GEOLOGIC INVESTIGATION FOR PORTIONS OF THE TWIN CITIES METROPOLITAN AREA: I. Quaternary/Bedrock Hydraulic Conductivity, II. Groundwater Chemistry

Metropolitan Council Water Supply Master Plan Development

Robert G. Tipping Anthony C. Runkel Christopher M. Gonzalez

Minnesota Geological Survey

November 24, 2010

Informal report submitted as deliverable for contract between University of Minnesota and the Metropolitan Council for project entitled "Geologic Investigation for portions of the Twin Cities Metropolitan Area: I. Quaternary/Bedrock Hydrostratigraphy, II. Hydrochemical Facies." This informal report has not been edited for scientific content. Results should be considered preliminary and subject to change. Produced for, and funded by, the Metropolitan Council.

TABLE OF CONTENTS

Executive Summary	1
Introduction	2
Methods	2
Summary of product deliverables	5
Hydraulic conductivity data	5
Water chemistry data	11
Discussion and suggested use	13
Hydraulic conductivity data	13
Water chemistry data	14
Acknowledgements	16
References cited	18
Appendices	
A. Summary of hydraulic conductivity values	21
B. Point data geodatabase structure	23
C. Point data geodatabase field names and definitions	42
D. Regional summary data geodatabase field names and definitions	
Figures	

Executive Summary

This report summarizes work performed by the Minnesota Geological Survey (MGS) in partial fulfillment of work as described under contract 091037 between the University of Minnesota and the Metropolitan Council. The goal of this investigation was to provide datasets that would assist the Metropolitan Council with regional ground water planning. Specifically, hydraulic conductivity data for both unconsolidated and bedrock materials, along with historic ground water chemical and isotopic data were assembled into spatial databases that can be used in a geographic information systems (GIS) format. Wherever possible, depth of the sampled or tested material was included along with location information, so the three-dimensional distribution of these data could be queried and compared to ongoing Metropolitan Council planning projects. For hydraulic conductivity data, the focus was on glacial-related Quaternary deposits, because these are the data most lacking for current ground-water modeling investigations. Hydrostratigraphic attributes of fine-grained materials were evaluated based on a comparison of measured values with texture, depth, and a literature review of other midcontinent tills. For water chemistry, the goal was to display the distribution of chemical types (hydrochemical facies) as a means to illustrate possible ground-water flowpaths. A sample acquisition date was included so the database could also be used to assess changes in chemical composition with time. For both hydraulic conductivity data and water chemistry, attributes were also assigned to a regional dataset of regularly spaced grid points to facilitate importing the data into groundwater modeling programs.

The individual point data geodatabase (PointData.mdb) provides access to hydraulic conductivity and chemical data for a specific site. Because much of the site information on

geologic setting comes from different consultant's reports, there is a lack of consistency in lithologic and stratigraphic attributes. In this way, PointData.mdb is best suited as a "what's in my neighborhood" type of dataset rather than for rigorous regional spatial analysis of hydraulic conductivity data. The grid design of regional summary data geodatabase (RegionalData.gdb) is meant to provide the means to readily import and adjust hydraulic conductivity and chemical data in ground water flow models, or for use as an additional layer for three-dimensional evaluation of model results. Use of regional summary data in these settings can aid in refining conceptual models of ground-water flow.

Introduction

The goal of this investigation was to provide datasets that would assist the Metropolitan Council with regional ground water planning. Specifically, hydraulic conductivity data for both unconsolidated and bedrock materials, along with historic ground water chemical and isotopic data were assembled into spatial databases that can be used in a geographic information systems (GIS) format. Data were assembled in both a point format to assess conditions at individual sites, and as regional summary data. The grid design of regional summary data provides the means to readily import and adjust hydraulic conductivity and chemical data in ground water flow models, or for use as an additional layer for three-dimensional evaluation of model results.

Methods

Data were acquired for the extended 11-county Twin Cities metropolitan area (Fig. 1). Sources of hydraulic conductivity data were the Minnesota Pollution Control Agency (MPCA) Superfund, Closed Landfill, Active Landfill, and Tanks-Leaks site files; Minnesota Department of Health (MDH) aquifer test database (Minnesota Department of Health, 2010); Minnesota

Department of Natural Resources (DNR) combined DNR/USGS aquifer test database (Minnesota Department of Natural Resources, 2010); private consultant firms; and various unpublished reports and documents on file at the Minnesota Geological Survey (MGS), most notably data from the Metropolitan Inter-County Association (MICA) regional landfill siting study (Metropolitan Inter-County Association, 1981). Based on our experience reviewing and compiling hydraulic conductivity data from these sources, we believe we compiled at most perhaps 20 to 30 percent of the total of such data for the 11 county Twin Cities Metro area that is accessible through public agencies. The bulk of such data likely is within archived site files at the MPCA. The highest volume and greatest spatial distribution of hydraulic conductivity data comes from values derived from the County Well Index (CWI) specific capacity data. Specific capacity data were converted to hydraulic conductivity data according to methods described in Bradbury and Rothschild (1985).

Sources of historic water chemistry data collected as part of a previous investigation (Meyer and Tipping, 2007) for the Metropolitan Council are: the U.S. Geological Survey National Water Inventory System (U.S. Geological Survey, 2010); the Minnesota Department of Health; the Minnesota Pollution Control Agency GWMAP program—both ambient groundwater monitoring and land-use studies (Minnesota Pollution Control Agency, 2010); University of Minnesota graduate studies (Tipping, 1992; Nemetz, 1993; Burman, 1995); Dakota County Environmental Management (2006); Anoka County Community Health and Environmental Services (Marsh, 1996, 2001); and samples from 27 wells in northwestern Hennepin County where there were limited existing data. Additional data added as part of this investigation include earlier historic data from both regional (Hall and others, 1911; Maderak, 1963; Sabel, 1985; Lively and others, 1992) and local studies (Alexander and Ross, 2003; Andrews and

others, 2005). Newly acquired data as part of this study include tritium and strontium isotope analyses from northwestern Hennepin County.

Hydraulic conductivity and water chemistry data were assembled in ESRI "geodatabase" format, both as point data representing the location and depth of the test or collected sample, and as regional summary point data, where values were assigned to regularly spaced intervals both in horizontal and vertical dimensions across the study area. A detailed description of the database formats and their attributes are included in Appendices B-D.

Regional summary datasets are organized into gridpoints with 500-meter by 500-meter spacing in the horizontal dimension, 20-foot spacing in the vertical dimension for unconsolidated deposits, and 40-foot spacing in the vertical dimension for Paleozoic bedrock (Fig. 2). A mixture of metric and English customary units was used to accommodate basemap units (Universal Transverse Mercator—meter) and water well database (feet). Regional summary gridpoints for hydraulic conductivity data cover unconsolidated deposits only, extending in the vertical dimension from 350 to 1,210 feet above mean sea level. Points in unconsolidated sediments greater than 25 feet deep were assigned ranges of values based on their position relative to existing subsurface digital elevation models for Quaternary sediments (Fig. 1) and whether or not they are greater than 60 feet deep, where hydraulic conductivity values for fine grained sediments are expected to decrease from equivalent near surface textures. Points in unconsolidated sediments less than 25 feet deep were assigned values based on the metro area surficial geology map (Meyer, 2007) where they fall within the map area. The field "K Class" in the regional summary dataset contains an integer value corresponding to a range of hydraulic conductivities listed in lookup table "xK Class". Areas outside of existing subsurface models or the surficial geology map were assigned values of "unknown".

Regional summary gridpoints of water chemistry data were assigned values based on interpreted hydrochemical facies, falling into three categories: 1. Recent/anthropogenic waters; 2. Naturally elevated chloride; and 3. Waters categorized by cation ratios of strontium to calcium plus magnesium. Category 3, based on cation ratios, spatially overlaps with categories 1 and 2, whereas recent and naturally elevated chloride waters are relatively distinct from one another. Specific steps for assigning hydrochemical facies data to grid points were to identify wells with water samples containing analyte of interest, contour the top-of-open-hole elevation for concentrations greater than a chosen cutoff value, create a gridded surface from the contours, and assign value based on position relative to the gridded surface.

Summary of product deliverables

Hydraulic conductivity data

Data collection focused mostly on unconsolidated materials, as these data are most needed for regional ground-water modeling investigations. Data were collected across the metro area (Fig. 3A) and include hydraulic conductivity values calculated on the basis of a wide range of measurement scales. In order of increasing volume of geologic material tested, the scales range from: laboratory permeameter tests; slug tests; values derived from specific capacity tests; and higher capacity aquifer tests. Higher capacity aquifer tests included in the dataset range from single hole tests with no observation wells, to multi-well tests that sample a still larger volume of sediment. Hydraulic conductivity (K) data collected as part of this investigation are consistent with published reports (for example Bradbury and Muldoon, 1990; Schulze-Makuch and others, 1999) that demonstrate measured K values are positively correlated with volume of sediment tested.

The published literature also suggests that the magnitude of increase in hydraulic conductivity with increasing volume tested will be greater for a heterogeneous compared with homogeneous aquifer (for example Schulze-Makuch and others, 1999). A relatively homogeneous aquifer will show only a modest increase in hydraulic conductivity as volume of sediment tested increases, whereas a more heterolithic aquifer will show a relatively large increase in hydraulic conductivity as volume of sediment tested increases. We could not confidently recognize this relationship in our dataset of hydraulic conductivities for Quaternary deposits, largely because our knowledge of the relative lithic heterogeneities within the aquifers is limited.

For finer-grained materials—those typically associated with tills (diamictons)—the range of volume tested is limited. This applies not only to our dataset, but to studies in the published literature as well. For horizontal conductivity (Kh), slug tests represent the upper limit of volume tested for fine-grained materials, because the response time of fine-grained materials to change in hydraulic conditions is so slow. Furthermore, monitoring wells in till are commonly designed for the express purpose of acquiring hydraulic conductivity data and provide no alternative use such as water supply or monitoring water quality over time. As such the expense of drilling and developing a test hole in till compared to a conventional well is a deterrent, and becomes increasingly so as costs rise with depth. For vertical hydraulic conductivity (Kv), estimates are based exclusively on laboratory testing (permeameter) or grain size analysis.

Based on the literature (for example Hendry, 1988; Simpkins and Bradbury, 1992; Schilling and Tassier-Surine, 2006; Hooyer and Mode, 2008) and a limited amount of information from our dataset, K will decrease in tills and other fine-grained Quaternary sediments with increasing depth of burial: horizontal hydraulic conductivity decreases one to two

orders of magnitude down a depth of about 15 meters. A study of fine-grained Quaternary deposits in Wisconsin (Hooyer and Mode, 2008) indicated that hydraulic conductivity would be expected to decrease at a lesser rate below about 15 meters, decreasing another order of magnitude upon reaching a depth of about 60 meters. The relationship between depth and hydraulic conductivity demonstrated in these studies is attributable to decreasing development of macroporosity, especially fractures and other macropores that are most common and best connected in the upper 15 meters of an individual fine-grained unit, and to increasing consolidation of the material.

The Wood Lake landfill is the only site within our dataset where a potential relationship of decreasing hydraulic conductivity with increasing depth in individual till units was specifically tested (RMT, 1986). At this site, slug tests show decreasing K with depth. Trench observations at this site indicate that an oxidized upper few meters to about 15 meters depth was more highly fractured and had higher K values than an unoxidized, less fractured lower interval at greater depths. These results are consistent with observations by Quaternary scientists at MGS who note that in Minnesota, uppermost oxidized parts of till units are commonly more weathered and fractured than deeper, unweathered parts of the till units. An analysis of the combined data from all Twin Cities metro sites with till hydraulic conductivity values, however, shows a generally poor correlation between depth and K within our dataset. The strongest correlation (correlation coefficient = -0.42) of decreasing K with increasing depth was seen in a subset of slug test values calculated from tests between 0 and 20 feet depth.

Poor correlation of decreasing K with depth in tills, within our combined dataset for the metro area, could reflect several factors. Our slug test sample subset consists of K values collected almost entirely from depths of less than 80 feet (25 meters). Most of these tested till

units may be uniformly fractured and/or heterolithic regardless of depth. The relatively high geometric mean and average K values for slug tests of tills in the metro area, compared to values from tills at other locations in midcontinent (Appendix A, Table 1), even though permeameter K values are generally similar, supports such an interpretation. In addition, at depths greater than approximately 15 meters, tests are commonly conducted on thin tills between sand and gravel deposits. These stratigraphic settings are unlike sites that are the basis for most published till K values, where thicker, commonly more homogeneous till units are tested over a greater range of depths. Furthermore, our dataset consists of values acquired from a wide range of till textures and relative heterogeneity, and therefore correlations between depth of sample and hydraulic conductivity may be obscured by a wide range in conductivity values that reflect these heterogeneities across the Twin Cities metro area. Finally, there are few slug tests in our database representing the shallowest depths of less than 5 meters, where published studies commonly show the greatest increase in K (for example McKay and others, 1993). Slug test data from MPCA leaky tank and spill sites could potentially fill this gap. We were not able to pursue these data as part of this project due to time constraints. Our conclusion, based on published studies and the somewhat limited Wood Lake investigation (RMT, 1986) as well as field observations by MGS Quaternary scientists, is that in a relatively homogeneous till sheet, K can be expected to decrease by approximately two orders of magnitude from the land surface to a depth of roughly 15 meters.

Estimating field scale K of tills for model input is difficult, given that the maximum volume of material tested from field data comes from slug tests. Literature review indicates that the arithmetic average or geomean of a number of slug test-derived K values are often regarded as generally appropriate. In these studies, such values are commonly consistent with, or within

an order of magnitude of "field scale" values derived from modeling and/or flow velocities estimated from chemical tracers (for example Simpkins and Bradbury, 1992; McKay and others, 1993). Our compilation of slug test K values, summarized and compared to published values in Appendix A, Table 1, should be regarded as generally representative of tills where they are within 80 to 100 feet (25 to 30 meters) of the land surface. Calculating an average for a number of slug test derived K values should provide a user with the best-known estimate of field-scale K that takes equally into account both low conductivity matrix blocks, as well as values from wells with relatively high K where fractures and other high K heterogeneities are intercepted. In contrast, K values based on the geometric mean of slug test values are commonly one to two orders of magnitude lower than the arithmetic mean.

Where only lab permeameter K values are available, both the published literature and our database suggest that lab values can be scaled up to slug values by increasing approximately two orders of magnitude. For estimating K based on texture data alone within our dataset, methods are limited due to the limited amount of grain size distribution data it contains. The dataset does contain a relatively large amount of clay percent data, because it is used as a mapping tool for MGS projects. For that reason, we used the Puckett method (Puckett and others, 1985) because it depends on clay percent only.

Puckett and others: $K_{(m/sec)} = 4.36 \times 10^{-5} * e^{(-0.1975 * \% clay)}$

%clay = percentage of the total sample finer than 0.002 mm (from Muldoon, 1987)

The average and geometric means of Puckett-derived K values favorably compare to the average and geometric means, respectively, of slug test values of tills (Appendix A, Table 2). For tills we have classified as loam to clay loam and loam to sandy loam, which are the majority of tills for which we have K values, the average and geometric mean of Puckett-derived values are the same order of magnitude as the average and geometric mean of slug test derived values. Puckett derived K values for tills classified as silt-rich loam differ from the average and geometric mean of slug-test derived values by as much as three orders of magnitude, indicating that the Puckett method may not be well suited for such tills, although this comparison is based on a relatively small number of slug tests for tills of such texture.

For coarser-grained materials—sands and gravels typically associated with fluvial deposits—the range of volume of material tested is wider. Kv and Kh tests come from lab permeameter testing, slug tests, values derived from specific capacity tests, and aquifer tests. Based on our analysis of values derived from individual sites in the metro area where K was measured using methods that range in volume of material tested, slug test K values for coarse-grained material are on the average six times greater than lab permeameter measured values from the same aquifer. Specific capacity derived values are about 3 times greater than slug test values, and aquifer test values are about 3 times specific capacity values.

Water chemistry data

Most data included in this investigation come from samples collected within the last 25 years with a few exceptions, including data collected in the 1960s (Maderak, 1963) and the 1910s (Hall and others, 1911). The core of this dataset is comprised of major cation and anion data with field parameters where available, along with an extensive collection of tritium data from the MDH source water protection program. Other significant datasets include perflourochemical (PFC) data for the east metro area from MDH and MPCA, and nitrate data from Dakota County Environmental Management (2006).

Water chemistry data were broken into subsets to facilitate use in a GIS environment. Subsets are 1. Good charge balance: samples having a charge balance error of less than 5 percent; 2. Oxidation-reduction (redox) condition: samples classified by redox state based on chemical composition using the methods of Jurgens and others (2009); 3. Field parameters: samples having data collected in the field, including temperature, conductivity, pH, eH, and dissolved oxygen; and 4. Indicators of ground water age: samples classified as "recent," "mixed," and "vintage" based on the model of Alexander and Alexander (1989). In this model, recent waters are samples whose chemical composition is indicative of waters having entered the ground in the last 60 years, vintage waters contain no admixture of recent waters, and mixed waters are some mixture of these end members, noting that all ground water is a mixture of different ages and chemical types.

Age classification of individual groundwater samples was based on several criteria. Samples classified as recent had some combination of detectable tritium, the presence of anthropogenic contaminants such as PFCs, or chloride concentrations greater than 5 parts per

million (ppm) in areas thought not to have naturally elevated chloride levels. Waters classified as vintage meet none of the criteria listed for recent waters, whereas mixed waters contain small concentrations of these constituents. In all cases a specific age was included if carbon 14 or some other dating tool was available, along with the model used to calculate the age.

Three ground water chemical types, or hydrochemical facies, were mapped at the regional scale: 1. Recent waters were distinguished by A. The presence of detectable tritium elevation mapped as the land surface elevation minus casing depth; B. Areas within 50 feet of the land surface where the uppermost geologic unit is from till associated with the Des Moines lobe; C. Areas with sand and gravel at the land surface to a depth not greater than 30 feet below local elevations of the Mississippi and Minnesota Rivers. These criteria resulted in a composite generalized contour map showing the elevation above mean sea level where recent water would be expected to be found. Other indicators of recent water such as the presence of elevated chloride, nitrate, or anthropogenic compounds generally fit within these contours. It should be noted that within the center part of the basin, contours show a bowl shaped presence of recent waters to an elevation of 475 feet. Vintage waters have been found above this elevation within the St. Peter Sandstone where it is covered by the Platteville and Glenwood Formations. This condition of younger water underlying older water will be addressed in the next iteration of this dataset; 2. Waters with distinct cation ratios were distinguished by having strontium to calcium plus magnesium molar ratios greater than 0.001. These waters are predominantly in the western part of the metro area, with the exception of the Mt. Simon aquifer, where they extend to the central and southeastern parts of the basin; and 3. Waters with naturally elevated chloride were distinguished by having chloride levels greater than 15 ppm and carbon 14 age dates greater than 1,000 years. These waters were mapped in the Mt. Simon aquifer only, but are thought to be

present in shallow aquifers near major fault zones in the metro area, including the cities of Hastings, Anoka, and Belle Plaine.

Discussion and suggested use

Hydraulic conductivity data

These data are highly scale-dependent. As such, we provide general "rules of thumb" from slug test to regional investigations. For fine-grained materials, measurement methods in order of increasing volume of geologic material tested are lab permeameter tests and field slug tests. For texture measurements, we found that the Puckett method applied to clay percent data provided hydraulic conductivities generally consistent with the average and geometric mean of slug test data. Results from lab permeameter tests can be scaled up to slug tests by increasing the measurement by approximately two orders of magnitude. Our slug test data for fine-grained materials are limited to measurements made at depths less than 80 feet. For till settings deeper than this, we suggest assigning values that are 1 to 2 orders of magnitude lower than these near-surface measurements.

For coarse-grained sediments, measurement methods in order of increasing volume of geologic material tested are texture analyses, lab permeameter, slug tests, specific capacity tests, and aquifer tests. There is a very limited amount of grain size distribution data contained in our dataset, restricting the application of Hazen (1893), Kozeny-Carmen, or other grain-size distribution based methods to these data. Results from lab permeameter tests on coarse-grained materials can be roughly scaled up to slug test values by a factor of 6. Hydraulic conductivity results derived from specific capacity data were on the average 3 times greater than slug test

results. Finally, aquifer test values of hydraulic conductivity are approximately 3 times greater than specific capacity-derived values in our dataset.

Water chemistry data

These data are well suited for use as a tracer of ground water movement. In the absence of tritium, chloride concentrations can be used to map the three-dimensional distribution of recent waters. Low background concentrations (less than 5 ppm) in all aquifers stratigraphically higher than the Mt. Simon Sandstone provide a cutoff value to distinguish recently recharged ground water from ground water older than 60 years. Comparison of cation ratios across the metro area, specifically strontium to calcium plus magnesium concentrations, showed distinct patterns both in an east–west direction and with depth. The presence of anthropogenic compounds, best illustrated in the distribution of PFCs in the eastern metro area, point to the utility of using these data to show the distribution and approximate rate of movement of recent waters in the subsurface.

An example of the combined use of hydraulic conductivity and water chemistry data to assist in ground-water modeling is provided by a proposed infiltration basin investigation for the city of East Bethel in Anoka County (Braun Intertec Corporation, 2009). There, chemical data were compared to field and lab scale measurements of hydraulic conductivity. Average linear velocities (vertical) calculated from lab and field scale measurements predicted longer travel times than shown by the presence of elevated organic acids within the till. This disagreement between data was attributed in the report to secondary porosity and permeability. Fractures or other macropores were thought to provide conduits to deeper sand lenses to account for vertical and lateral distribution of recent waters within the till. Similarly, several other reports reviewed as part this project demonstrated the presence of relatively recent water within or beneath tills

with low permeameter-derived K values, suggesting relatively rapid flow through heterogeneities such as fractures, macropores, or textural heterogeneities (for example sand dikes and lenticles; RMT, 1986; Donahue and Associates, 1990; Liesch and Associates, 1990; MACTEC, 2010).

The individual point data geodatabase (PointData.mdb) provides access to hydraulic conductivity and chemical data for a specific site. Because much of the site information on geologic setting comes from different consultant's reports, there is a lack of consistency in lithologic and stratigraphic attributes. In this way, PointData.mdb is best suited as a "what's in my neighborhood" type of dataset rather than for rigorous regional spatial analysis of hydraulic conductivity data. The grid design of regional summary data geodatabase (RegionalData.gdb) is meant to provide the means to readily import and adjust hydraulic conductivity and chemical data in ground water flow models, or for use as an additional layer for three-dimensional evaluation of model results. Use of regional summary data in these settings can aid in refining conceptual models of ground-water flow.

Acknowledgements

A large number of people generously took the time to provide data or assist in data collection. Byron Adams from the Minnesota Pollution Control Agency (MPCA) spent considerable effort acquiring databases and providing guidance that proved invaluable in the acquisition of data from site files of the MPCA. Ingrid Verhagen of the MPCA provided reports and guidance that led to the collection of a large volume of hydraulic conductivity information from closed landfill site files. Others from the MPCA who assisted included Dave Scheer, John Elks, Deepa de Alwis, and Fred Campbell. Dianne Mitzuk (MPCA) was particularly helpful in locating and assisting with site file reviews. Ray Wuolo of Barr Engineering gave us advice on the needs of ground-water modelers, including recommendations on what kinds of conductivity information to target. Chuck Howe (Minnesota Department of Transportation) furnished us with unpublished reports. Wayne Rikala (Metropolitan Council) continues to provide us with field data and engineering logs from their sewer interceptor investigations. A number of consultants provided or led us to important sources of data, including Kelton Barr (Braun Intertec), Aaaron Janusz (Pine Bend Landfill), Nick Bonow (McCain and Associates), Terry Johnson (Waste Management), Len Mankowski (MACTEC), John Barry (Emmons and Olivier Resources), and Keith Benker (Wenck Associates). Jay Frischman (DNR) and Justin Blum (MDH) provided aquifer test data that they have compiled over a number of years, included in, but in addition to data received from the Metropolitan Council as part of their metro ground-water model supporting data collection. Justin also provided us with an updated tritium data base from the MDH Source Water Protection program. Additional water chemistry data came from a number of different sources. We would like to thank Richard Marsh, who collected most of the samples from Anoka County and provided us with reports on their distribution and interpretation. Sherri Kroening and Ingrid Verhagen (MPCA) steered us through unique identifiers for water samples

from their datasets, and included valuable pointers on how reporting practices have changed with time. Ginny Yingling (MDH) provided updated PFC data for Washington and portions of Ramsey and Dakota Counties. Jill Trescott (Dakota County) provided nitrate data from their ambient ground-water study. Scott Alexander (University of Minnesota), who has either a direct or indirect connection to a great number the analyses included in this report, also provided additional data from various projects across the metro area along with valuable insights on their interpretation. We apologize for what are certainly omissions in our list of the many people we should be thanking.

References cited

- Alexander, S.C., and Alexander, E.C., Jr., 1989, Residence times of Minnesota groundwaters: Journal of the Minnesota Academy of Science, v. 55, no. 1, p. 48-52.
- Alexander, S.C., and Ross, M., 2003, Sources and residence times of ground water recharge in the St. Croix River basin: Experience from northern Washington County, in abstracts: St. Croix River Research Rendezvous, Science Museum of Minnesota, http://www.smm.org/SCWRS/rendezvous/abstracts03.php>.
- Andrews, W.J., Stark, J.R., Fong, A.L., and Fallon, J.D., 2005, Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin—Ground-water quality along a flow system in the Twin Cities metropolitan area, Minnesota, 1997-1998: U.S. Geological Survey SIR 2005-5120, 44 p.
- Bradbury, K.R., and Muldoon, M., 1990, Hydraulic conductivity determinations in unlithified glacial and fluvial materials, *in* Nielsen, D.M., and Johnson, A.I., eds., Ground water and vadose zone monitoring: Philadelphia, Penn., American Society for Testing and Materials, ASTM STP 1053, p. 138-151.
- Bradbury, K.R., and Rothschild, E.R., 1985, A computerized technique for estimating the hydraulic conductivity of aquifers from specific capacity data: Ground Water, v. 23, no. 2, p. 240-246.
- Braun Intertec Corporation, 2009, Report of hydrogeologic information, sites A and E, East Bethel, Minnesota: Prepared for Metropolitan Council Environmental Services, Project No. SP-07-01054G, 198 p.
- Burman, S.R., 1995, Pilot study for testing and refining an empirical groundwater sensitivity assessment methodology: Minneapolis, University of Minnesota, M.S. thesis, 256 p.
- Cravens, S.J., and Ruedisili, L.C., 1987, Water movement in till of east-central South Dakota: Ground Water, v. 25, no. 5, p. 555-561.

Dakota County Environmental Management, 2006, Jill Trescott, written communication.

- Donahue and Associates, 1990, EIS Hydrogeologic site investigation: Anoka County: Donahue and Associates Landfill Inventory Sites D, P, and Q, v. 1, 229 p.
- Gerber, R.E., Boyce, J.I., and Howard, K.W.F., 2001, Evaluation of heterogeneity and field-scale groundwater flow regime in a leaky till aquitard: Hydrogeology Journal, v. 9, p. 60-78.
- Hall, C.W., Meinzer, O.E., and Fuller, M.L., 1911, Geology and underground waters of southern Minnesota: U.S. Geological Survey Water-Supply Paper 256, 406 p.
- Hazen, A., 1893, Some physical properties of sand and gravels with special reference to their use in filtration: Boston, Massachusetts State Board of Health, 24th Annual Report.
- Hendry, M.J., 1988, Hydrogeology of clay till in a prairie region of Canada: Ground Water, v. 26, no. 5, p. 607-614.
- Hooyer, T.S., and Mode, W.N., 2008, Quaternary geology of Winnebago County, Wisconsin: Wisconsin Geological and Natural History Survey, Bulletin 105, 41 p.
- Jurgens, B.C., McMahon, P.B., Chapelle, F.H., and Eberts, S.M., 2009, An Excel workbook for identifying redox processes in ground water: U.S. Geological Survey Open-File Report 2009-1004, 15 p.
- Liesch and Associates, 1990, Final report: Remedial investigation Isanti-Chisago Sanitary Landfill, Isanti County, Minnesota: Liesch and Associates, v. 1.
- Lively, R.S., Jameson, R., Alexander, E.C., Jr., and Morey, G.B., 1992, Radium in the Mt. Simon-Hinckley aquifer, east-central and southeastern Minnesota: Minnesota Geological Survey Information Circular IC-36, 58 p.
- Lusardi, B.A., and Tipping, R.G., 2006, Quaternary stratigraphy, pl. 4 *of* Setterholn, D.R., project manager, Geologic atlas of Scott County, Minnesota: Minnesota Geological Survey County Atlas C-17, pt. A.
 - ——2009, Quaternary stratigraphy and sand distribution model, pl. 4 *of* Bauer, E.J., project manager, Geologic atlas of Carver County, Minnesota: Minnesota Geological Survey County Atlas C-21, pt. A.
- MACTEC, 2010, On-site investigation report: Revised site conceptual model: Honeywell Golden Valley Site, Golden Valley, Minnesota, March 12, 2010: MACTEC project number 3310090001.
- Maderak, M.L., 1963, Quality of waters, Minnesota: A compilation, 1955-1962: St. Paul, Minn., Minnesota Conservation Department, Bulletin 21, 104 p.
- Marsh, R., 1996, Groundwater chemistry and recharge estimation using environmental tritium: Anoka County, Minnesota: Anoka County Community Health and Environmental Services Department, prepared under an Agricultural Preservation and Conservation Awareness Grant, 62 p.
 - ——2001, Hydrogeology of the buried drift aquifers: Anoka County, Minnesota: Anoka County Community Health and Environmental Services Department, prepared under an Agricultural Preservation and Conservation Awareness Grant, 44 p.

- McKay, L.D., Cherry, J.A., and Gillham, R.W., 1993, Field experiments in a fractured clay till 1: Hydraulic conductivity and fracture aperture: Water Resources Research v. 29, no. 4, p. 1149-1162.
- Metropolitan Inter-County Association (MICA), 1981, Unpublished reports by consulting company Henningson, Durham and Richardson describing soil borings and hydraulic conductivity estimates compiled as part of a landfill site inventory for the 7-county Twin Cities Metropolitan area: Archived at the Minnesota Geological Survey.
- Meyer, G.N., 2007, Surficial geology of the Twin Cities metropolitan area, Minnesota: Minnesota Geological Survey Miscellaneous Map M-178, scale 1:125,000.

——2010, Quaternary stratigraphy, pl. 4 *of* Runkel, A.C., project manager, Geologic atlas of Chisago County, Minnesota: Minnesota Geological Survey County Atlas C-22, pt. A.

Meyer, G.N., and Tipping, R.G., 1998, Digital elevation models of tops and bottoms of four tills within Washington County, Minnesota: Minnesota Geological Survey, Unpublished Manuscript Maps, scale 1:50,000, 8 digital files.

——2007, Geology in support of ground-water management for the Twin Cities Metropolitan Area, Metropolitan Council Water Supply Master Plan Development—Phase I: Minnesota Geological Survey Open-File Report OFR 07-02.

- Minnesota Department of Health, 2010, AQUITEST—Aquifer test database, Minnesota Department of Health, Justin Blum, written communication.
- Minnesota Department of Natural Resources, 2010, Aquifer test database: Minnesota Department of Natural Resources, Jay Frischman, written communication.

Minnesota Pollution Control Agency, 2010, Groundwater catalog (ambient ground water monitoring program): St. Paul, Minn., <<u>http://www.pca.state.mn.us/index.php/topics/environmental-data/eda-environmental-dataaccess/eda-groundwater-searches/eda-groundwater-catalog.html</u>>. Accessed November 10, 2010.

- Nemetz, D.A., 1993, The geochemical evolution of ground water along flow paths in the Prairie du Chien-Jordan aquifer of southeastern Minnesota: Minneapolis, University of Minnesota, M.S. thesis, 182 p.
- Puckett, W.E., Dane, J.H., and Hajek, B.F., 1985, Physical and mineralogical data to determine soil hydraulic properties: Soil Science Society of America Journal, v. 49, p. 831-836.
- RMT, Inc., 1986, Supplemental hydrogeological investigation Woodlake Sanitary Landfill, Woodlake Sanitary Services, Inc. A subsidiary of BFI Waste Systems: March, 1986, 43 p.
- Sabel, G., 1985, Ground water quality monitoring program. A compilation of analytical data collected from 1978 to 1984. Minnesota Pollution Control Agency Division of Solid and Hazardous Waste, Program Development Section, v. 6.: Data available from MPCA Environmental Data Access, <<u>http://www.pca.state.mn.us/index.php/topics/environmentaldata/eda-environmental-data-access/eda-environmental-data-access-home.html</u>>. Accessed November 10, 2010.
- Schilling, K., and Tassier-Surine, S., 2006, Hydrogeology of pre-Illinoian till at the I-380 rest stop site, Linn County, Iowa: Iowa Geological Survey Technical Information Series 51, 53 p.

- Schulze-Makuch, D., Carlson, D.A., Cherkauer, D.S., and Malik, P., 1999, Scale dependency of hydraulic conductivity in heterogeneous media: Ground Water, v. 37, no. 6, p. 904-919.
- Simpkins, W.W., and Bradbury, K.R., 1992, Groundwater flow, velocity, and age in a thick, finegrained till unit in southeastern Wisconsin: Journal of Hydrology, v. 132, p. 283-319.
- Tipping, R.G., 1992, An isotopic and chemical study of groundwater flow in the Prairie du Chien and Jordan Aquifers: Minneapolis, University of Minnesota, M.S. thesis, 117 p.
- U.S. Geological Survey, 2010, National Water Information System: Web interface: U.S. Geological Survey, <<u>http://waterdata.usgs.gov/nwis</u>>. Accessed November 10, 2010.

Appendix A. Table 1. Comparison of hydraulic conductivity values for mid-continent tills at various scales with results from this study.

Source	Location/till	Texture	Lab (permeameter)tests	Slug tests	Larger scale
Hooyer and Mode (2008)	Winnebago County Wis. Green Bay lobe	From Rodenbeck (1988) Kirby Lk: S 28%, SI 44%, Cl, 29% Middle Inlet; S 18%, SI 47%, Cl, 35%	10 ⁴ ft/day	10^{-1} to 10^{-2} ft/day (suggests fractures)	
Simpkins and Bradbury (1992)	"southeastern Wis. till"	average S 12%, SI 53%, Cl, 35%	1 to 2 orders magnitude less than slug test values	10^{-3} ft/day (fractured) to 10^{-5} ft/day (less fractured)	
Bradbury and Muldoon (1990)	Eastern Wis. tills	UNKNOWN	10^{-3} to 10^{-5} ft/day	10^{-1} to 10^{-3} ft day	
Schilling and Tassier- Surine (2006)	Pre-Illinoian till, Linn County Iowa	average S 44%, Sl 37%, Cl, 19%	none	Geomean 10 ⁻² ft/day oxidized till Geomean 10 ⁻⁴ ft/day unoxidized till	
Cravens and Ruedisili (1987)	East-central S. Dakota till	average S 21%, Sl 51%, Cl 28%	none	Avg. 2.1×10^{-2} ft/day (oxidized) Avg. 1.1×10^{-3} ft/day (unoxidized)	
McKay and others (1993)	SW Ontario Till	Greater than 25% clay	10 ⁻⁵ to 10 ⁻⁶ ft/day	10^{-5} to $8x10^{-2}$ ft/day (fractured till) (also summarize "other" Canadian sites with fractured tills as btw 10^{-3} to 10^{-1} ft/day)	Field trench 5m (deep) by 7m (wide) ~6x10 ⁻² ft/day
Gerber and others (2001)	Ontario till	"Sandy-silt" till		~1.4 x 10 ⁻⁴ ft/day	Water chemistry & modeling indicate Kh 1 to 2 orders magn. > than slug test K. Max.bulk vertical K estimate is 10 ⁴ ft/day
This project	Des Moines lobe 11 county Twin Cities Metro	average S 42%, SI 37%, Cl, 21%	Avg 8.6×10^{-2} ft/day Geom 8×10^{-4} ft/day n= 32	Avg 4.2 x 10 ⁻¹ ft/day Geom 5.3 x10 ⁻² ft/day n= 17	
This project	Superior lobe 11 county Twin Cities Metro	average S 62%, SI 26%, Cl, 12%	Avg 2.3 $x10^{-2}$ ft/day Geom 1.2 x 10 ⁻³ ft/day n= 21	Avg 7.3 $x10^{-1}$ ft/day Geom 1.6 $x 10^{-1}$ ft/day n= 30	

Appendix A. Table 2. Summary of horizontal and vertical hydraulic conductivity values by method, this study.

-	onductivity - horizontal (ft/o	-				
method/hydro_class Grain size description		n	mean	min	max	geomean
	description	1155	2 275 01	2 925 05		0.045.00
1	· · · · · · · · · · · · · · · · · · ·	1155	2.37E-01	2.83E-05	5.45E+00	9.64E-02
2		325	1.26E+00	2.78E-03	1.42E+01	5.70E-01
3	clay	79	3.45E-01	8.57E-03	3.35E+00	1.39E-01
4		37	1.35E+00	8.85E-02	3.42E+00	1.02E+00
5	0	168	5.47E+01	2.83E-02	3.09E+02	1.92E+01
e		32	4.81E+00	5.84E-05	3.69E+01	1.61E-01
7	sandy silt	38	5.65E-01	1.42E-04	1.13E+01	2.42E-02
Lab Perme	ameter					
5	sand and gravel	3	2.34E+00	4.30E-01	4.50E+00	1.60E+00
Aquifer tes	t					
5	sand and gravel	118	1.17E+02	4.82E-01	4.15E+02	6.53E+01
Slug test						
1	loam to clay loam	17	3.87E-01	5.67E-04	3.83E+00	2.80E-02
2	loam to sandy loam	34	2.27E+00	2.83E-03	4.30E+01	2.00E-01
3	loam, silt rich; silt and	7	1 425 02		0.255.02	
3	clay	/	1.43E-02	7.65E-05	9.35E-02	7.74E-04
5	sand and gravel	215	3.98E+01	5.00E-03	5.40E+02	8.07E+00
ε	fine sand	14	3.91E+00	1.42E-03	2.61E+01	5.11E-01
7	sandy silt	18	2.49E+01	1.40E-01	1.50E+02	5.54E+00
Specific Ca	pacity - excluding CWI					
5	sand and gravel	17	40.7294	1.5	152	2.66E+01
Hydraulic C	onductivity - vertical (ft/day	()				
method		n	mean	min	max	geomean
Lab Perme	ameter - constant head					
1	loam to clay loam	17	1.68E-01	6.24E-05	2.83E+00	7.26E-04
5	sand and gravel	51	7.79E+00	4.82E-05	1.11E+02	1.69E+00
e	fine sand	2	1.70E+00	1.50E+00	1.90E+00	1.69E+00
7	sandy silt	9	8.55E-01	8.50E-04	5.67E+00	8.88E-02
Lab Perme	ameter - falling head					
1	-	37	7.14E-02	2.83E-06	1.98E+00	2.19E-04
2	-	14	2.45E-01	1.98E-05	3.40E+00	9.81E-04
	loam, silt rich; silt and					
3		4	1.94E-04	6.80E-05	3.97E-04	1.55E-04
5	•	4	4.27E-01	6.80E-03	1.13E+00	1.22E-01
6	•	1	2.35E-01	2.35E-01	2.35E-01	2.35E-01
7		31	1.07E-01	9.35E-06	1.64E+00	1.73E-03
, Aquifer tes	-	3	1.07 - 01	5.552 00	1.0 12 00	1.7 52 05
5		3	6.76E+01	7.00E-01	1.01E+02	1.93E+01
-		5	0.702-01	7.00L-01	1.011.02	1.550.01

Appendix B. Point data geodatabase structure.

Geodatabase Name: PointData.mdb (personal geodatabase)

Spatially enabled data tables

Name	Description
C_complete	Water chemistry, complete dataset. 1 row for each sample event
C_indx	Water chemistry, index summary data, linked to subsets of C_complete (tables with name beginning 'Csub') by field "relate_date"
K_complete	Hydraulic conductivity, complete dataset. 1 row for each measurement
K_indx	Hydraulic conductivity, index summary data, linked to subsets of K_complete (tables with name beginning 'Ksub') by field "seqno"

Subset data tables

Name	Description
Csub_age	Subset of water chemistry containing interpreted age and supporting data
Csub_agency_program	Subset of water chemistry containing agency and program information associated with water sample
Csub_field_parameters	Subset of water chemistry containing field parameter data
Csub_goodchargebalance	Subset of water chemistry containing samples with charge balance error less than 5%
Csub_isotopes	Subset of water chemistry containing samples with stable or radiogenic isotope data
Csub_majorcations_anions	Subset of water chemistry containing major cation and anion data. Strontium, barium, and choride
	concentrations included here because of their use for data interpretation.
Csub_PFCs	Subset of water chemistry containing PFC data from Washington County and portions of Ramsey and Dakota
	County, assembled by the Minnesota Department of Health
Ksub_data	Subset of hydraulic conductivity containing summary information
Ksub_specific_capacity	Subset of hydraulic conductivity containing data used to calculate hydraulic conductivity from specific capacity
	data
Ksub_texture	Subset of hydraulic conductivity containing texture information, if available, associated with K measurement.

Lookup tables

Name	Description				
XAGENCY	Corresponds to field "agency," code specifies agency or organization that administers progam under which				
	data was collected or managed:				
	C02 Anoka County				

	C19 Dakota County
	C82 Washington County
	DNR MN Department of Natural Resources
	DOT MN Department of Transportation
	MDA MN Department of Agriculture
	MDH MN Department of Health
	METC Metropolitan Council
	MWCC Metropolitan Waste Control Commission
	PCA Mn Pollution Control Agency
	UMN University of Minnesota
	USEPA U.S. Environmental Protection Agency
	USGS United States Geological Survey
xAQUIFER_THCK_M	Corresponds to field "aquifer_thck_ft_mc," code specifies method used to establish aquifer thickness, in
С	feet – used to calculate horizontal hydraulic conductivity from transmissivity values:
	OH equal to open hole/screen length
	EST estimated from cross section or other
xDATA_REFERENCE	Corresponds to field "agency prg," which is a concatenation of fields "agency" and "program." For water
_	chemistry data, this field uniquely identifies source of agency/program that collected or managed the data:
xDEPTH_MC	Corresponds to field "depth mc," code specifies method used to establish depth of borehole or well:
	EST Estimated from cross section or other
	Company of the field light, we like the description of the establish land surface also stick of
xELEV_MC	Corresponds to field "elev_mc," code specifies method used to establish land surface elevation of
	sample/test location:
	A Altimeter (+/- 1 foot)
	G GPS (Global Positioning System / satellite)
	H GPS >12M (> +- 40')
	I GPS 3-12M (+- 10-40')
	J GPS 1-3M

	KGPS <= 1M					
	S Surveyed					
	T 7.5 min	7.5 minute topographic map (+/- 5 feet)				
	T2 Calc fro	om DEM (n DEM (USGS 7.5 min or equiv.)			
	T3 Calc fro	om County	y 2 ft. DEM			
xGCMCODE	•		"gcm_code," code specifies method used to establish sample/test location:			
	•		1:24,000 or larger			
	-		ashington Co. 1/2 section maps, verified by County Survey GPS			
	•		1:100,000 to 1:24,000			
	•	•	een) - Map (1:24,000)			
	-	-	een) - Map (1:12,000)			
			y Corrected			
	G6A GPS SA	-				
	G60 GPS SA	-				
			to 12 meters (+ 6 to 40 feet)			
	PQ6 Public Land Survey - QQQQQQ Section					
	 RD From report description (estimated error +/- 1000 m) SM digitized from georeferenced site map, accuracy unknown 					
	SM digitized from georeferenced site map, accuracy unknown SPL					
	UNK Unknown method					
		iknown methoa				
xPROGRAM	Corresponds to field "program," code specifies which program within a given agency collected the data:					
	Program Agency Description					
	ACHES	C02	Anoka County Community Health And Environmental Services			
	CGA	MGS	Minnesota Geological Survey County Geologic Atlas Part A			
	CLF	MPCA	Pollution Control Agency Closed Landfill Program			
	CMTS_RA	MGS	MGS-UMN Mt. Simon Aquifer Radium Study			
	DNEM_MS	UMN	University Of MN - David Nemetz M.S. Thesis (1993)			
	DOW	DNR	Dept. of Natural Resources Division Of Waters			
	EM	CO19	Dakota County Environmental Management			
	ES	METC	Metropolitan Council Environmental Services			

	GU	MDOT	Dept. of Transportation Geology unit
	GWM_04-08	MPCA	PCA Groundwater Monitoring & Assessment Program, Ambient Data 2004-2008
	GWM_92-96	MPCA	PCA Groundwater Monitoring & Assessment Program, Baseline Data 1992-1996
	LCMROPDC	MGS	Sampling For LCMR Prairie Du Chien Hydrogeology Project
	LFS	MWCC	Metropolitan Waste Control Commission Landfill Study (MICA)
	LFS	C27	Hennepin County Landfill Siting Study - 1980S
	METC_NW1	MGS	Sampling For Metropolitan Council Phase I Study
	NAWQA	USGS	USGS National Water Quality Assessment Program
	PFC	MDH	Dept. of Health PFC Investigation
	PWS	MDH	Dept. of Health Public Water Supply
	RTIP_MS	UMN	University Of MN - Robert Tipping M.S. Thesis (1992)
	SBUR_MS	UMN	University Of MN - Sandeep Burman M.S. Thesis (1995)
	SCA_1	UMN	University Of MN - Scott Alexander, MN Groundwater Age Data (MNGWAGE.XLS)
	SCA_2	UMN	University Of MN - Scott Alexander, Washington County Data (WASHCODATA.XLS)
	SCA_3	UMN	University Of MN - Scott Alexander, Dakota County Data (DAKOTA3D.XLS)
	SF	MPCA	Pollution Control Agency Superfund
	SW	MPCA	Pollution Control Agency Solid Waste
	T&S	MPCA	Pollution Control Agency Tanks And Spills
	UMORE	UMN	University Of MN - UMORE Park Groundwater Assessment June 30, 2009
	WHP	MDH	Dept. of Health Wellhead Protection
xREPORT_REFERENC	-		"report ref," contents specify author and year associated with data:
ES	Corresponds	to neia	report_rel, contents speeny dution and year associated with duta.
	Alexander,	Alovano	ler, S.C., 2010a, Minnesota groundwater age data, University of Minnesota
	2010a		eochemistry Laboratory, written communication
	2010a	пушов	eochemistry Laboratory, written communication
	Alexander,	Alexand	ler, S.C., 2010b, Washington County groundwater data, University of Minnesota
	2010b		eochemistry Laboratory, written communication
		70	
	Alexander,	Alexand	ler, S.C., 2010c, Dakota County groundwater data, University of Minnesota
	2010c	Hydrog	eochemistry Laboratory, written communication
	Andrews et		rs, W.J., Stark, J.R., Fong, A.L., and Fallon, J.D., 2005, Water-quality assessment of part of the
	al., 2005	• •	Mississippi River Basin, Minnesota and Wisconsin – Ground-water quality along a flow system
	,	in the T	win Cities metropolitan area, 1997-1998. 44 p

Barr Engineering, 1988	Barr Engineering, 1988, Schumacher Site Remedial Investigation/Assessment of Response Action Alternatives Report, Prepared for Isanti Sites Trust, on-file at MPCA
Barr Engineering, 1991	Barr Engineering, 1991, Burnsville Sanitary Landfill SW-56 Supplemental Remedial Investigation April 1991, on-file at MPCA
Barr Engineering, 1992	Barr Engineering, 1992, Dakhue Sanitary Landfill Site, August, 1992, on-file at MPCA
Barr Engineering, 1996	Barr Engineering, 1996, Burnsville Sanitary Landfill SW-56 Hydrogeology - Phase III Water Monitory Report December 1996, on-file at MPCA
Barr Engineering, 2009	Barr Engineering, 2009, Groundwater Assesment Report: Report document for Environmental Impact Statement, UMORE Park - University of Minnesota, June, 2009. http://purl.umn.edu/91611, Accessed November 15, 2010.
Braun Intertec, 1993	Braun Intertec, 1993, Phase II geotechnical investigation environmental monitoring system installation report, prepared for the city of Hopkins, Project No. CMKX-92-0092, Novermber 3, 1993, on-file at MPCA
Braun Intertec, 2009	Braun Intertec Corporation, 2009, Report of Hydrogeologic Information, Sites A and E, East Bethel, Minnesota, prepared for Metropolitan Council Environmental Services, December 14, 2009, Project No. SP-07-01054G, 198 p, on-file at MGS
Braun, 1990	Braun, 1990, EG-015: Geotechnical investigation and environmental monitoring system installation report, Hopkins Sanitary Landfill, Hopkins Minnesota, March 6, 1990, on-file at MPCA
Brown and Caldwell, 1995	Brown and Caldwell, 1995, Metropolitan Wastewater Treatment Plant, Metro Plant Environmental Inventory, Phase II - Implementation, MCWS Project No. 930405, Brown and Caldwell Project No. 2201.01, RUST Project No. 43052.547, February 1995, on-file at MGS
Burman,	Burman, S.R., 1995, Pilot study for testing and refining an empirical groundwater sensitivity

1995	assessment methodology, Unpublished M.S. Thesis, University of Minnesota, 256 p.
CDM, 1991	Camp, Dresser and McKee, 1991, TCAAP Superfund site: Phase 1A Multi-Point Source Ground Water Remedial Investigation February 1991, on-file at MGS
CDM, 1993	Camp, Dresser and McKee, 1993, Detailed site investigation for the Johnson Brothers Landfill site, prepared for the Minnesota Pollution Control Agency, April, 1993, on-file at MPCA
CDM, 1994a	Camp, Dresser and McKee, 1994a, Corrective Action Investigative Report, Volume II, Elk River Landfill, SW-74, March 1994, on-file at MPCA
CDM, 1994b	Camp, Dresser and McKee, 1994b, Corrective Action Investigative Report, Volume III, Elk River Landfill, SW-74, March 1994, on-file at MPCA
Conestoga- Rovers, 1985	Conestoga-Rovers, 1985, WDE Landfill Remedial Investigation October 1985, on-file at MPCA
Conestoga- Rovers, 1988	Conestoga-Rovers, 1988, Freeway Sanitary Land Fill SW-57 February 15, 1988, on-file at MPCA
Conestoga- Rovers, 1992	Conestoga-Rovers and Associates, 1992, WDE Landfill Remedial Action and Design Pumping Test Report September 28, 1992, Reference No., 1472-90 (61), on-file at MPCA
Dakota County, 2006	Dakota County Environmental Management, 2006, Jill Trescott, written communication.
Davis, J.H., 2007	Davis, J.H., 2007, Evaluation of the contributing area for recovery wells at the Naval Industrial Reserve Ordinance Plant (NIROP), Fridley Minnesota, United States Geological Survey Scientific Investigations Report 2007-5109, 50p.
Delta, 2006	Delta, 2006, MPCA Leak Site Report, Anoka County Leak 00016369, Nowthen Country Store Leak Site, on-file at MPCA
DNR, 2001	Minnesota Department of Natural Resources, 2001 tritium sample of American Linen Mt. Simon well, data from Scott Alexander, file wtrl3h98.xls

Donohue and Assoc., 1986	Donohue and Assoc., 1986, Workplan for conducting supplementary groundwater investigations at the Elk River Sanitary Landfill site, January 15, 1986, on-file at MPCA
Donohue and Assoc., 1987	Donohue and Assoc., 1987, Supplementary Groundwater Investigations at Elk River Sanitary Landfill Site, April 13, 1987, on-file at MPCA
Donohue and Assoc., 1988	Donohue and Assoc., 1988, Supplementary Groundwater Investigations at Elk River Sanitary Landfill Site, February 15, 1988, on-file at MPCA
Donohue and Assoc., 1989a	Donohue and Assoc., 1989a, Hydrogeologic Investigation at the Elk River Sanitary Landfill, March 1989, on-file at MPCA
Donohue and Assoc., 1989b	Donohue and Assoc., 1989b, Washington County Landfill EIS, Site G, Hydrogeologic Investigation - Technical Memorandum, December 28, 1989, on-file at MGS
Donohue and Assoc., 1990	Donohue and Associates, 1990, EIS Hydrogeologic site investigation: Anoka County: Landfill Inventory Sites D, P, and Q: Volume 1, Text, 229 p.
Donohue and Assoc., 1998	Donohue and Assoc., 1998, Phase I Corrective Action Field Procedures Report Elk Rifer Vol II Apendices D and E, in Elk River Sanitary Landfill Monitoring Data 1998, on-file at MPCA
EarthTech, 2003	Earthtech, 2003, Hydrogeologic Assessment of Area Near Well I Washington County Landfil, I July 2003, on-file at MPCA
EarthTech, 2006	EarthTech, 2006, Well spacing assesment and three-dimensional ground water flow model results, WDE Landfill Andover, Minnesota - MPCA Closed Lanfill Program June 2006, on-file at MPCA
EarthTech, 2007	EarthTech, 2007, Engineering services for hazardous waste pit at WDE Landfill, January 22, 2007, on- file at MPCA

EnecoTech, 1992	EnecoTech, 1992, MPCA Leak Site Report, Anoka County Leak 1003, Sinclair Leak Site, on-file at MPCA	
EOR, 2003	Emmons and Olivier Resources, 2003, Integrating Groundwater and Surface Water Management – Northern Washington County, a Report to Washington County. Data CD.	
ERM-North Central, 1986	Environmental Resource Management-North Central, 1986, Remedial investigation of Flying Cloud Sanitary Landfill, Eden Prairie Minnesota, Project No. 5034X5, February 14, 1986, on-file at MPCA	
Foth and Van Dyke, 1989	Foth and Van Dyke, 1989, Aquifer analysis, Anoka Regional Sanitary Landfill, prepared for Waste Management of Minnesota, May, 1989, on-file at MPCA	
Foth and Van Dyke, 1992	Foth and Van Dyke, 1992, Response action groundwater pump-out and treatment system, Final Report, Anoka Regional Sanitary Landfill, Scope ID 91W58, May 1992, on-file at MPCA	
GeoTrans, 1988	GeoTrans, 1988, Pumping Test Report Flying Cloud Landfill November 1988, on-file at MPCA	
GeoTrans, 1991	GeoTrans, 1991, Twenty-five Day Pumping Test Report, Volume I, Report Appendix A and B, August 1991, on-file at MPCA	
Hall et al., 1911	Hall, C.W., Meinzer, O.E., and Fuller, M.L., 1911, Geology and underground waters of southern Minnesota: USGS Water-Supply Paper 256, 406 p.	
Hickok and Assoc., 1983	Hickok and Assoc., 1983, Washington County Sanitary Landfill No. 1, Phase IV Report, October, 1983, on-file at MPCA	
Hickok and Assoc., 1984	Hickok and Assoc., 1984, Freeway Sanitary Land Fill SW-57 Novermber 1984, on-file at MPCA	
Hickok/Foth and Van Dyke, 1987	Hickok/Foth and Van Dyke, 1987, Remedial investigation, Anoka Regional Sanitary Landfill, Volume I - Final Report, February 1987, on-file at MPCA	

International Technology Corp., 1993	International Technology Corp., 1993, MPCA Leak Site Report, Anoka county leak 1010, Onan Leak Site, on-file at MPCA	
Kelton Barr Consulting, 2000	Kelton Barr Consulting, 2000, Minnehaha Creek Watershed District, Bluff Area Summary Report, April 2000, 30 p. plus appendicies, on-file at MGS	
Liesch and Assoc., 1981	Leisch and Associates, 1981, Burnsville Sanitary Landfill SW-56 Security Testing Program, on-file at MPCA	
Liesch and Assoc., 1990	Liesch and Associates, 1990, Final report, remedial investigation, East Bethel landfill, Anoka County, Minnesota, Volume I, February 16, 1990, on-file at MPCA	
Liesch and Assoc., 1991	Leisch and Associates, 1991, Supplemental Remedial Investigation for Freeway Landfill March 1991	
Liesch and Assoc., 1994	Liesch and Associates, 1994, Response action plan, groundwater withdrawl, well installation and aquifer testing, East Bethel Landfill, June 1994, on-file at MPCA	
Lively et al., 1992	Lively, R.S., Jameson, R., Alexander, E.C. Jr., and Morey, G.B., 1992, Radium in the Mt. Simon-Hinckley aquifer, east-central and southeastern Minnesota, Minnesota Geological Survey Information Circular IC-36. 58 p.	
MACTEC, 2010	MACTEC, 2010, On-site Investigation Report: Revised site conceptual model: Honeywell Golden Valley Site, Golden Valley, Minnesota, March 12, 2010, Project number 3310090001.	
Maderak, 1963	Maderak, M.L., 1963, Quality of waters, Minnesota: a compilation, 1955-1962: State of Minnesota, Minnesota Conservation Department, Bulletin 21, St. Paul, MN, 104 p.	
Marsh, 1996	Marsh, R., 1996, Groundwater chemistry and recharge estimation using environmental tritium. : Anoka County, Minnesota. Anoka County Community Health and Environmental Services Department. 62 p.	
Marsh, 2001	Marsh, R., 2001, Hydrogeology of the buried drift aquifers: Anoka County, Minnesota. Anoka County Community Health and Environmental Services Department.	

McCain and Assoc., 2003	McCain and Assoc., 2003, Hydrogeologic Evaluation and Monitoring Report: Burnsville Sanitary Landfill, September, 2003, on-file at MPCA
MDH, 2010a	Minnesota Department of Health, 2010a, Perfluorochemical data for portions of Washington and Ramsey and Dakota Counties, Minnesota. Written communication.
MDH, 2010b	Minnesota Department of Health, 2010b, Sourcewater protection tritium data, Justin Blum, written communication
MDH, 2010c	Minnesota Department of Health, 2010c, Radium study, written communication
MDH, 2010d	Minnesota Department of Health, 2010d, aqt2000 – Aquifer test database, Minnesota Department of Health, Justin Blum, written communication
MDH, 2010e	Minnesota Department of Health, 2010e, aquitest - Aquifer test database, joint project of USGS and MDH, compiled in 1990, funded by USEPA, has not been updated, Justin Blum, written communication
METC, 2010	Metropolitan Council, 2010, Hydraulic conductivity data compiled for metro area ground water model, http://www.metrocouncil.org/environment/WaterSupply/metromodel/June09/AquiferTests_WHPP_ Dec08.xls, Accessed November 15, 2010.
MGS, 2001	Minnesota Geological Survey, 2001, chemistry collected as part of a LCMR sponsored investigation into hydrogeology of the Prairie Du Chien Group, CUFS No. 1542-6114, unpublished data, on-file at MGS.
MGS, 2010a	Minnesota Geological Survey, 2010a, data from county atlas and regional hydrogeologic assessments, 1990-1991. Data from CWI version 3 datasets, on-file at MGS.
MGS, 2010b	Minnesota Geological Survey, 2010b, Hydraulic conductivity calculated from field investigations, on- file at MGS.
MGS, 2010c	Minnesota Geological Survey, 2010c, texture data collected by Gary Meyer from consultants logs - 1980's Hennepin County Landfill Siting Study, on-file at MGS
I	1

MICA, 1981	MICA (Metropolitan Inter-County Association), 1981, Unpublished reports by HDR Inc., compiled as part of a landfill site inventory for the 7-county Twin Cities Metropolitan area. Archived at the Minnesota Geological Survey in three binders.	
MNDOT, 2005	MNDOT, 2005, Minnesota Department of Transportation memorandum, Geology Unit, from Charles Howe to Dan Hayne, SP 6211-81, TH36, Station 559 to station 578 Groundwater control , recommendation, August 19, 2005, on-file at MGS	
MNDOT, 2010	MNDOT, 2010, Hydraulic conductivity data from Minnesota Department of Transportation, I-394 project, S.P. 2789-17, segment 4, locations from staging layout 4 - Phase I, Charles Howe, written communication, on-file at MGS	
MPCA, 1998	Minnesota Pollution Control Agency, 1998, Baseline water quality of Minnesota's principal aquifers. Ground Water Monitoring and Assessment Program (GWMAP) 1992-1996	
MPCA, 2010a	Minnesota Pollution Control Agency, 2010, Ground water monitoring and assessment program , ambient data 2004-2008, Sherri Kroening, written communication	
MPCA, 2010b	Minnesota Pollution Control Agency, 2010b, data from solid waste program, Elk River Landfill, Terry Johnson-Waste Management, written communication.	
National Biocentric, 197	National Biocentric, 1977, Hydrogeologic and Chemical Report, Wood Lake Sanitary Landfill, April 18, 1977, on-file at MPCA	
Nemetz, 1993	Nemetz, D.A., 1993, The geochemical evolution of ground water along flow paths in the Prairie du Chien-Jordan aquifer of southeastern Minnesota, Unpublished M.S. Thesis, University of Minnesota, 182 p.	
Peer, 1999	Peer, 1999, Additional Project Area Characterization, Minnesota Library Access Center, University of Minnesota, Volume 1 - text figures, tables and appendicies A-H, November 1999, on-file at MGS	
RMT, 1986	RMT, Inc, 1986, Supplemental hydrogeological investigation Woodlake Sanitary Landfill, Woodlake Sanitary Services, In. A subsidiary of BFI Waste Systems: March, 1986, 43p.	
Sabel, 1985	Sabel, G., 1985, Ground water quality monitoring progam. A compilation of analytical data collected from 1978 to 1984. MPCA Divison of Solid and Hazardous Waste, Program Development Section.	

		Volume 6.
	Stratigraphic s, 2001	Stratigraphics, 2001, Piezometric cone penetration testing with soil electrical conductivity measurements and penetrometer groundwater sampling, MPCA Linden plume exploration, Lindenfelster Landfill, St. Michael, Minnesota. Prepared for Earthtech Inc., o
	STS Consultants, 1988	STS Consultants, 1988, Geotechnical investigation report for Lindenfelster Landfill, St. Michael Minnesota, Project 93844-XA, August 30, 1988, on-file at MPCA
	Sunde Engineering, 1985	Sunde Engineering, 1985, French Lake Sanitary Landfill Hydrogeologic Investigation, March 28, 1985, on-file at MPCA
	Thatcher Eng., 2006	Thatcher Eng., 2006, MPCA Leak Site Report, Washington County Leak 16508, Stillwater Motors Leak Site, on-file at MPCA
	Tipping et al., 2007	Tipping, R.G., and Meyer, G.N., 2007, Geology in support of ground-water management for the Twin Cities Metropolitan Area, Metropolitan Council Water Supply Master Plan Development - Phase I. Minnesota Geological Survey Open-File Report 0F07-02
	Tipping, 1992	Tipping, R.G., 1992, An isotopic and chemical study of groundwater flow in the Prairie du Chien and Jordan Aquifers, unpublished M.S. Thesis, University of Minnesota, 117 p.
	USGS, 2010	United States Geological Survey, 2010, National Water Information System, United States Geological Survey, http://waterdata.usgs.gov/nwis, Accessed November 10, 2010.
	Wenck, 1994	Wenck, 1994, PW-5B pumping test, East Bethel Landfill, Anoka County, Minnesota, Wenck File No. 0335-01-206, December 1994, on-file at MPCA
xTDS_MC	-	to field "tds_mc," contents specify method used to determine total dissolved solids: sidue on evaporation
xTEST_MC	Corresponds to field "test_mc," contents specify method used to measure transmissivity/hydraulic conductivity:	

	BD	borehole dilution test
	CH	constant head
	FLMC	flowmeter inject/pump - constant head
	FSFH	field falling head slug test
	FSRH	field rising head, includes slug tests and baildown tests
	FSU	Field Slug Test Unspecified
	GP	Guelph permeameter
	GSE	grain-size estimate
	GSE_A	grain-size estimate assumed based on report
	LBH	laboratory backpressure or consolidometer, horizontal
	LBU	laboratory unspecified
	LBV	laboratory backpressure or consolidometer, vertical
	LCH	laboratory constant head, orientation unknown
	LCHH	laboratory constant head, horizontal
	LCHV	laboratory constant head, vertical
	LFH	laboratory falling head, orientation unknown
	LFHH	laboratory falling head, horizontal
	LFHV	laboratory falling head, vertical
	LRH	laboratory rising head, orientation unknown
	LRHH	laboratory rising head, horizontal
	LRHV	laboratory rising head, vertical
	MPDP	Philip-Dunne permeameter
	OTH	other
	PTD	pumping test - discrete interval
	PTE	pumping test - entire open hole
	PTE_A	pumping test - entire open hole assumed
	SPC	calculated from specific capacity
	UNK	unknown
xUNIT_TESTED	Correspo	nds to field "unit_tested_per_report," contents specify unit tested, most often as described in
	report:	
	•	
	AE	aeolian (wind blown)
	Al, ?	Alluvium, and another unknown component
	Al, C	Alluvium, coarse
	, ,, ,	

Al, F	Allumvium, fine
Al, F	Alluvium, fine, deeply buried
Al, F/M	Alluvium, fine to medium
Al, M	Alluvium, medium
Al, M, Lac	Alluvium, medium, lacustrine
Al, mixed	Alluvium, variable grain size
CFRN	Franconia Formation (Tunnel City Group)
CJDN	Jordan Sandstone
CMTS	Mt. Simon Sandstone
CSLF	St. Lawrence and Franconia (Tunnel City Group) Formations, undivided
GF	Glaciofluvial
Ow, surficial	Outwash, surficial unit
IC	Ice contact (heterolithic)
Lac	Lacustrine
Lac/Ow?	Lacustrine and/or outwash
Lac?/Ow	Lacustrine and/or outwash; move "buried" to secondary unit tested column
FLOAT	Large block of limestone within unconsolidated quaternary sediment
ML in outwash	inorganic silt in outwash
OPCJ	Prairie du Chien Group and Jordan Sandstone
OPDC	Prairie du Chien Group
OPDC, middle	Prairie du Chien Group, middle
OPDC, shallow	Prairie du Chien Group, shallow
OPDC, upper	Prairie du Chien Group, upper
OPVL	Platteville Formation
OPVL HF BPF	Platteville Formation, open to bedding plane fracture in Hidden Falls member
OPVL Lower HF	Platteville Formation, lower Hidden Falls member
OPVL lower Mag	Platteville Formation, lower Magnolia member
OPVL lower MIFF	Platteville Formation, lower Mifflin member
OPVL Mag	Platteville Formation, Magnolia member
OPVL Mag, HF BPF	Platteville Formation, open to bedding plane fracture in Hidden Falls member
OPVL MIFF	Platteville Formation, Mifflin member
OPVL upper Mag	Platteville Formation, upper Magnolia member
OPVL HF BPF	Platteville Formation, open to bedding plane fracture in Hidden Falls member
OPVL HF BPF?	Platteville Formation, possibly open to bedding plane fracture in Hidden Falls member

OPVL upper MIFF	Platteville Formation, upper Mifflin member
OSTP	St. Peter Sandstone
OSTP?	questionable St. Peter Sandstone
Ow	Outwash
Ow, surficial	Outwash, surficial unit
Ow, buried	Outwash, buried by possible aquitard
Ow, buried, and CSLF	Outwash, buried by possible aquitard, and St. Lawrence and Franconia (Tunnel City Group) Formations, undivided
Ow, buried, and CSLF	Outwash, buried by possible aquitard, and St. Lawrence and Franconia (Tunnel City Group) Formations, undivided
Ow, buried, lower	Outwash, buried by possible aquitard, referred to as lower at site
Ow, buried, lowest	Outwash, buried by possible aquitard, referred to as lowest at site
Ow, buried, upper	Outwash, buried by possible aquitard, referred to as upper at site
Ow, IC	Outwash and ice contact
Ow, lower	Outwash, referred to as lower at site
Ow, ML lenses	Outwash and inorganic silt lenses
Ow, Mo	Outwash and moraine
Ow, surficial	Outwash, surficial unit
Ow, surficial and T	Outwash, surficial unit and till
Ow, surficial and T	Outwash, surficial unit and till
Ow, T	Outwash and till
Ow, T, Ow	Outwash and till
Ow, upper	Outwash, referred to as upper at site
Ow, upper and Lac	Outwash, referred to as upper at site, and lacustrine
Ow, upper and T	Outwash, referred to as upper at site, and till
Ow, upper and Lac	Outwash, referred to as upper at site, and lacustrine
Ow, upper and T	Outwash, referred to as upper at site, and till
Р	Peat
Pal	Palustrine
Peat	Peat
SOIL	Soil
Sw	Swamp
Т	Till
T, lower	Till, referred to as lower at site

	T, middle	Till, referred to as middle	e at site
	T, Ow	Till and outwash	
	T, Ow, buried		ikely buried beneath aquitard
	T, Ow, middle	Till and outwash, referre	, , , , , , , , , , , , , , , , , , , ,
	T, reworked	Till that is reworked	
	T, surficial	Till, surficial unit	
	T, upper	Till, referred to as upper	at site
	T/Ow	Till and or outwash	at site
	T?	Questionable till	
	ТОР		
		Topsoil	
	Ow, surficial	Outwash, surficial unit	
	TV	Tunnel Valley deposits	
	UNK	unknown	
XUNIT_TESTED_ADD	Corresponds to field "u	init_tested_addl," conte	ents specify additional information about tested interval:
-			Des Moines lobe sediment, from MGS Qstrat models
	DESM_M		
	SUP_M		Superior lobe sediment, from MGS Qstrat models
	deep glacial unit		as referred to in report
	Anoka SP		Anoka Sand Plain
	at water table		at water table
	Bedrock St. Peter Sandst	one	Bedrock is St. Peter Sandstone
	brown	1 11 1	brown
	Brown-Grey fine to coars	0	Brown-gray fine to coarse sand with gravel
			Brown-gray silty fine to coarse sand, some gravel
	Brown-Yellow Sandy silt	trace gravel and clay	Brown-yellow sandy silt trace gravel and clay
	buried Lacustrine		buried refers to possible burial beneath aquitard
	buried to not buried		buried refers to possible burial beneath aquitard
	buried to not buried, SUF	POw	buried refers to possible burial beneath aquitard
	buried??		buried refers to possible burial beneath aquitard
	Clay		Clay
	coarse to gravelly sand		coarse to gravelly sand
	cobbles		cobbles
	Des Moines Lobe Outwas	sh	Des Moines lobe outwash

DESM	Part of Des Moines lobe deposition
DESM Red, Fine	Part of Des Moines lobe deposition, red, fine
DESM, grey	Part of Des Moines lobe deposition, gray
DESM/SUP mix	DESM= Mix of Des Moines and Superior lobe deposition
DESM? Unit B1	as referred to in report; part of Des Moines lobe deposition fine
sand	fine sand
fine-coarse sand	fine-coarse sand
fine-med sand	fine-med sand
Fridley Fm	as referred to in report
G, S	Gravel and sand
Grey	Gray
Hillside sand	as referred to in report
intermediate depth	as referred to in report
just above bedrock	as referred to in report
Lite Brown silty fine to coarse sand, little gravel	Lite brown silty fine to coarse sand, little gravel
Loess?	Loess?
Lower Aquifer	as referred to in report
Lower Confining Unit; SUP till and Ow	as referred to in report; part of Superior lobe deposition Lower
Old Gray Till	as referred to in report
Lower Sand Aquifer unit	as referred to in report
LS, some G	Loamy sand?, gravel
med sand, gravel	med sand, gravel
med sand,gravel	med sand, gravel
Middle Aquifer	as referred to in report
most of OPDC is open-hole	most of OPDC is open-hole
Old gray outwash horizon No. 1 / Upper old Gray	as referred to in report
Till/ Old Gray Outwash Horizon No. 2	
Old gray outwash Horizon no. 2	as referred to in report
Old Gray Outwash no. 4	as referred to in report
Old gray outwash no.1 / upper old gray till /	as referred to in report
Old gray outwash Horizon no. 2	
perhaps Till	perhaps till
River Falls Outwash	as referred to in report
S, LS, G	Sand, loamy sand, gravel

S. minor LS	Sand, minor loamy sand
	sand, gravel
	sand, gravel, some loamy sand
	sand, gravel, coarse sand
	sand, coarse sand
	fine loamy sand, gravel
	silty sand
	part of Superior lobe deposition
	mostly part of Superior lobe deposition
	as referred to in report; part of Superior lobe deposition SUP,
-	as referred to in report; part of Superior lobe deposition
	as referred to in report; part of Superior lobe deposition
	as referred to in report
	as referred to in report
	as referred to in report
	as referred to in report; Anoka SP=Anoka Sand Plain
	as referred to in report; part of Des Moines lobe deposition
	as referred to in report; part of Des Moines lobe deposition
	as referred to in report
Corresponds to field "uscs_code," contents s	pecify Unified Soil Classification System code:
CH inorganic clay, liquid limit greater than 50	
, 3	
5 5	
5 , 1 5	
5 <i>i</i> 1	
8 ,	
5	
SC clayey sand	
	 CH inorganic clay, liquid limit greater than 50 CL inorganic clay, liquid limit less than 50 GC clayey gravel GM silty gravel GP poorly-graded gravel GW well-graded gravel MH inorganic silt, liquid limit greater than 50 ML inorganic silt, liquid limit less than 50 OH organic clay OL organic silt PT peat

	SM	silty sand
	SP	poorly graded sand
	SW	well-graded sand

Appendix C. Water Chemistry and Hydraulic Conductivity field names and descriptions

Geodatabase Name: PointData.mdb (personal geodatabase)

Water chemistry table: C_complete (note: detection and uncertainty fields are not listed. Blank in fieldname_det - reported concentration is the measured value; "<" - reported concentration is the detection limit; Blank in fieldname_unc – uncertainty unknown. Unless otherwise noted, fieldname _unc reported in same units as fieldname, error estimate - larger of 1. Predicted standard deviation, 2. Measured standard deviation).

Field Name	Description
relateid	CWI unique identifier
unique_no	Minnesota unique well number
wellname	Well name. Info from CWI if available
alt_id	Alternate identifier, e.g. field sample number
mpca_ambient_id	MPCA Ambient Groundwater Monitoring Identifier
mpca_EDA_id	MPCA Environmental Data Access Identifier
mdh_PWSID	MDH Public Water Supply Identifier
agency	Agency
program_id	Agency program associated with sample event
sample_date	date of sample collection as text in format yyyymmdd where
	equivalent sample_date2 available
sample_date2	date of sample collection as date/time field
cond_TC25	specific conductance of sample corrected to 25 degrees Celsius
	and reported as microsiemens per centimeter
cond	specific conductance of sample reported as microsiemens per
	centimeter - may or may not be corrected for temperature.
temp_c	temperature in degrees Celsius, assumed to be at time of
	sampling unless noted otherwise in remarks
рН	Negative log of hydrogen concentration
ORP	Eh: oxidation-reduction potential referenced to standard
	hydrogen electrode, in millivolts
ORP2	oxidation-reduction potential relative to the silver:silver
	chloride reference electrode, in millivolts

DO	dissolved oxygen concentration in milligrams per liter
DO_units	A few DO analyses reported as percent atmospheric, indicated
	by "%" in this column
ТОС	total organic carbon in milligrams per liter
Са	calcium concentration in milligrams per liter
Mg	magnesium concentration in milligrams per liter
Na	sodium concentration in milligrams per liter
К	potassium concentration in milligrams per liter
Na_K	sodium plus potassium concentration in milligrams per liter -
	(used in Hall and others, 1911)
Fe	iron concentration in milligrams per liter
Mn	manganese concentration in milligrams per liter
Sr	strontium concentration in milligrams per liter
Ва	barium concentration in milligrams per liter
Р	phosphorous concentration in milligrams per liter
Al	aluminum concentration in milligrams per liter
Si	silicon concentration in milligrams per liter as SIO2 - assumed
TOTS	Total sulfur concentration in milligrams per liter as sulfur
ТОТР	total phosphorous concentration in milligrams per liter as
	phosphorous
Alk_CaCO3	total alkalinity of the solution reported as calcium carbonate in
	milligrams per liter
Cl	chloride concentration in milligrams per liter
SO4	sulfate concentration in milligrams per liter
S2O3	thiosulfate concentration in milligrams per liter
Br	bromide concentration in milligrams per liter
F	fluoride concentration in milligrams per liter
NO3_N	nitrate concentration in milligrams per liter reported as
	nitrogen
NO2_NO2_asN	nitrite concentration in milligrams per liter reported as nitrogen
TOTN	Total nitrogen (nitrate + nitrite + ammonia + organic-N) in milligrams per liter
NH3 N	Ammonia concentration in milligrams per liter as nitrogen

NH3_OrgN_N	Ammonia plus organic nitrogen concentration in milligrams per
	liter reported as nitrogen
NH4	Ammonium concentration in milligrams per liter
ORTHO_PO4_P	orthophosphate concentration in milligrams per liter reported
	as phoshorus
PO4_P	phosphate concentration in milligrams per liter reported as
	phosphorus
TOTAL_CATIONS	total cations in milli-equivalents per liter
TOTAL_ANIONS	total anions in milli-equivalents per liter
PERCENT_ERR	charge balance percent error
TDS	total dissolved solids in milligrams per liter
TDC_MC	Total dissolve solids method code, "EV" indicates residue on
	evaporation
deuterium	deuterium isotope (per mil)
oxygen_18	oxygen 18 isotope (per mil)
sulfur_34	sulfur 34 isotope (per mil)
Gross_Alpha	gross alpha concentration in picocuries per liter
Polonium	polonium concentration in picocuries per liter
Rn_det	
Rn	radon concentration in picocuries per liter
Ra226_det	
Ra226	radium 226 concentration in picocuries per liter
Ra228_det	
Ra228	radium 228 concentration in picocuries per liter
U_det	
U	uranium concentration in micrograms per liter
U234_U238	uranium 234 to uranium 238 activity ratio
U238_U234	uranium 238 to uranium 234 activity ratio
H3_det	
tritium	tritium concentration in tritium units (TU)
H3_err	tritium error (precision)
C14_PMC	carbon-14 reported as percent modern carbon
C14_PMC_unc	reported one sigma counting error

C14 corr	carbon-14 corrected, reported as percent modern carbon
C14 corr unc	
C13	carbon-13 (per mil)
soil_dC13_C12	
Methane_dC13_C12	
 SF6	sulfur hexafluoride concentration in femtograms per kilogram
CFC	Chlorofluorocarbon
Years_modifier	modifier, less than (<) or greater than (>)
Years	Model estimated age in years
Years_unc	Model estimated age uncertainty in years
age_Model	Name of model used to estimate age (C14; H3/He; SF6; CFC;
	other)
age_class	age class
age_basis	basis for age class
PFOs_det	
PFOS	perfluorchemicals: perfluorooctonate sulfate concentration in
	micrograms per liter
PFOA_det	
PFOA	perfluorchemicals: perfluorooctanoic Acid concentration in
	micrograms per liter
PFBA_det	
PFBA	perfluorchemicals: perfluorooctanoic Acid concentration in
	micrograms per liter
PFBS_det	
PFBA	perfluorochemicals: perfluorobutanoic acid concentration in
	micrograms per liter
PFBS_det	
PFBS	perfluorochemicals: perfluorobutane sulfonate concentration in
	micrograms per liter
PFHxA_det	
PFHxA	perfluorochemicals: perfluorohexanoic acid concentration in
	micrograms per liter
PFHxS_det	

PFHxS	perfluorochemicals: perfluorohexanesulfonate concentration in micrograms per liter
PFPeA_det	
PFPeA	perfluorochemicals: perfluoropentanoic acid concentration in micrograms per liter
Acetate_det	
Acetate	organic acid: acetate concentration in milligrams per liter
Lactate_det	
Lactate	organic acid: lactate concentration in milligrams per liter
Chlorate_det	
Chlorate	organic acid: chlorate concentration in milligrams per liter
Formate_det	
Formate	organic acid: formate concentration in milligrams per liter
Oxalate_det	
Oxalate	organic acid: oxalate concentration in milligrams per liter
utme	Universal Transverse Mercator easting, UTM zone 15 extended, NAD83
utmn	Universal Transverse Mercator northing, UTM zone 15 extended, NAD83
gcm_code	geographic coordinate method code
geoc_src	geographic coordinate source
elevation	land surface elevation in feet above mean sea level. Info from CWI if available
elev_mc	elevation method code. Info from CWI if available
depth_comp	depth completed in feet. Info from CWI if available
case_depth	casing depth in feet. Info from CWI if available
depth2bdrk	depth to bedrock in feet. info from CWI if available
first_bdrk	upper most bedrock. info from CWI if available
ohtopunit	open hole top unit. info from CWI if available
ohbotunit	open hole bottom unit. info from CWI if available
ohtopelev	top of open hole elevation
ohbotelev	bottom of open hole elevation
depth_top	depth to top of sampled interval if different from casing depth

	(in feet)
depth_bot	depth to bottom of sampled interval if different from depth
	_completed (in feet)
grout	well grouted? (Y, N, U). Info from CWI if available
use_c	well use code. Info from CWI if available
file_src	name of source file(s)
agency_prg	unique agency-program ID: concatenation of agency and
	program_id fields
relate_date	sample event comparison field
duplicate	duplicate from same sample date, 1 = yes
remarks	comments on data in row
report_ref	report reference, if available
redox_cat	Redox category as assigned by Jurgens and others (2009) based
	on DO, NO3_N, Mn, Fe and SO4 concentrations
redox_process	Redox process as assigned by Jurgens and others (2009) based
	on DO, NO3_N, Mn, Fe and SO4 concentrations
sr_ca_mg_ratio	strontium to calcium plus magnesium molar ratio
cl_br_ratio	chloride to bromide ratio, mg/L
flg_goodchargebalance	data flag - good charge balance
flg_fieldparameters	data flag – 1 indicates field parameters/physical characteristics
	(cond, temp, pH, DO)
flg_stable_radio_isotope	data flag - 1 indicates stable and radiogenic isotopes
flg_nutrients	data flag - 1 indicates nutrient data (phosphorous, nitrogen
	compounds)
flg_pfc	data flag - 1 indicates PFC data
flg_trace_metals	data flag - 1 indicates trace metals
flg_other	data flag - 1 indicates major cations and anions, physical
	characteristics - no or poor charge balance
flg_age	data flag - 1 indicates age determination
flg_redox_condition	data flag - 1 indicates redox condition assigned
flg_swuds	data flag - 1 indicates unique number matched DNR SWUD
flg_metro	data flag - 1 indicates sample location within 11-county metro
	area plus 5000 meters

flg_deliver	data flag - 1 indicates deliver to met council	
seqno	Unique row identifier	

Hydraulic conductivity table: K_complete

Field Name	Description
seqno	Unique row identifer
relateid	Unique site identifier – either unique well number or "Q
	series" number assigned at MGS
unique_no	Minnesota unique well number
alternate_id	Alternate ID
mdh_testid	identifier for MDH Aquifer Test Information System
usgs_mdh_aquitest_recnum	sequential identifier in USGS-MDH Aquifer Properties
	Database (Aquitest)
dnr_aquitest_recnum	sequential identifier in DNR version or USGS-MDH Aquifer
	Properties Database (from Jay Frischman)
agency	agency
program_id	Agency program identifier
test_contact	Test contact person or organization
wellname_from_file	well name from file or report
wellname_CWI	well name from CWI
T_min	Transmissivity – minimum
T_min_units	T minimum units
T_min_test_method	T minimum test method
T_min_analytical_method	T minimum analytical method
T_max	Transmissivity - maximum
T_max_units	T maximum units
T_max_test_method	T maximum test method
T_max_analytical_method	T maximum analytical method
Т	Transmissivity
T_units	Transmissivity units

T_test_method	Transmissivity test method
T analytical mc	Transmissivity analytical method
 aquifer_thck_ft	estimated aquifer thickness in feet
aquifer_thck_mc	estimated aquifer thickness method code
Kh_min	K value – horizontal – minimum
Kh_max	K value – horizontal – maximum
Kh	K value – horizontal
Kv	K value – vertical
K_units	K (horizontal/vertical) units
Kh_ftday	K value – horizontal in ft/day
Kv_ftday	K value – vertical in ft/day
test_method	K test method
analytical_method	K calculation method
meas_date	measurement date as text in format yyyymmdd where
	equivalent meas_date2 available
meas_date2	Measurement date in date format
aquifer_test_use	Well use as part of aquifer test. Not known whether
	pumping or observation well
data_src	Data source
site_name	Site name
report_reference_primary	Primary report reference
report_reference_secondary	Secondary report reference
elevation	land surface elevation in feet above mean sea level. Info
	from CWI if available
elev_mc	elevation method
depth_comp	depth completed in feet, info from CWI if available
depth_mc	Depth method
case_diam	casing diameter in inches, info from CWI if available
case_depth	casing depth in feet, info from CWI if available
depth2bdrk	depth to bedrock in feet, info from CWI if available
first_bdrk	uppermost bedrock unit, info from CWI if available
ohtopunit	open hole top unit, info from CWI if available
ohbotunit	open hole bottom unit, info from CWI if available

aquifer	aquifer unit, info from CWI if available
soil_class	soil class
depth_top	depth to top of test interval in feet
depth_bot	depth to bottom of test interval in feet
ohtopelev	elevation, top of test interval, in feet
ohbotelev	elevation, bottom of test interval, in feet
utme	Universal Transverse Mercator easting, UTM zone 15
	extended, NAD83
utmn	Universal Transverse Mercator northing, UTM zone 15
	extended, NAD83
gcm_code	Geographic coordinates method
geoc_src	Geographic coordinates source
file_src	name of electronic source file, if available, or local file if
	entered from paper records at MGS
comments1	comments, set 1
comments2	comments, set 2
unit_tested_per_report	Unit tested as described in report
addl_unit_per_report	Additional information on unit tested
tx_summary	texture summary soil class or qualitative description
tx_depth_top	depth to top of sample interval for texture data, in feet
tx_depth_bot	depth to bottom of sample interval for texture data, in feet
porosity_prc	porosity, measured as percent
prc_crse_grvl	percent coarse gravel
prc_med_grvl	percent medium gravel
prc_fine_grvl	percent fine gravel
prc_crse_sand	percent coarse sand
prc_med_sand	percent medium sand
prc_fine_sand	percent fine sand
prc_grvl	percent gravel
prc_sand	percent sand
prc_silt	percent silt
prc_clay	percent clay
prc_siltclay	percent silt and clay combined

prc100txt	materials making up weight percent denominator
D60_mm	D60 number, in millimeters
 D30_mm	D30 number, in millimeters
 D10_mm	D10 number, in millimeters
dryweight_g	dryweight of sample in grams
sv_3in	sieve weight retained in grams - 3 inch
sv_2in	sieve weight retained in grams - 2 inch
sv_1in	sieve weight retained in grams - 1 inch
sv_p75in	sieve weight retained in grams - 0.75 inch
sv_p375in	sieve weight retained in grams - 0.375 inch
sv_no4	sieve weight retained in grams - number 4 sieve
sv_n10	sieve weight retained in grams - number 10 sieve
sv_no18	sieve weight retained in grams - number 18 sieve
sv_no40	sieve weight retained in grams - number 40 sieve
sv_no70	sieve weight retained in grams - number 70 sieve
sv_no100	sieve weight retained in grams - number 100 sieve
sv_no200	sieve weight retained in grams - number 200 sieve
sv_no230	sieve weight retained in grams - number 230 sieve
swl	static water level in feet, info from CWI if available
pump_wl	pumping water level in feet, info from CWI if available
hours	number of hours pumped, info from CWI if available
gpm	pumping rate in gallons per minute, info from CWI if available
spc_strcoeff	storage coefficient used for specific capacity to hydraulic conductivity conversion
spc_wlcoeff	well loss coefficient used for specific capacity to hydraulic conductivity conversion
flg_metro	Data flag - 1 indicates test in 11 county metro area
 flg_bdrk	Data flag - 1 indicates bedrock sample
flg_uncs	Data flag - 1 indicates unconsolidated sample
	Data flag - 1 indicates texture data
	Data flag - 1 indicates specific capacity data from CWI

Appendix D. Regional summary geodatabase structure and field names/descriptions.

Geodatabase Name: RegionalData.gdb (file geodatabase)

Spatially enabled data table

Name	Description
gridpoints	Z-aware collection of regularly spaced grid points with estimated range of K data for unconsolidated deposits
	and regional hydrochemical facies

Field names and definitions

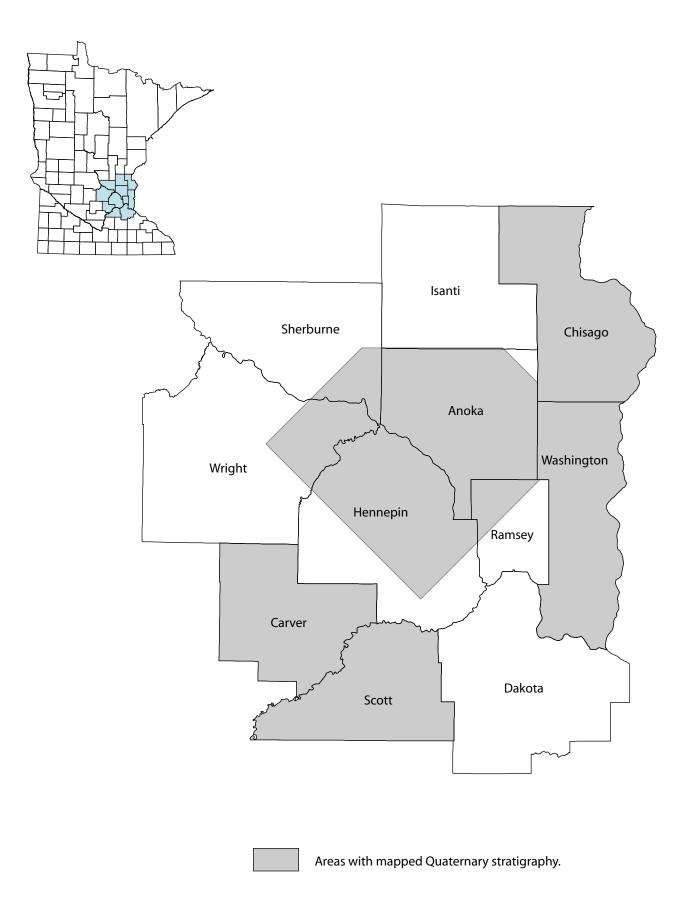
Name	Description
POINTID	Unique identifier for each point
GRID_CODE	Quaternary subsurface map code
ELEV	Elevation of point in feet above mean sea level
qflg	Data flag – 1 indicates located within unconsolidated deposits
K_class	Hydraulic conductivity class code, see lookup table xK_CLASS
K_class_sgpg	Hydraulic conductivity class code for near-surface points, based on surficial geology map units, see lookup
	table xK_CLASS
maplabel	Map label from metro area surficial geology map, MGS Open-File Report 07-02 (Meyer and Tipping, 2007).
	Applies to near-surface points, see lookup table xMAPLABEL
nat_elev_cl	Data flag – 1 indicates waters likely to have elevated chloride concentrations (greater than 15 ppm) likely due
	to natural conditions – not anthropogenic inputs.
srcamg	Data flag – 1 indicates waters likely to have strontium to calcium plus magnesium molar ratios likely greater
	than 0.001
recent	Data flag – 1 indicates water likely to contain some component less than 60 years old

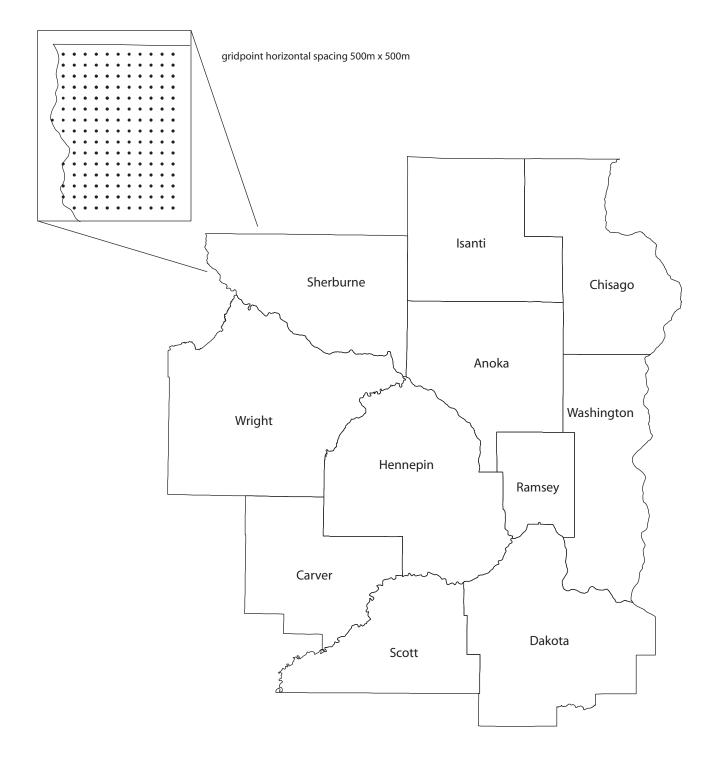
Lookup tables

Name	Descri	otion				
xGRIDCODE	Corres	orresponds to field "GRID_CODE," code specifies Quaternary subsurface map code, unit description and				
	corres	prresponding mapping project name:				
	code	Description	Project	Мар	K_Class	
				Label		
	1	till - sandy to loamy; high to low relief	Washington County (Meyer and Tipping, 1998)	t1	1	

	(diamicton)			
2	till, generally sandy textured (diamicton)	Washington County (Meyer and Tipping, 1998)	t2	2
3	loam till, generally silt-rich, loam -textured	Washington County (Meyer and Tipping, 1998)	t3	3
4	till, generally sandy textured (diamicton)	Washington County (Meyer and Tipping, 1998)	t4	4
5	silt and clay (bedded)	NW Metro (Meyer and Tipping, 2007)	cl	3
6	till, generally sandy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	ct1	2
7	till, generally sandy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	ct	2
8	till, generally loamy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	xt	3
9	till, generally sandy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	rt	4
10	till, generally loamy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	pt	3
11	till, generally sandy textured (diamicton)	NW Metro (Meyer and Tipping, 2007)	vt	4
12	undifferentiated sediment	NW Metro (Meyer and Tipping, 2007)	unk	-1
13	loam to clay loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	dth	1
14	clay loam to sandy loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	dtv	1
15	sandy loam(diamicton)	Carver County (Lusardi and Tipping, 2009)	rt	2
16	loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	bt	3
17	loam to sandy loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	gt	3
18	loam (diamicton)	Carver County (Lusardi and Tipping, 2009)	xt	3
19	unknown	Carver County (Lusardi and Tipping, 2009)	ups	-1
20	silt and clay	NW Metro (Meyer and Tipping, 2007)	nl	1
21	New Ulm till - sandy to loamy; high to low	NW Metro (Meyer and Tipping, 2007)	nt	1
	relief (diamicton)			
22	sandy loam to clay loam (diamicton) - nw	Scott County (Lusardi and Tipping, 2006)	t1	1
20	provenance		12	4
23	loam to sandy loam (diamicton) - mixed provenance	Scott County (Lusardi and Tipping, 2006)	t2	1
24	loam (diamicton) - nw provenance	Scott County (Lusardi and Tipping, 2006)	t3	3
25	sand and gravel	Scott County (Lusardi and Tipping, 2006)	s4	5
26	silt and clay	Chisago County (Meyer, 2010)	nl	1
27		Chisago County (Meyer, 2010)	nt1	1
28	New Ulm till, includes lacustrine silt and clay	Chisago County (Meyer, 2010)	qnu	1
	at base to the north		•	
29	lacustrine clay and silt to till	Chisago County (Meyer, 2010)	qlc	3
30	Cromwell, sandy till	Chisago County (Meyer, 2010)	qcr	2

	31	sandy till, may be finer-textured towards the base in deep valleys	Chisa	ago County (Meyer, 2010)	qce	2
	32	loam till, generally silt-rich, loam -textured	Chisa	ago County (Meyer, 2010)	qxt	3
	33	Superior provenance - sandy till	Chisa	ago County (Meyer, 2010)	qrt	4
	34	undifferentiated sediment	Chisa	ago County (Meyer, 2010)	qu	-1
xMAPLABEL	Corres	oonds to field "maplabel," code specifies m	ap label and uni	t description from metro are	a surficial geolo	ogy
	map, N	IGS <u>Open-File Report 07-02</u> (Meyer and Tipp	oing, 2007).			
xK_CLASS	Corres	oonds to fields "K_class," and "K_class_sgp	g," code specifie	s range of expected hydraulio	c conductivity i	n
		y. Reference to "deep" in codes 8-11 are f				
		orders of magnitude lower hydraulic cond		-		
		C .	, ,		U	
	СС	de Texture Description	Kmax (ft/day	Kmin (ft/day)		
		1 loam to clay loam	3.0E-3	1.0E-3		
		2 loam to sandy loam	2.0E+1	1.0E-1		
		3 loam, silt rich; silt and clay	2.0E-2	3.0E-4		
		4 loam to sandy clay loam	2.0E+1	1.0E-1		
		5 sand and gravel	5000	100		
		6 fine sand	30	0.3		
		7 sandy silt	3	0.1		
		8 loam to clay loam - deep	3.0E-5	1.0E-5		
		9 loam to sandy loam - deep	2.0E-1	1.0E-3		
		.0 loam, silt rich; silt and clay - deep	2.0E-4	3.0E-6		
		.1 loam to sandy clay loam - deep	2.0E-1	1.0E-3		


Figure 1. This investigation covers the extended 11-county Twin Cities metropolitan area, Minnesota. Areas with mapped Quaternary stratigraphy are shaded. Mapping in Wright, Anoka, and Sherburne Counties by the Minnesota Geological Survey, which will include Quaternary stratigraphy, is currently underway.


Figure 2. Distribution of regional gridpoint data. Blowup of regional points shown for northwestern Sherburne County; the density of points is too high to display regionally. Horizontal gridpoint spacing is 500 meters by 500 meters. Vertical spacing is 20 feet for unconsolidated material, and 40 feet for Paleozoic bedrock.

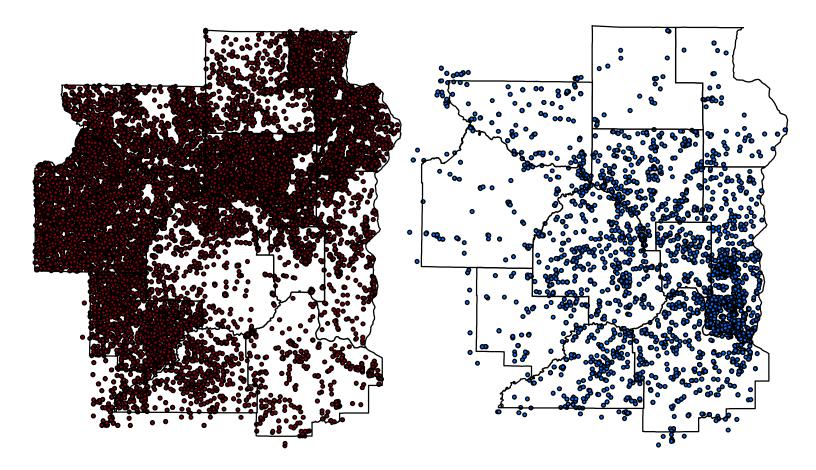
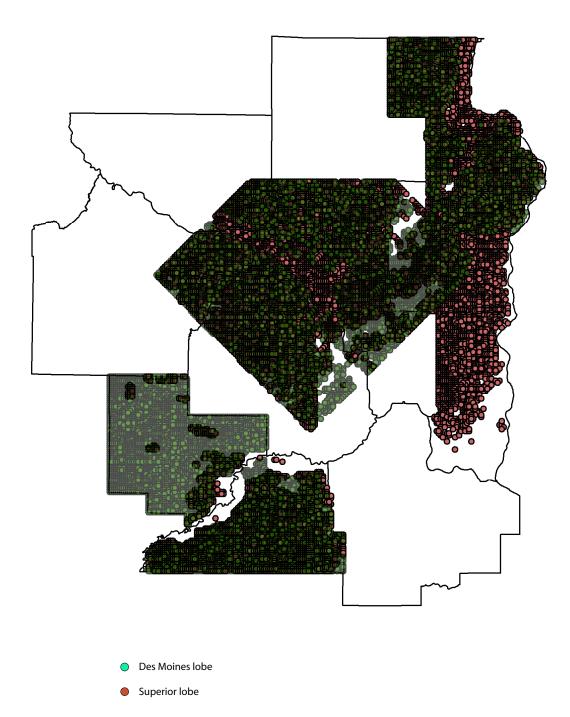
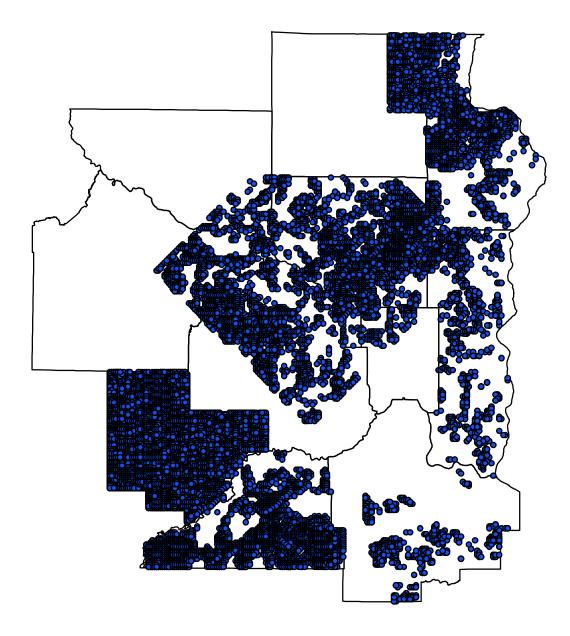

Figure 3. Distribution of point data. **A**. Locations with hydraulic conductivity data. The high density of points in the western and northern metro area are mostly hydraulic conductivity results derived from specific capacity data for wells completed in unconsolidated deposits. **B**. Locations with chemical and/or isotopic data.

Figure 4. Distribution of regional gridpoint data, Des Moines, and Superior lobe deposits. Des Moines lobe deposits, shown in green, are displayed as semi-transparent to show the distribution of of Superior lobe deposits below.

Figure 5. Distribution of regional gridpoint data, subsurface pre-Wisconsinan till with estimated hydraulic conductivity ranging from 1.4E-02 to 2.8E-04 ft/day. Locations in Dakota County, where Quaternary stratigraphy has not been mapped, were derived from the surfical geology map where the unit is at the land surface.





A. Locations with hydraulic conductivity data.

B. Locations with chemistry data.

