

Memorandum

To:	Heidi Schallberg
	Met Council
From:	SRF Consulting Group
Date:	June 1, 2024

Subject: Crash Data Summary and Analysis - Metropolitan Council Regional Safety Plan

Crash Data Summary and Analysis

Executive Summary

According to the crash data collected by the Minnesota Department of Public Safety (DPS) and provided Minnesota Department of Transportation (MnDOT), 209,884 total crashes took place in the Metropolitan Council region between 2018 and 2022 and 3,958 of those crashes resulted in at least one person involved receiving a fatal or incapacitating injury. An analysis of these crashes was completed to identify patterns in the data on crashes involving three modes: motor vehicle, bicycle, and motorcycle (pedestrian crashes were not investigated because an analysis of pedestrian crashes in the region was recently completed as a part of the <u>Regional Pedestrian</u> <u>Safety Action Plan - Appendix C-1 Task 4 Crash Data Analysis and Trend Summary Memo</u>). Note that the crash records utilized only include incidents that involved at least one motor vehicle, took place on public right-of-way, and were reported to law enforcement. The analysis includes an examination of the crashes by mode and summarized by basic crash report variables, roadway characteristics, and demographic and economic factors. The patterns identified in the crash summary may be used by communities within the Metropolitan Council region to help prioritize roadway safety investments in the future.

Some key findings of the analysis were:

- Motorcyclists are most likely to be severely injured or killed when involved in a crash (26% of the 2,564 crashes involving a motorcycle resulted in a fatal or incapacitating injury)
- Cyclists are second most likely to be severely injured or killed when involved in a crash (11% of the 2,038 crashes involving a cyclist resulted in a fatal or incapacitating injury)
- Approximately half of all crashes (58%) took place at an intersection.
- Approximately three quarters of all crashes (74%) had speeding listed as a contributing factor.
- Despite helmet usage by motorcyclists is inversely proportional to crash severity (21% of motorcycle crashes resulted in fatal or incapacitating injuries when motorcyclists were wearing a helmet whereas 33% of motorcycle crashes resulted in fatal or incapacitating

injuries when motorcyclists were not wearing a helmet), helmet usage was low (when helmet usage was recorded, 46% of motorcyclists were wearing a helmet)

• Hennepin, Anoka and Ramsey Counties experienced the highest number of fatal and serious injury crashes, however when normalized by fatal and serious injury per 100,000 residents, Scott, Carver, and Anoka Counties were highest.

Introduction

The Minnesota 2020-2024 Strategic Highway Safety Plan (SHSP) acknowledges that fatal and serious injury crashes occur on all roads, with an over-representation of crashes on local roads. According to MnDOT's - Metropolitan Council Focus Area Summary Sheet (2023), the region's average annualized trends between 2014 and 2022 for fatal crashes increased by 8.6% per year (fatalities increased by 8.3%) and serious injury crashes increased by 5.7% per year (serious injuries increased 4.9% per year). See Appendix for more information.

A Safe System approach focuses on eliminating severe crashes (fatal and serious injury crashes) using a proactive approach, understanding that humans are vulnerable and make mistakes and our system needs to be designed to be accommodating. To support the efforts to reduce the number of fatal and serious injury crashes within the region, the Metropolitan Council is developing a regional safety action plan.

A key step in developing that safety action plan is analyzing the crashes occurring in the region to gain a better understanding of where, when, and how they occur. The crash analysis looked at two types of information: characteristics specific to a given crash and demographic characteristics specific to the area surrounding the location of a given crash. For simplicity, the KABCO injury scale is used throughout the discussion of the analysis (a description of the different designations is shown on Table 1 below).

Severe (more injurious)	Non-Severe (less injurious)
 K - involves a fatal injury A - incapacitating injury (serious injury) 	 B - non-incapacitating injury C - possible injury O - no injury or a property damage-only (PDO) crash

Table 1. KABCO Injury Scale

Throughout the report, the notation "KA" indicates crashes that resulted in fatal or serious injuries and "BCO" indicates crashes that resulted in less severe injuries or no injuries at all.

The data received from MnDOT was processed and each unit (a vehicle or a pedestrian) involved in a crash was sorted into a mode based on the Unit Vehicle and Vehicle Type fields from the DPS crash dataset. In addition to the three modes being analyzed and pedestrians, units could be sorted into three additional mode types which were then excluded from analysis: other (people riding on/in ATVs, farm equipment, horses, etc.), parked/unoccupied vehicles, and hit-and-run vehicles.

After classifying each unit by mode and excluding pedestrians, units with atypical characteristics, units without occupants, and units on which there was little to no information, the project team determined the Most Severe Injury (MSI) suffered by a person using each of the five modes. For example, if a passenger car with a driver and two passengers strikes a person riding a bicycle and the cyclist is killed (K), the driver receives a minor injury (B), and the two passengers are suspected of having minor injuries (C), the MSI for someone in an motor vehicle

would be a minor injury (B), the MSI for a cyclist would be a fatality (K), and the MSI for a motorcycle would be null.

Once the crashes were categorized by mode, crash factors were summarized and further broken down by location – segment (midblock) or intersection. Crash factors included basic crash variables from the DPS crash data, AADTs from Replica, and demographic and economic characteristics from the US Decennial Census and American Community Survey.

As part of the SHSP, sixteen crash types and factors were identified as topics of particular interest. Of the sixteen focus area flags defined by the SHSP, the six most frequently seen in KA crashes are intersection-related crashes, crashes that involved speeding, single vehicles run-off-the-road, at least one impaired road user, at least one unlicensed driver, or at least one motorcycle.

Table 2 shows the sixteen focus areas and their respective crash counts. Note that the crash severity being considered is that the occupants of a motor vehicle, motorcycle, or bicycle and not pedestrians. As a result, there are only 21 KA crashes with the "Pedestrian" flag because pedestrians are not included in the analysis and there are only 21 crashes involving a pedestrian where someone in/on a motor vehicle, motorcycle, or bicycle was fatally or seriously injured. Appendix A includes summary sheets for these top six focus areas.

Combined Focus Areas	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Intersection Related	1,885	101,471	103,356	0.019
Speeding	1,850	144,143	145,993	0.013
Single Vehicle Run Off Road	874	29,789	30,663	0.029
Impaired Road User	822	11,729	12,551	0.070
Unlicensed Driver	800	26,240	27,040	0.030
Motorcyclist	661	1,903	2,564	0.347
Older Driver (65+ YO)	549	28,755	29,304	0.019
Younger Driver (14 to 20 YO)	539	38,369	38,908	0.014
Unbelted Vehicle Occupant	465	5,728	6,193	0.081
Inattentive Driver	275	18,408	18,683	0.015
Cyclist	230	1,808	2,038	0.127
Commercial Vehicle	214	13,620	13,834	0.016
In Work Zone	88	8,093	8,181	0.011
Head-On Collision	70	5,996	6,066	0.012
Pedestrian	21	2,420	2,441	0.009
Train	4	83	87	0.048

Table 2 Fatal and Serious Crashes within the Metropolitan Council Region by Strategic Highway Safety Plan Focus Areas

Crash Characteristics – General Summary for All Motor vehicle, Bicycle and Motorcycle Crashes

Basic Crash Report Variables

The first crash variable that was analyzed was the mode (see Figure 1 and Table 3). This involved calculating the MSI for each mode in each crash and counting the number of crashes with each modal MSI. Because the presence of one mode in a crash does not preclude the presence of another mode, it is entirely possible (even likely) that the number of crashes will be less than the sum of the counts of crashes involving each mode. For example, there were 196,955 crashes in the study area during the study period that involved a motor vehicle, a motorcycle, and/or a bicycle but the sum of the crash totals for each of those modes (195,409, 2,038, and 2,557, respectively) is 199,651. The Total Crashes column of Table 3 shows that motor vehicles are the mode most commonly involved in a crash, but the KA to BCO Ratio column (the number of severe crashes divided by the number of non-severe crashes) shows that the likelihoods of bicyclists and motorcyclists involved in crashes receiving a fatal or incapacitating injury are approximately 11 and 29 times higher than for motorists involved in crashes, respectively. That said, crashes involving cyclists (and pedestrians) remain underreported.¹ As a result, the number of crashes in the region that involved a cyclist (especially less severe crashes) is likely higher than the values shown below.

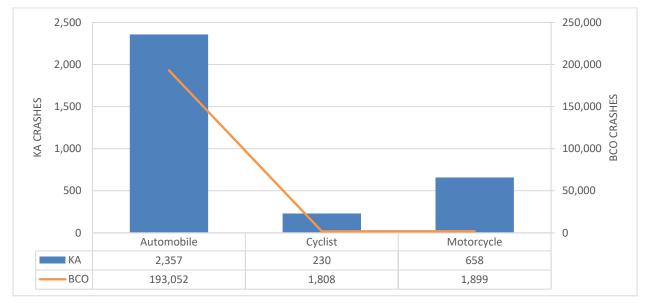


Figure 1 Crashes by mode (Include Motor vehicle, Bicycle, and Motorcycle crashes only)

¹ <u>Pedestrian and Bicycle Information Center</u>. Studies have shown that pedestrian and bicyclist fatalities represent only the "top of the iceberg" with respect to all crashes involving these modes. Furthermore, research has demonstrated consistent underreporting of crashes involving pedestrians and bicyclists, so as many as 44-75 percent of pedestrian crashes and 7-46 percent of bicyclist crashes may be missing from police-reported crash data.

Mode	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Motor Vehicle	2,357	193,052	195,409	0.012
Cyclist	230	1,808	2,038	0.127
Motorcycle	658	1,899	2,557	0.346

Table 3 Crashes by mode (Include Motor vehicle, Bicycle, and Motorcycle crashes only)

The region experienced a slight increase in fatal and serious injuries across the three modes over the five-year period as shown in Figure 2.

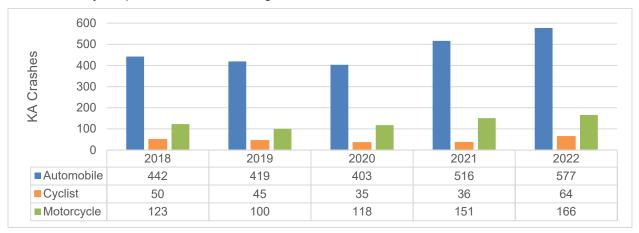


Figure 2 Fatal and Serious (KA) Crashes by Year (Include Motor vehicle, Bicycle, and Motorcycle crashes only)

The region's crashes by the three modes were tabulated by county as shown in Figure 3. The Metropolitan Council's boundary includes seven counties: Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, and Washington. (Partial Counties - Sherburne and Wright.) To account for the varying county sizes and population densities, the crash rates per 100,000 residents were calculated (see Table 4). As seen below, Hennepin had the most crashes but had the fourth-most crashes per 100,000 residents behind Scott, Carver, and Anoka Counties.

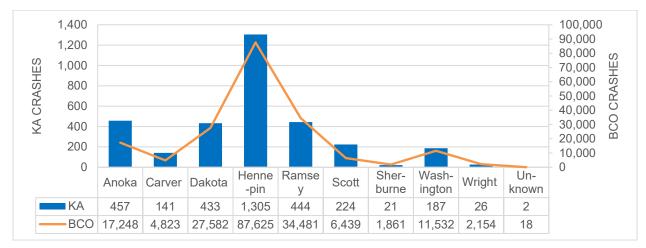


Figure 3 Crashes by County (Include Motor vehicle, Bicycle, and Motorcycle crashes only)

Table 4 Crashes by County (Include Motor vehicle, Bicycle, and Motorcycle crashes only) with Normalization by 100,000 Residents

County	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	2022 Pop.	KA Crashes per 100,000 Residents	BCO Crashes per 100,000 Residents	Total Crashes per 100,000 Residents
Anoka	457	17,248	17,705	0.026	368,864	124	4,676	4,800
Carver	141	4,823	4,964	0.029	110,034	128	4,383	4,511
Dakota	433	27,582	28,015	0.016	443,341	98	6,221	6,319
Hennepin	1,305	87,625	88,930	0.015	1,260,121	104	6,954	7,057
Ramsey	444	34,481	34,925	0.013	536,413	83	6,428	6,511
Scott	224	6,439	6,663	0.035	154,520	145	4,167	4,312
Sherburne	21	1,861	1,882	0.011	100,824	21	1,846	1,867
Washington	187	11,532	11,719	0.016	275,912	68	4,180	4,247
Wright	26	2,154	2,180	0.012	148,003	18	1,455	1,473
Unknown	2	18	20	0.111		-	-	-
Total	3,240	193,763	197,003	0.017	3,398,032	95	5,702	5,798

The Metropolitan Council developed nine community type designations in 2014 as a part of the <u>Thrive MSP 2040 plan</u>. The community designations are assigned to each city and township on the basis of existing development patterns, common challenges, and shared opportunities. They are used by the Council to:

- Guide regional growth and development to areas that have urban infrastructure in place and the capacity to accommodate development and redevelopment.
- Establish land use expectations, including overall densities and development patterns, for different community designations.
- Outline the respective roles of the Council and the individual communities and strategies for planning for forecasted growth.

Since 2014, the region has expanded to include portions of Sherburne and Wright Counties. Crashes occurred most in urban center and suburban community types (See Figure 4).



Figure 4 Crashes by Thrive Community Type (Include Motor vehicle, Bicycle, and Motorcycle crashes only)

Thrive 2040 Community Type	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Urban Center	990	67,287	68,277	0.015
Urban	347	26,487	26,834	0.013
Suburban	632	45,362	45,994	0.014
Suburban Edge	431	28,349	28,780	0.015
Emerging Suburban Edge	297	12,854	13,151	0.023
Rural Center	47	1,271	1,318	0.037
Diversified Rural	181	2,991	3,172	0.061
Rural Residential	132	2,531	2,663	0.052
Agricultural	131	2,436	2,567	0.054
Unclassified	52	4195	4247	0.012
Total	3,240	193,763	197,003	0.017

Table 5 Crashes by Thrive Community Type (Include Motor vehicle, Bicycle, and Motorcycle crashes only)

Figure 5 shows the relative frequency of each vehicle type among vehicles involved in a KA crash that involved a motor vehicle, bicycle, and motorcycle crash. The most common vehicle type was a passenger car (42.9%). The second most common vehicle type involved a sport utility vehicle at 24.7%. Without more data on the relative frequency of each vehicle type in the region and their relative proportions of vehicle miles traveled, it is difficult to say if any of the vehicle types shown in Figure 5 are disproportionately represented.

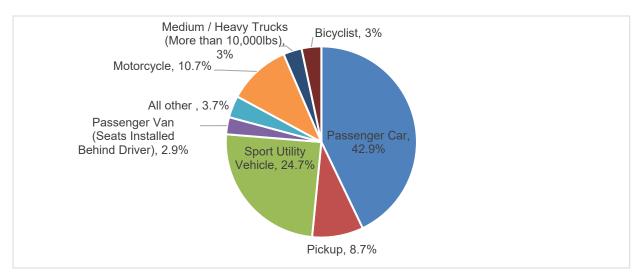


Figure 5 Percent of Fatal and Serious (KA) Crashes by Vehicle Type (Includes Motor vehicle, Bicycle and Motorcycle crashes only)

Crash Report Variables – Involving Motor Vehicles

The following section includes crash factors for crashes involving at least one motor vehicle within the Metropolitan Council region.

While it is difficult to determine if crashes are more likely in dark or lit conditions (due to differences in the number of trips occurring during different hours of the day, changes in the number of hours of daylight throughout the year, and changes in sunrise and sunset times throughout the year, etc.), The KA to BCO ratios shown in

Table 6 indicate that crashes that occur in the dark are more likely to result in fatal or incapacitating injuries than those that occur in daylight, at sunrise, or at sunset.

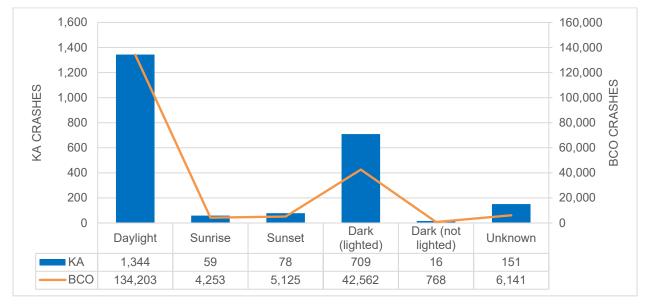


Figure 6 Crashes by Lighting Conditions (Involving Motor vehicle Crashes)

Table 6 Crashes by Lighting Conditions (Involving Motor vehicle Crashes)

Lighting Conditions	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Daylight	1,344	134,203	135,547	0.010
Sunrise	59	4,253	4,312	0.014
Sunset	78	5,125	5,203	0.015
Dark (lighted)	709	42,562	43,271	0.017
Dark (not lighted)	16	768	784	0.021
Unknown	151	6,141	6,292	0.025
Total	2,357	193,052	195,409	0.012

Segment Related Crashes

The crashes involving at least one motor vehicle were further split by whether the crash occurred on a segment (midblock) or at an intersection. This section reviews segment midblock-specific crashes.

The functional classification of a road is strongly correlated with other factors analyzed in this section (e.g., number of lanes, AADT, speed limit, etc.), but it is still a meaningful way of describing the character of a roadway. Figure 7 shows the number of KA and BCO midblock crashes involving a motor vehicle that occurred on roads of each of the seven functional classes. The plurality of KA crashes (418 out of 1,037 or 40%) took place on minor arterials and the plurality of BCO crashes (39,195 out of 39,402 or 41%) took place on interstate highways, but this does not account for the relative frequency of each functional class in the network.

Table 7 shows that, per mile, minor arterials have the fourth-highest KA crash rate at 81 crashes per 1,000 directional miles (centerline miles multiplied by the number of directions of travel – one for one-way roads, two for bidirectional roads). Interstates have nearly ten times the network average number of KA crashes per 1,000 directional miles at 261 compared to 28 for the network as a whole. While this accounts for the proportion of the network that each functional class comprises, it does not account for the previously mentioned correlated factors which all tend to be higher for the more crash-prone functional classes.

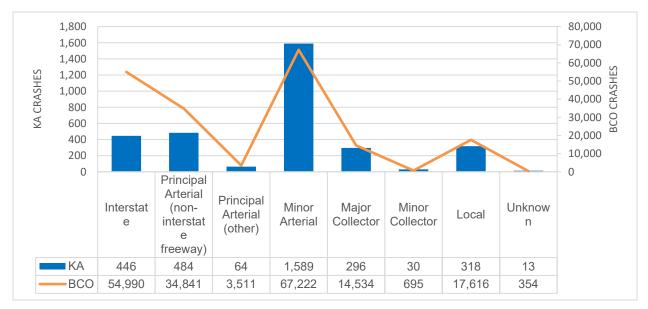


Figure 7 Segment Crashes by Midblock Roadway Functional Classification (Involving Motor vehicle Crashes)

Table 7 Segment Crashes by Midblock Roadway Functional Classification (Involving Motor vehicle Crashes) with Normalization by 1,000 Roadway Miles

Functional Classification Interstate	KA Crashes 446	BCO Crashes 54,990	Total Crashes 55,436	KA to BCO Ratio 0.008	Roadway Miles 794	KA Crashes per 1,000 Miles 562	BCO Crashes per 1,000 Miles 69,246	Total Crashes per 1,000 Miles 69,807
Principal Arterial (non- interstate freeway)	484	34,841	35,325	0.014	1,066	454	32,688	33,142
Principal Arterial (other)	64	3,511	3,575	0.018	136	472	25,889	26,361
Minor Arterial	1,589	67,222	68,811	0.024	5,174	307	12,993	13,301
Major Collector	296	14,534	14,830	0.020	2,912	102	4,992	5,093
Minor Collector	30	695	725	0.043	910	33	764	797
Local	318	17,616	17,934	0.018	26,423	12	667	679
Unknown	13	354	367	0.037	-	-	-	-
Total	3,240	193,763	197,003	0.017	37,414	87	5,179	5,266

Midblock roadway configuration is strongly correlated with daily volume, speed limit, and roadway functional classification but the existing Metropolitan Council network files do not include midblock configuration, thus preventing the normalization of crash counts by directional miles. Nonetheless, Table 8 shows that most midblock crashes involving a motor vehicle occurred on two-way roads with a median barrier (54,228 out of 95,599 or 57%) but KA crashes were more prevalent on two-way undivided roads (542 out of 1,037 or 52%). Looking at all five midblock road configurations, the KA to BCO ratio generally increases as separation between opposing directions decreases.

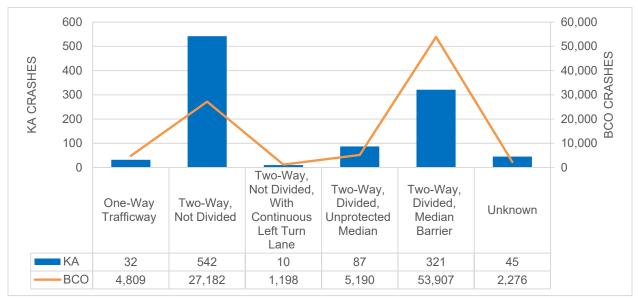


Figure 8 Segment Crashes by Midblock Roadway Configuration (Involving Motor vehicle Crashes)

Midblock Road Configuration	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
One-Way Trafficway	32	4,809	4,841	0.007
Two-Way, Not Divided	542	27,182	27,724	0.020
Two-Way, Not Divided, With Continuous Left Turn Lane Two-Way, Divided,	10	1,198	1,208	0.008
Unprotected Median	87	5,190	5,277	0.017
Two-Way, Divided, Median Barrier	321	53,907	54,228	0.006
Unknown	45	2,276	2,321	0.020
Total	1,037	94,562	95,599	0.011

Table 8 Segment Crashes by Midblock Roadway Configuration (Involving Motor vehicle Crashes)

As seen in Figure 9, the majority of midblock crashes involving a vehicle occur on two-lane roads. However, the tabulation of directional mileage by the number of lanes in Table 9 shows that two-lane roads account for 90% of the network and actually have the fewest crashes per 1,000 directional miles (18 KA crashes and 1,198 BCO crashes per 1,000 directional miles), far lower than the network average of 28 KA crashes and 2,527 BCO crashes. On the other hand, the KA to BCO ratios for one- and two-lane roads (0.015 and 0.015, respectively) are approximately twice as high as those of the other numbers of lanes (0.007, on average) except ten lanes (of which there are only 4.0 miles). It is unclear what is causing one- and two-lane roads to have crashes less frequently but also have higher likelihoods of crashes being fatal.

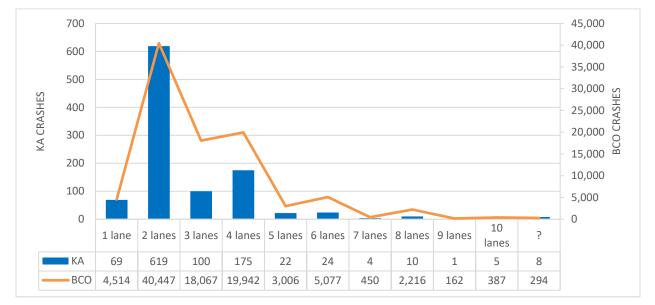


Figure 9 Segment Crashes by Number of Lanes (Involving Motor vehicle Crashes)

Midblock Number of Lanes	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	Roadway Miles	KA Crashes per 1,000 Miles	BCO Crashes per 1,000 Miles	Total Crashes per 1,000 Miles
1 lane	69	4,514	4,583	0.015	1,177	59	3,835	3,894
2 lanes	619	40,438	41,057	0.015	33,751	18	1,198	1,216
3 lanes	100	18,067	18,167	0.006	327	306	55,319	55,625
4 lanes	175	19,939	20,114	0.009	1,110	158	17,955	18,113
5 lanes	22	3,006	3,028	0.007	43	508	69,351	69,858
6 lanes	24	5,077	5,101	0.005	156	154	32,551	32,705
7 lanes	4	450	454	0.009	23	178	19,986	20,164
8 lanes	10	2,214	2,224	0.005	25	404	89,551	89,956
9 lanes	1	162	163	0.006	5	200	32,433	32,633
10 lanes	5	387	392	0.013	4	1,336	103,433	104,770
?	8	308	316	0.026	-	-	-	-
Total	1,037	94,562	95,599	0.011	37,414	28	2,527	2,555

Table 9 Segment Crashes by Number of Lanes (Involving Motor vehicle Crashes) with Normalization by 1,000 Roadway Miles

Table 10 shows that 75% of all roads have a speed limit of 30 mph (note that the network file used to calculate the mileage of each speed limit uses the speed limits of roads at the beginning of the study period in 2018 and does not reflect changes to speed limits since then, including the changing of the default speed limit in Minneapolis and Saint Paul from 30 mph to 20 mph in late 2020). Normalizing by the number of directional miles of road with a given speed limit shows that roads with a speed limit of 30 mph have quite low crash rates per directional mile (7 KA crashes and 607 BCO crashes per 1,000 directional miles), much lower than the network average of 28 KA crashes and 2,534 BCO crashes per 1,000 directional miles. Roads with speed limits of 55, 60, 65, or 70 mph, on the other hand, have much higher crash rates per directional mile with 108, 389, 352, and 329 KA crashes per 1,000 directional miles, respectively. This stands to reason given the fact that crashes at higher speeds are more forceful and drivers have narrower fields of vision and require longer braking distances². Roads with speed limits under 25 mph have high crash rates per directional mile; this may simply be a result of there being relatively few instances of these speed limits, but it could also be due to those segments being disproportionately problematic and warranting lower speed limits. Figure 10 shows that midblock crashes are most likely to occur on roads with a speed limit of 30, 55, or 60 mph (18%, 21%, and 27% of all crashes, respectively).

² https://nacto.org/publication/city-limits/the-need/how-speed-kills/

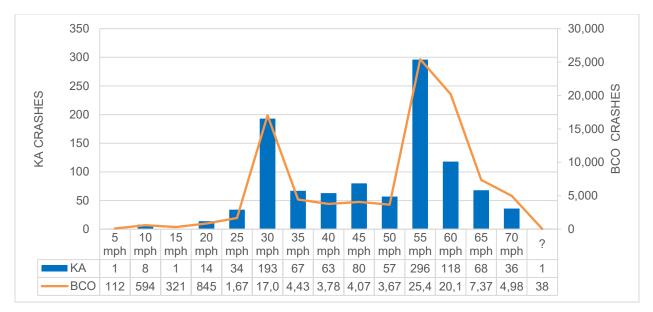


Figure 10 Segment Crashes by Speed Limit (Involving Motor vehicle Crashes)

Midblock Speed Limit	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	Roadway Miles	KA Crashes per 1,000 Miles	BCO Crashes per 1,000 Miles	Total Crashes per 1,000 Miles
5 mph	0	102	102		19	0	5,244	5,244
10 mph	4	393	397	0.010	108	37	3,625	3,662
15 mph	1	320	321	0.003	76	13	4,203	4,216
20 mph	14	842	856	0.017	163	86	5,168	5,254
25 mph	34	1,671	1,705	0.020	662	51	2,525	2,577
30 mph	193	17,026	17,219	0.011	28,065	7	607	614
35 mph	67	4,435	4,502	0.015	1,269	53	3,494	3,547
40 mph	63	3,785	3,848	0.017	796	79	4,754	4,833
45 mph	80	4,077	4,157	0.020	1,382	58	2,950	3,008
50 mph	57	3,677	3,734	0.016	1,435	40	2,562	2,602
55 mph	296	25,423	25,719	0.012	2,746	108	9,258	9,366
60 mph	118	20,197	20,315	0.006	304	389	66,501	66,889
65 mph	68	7,372	7,440	0.009	193	352	38,120	38,471
70 mph	36	4,988	5,024	0.007	109	329	45,598	45,927
?	6	254	260	0.024	-	-	-	-
Total	1,043	94,812	95,855	0.011	37,414	28	2,534	2,562

Table 10 Segment Crashes by Speed Limit (Involving Motor vehicle Crashes)

Like roadway functional classification, number of lanes, and speed limit, roads with higher AADTs tend to have more crashes but also tend to be less common. Comparing Figure 11, which shows the number of KA and BCO crashes broken down by the AADT of the road on which they occurred, and Figure 12, which shows the number of KA and BCO crashes normalized by the number of vehicle miles traveled (VMT) each day on the road on which they occurred and broken down by the AADT of that road, shows that 480 out of 1,025 or 47% of KA crashes occur on low volume roads (under 5,000 vehicles per day) because low-volume roads are by far the most common type of road (according to Table 7, local roads account for 71% of the network and have the fewest KA crashes per directional mile of any of the functional classes). Similarly, low-volume roads have the highest rate of KA crashes per million VMT (40 KA crashes per million VMT) because they have the lowest VMT/mile due to their low volume. Even though local streets have the lowest crashes per mile, their low volumes mean that any crashes that do occur on them are distributed over relatively low AADTs. In other words, low-volume roads have relatively few crashes per mile but comparatively high crash rates per million vehicle miles traveled.

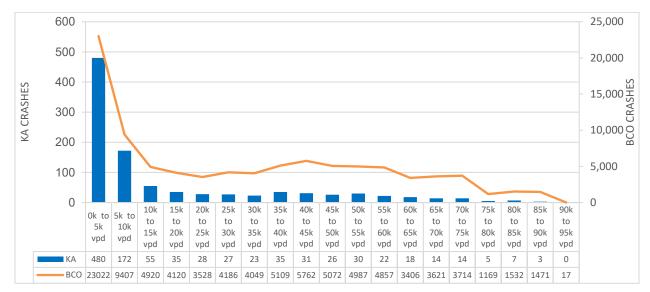


Figure 11 Segment Crashes per Million Daily Vehicle Miles Traveled by AADT (Involving Motor vehicle Crashes)

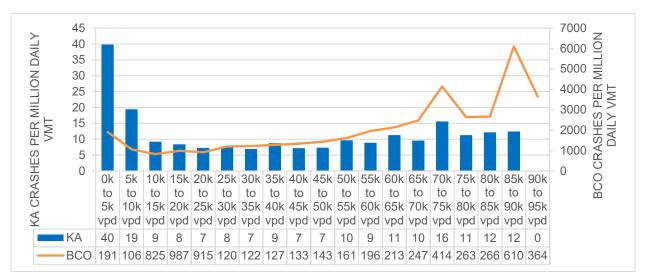


Figure 12 Segment Crashes per Million Daily Vehicle Miles Traveled by AADT (Involving Motor vehicle Crashes)

Page - 14 | METROPOLITAN COUNCIL

Intersection Related Crashes

The crashes involving at least one motor vehicle were split by whether the crash occurred on a segment (midblock) or at an intersection. This section reviews the crashes that occurred at an intersection. According to the Strategic Highway Safety Plan, the focus area with the most crashes was crashes that occur at intersections.

Within the Metropolitan Council region, 58,018 out of 99,810 or 58% of intersection crashes involving at least one motor vehicle occurred at a four-way intersection as seen in Figure 13. This is largely a reflection of the prevalence of four-way intersections in the network.

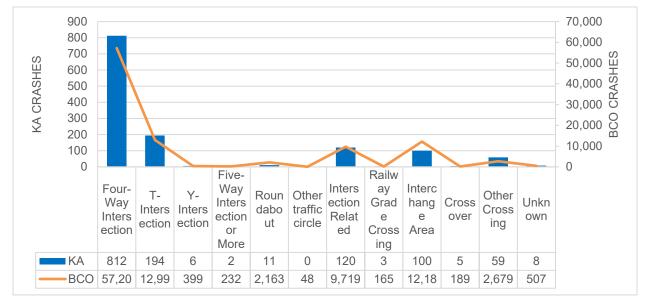


Figure 13 Crashes by Intersection Configuration (Involving Motor vehicle Crashes)

Intersection Configuration	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Four-Way Intersection	812	57,206	58,018	0.014
T-Intersection	194	12,999	13,193	0.015
Y-Intersection	6	399	405	0.015
Five-Way Intersection or More	2	232	234	0.009
Roundabout	11	2,163	2,174	0.005
Other traffic circle	0	48	48	-
Intersection Related	120	9,719	9,839	0.012
Railway Grade Crossing	3	165	168	0.018
Interchange Area	100	12,184	12,284	0.008
Crossover	5	189	194	0.026
Other Crossing	59	2679	2738	0.022
Unknown	8	507	515	0.016
Total	1,320	98,490	99,810	0.013

Page - 15 | METROPOLITAN COUNCIL

Figure 14 shows that crashes occur most frequently at intersections where the maximum speed limit is 30 or 55 mph (33% and 13% of crashes, respectively).

Table 10 shows that 75% of all roads have a speed limit of 30 mph and that general pattern applies to the distribution of maximum speed limits at intersections. Whereas KA crashes are clustered at intersections with speed limits of 30 or 55 mph (25% and 22% of KA crashes, respectively), BCO crashes are only clustered at 30 mph intersections (34% of BCO crashes). This is in line with the increase in the KA to BCO ratio starting at 55 mph that was seen in Table 8 and stands to reason given the previously discussed fact that crashes at higher speeds are more forceful and drivers have narrower fields of vision and require longer break distances.

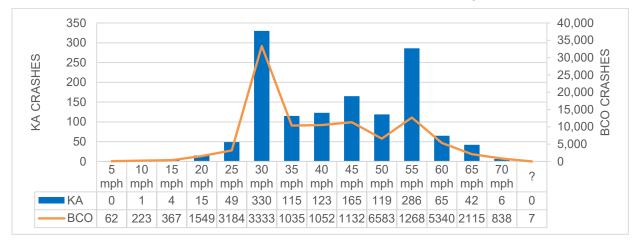


Figure 14 Intersection Crashes by Max Speed Limit (Involving Motor vehicle Crashes)

Table 12 Intersection Crashes by Max Speed Limit (Involving Motor vehicle Crashes) with Normalization by 1,000 Roadway Miles

Intersection Maximum Speed Limit	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
5 mph	0	62	62	-
10 mph	1	223	224	0.004
15 mph	4	367	371	0.011
20 mph	15	1,549	1,564	0.010
25 mph	49	3,184	3,233	0.015
30 mph	330	33,339	33,669	0.010
35 mph	115	10,359	10,474	0.011
40 mph	123	10,523	10,646	0.012
45 mph	165	11,320	11,485	0.015
50 mph	119	6,583	6,702	0.018
55 mph	286	12,681	12,967	0.023
60 mph	65	5,340	5,405	0.012
65 mph	42	2,115	2,157	0.020
70 mph	6	838	844	0.007
?	0	7	7	-
Total	1,320	98,490	99,810	0.013

When observing intersection crashes involving at least one motor vehicle, 50% of those crashes occurred at intersections controlled by a traffic control signal and 32% occurred at an interchange or the uncontrolled approach of a yield controlled or two-way stop-controlled intersection (included in the "None" category). This is likely just a reflection of the frequency of these intersection control devices/configurations.

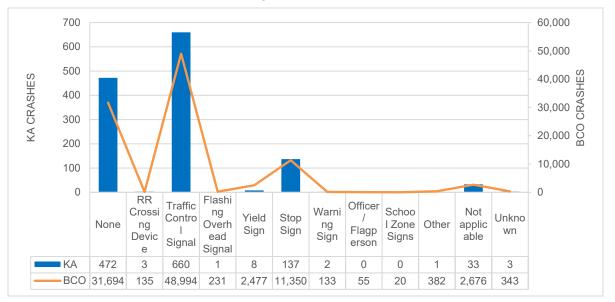


Figure 15 Intersection Crashes by Traffic Control Device (Involving Motor vehicle Crashes)

Intersection Traffic Control Device	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
None	472	31,694	32,166	0.015
RR Crossing Device	3	135	138	0.022
Traffic Control Signal	660	48,994	49,654	0.013
Flashing Overhead Signal	1	231	232	0.004
Yield Sign	8	2,477	2,485	0.003
Stop Sign	137	11,350	11,487	0.012
Warning Sign	2	133	135	0.015
Officer / Flag person	0	55	55	-
School Zone Signs	0	20	20	-
Other	1	382	383	0.003
Not applicable	33	2,676	2,709	0.012
Unknown	3	343	346	0.009
Total	1,320	98,490	99,810	0.013

Table 13 Intersection Crashes by Traffic Control Device (Involving Motor vehicle Crashes)

Crash Report Variables – Involving Bicycles

The following section includes crash factors for crashes involving at least one bicycle within the Metropolitan Council region.

While it is difficult to determine if crashes are more likely in dark or lit conditions (due to differences in the number of trips occurring during different hours of the day, changes in the number of hours of daylight throughout the year, and changes in sunrise and sunset times throughout the year, etc.), The KA to BCO ratios shown in

Table 14 have small sample sizes but appear to indicate that crashes that occur in the dark are more likely to result in fatal or incapacitating injuries than those that occur in daylight, at sunrise, or at sunset.

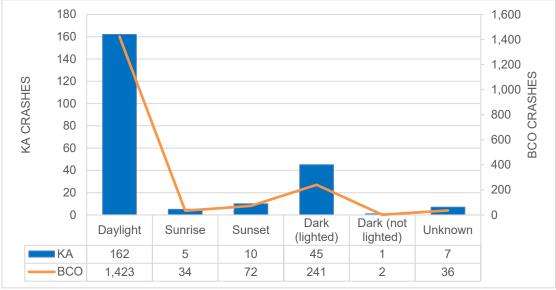


Figure 16 Crashes by Lighting Conditions (Involving Bicycle Crashes)

Page - 18 | METROPOLITAN COUNCIL

Lighting Conditions	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Daylight	162	1,423	1,585	0.114
Sunrise	5	34	39	0.147
Sunset	10	72	82	0.139
Dark (lighted)	45	241	286	0.187
Dark (not lighted)	1	2	3	0.500
Unknown	7	36	43	0.194
Total	230	1,808	2,038	0.127

Table 14 Crashes by Lighting Conditions (Involving Bicycle Crashes)

Segment Related Crashes

The crashes involving at least one bicycle were further split by whether the crash occurred on a segment (midblock) or at an intersection. This section reviews segment midblock specific crashes.

Compared to the KA to BCO ratios of motor vehicle crashes seen in Table 7, the KA to BCO ratios for bicycles found in Table 15 are higher overall with the KA to BCO ratios for arterials being particularly high. The number of KA crashes per 1,000 directional miles are also higher for arterials (between 1 and 7 KA crashes) than the corresponding rates on collectors and local streets (2 and fewer than 1 KA crashes, respectively).

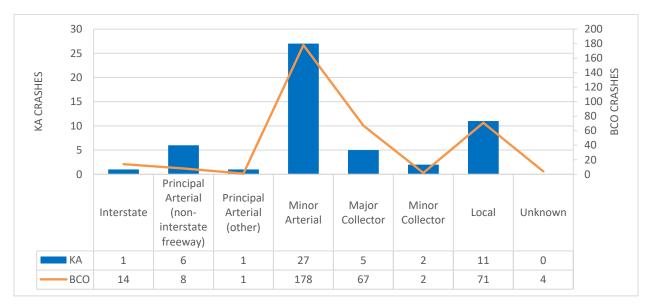


Figure 17 Segment Crashes by Midblock Roadway Functional Classification (Involving Bicycle Crashes)

Table 15 Segment Crashes by Midblock Roadway Functional Classification (Involving Bicycle Crashes) Normalization by 1,000 Roadway Miles

Functional Classification	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	Roadway Miles	KA Crashes per 1,000 Miles	BCO Crashes per 1,000 Miles	Total Crashes per 1,000 Miles
Interstate	1	14	15	0.071	794	1	18	19
Principal Arterial (non-interstate freeway)	6	8	14	0.750	1,066	6	8	13
Principal Arterial (other)	1	1	2	1.000	136	7	7	15
Minor Arterial	27	178	205	0.152	5,174	5	34	40
Major Collector	5	67	72	0.075	2,912	2	23	25
Minor Collector	2	2	4	1.000	910	2	2	4
Local	11	71	82	0.155	26,423	0	3	3
Unknown	0	4	4		-	-	-	-
Total	53	345	398	0.154	37,414	1	9	11

Regarding roadway configurations, most crashes involving at least one bicycle occurred on twoway undivided roads (214 out of 398 or 54% of crashes). This is likely a reflection of the prevalence of this road configuration in the network.

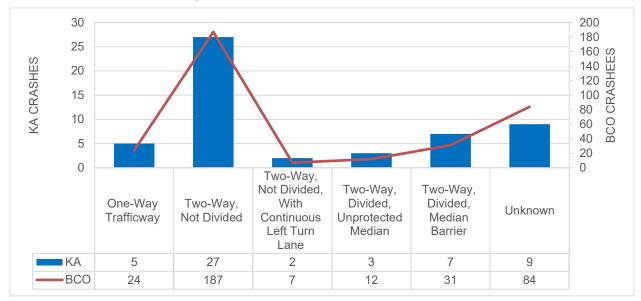


Figure 18 Segment Crashes by Midblock Roadway Configuration (Involving Bicycle Crashes)

Midblock Road Configuration	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
One-Way Trafficway	5	24	29	0.208
Two-Way, Not Divided	27	187	214	0.144
Two-Way, Not Divided, With Continuous Left Turn				
Lane	2	7	9	0.286
Two-Way, Divided, Unprotected Median	3	12	15	0.250
Two-Way, Divided, Median Barrier	7	31	38	0.226
Unknown	9	84	93	0.107
Total	53	345	398	0.154

Table 16 Segment Crashes by Midblock Roadway Configuration (Involving Bicycle Crashes)

As seen in Figure 19, the majority (262 out of 398 or 72%) of midblock bicycle crashes occurred on two-lane roads. As seen in Table 17, this is largely a reflection of the prevalence of two-lane roads in the network and the number of KA crashes per 1,000 roadway miles is the lowest for two-lane roads with approximately 1 KA crash per 1,000 miles of two-lane roadway.

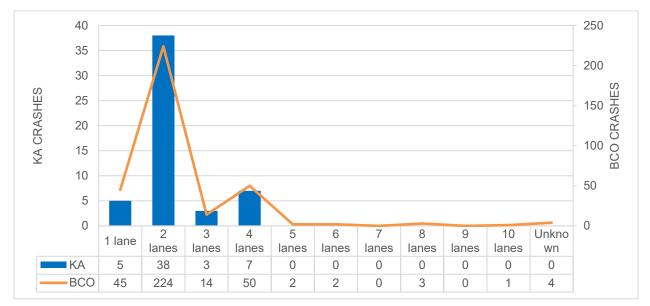


Figure 19 Segment Crashes by Number of Lanes (Involving Bicycle Crashes)

Midblock Number of Lanes	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	Roadway Miles	KA Crashes per 1,000 Miles	BCO Crashes per 1,000 Miles	Total Crashes per 1,000 Miles
1 lane	5	45	50	0.111	1,177	4	38	42
2 lanes	38	224	262	0.170	33,751	1	7	8
3 lanes	3	14	17	0.214	327	9	43	52
4 lanes	7	50	57	0.140	1,110	6	45	51
5 lanes	0	2	2	-	43	0	46	46
6 lanes	0	2	2	-	156	0	13	13
7 lanes	0	0	0	-	23	0	0	0
8 lanes	0	3	3	-	25	0	121	121
9 lanes	0	0	0	I	5	0	0	0
10 lanes	0	1	1	-	4	0	267	267
Unknown	0	4	4	-	-	-	-	-
Total	53	345	398	0.154	37,414	1	9	11

Table 17 Segment Crashes by Number of Lanes (Involving Bicycle Crashes) with Normalization by 1,000 Roadway Miles

As the most prevalent speed limit in the network, 30 mph roads account for most of the bicycle crashes with 229 out of 398 or 58% of the midblock crashes. Due to the low number of crashes on other roadways, little can be drawn from their respective crash rates and KA to BCO ratios.

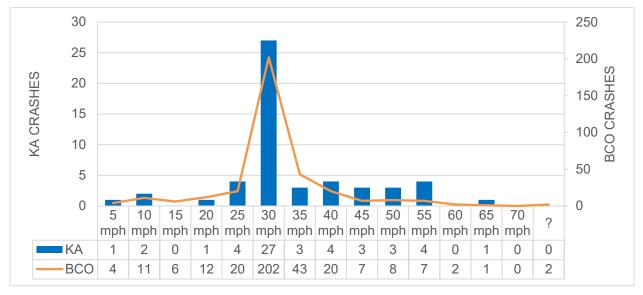


Figure 20 Segment Crashes by Speed Limit (Involving Bicycle Crashes)

Midblock Speed Limit	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	Roadway Miles	KA Crashes per 1,000 Miles	BCO Crashes per 1,000 Miles	Total Crashes per 1,000 Miles
5 mph	1	4	5	0.250	19	51	206	257
10 mph	2	11	13	0.182	108	18	101	120
15 mph	0	6	6	-	76	0	79	79
20 mph	1	12	13	0.083	163	6	74	80
25 mph	4	20	24	0.200	662	6	30	36
30 mph	27	202	229	0.134	28,065	1	7	8
35 mph	3	43	46	0.070	1,269	2	34	36
40 mph	4	20	24	0.200	796	5	25	30
45 mph	3	7	10	0.429	1,382	2	5	7
50 mph	3	8	11	0.375	1,435	2	6	8
55 mph	4	7	11	0.571	2,746	1	3	4
60 mph	0	2	2	-	304	0	7	7
65 mph	1	1	2	1.000	193	5	5	10
70 mph	0	0	0	-	109	0	0	0
?	0	2	2	-	-	-	-	-
Total	53	345	398	0.153	37,414	1	9	11

Table 18 Segment Crashes by Speed Limit (Involving Bicycle Crashes) with Normalization by 1,000 Roadway Miles

While bicycle AADTs are not available for the whole network, examining bicycle crashes grouped by the motor vehicle AADT of the roads on which they occurred (see Figure 21) shows that bicycle crashes tend to occur on lower volume roads (under 20,000 vehicles per day). When normalizing by the number of vehicle miles traveled on those roads (Figure 22), the higher volume roads appear to account for a larger percentage of crashes. However, the numbers of crashes on those roads are so low that their statistical significance is likely quite low.

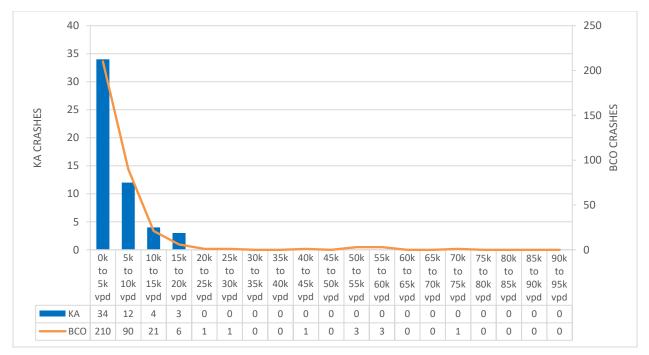


Figure 21 Segment Crashes by AADT (Involving Bicycle Crashes)

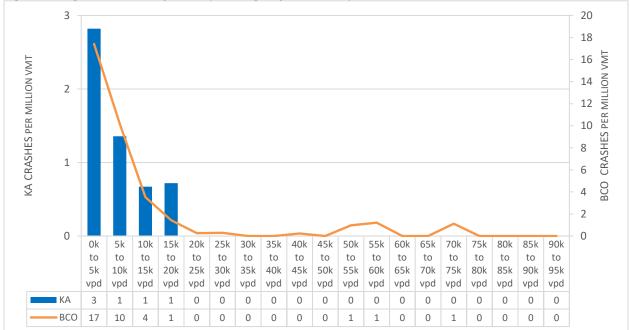


Figure 22 Segment Crashes per Million Daily Vehicle Miles Traveled by AADT (Involving Bicycle Crashes)

Intersection Related Crashes

The crashes involving at least one motor vehicle were further split by whether the crash occurred on a segment (midblock) or at an intersection. This section reviews the crashes that occurred at an intersection. According to the Strategic Highway Safety Plan, the most predominant crashes by focus areas occur at intersections.

Within the Metropolitan Council region, 1,018 out of 1,640 or 62% of intersection crashes involving at least one motor vehicle occurred at a four-way intersection as seen in Figure 23. This is largely a reflection of the prevalence of four-way intersections in the network.

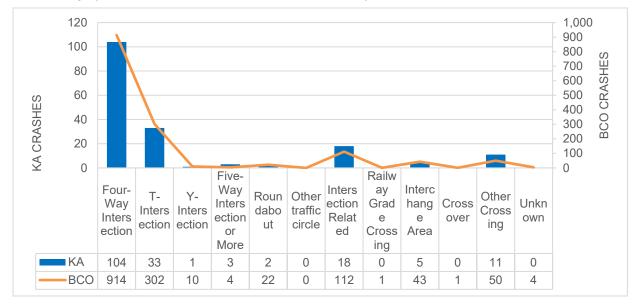


Figure 23 Crashes by Intersection Configuration (Involving Bicycle Crashes)

Intersection Configuration	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Four-Way Intersection	104	914	1,018	0.114
T-Intersection	33	302	335	0.109
Y-Intersection	1	10	11	0.100
Five-Way Intersection or More	3	4	7	0.750
Roundabout	2	22	24	0.091
Other traffic circle	0	0	0	
Intersection Related	18	112	130	0.161
Railway Grade Crossing	0	1	1	
Interchange Area	5	43	48	0.116
Crossover	0	1	1	
Other Crossing	11	50	61	0.220
Unknown	0	4	4	
Total	177	1463	1640	0.121

Table 19 Crashes by Intersection Configuration (Involving Bicycle Crashes)

Page - 25 | METROPOLITAN COUNCIL

Similar to the patterns observed in Figure 20 which shows that midblock crashes are most likely to occur on roads with a speed limit of 30 mph, Figure 24 shows that crashes occur most frequently at intersections where the maximum speed limit is 30 or 55 mph (33% and 13% of crashes, respectively). Table 20 shows that 75% of all roads have a speed limit of 30 mph and that general pattern applies to the distribution of maximum speed limits at intersections. While KA crashes are clustered at intersections with speed limits of 30 (77 out of 177 or 44% of KA crashes), the KA to BCO ratios tend to increase with speed limits suggesting that crashes with vehicles that are likely moving at higher speeds tend to result in more serious injuries to the cyclist. This stands to reason given the previously discussed fact that crashes at higher speeds are more forceful and drivers have narrower fields of vision and require longer braking distances.

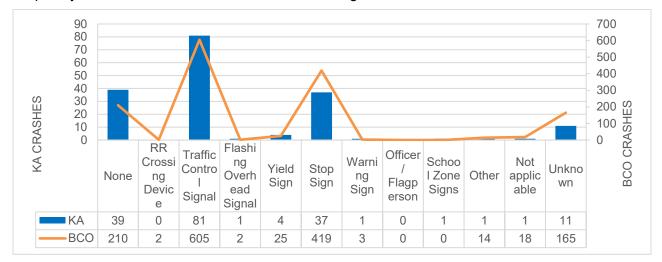

Figure 24 Intersection Crashes by Max Speed Limit (Involving Bicycle Crashes)

Table 20 Intersection Crashes by Max Speed Limit (Involving Bicycle Crashes) with Normalization by 1,000 Roadway Miles

Intersection Maximum Speed Limit	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	Roadway Miles	KA Crashes per 1,000 Miles	BCO Crashes per 1,000 Miles	Total Crashes per 1,000 Miles
5 mph	0	3	3	-	19	0	154	154
10 mph	0	8	8	-	108	0	74	74
15 mph	1	7	8	0.143	76	13	92	105
20 mph	9	38	47	0.237	163	55	233	289
25 mph	13	108	121	0.120	662	20	163	183
30 mph	77	850	927	0.091	28,065	3	30	33
35 mph	22	151	173	0.146	1,269	17	119	136
40 mph	16	101	117	0.158	796	20	127	147
45 mph	18	88	106	0.205	1,382	13	64	77
50 mph	8	51	59	0.157	1,435	6	36	41
55 mph	12	40	52	0.300	2,746	4	15	19
60 mph	1	8	9	0.125	304	3	26	30
65 mph	0	4	4	-	193	0	21	21
70 mph	0	6	6	-	109	0	55	55
Total	177	1,463	1,640	0.121	37,414	5	39	44

Page - 26 | METROPOLITAN COUNCIL

When observing intersection crashes involving at least one bicycle, 42% of those crashes occurred at intersections controlled by a traffic control signal and 28% occurred at an interchange or the uncontrolled approach of a yield-controlled or two-way stop-controlled intersection (included in the "None" category). This pattern is likely just a reflection of the frequency of these intersection control devices/configurations.

Figure 25 Intersection	Crashes by Traffic Contr	rol Device (Involving Bicycle Crashes)
1 19410 20 1110100001011	oradinod by rraind dona	

Intersection Traffic Control Device	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
None	39	210	249	0.186
RR Crossing Device	0	2	2	
Traffic Control Signal	81	605	686	0.134
Flashing Overhead Signal	1	2	3	0.500
Yield Sign	4	25	29	0.160
Stop Sign	37	419	456	0.088
Warning Sign	1	3	4	0.333
Officer / Flag person	0	0	0	
School Zone Signs	1	0	1	
Other	1	14	15	0.071
Not applicable	1	18	19	0.056
Unknown	11	165	176	0.067
Total	177	1,463	1,640	0.121

Table 21 Interportion Cros	has by Troffic	Control Dovino	(Involving Die	vala Crachael
Table 21 Intersection Cras	SILES Dy ITAIIIC	Control Device	(IIIVOIVIIIY DIC	yue urasiles)

Crash Report Variables – Involving Motorcycles

The following section includes crash factors for crashes involving at least one motorcycle within the Metropolitan Council region.

While it is difficult to determine if crashes are more likely in dark or lit conditions (due to differences in the number of trips occurring during different hours of the day, changes in the number of hours of daylight throughout the year, and changes in sunrise and sunset times throughout the year, etc.), The KA to BCO ratios shown in Table 22 indicate that crashes that occur in the dark are more likely to result in fatal or incapacitating injuries than those that occur in daylight, at sunrise, or at sunset.

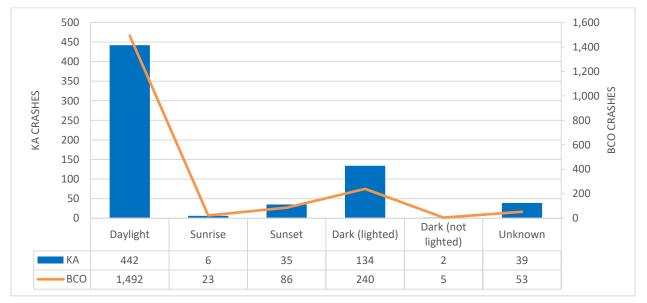


Figure 26 Motorcycle Crash Severity by Lighting Conditions

Table 22 Motorcyc	e Crash Severity by	Lighting Conditions
-------------------	---------------------	---------------------

Lighting Conditions	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Daylight	442	1,492	1,934	0.296
Sunrise	6	23	29	0.261
Sunset	35	86	121	0.407
Dark (lighted)	134	240	374	0.558
Dark (not lighted)	2	5	7	0.400
Unknown	39	53	92	0.736
Total	658	1,899	2,557	0.346

Although data on helmet use by motorcyclist is largely incomplete, it is apparent from the data KA to BCO ratios in Table 23 that, when helmets were worn (when helmet usage was recorded, only 266 out of 316 or 46% of motorcyclists were wearing a helmet), fatalities were less likely. There were 57 KA crashes and 209 BCO crashes when helmets were worn and 103 KA crashes and 203 BCO crashes when helmets were not worn, equating to KA to BCO ratios of 0.273 and 0.484, respectively.

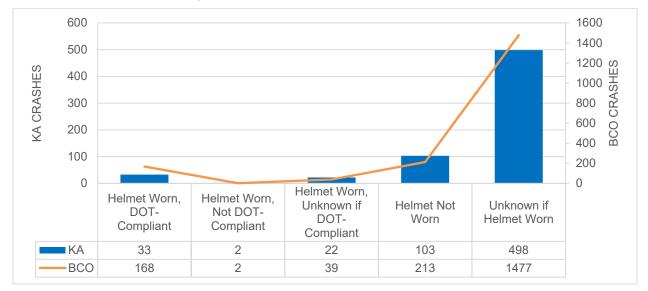


Figure 27 Crashes by Safety Equipment (Involving Motorcycle Crashes)

Table 23 Crashes by Safety Equipment (Involving Motorcycle Crashes)

Motorcyclist Helmet Usage	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Helmet Worn, DOT-Compliant	33	168	201	0.196
Helmet Worn, Not DOT-Compliant	2	2	4	1.000
Helmet Worn, Unknown if DOT- Compliant	22	39	61	0.564
Helmet Not Worn	103	213	316	0.484
Unknown if Helmet Worn	498	1,477	1,975	0.337
Total	658	1,899	2,557	0.346

Segment Related Crashes

The crashes involving at least one motorcycle were further split by whether the crash occurred on a segment (midblock) or at an intersection. This section reviews segment midblock-specific crashes.

The functional classification of a road is strongly correlated with other factors analyzed in this section (e.g., number of lanes, AADT, speed limit, etc.), but it is still a meaningful way of describing the character of a roadway. Figure 28 shows the number of KA and BCO midblock crashes involving a motorcycle that occurred on roads of each of the seven functional classes. The plurality of both KA crashes (132 out of 305 or 43%) and BCO crashes (316 out of 940 or 34%) took place on minor arterials, but this does not account for the relative frequency of each functional class in the network.

Table 24 shows that, per mile, minor arterials have the third-highest KA crash rate at 26 crashes per 1,000 directional miles. Interstates have six times the network average number of KA crashes per 1,000 directional miles at 48 compared to eight for the network. While this accounts for the proportion of the network that each functional class comprises, it does not account for the previously mentioned correlated factors which all tend to be higher for the more crash-prone functional classes. The combination of minor arterials' frequency (they are the second-most common functional class) and their high crash rate per mile (they have approximately three times as many KA crashes per mile as the network average), they account for the highest proportion of KA crashes. Compared to the KA to BCO ratios of motor vehicle crashes seen in Table 7, the KA to BCO ratios for motorcycles found in Table 25 are approximately three times higher overall with the KA to BCO ratios for arterials being particularly high.

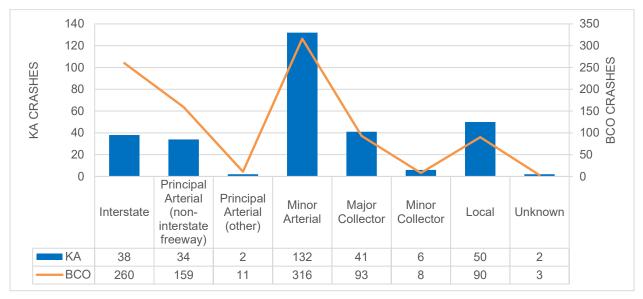


Figure 28 Segment Crashes by Midblock Roadway Functional Classification (Involving Motorcycle Crashes)

Table 24 Segment Crashes by Midblock Roadway Functional Classification (Involving Motorcycle Crashes) with Normalization by 1,000 Roadway Miles

Functional Classification	KA Crashes 38	BCO Crashes 260	Total Crashes 298	KA to BCO Ratio 0.146	Roadway Miles 794	KA Crashes per 1,000 <u>Miles</u> 48	BCO Crashes per 1,000 Miles 327	Total Crashes per 1,000 Miles 375
Principal Arterial (non-interstate freeway)	34	159	193	0.214	1,066	32	149	181
Principal Arterial (other)	2	11	13	0.182	136	15	81	96
Minor Arterial	132	316	448	0.418	5,174	26	61	87
Major Collector	41	93	134	0.441	2,912	14	32	46
Minor Collector	6	8	14	0.750	910	7	9	15
Local	50	90	140	0.556	26,423	2	3	5
Unknown	2	3	5	0.667	-	-	-	-
Total	305	940	1,245	0.324	37,414	8	25	33

Midblock roadway configuration is strongly correlated with daily volume, speed limit, and roadway functional classification but the existing Metropolitan Council network files do not include midblock configuration, thus preventing the normalization of crash counts by directional miles. Nonetheless, Table 25 shows that most midblock crashes involving a motorcycle occurred on two-way roads that are note divided (614 out of 1,245 or 49%) or two-way roads with a median barrier (443 out of 1,245 or 36%) but far more KA crashes on two-way undivided roads (199 out of 305 or 65%). Looking at all five midblock road configurations, the KA to BCO ratio increases as separation between opposing directions decreases.

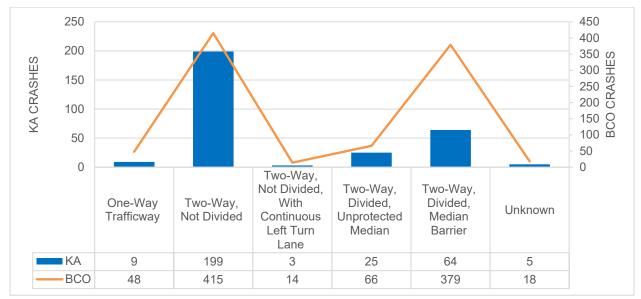


Figure 29 Segment Crashes by Midblock Roadway Configuration (Involving Motorcycle Crashes)

Midblock Road Configuration	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
One-Way Trafficway	9	48	57	0.188
Two-Way, Not Divided	199	415	614	0.480
Two-Way, Not Divided, With Continuous Left Turn Lane	3	14	17	0.214
Two-Way, Divided, Unprotected Median	25	66	91	0.379
Two-Way, Divided, Median Barrier	64	379	443	0.169
Unknown	5	18	23	0.278
Total	305	940	1,245	0.324

Table 25 Segment Crashes by Midblock Roadway Configuration (Involving Motorcycle Crashes)

As seen in Figure 30, the majority (704 out of 1,245 or 57%) of midblock crashes involving a motorcycle occur on two-lane roads. However, the tabulation of directional mileage by the number of lanes in Table 26 shows that two-lane roads account for 90% of the network and actually have the fewest crashes per 1,000 directional miles (6 KA crashes and 15 BCO crashes per 1,000 directional miles) with the exception of 8- to 10-lane roads which have no KA crashes but account for a combined 0.1% of network miles. The per-mile frequency of crashes on two-lane roads is slightly lower than the network average of 8 KA crashes and 25 BCO crashes. On the other hand, the KA to BCO ratio for two-lane roads (0.431) the average ratio of the network (0.324). It is unclear what is causing two-lane roads to have crashes less frequently but also have higher likelihoods of crashes being fatal.



Figure 30 Segment Crashes by Number of Lanes (Involving Motorcycle Crashes)

Midblock Number of Lanes	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	Roadway Miles	KA Crashes per 1,000 Miles	BCO Crashes per 1,000 Miles	Total Crashes per 1,000 Miles
1 lane	20	68	88	0.294	1,177	17	58	75
2 lanes	212	492	704	0.431	33,751	6	15	21
3 lanes	23	133	156	0.173	327	70	407	478
4 lanes	40	171	211	0.234	1,110	36	154	190
5 lanes	6	24	30	0.250	43	138	554	692
6 lanes	2	33	35	0.061	156	13	212	224
7 lanes	2	3	5	0.667	23	89	133	222
8 lanes	0	12	12	-	25	0	485	485
9 lanes	0	1	1	I	5	0	200	200
10 lanes	0	2	2	-	4	0	535	535
Unknown	0	1	1	-	-	-	-	-
Total	305	940	1,245	0.324	37,414	8	25	33

Table 26 Segment Crashes by Number of Lanes (Involving Motorcycle Crashes) Normalization by 1,000 Roadway Miles

Midblock motorcycle crashes follow a similar same patterns as midblock motor vehicle crashes with the exception that the KA to BCO ratios are higher for motorcycles. Figure 31 shows that midblock crashes are most likely to occur on roads with a speed limit of 30, 55, or 60 mph (25%, 28%, and 12% of all crashes, respectively). However, Table 27 shows that 75% of all roads have a speed limit of 30 mph (note that the network file used to calculate the mileage of each speed limit uses the speed limits of roads at the beginning of the study period in 2018 and does not reflect changes to speed limits since then, including the changing of the default speed limit in Minneapolis and Saint Paul from 30 mph to 20 mph in late 2020). Normalizing by the number of directional miles of road with a given speed limit shows that roads with a speed limit of 30 mph have quite low crash rates per directional mile (3 KA crashes and 8 BCO crashes per 1,000 directional miles), much lower than the network average of 8 KA crashes and 25 BCO crashes per 1,000 directional miles. Roads with speed limits of 55, 60, 65, or 70 mph, on the other hand, have much higher crash rates per directional mile with 32, 69, 67, and 27 KA crashes per 1,000 directional miles, respectively. This stands to reason given the fact that crashes at higher speeds are more forceful and drivers have narrower fields of vision and require longer braking distances. Roadways with speed limits under 30 mph have high crash rates per directional mile; this may simply be a result of there being few instances of these speed limits, but it could also be due to those segments being disproportionately problematic and warranting lower speed limits.

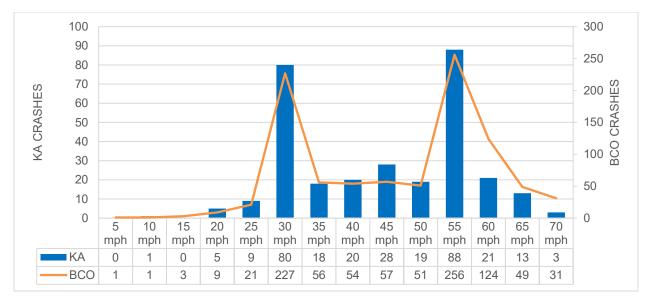


Figure 31 Segment Crashes by Max Speed Limit (Involving Motorcycle Crashes)

Table 27 Segment Crashes by Max Speed Limit (Involving Motorcycle Crashes) with Normalization by 1,000	
Roadway Miles	

Midblock Speed Limit	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	Roadway Miles	KA Crashes per 1,000 Miles	BCO Crashes per 1,000 Miles	Total Crashes per 1,000 Miles
5 mph	0	1	1	-	19	0	51	51
10 mph	0	0	0	-	108	0	0	0
15 mph	0	3	3	-	76	0	39	39
20 mph	5	9	14	0.556	163	31	55	86
25 mph	9	21	30	0.429	662	14	32	45
30 mph	80	227	307	0.352	28,065	3	8	11
35 mph	18	56	74	0.321	1,269	14	44	58
40 mph	20	54	74	0.370	796	25	68	93
45 mph	28	57	85	0.491	1,382	20	41	61
50 mph	19	51	70	0.373	1,435	13	36	49
55 mph	88	256	344	0.344	2,746	32	93	125
60 mph	21	124	145	0.169	304	69	408	477
65 mph	13	49	62	0.265	193	67	253	321
70 mph	3	31	34	0.097	109	27	283	311
Total	305	940	1,245	0.325	37,414	8	25	33

Much like roadway functional classification, number of lanes, and speed limit, roads with higher AADTs tend to have more crashes but also tend to be less common. Comparing Figure 32, which shows the number of KA and BCO crashes broken down by the AADT of the roadway on which they occurred, and Figure 33, which shows the number of KA and BCO crashes

normalized by the number of vehicle miles traveled (VMT) each day on the road on which they occurred and broken down by the AADT of that road, shows that 181 out of 305 or 34% of KA crashes occur on low volume roads (under 5,000 vehicles per day) because low-volume roads are by far the most common type of road (according to Table 24, local roads account for 71% of the network and have the fewest KA crashes per directional mile of any of the functional classes). Similarly, low-volume roads have the highest rate of KA crashes per million daily VMT (2 KA crashes per million daily VMT) because they have the lowest VMT/mile due to their low volume. Even though local streets have the lowest crashes per mile, their low volumes mean that any crashes that do occur on them are distributed over relatively low AADTs. In other words, low-volume roads have relatively few crashes per mile but comparatively high crash rates per million vehicle miles traveled.

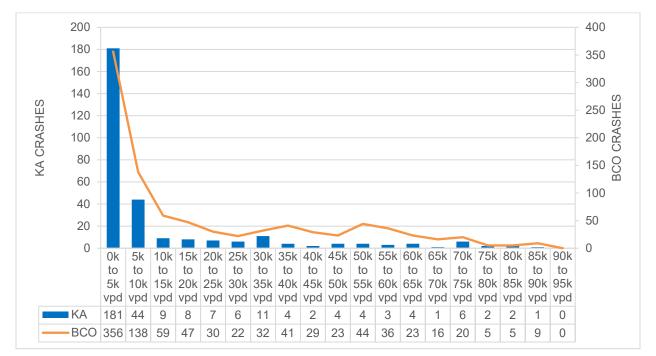


Figure 32 Segment Crashes by AADT (Involving Motorcycle Crashes)

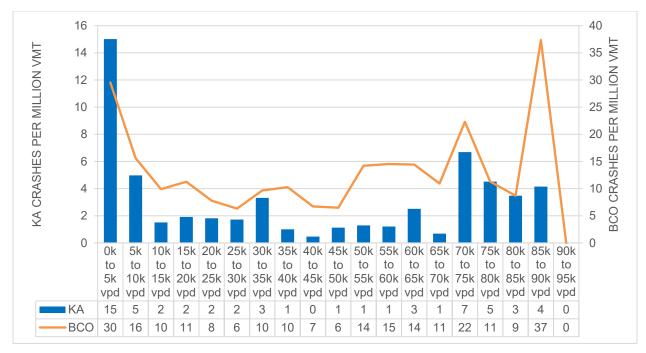


Figure 33 Segment Crashes per Million Daily Vehicle Miles Traveled by AADT (Involving Motorcycle Crashes)

Intersection Related Crashes

The crashes involving at least one motorcycle were split by whether the crash occurred on a segment (midblock) or at an intersection. This section reviews the crashes that occurred at an intersection. According to the Strategic Highway Safety Plan, the focus area with the most crashes was crashes that occur at intersections.

Within the Metropolitan Council region, 644 out of 1,312 or 49% of intersection crashes involving at least one motor vehicle occurred at a four-way intersection as seen in Figure 34. This is largely a reflection of the prevalence of four-way intersections in the network.

Figure 34 Crashes by Intersection Configuration (Involving Motorcycle Crashes)

Intersection Configuration	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
Four-Way Intersection	185	459	644	0.403
T-Intersection	73	167	240	0.437
Y-Intersection	1	6	7	0.167
Five-Way Intersection or More	1	3	4	0.333
Roundabout	11	47	58	0.234
Other traffic circle	1	0	1	-
Intersection Related	32	102	134	0.314
Railway Grade Crossing	0	5	5	-
Interchange Area	36	139	175	0.259
Crossover	1	2	3	0.500
Other Crossing	9	21	30	0.429
Unknown	3	8	11	0.375
Total	353	959	1,312	0.368

Table 28 Crashes by Intersection Configuration (Involving Motorcycle Crashes)

Similar to the patterns observed in Figure 31 which shows that midblock crashes are most likely to occur on roads with a speed limit of 30, 55, or 60 mph, Figure 35 shows that crashes occur most frequently at intersections where the maximum speed limit is 30 or 55 mph (34% and 15% of crashes, respectively). Table 29 shows that 75% of all roads have a speed limit of 30 mph and that general pattern applies to the distribution of maximum speed limits at intersections. Whereas KA crashes are clustered at intersections with speed limits of 30 or 55 mph (30% and 20% of KA crashes, respectively), BCO crashes are only clustered at 30 mph intersections (35% of BCO crashes). This is in line with the increase in the KA to BCO ratio starting at 55 mph that was seen in Table 27 and stands to reason given the previously discussed fact that crashes at higher speeds are more forceful and drivers have narrower fields of vision and require longer braking distances.

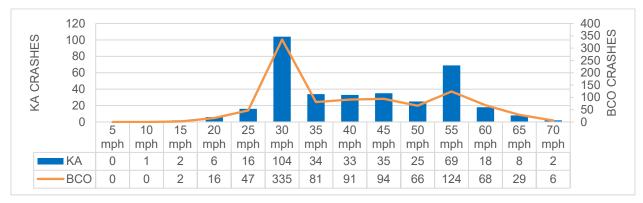


Figure 35 Intersection Crashes by Max Speed Limit (Involving Motorcycle Crashes)

Table 29 Intersection Crashes by Max Speed Limit (Involving Motorcycle Crashes) with Normalization by 1,000 Roadway Miles

Intersection Maximum Speed Limit	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio	Roadway Miles	KA Crashes per 1,000 Miles	BCO Crashes per 1,000 Miles	Total Crashes per 1,000 Miles
5 mph	0	0	0	-	19	0	0	0
10 mph	1	0	1	-	108	9	0	9
15 mph	2	2	4	1.000	76	26	26	53
20 mph	6	16	22	0.375	163	37	98	135
25 mph	16	47	63	0.340	662	24	71	95
30 mph	104	335	439	0.310	28,065	4	12	16
35 mph	34	81	115	0.420	1,269	27	64	91
40 mph	33	91	124	0.363	796	41	114	156
45 mph	35	94	129	0.372	1,382	25	68	93
50 mph	25	66	91	0.379	1,435	17	46	63
55 mph	69	124	193	0.556	2,746	25	45	70
60 mph	18	68	86	0.265	304	59	224	283
65 mph	8	29	37	0.276	193	41	150	191
70 mph	2	6	8	0.333	109	18	55	73
Total	353	959	1,312	0.368	37,414	9	26	35

When observing intersection crashes involving at least one motorcycle shown in Figure 36 and Table 30, 37% of those crashes occurred at intersections controlled by a traffic control signal and 44% occurred at an interchange or the uncontrolled approach of a yield controlled or two-way stop-controlled intersection (included in the "None" category). This pattern is likely just a reflection of the frequency of these intersection control devices/configurations.

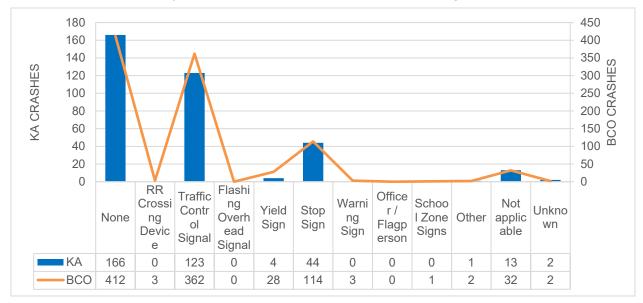


Figure 36 Intersection Crashes by Traffic Control Device (Involving Motorcycle Crashes)

Intersection Traffic Control Device	KA Crashes	BCO Crashes	Total Crashes	KA to BCO Ratio
None	166	412	578	0.403
RR Crossing Device	0	3	3	-
Traffic Control Signal	123	362	485	0.340
Flashing Overhead Signal	0	0	0	-
Yield Sign	4	28	32	0.143
Stop Sign	44	114	158	0.386
Warning Sign	0	3	3	-
Officer / Flag person	0	0	0	-
School Zone Signs	0	1	1	-
Other	1	2	3	0.500
Not applicable	13	32	45	0.406
Unknown	2	2	4	1.000
Total	353	959	1,312	0.368

 Table 30 Intersection Crashes by Traffic Control Device (Involving Motorcycle Crashes)

Demographic and Economic Characteristics

The crash data below characterizes the community in which the crash took place versus the demographic and economic characteristic of the person(s) in the crash. This information is not collected by officers as a part of the crash report.

The demographic and economic characteristics data came from the US Decennial Census (2020) and American Community Survey 5-year estimates (2021). The tables and their uses can be found in Table 9.

Table ID	Table Name	Metrics Calculated	Granularity
ACSDT5Y2021.B08201	Household size by vehicles available	Pct. Households with No Vehicle	Tract
ACSDT5Y2021.B16004	Age by language spoken at home by ability to speak English for the population 5 years and over	Pct. Speaking Only English at Home	Block group
ACSDT5Y2021.B17010	Poverty status in the past 12 months of families by family type by presence of related children under 18	Pct. Experiencing Poverty in Last 12 Months	Block group

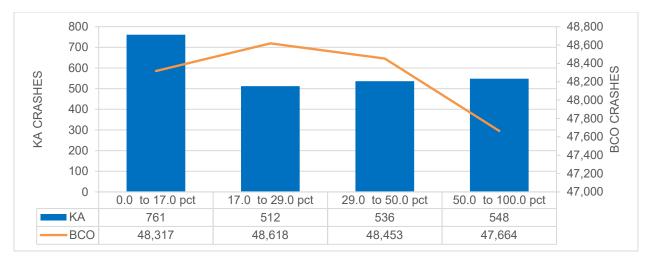

Table 31	Demographic and	Economic	Data	Sources
1 0010 01	Bonnographilo ana		Data	0000

Table ID	Table Name	Metrics Calculated	Granularity
	years by age of related children		
ACSDT5Y2021.B19013	Median household income in the past 12 months (in 2021 inflation-adjusted dollars)	Median Household Income (2021 USD)	Block group
ACSDT5Y2021.B25070	Gross rent as a percentage of household income in the past 12 months	Pct. Burdened Renters (Rent >30% of Gross HH Income)	Block group
DECENNIALDHC2020.P9	Hispanic or Latino, and not Hispanic or Latino by race	Pct. BIPOC and/or Latinx	Block group

Each crash was joined to a block group and the demographic and economic characteristics of that block were added to the record in the crash table corresponding to that crash. The tables below are a tabulation of crash severity broken down by the characteristics of the block group in which the crash took place. The guartiles shown in the tables correspond to the ranges of the block group characteristics bounded by the 25th, 50th, 75th, and 100th percentiles for that metric across all block groups. Each quartile contains one quarter of all block groups ranked by a given metric. By breaking down the crash severity by quartile, the relationship between the block group characteristics and crash rates can start to be seen. For example, in the case of motor vehicle crashes broken down by the percentage of block group residents who identify as BIPOC and/or Latinx, the number of KA crashes is highest in block groups in the bottom quartile for percentage of BIPOC- and/or Latinx-identifying residents - 761 KA crashes for block groups in the bottom guartile for BIPOC- and/or Latinx-identifying residents (0 to 17% of residents) compared to 512, 536, and 548 KA crashes in block groups in the second, third, and fourth guartile, respectively. If there was no correlation between serious crash frequency and the percentage of BIPOC/Latinx residents, the number of KA crashes would be approximately equal across block groups in all four guartiles.

Motor vehicle Crashes

KA crashes involving at least one motor vehicle appear to be disproportionately frequent in block groups where fewer residents identify as BIPOC and/or Latinx (Figure 37), more residents speak only English at home (Figure 38), have higher median household incomes (Figure 39), 1% to 9% of residents experiencing poverty in the last 12 months (Figure 40), less than 40% or more than 58% of renters paying more than 30% of their household income in rent (Figure 41), or more households do not have an motor vehicle (Figure 42).

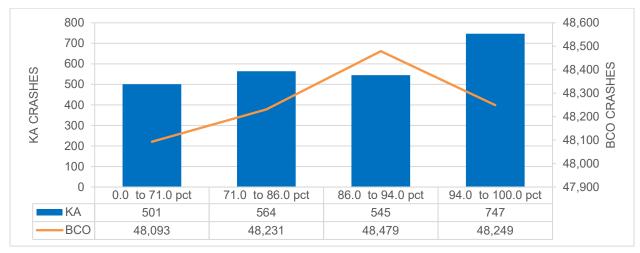


Figure 38 Motor vehicle Crash Severity by Percent Speaking Only English at Home

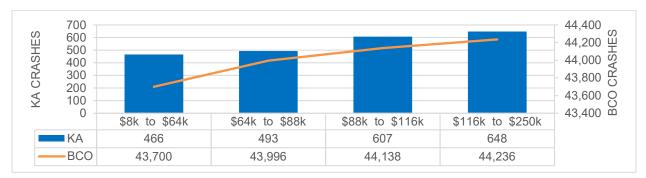


Figure 39 Motor vehicle Crash Severity by Median Household Income (in 2022 USD)

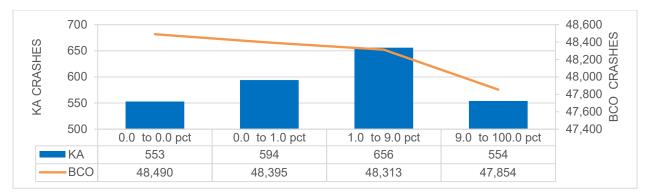


Figure 40 Motor vehicle Crash Severity by Percent Experiencing Poverty in the Last 12 Months

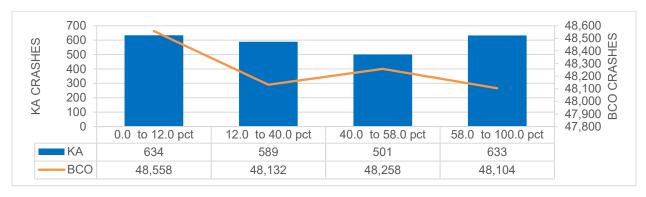


Figure 41 Motor vehicle Crash Severity by Percent Burdened Renters (Rent > 30% of Gross HH Income)

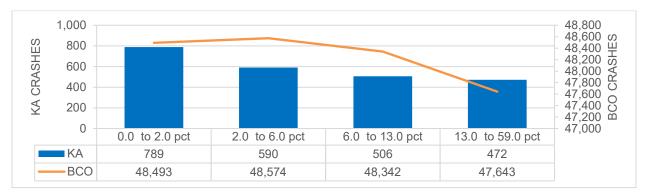
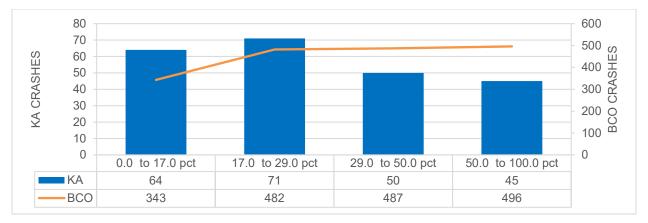



Figure 42 Motor vehicle Crash Severity by Percent Households with No Vehicle

Bicycle Crashes

KA crashes involving at least one motor vehicle appear to be disproportionately frequent in block groups where 17% to 29% of residents identify as BIPOC and/or Latinx (Figure 43), more residents speak only English at home (Figure 44), have higher median household incomes (Figure 45), fewer residents experiencing poverty in the last 12 months (Figure 46), 12% to 58% of renters paying more than 30% of their household income in rent (Figure 47), or more households do not have an motor vehicle (Figure 48).

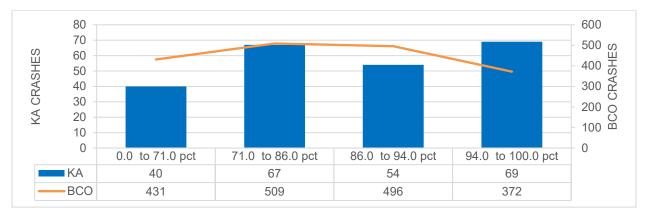


Figure 44 Cyclist Crash Severity by Percent Speaking Only English at Home

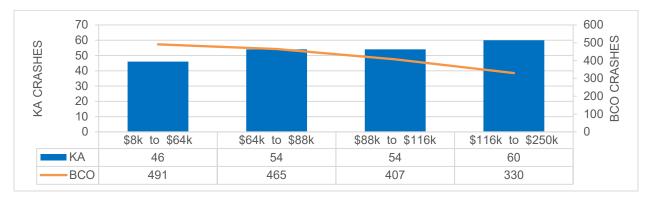


Figure 45 Cyclist Crash Severity by Median Household Income (in 2022 USD)

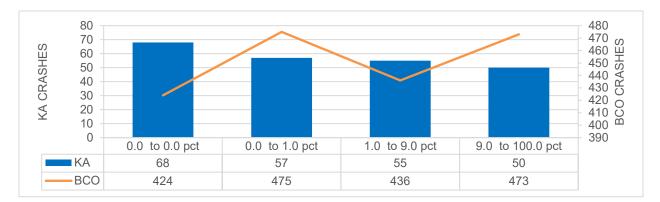


Figure 46 Cyclist Crash Severity by Percentage Experiencing Poverty in the Last 12 Months

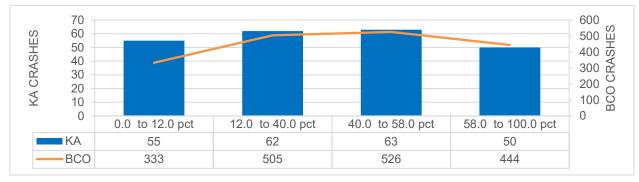


Figure 47 Cyclist Crash Severity by Percent Burdened Renters (Rent >30% of Gross HH Income)

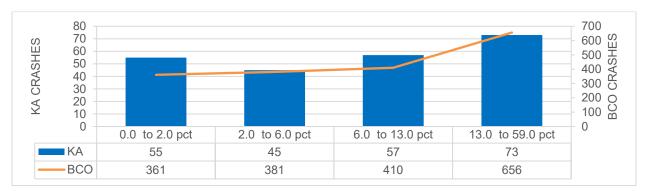


Figure 48 Cyclist Crash Severity of Percent Households with No Vehicle

Motorcycle Crashes

KA crashes involving at least one motor vehicle appear to be disproportionately frequent in block groups fewer residents identify as BIPOC and/or Latinx (Figure 49), more residents speak only English at home (Figure 50), have higher median household incomes (Figure 51), 1% to 9% of residents experiencing poverty in the last 12 months (Figure 52), fewer renters paying more than 30% of their household income in rent (Figure 53), or fewer households do not have an motor vehicle (Figure 54).

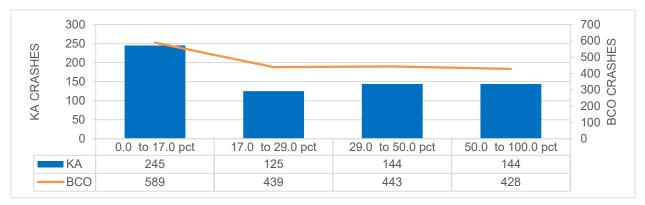


Figure 49 Motorcycle Crash Severity by Percent Identifying as Black and/or Latinx

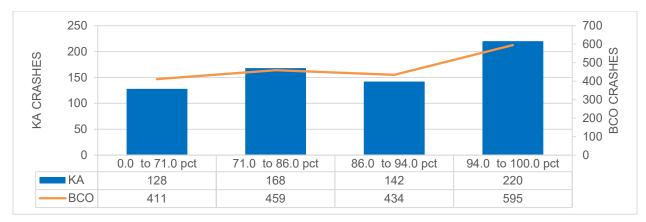
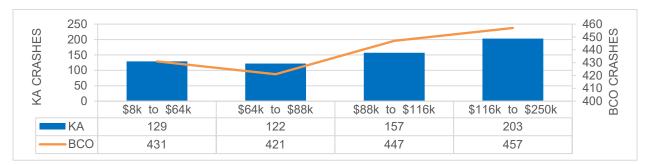



Figure 50 Motorcycle Crash Severity by Percent Speaking Only English at Home

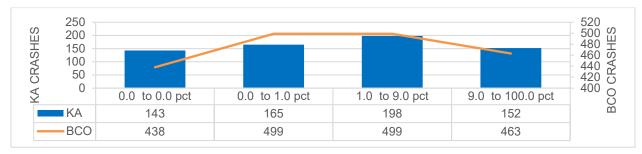


Figure 52 Motorcycle Crash Severity of Percent Experiencing Poverty in the Last 12 Months

Page - 45 | METROPOLITAN COUNCIL

250 200 150 100 50					600 400 HS 200 BHS 0
0 ≶	0.0 to 12.0 pct	12.0 to 40.0 pct	40.0 to 58.0 pct	58.0 to 100.0 pct	0
KA	201	158	141	158	COR COR
-BCO	533	476	420	470]

Figure 53 Motorcycle Crash Severity of Percent Burdened Renters (Rent >30% of Gross HH Income)

Table 27 reveals that approximately 75 percent of crashes occurred in block groups experiencing 0 to 13 percent of households with no vehicles.

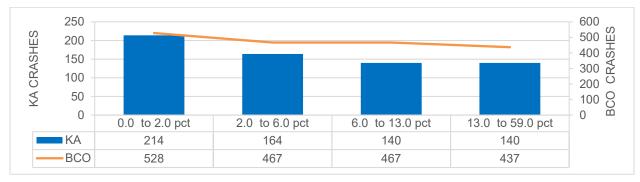


Figure 54 Motorcycle Crash Severity Percent Households with No Vehicle

Appendix

A – MnDOT Crash Reports

- Total KA
- Top 6 Focus Area Reports