Industrial Water Efficiency

Solutions that benefit businesses, communities and our future workforce

June 29, 2020

Minnesota Technical Assistance Program

Strengthening Minnesota businesses by improving efficiency while saving money through energy, water, and waste prevention.

MnTAP

- Established in 1984
- University of Minnesota, SPH
 - Outreach and assistance unit
 - Grant and partner funded
- Confidential, No Cost Engineering Assistance for Minnesota Businesses
- Site Assessments, Interns, Teams
- http://www.mntap.umn.edu

Industrial Water Efficiency Project Partnership

- Groundwater availability and community water efficiency research
- Financial support
- Goal of preserving our water resources, promoting conservation and sustainable consumption

- Technical staff and intern resources
- 35+ years of experience
- Mission to help industries in MN find costeffective solutions for water and energy conservation

Overview

- Understanding *Motivations* and *barriers* to industrial water efficiency
 - What have we learned?
 - How can we use that knowledge to provide better assistance?
- Finding water efficiency opportunities
 - Where do we look?
 - Using a 4-part approach to technical assistance
- Inspiring future workers, businesses and communities
 - Set interns up for success
 - Give businesses a game-plan to implement and sustain efficiency
 - Share findings with communities for replication

Understand motivations and barriers

Water: a limited resource with real costs

- Water costs industry *THREE* times
- Incoming supply cost
- Processing cost
 - Purification
 - Heating/Cooling
 - Pumping
 - Treatment
- Discharge

Washing and rinsing

Product transport
Product processing
Product ingredient
Process sanitation

Evaporative cooling

Heating

Water treatment and purification

Landscape irrigation, as well as other domestic uses

Photo credit: Alliance for Water Efficiency www.allianceforwaterefficiency.org/

MnTAP's 4-part strategy

Process for Technical Assistance

Map

- Measure
- Value
- Plan

Maintain

- Inspect
- Repair
- Prevent
- Repeat

Manage

- HP-LF
- High Eff.
- Automate

Modify

- Reduce
- Reuse
- Recycle

Identify and validate opportunities

Determine major components of the water balancemeasure what's happening

- Water data from site contacts
- Meter readings
- Physical measurements to fill in the gaps

Maintenance

Leak identification and repair

Management

No water cleanup

Management of Water Use

Pressure (heat), not volume

Management example: Tuning flow rates

Do valves need to be fully open?

Manage/Modify Closed-loop tank cleaning opportunity

Challenges

- Hot water cleaning needed for sanitation
- Need to monitor temperature for compliance
- Need to fill tank to probe level (T)

Improvements

- Modify temperature probe location
- Recirculation loop reads temperature
- Minimize fill volume needed
- Automate process to not overfill

Map Water Use – Aveda in Blaine, MN

Motivation

- 22 million gpy water use
- 25% used in cleaning
- Reduce water use and costs

Approach

- Analyzing water meters
- Observe CIPs and manual sanitization
- Flow rate measurements
- Talking with workers
- SAP reports

Manage/Modify - increase water efficiency

- From water map, 15% usage in Sanitation room
 - 4 operations
 - Manual and automated
- Changes in two operations
 - High efficiency spray nozzle
 - High efficiency spray ball
- Savings
 - 1.4 million gpy (40% of area use)
 - 7,300 therms
 - 56,000 kWh
 - \$20,000/yr (<1yr ROI)

Strategies for Water Efficiency

Process for Technical Assistance

Map

- Measure
- Value
- Plan

Maintain

- Inspect
- Repair
- Prevent
- Repeat

Manage

- HP-LF
- High Eff.
- Automate

Modify

- Reduce
- Reuse
- Recycle

Providing technical assistance

MnTAP staff

site assessments

Half-day to a full-day (can do multiple visits)

MnTAP
Intern Projects

3 month project Full-time, 40 hrs/week

Technical assistance - simple process summary

- Map and diagram water use as best as possible
- Collaborate with the facility team to prioritize opportunities
- Identify solutions that fit multiple categories (the 4 Ms)
 - This is key for businesses that may lack commitment!
- Give them a game-plan
 - Estimate cost/resource savings
 - Note where more process analysis is needed
 - Outline plans for implementation

The results: Cost-effective solutions that benefit all

Businesses

- Increase operational efficiency
- Minimize water usage (among other resources)
- Build confidence in continuous improvement and environmental solutions

Communities

- Reduce demand on water resources
- Increased economic value for local businesses
- Opportunity to make progress on communitywide water conservation goals

Student interns

- Real-world experience managing their own projects
- Opportunity to provide legitimate recommendations that yield measurable results
- Enter the workforce with a problem-solving, can-do mindset, that they can bring to whatever career they choose!

MnTAP Impacts 2015-2019		
Number of Companies Assisted		1,488
Water Reduction (gal)	Recommended	641,000,000
	Implemented	183,700,000
Electric Energy Reduction (kWH)	Recommended	37,400,000
	Implemented	18,300,000
Waste Reduction(lbs)	Recommended	15,300,000
	Implemented	3,600,000
Gas Energy Reduction (therms)	Recommended	1,600,000
	Implemented	620,000
Cost Savings	Recommended	11,500,000
	Implemented	5,600,000

2020 MnTAP Intern Virtual Symposium Wednesday, August 19th, 2020

Register at: https://form.jotform.com/71426420284956

Featured projects:

Abbott – Little Canada

Albert Lea Wastewater Treatment Plant

August Schell Brewing – New Ulm

Bosch Automotive – New Ulm

LCCMR wastewater nutrient projects 1 and 2

LifeCore Biomedical - Chaska

MN Dept. of Admin Facilities – St. Paul

MN Specialty Yeast – Hutchinson

MnTAP/MCES water data – Minneapolis

Old Dutch Foods – Roseville

Otsego Wastewater Treatment Plant

Pearson's Candy Co. - St. Paul

Post Consumer Brands – Northfield

Ruse-Oleum – Brooklyn Park

Sappi Paper Mill – Cloquet

St. Croix Forge – Forest Lake

University of Minnesota Physicians

Thank you!

Matt Domski

Waste Prevention Specialist

MnTAP

mdomski@umn.edu

612.624.5119

Brian M. Davis, Ph.D., P.G., P.E.

Senior Engineer – Water Supply Planning

Metropolitan Council

brian.davis@metc.state.mn.us

651.602.1519

Water Efficiency Resources

- MnTAP Water Resources
 - http://www.mntap.umn.edu/greenbusiness/water.html
- Reports and Publications
 - http://www.mntap.umn.edu/greenbusiness/water/119-WaterConservation.htm
 - https://metrocouncil.org/Wastewater-Water/Publications-And-Resources/WATER-SUPPLY-PLANNING/Water-Conservation-by-Private-Well-Industries.aspx
 - https://metrocouncil.org/Wastewater-Water/Publications-And-Resources/WATER-SUPPLY-PLANNING/Industrial-Water-Conservation-North-East-Metro-G.aspx
- Industrial water use tips newsletters
 - http://www.mntap.umn.edu/greenbusiness/water/water-projects.html
- MnTAP Intern Current Projects and Past Summaries
 - http://www.mntap.umn.edu/interns/currentprojects/
 - http://www.mntap.umn.edu/intern/pastproj.htm
 - http://www.mntap.umn.edu/resources/solutions.html

