Best Management Practices for Enhancing Water Use Efficiency in Minnesota Lawns

Shane Evans, M.S., Brian Davis, Ph.D., Florence Sessoms, Ph.D., Brian Horgan, Ph.D., Eric Watkins, Ph.D., Dan Sandor, Ph.D., Kris Moncada, and Sam Bauer
Summer Peaking Factors

Historical municipal water use in the community

Average daily water use (million gallons/day)

- Over the year
- In the summer
- In the winter

Potential Savings to Growing Communities

http://www.municipalwellandpump.com/welldrilling.cfm

Toro
Irrigation Survey

How many inches of water do you attempt to apply weekly?

- 0-0.5 inch
- 0.5-1 inch
- 1-1.5 inches
- 1.5 or more inches
- I do not know

Figure 12: Inches of water applied on a weekly basis

Irrigation System Audits

Figure 31: Distribution of leaking heads
Lawns & Irrigation

• Rising urbanization leads to competition for freshwater resources

• Outdoor water use is visible to public
 – Irrigation during rain
 – Irrigation runoff onto impervious surfaces
 – Broken sprinkler heads & nozzles
Turf war: Overwatering our lawns is sucking up our water supply

Researchers are looking at changes because current water use rates mean aquifer levels in some areas could drop more than 40 feet by 2040, according to Met Council estimates.

By Kenneth Cowgill Star Tribune | August 29, 2016 | 12:05PM

Jonah Reyes, a research scientist at the University of Minnesota, placed cups on a resident’s lawn in Rosemount to measure water from the irrigation system.

Getting her first $300 water bill was all it took for Hollie Jones to yank the plug on her automatic sprinkler system.

“It blew me away,” said Jones, who was new to yard upkeep when she moved into her Brooklyn Park home four years ago. “I was wasting tons of water and turning my yard into a jungle.”

For Jones, the decision to start running her sprinkler system on an as-needed basis made financial sense, but scientists say this kind of tweak in lawn care could yield crucial benefits in water conservation. During the summer months, water use in the metro area surges, in some places tripling compared with the amount of water pulled from rivers and aquifers in the winter. And that seasonal gap is widening.

Researchers from the Metropolitan Council and the University of Minnesota Extension suspect bad watering habits are largely to blame. So they’ve been

Overwatering lawns — and pavement — is the norm in the Twin Cities

A survey of 1,000 homeowners shows thirsty turf is sucking down the metro’s water. On average, residents watered 500 square feet of pavement.

By Josephine Marcotty Star Tribune | October 3, 2016 | 6:20PM

Sam Bauer, who studies lawns and grasses, checked a water meter while working in the experimental growing fields at the UMN St. Paul campus Monday, October 2, 2017 in St. Paul, MN.

Most homeowners overwater their lawns — to say nothing of their pavement — and have a love affair with a type of grass that doesn’t really belong in Minnesota.

That’s the wrap-up from a survey of 1,000 Twin Cities residents conducted in an effort to reduce the pointless lawn watering that is draining the metro area’s aquifers and was one of the major issues behind a legal battle over shrinking White Bear Lake.

Conducted by University of Minnesota researchers and the Metropolitan Council, the survey found that more than half of homeowners leave their sprinkling systems on the automatic cycle. That means their lawns get watered whether they need it or not.

Three-fourths of the systems had at least one leaking sprinkler head. On average, residents watered 500 square feet of pavement — which doesn’t need it and increases runoff and water pollution.

Sprinkling sidewalks: Hey, watch where you’re pointing those things

Think of the waste. Think of pedestrians.

By Editorial Board Star Tribune | July 12, 2016 | 1:20PM

As Twin Cities residents who variously walk, bike, drive, and ride transit, members of the Star Tribune Editorial Board are sometimes amused, sometimes alarmed by the factions that arise in support of focused activities. We think it takes all these things to make a metro, although occasional adverse experiences with each allow us to understand how tensions originate.

Into this screaming war we’d like to add our own flavor of peculiarity — a complaint against homeowners who heedlessly water sidewalks and streets along with their lawns. Such behavior wastes a resource and, depending on the spray, antagonizes pedestrians, forcing them either to test their agility or navigate a dry perimeter, perhaps one less protected from traffic.

We do appreciate people who take care of their properties — this also makes communities desirable. We’re not about to tell anyone to give up their Kentucky bluegrass, though we’d note that a lush carpet is not the only pleasing kind of lawn and that making some of it less water-intensive is worth a thought.

But, again, the pavement. It’s estimated that half the irrigation used on landscapes is ineffective. To that we’d add (without even getting into the issue of runoff) that any water sprayed on a nonporous surface is woefully deployed unless you’re hoping one day to grow moss.

The water supply may not seem like much of a problem in our region just now. In recent months, an abundance has fallen from the sky, with consequences including flooding and delayed planting. In general, though, we’re lucky to live in an area that demonstrably turns green in the springtime and presents only occasional, terminal droughts. But much of the world suffers more tempestuous patterns of replenishment. In India, the metropolitan area around Chennai, home to 9 million people, has been watching wells run dry. In California, a multicyclonic drought contributed to wildfires that killed more than 100 people last fall. (If you have concerns about how human behavior might alter our own capricious bounty, you may mentally add them here.)

So watch where you point that water. Also, it wouldn’t be wrong to be aware of bicyclists and pedestrians when you drive, follow expectations no matter your mode of movement, make eye contact at intersections, and always clean up your plate.
Effective Water Conservation in Lawns

Education and implementation of best management practices

✔ Proper turfgrass species selection and using drought-resistant varieties

✔ Smart Irrigation practices: annually auditing sprinkler systems and using new technologies to increase water efficiency

✔ Correctly following cultural practices: mowing, fertilization, cultivation, pest management

NO SILVER BULLET!
Grasses in the United States
Cool Season Grasses
Cool-Season Turfgrasses for Minnesota Lawns

• **Perennial ryegrass**: great for quick establishment

• **Kentucky bluegrass**: traditionally-used MN lawn turf; requires routine mowing and seasonal irrigation and fertilizing

• **Tall fescue**: very drought and shade-tolerant, also high wear tolerance, lower maintenance required compared to bluegrass

• **Fine fescues**: very low-maintenance, drought and shade tolerant, very little mowing and fertilizer required
<table>
<thead>
<tr>
<th>Turfgrass Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Fescue</td>
<td></td>
</tr>
<tr>
<td>Kentucky Bluegrass</td>
<td></td>
</tr>
<tr>
<td>Perennial Ryegrass</td>
<td></td>
</tr>
<tr>
<td>Tall Fescue</td>
<td></td>
</tr>
</tbody>
</table>
Turfgrass Species

<table>
<thead>
<tr>
<th>Turfgrass Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Fescue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky Bluegrass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perennial Ryegrass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tall Fescue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9-weeks drought stress (no irrigation or rain)

- Fine Fescue: Yellowish-green
- Kentucky Bluegrass: Darker green
- Perennial Ryegrass: Very green
- Tall Fescue: Light green

4-weeks recovery (irrigation + rain)

- Fine Fescue: Green to yellow-green
- Kentucky Bluegrass: Light green to yellow-green
- Perennial Ryegrass: Very green to green
- Tall Fescue: Light green to green

3.5-inch mowing height
Kentucky Bluegrass Going Dormant
Is Irrigation Even Necessary?

Source: GHCND:USW00014922; https://www.ncdc.noaa.gov/cdo-web/datatools/ normals
Conduct and Irrigation Audit Annually
Rain Sensors

• Bypass irrigation on-demand, or using a rainfall threshold

• Hygroscopic cork discs swell upon wetting, triggering a signal to interrupt / inhibit irrigation

• Dry-out time of discs effects duration in which irrigation is bypassed

• $15 to $30
Soil Moisture Sensors

• Continuously monitor soil moisture
 – Bypass scheduled irrigation programs if plenty of water in turfgrass rootzone.

• Prevents watering when soil moisture is above a default-calibrated or user-adjustable moisture threshold

• $120 to $200
Soil Moisture Sensors Overriding Controller Setting
Smart Controllers

- Utilize weather data from local weather stations and/or add-on weather sensors
- Adjust runtimes based on environmental conditions
 - temperature, wind, solar radiation, humidity, rainfall
- Many work with smartphones and utilize Wi-Fi
- Cost dependent on number of zones (~$200 - $300)
Many Options

Rain Bird LNK Wi-Fi Module + Rain Bird Smartphone App

Toro Evolution

Hunter Hydrawise + Hydrawise Smartphone App

TOTAL CONTROL FROM ANYWHERE IN THE PALM OF YOUR HAND
103G.298 LANDSCAPE IRRIGATION SYSTEMS.

All automatically operated landscape irrigation systems shall have furnished and installed technology that inhibits or interrupts operation of the landscape irrigation system during periods of sufficient moisture. The technology must be adjustable either by the end user or the professional practitioner of landscape irrigation services.

History: 2003 c 44 s 1
Smart Controller Study at Utah State

Smart Controllers
- Wi-fi enabled
- Emergency schedule
- Can be programmed from smart phone

Hunter Controller
- Experimental control
- Programmed according to USU extension recommendations
2018-2019 Irrigation Totals

Total Gallons of Water Applied 2018

Total Gallons of Water Applied 2019
Irrigation Research at the University of Minnesota

REDUCING WATER USE ON TWIN CITIES LAWNS THROUGH RESEARCH EDUCATION AND OUTREACH

January 2019
Experiment Results

The graph above shows the water use (gallons) for various irrigation methods over the years 2017 and 2018, along with a 2-Year Avg. for comparison.

- **Irrigated Control**: The highest water use in both years, significantly more than other methods.
- **Hunter Hydrawise**: Lower than the control but higher than others, with a slight increase from 2017 to 2018.
- **Rain Bird Wi-Fi LNK + Rain Sensor**: Lower use compared to the control, with a consistent trend over the years.
- **Toro Evolution**: Noticeable increase in water use from 2017 to 2018.
- **Manually-Irrigated**: The lowest water use, showing a slight increase over the years.
- **Hunter Soil-Clk**: Consistently lower use compared to other methods with a slight variation.

The graph highlights the efficiency of different irrigation systems and their impact on water use.
Smart Irrigation Research Study

• Traditional odd/even irrigation
• Rain sensor
• Smart controllers
• Soil moisture sensor
• Non-irrigated turfgrass
• Low-input turfgrass species
Thank you!

- Shane Evans
 - sevans@umn.edu
 - @WaterWiseShane (Twitter)
 - https://turf.umn.edu
 - https://lowinputturf.umn.edu

- Brian Davis
 - brian.davis@metc.state.mn.us