 6715 Ashton Ave NE Minneapolis, MN 55432-4208

Resident 17 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 35 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 53 Rice Creek Way NE Minneapolis, MN 55432-4236 Resident 16 Rice Creek Way NE Minneapolis, MN 55432-4235

Resident 11 67th Way NE Minneapolis, MN 55432-4206

Resident 24 67th Way NE Minneapolis, MN 55432-4205

Resident 6651 Ashton Ave NE Minneapolis, MN 55432-4207

Resident 6696 Ashton Ave NE Minneapolis, MN 55432-4256

Resident 6705 Ashton Ave NE Minneapolis, MN 55432-4208

Resident 11 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 23 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 41 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 59 Rice Creek Way NE Minneapolis, MN 55432-4236 Resident 10 Rice Creek Way NE Minneapolis, MN 55432-4235

Resident 17 67th Way NE Minneapolis, MN 55432-4206

Resident 32 67th Way NE Minneapolis, MN 55432-4205

Resident 6673 Ashton Ave NE Minneapolis, MN 55432-4207

Resident 6699 Ashton Ave NE Minneapolis, MN 55432-4207

Resident 6709 Ashton Ave NE Minneapolis, MN 55432-4208

Resident 15 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 29 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 47 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 64 Rice Creek Way NE Minneapolis, MN 55432-4238 Resident 65 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 75 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 81 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 85 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 106 Hartman Cir NE Minneapolis, MN 55432-4121

Resident 113 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 121 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 137 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 140 Hartman Cir NE Minneapolis, MN 55432-4121

Resident 153 Hartman Cir NE Minneapolis, MN 55432-4112 Resident 71 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 80 Rice Creek Way NE Minneapolis, MN 55432-4238

Resident 84 Rice Creek Way NE Minneapolis, MN 55432-4238

Resident 101 Hartman Cir NE Minneapolis, MN 55432-4122

Resident 109 Hartman Cir NE Minneapolis, MN 55432-4122

Resident 117 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 125 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 128 Hartman Cir NE Minneapolis, MN 55432-4121

Resident 145 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 157 Hartman Cir NE Minneapolis, MN 55432-4112 Resident 72 Rice Creek Way NE Minneapolis, MN 55432-4238

Resident 77 Rice Creek Way NE Minneapolis, MN 55432-4236

Resident 90 Rice Creek Way NE Minneapolis, MN 55432-4238

Resident 105 Hartman Cir NE Minneapolis, MN 55432-4122

Resident 110 Hartman Cir NE Minneapolis, MN 55432-4121

Resident 120 Hartman Cir NE Minneapolis, MN 55432-4121

Resident 129 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 141 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 149 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 150 Hartman Cir NE Minneapolis, MN 55432-4121 Resident 160 Hartman Cir NE Minneapolis, MN 55432-4121

Resident 165 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 177 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 185 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 100 Hartman Cir NE Minneapolis, MN 55432-4121

Resident 6668 E River Rd Minneapolis, MN 55432-4229

Business Occupant 6520 E River Rd Minneapolis, MN 55432-4213

Resident 6550 E River Rd Apt 102 Minneapolis, MN 55432-4220

Resident 6550 E River Rd Apt 105 Minneapolis, MN 55432-4220

Resident 6550 E River Rd Apt 214 Minneapolis, MN 55432-4224 Resident 161 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 169 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 181 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 190 Hartman Cir NE Minneapolis, MN 55432-4121

Business Occupant 6666 E River Rd Minneapolis, MN 55432-4229

Resident 6654 E River Rd Minneapolis, MN 55432-4229

Business Occupant 6530 E River Rd Ste 1 Minneapolis, MN 55432-4275

Resident 6550 E River Rd Apt 103 Minneapolis, MN 55432-4220

Resident 6550 E River Rd Apt 106 Minneapolis, MN 55432-4220

Resident 6550 E River Rd Apt 215 Minneapolis, MN 55432-4224 Resident 170 Hartman Cir NE Minneapolis, MN 55432-4121

Resident 173 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 180 Hartman Cir NE Minneapolis, MN 55432-4121

Resident 191 Hartman Cir NE Minneapolis, MN 55432-4112

Resident 6664 E River Rd Minneapolis, MN 55432-4229

Resident 6652 E River Rd Minneapolis, MN 55432-4229

Resident 6550 E River Rd Apt 101 Minneapolis, MN 55432-4220

Resident 6550 E River Rd Apt 104 Minneapolis, MN 55432-4220

Resident 6550 E River Rd Apt 213 Minneapolis, MN 55432-4224

Resident 6550 E River Rd Apt 216 Minneapolis, MN 55432-4224 Resident 6550 E River Rd Apt 217 Minneapolis, MN 55432-4224

Resident 6550 E River Rd Apt 108 Minneapolis, MN 55432-4220

Resident 6550 E River Rd Apt 111 Minneapolis, MN 55432-4221

Resident 6550 E River Rd Apt 221 Minneapolis, MN 55432-4212

Resident 6550 E River Rd Apt 112 Minneapolis, MN 55432-4221

Resident 6550 E River Rd Apt 115 Minneapolis, MN 55432-4221

Resident 6550 E River Rd Apt 303 Minneapolis, MN 55432-4212

Resident 6550 E River Rd Apt 306 Minneapolis, MN 55432-4212

Resident 6550 E River Rd Apt 119 Minneapolis, MN 55432-4222

Resident 6550 E River Rd Apt 307 Minneapolis, MN 55432-4225 Resident 6550 E River Rd Apt 218 Minneapolis, MN 55432-4224

Resident 6550 E River Rd Apt 109 Minneapolis, MN 55432-4221

Resident 6550 E River Rd Apt 219 Minneapolis, MN 55432-4224

Resident 6550 E River Rd Apt 222 Minneapolis, MN 55432-4212

Resident 6550 E River Rd Apt 113 Minneapolis, MN 55432-4221

Resident 6550 E River Rd Apt 116 Minneapolis, MN 55432-4221

Resident 6550 E River Rd Apt 304 Minneapolis, MN 55432-4212

Resident 6550 E River Rd Apt 117 Minneapolis, MN 55432-4222

Resident 6550 E River Rd Apt 120 Minneapolis, MN 55432-4222

Resident 6550 E River Rd Apt 308 Minneapolis, MN 55432-4225 Resident 6550 E River Rd Apt 107 Minneapolis, MN 55432-4220

Resident 6550 E River Rd Apt 110 Minneapolis, MN 55432-4221

Resident 6550 E River Rd Apt 220 Minneapolis, MN 55432-4224

Resident 6550 E River Rd Apt 301 Minneapolis, MN 55432-4212

Resident 6550 E River Rd Apt 114 Minneapolis, MN 55432-4221

Resident 6550 E River Rd Apt 302 Minneapolis, MN 55432-4212

Resident 6550 E River Rd Apt 305 Minneapolis, MN 55432-4212

Resident 6550 E River Rd Apt 118 Minneapolis, MN 55432-4222

Resident 6550 E River Rd Apt 201 Minneapolis, MN 55432-4222

Resident 6550 E River Rd Apt 309 Minneapolis, MN 55432-4225 Resident 6550 E River Rd Apt 310 Minneapolis, MN 55432-4225

Resident 6550 E River Rd Apt 203 Minneapolis, MN 55432-4222

Resident 6550 E River Rd Apt 206 Minneapolis, MN 55432-4223

Resident 6550 E River Rd Apt 314 Minneapolis, MN 55432-4225

Resident 6550 E River Rd Apt 207 Minneapolis, MN 55432-4223

Resident 6550 E River Rd Apt 210 Minneapolis, MN 55432-4223

Resident 6550 E River Rd Apt 317 Minneapolis, MN 55432-4226

Resident 6550 E River Rd Apt 320 Minneapolis, MN 55432-4226

Business Occupant 6550 E River Rd Ofc Ofc Minneapolis, MN 55432-5393

Resident 6540 E River Rd Apt 126 Minneapolis, MN 55432-4200 Resident 6550 E River Rd Apt 311 Minneapolis, MN 55432-4225

Resident 6550 E River Rd Apt 204 Minneapolis, MN 55432-4222

Resident 6550 E River Rd Apt 312 Minneapolis, MN 55432-4225

Resident 6550 E River Rd Apt 315 Minneapolis, MN 55432-4226

Resident 6550 E River Rd Apt 208 Minneapolis, MN 55432-4223

Resident 6550 E River Rd Apt 211 Minneapolis, MN 55432-4223

Resident 6550 E River Rd Apt 318 Minneapolis, MN 55432-4226

Resident 6550 E River Rd Apt 321 Minneapolis, MN 55432-4226

Resident 6540 E River Rd Apt 124 Minneapolis, MN 55432-4200

Resident 6540 E River Rd Apt 127 Minneapolis, MN 55432-4200 Resident 6550 E River Rd Apt 202 Minneapolis, MN 55432-4222

Resident 6550 E River Rd Apt 205 Minneapolis, MN 55432-4223

Resident 6550 E River Rd Apt 313 Minneapolis, MN 55432-4225

Resident 6550 E River Rd Apt 316 Minneapolis, MN 55432-4226

Resident 6550 E River Rd Apt 209 Minneapolis, MN 55432-4223

Resident 6550 E River Rd Apt 212 Minneapolis, MN 55432-4223

Resident 6550 E River Rd Apt 319 Minneapolis, MN 55432-4226

Resident 6550 E River Rd Apt 322 Minneapolis, MN 55432-4226

Resident 6540 E River Rd Apt 125 Minneapolis, MN 55432-4200

Resident 6540 E River Rd Apt 128 Minneapolis, MN 55432-4200 Resident 6540 E River Rd Apt 232 Minneapolis, MN 55432-4254

Resident 6540 E River Rd Apt 235 Minneapolis, MN 55432-4254

Resident 6540 E River Rd Apt 130 Minneapolis, MN 55432-4253

Resident 6540 E River Rd Apt 133 Minneapolis, MN 55432-4253

Resident 6540 E River Rd Apt 238 Minneapolis, MN 55432-4264

Resident 6540 E River Rd Apt 241 Minneapolis, MN 55432-4264

Resident 6540 E River Rd Apt 136 Minneapolis, MN 55432-4258

Resident 6540 E River Rd Apt 139 Minneapolis, MN 55432-4258

Resident 6540 E River Rd Apt 244 Minneapolis, MN 55432-4266

Resident 6540 E River Rd Apt 247 Minneapolis, MN 55432-4266 Resident 6540 E River Rd Apt 233 Minneapolis, MN 55432-4254

Resident 6540 E River Rd Apt 236 Minneapolis, MN 55432-4254

Resident 6540 E River Rd Apt 131 Minneapolis, MN 55432-4253

Resident 6540 E River Rd Apt 134 Minneapolis, MN 55432-4253

Resident 6540 E River Rd Apt 239 Minneapolis, MN 55432-4264

Resident 6540 E River Rd Apt 242 Minneapolis, MN 55432-4264

Resident 6540 E River Rd Apt 137 Minneapolis, MN 55432-4258

Resident 6540 E River Rd Apt 140 Minneapolis, MN 55432-4258

Resident 6540 E River Rd Apt 245 Minneapolis, MN 55432-4266

Resident 6540 E River Rd Apt 248 Minneapolis, MN 55432-4266 Resident 6540 E River Rd Apt 234 Minneapolis, MN 55432-4254

Resident 6540 E River Rd Apt 129 Minneapolis, MN 55432-4253

Resident 6540 E River Rd Apt 132 Minneapolis, MN 55432-4253

Resident 6540 E River Rd Apt 237 Minneapolis, MN 55432-4264

Resident 6540 E River Rd Apt 240 Minneapolis, MN 55432-4264

Resident 6540 E River Rd Apt 135 Minneapolis, MN 55432-4258

Resident 6540 E River Rd Apt 138 Minneapolis, MN 55432-4258

Resident 6540 E River Rd Apt 243 Minneapolis, MN 55432-4266

Resident 6540 E River Rd Apt 246 Minneapolis, MN 55432-4266

Resident 6540 E River Rd Apt 141 Minneapolis, MN 55432-4267 Resident 6540 E River Rd Apt 142 Minneapolis, MN 55432-4267

Resident 6540 E River Rd Apt 145 Minneapolis, MN 55432-4267

Resident 6540 E River Rd Apt 324 Minneapolis, MN 55432-4273

Resident 6540 E River Rd Apt 327 Minneapolis, MN 55432-4273

Resident 6540 E River Rd Apt 148 Minneapolis, MN 55432-4268

Resident 6540 E River Rd Apt 225 Minneapolis, MN 55432-4268

Resident 6540 E River Rd Apt 330 Minneapolis, MN 55432-4269

Resident 6540 E River Rd Apt 333 Minneapolis, MN 55432-4269

Resident 6540 E River Rd Apt 228 Minneapolis, MN 55432-4270

Resident 6540 E River Rd Apt 231 Minneapolis, MN 55432-4270 Resident 6540 E River Rd Apt 143 Minneapolis, MN 55432-4267

Resident 6540 E River Rd Apt 146 Minneapolis, MN 55432-4267

Resident 6540 E River Rd Apt 325 Minneapolis, MN 55432-4273

Resident 6540 E River Rd Apt 328 Minneapolis, MN 55432-4273

Resident 6540 E River Rd Apt 223 Minneapolis, MN 55432-4268

Resident 6540 E River Rd Apt 226 Minneapolis, MN 55432-4268

Resident 6540 E River Rd Apt 331 Minneapolis, MN 55432-4269

Resident 6540 E River Rd Apt 334 Minneapolis, MN 55432-4269

Resident 6540 E River Rd Apt 229 Minneapolis, MN 55432-4270

Resident 6540 E River Rd Apt 335 Minneapolis, MN 55432-4271 Resident 6540 E River Rd Apt 144 Minneapolis, MN 55432-4267

Resident 6540 E River Rd Apt 323 Minneapolis, MN 55432-4273

Resident 6540 E River Rd Apt 326 Minneapolis, MN 55432-4273

Resident 6540 E River Rd Apt 147 Minneapolis, MN 55432-4268

Resident 6540 E River Rd Apt 224 Minneapolis, MN 55432-4268

Resident 6540 E River Rd Apt 329 Minneapolis, MN 55432-4269

Resident 6540 E River Rd Apt 332 Minneapolis, MN 55432-4269

Resident 6540 E River Rd Apt 227 Minneapolis, MN 55432-4270

Resident 6540 E River Rd Apt 230 Minneapolis, MN 55432-4270

Resident 6540 E River Rd Apt 336 Minneapolis, MN 55432-4271 Resident 6540 E River Rd Apt 337 Minneapolis, MN 55432-4271

Resident 6540 E River Rd Apt 340 Minneapolis, MN 55432-4272

Resident 6540 E River Rd Apt 343 Minneapolis, MN 55432-4272

Resident 6540 E River Rd Apt 346 Minneapolis, MN 55432-4272

Resident 6441 Riverview Ter NE Minneapolis, MN 55432-4255

Resident 6419 Riverview Ter NE Minneapolis, MN 55432-4255

Business Occupant 6570 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6554 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6534 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6528 University Ave NE Ste 1 Minneapolis, MN 55432-4349 Resident 6540 E River Rd Apt 338 Minneapolis, MN 55432-4271

Resident 6540 E River Rd Apt 341 Minneapolis, MN 55432-4272

Resident 6540 E River Rd Apt 344 Minneapolis, MN 55432-4272

Resident 6540 E River Rd Apt 347 Minneapolis, MN 55432-4272

Resident 6431 Riverview Ter NE Minneapolis, MN 55432-4255

Business Occupant 6582 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6562 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6538 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6532 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6528 University Ave NE Ste 2 Minneapolis, MN 55432-4349 Resident 6540 E River Rd Apt 339 Minneapolis, MN 55432-4271

Resident 6540 E River Rd Apt 342 Minneapolis, MN 55432-4272

Resident 6540 E River Rd Apt 345 Minneapolis, MN 55432-4272

Resident 6540 E River Rd Apt 348 Minneapolis, MN 55432-4272

Resident 6417 Riverview Ter NE Minneapolis, MN 55432-4255

Business Occupant 6578 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6558 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6536 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6530 University Ave NE Minneapolis, MN 55432-4330

Business Occupant 6524 University Ave NE Minneapolis, MN 55432-4330 Business Occupant 6522 University Ave NE Minneapolis, MN 55432-4330

Resident 6520 2nd St NE Minneapolis, MN 55432-4304

Resident 6661 Main St NE Minneapolis, MN 55432-4335

Resident 6705 Main St NE Minneapolis, MN 55432-4345

Resident 6721 Main St NE Minneapolis, MN 55432-4345

Resident 171 Rice Creek Ter NE Minneapolis, MN 55432-4334

Resident 191 Rice Creek Ter NE Minneapolis, MN 55432-4334

Resident 6530 2nd St NE Apt 2 Minneapolis, MN 55432-4307

Resident 6511 2nd St NE Apt 1 Minneapolis, MN 55432-4332

Resident 6511 2nd St NE Apt 4 Minneapolis, MN 55432-4332 Resident 6500 2nd St NE Minneapolis, MN 55432-4304

Resident 6501 Main St NE Minneapolis, MN 55432-4336

Resident 6671 Main St NE Minneapolis, MN 55432-4335

Resident 6711 Main St NE Minneapolis, MN 55432-4345

Resident 6731 Main St NE Minneapolis, MN 55432-4345

Resident 181 Rice Creek Ter NE Minneapolis, MN 55432-4334

Resident 190 Rice Creek Ter NE Minneapolis, MN 55432-4327

Resident 6530 2nd St NE Apt 3 Minneapolis, MN 55432-4307

Resident 6511 2nd St NE Apt 2 Minneapolis, MN 55432-4332

Resident 6525 2nd St NE Apt 1 Minneapolis, MN 55432-4333 Resident 6510 2nd St NE Minneapolis, MN 55432-4304

Resident 6525 Main St NE Minneapolis, MN 55432-4336

Resident 6681 Main St NE Minneapolis, MN 55432-4335

Resident 6715 Main St NE Minneapolis, MN 55432-4345

Resident 170 Rice Creek Ter NE Minneapolis, MN 55432-4327

Resident 180 Rice Creek Ter NE Minneapolis, MN 55432-4327

Resident 6530 2nd St NE Apt 1 Minneapolis, MN 55432-4307

Resident 6530 2nd St NE Apt 4 Minneapolis, MN 55432-4307

Resident 6511 2nd St NE Apt 3 Minneapolis, MN 55432-4332

Resident 6525 2nd St NE Apt 2 Minneapolis, MN 55432-4333 Resident 6525 2nd St NE Apt 3 Minneapolis, MN 55432-4333

Resident 6541 2nd St NE Apt 2 Minneapolis, MN 55432-4346

Resident 6541 2nd St NE Apt 5 Minneapolis, MN 55432-4346

Resident 6551 2nd St NE Apt 2 Minneapolis, MN 55432-4347

Resident 6551 2nd St NE Apt 5 Minneapolis, MN 55432-4347

Resident 6560 2nd St NE Minneapolis, MN 55432-4304

Resident 6700 2nd St NE Minneapolis, MN 55432-4310

Resident 6720 2nd St NE Minneapolis, MN 55432-4310

Resident 6731 2nd St NE Minneapolis, MN 55432-4337

Resident 210 Rice Creek Ter NE Minneapolis, MN 55432-4328 Resident 6525 2nd St NE Apt 4 Minneapolis, MN 55432-4333

Resident 6541 2nd St NE Apt 3 Minneapolis, MN 55432-4346

Resident 6541 2nd St NE Apt 6 Minneapolis, MN 55432-4346

Resident 6551 2nd St NE Apt 3 Minneapolis, MN 55432-4347

Resident 6551 2nd St NE Apt 6 Minneapolis, MN 55432-4347

Resident 6570 2nd St NE Minneapolis, MN 55432-4304

Resident 6710 2nd St NE Minneapolis, MN 55432-4310

Resident 6721 2nd St NE Minneapolis, MN 55432-4337

Resident 200 Rice Creek Ter NE Minneapolis, MN 55432-4328

Resident 211 Rice Creek Ter NE Minneapolis, MN 55432-4329 Resident 6525 2nd St NE Apt 5 Minneapolis, MN 55432-4333

Resident 6541 2nd St NE Apt 4 Minneapolis, MN 55432-4346

Resident 6551 2nd St NE Apt 1 Minneapolis, MN 55432-4347

Resident 6551 2nd St NE Apt 4 Minneapolis, MN 55432-4347

Resident 6551 2nd St NE Apt 7 Minneapolis, MN 55432-4347

Resident 6701 2nd St NE Minneapolis, MN 55432-4337

Resident 6711 2nd St NE Minneapolis, MN 55432-4337

Resident 6730 2nd St NE Minneapolis, MN 55432-4310

Resident 201 Rice Creek Ter NE Minneapolis, MN 55432-4329

Resident 220 Rice Creek Ter NE Minneapolis, MN 55432-4328 Resident 221 Rice Creek Ter NE Minneapolis, MN 55432-4329

Resident 240 Rice Creek Ter NE Minneapolis, MN 55432-4328

Resident 251 Rice Creek Ter NE Minneapolis, MN 55432-4329

Resident 270 Rice Creek Ter NE Minneapolis, MN 55432-4328

Resident 281 Rice Creek Ter NE Minneapolis, MN 55432-4329

Resident 6811 Plaza Curv NE Minneapolis, MN 55432-4326

Resident 6801 Plaza Curv NE Minneapolis, MN 55432-4326

Resident 6780 Plaza Curv NE Minneapolis, MN 55432-4323

Resident 6760 Plaza Curv NE Minneapolis, MN 55432-4323

Resident 6731 Plaza Curv NE Minneapolis, MN 55432-4324 Resident 230 Rice Creek Ter NE Minneapolis, MN 55432-4328

Resident 241 Rice Creek Ter NE Minneapolis, MN 55432-4329

Resident 260 Rice Creek Ter NE Minneapolis, MN 55432-4328

Resident 271 Rice Creek Ter NE Minneapolis, MN 55432-4329

Resident 290 Rice Creek Ter NE Minneapolis, MN 55432-4328

Resident 6810 Plaza Curv NE Minneapolis, MN 55432-4325

Resident 6781 Plaza Curv NE Minneapolis, MN 55432-4324

Resident 6770 Plaza Curv NE Minneapolis, MN 55432-4323

Resident 6750 Plaza Curv NE Minneapolis, MN 55432-4323

Resident 6740 Plaza Curv NE Minneapolis, MN 55432-4323 Resident 231 Rice Creek Ter NE Minneapolis, MN 55432-4329

Resident 250 Rice Creek Ter NE Minneapolis, MN 55432-4328

Resident 261 Rice Creek Ter NE Minneapolis, MN 55432-4329

Resident 280 Rice Creek Ter NE Minneapolis, MN 55432-4328

Resident 291 Rice Creek Ter NE Minneapolis, MN 55432-4329

Resident 6800 Plaza Curv NE Minneapolis, MN 55432-4325

Resident 6790 Plaza Curv NE Minneapolis, MN 55432-4323

Resident 6761 Plaza Curv NE Minneapolis, MN 55432-4324

Resident 6751 Plaza Curv NE Minneapolis, MN 55432-4324

Resident 6730 Plaza Curv NE Minneapolis, MN 55432-4323 Resident 6720 Plaza Curv NE Minneapolis, MN 55432-4323

Resident 6711 Plaza Curv NE Minneapolis, MN 55432-4324

Resident 210 67th Ave NE Minneapolis, MN 55432-4312

Resident 240 67th Ave NE Minneapolis, MN 55432-4312

Resident 261 67th Ave NE Minneapolis, MN 55432-4301

Resident 281 67th Ave NE Minneapolis, MN 55432-4301

Resident 290 67th Ave NE Minneapolis, MN 55432-4312

Resident 295 67th Ave NE Minneapolis, MN 55432-4301

Business Occupant 200 Commerce Cir S Minneapolis, MN 55432-3105

Business Occupant 7157 Commerce Cir W Minneapolis, MN 55432-3108 Resident 6710 Plaza Curv NE Minneapolis, MN 55432-4323

Resident 6700 Plaza Curv NE Minneapolis, MN 55432-4323

Resident 220 67th Ave NE Minneapolis, MN 55432-4312

Resident 250 67th Ave NE Minneapolis, MN 55432-4312

Resident 270 67th Ave NE Minneapolis, MN 55432-4312

Resident 280 67th Ave NE Minneapolis, MN 55432-4312

Resident 299 67th Ave NE Minneapolis, MN 55432-4301

Business Occupant 7260 Commerce Cir E Minneapolis, MN 55432-3103

Business Occupant 7153 Commerce Cir W Minneapolis, MN 55432-3108

Business Occupant 7163 Commerce Cir W Minneapolis, MN 55432-3108 Resident 6701 Plaza Curv NE Minneapolis, MN 55432-4324

Resident 200 67th Ave NE Minneapolis, MN 55432-4312

Resident 230 67th Ave NE Minneapolis, MN 55432-4312

Resident 260 67th Ave NE Minneapolis, MN 55432-4312

Resident 271 67th Ave NE Minneapolis, MN 55432-4301

Resident 291 67th Ave NE Minneapolis, MN 55432-4301

Resident 298 67th Ave NE Minneapolis, MN 55432-4312

Business Occupant 7180 Commerce Cir W Minneapolis, MN 55432-3107

Business Occupant 7155 Commerce Cir W Minneapolis, MN 55432-3108

Business Occupant 7165 Commerce Cir W Minneapolis, MN 55432-3108 Business Occupant 7169 Commerce Cir W Minneapolis, MN 55432-3108

Business Occupant 7177 Commerce Cir W Minneapolis, MN 55432-3108

Business Occupant 271 Commerce Cir S Minneapolis, MN 55432-3106

Resident 6890 University Ave NE Minneapolis, MN 55432-4140

Resident 289 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 281 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 273 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 270 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 261 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 236 Rice Creek Blvd NE Minneapolis, MN 55432-4137 Business Occupant 7171 Commerce Cir W Minneapolis, MN 55432-3108

Business Occupant 251 Commerce Cir S Minneapolis, MN 55432-3106

Business Occupant 281 Commerce Cir S Minneapolis, MN 55432-3106

Resident 295 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 286 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 280 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 276 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 267 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 260 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 240 Rice Creek Blvd NE Minneapolis, MN 55432-4137 Business Occupant 7175 Commerce Cir W Minneapolis, MN 55432-3108

Business Occupant 261 Commerce Cir S Minneapolis, MN 55432-3106

Business Occupant 250 Commerce Cir S Minneapolis, MN 55432-3105

Resident 290 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 285 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 277 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 269 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 266 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 255 Rice Creek Blvd NE Minneapolis, MN 55432-4139

Resident 246 Rice Creek Blvd NE Minneapolis, MN 55432-4137 Resident 250 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 226 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 216 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 205 Rice Creek Blvd NE Minneapolis, MN 55432-4138

Resident 181 69th Ave NE Minneapolis, MN 55432-4103

Resident 201 69th Ave NE Minneapolis, MN 55432-4105

Resident 217 69th Ave NE Minneapolis, MN 55432-4105

Resident 226 69th Ave NE Minneapolis, MN 55432-4104

Resident 241 69th Ave NE Minneapolis, MN 55432-4105

Resident 215 69th Pl NE Minneapolis, MN 55432-4141 Resident 254 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 220 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 210 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 200 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 191 69th Ave NE Minneapolis, MN 55432-4103

Resident 210 69th Ave NE Minneapolis, MN 55432-4104

Resident 218 69th Ave NE Minneapolis, MN 55432-4104

Resident 233 69th Ave NE Minneapolis, MN 55432-4105

Resident 242 69th Ave NE Minneapolis, MN 55432-4104

Resident 218 69th PI NE Minneapolis, MN 55432-4107 Resident 230 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 201 Rice Creek Blvd NE Minneapolis, MN 55432-4138

Resident 206 Rice Creek Blvd NE Minneapolis, MN 55432-4137

Resident 209 Rice Creek Blvd NE Minneapolis, MN 55432-4138

Resident 194 69th Ave NE Minneapolis, MN 55432-4103

Resident 209 69th Ave NE Minneapolis, MN 55432-4105

Resident 225 69th Ave NE Minneapolis, MN 55432-4105

Resident 234 69th Ave NE Minneapolis, MN 55432-4104

Resident 210 69th Pl NE Minneapolis, MN 55432-4107

Resident 225 69th Pl NE Minneapolis, MN 55432-4141 Resident 224 69th PI NE Minneapolis, MN 55432-4107

Resident 246 69th Pl NE Minneapolis, MN 55432-4107

Resident 257 69th Ave NE Minneapolis, MN 55432-4105

Resident 267 69th Ave NE Minneapolis, MN 55432-4105

Business Occupant 6401 University Ave NE Ste 100 Minneapolis, MN 55432-4342

Business Occupant 6401 University Ave NE Ste 304 Minneapolis, MN 55432-4344

Resident 7624 W River Rd Minneapolis, MN 55444-2513

Resident 7448 W River Rd Minneapolis, MN 55444-2641

Resident 7550 W River Rd Minneapolis, MN 55444-2511

Resident 314 76th Ave N Minneapolis, MN 55444-2502 Resident 232 69th PI NE Minneapolis, MN 55432-4107

Resident 252 69th Pl NE Minneapolis, MN 55432-4107

Resident 249 69th Ave NE Minneapolis, MN 55432-4105

Resident 274 69th Ave NE Minneapolis, MN 55432-4106

Business Occupant 6401 University Ave NE Ste 200 Minneapolis, MN 55432-4343

Resident 7632 W River Rd Minneapolis, MN 55444-2513

Resident 7616 W River Rd Minneapolis, MN 55444-2513

Resident 7520 W River Rd Minneapolis, MN 55444-2511

Resident 7600 W River Rd Minneapolis, MN 55444-2513

Resident 309 76th Ave N Minneapolis, MN 55444-2545 Resident 238 69th Pl NE Minneapolis, MN 55432-4107

Resident 260 69th Ave NE Minneapolis, MN 55432-4106

Resident 266 69th Ave NE Minneapolis, MN 55432-4106

Resident 280 69th Ave NE Minneapolis, MN 55432-4106

Business Occupant 6401 University Ave NE Ste 300 Minneapolis, MN 55432-4344

Resident 7628 W River Rd Minneapolis, MN 55444-2513

Resident 7608 W River Rd Minneapolis, MN 55444-2513

Resident 7530 W River Rd Minneapolis, MN 55444-2511

Resident 315 76th Ave N Minneapolis, MN 55444-2545

Resident 308 76th Ave N Minneapolis, MN 55444-2502 Resident 301 76th Ave N Minneapolis, MN 55444-2545

Resident 300 75th Ave N Minneapolis, MN 55444-2516

Resident 315 75th Ave N Minneapolis, MN 55444-2522

Resident 115 75th Ave N Minneapolis, MN 55444-2574

Resident 128 75th Ave N Minneapolis, MN 55444-2572

Resident 225 76th Ave N Minneapolis, MN 55444-2517

Resident 7608 Brooklyn Park Dr Minneapolis, MN 55444-2503

Resident 7609 Brooklyn Park Dr Minneapolis, MN 55444-2503

Resident 7609 Riverdale Dr N Minneapolis, MN 55444-2508

Resident 7608 Riverdale Dr N Minneapolis, MN 55444-2509 Resident 304 76th Ave N Minneapolis, MN 55444-2502

Resident 308 75th Ave N Minneapolis, MN 55444-2516

Resident 309 75th Ave N Minneapolis, MN 55444-2522

Resident 103 75th Ave N Minneapolis, MN 55444-2574

Resident 7540 Riverdale Dr N Minneapolis, MN 55444-2507

Resident 7524 Brooklyn Park Dr Minneapolis, MN 55444-2563

Resident 7616 Brooklyn Park Dr Minneapolis, MN 55444-2503

Resident 7601 Brooklyn Park Dr Minneapolis, MN 55444-2503

Resident 7600 Riverdale Dr N Minneapolis, MN 55444-2509

Resident 7620 Riverdale Dr N Minneapolis, MN 55444-2509 Resident 7535 Riverdale Dr N Minneapolis, MN 55444-2506

Resident 316 75th Ave N Minneapolis, MN 55444-2516

Resident 301 75th Ave N Minneapolis, MN 55444-2522

Resident 104 75th Ave N Minneapolis, MN 55444-2572

Resident 7550 Riverdale Dr N Minneapolis, MN 55444-2507

Resident 7600 Brooklyn Park Dr Minneapolis, MN 55444-2503

Resident 7617 Brooklyn Park Dr Minneapolis, MN 55444-2503

Resident 300 76th Ave N Minneapolis, MN 55444-2502

Resident 7617 Riverdale Dr N Minneapolis, MN 55444-2508

Resident 7625 Riverdale Dr N Minneapolis, MN 55444-2508 Resident 7630 Riverdale Dr N Minneapolis, MN 55444-2509

Resident 7641 Riverdale Dr N Minneapolis, MN 55444-2508

Resident 201 Brookdale Dr Minneapolis, MN 55444-2113

Resident 7624 Mississippi Ln Minneapolis, MN 55444-2504

Resident 7640 Mississippi Ln Minneapolis, MN 55444-2504

Resident 7720 Mississippi Ln Minneapolis, MN 55444-2150

Resident 7730 Mississippi Ln Minneapolis, MN 55444-2150

Resident 7810 Mississippi Ln Minneapolis, MN 55444-2152

Resident 7829 Mississippi Ln Minneapolis, MN 55444-2151

Resident 7840 Mississippi Ln Minneapolis, MN 55444-2152 Resident 7633 Riverdale Dr N Minneapolis, MN 55444-2508

Resident 309 Brookdale Dr Minneapolis, MN 55444-2115

Resident 135 Brookdale Dr Minneapolis, MN 55444-2111

Resident 7628 Mississippi Ln Minneapolis, MN 55444-2504

Resident 7712 Mississippi Ln Minneapolis, MN 55444-2150

Resident 7733 Mississippi Ln Minneapolis, MN 55444-2149

Resident 7749 Mississippi Ln Minneapolis, MN 55444-2149

Resident 7801 Mississippi Ln Minneapolis, MN 55444-2151

Resident 7832 Mississippi Ln Minneapolis, MN 55444-2152

Resident 7843 Mississippi Ln Minneapolis, MN 55444-2151 Resident 7646 Riverdale Dr N Minneapolis, MN 55444-2509

Resident 209 Brookdale Dr Minneapolis, MN 55444-2113

Resident 109 Brookdale Dr Minneapolis, MN 55444-2111

Resident 7636 Mississippi Ln Minneapolis, MN 55444-2504

Resident 7716 Mississippi Ln Minneapolis, MN 55444-2150

Resident 7741 Mississippi Ln Minneapolis, MN 55444-2149

Resident 7800 Mississippi Ln Minneapolis, MN 55444-2152

Resident 7828 Mississippi Ln Minneapolis, MN 55444-2152

Resident 7837 Mississippi Ln Minneapolis, MN 55444-2151

Resident 7848 Mississippi Ln Minneapolis, MN 55444-2152 Resident 7851 Mississippi Ln Minneapolis, MN 55444-2151

Resident 92 Brookdale Dr Minneapolis, MN 55444-2110

Resident 7708 Riverdale Dr N Minneapolis, MN 55444-2161

Resident 7724 Riverdale Dr N Minneapolis, MN 55444-2161

Resident 7743 Riverdale Dr N Minneapolis, MN 55444-2162

Resident 7725 Riverdale Dr N Minneapolis, MN 55444-2162

Resident 118 Brookdale Dr Minneapolis, MN 55444-2163

Resident 208 Brookdale Dr Minneapolis, MN 55444-2114

Resident 7814 W River Rd Minneapolis, MN 55444-2148

Resident 7850 W River Rd Minneapolis, MN 55444-2148 Resident 7878 Mississippi Ln Minneapolis, MN 55444-2152

Resident 108 Brookdale Dr Minneapolis, MN 55444-2112

Resident 7712 Riverdale Dr N Minneapolis, MN 55444-2161

Resident 7732 Riverdale Dr N Minneapolis, MN 55444-2161

Resident 7737 Riverdale Dr N Minneapolis, MN 55444-2162

Resident 7717 Riverdale Dr N Minneapolis, MN 55444-2162

Resident 132 Brookdale Dr Minneapolis, MN 55444-2163

Resident 7800 W River Rd Minneapolis, MN 55444-2148

Resident 7818 W River Rd Minneapolis, MN 55444-2148

Resident 7849 Sunkist Blvd Minneapolis, MN 55444-2143 Resident 7859 Mississippi Ln Minneapolis, MN 55444-2151

Resident 7704 Riverdale Dr N Minneapolis, MN 55444-2161

Resident 7716 Riverdale Dr N Minneapolis, MN 55444-2161

Resident 7749 Riverdale Dr N Minneapolis, MN 55444-2162

Resident 7733 Riverdale Dr N Minneapolis, MN 55444-2162

Resident 7709 Riverdale Dr N Minneapolis, MN 55444-2162

Resident 200 Brookdale Dr Minneapolis, MN 55444-2114

Resident 7810 W River Rd Minneapolis, MN 55444-2148

Resident 7836 W River Rd Minneapolis, MN 55444-2148

Resident 7835 Sunkist Blvd Minneapolis, MN 55444-2143 Resident 7817 Sunkist Blvd Minneapolis, MN 55444-2143

Resident 309 78th Ave N Minneapolis, MN 55444-2108

Resident 7800 Sunkist Blvd Minneapolis, MN 55444-2144

Resident 7824 Sunkist Blvd Minneapolis, MN 55444-2144 Resident 7809 Sunkist Blvd Minneapolis, MN 55444-2143

Resident 301 78th Ave N Minneapolis, MN 55444-2108

Resident 7808 Sunkist Blvd Minneapolis, MN 55444-2144

Resident 7842 Sunkist Blvd Minneapolis, MN 55444-2144 Resident 308 78th Ave N Minneapolis, MN 55444-2109

Resident 7805 Sunkist Blvd Minneapolis, MN 55444-2143

Resident 7816 Sunkist Blvd Minneapolis, MN 55444-2144

Resident 7860 Sunkist Blvd Minneapolis, MN 55444-2144

Appendix E

Council Resolution Adopting Facility Plan

Appendix E. Metropolitan Council Resolution Adopting Facility Plan

• Metropolitan Council Resolution 2021-5 adopting the Facility Plan.

METROPOLITAN COUNCIL

390 North Robert Street, St. Paul, Minnesota 55101-1634 Phone (651) 602-1000 · TDD (651) 291-0904 · FAX (651) 602-1550 · Metro Info (651) 602-1888

RESOLUTION NO. 2021-5 RESOLUTION APPROVING AND ADOPTING THE Facility Plan for New Lift Station L32A (Fridley) PROJECT NO. 809400

WHERE AS:

- 1. The Metropolitan Council is a public corporation and political subdivision of the State of Minnesota and has statutory responsibility for operating the Twin Cities Metropolitan Area regional wastewater collection and treatment system, and
- 2. The Metropolitan Council has determined it is necessary and convenient for the fulfillment of its statutory responsibilities to construct the Lift Station L32A Project, Project Number 809400, and
- 3. A draft Facility Plan for the project has been completed and a public hearing was held on December 17, 2020 to discuss the proposed project and the draft Facility Plan

NOW, THEREFORE, BE IT RESOLVED BY THE METROPOLITAN COUNCIL,

that the Facility Plan for the New Lift Station L32A (Fridley) PROJECT NO. 809400

is hereby approved and adopted.

Adopted this 24th day of February 2021.

Charles A Zelle, Chair

Sund

iz Sund, Recording Secretary

390 Robert Street North Saint Paul, MN 55101-1805Saint Paul, MN 55101-1805

> 651.602.1000 TTY 651.291.0904 public.info@metc.state.mn.us metrocouncil.org

Follow us on: twitter.com/metcouncilnews facebook.com/MetropolitanCouncil youtube.com/MetropolitanCouncil