

DRAFT Geotechnical Evaluation West Segment 1

August 29, 2014

Revision 0

Southwest LRT Project Technical Report

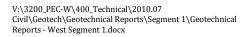
This page intentionally blank.

Contents

Executive Summary......i

List of Appendices

Appendix A	Southwest Station Area
Appendix B	Prairie Center Drive Bridge
Appendix C	Retaining Walls W110 and W111
Appendix D	General Track STA 2019+00 to STA 2139+00
Appendix E	Retaining Walls W113, W115 and W116
Appendix F	Bridge over I-494
Appendix G	Retaining Walls, W117, W118A, W118B, W118D, W119, W201 and W202



Executive Summary

This technical memorandum presents the *Geotechnical Evaluation of West Segment 1* of the Southwest Light Rail Transit (SWLRT) project in Hennepin County. This document combines seven separate memorandums, included in the appendices, under one cover. They provide the details of the geotechnical findings and recommendations for the following areas:

- **Southwest Station Area** This preliminary report provides general construction comments and recommendations between track STA 2064+00 to STA 2088+66 for the proposed construction of the track, Southwest Station, a parking ramp expansion, retaining walls RTW-W108 and RTW-W127, TPSS-19 and land bridges. A discussion of general civil and roadway discussion is also included. A final geotechnical report should be prepared when the full scope of the field investigation program has been completed. See Appendix A.
- **Prairie Center Drive Bridge** This Foundation Analysis Design Recommendation (FADR) report addresses the design and construction of a multiple span bridge carrying the SWLRT alignment over Prairie Center Drive and Technology Drive in Eden Prairie. The light rail bridge will consist of an atgrade land bridge approaching pier 1 from the west, an east abutment, and 17 piers. Prestressed concrete beams are proposed to support a cast-in-place concrete deck. See Appendix B
- **Retaining Walls W110 and W111** This preliminary report provides a summary of the soil boring information and recommendations for retaining walls RTW-W110 and RTW-W111, referred to as the Costco Hill retaining walls. A final geotechnical report should be prepared after final geotechnical design borings are completed. See Appendix C
- **General Track STA 2109+00 to STA 2139+00** This geotechnical evaluation report addresses the proposed light rail transit line track construction between STA 2109+00 and STA 2139+00 in Eden Prairie. This area includes the Town Center Station as well as retaining walls RTW-W120, RTW-W122, RTW-W125, and RTW-W126. See Appendix D
- **Retaining Walls W113, W115 and W116** This FADR report addresses the retaining walls RTW-W113, RTW-W115, and RTW-W116 for the west segment of the Southwest Light Rail Transit (SWLRT) alignment passing through Eden Prairie. See Appendix E
- **Bridge Over I-494** This FADR report provides for the geotechnical evaluation for the proposed light rail bridge over I-494 parallel to existing Bridge 27762 on Flying Cloud Drive in Eden Prairie. See Appendix F
- **Retaining Walls W117, W118A, W118B, W118D, W119, W201 and W202** This FADR report addresses the design and construction of the embankment and retaining walls RTW-W117, RTW-W118A, RTW-W118B, RTW-W118D, RTW-1119, RTW-W201, RTW-W202, and RTW-W202C between track STA 2163+25 to STA 2217+00 from the Valley View Bridge to the Nine Mile Creek Bridge. See Appendix G

This information was used in other elements of the project development including preliminary site plans, station plans, roadway improvements and traffic analysis.

Appendix A

Southwest Station Area

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Results of Field Exploration and Preliminary Recommendations Proposed Southwest Station Area – 10% Design Track STA 2064+00 to STA 2085+66 Southwest LRT, West Segment 1 Eden Prairie/Minnetonka, Minnesota

Dear Mr. Demers:

This purpose of this letter is to provide you and the design team with our soil boring results and preliminary discussions and recommendations regarding the construction of the Southwest Station area. The following preliminary report provides general construction comments and recommendations between track STA 2064+00 and STA 2088+66 for the proposed construction of the track, Southwest Platform Station, a parking ramp expansion, retaining walls RTW-W108 and RTW-W127, TPSS-19, and land bridges. A discussion of general civil and roadway discussion is also included. A final geotechnical report should be prepared when the full scope of the field investigation program has been completed.

A. Results

A.1. Exploration Logs

A.1.a. Log of Boring Sheets

Log of Boring sheets for our penetration test borings are included in the Appendix. The logs identify and describe the geologic materials that were penetrated, and present the results of penetration resistance, laboratory tests performed on penetration test samples retrieved from them, and groundwater measurements.

Strata boundaries were inferred from changes in the penetration test samples and the auger cuttings. Because sampling was not performed continuously, the strata boundary depths are only approximate. The boundary depths likely vary away from the boring locations, and the boundaries themselves may also occur as gradual rather than abrupt transitions.

A.1.b. Cone Penetration Test Sounding Logs

CPT Sounding Logs are also included in the Appendix. The CPT sounding logs report the tip resistance (Q_t) , sleeve friction (F_s) and pore pressure (U_2) that was measured continuously by the cone as it was advanced, as well as the soil behavior type (SBT) inferred from established relationships between tip resistance, sleeve friction, and pore pressure. Note that the SBT should not be used to infer a soil classification based on grain size distribution. Refer to the attached CPT Descriptive Terminology in the Appendix for more information. The CPT logs also report the friction ratio, which is determined by dividing the sleeve friction by the tip resistance.

Strata boundaries, like SBT, were inferred from changes in tip resistance, sleeve friction and pore pressure, and while cone measurements were made continuously with depth, the boundaries are still only approximate, likely vary away from the sounding locations, and may also occur as gradual rather than abrupt transitions.

A.1.c. Geologic Origins

Geologic origins assigned to the materials shown on the logs and referenced within this report were based on visual classification of the various geologic material samples retrieved during the course of our subsurface exploration, penetration resistance testing performed for the project, laboratory test results, and available common knowledge of the geologic processes and environments that have impacted the site and surrounding area in the past.

A.2. Geologic Profile

The Southwest Light Rail Transit Project Office (SPO) requested subsurface soil and groundwater information in the area of the proposed Southwest Station, on parcels of land owned by MnDOT and the City of Eden Prairie. Five (5) standard penetration soil borings and six (6) cone penetration soundings were performed in this area. Logs of the borings and soundings are included in the Appendix. A Boring & Sounding Location Sketch is also included, showing the locations of borings and soundings.

A.2.a. Topsoil

The borings initially encountered about 12 inches of topsoil. The topsoil consisted of sandy lean clay and clayey sand that was dark brown to black and moist to wet.

A.2.b. Fill

Fill was encountered at the majority of the boring locations and consisted of poorly graded sand (SP), poorly graded sand with silt (SP-SM), silty sand (SM), silty clay (CL-ML), clayey sand (SC), lean clay (CL), sandy lean clay (CL), and peat (PT). Table 1 below illustrates the depth and type of fill material encountered.

Table 1. Fill Depths

Boring No.	Boring Elevation (ft)	Approximate Depth of Fill (ft)	Elevation at Bottom of Fill (ft)	Fill Composition
2093SB	849.3	28	821	SM, SC, CL
2094SB	837.7	13	824 1/2	SC, CL
2095SB	841.5	17	824 1/2	SC, CL-ML, CL
2104SB	834.3	42	792	SP, SP-SM, CL, CL
2118SB	837.8	14	824	SC, CL, CL, PT

Penetration resistances varied from 5 to 62 blows per foot (BPF), although some of the higher penetration resistances were likely influenced by encountering a rock or debris in the sampler.

A.2.c. Swamp Deposits

Beneath the fill, Borings 2094SB, 2095SB, and 2104SB encountered swamp deposited soils to depths of 17, 20, and 46 feet, respectively. The swamp deposited soils consisted of slightly organic silt (OH) and peat (PT) that was gray to black containing fibers or shells and was moist to wet.

A.2.d. Alluvium

Beneath the fill and swamp deposits, Borings 2094SB and 2118SB encountered alluvial clays to depths of 46 and 48 feet, respectively. The alluvial deposits consisted of lean clay (CL) and fat clay (CH) that were gray and wet. Penetration resistances varied from weight of hammer (WH) to 12 blows per foot (BPF), indicating the alluvial clays were very soft to rather stiff.

A.2.e. Glacial Till

Glacial till soils were encountered throughout the soil profile beneath the fill, swamp deposits and alluvial clays. The tills consisted of silty sand (SM), sandy silt (MLS), clayey sand (SC), lean clay (CL) and sandy lean clay (CLS). The till soils contained a trace to some gravel, were moist to wet or waterbearing and were brown to gray. Penetration resistances varied from 9 to 74 BPF, indicating the sands and silts were medium dense to very dense and the cohesive soils were rather stiff to hard.

A.2.f. Glacial Outwash

Glacial outwash soils were also frequently encountered throughout the soil profile. The glacial outwash soils consisted of poorly graded sand (SP) and poorly graded sand with silt (SP-SM). The sands generally contained some gravel. Penetration resistances varied from 7 to 57 BPF blows, indicating the soil was loose to very dense.

A.2.g. Sounding Logs

Based on the soil behavior type on the sounding logs, the soundings encountered a layer behaving similar to a mix composition of fairly dense sand and clay in the upper 50 feet. It appears the soundings encountered soft clay layers from 50 to 80 feet in 2109CB and again in 2105CB from 95 to 140 feet. Please refer to the sounding logs in the Appendix for a more detailed description.

A.3. Groundwater

Due to the impermeable nature of the clayey soils, and mud rotary drilling techniques, the depth of the static groundwater level was difficult to determine and the boring logs likely do not reflect the actual groundwater levels. It appears that water is perched on top of and between clayey soils and within sandy soil layers at depth. Piezometers may be needed to determine more accurate groundwater levels. Groundwater was measured or estimated to be located at the depths shown below in Table 2.

Location	Surface Elevation	Measured or Estimated Depth to Groundwater (ft)	Corresponding Groundwater Elevation (ft)
2093SB	849.3	40	809
2094SB	837.7	22	816
2095SB	841.5	17	825
2104SB	843.3	15	819
2118SB	837.8	NA	NA

Table 2. Groundwater Summary

Based on the interpretation of pore pressure on the sounding logs, it appears groundwater is estimated to be at elevations ranging from 815 to 825. These estimates appear to correlate with the groundwater observations in the borings above and from the historical information listed below.

Based on historical groundwater information pulled from previously conducted MnDOT borings, groundwater elevations seem to range from 820 to 830. A sketch of historical borings along with the approximate groundwater observations is included in the Appendix of this report.

Based on a review of the current and historic boring and sounding groundwater observations, we anticipate groundwater will be near elevations ranging from 820 to 830 feet. However, seasonal and annual fluctuations should be anticipated.

B. Southwest Station General Recommendations

B.1. Site History

The Southwest Station area in Eden Prairie has a complicated history of construction. All buildings located within the Southwest Station area are supported on driven piles, as well as a majority of the deep utility lines (sanitary sewer, water main, and storm sewer). There have been multiple utility line issues since the original site construction in the late 1990's.

The majority of the roadways and parking lots are ground supported, however, most, if not all of the roadways show signs of distress due to the soft underlying soils. Of note, the parking lot between the retail strip mall and the parking ramp contains up to 10 feet of tire chips to relieve overburden stress and reduce settlements on the soft underlying soils. We also understand that wick drains were installed across the site to promote consolidation of underlying clays during the original construction of the site.

As noted in the borings, swamp deposits were encountered to depths of 20 to 45 feet. It appears these soils were largely excavated and replaced with fill beneath the embankment for the off ramp from eastbound TH 5/TH 212. We also understand these soils were removed and replaced with granular fill beneath Technology Drive. In these areas, fill depths are anticipated to range from 15 to 40 feet, and isolated pockets of organic soils may still be present.

We understand soil corrections occurred during the original construction for the TH 212 off ramp, and the creek culvert beneath the ramp. The termination point of the soil corrections is not known at the time, and there is like a transition area, where fill may be been placed above the native organic soils.

The project team should be aware that any raises in grade on the site will result in settlement of the underlying soil and could cause collateral damage of existing structures, utilities and surface features.

B.2. General Axial and Lateral Capacities of Piles

We performed analyses on the SPT borings and CPT soundings and performed lateral analyses on 2093SB. Because the borings were not performed at specific structures, we used the following assumptions regarding the design of the piles:

- 12 3/4-inch outside diameter (OD) pile
- 1/4-inch pile wall thickness

Tables 4 and 5 below provide estimated pile embedment depths (from the ground surface) for a factored load of 140-tons, using the resistance factors noted in Table 3. We did not provide pile lengths for Boring 2105CB. The boring was offset upslope due to utility conflicts and does not represent the conditions at the bottom of the slope.

Table 3. Recommended Pile Driving Resistance Factors (ϕ_{dyn})

Specified Construction Control	ф _{dyn}
MnDOT Pile Formula 2012 (MPF12) for Pipe Pile Sections	0.50
Wave Equation and Pile Driving Analyzer (PDA)	0.65

Table 4. Summary of Anticipated Pile Lengths, CIP 12 ¾", ΣΥQ_n = 140 Tons, PDA

Boring Number	Boring Elevation (ft)	R _n (tons)	Approximate Tip Elevation (ft)	Approximate Pile Length (ft)
2104SB	834.3	140 (430 Kips)	769	65
2106CB	837.7	140 (430 Kips)	772	66
2107CW	847.8	140 (430 Kips)	774	74
2093SB	849.3	140 (430 Kips)	792	57
2108CW	846.9	140 (430 Kips)	769	78
2109CB	840.9	140 (430 Kips)	769	72
2094SB	837.7	140 (430 Kips)	787-775*	51-63*
2110CB	840.5	140 (430 Kips)	794	47
2095SB	841.5	140 (430 Kips)	794	48
2118SB	837.8	140 (430 Kips)	778	60

Table 5. Summary of Anticipated Pile Lengths, CIP 12 $\frac{3}{4}$ ", $\Sigma \Upsilon Q_n = 140$ Tons, MPF12

Boring Number	Boring Elevation (ft)	R _n (tons)	Approximate Tip Elevation (ft)	Approximate Pile Length (ft)
2104SB	834.3	140 (560 Kips)	750	84
2106CB	837.7	140 (560 Kips)	770-722*	68-116*
2107CW	847.8	140 (560 Kips)	769	79

Boring Number	Boring Elevation (ft)	R _n (tons)	Approximate Tip Elevation (ft)	Approximate Pile Length (ft)
2093SB	849.3	140 (560 Kips)	782	67
2108CW	846.9	140 (560 Kips)	764	83
2109CB	840.9	140 (560 Kips)	764	77
2094SB	837.7	140 (560 Kips)	774	64
2110CB	840.5	140 (560 Kips)	787	54
2095SB	841.5	140 (560 Kips)	779	63
2118SB	837.8	140 (560 Kips)	769	69

*-Pile may reach capacity at shallow elevation. Recommend PDA to confirm pile length Abandonment of existing piles:

B.3 Lateral Pile Analyses

The following table provides the soil parameters used for the lateral pile analyses and p-y curve generation, which was performed using the computer program LPILE (2013). Based on the soils encountered in the borings, we used the default lateral modulus of subgrade reaction values included in LPILE. For the purposes of our preliminary evaluation, we used the soil parameters encountered in Boring 2093SB.

Layer Top Depth	Layer Bottom Depth	Effective Unit Weight	Internal Angle of Friction	Undrained Shear Strength	
(feet)	(feet)	(pcf)	(degrees)	(psf)	Material Type
0	4.0	125	NA	1000	Stiff Clay with Free Water
4.0	6.0	125	NA	2000	Stiff Clay with Free Water
6.0	9.0	120	31	NA	Sand (Reese)
9.0	14.0	125	NA	3500	Stiff Clay w/o Free Water
14.0	17.0	125	NA	2000	Stiff Clay w/o Free Water
17.0	24.0	120	32	NA	Sand (Reese)
24.0	29.0	125	NA	2500	Stiff Clay w/o Free Water
29.0	32.0	120	33	NA	Sand (Reese)
32.0	37.0	120	35	NA	Sand (Reese)
37.0	57.0	55	32	NA	Sand (Reese)
57.0	78.0	55	33	NA	Sand (Reese)
78.0	83.0	65	NA	4500	Stiff Clay w/o Free Water
83.0	101.0	58	38	NA	Sand (Reese)

For our lateral analyses, we assumed a pile top located at the ground surface. The maximum lateral load in our analyses is for a loading condition assuming one-inch of deflection at the pile top with a fixed-head condition. We assumed a pile wall thickness of 1/4-inch, a steel yield strength of 45 ksi, and concrete infill with a compressive strength of 3 ksi for our analyses. Please refer to the attachments for the shear force and bending moments within the pile at service loads of 100 tons for the 12.75-inch closed-end pipe pile.

B.4. Platform Station Construction

We understand a new platform station will be constructed in the existing Southwest Station area, in the vicinity of the western portion of the existing bus station lobby and offices. While not confirmed, we have assumed the existing lobby and office building are supported on driven pile foundations with a grade beam and structural slab supporting the first level.

Similar to the ramp, the soil conditions are anticipated to be such that new station construction will require the installation of driven pipe piles for support.

We recommend removing all debris associated with the existing structure. Depending on the design capacity of the existing piles, the proposed loads of the new structures and information such as the original driving records, the existing piles may be suitable for reuse to support the track or the platform station. If the existing piles are being considered for reuse, we recommend re-striking the pile and using PDA equipment to verify the load carrying capacity of the piles. Pile inspections are also recommended to determine if any damage occurred during building demolition.

B.5. Retaining Wall RTW-W108 and RTW-W127

Retaining walls RTW-W108 and RTW-W127 are designed to be soldier pile and lagging retaining walls supporting up to 13 feet of soil. RTW-W108 is adjacent to the track from STA 2082+30 to STA 2085+65 (approximately) while RTW-W127 is proposed to support soil adjacent to TPSS-19 on the northeast corner of the Southwest Station platform. We recommend following MnDOT guidelines when placing and compacting backfill for the walls as needed.

Soldier-pile installation depths are expected to range from 25 to 30 feet below grade assuming a pile spacing of 5 feet. The tracks adjacent to the soldier pile walls will be supported on driven pile. If embedment depths exceed 30 feet, or greater spacing is required, tiebacks should be considered. Please refer to the land bridge discussion for recommendations on the pile design.

B.6. Land Bridge

Land bridges will be used to support the tracks from STA 2064+00 to STA 2077+03 (ballast supported track) and again from STA 2081+90 to STA 2085+66 (DF supported track), where the Prairie Center Drive Bridge begins. Based on the preliminary engineering plans, spacing between pile caps for ballast supported track is approximately 35 feet and for DF supported track is approximately 50-feet.

B.7. General Civil/Roadway Construction

As part of the construction at the SW Station, several roadways will be realigned to accommodate the ramp expansion and platform station. Of note, the track will cross an existing pond at STA 2078+00, where raises in grade of at least 6 to 10 feet are expected. Additionally, a culvert carrying stormwater to the adjacent wetland will need to be extended as part of the new construction. We also understand a raise in grade of several feet may occur within the existing southern parking lot area.

The soil conditions in the area are extremely susceptible to consolidation and settlement from new loads and raises in grade. For the parking lot areas, lightweight fill in the form of tire chips or EPS foam blocks may be an option to raise grade with minimal stress increase, however, this may be an obstacle for the installation of utilities or light pole bases. Once final design parameters are known, additional measures such as surcharges or wick drains can be explored to increase the rate of consolidation. Regardless of the methods mentioned above, long term consolidation and settlement of the soil will occur and may vary in magnitude from one inch to upwards of one foot. If tight settlement tolerances exist, alternative foundation systems such as aggregate piers or reinforced pavement sections could be considered.

We recommend all structures, including the culvert and light pole bases, be supported on deep foundation systems.

We also recommend supporting all deep utilities (sanitary sewer, water main, and storm sewer) on driven piles. This area has a history of failing utility lines from consolidation of the swamp deposits and alluvial fat clays at depth.

B.8. TPSS-19

A traction power substation (TPSS) is proposed adjacent to the northeast corner of the platform station. This area is near the transition area that soil was corrected during construction, to the area of known organic deposits. We recommend further investigation of this area to determine a suitable foundation system. TPS stations are generally small, lightly loaded structures, so a limited soil correction or the use of spread footings should be considered. Further investigation should be given to

the settlement tolerances of these stations as electrical conduits are running in and out of the station. If the settlement tolerances are such that damage to the conduits is probable, we recommend the use of intermediate to deep foundation systems, which may include helical anchors or driven piles.

C. Remarks

This report should be considered preliminary in nature and may be revised upon final design parameters and the completion of the full geotechnical program.

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If you have any questions about this Addendum, please contact Josh Kirk at 952.995.2222 or Ray Huber at 952.995.2260

Sincerely,

BRAUN INTERTEC CORPORATION

Professional Certification:

I hereby certify that this plan, specification or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Joshua L. Kirk, PE Associate Principal-Project Engineer License Number: 45005

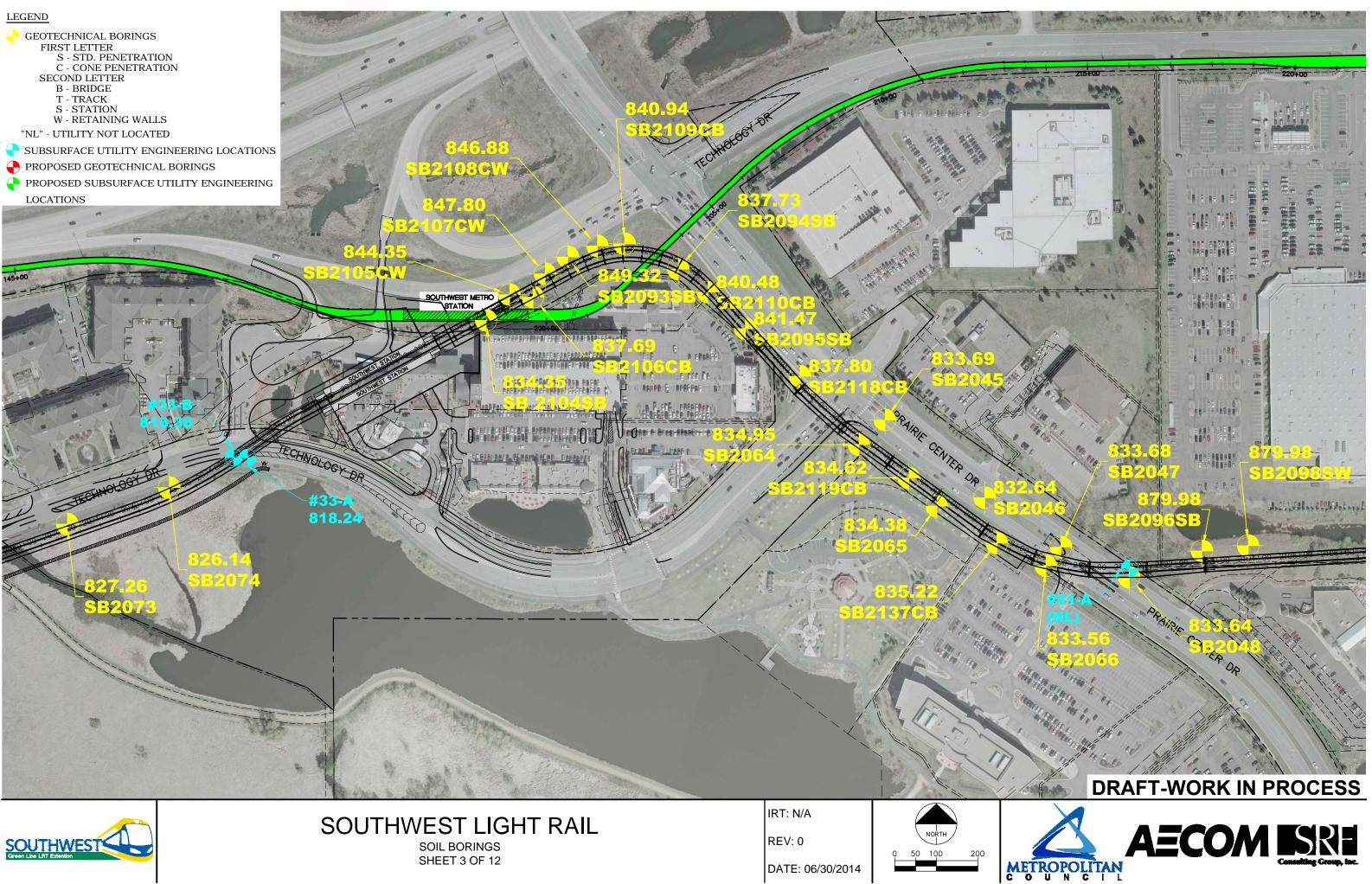
Reviewed by:

Ray A. Huber, PE Vice President-Principal Engineer

Reviewed by:

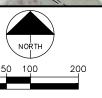
Matthew P. Ruble, PE Principal Engineer

Appendix: Boring Location Sketch Preliminary Engineering Plan and Profile Pages Standard Penetration Borings 2104SB, 2093SB, 2094SB, 2095SB, 2118SB Cone Penetration Test Borings 2105CW, 2106CW, 2107CW, 2108CW, 2109CB, 2110CB Nominal Resistance Graphs Lateral Pile Analysis Results

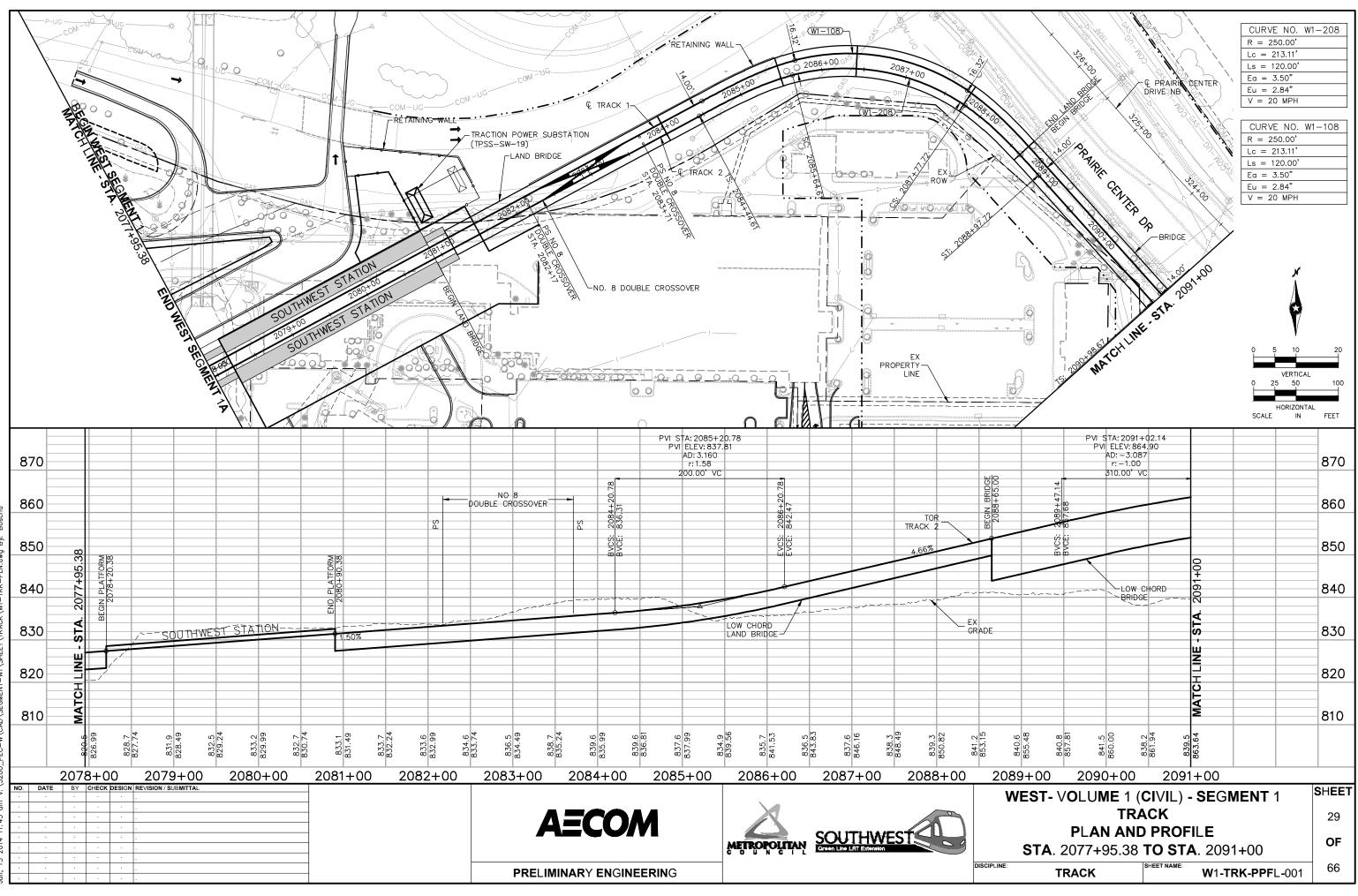


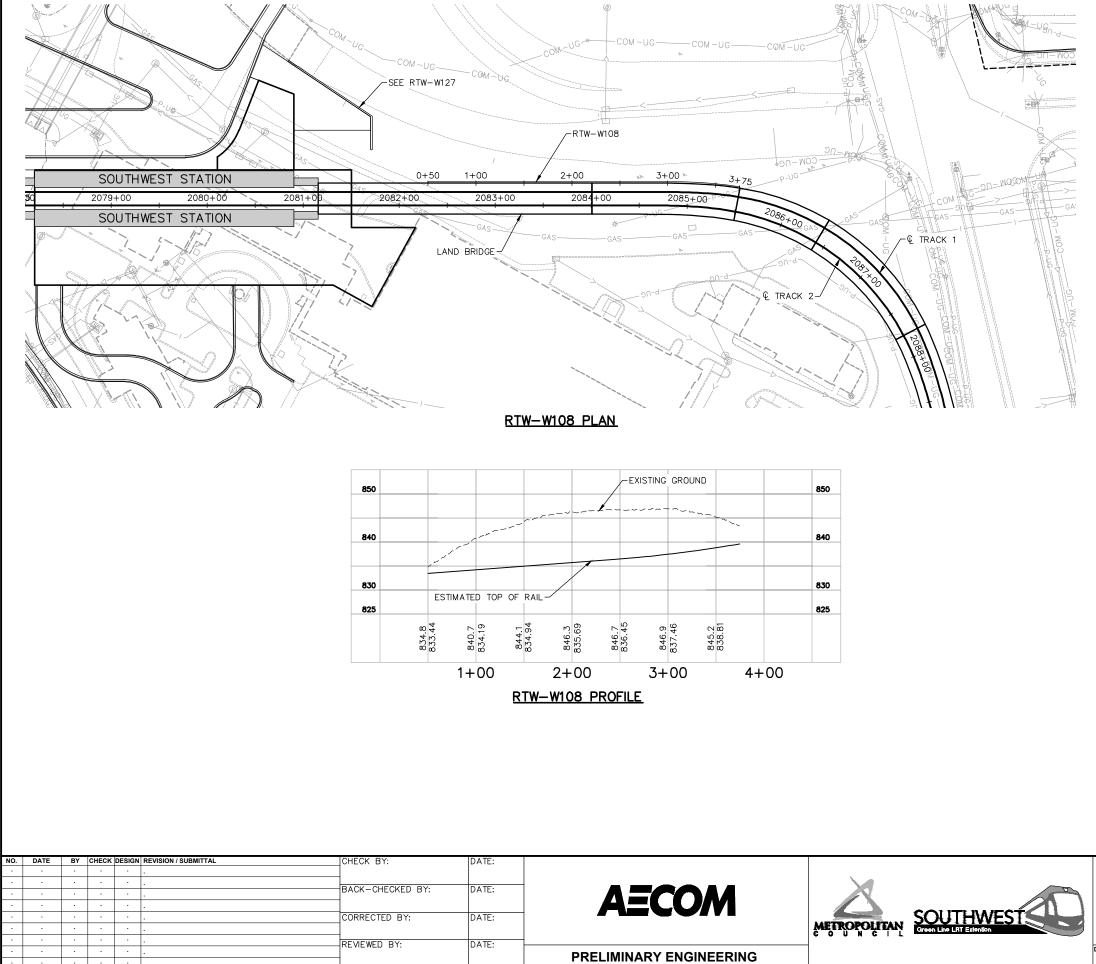
Historical Boring Groundwater Level Sketch SPT Descriptive Terminology CPT Descriptive Terminology

c: Mr. Jeff Stewart: SPO Ms. Laura Amundson: SPO

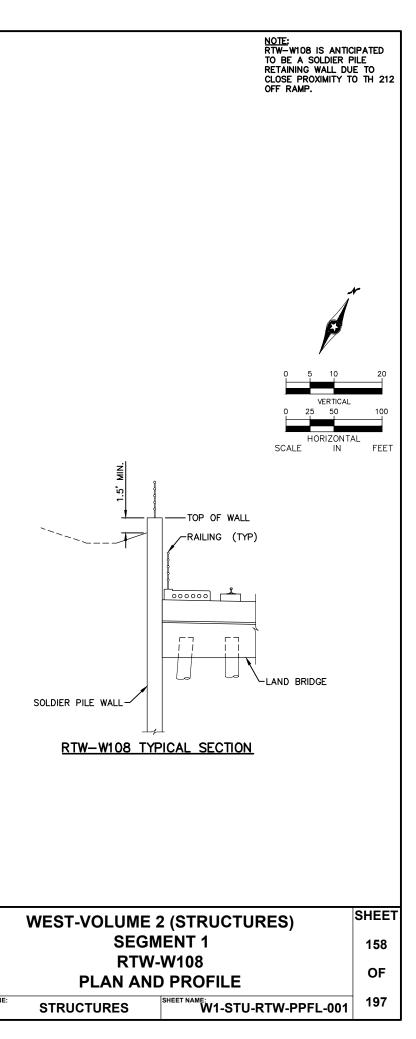

APPENDIX

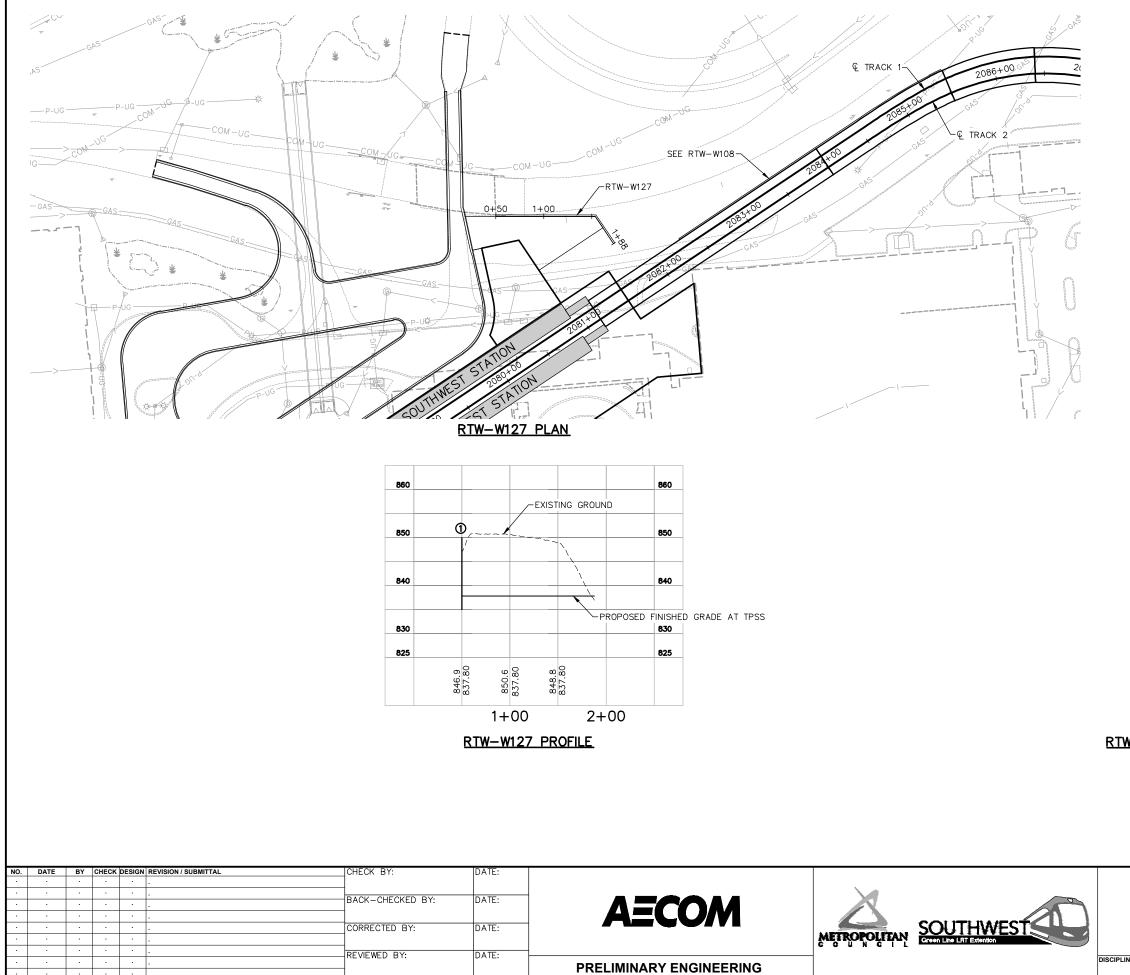
IRT: N/A
REV: 0





			CORV				
			R = 1			R = 1000'	
				223.78'		$Lc = 67.76^{\circ}$	
			Ls =			Ls = 40'	
				0.50"		Ea = 0.50"	
				1.08"		Eu = 1.08"	
			V = 2	20 MPH		V = 20 MP	1
			CURV	Έ ΝΟ. W1,	A-105	CURVE NO.	W1A-106
			R = 1	1000'		R = 1000'	
				223.78'		$Lc = 67.76^{\circ}$	
			Lc =			Lc = 07.70 Ls = 40'	
				0.50"		Ea = 0.50"	
				1.08"		Eu = 0.00 Eu = 1.08"	
				20 MPH		V = 20 MPH	4
						0 5.0	10 20
						0 ##	## ### IZONTAL
		1					860
							800
_				_			
_							850
_							
							840
							040
-							
_							830
-							
							820
_		1	1	1			
							810
							810
							810
							810
							800
					SEG		800
	 	OLUN			SEGI	MENT 1A	800
	 ST - V		TRA	CK		MENT 1A	800
É	ST - V		TRA			MENT 1A	800 SHEET
		PLA	TRA N AND	ACK) PROF	FILE		800
		PLA	TRA N AND	CK	FILE		800 SHEET


CURVE NO. W1A-205


CURVE NO. W1A-206

DISCIPLINE

RTW

STRUCTURES W1-STU-RTW-PPFL-014	131
	OF 197
RTW-W127	171
WEST-VOLUME 2 (STRUCTURES) SEGMENT 1	SHEET
	OUFET
N-W127 TYPICAL SECTION	
SOLDIER PILE WALL	
RAILING	
HORIZONT/ SCALE IN	AL FEET
VERTICAL 0 25 50	100
0 5 10	20
P	
X A	
(1) PROPOSED GROUND 2H:1V MAXIMUM SLO WALL TERMINATION SHOWN.	OPE AT
CLOSE PROXIMITY TO OFF RAMP.	0 TH 212
<u>NOTE;</u> RTW-W127 IS ANTIC TO BE A SOLDIER F RETAINING WALL DU	PILE
· · ·	

BRAUN^{**} INTERTEC

UNIQUE NUMBER

This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2104			Ground Elevation (Surveyed)		
Locatio		nonir	Co Coordinato: V- V-	(ft.)	Dri	l Machine	. 7504	2104				Г 1 of 3	
LUCAIIC			Co. Coordinate: X= Y=			mmer CN			libuatad		Drilling	5/14/14	
		· ·	, ,	itude (West)=	1 Iai						Completed	J/ 14/ 14	
	No St		Offset Information Available		_	SPT	MC	СОН	γ	Soil	Other 7		
μ	Depth	Lithology			5	N60	(%)	(psf)	(pcf)	Ň	Or Ren	narks	
DEPTH		thol			ling	REC	RQD	ACL	Core	રુ	Forma	tion	
Q	Elev.			ssification	Drilling	5 (%)	(%)	(ft)	Core Breaks	R	or Men	nber	
-	1.0	$\sqrt{l_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_$	SANDY LEAN CLAY, trace ro moist. (CLS), topsoil fill	oots, dark brown and brown,	14	> >	21						
+	-	\bigotimes			<u>र्ष</u>		+						
+	-	\bigotimes	SANDY LEAN CLAY, trace G	ravel, with Sand seams, brown		6	33						
5-	_	\bigotimes	and gray, wet. (CLS), fill		र्		1						
J	6.0	\bigotimes				7	15						
+	-	\bigotimes	I FAN CLAY with Silt langes	gray and brown, wet. (CL), fill	4	× _	+			יח	D=87 pcf		
+	9.0	\bigotimes	ELAN OLAT, with Onthenses,	gray and brown, wet. (OE), his		7	33						
10-		XX	LEAN CLAY trace fibere are	y and brown with lowers of	-41		1						
	-	\bigotimes	LEAN CLAY, trace fibers, gra black, wet. (CL), fill	y and brown with layers of		15	16						
+	12.0	\bigotimes	. ,		41	>	+						
+	-	\bigotimes				18	_ 13						
▼ 15	_	\bigotimes			41		İ			P	200=11%		
-13-	_	\otimes				16	14				illers Note: S	witched to	
+	-	\bigotimes			PD	7	+				ud rotary drill		
+	-	\bigotimes				4	17			an	ter 15-foot sa	mpie.	
	-	\bigotimes	POORLY GRADED SAND wi	th SILT. fine- to	PD	-	t						
20-	-	\bigotimes	medium-grained, brown, mois	at to 15 feet then waterbearing.		9 -	13						
-	-	\bigotimes	(SP-SM), fill		PD	7	+						
+	-	\bigotimes				15	12						
	-	\bigotimes			PD	-	t						
25-	_	\bigotimes				8	15						
-	-	\bigotimes			PD	-	+						
+	- 20.0	\bigotimes				3	21						
	29.0	\mathbf{X}			- PD		†						
30-	_	\bigotimes				6	19			P2	200=2%		
]	-	\bigotimes			PD		ļ						
+	-	\bigotimes					+						
	-	\bigotimes			PD		+			*N	lo sample rec	overv.	
35-	-	\bigotimes	POORLY GRADED SAND, fi waterbearing. (SP), fill	ne- to medium-grained, brown,	\mid	9 -	12					- ,-	
]	_	\bigotimes	waterbearing. (OF), III		PD		ļ						
	-	\bigotimes			\mid	15	17						
+	-	\bigotimes			PD		+						
40-	-	\bigotimes			\mid	15	14						
	42.0	\bigotimes			PD		Į						
	-		SLIGHTLY ORGANIC SILT, 1	race shells, lenses of Lean	$\mid \times$	11	40			00	C=3%		
+	-		Clay, gray with layers of black		PD		+						
45⊥	 Index She	et Cor	1e 3 0 (Continu		_1><	⊾	⊥	⊥ Soil Class	 	⊥_ Rock	Class: Edit:	 Date: 6/5/1	
,											APOLIS\2013\002		

BRAUN^{**} INTERTEC

This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

UNIQUE NUMBER

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2104			Ground Elevation (Surveyed)
_	Depth	y,	1		5	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	•
	46.0	• • •			X	10	170	1/4		-	
_					PD		1				
-	-					9.	21				
-	-		SANDY LEAN CLAY, trace	Gravel, gray, wet, rather stiff.	PD	-	÷				
50 - -	-		(CLS), till			15	13				
-	53.0						+				
-	_ 53.0	//// 			-PD	-	+				
55-	_	· · ·				22 -	11				
-	-				\vdash		+ ''				
_	-	· · · ·	POORLY GRADED SAND	with SILT, fine- to vel, gray, waterbearing, medium	PD		-				
-	-		dense. (SP-SM), outwash	vei, gray, waterbearing, medium			+				
60-	-	· · · · · ·				23 -	25				
-	-						+				
-	63.0	· · ·			-PD		-				
-	-	· · · ·				-	-				
65-	-	· · ·				16	16				
-	-	· · ·					+				
-	-	· · ·			PD	-	t				
70-	_	· · · · · · · · · · · · · · · · · · ·		fine- to coarse-grained, trace		17 -	17				
-	-	· · ·	Gravel, gray, waterbearing,	medium dense. (SP), outwahs	\vdash		- "				
-	_	· · ·			PD	-	-				
-	-	· · · · · · · · · · · · · · · · · · ·					÷				
75-	-	· · · · · · · · · · · · · · · · · · ·			\square	30 -	16				
-	77.0	· · · · · · ·					ļ				
-	-				PD		+				
-	-						ł				
- 80 -	-				X	41	14				
-	-					-	ł				
-	_		SANDY LEAN CLAY, trace Silt, gray, wet, hard to very	Gravel, with frequent layers of stiff (CLS) till	PD		ţ				
85-	-		e, gray, wet, hard to very		\bigtriangledown	26 -	16				
-	-				\vdash		+				
-	-				PD	.	ţ				
-	-						Ļ				
90-						l	└	⊥	I	⊥	

BRAUN INTERTEC This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

UNIQUE NUMBER

U.S. Customary Units

SHEET 3 of 3 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Trunk Highway/Location Boring No. State Project Bridge No. or Job Desc. Ground Elevation SWLRT 2104SB (Surveyed) γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core ୪ Breaks ଜ Core Formation Classification Elev. (ft) or Member (%) (%) Layer of Sand encountered at 90 feet. 34 12 \searrow PD DD=119 pcf 95 30 15 PD SANDY LEAN CLAY, trace Gravel, with frequent layers of 100 18 16 Silt, gray, wet, hard to very stiff. (CLS), till (continued) 105 PD 110.0 110 34* 115 PD 120 LEAN CLAY, with Silt layers, reddish brown to gray, wet, 35 26 dense. (CL), glaciofluvium 125 PD DD=125 pcf 130 33 26 LL=28, PL=20, PI=8 131.0 Bottom of Hole - 131 feet. Water observed at a depth of 15 feet while drilling. Boring immediately backfilled with bentonite grout. Soil Class: J. Kirk Rock Class: Edit: Date: 6/5/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ

BRAUN^{**} INTERTEC

UNIQUE NUMBER

This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Locat	ion				Boring I 2093		-	round Elev 49.3 (S			
ocatio	<i>n</i> Hen	nepir	n Co. Coordinate: X=48462	21 Y=125374	(ft.)	Drill	Machine	₹7504					T 1 of 3		
	Latiti	ude (North)= Long	itude (West)=		Han	nmer CN	IE Autor	natic Ca	librated		rilling ompleted	5/13/1		
	No St	tation-	Offset Information Available				SPT	МС	сон	γ	1	Other Tests Or Remarks Formation or Member			
г	Depth	gy				5	N 60	(%)	(psf)	(pcf)	Soil				
DEPTH		Lithology				ing eratic	REC	RQD	ACL	Core	ž	Forma	tion		
D	Elev.	Lit	Clas	ssification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Roc	ຂຶ້ or Member			
	1.0	$\frac{1}{2}$	SANDY LEAN CLAY, trace ro moist. (CLS), topsoil fill	oots, trace Gravel, bla	ck,	ß	-	18							
+	848.3	\bigotimes	SANDY LEAN CLAY, trace re	oots, black and dark b	rown,	אַ א	8.	27							
ļ	4.0		moist. (CLS), fill				<u> </u>	/							
5+	845.3	\bigotimes	SANDY LEAN CLAY, trace G	Gravel, gray, moist. (Cl	_S), fill	\mathbb{R}	19 -	11							
+	6.0 843.3	\bigotimes				सि		-							
Į		\bigotimes	SILTY SAND, fine- to mediur moist. (SM), fill	n-grained, trace Grave	el, brown,	\square	22	12			P200	=24%			
+	9.0 840.3	\bigotimes				Æ	-	+							
10	_	\bigotimes				\mathbb{X}	32 -	13							
+		\bigotimes				Ł		+			00-1	122 p.of			
+		\bigotimes	SANDY LEAN CLAY, trace C with layers of black, moist. (C		ns, gray	K	31 .	_ 11					PI=13		
15-	_	\bigotimes				51	18 -								
	17.0	\bigotimes					10	33							
+	17.0 832.3			arrest mariet (CC) fill			27	9			Drillo	ra Nata: S	witchod to		
Į	19.0	\bigotimes	CLAYEY SAND, with Gravel,	gray, moist. (SC), mi		PD					mud i	rotary drilli	ing metho		
20+	830.3	\bigotimes	SILTY SAND, fine- to mediur	n-grained, trace Grave	el, brown,	\square	27 -	10			after	17 1/2-foo	t sample.		
1	22.0	\bigotimes	moist. (SM), fill			PD		+							
+	827.3	\bigotimes					27 .	10			DD=1	36 pcf			
25		\bigotimes		arou moist (SC) fill		PD	-	-							
25-		\bigotimes	CLAYEY SAND, with Gravel,	gray, moist. (SC), ill			20	15							
+	28.0	\bigotimes				PD	50/6"* .	-			50/6"	(set). No	sample		
ļ	821.3	× × × × · ×					. 50/0	+			recov	· · ·	·		
30	-	×	SILTY SAND, fine-grained, b outwash	rown, wet, dense. (SN	l),	\square	37 -	13							
+	32.0	· · ·× ·× · .	Cathaon			PD		-							
ļ	817.3	× .				\boxtimes	74	10			P200	=13%			
+		× .	SILTY SAND, fine- to mediur		, brown,	PD		ł							
35	-	× : .	wet, very dense. (SM), outwa	sh		\mid	63	12							
ļ	37.0	× ×				PD		Ļ			0000	-110/			
+	812.3						23 .	_ 13			r200	=11%			
40	-		POORLY GRADED SAND w	th SILT fine to		PD	- -	- 1-							
			medium-grained, with Gravel	, brown, wet to waterb	earing,	\bowtie	9 -	15							
t			loose to medium dense. (SP-	SM), outwash		PD	-	t							
ļ								Į							
45	Index She					\geq	1	L				ass: Edit:			

BRAUN INTERTEC

This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

UNIQUE NUMBER

State	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2093			Ground Elevation 849.3 (Surveyed)
Ï	Depth	Ŋ			ис	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	C	lassification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	_				\geq	12	14				
-	-				PD	19	12				
-	+				PD	-	- '2				
50-	+				\mathbf{X}	7 -	17			P2	200=9%
	ţ				\square	-	ţ				
-	Ļ				PD	-	ŀ				
	ł					-	ł				
55-	F				\mid	11	22				
-	ł					-	ł				
-	ţ				PD	-	ţ				
60-	+				\square	18 -	17				
-	-		POORLY GRADED SAND	with SILT, fine- to			-				
-	-		medium-grained, with Grav	el, brown, wet to waterbearing, P-SM), outwash <i>(continued)</i>	PD	-	-				
-	ł					-	-				
65-	<u> </u>				\geq	17	17				
	+					-	-				
-	+				PD	-	-				
70-	Ļ					21 -	20				
	+				\square	- 21	20				
-	<u> </u>				PD	-	-				
-	ļ					-	ŀ				
75-	+		Large wood chunks encour	ntered at 75 feet.	\square	16	F				
-	ļ					-	ļ				
	78.0 771.3				-PD	-	ł				
80-				Croupl group wat war stiff		-	-			יח	D=104 pcf
-00	+		(CLS), till	e Gravel, gray, wet, very stiff.	\mid	30	23				ь– то ч рог
-	83.0					-	ł				
	766.3	× .				-	ļ				
85-	ł	× .		gray, waterbearing, dense.	\square	48 -	19				
-	t	× .	(SM), outwash			-	t				
	88.0	, , , ×		fina to modium grained trace	-PD	-	Ļ				
	761.3		Gravel, gray, waterbearing	, fine- to medium-grained, trace , dense to very dense. (SP),		-	ł				
90-	<u> </u>	<u> </u>	(Cont	inued Next Page)	_1<>		 ,	⊥ Soil Class	: ::J. Kirk F	⊥ Rock	Class: Edit: Date: 6/6

BRAUN[®] INTERTEC

This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

UNIQUE NUMBER

U.S. Customary Units

SHEET 3 of 3 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Trunk Highway/Location Boring No. Ground Elevation State Project Bridge No. or Job Desc. SWLRT 2093SB 849.3 (Surveyed) γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH RQD Core 🗧 Breaks ଝି Core REC ACL Formation Classification (%) Elev. (%) (ft) or Member outwash 41 14 \succ PD 95 52 23 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, gray, waterbearing, dense to very dense. (SP), outwash (continued) PD 100 57 19 101.0 Bottom of Hole - 101 feet. 748.3 Water observed at 40 feet while drilling. Boring immediately backfilled with bentonite grout.

UNIQUE NUMBER

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loca	ation				Boring No. 2094SB			Ground Elevation 837.7 (Surveyed)	
ocatio	<i>n</i> Hen	nepir	L Co. Coordinate: X=48488		(ft.)	Drill	Machine	7504				SHEET 1 of 3	
				itude (West)=					matic Ca	alibrated		Drilling 5/16/1 Completed	
	-		Offset Information Available				SPT	МС	сон	γ		Others Teate	
т	Depth	gy				5	Maa	(%)	(psf)	(pcf)	Soil	Or Remarks	
DEPTH	Elev.	Lithology	Clas	ssification		Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member	
	1.0 836.7	$\frac{1}{2}$	SANDY LEAN CLAY, trace ro topsoil fill	oots, dark brown, wet	t. (CLS), /	-{{		52				,	
-	•	\bigotimes	SANDY LEAN CLAY, trace G moist. (CLS), fill	ravel, dark brown an	id gray,	R	9.	21			qı	u=1 3/4 tsf	
5-	6.0	\bigotimes	With roots at 5 feet.			X	6	21					
-	_ 831.7 - -	.7	CLAYEY SAND, trace Gravel (SC), fill	, dark gray and brow	n, moist.		22	11			D	D=126 pcf	
10	11.0					Ķ	18	13			qı	u=3 tsf	
+	826.7		SANDY LEAN CLAY, trace G	ravel, gray, moist. (0	CLS), fill	-17	10	16					
15-	824.7		PEAT, decomposed with fibe (PT), swamp deposit	rs, with shells, black,	moist.	R	8 -	234				D=21 pcf C=50%	
20-	17.0 820.7					R R	7	42					
Z +			FAT CLAY, gray, wet, mediur glaciofluvium	n to rather stiff. (CH)	,		10	48			qu	D=75 pcf u=1/2 tsf witched to mud rotary	
25-	- 28.0					PD	9 -	40			dr	ample.	
30-	809.7						1 ⁻	- - - 71					
+			FAT CLAY, gray, wet, very so	oft. (CH). alaciofluviu	m	PD PD PD	WOH .	60			D	D=69 pcf	
35-	-		· · · · · · · · · · · · · · · · · · ·			PD	WOH -	67					
40-	40.0						1.	58					
-	797.7		LEAN CLAY, with frequent lat to rather stiff. (CL), glaciofluvi	yers of Silt, gray, wet um	t, medium	PD PD	10	18 27			LL	_=27, PL=19, PI=8	
45⊥	Index She	et Coo	de 3.0 (Continu				J					 Class: Edit: Date: 7/15 EAPOLIS\2013\00213-MNDOT	

UNIQUE NUMBER

State P	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2094		_	Ground Elevation 837.7 (Surveyed)
-	Depth	л			5	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	, Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	46.0	////			$ \ge$	9	26				u=1 tsf, DD=101 pcf
+	791.7	× . ×		m-grained, with Gravel, gray,	PD						
+	49.0	`x`. `.`X	waterbearing, very stiff. (SM), till		22 _	_ 12				
50+	788.7	× .			PD	-	- 10			aı	u=3 tsf
-		×	CLAYEY SAND, with Grave	l, gray, wet, very stiff. (SC), till		21 -	12				D=126 pcf
+	53.0	· · ×				-	_				
ļ	784.7					-	-				
55+	-				\square	15 -	21			qu	u=1 1/4 tsf
ţ					\vdash	-	L				
Į			SANDY LEAN CLAY, trace wet, stiff. (CL), till	Gravel, with Sand seams, gray,	PD	-	_				
+			wei, sun. (CL), un			-	_				
60+	-					15	29			D	D=95 pcf
+						-	-				
+	63.0 774.7	///// × .			-PD	-	_				
65+		· . · .× ·× · .				-	- 10				
+		; ; ; ×			\square	19 -	12				
+		î x			PD	-	_				
Į		× . `.`.×				-	-				
70+		`x`. `.`.X				38 -	11			P2	200=18%
t		′× ′. 			$ \longrightarrow $	-	-				
Į		× : .	SILTY SAND, fine- to mediu	m-grained, trace Gravel, gray,	PD	-	_				
+		·× · .]	waterbearing, medium dens	e. (SM), till		-	_				
75+		`. `.× `x `				36	20				
+		:.:× .×				-	-				
+					PD	-	-				
80+		^ · · ×				37 -	- 18				
+		× . `.`.×			\bowtie	- 57	10				
t	83.0	`× ` . ·×				-	Ļ				
Į	754.7	· · · ·				-	_				
85+			POORLY GRADED SAND	vith SILT fine- to	\square	41 -	13				
ţ		coarse-grained, with Gravel		gray, waterbearing, medium	ie- to		+				
+		· · · .	dense to dense. (SP-SM), o	utwash	PD	-	-				
90		· · · ·				-	F				

METROPOLITAN

BRAUN[®] INTERTEC

UNIQUE NUMBER

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2094			Ground Elevation 837.7 (Surveyed)
т	Depth	gy			u.	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	· · · · · ·			X	36	12				
-	-	· · · · · ·			PD	-	-				
95-	-	· · · · · · · · ·				38 -	15				
-	-				PD	-	-				
- 00-	_	· · · · · ·					-				
-	-	· · · · · · · · ·			\square	30	12				
-	-					-	-				
05-	-	· · · · · ·	POORLY GRADED SAND v	GRADED SAND with SILT, fine- to iined, with Gravel, gray, waterbearing, medium							
-	-		dense to dense. (SP-SM), or	utwash (continued)		-	-				
- - 110	-	· · ·				- 38 -	20				
-	-					-	-				
-	-					-	-				
115-	-	· · · · · ·			PD	-	-				
-	-					-	-				
120-	121.0					42 -	17				
	716.7		Bottom of Hole - 121 feet, Water observed at a depth of	of 22 feet while drilling.							
			Boring immediately backfille								

BRAUN^{**} INTERTEC

UNIQUE NUMBER

This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Locat SWLRT	tion				Boring 2095			Ground Elev	
Locatio	on Hen	inepir	n Co. Coordinate: X=48504	8 Y=125201	(ft.)	Drill	Machin	e 7506					Г 1 of 3
	Latit	ude (North)= Long	itude (West)=		Han	nmer C	ME Auto	matic Ca	librated		Drilling Completed	4/30/14
	No St	tation-	Offset Information Available				SPT	мс	сон	γ	_	Other 1	Tests
Ŧ	Depth	y,				2	N60	(%)	(psf)	(pcf)	Soil	Or Rem	
DEPTH	Elev.	Lithology	Clas	ssification		Drilling Operation	REC (%)	RQD	ACL	Core Breaks	Rock	Forma or Men	
	1.0	<u>x1 1/</u>	SANDY LEAN CLAY, dark br	own, moist, (CLS), tor	osoil fill	127	170	16	114	0,00110	-		
-	840.5 4.0		SANDY LEAN CLAY, trace G moist. (CLS), fill				8	+ - - 14					
5-	837.5					R R	12	+ 11 +					
+	-		CLAYEY SAND, trace Grave (SC), fill	, dark brown and gray	/, moist.	R	20	10 			DI	D=125 pcf	
10-	12.0					R	15	+ 12 +					
-	829.5 14.0 827.5	\bigotimes	SILTY CLAY, trace Gravel, b	· · ·		- <u>F</u>	5	_ 16 _				_=21, PL=14,	PI=7
15- ▼	17.0	\bigotimes	CLAYEY SAND, trace Grave	, gray and brown, mo	ist. (SC),	R	11	+ 12 + +				D=123 pcf	
20-	_ 824.5 _ 20.0		SLIGHTLY ORGANIC SILT, shells, gray and black, moist.			PD	6 31	36 14			Dr m	C=3% rillers Note: S ud rotary drilli ter 17 1/2-foo	ng method
	821.5	× . · . · .× ·× · .				PD	21	14 14 14				200=22%	t sumple.
25-	-	·× · . · . · .× ·× · .	SILTY SAND, fine- to mediur waterbearing, medium dense			PD	33	+					
-	27.0 814.5	× .				PD	31	19			P2	200=7%	
30-	-		POORLY GRADED SAND wi medium-grained, trace Grave		a, dense	PD	18	+ + 22 +					
-	-	· · · · · · · · ·	to mediumd dense. (SP-SM),			PD	18	21					
35-	36.0 805.5					PD	18	+ 20 +			_		
40-	-		POORLY GRADED SAND, fi Gravel, brown, waterbearing,			PD	28 16	_ 11 			P2	200=4%	
-	_ 42.0 _ 799.5 _		POORLY GRADED SAND, fi Gravel, occasional Cobbles, I dense. (SP), outwash			PD PD	21	+ - 8 -					
45-	Index She	et Cod	de 3.0 (Continu	ied Next Page)		_~_ >		±				Class: Edit:	

BRAUN

INTERTEC This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

UNIQUE NUMBER

State	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2095			Ground Elevation 841.5 (Surveyed)
I	Depth	'gy			ис	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
	47.0	· · · · · · ·			PD	22	11				
	47.0 794.5	· · · · ·				28	12			P2	200=8%
	+	· · ·			PD	-	-				
50-	+					29 -	8				
		· · ·			PD	-	_				
	+					-	-				
55-	-	· · · · · · · · · · · · · · · · · · ·				24	14				
	-	· · · · · · · · · · · · · · · · · · ·				-	-				
	+		POORLY GRADED SAND	vith SILT_fine- to	PD	-	-				
60-	-	· · · · · ·	coarse-grained, with Gravel, waterbearing, medium dens	occasional Cobbles, brown,	\mathbf{X}	23 -	9				
	+	· · · · · · · · · · · · · · · · · · ·	waterbearing, medium dens			-	-				
		· · · · · · · · · · · · · · · · · · ·			PD	-	_				
65-	-	· · · · · · · · · · · · · · · · · · ·				27 -	- 11				
	-					-	-				
	-				PD	-	-				
70-	+	· · · · · · · · · · · · · · · · · · ·	Large Boulder and rock enc	ountered from 70 to 72 feet.		29 -	- 13				
	_				\vdash						
	73.0 768.5	 			PD	-	-				
75-	t	' , ' ,× '× ' ,				- 39 ⁻	- 15			P2	200=36%
-	ł	' , ' ,× '× ' ,			\square	- 58	15				
	F	`.`.× `×``.	SILTY SAND, fine- to mediu of Silt, brown, waterbearing,	m-grained, with frequent layers	PD	-	_				
80 -	+	`.`.× `×``.	or ont, brown, waterbearing,	acrise. (Owr), Outwash	\vdash		-				
	ł	× .			$\mid \land \mid$	37 -	16				
	83.0	× · .			PD	-	+				
م-	758.5	× . × .×				-	_				7-110 pcf
85-	F	× · · · · · × ·× · ·		layers of Sand, reddish brown,	X	30 -	23				D=110 pcf
	ļ	· · × · × · ×	wet, medium dense to dense	e. (MLS), glaciofluvium	PD	-	-				
	ł					-	-				
90-	<u> </u>	<u> </u>	(Contir	nued Next Page)	_125	I		⊥ Soil Class N:\GINT\PF			Class: Edit: Date: 6/6

SHEET 3 of 3

BRAUN[®] INTERTEC

740.5

This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

UNIQUE NUMBER

U.S. Customary Units

Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS

Trunk Highway/Location Boring No. Ground Elevation State Project Bridge No. or Job Desc. SWLRT 2095SB 841.5 (Surveyed) γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core ୪ Breaks ଜ Core Formation Classification Elev. (%) (ft) or Member (%) 46 19 ́х. \succ SANDY SILT, with frequent layers of Sand, reddish brown, wet, medium dense to dense. (MLS), glaciofluvium (continued) 93.0 PD 748.5 x 95 ×. 36 18 SILTY SAND, fine- to medium-grained, with frequent layers of Silt and Lean Clay, reddish brown, wet, dense. (SM), PD outwash 100 49 21 101.0

Bottom of Hole - 101 feet.

Water observed at a depth of 17 feet while drilling. Boring immediately backfilled with bentonite grout.

Soil Class: J. Kirk Rock Class: Edit: Date: 6/6/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ

BRAUN^{**} INTERTEC

UNIQUE NUMBER

This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location	n				Boring 2118			Ground Elev 837.8 (S	
Locatio	on Hen	nepir	n Co. Coordinate: X=48518	30 Y=125086	(ft.)	Drill	Machine	9 7507					T 1 of 3
	Latit	ude (North)= Long	itude (West)=		Han	nmer CN	IE Auto	matic Ca	alibrated		Drilling Completed	5/22/14
	No St	tation-	Offset Information Available				SPT	МС	сон	γ	_	Othern7	Tests
т	Depth	26				5	Maa	(%)	(psf)	(pcf)	Soil	Or Ren	
DEPTH		Lithology				ing ratio	REC	RQD	ACL	Core	×	Forma	tion
DE	Elev.	Lit	Cla	ssification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Roc	or Men	
_	1.0	\bigotimes	CLAYEY SAND, trace roots a \(SC), topsoil fill	and Gravel, dark brown,	moist.	ß		_					
-	836.8	\bigotimes			/	۲L ۲L	17	ł					
-	-	\bigotimes	CLAYEY SAND, trace Grave	l, dark brown, moist. (SC	C), fill			ļ					
5-	_ 5.0 832.8	\bigotimes					17 -	-					
-	7.0	\bigotimes	PEAT, trace shells, black, we	et. (PT), fill		रि		Ì					
_	830.8					\mathbb{X}	15						
-	-					Æ		t			Dr	illers Note: S	witched to
10-	-		LEAN CLAY, trace Gravel, b	ack, wet. (CL), fill		X	8	+				ud rotary drilli ter 10-foot sa	
-	-					PD		+				ampler enco	
-	14.0					PD	62*	Ì				ot at 12 feet.	untered id.ge
15-	823.8						10 -	-					
-	-		LEAN CLAY, trace Gravel, b	rown and gray, wet, rathe	er stiff.	PD		t					
-	-		(CL), alluvium			\square	11	ļ					
-	_ 19.0 818.8					PD		-					
20-						\mid	7	_					
-	-					PD		Ļ			0	I=2 tsf	
-	-						12	+			40	1-2 (5)	
25-	_					PD	8 -	-					
-	-					PD		+					
	-					$\mathbf{\nabla}$	8	Ì					
-	-					PD		÷					
30-	-					\mathbb{X}	8	t			qu	I=1 tsf	
-	-		FAT CLAY, gray, wet, rather	stiff to soft. (CH), alluviu	m	PD		Ļ					
-	-						7.	+					
35-	-					PD	- -	†					
-	-					PD	5	÷					
-	-						7	ŧ			qu	I=3/4 tsf	
-	-					PD		Ļ					
40-	-					\square	6 -	t					
-	-					PD		ļ					
-	-					$ \times$	6	+					
45	-					PD		t					
45-	Index She	et Coo	de 3.0 (Contin	ued Next Page)				s		SJ. Kirk F	Rock	Class: Edit:	Date: 6/6/14
									N. GINTAP	NUJEC I SIM	INNE	APULIS120131002	

BRAUN" INTERTEC

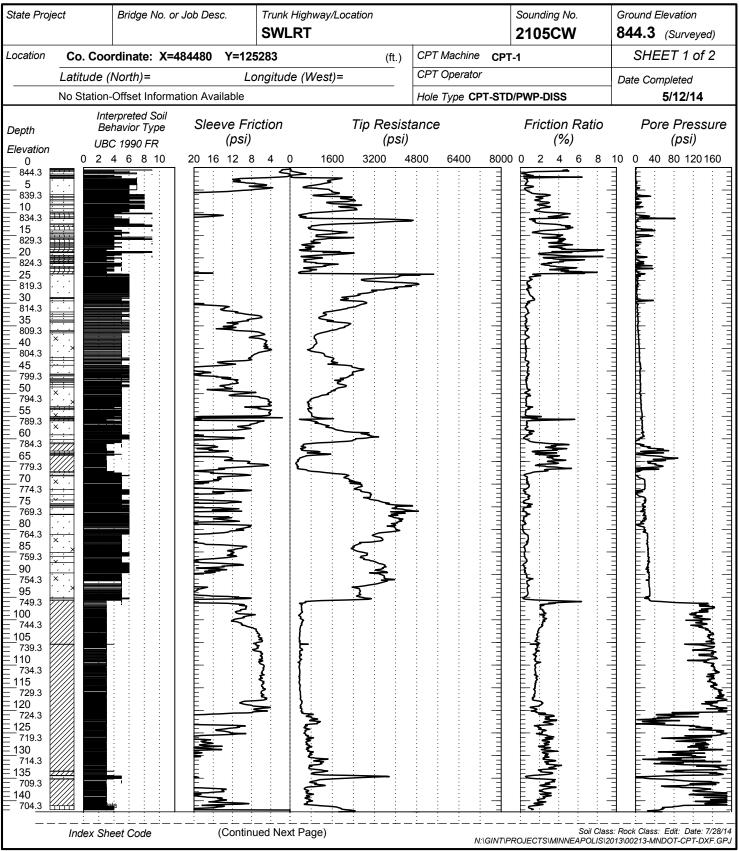
This boring was taken by Braun Intertec under a consultant contract for Mn/DOT

UNIQUE NUMBER

State	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2118			Ground Elevation 837.8 (Surveyed)
т	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
-	-					4	-				
-	-				PD	6	-				
-	-				PD	-	-				
50-	-					3 -	_			qu	i=1/2 tsf
-	-		FAT CLAY, gray, wet, rather (continued)	stiff to soft. (CH), alluvium		_	-				
-	-				PD	-	_				
- 55-	-				\triangleright	5 -	-				
	-				\vdash		-				
-	58.0				_PD	-	-				
-	779.8					-	-				
60-	_					25 -	_			qu	i=1 1/2 tsf
-	-					-	-				
-	-				PD	-	_				
65-	-		SANDY LEAN CLAY, trace	Gravel, gray, wet, very stiff.	\bigtriangledown	28 -	_				
-	-		(CLS), till	`	\vdash		-				
-	-				PD	-	-				
	-					-	-				
70-	-				X	22 -	-				
-	73.0					-	_				
-	764.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- PD	-	-				
75-	-				\mathbf{X}	28 -	_				
-	-		Cobbles or Boulder from ab	out 76 to 79 feet.	\square	- -	-				
-	-				PD	-	_				
- - 80	-				\leftarrow	-	_			*N	lo sample recovery.
	-		POORLY GRADED SAND,	fine- to medium-grained, gray,	$\mid \mid $	45* _	-				ie campie recovery.
-	-		waterbearing, medium dens	e to very dense. (SP), outwash	PD	-	_				
-	-					_	-				
85-	-					54 -	_				
-	-					-	-				
-	-				PD	-	-				
- 90 -		 					-	L	L		

BRAUN" INTERTEC

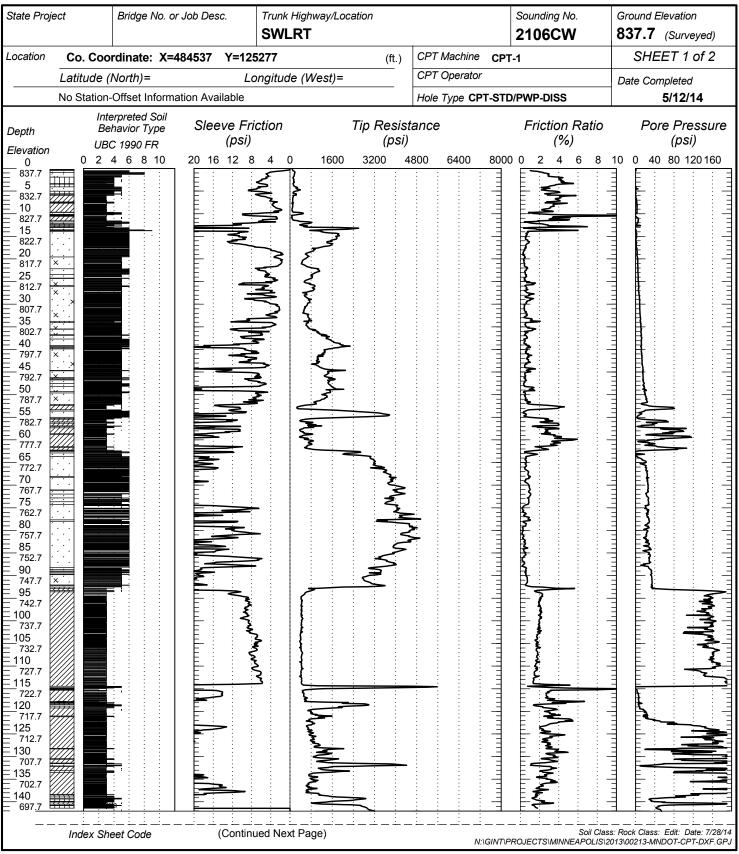
This boring was taken by Braun Intertec under a consultant contract for Mn/DOT


UNIQUE NUMBER

State I	Project		1	runk Highway/Location SWLRT				Boring I 2118			Ground Elevation 837.8 (Surveyed)
H.	Depth	Лbс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Class	ification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	· · · · · · · · ·				32	-				
-	-	· · · · · · · · ·			PD	-	-				
95-	-				X	52 -	-				
-	-	· · · · · ·			PD	-	-				
100-	-	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND, fine waterbearing, medium dense to (continued)	- to medium-grained, gray, very dense. (SP), outwash		41	-				
-	-	· · · · · · · · ·	With Gravel at 100 feet.			-	-				
105-	-	· · · · · · · ·			PD	-	-				
-	-	· · · · · · · · ·				-	-				
- - 110 -	109.0 728.8					-	-				
- 110	-				×	50 -	-				
-	-					-	-				
115-	-		SANDY LEAN CLAY, trace Gra till	vel, gray, wet, hard. (CLS),	PD	-	-				
-	-					-	-				
- 120 -	- 					67 -	-				
	716.8		Bottom of Hole - 121 feet. Water level obscured due to dril rotary drilling operation.	lling fluids used during mud							
			Boring immediately backfilled w	ith bentonite grout.							
							S	oil Class	 ::J. Kirk F	 ?ock	Class: Edit: Date: 6

UNIQUE NUMBER

UNIQUE NUMBER



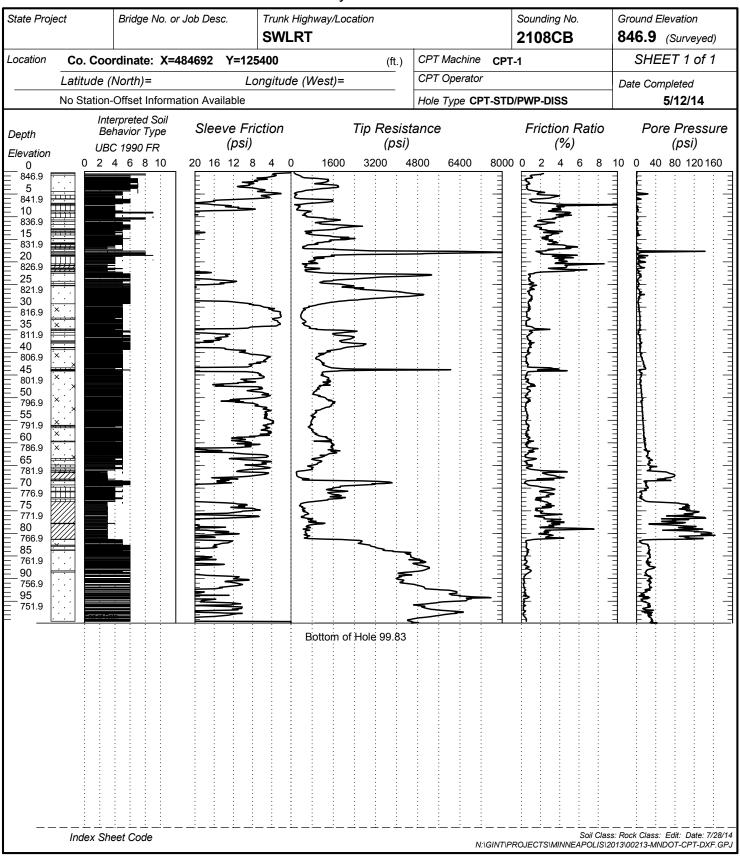
tate Project			Bric	dge	No. or	r Job i	Des	кС.		Trunk SWL		hway/Loo T	cation						Sour 210	nding)5C				ound E		on /eyed)
		Mn	/D	от	GEC	DTE	СН	INIC	AL	SEC	TIC	DN - CO	ONE	PEN	ETR/	4 <i>TI</i> (DN 1	TESTI	RES	SUL	TS		S	SHEE	T 2	of 2
epth	Interpreted Soil Behavior Type UBC 1990 FR								tion Tip Resistance (psi)						Friction Ratio (%)					Pore Pressure (psi)						
levation	0 2					20	16	12		4 ()	1600	320		, 4800	64	400	8000	0		¥ 6	8	10	0 40		, 120 160
	-		:	:												:				-						
	-		÷	÷	÷		÷			:		Bottom o	THOIE	142.4	1	:	:					÷		: :		: :
			÷	÷	÷	-	÷	÷	÷	:			: :	:	:	÷	: :		:	:		÷		: :	-	: :
	-		÷	÷	-	-	÷	÷	÷	:		: :	: :	÷	÷	÷	:		:	:	÷	÷		: :	-	: :
	-		÷	÷	-	-	÷	-	÷	-		: :		-		÷	:		-	:	-	-		: :	-	÷ ÷
	: :		÷	÷	÷	-	÷	÷	÷	:		: :	: :	÷		:	: :		:	: :	÷	÷		: :	-	: :
	-		÷	÷	÷	-	÷	÷	÷			: :		÷		÷			-	:	÷	÷		: :	-	
	1		÷	÷	÷	-	:	:	:	:			: :	:	÷	:	: :		;	:	:	:		: :	-	-
			÷	÷	÷	-	÷	÷	÷			: :	: :	÷	:	÷			-	:	÷	÷		: :	-	-
	-		÷	:	÷		÷	:	:	÷			1	:	-	÷	: :		:	:	÷	:		: :		1
			÷	÷	÷	÷	÷	÷	÷	÷		: :	: :	÷	÷	÷	: :		÷	: :	÷	÷		: :	-	: :
	-		÷	÷	-		÷	:	÷	÷			1	:	-	÷	: :		-	:	÷	:		: :	÷	-
			÷	÷			÷	÷	÷	:				÷	÷	÷			-			÷		: :	-	
	: :	: :	÷	÷	÷	÷	÷	÷	÷	:		÷ ÷	÷ ÷	÷	÷	:	: :		÷	: :	÷	÷		: :	÷	÷ ÷
			÷	÷			÷		÷					÷	-	÷			÷			÷		: :	-	
	: :	: :	÷	÷	÷	÷	÷	÷	÷	:		: :	÷ ÷	:	÷	:	: :		:	: :	÷	÷		: :	÷	÷ ÷
			÷	÷			÷	÷	÷					÷	÷	÷	:		÷	:		÷		: :	-	
	-		÷	÷	-		÷	÷	÷	÷		-	: :	÷	-	÷	: :		-	:	÷	÷		: :	÷	-
		:	÷	÷	÷		÷	÷	÷			: :	÷ ÷	÷	:	:	: :		÷	: :	÷	÷		: :	÷	÷ ÷
	-		÷	÷	-		÷	÷	÷	:		: :		-	÷	÷	: :		÷	: :	÷	÷		: :	-	
	: :		÷	:	÷	÷	÷	÷	÷	÷		: :	: :	÷	÷	÷	: :		:	: :	÷	÷		: :	÷	÷ ÷
				÷			÷	÷	-				÷ ÷	-		-	: :		÷		÷	÷		÷		1
	: :		÷	÷		:	÷	÷	÷	:		: :	: :	÷	:	÷	: :		-	: :	÷	÷		: :	÷	: :
				÷	÷		÷	÷	-				-		÷	÷	-		÷		÷	÷		÷		-
	-		÷	÷	-		÷	÷	÷	÷		-	: :	÷	-	÷	: :		-	:	÷	÷		: :	÷	-
			÷				÷	÷	-				-	-		÷			-	:	÷	÷		÷ ÷		-
	-		÷	÷	-		÷	÷	÷				: :	÷	-	÷	: :		-	:	÷	÷		: :	÷	-
	: :	: :	÷	÷	÷		÷	÷	÷	÷		: :	: :	:	:	÷	: :		÷	: :	÷	÷		: :		÷ ÷
	-		÷	÷	÷	-	÷	÷	-				÷ ÷	-	÷	÷	: :		÷	:	÷	÷		: :	-	-
	: :		÷	:	÷		÷		÷	÷		: :	: :		÷	÷	: :		:	: :		:		: :		: :
			÷	÷	÷	÷	÷	÷	÷	:			: :	÷	:	÷	: :		÷	: :	÷	÷		: :	-	÷ ÷
	-		÷	÷	÷	÷	÷	÷	÷	÷		: :	: :	÷	÷	÷	-		÷	-	÷	÷		: :	-	-
			÷	÷	-	-	÷	÷	÷	:		: :	: :	÷	÷	÷	: :		÷	:	÷	÷		: :	÷	÷ ÷
	-		÷	:	÷	-	:	÷	-	÷			: :	:	-	÷	:		:		÷	÷		: :	÷	÷ ÷
			÷	÷		-	÷	÷	÷			: :	÷ ÷	÷		÷	:		÷	:	÷	÷		: :	-	
	: :		÷	÷	÷	÷	÷	÷	÷	-		: : :	÷ :	÷	-	÷	: :		:	: :	÷	÷		: :	÷	1
			÷	÷		-	÷	÷	÷			: :	÷ ÷	÷		:	: :		:	: :	÷	÷		: :	-	
	-		÷	÷	÷	-	÷	÷	÷			: :	: :	:		÷	:		-	-		÷		: :	-	÷ ;
			÷	÷			÷	÷	÷			: :				÷	: :		:	:		÷		: :	-	
	-		÷	÷	-	-	÷	÷	÷	:		: :		÷	÷	÷	-		:	:	-	÷		: :	-	-
			÷	:	:		÷	÷	÷			: :			:	÷	: :		:	: :	÷	÷		: :	-	÷ :
	-		÷	:	-	÷	÷	÷	÷	:		: :	÷ ÷	:		÷	: :		÷	: :	÷	÷		: :	-	÷ ÷
			÷	÷		-	÷	÷	÷			: :	÷ ÷	÷		÷	:		:	:		÷		: :	-	
	: :		÷	÷	-	÷	÷	÷	÷	-		÷ ÷	: :	÷	-	÷	: :		:	:	÷	÷		: :	-	-
			÷	÷	÷		÷	÷	÷	:			÷ ÷	÷	÷	÷	: :		:	:	÷	÷		: :	÷	÷ ÷
	-		÷	÷	÷	÷	÷	÷	÷	:		: :	: :	÷	÷	:	: :		÷	: :	÷	÷		: :	÷	: :
			÷	÷	÷	-	÷	÷	÷	:			: :	÷		÷	: :		:	:	÷	÷		: :	-	÷ ÷
	<u>:</u> :		_ :	:		:	:	_ :	_:	<u>:</u>		<u> </u>	<u> </u>	÷	_ :	÷	: :		:	: :	÷	÷		: :		<u> </u>

UNIQUE NUMBER

UNIQUE NUMBER

ate Project			Bri	idge	No.	or Job	De	SC.		1	unk H NLF		ay/Loc	ation	1						Sour 21(ind El 7.7		ion veyed)
		Mn	/D	07	GE	EOTE	Cl	HNIC	CAL	_ SI	ECT	ION	I - CC	ONE	PE	NE	TRA	ATIO	N T	EST	RES	SUL	.TS			Sł	HEE	Т 2	of 2
Interpreted Soil Depth Behavior Type Sleeve Fri Slovetion UBC 1990 FR (psi)			ctic	ion Tip Resistance (psi)						Fr		on I (%)	Ratio	þ	Pore Pressure (psi)														
levation		ОВС 2 4				20	۱ 1	6 12		1	0		1600	30	۳) 200		300	640	0	8000	0		4		2 10	<u>م</u>	40		
	0	2 4		0 0	:			0 12	0	4	0	•						040		0000	0	2	4	0 0	<u> </u>	<u> </u>	40	00	120 160
	÷	: :			÷				÷	÷		Bot	tom of	Hole	ə 142	2.08	:	:	÷		÷	-	:	: :		÷	÷	÷	: :
	÷	: :			÷	-			÷	÷	÷	÷	÷	÷	-		:	:	÷		÷	-	:	:		÷	÷	÷	÷
	÷	: :			÷	-			÷	÷		÷	÷	÷	-		:		÷		÷	-	:	-		÷	÷	÷	
	÷	: :			÷				÷	÷		÷	÷	÷	-		:		:		÷	:	÷	:		÷	÷	÷	
	-	: :			÷	-			÷	÷	÷	÷	÷	÷	-	-	:	:	-		÷	-	:	-		÷	÷	-	
	÷	: :			÷	-			÷	÷	÷	-	÷	:	-	-	-	:	-		-	-	:	-		-	÷	÷	÷ ÷
	:	: :			:				:	;	÷	÷	÷	÷	-	:	:				:	-	:	-			÷	÷	: :
		-			÷	-			÷	÷	÷	÷	÷	-	-				÷		-			-		:	:	÷	
	÷	: :			-	-			÷	÷	÷	÷	÷	÷	:		:	:	÷		:	:	÷	: :		÷	÷	÷	: :
	-	: :			÷	-			÷	÷	÷	÷		÷	-	-	-	:	-		÷	-	:	-		÷	÷	-	
	÷	: :		: :	÷				:	÷	÷	÷	÷	÷	:		:	: :	:		÷	:	÷	: :		:	÷	÷	: :
	÷	: :			÷	-			÷	÷	-	÷	÷	÷	-	-	-	:	-		÷	-	÷	-		-	÷	-	
	-	: :			÷	-			÷	÷		÷	÷	÷	-	-	-	-	-		÷	-	÷	-		-	÷	-	-
	÷	: :		: :	÷				:	:			÷	:	÷		:	: :	:		÷		:	: :			:	÷	: :
		-			÷				÷	÷		÷	÷	÷	-	-	:	:	-		÷	÷	÷	-		÷	÷	-	
	-	: :			÷	-			÷	:		-	-	-	-	-	-	: :	-		-	-	÷	:		-	-	-	-
		: :							÷	:		÷		÷	-		:	: :	÷		-	-	:	:			÷	-	
	÷	: :			÷	-			÷	÷		÷	÷	÷	÷	-	:	: :	-		÷	-	:	-		÷	÷	-	
	÷	: :			÷	-			÷	÷	÷	÷	÷	÷	-	-	:	:	-		-	-	÷	-		-	÷	-	
	÷	: :	-	: :	÷	÷		:	÷	÷	÷	÷	÷	÷	÷	:	÷	: :	÷		÷	:	÷	: :		÷	÷	÷	÷ ÷
		: :			:				÷	÷		÷		÷	-		-	:			-	-		-		÷	÷	-	
	-	: :			÷				÷	÷		÷		÷	-	-	:	:			-	-	:	-			÷	-	
	-	: :			÷	-			÷	÷	÷	÷	÷	÷	-	-	-	:	-		-	-	:	-		:	÷	-	: :
		: :							÷	÷		÷	÷	-	-		-	:			÷		÷	-		÷	÷	-	÷÷
		: :			÷	-			÷	÷		÷	÷	÷	-	-	:	:	-		÷	-	÷	-		÷	÷	-	: :
	-	: :			÷	-			÷	÷		÷	÷	÷	-	-	:	:	-		÷	-		:		÷	÷	÷	
	÷	: :		:	÷	÷		:	÷	÷	÷	÷	÷	÷	:	:	:	: :	÷		÷	:	÷	: :		÷	÷	÷	÷ :
		: :			-				÷	÷		÷	÷	÷	-	-	-	: :	-		÷	-	-	-		÷	÷	-	
	÷	: :			÷	-			÷	÷		÷	÷	÷	-		:	:	-		÷	-	÷	:		÷	÷	÷	: :
	-	: :			-				:	:	÷	÷	÷	÷	-	-	:				÷	-	÷	-		:	÷	÷	
		: :			÷				÷	÷		÷	÷	:	:	:	:	: :	÷		÷	:	:	:		÷	÷	÷	: :
	-	: :			÷	-			÷	÷	÷	÷	÷	÷	-		:	:	-		÷	-	÷	-		-	÷	÷	: :
	:	-			÷					:		÷	:	÷	-	-	-	: :			÷	-	:	-			:	÷	-
		: :			÷	-			:	:	÷	÷	:	÷	:	:	:	: :	÷		:	:	:	:		:	÷	÷	-
	÷	: :			÷				÷	÷	÷	÷	÷	÷	-		:	: :	÷		÷	-	÷	:		÷	÷	÷	: :
	-	: :			-	-			÷	÷		÷	÷	÷	-	-	:	:	-		÷	-	÷	:		÷	÷	÷	: :
	:	: :			÷				:	÷		÷	:	÷	-	-	-		:		÷	-	:	-			:	÷	
	:	: :		: :	÷				÷	÷		÷		:	:		:	: :	÷		:	:	:	:		÷		÷	
	÷	: :			÷	-			÷	÷	÷	÷	÷	÷	-	-	:	:	-		-	-	÷	:		-	÷	÷	
	:	: :			-				÷	÷	÷	÷	÷	÷	-	:	:	: :	-		:	:	:	-		:	÷	÷	: :
	:	: :			÷				÷	÷		÷	÷	:	:	:	•	: :	÷		÷	:	:	:		÷	:	÷	
	-	: :			-	-			÷	÷		÷	÷	÷	-	-	:	:	į		÷	-	÷	:		-	÷	÷	: :
	:				-				÷	÷	÷	÷	÷	:	-	-	:		÷		:	-	:	:		÷	÷	÷	
		: :			÷	-			÷	÷	÷	÷	÷	÷	-		:	:	-		÷	-	÷	-		-	÷	÷	
	-	: :	-		÷				÷	÷	÷	÷	:	:	-	-	-	: :	:		-	-	:	: :		÷	:	-	1
	_ <u>-</u> -	<u> </u>		<u> </u>				- <u>-</u> -	· ·	_ ÷	_ :_	:		<u> </u>	÷ — -	<u> </u>	<u> </u>	·:.			<u></u>		÷ —			_ ÷	;		: Date: 7/2

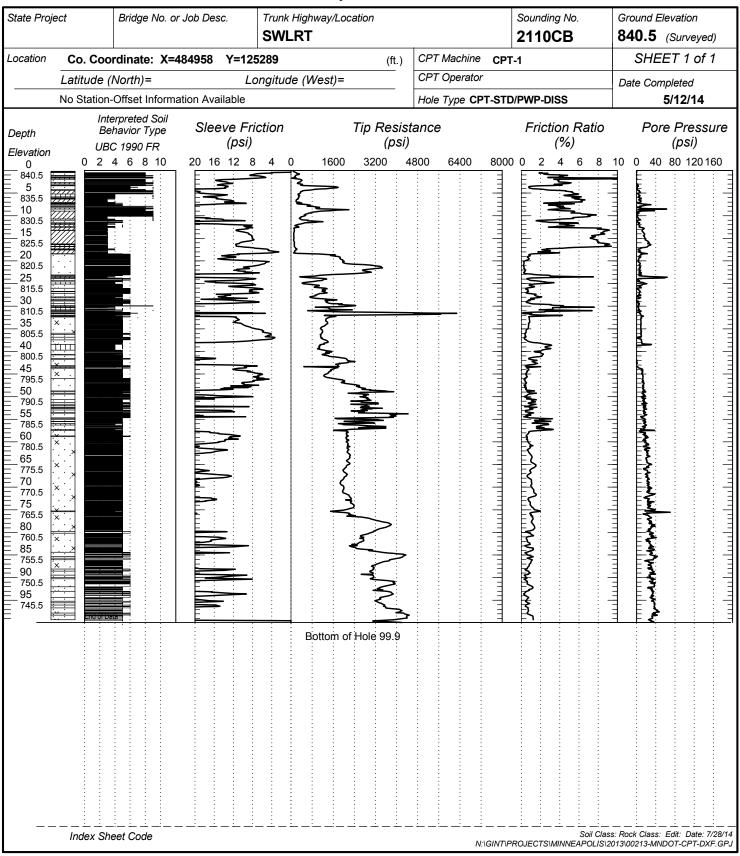
UNIQUE NUMBER



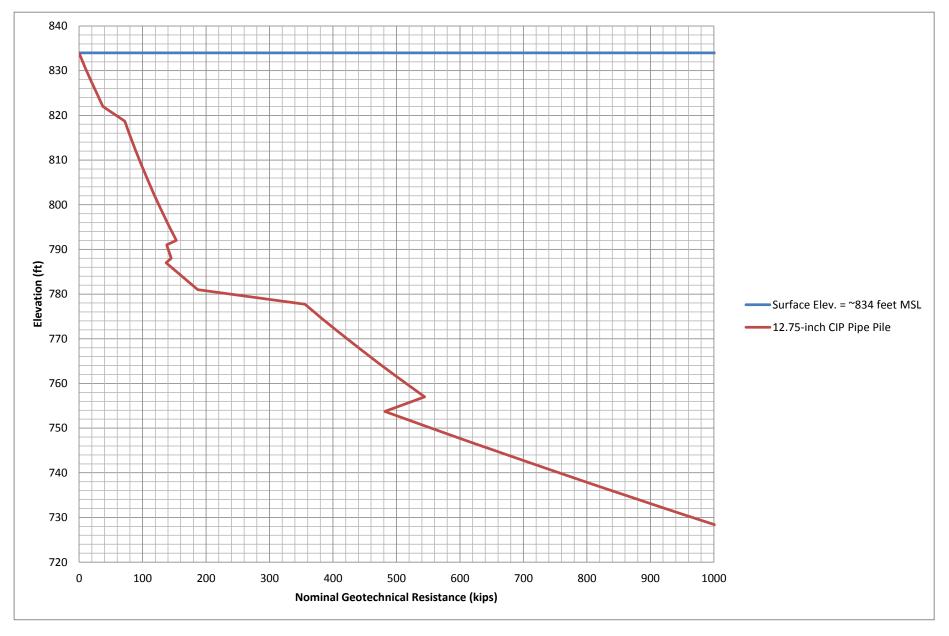
State Project	Bridge No. o		Highway/Locatio	n		Sounding N		Ground Ele	
		SWL	.RT			2107CE	5	847.8	
		484566 Y=125333		(-)		CPT-1			ET 1 of 1
	itude (North)=		e (West)=		Operator	070/01/0 -16-		Date Com	
NOS	Station-Offset Inform	ation Available		Hole	e Type CPT	-STD/PWP-DISS			5/12/14
Depth Elevation	Interpreted Soil Behavior Type UBC 1990 FR	Sleeve Friction (psi)	Τίμ	Resistance (psi)	9	Friction (%		Pore	e Pressure (psi)
0	0 2 4 6 8 10	20 16 12 8 4 0) 1600 3	200 4800	6400	8000 0 2 4	6 8 1	0 0 40	80 120 160
0 847.8 5 842.8 10 837.8 15 832.8 20 827.8 25 822.8 30 × 817.8 × 40 × 802.8 × 50 × 797.8 × 797.8 × 50 × 797.8 × 50 × 797.8 × 60 × 787.8 × 70 × 777.8 × 777.8 × 762.8 × 90 × 757.8 × 95 × 752.8 × 95 ×			Bottom of Ho						
 In	dex Sheet Code		<u> </u>	÷_÷_÷_		:: _ :: _			

UNIQUE NUMBER

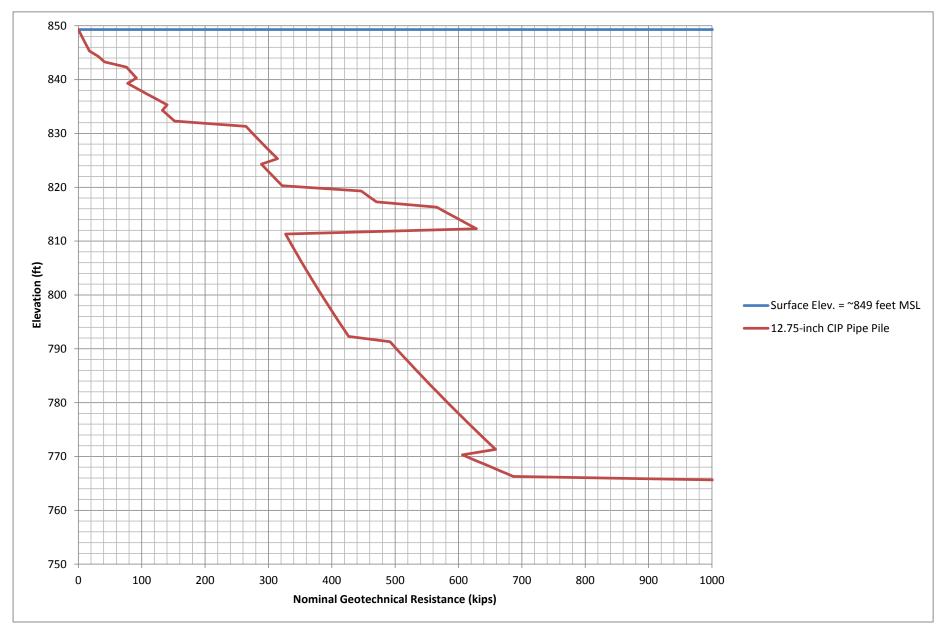
UNIQUE NUMBER

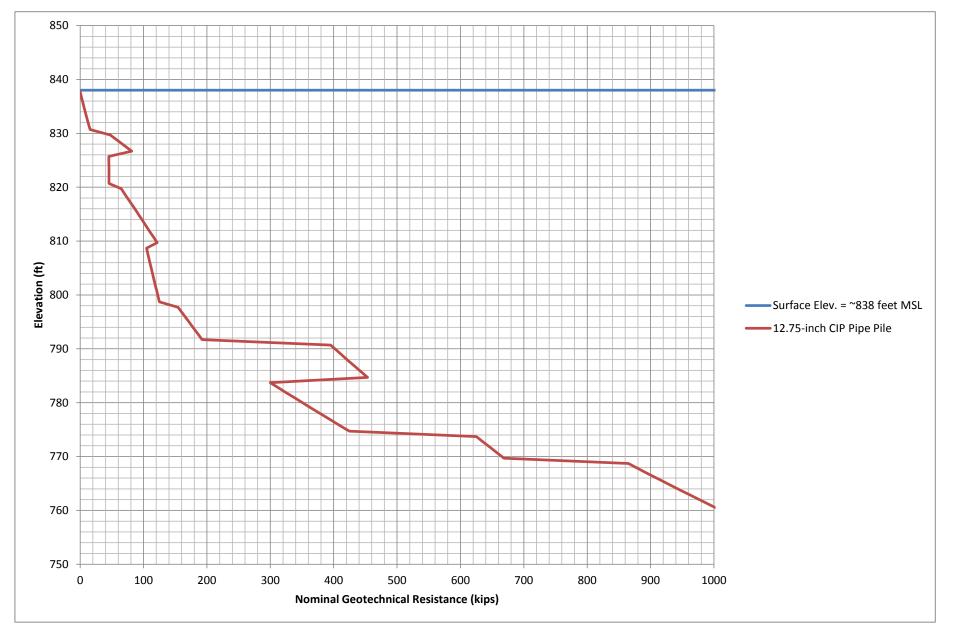


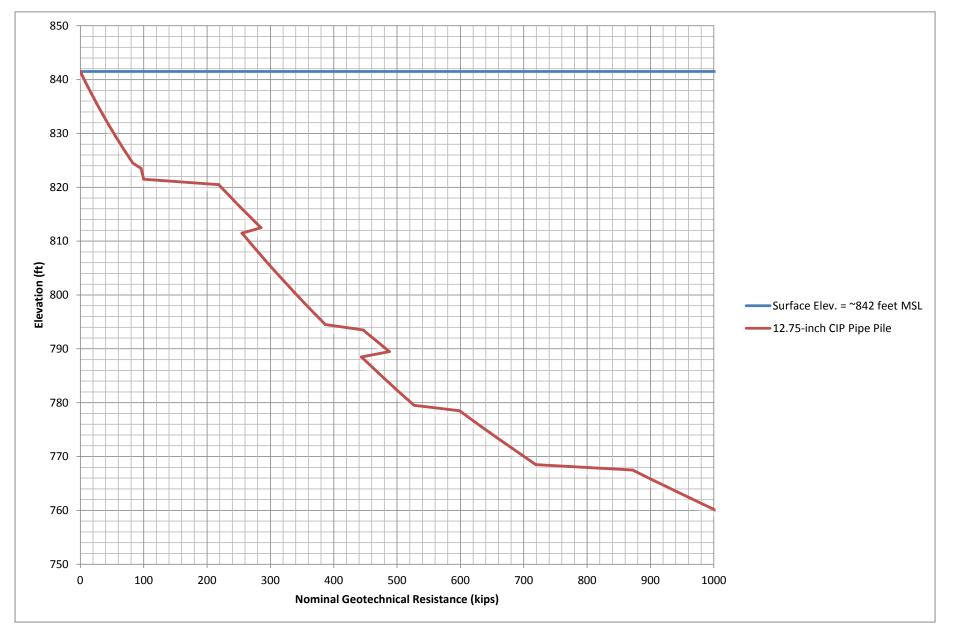
State Project	Bridge No. or		k Highway/Location		Sounding No.	Ground Elevation
			LRT	0.000	2109CB	840.9 (Surveyed)
		184758 Y=125406	(ft.)			SHEET 1 of 1
-	tude (North)=		de (West)=	CPT Operator		Date Completed
NO S	Station-Offset Informa	ation Available		Hole Type CH	PT-STD/PWP-DISS	5/12/14
Depth Elevation	Behavior Type UBC 1990 FR	Sleeve Friction (psi)	Tip Resi (ps		Friction Ratic (%)	Pore Pressure (psi)
0	0 2 4 6 8 10	20 16 12 8 4	0 1600 3200	4800 6400	8000 0 2 4 6 8	
840.9 5 835.9 10 10 830.9 15 825.9 20 20 820.9 25 815.9 30 805.9 40 40 800.9 45 795.9 790.9 55 780.9 55 780.9 225 770.9 75 765.9 225 755.9 225 755.9 225 760.9 225 755.9 225 755.9 225 755.9 225 755.9 225 755.9 225 755.9 225 750.9 25 755.9 25 755.9 25 755.9 25 740.9 25			Bottom of Hole 100.0	1 12		
	dex Sheet Code					

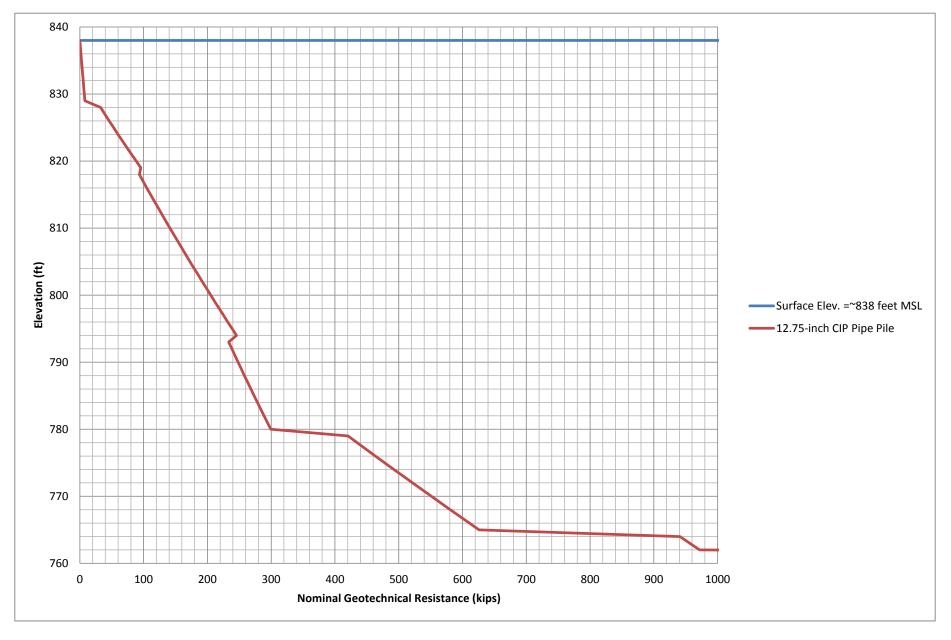


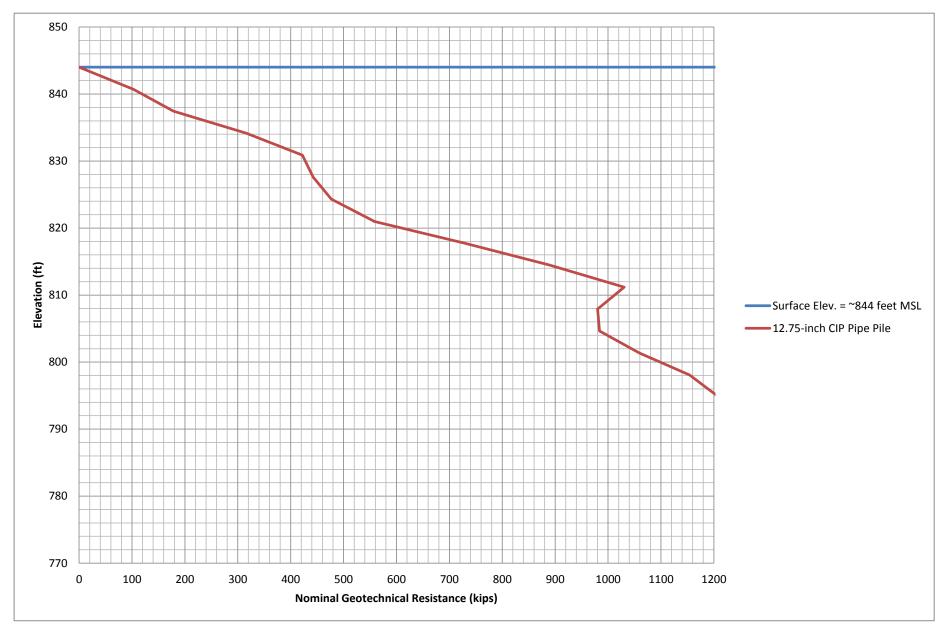
UNIQUE NUMBER

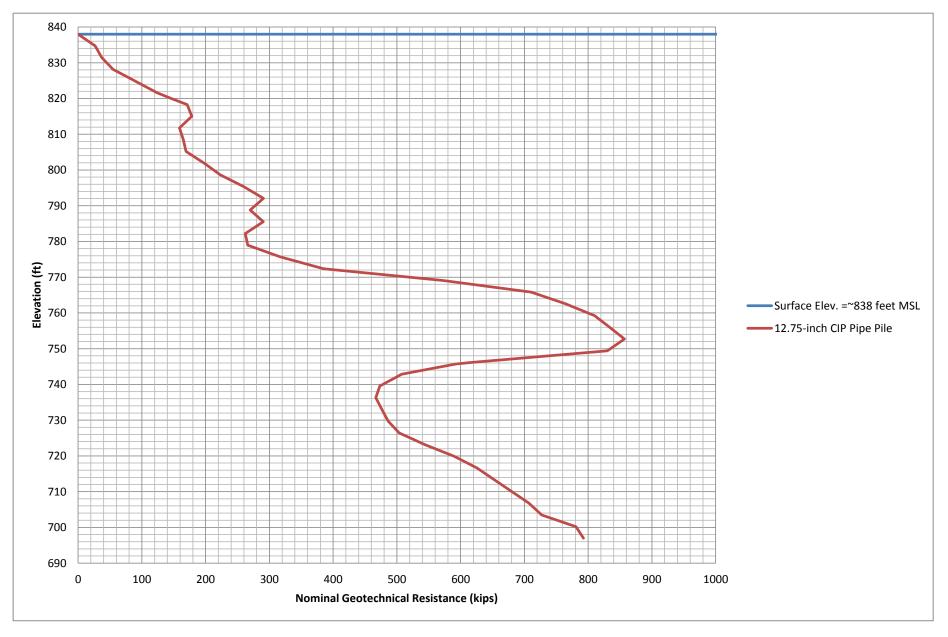


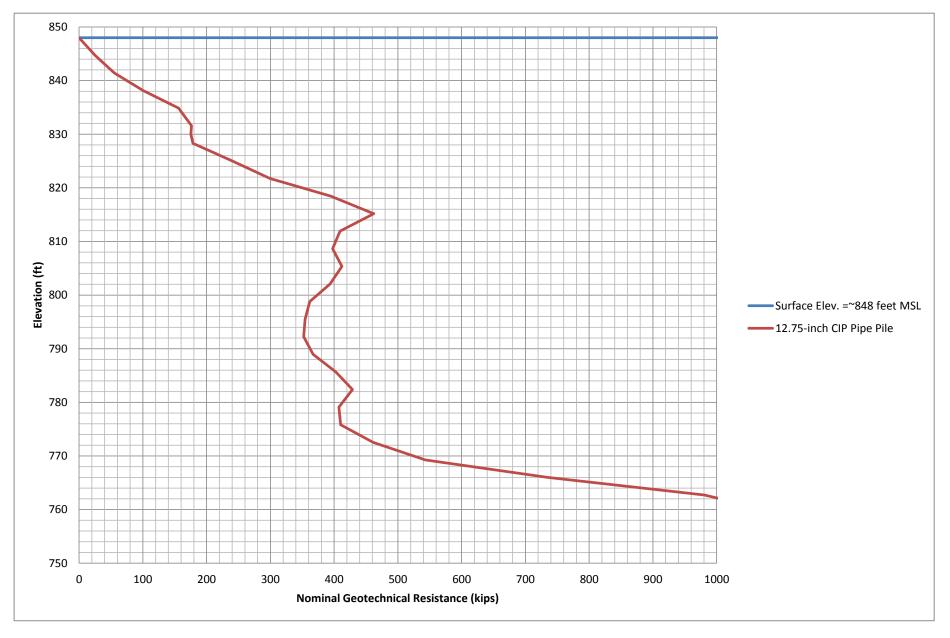

Southwest Station Area Boring: 2104SB 12.75-inch Closed Ended Pipe Pile

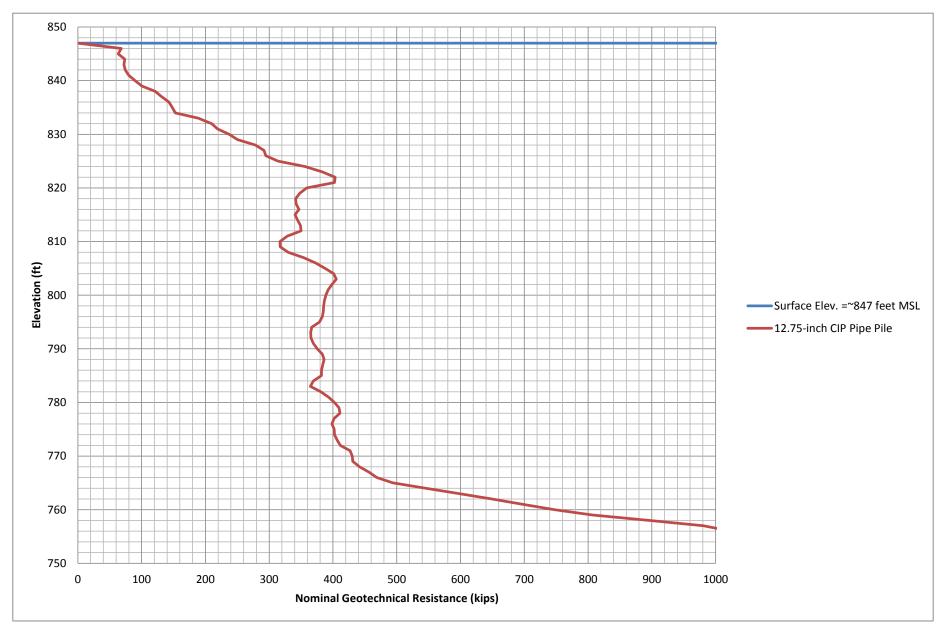

Southwest Station Area Boring: 2093SB 12.75-inch Closed Ended Pipe Pile

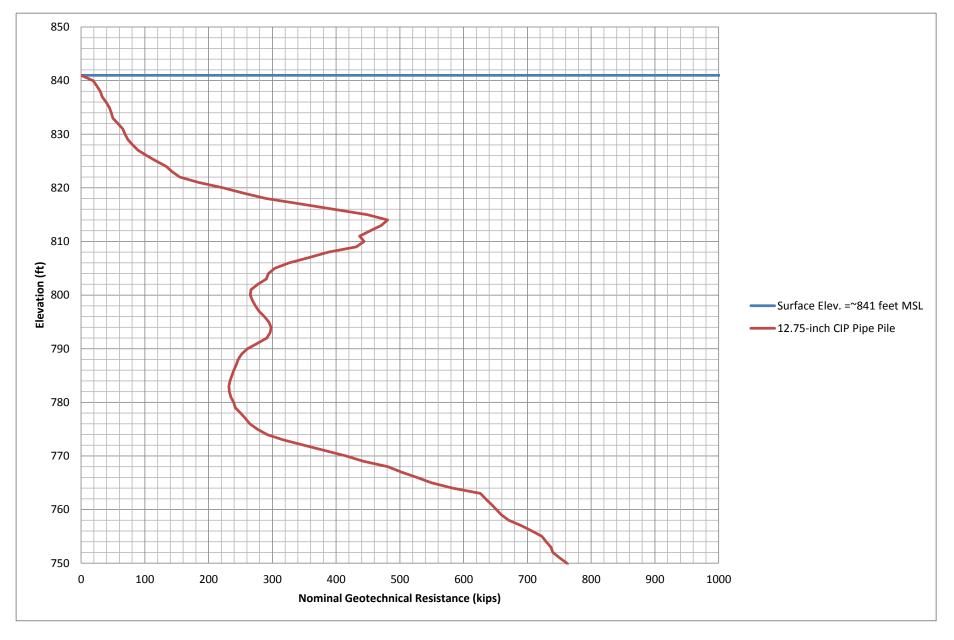

Southwest Station Area Boring: 2094SB 12.75-inch Closed Ended Pipe Pile

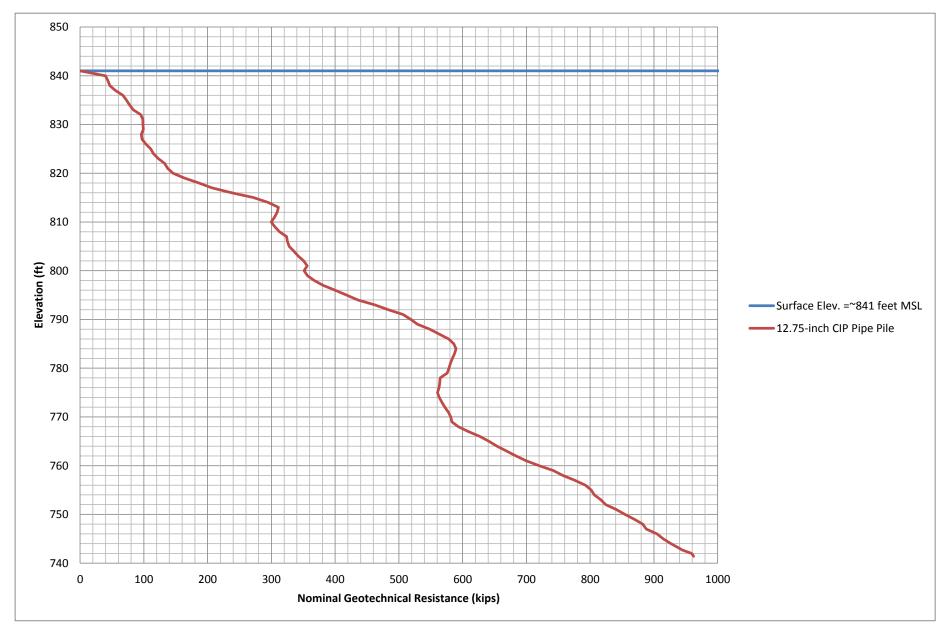

Southwest Station Area Boring: 2095SB 12.75-inch Closed Ended Pipe Pile

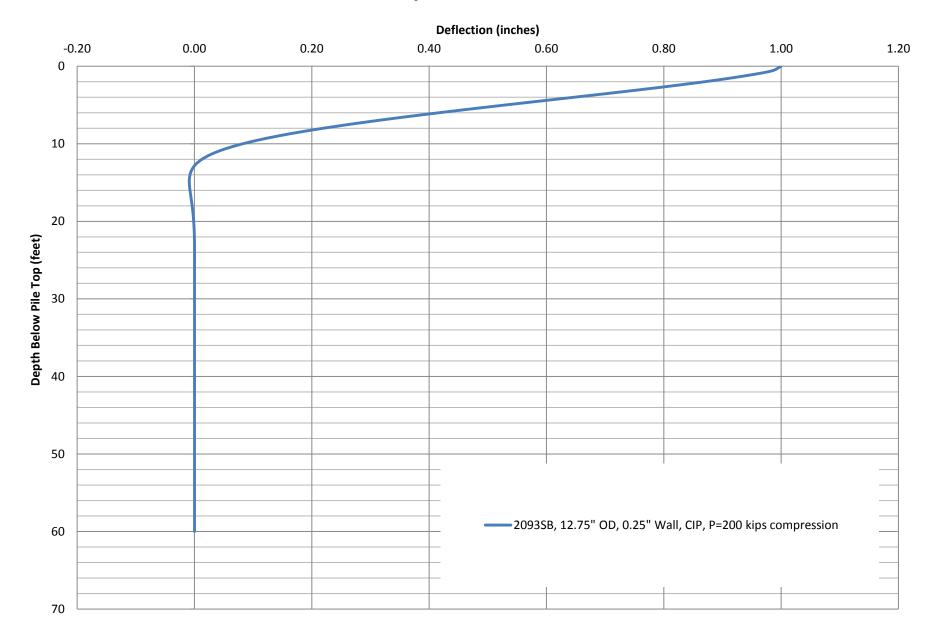

Southwest Station Area Boring: 2118SB 12.75-inch Closed Ended Pipe Pile

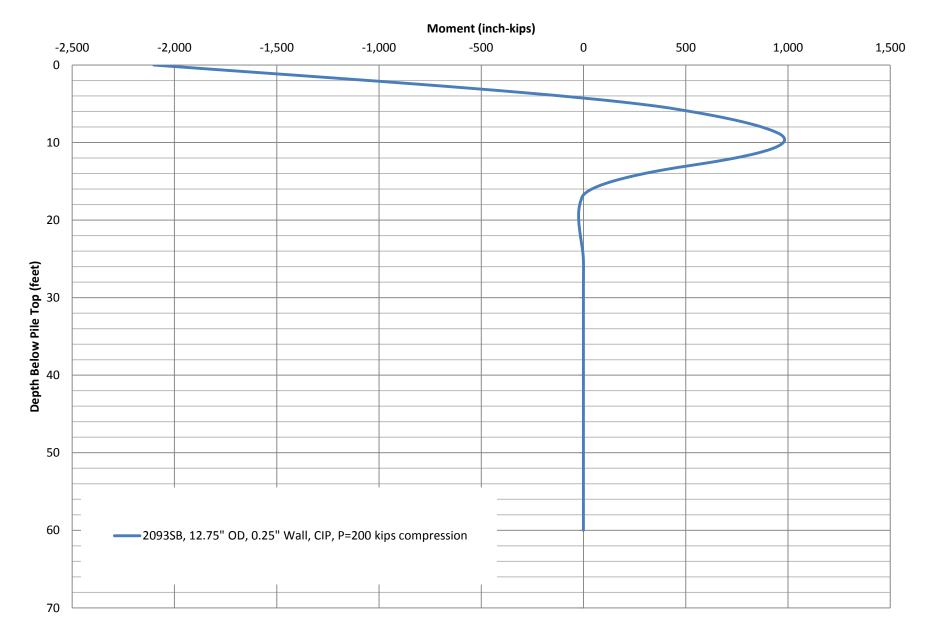

Southwest Station Area Sounding: 2105CB 12.75-inch Closed Ended Pipe Pile


Southwest Station Area Sounding: 2106CB 12.75-inch Closed Ended Pipe Pile

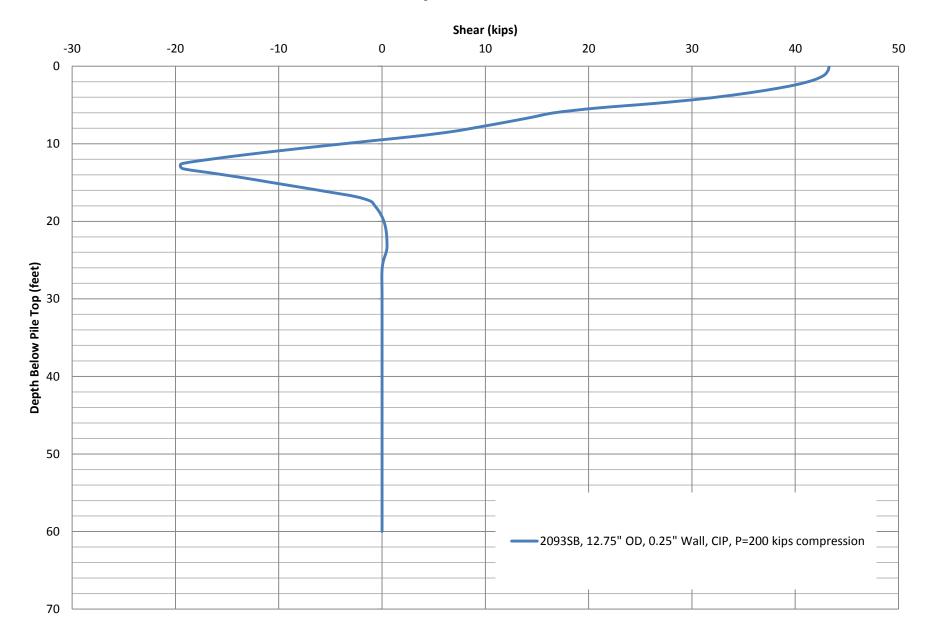

Southwest Station Area Sounding: 2107CB 12.75-inch Closed Ended Pipe Pile

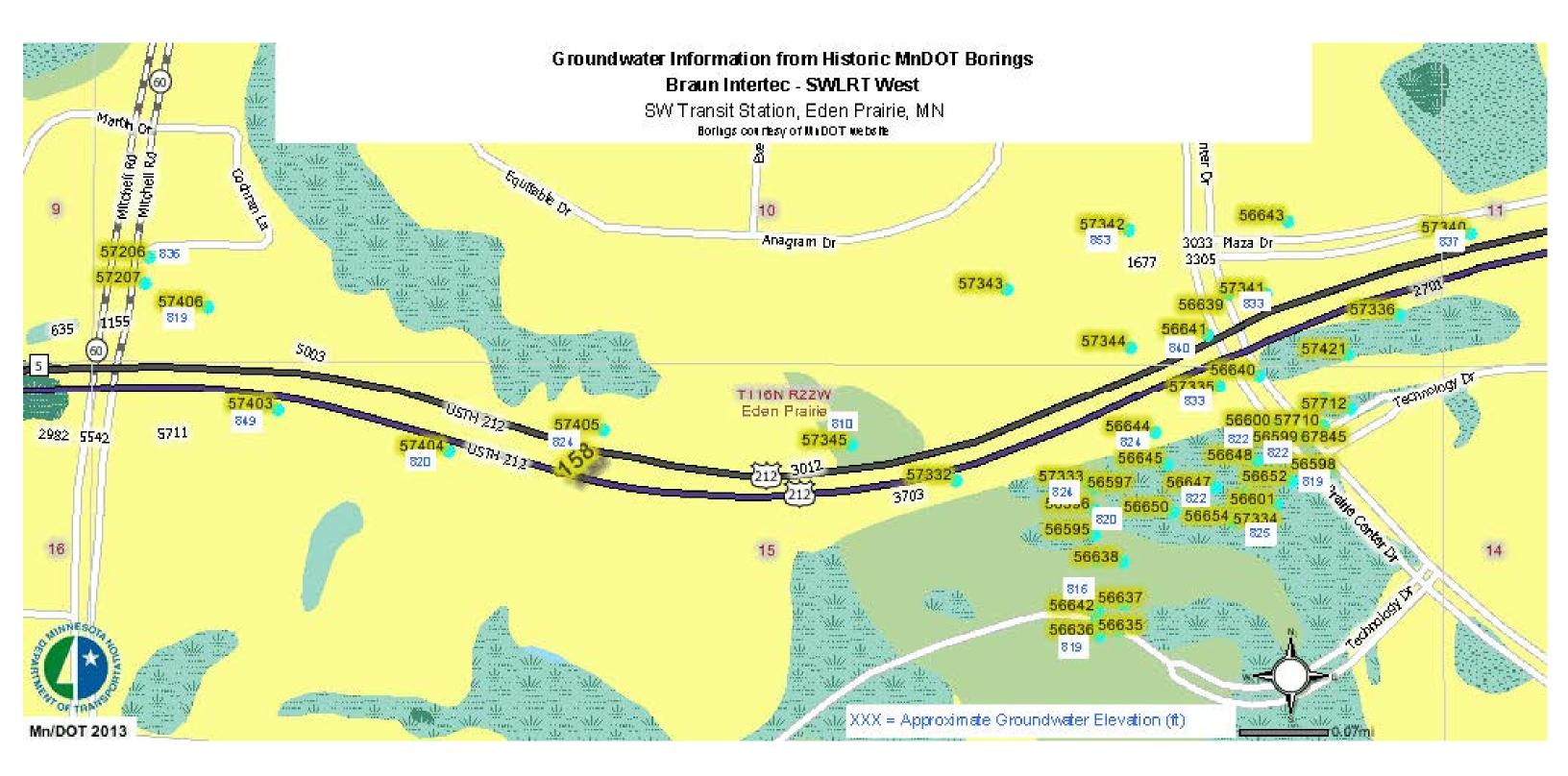

Southwest Station Area Sounding: 2108CW 12.75-inch Closed Ended Pipe Pile


Southwest Station Area Sounding: 2109CB 12.75-inch Closed Ended Pipe Pile


Southwest Station Area Sounding: 2110CB 12.75-inch Closed Ended Pipe Pile

Lateral Analysis Results - Deflection



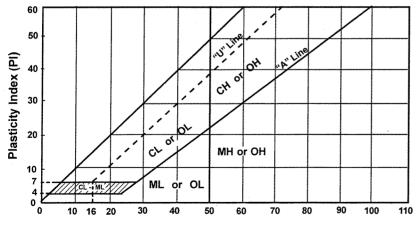

Lateral Analysis Results - Moment

Lateral Analysis Results - Shear

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Critor	ia for Accient	ing Group	Symbols and	So	ils Classification	Particle Size Identification
		up Names Us			Group Symbol		Boulders over 12" Cobbles 3" to 12"
" E	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^c$	GW	Well-graded gravel ^d	Gravel Coarse
grained Soils 50% retained c 200 sieve	More than 50% of coarse fraction	5% or less	s fines ^e	$C_u < 4$ and/or $1 > C_c > 3^{\circ}$	GP	Poorly graded gravel d	Fine
etair eve	retained on	Gravels wit	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand
aine % re 0 si	No. 4 sieve	More than 12	2% fines *	Fines classify as CL or CH	GC	Clayey gravel dtg	Coarse No. 4 to No. 10 Medium No. 10 to No. 4
20.50	Sands	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3^{c}$	SW	Well-graded sand h	Fine
arse- than No.	50% or more of coarse fraction	5% or less	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^{c}$	SP	Poorly graded sand h	Silt
Coarse- more than No.	passes	Sands with	h Fines	Fines classify as ML or MH	SM	Silty sand ^{fg h}	below "A" line Clay< No. 200, Pl≥
	No. 4 sieve	More than	12% ⁱ	Fines classify as CL or CH	SC	Clayey sand ^{fg h}	on or above "A"
led Soils passed the sieve	Silts and Clave	Inorganic	PI > 7 ai	nd plots on or above "A" line ^j	CL	Lean clay ^{kim}	
ed t	Silts and Clays Liquid limit		PI < 4 oi	plots below "A" line ^j	ML	Silt ^{k m}	Relative Density of
d S ass ievi	less than 50	Organic		nit - oven dried < 0.75	OL	Organic clay ^{k m n}	Cohesionless Soils
raine Iore p 200 s			+	nit - not dried	OL	Organic silt k 1 m o	Very loose 0 to 4 BPF Loose
	Silts and clays	Inorganic		on or above "A" line	СН	Fat clay k I m	Medium dense 11 to 30 BPF
jé b Ž	Liquid limit			elow "A" line	MH	Elastic silt k I m	Dense
Fine 50% or N	50 or more	Organic		nit - oven dried < 0.75	ОН	Organic clay k 1 m p	Very dense over 50 BPF
		<u> </u>		nit - not dried	OH	Organic silt k 1 m q	4
Highly	Organic Soils	Primarily orga	anic matte	r, dark in color and organic odor	PT	Peat	Consistency of Cohesive Soils


Based on the material passing the 3-in (75mm) sieve.

If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name. h

 $C_u = D_{60} / D_{10} C_c = (D_{30})^2$

C.

- If soil contains≥15% sand, add "with sand" to group name d е
 - Gravels with 5 to 12% fines require dual symbols
 - GW-GM well-graded gravel with silt
 - GW-GC well-graded gravel with clay
 - GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- f If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains ≥ 15% gravel, add "with gravel" to group name. h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC
- SP-SC poorly graded sand with clay If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.
- If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant.
- If soil contains > 30% plus No. 200, predominantly sand, add "sandy" to group name 1
- If soil contains≥ 30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- PI ≥ 4 and plots on or above "A" line. n.
- PI < 4 or plots below "A" line 0
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

Dry density, pcf	oc
Wet density, pcf	S
Natural moisture content, %	SG
Liqiuid limit, %	Ċ
Plastic limit, %	Ø
Plasticity index, %	qu
% passing 200 sieve	qp
	Wet density, pcf Natural moisture content, % Liqiuid limit, % Plastic limit, % Plasticity index, %

- Percent of saturation, %
- Specific gravity
- Cohesion, psf
- Angle of internal friction

Organic content, %

- Unconfined compressive strength, psf
 - Pocket penetrometer strength, tsf

..... over 12" No. 4 to 3/4" No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200 < No. 200, PI < 4 or below "A" line< No. 200, PI≥4 and on or above "A" line

elative Density of hesionless Soils

Very loose	
Medium dense	11 to 30 BPF
Dense	31 to 50 BPF
Very dense	over 50 BPF

tency of Cohesive Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "Н.

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards.

Descriptive Terminology Cone Penetration Test

This document accompanies Cone Penetration Test Data. Please refer to the Boring Log Descriptive Terminology Sheet for information relevant to conventional v. Cone Penetration Test (CPT) boring logs.

Cone Penetration Test (CPT) sounding was performed in general accordance with ASTM D 5778 and consistent with the ordinary degree of care and skill used by reputable practitioners of the same discipline currently practicing under similar circumstances and in the same locality. No warranty, express or implied, is made.

Since subsurface conditions outside each CPT sounding are unknown, and soil, rock and pore water conditions cannot be relied upon to be consistent or uniform, no warranty is made that conditions adjacent to each sounding will necessarily be the same as or similar to those shown on this log. Braun Intertec is not responsible for any interpretations, assumptions, projections or interpolations of the data made by others.

pressure Pore water measurements and subsequently interpreted water levels shown on CPT logs should be used with discretion as they represent dynamic conditions. Dynamic pore water pressure measurements may deviate substantially from hydrostatic conditions, especially in cohesive soils. from In cohesive soils, pore water pressures often take an extended time to reach equilibrium and thus reflect their true field level. Groundwater levels can be expected to vary both seasonally and yearly. The absence of notations on this log regarding water does not necessarily mean that groundwater is not present to the depth explored, or that a contractor will not encounter groundwater during excavation or construction.

CPT Terminology

CPT Cone F	Penetration Te	st		
CPTU Cone	Penetration	Test	with	Pore
Pressure measurem	nents			
SCPTU Cone	Penetration	Test	with	Pore
Pressure and Seism	nic measureme	ents		
PiezoconeCommo	on name for Cl	PTU te	st	
Q _T r	normalized cor	ne resis	tance	
Bqp	ore pressure	ratio		
F _r r	normalized fric	tion rat	io	
σ _{vo} c	verburden pre	essure		
σ' _{vo} ε	effective overb	urden p	pressur	е

q_T TIP RESISTANCE

The resistance at the cone corrected for water pressure. Data is from cone with a 60 degree apex angle and a 15 cm^2 end area.

fs SLEEVE FRICTION RESISTANCE

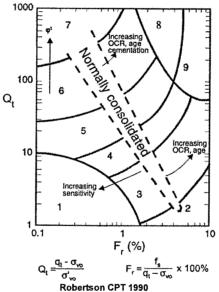
The resistance along the sleeve of the penetrometer.

F_r Friction Ratio

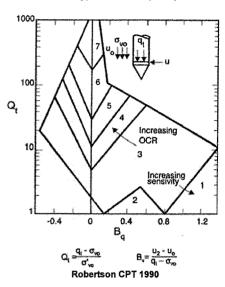
Ratio of sleeve friction over corrected tip resistance. $\mathsf{F}_r = \mathsf{f}_s/\mathsf{q}_t$

V_s Shear Wave Velocity

A measure of the speed at which a seismic wave travels through soil/rock.


SBT SOIL BEHAVIOR TYPE

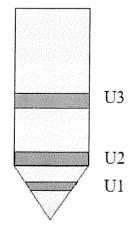
Soil Identification methods for the Cone Penetration Test are based on correlation charts developed from observations of CPT data and conventional borings. Please note that these identification charts are provided as a guide to Soil Behavior Type and should not be used to infer a soil classification based on grain size distribution.


Engineering judgment and comparison with augered borings is especially important in the proper interpretation of CPT data in certain geo-materials.

The following charts provide a Soil Behavior Type for the CPT Data. The numbers corresponding to different regions on the charts represent the following soil behavior types:

Soil Behavior Type based on friction ratio

Soil Behavior Type based on pore pressure



1 Sensitive, Fine Grained

- 2 Organic Soils Peat
- 3 Clays Clay to Silty Clay
- 4 Silt Mixtures Clayey Silt to Silty Clay
- 5 Sand Mixtures Silty Sand to Sandy Silt
- 6 Sands Clean Sand to Silty Sand
- 7 Gravelly Sand to Sand
- 8 Very Stiff Sand to Clayey Sand
- 9 Very Stiff, Fine Grained

U2 PORE WATER MEASUREMENTS

Pore water measurements reported on CPT logs are representative of pore water pressures measured at the U2 location, just behind the cone tip, prior to the sleeve, as shown in the figure below. These measurements are considered to represent dynamic pore water pressures due to the local disturbance caused by the cone tip. Dynamic pore water pressure decay and static pore water pressure measurements are reported on a Pore Water Pressure Dissipation Graph.

Appendix B

Prairie Center Drive Bridge

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Foundation Analysis Design Recommendation Report Prairie Center Drive Bridge – 75% Design STA 2085+51 to STA 2102+53 Southwest LRT, West Segment 1 Eden Prairie, Minnesota

Dear Mr. Demers:

Braun Intertec has completed the geotechnical evaluation for the proposed light rail bridge over Prairie Center Drive and Technology Drive near TH 212 in Eden Prairie, Minnesota. The following sections provide our recommendations for the design and construction of bridge foundations.

This report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for the land bridge approaching west end, abutment, the east approach embankment, retaining walls RTW-W108, RTW-W110 and RTW-W111, general track construction, and pole foundations for the Overhead Contact System (OCS) will be addressed in separate reports.

A. Project information

The west segment of the SWLRT project is proposing to construct a light rail transit line through the cities of Hopkins, Minnetonka, and Eden Prairie, Minnesota. This report considers the design and construction of a multiple span bridge carrying the SWLRT alignment over Prairie Center Drive and Technology Drive in Eden Prairie, Minnesota. The light rail bridge will consist of an at-grade land bridge approaching pier 1 from the west, an east abutment, and 17 piers. Prestressed concrete beams are proposed to support a cast-in-place concrete deck.

A.1. Type of Structures

This design report provides recommendations for foundations for the bridge carrying light rail vehicles over Prairie Center Drive and Technology Drive. The east abutment and piers are anticipated to be supported on cast-in-place concrete pipe piles. The west approach will consist of a land bridge supported on cast-in-place concrete pipe piles, with the north side supported by retaining wall RTW-W108. The east approach will consist of an earth embankment with sides supported by retaining walls RTW-W110 and RTW-W111.. Design recommendations for the land bridge, east approach embankment, and retaining walls will be addressed in separate reports.

A.2. Location of Bridge

The bridge is proposed to carry the LRT tracks over Prairie Center Drive and Technology Drive approximately 0.1 miles southeast of the intersection of TH 212 and Prairie Center Drive in Eden Prairie, Minnesota. The west bridge approach will be located on the west side of Prairie Center Drive, approximately 0.1 miles north of Technology Drive. The east abutment will be located on the east side of Prairie Center Drive, approximately 0.2 miles south of Technology Drive. 17 bridge piers will be located between the west bridge approach and east abutment, with span lengths ranging from approximately 45 to 140 feet. The overall length of the bridge is approximately 1,716 feet between the west approach and east abutment.

A.3. Other Information

The design team discussed the use of spread footing foundations to support the new structure. However, due to depth of fill and buried organic soils along a portion of the alignment, we have recommended supporting the structure on driven piles.

To construct the bridge, embankment grade increases of 10 to 20 feet for the east bridge abutment will be necessary. Grade raises of this magnitude will influence the design and construction of the proposed bridge foundation types. The effects of the embankment stresses are accounted for in our foundation design recommendations.

B. Subsurface Investigation Summary

B.1. Summary of Borings Taken

Braun Intertec completed standard penetration test (SPT) borings and cone penetration test (CPT) soundings near the proposed bridge structures on the project. Further details of the structure location and corresponding SPT borings and CPT soundings performed are as follows:

	Approximate Track		
Structure	Stationing	Corresponding SPT Borings	Corresponding CPT Soundings
Pier 1	2085+66	-	2108CB
Pier 2	2086+11	-	2109CB
Pier 3	2086+56		2109CB
Pier 4	2087+01	2094SB	-
Pier 5	2087+46	2094SB	-
Pier 6	2087+91	2094SB	-
Pier 7	2088+36	-	2110CB
Pier 8	2088+81	-	2110CB
Pier 9	2090+21	2095SB	-
Pier 10	2091+61	2118SB	-
Pier 11	2093+01	2064SB	-
Pier 12	2094+41	2119SB	-
Pier 13	2095+81	2065SB	-
Pier 14	2097+21	2137SB	-
Pier 15	2098+61	2066SB	-
Pier 16	2100+00	2047SB	-
Pier 19	2101+40	2048SB	-
East Abutment	2102+82	2096SB	-

Please note that not all of the structure locations have been drilled as of the date of this report due to property boundaries, utility conflicts, and realignment of some pier locations. The Appendix includes copies of the SPT and CPT logs, a generalized soil profile, and a boring location sketch.

B.2. Description of Foundation Soil and Rock Conditions

The borings conducted for the bridge piers and abutments generally revealed a surficial layer of topsoil fill underlain by additional fill over mixed layers of glacial soils (outwash and tills). Swamp deposits were noted in Borings 2094SB (Piers 4, 5 and 6), 2095SB (Pier 9), 2064SB (Pier 11), 2119SB (Pier 12), 2065SB (Pier 13), and 2137SB (Pier 14), between the fill and underlying glacial soils. The following paragraphs discuss the encountered soils in more detail at each substructure location.

B.2.a. Pavements

Borings 2048SB and 2066SB were located within or near existing pavement areas. The borings encountered various amounts of bituminous or concrete pavement and/or aggregate base. A summary of the encountered pavement section is provided in the following table.

Boring	Approximate Track Stationing	Bituminous Thickness (inches)	Aggregate Base Thickness (inches)
2048SB	2100+96	7	1 1/2
2066SB	2098+95	4" of Concrete	

Encountered Pavement Section

B.2.b. Topsoil Fill

A surficial layer of topsoil fill was encountered at all boring locations, with the exception of Borings 2048SB, 2066SB, and 2096SB. The topsoil fill ranged in thickness from a few inches to 2 feet and consisted of clayey sand (SC), lean clay (CL), lean clay with sand (CL), and sandy lean clay (CL).

B.2.c. Fill

Immediately below the topsoil fill or pavements, the borings encountered fill soils consisting of a mixture of silty sand (SM), clayey sand, silty clay (CL-ML), sandy lean clay, and peat (PT) to varying depths, ranging from approximately 6 to 28 feet below existing grade, corresponding to elevations 831 to 816 feet.

B.2.d. Swamp Deposits

Swamp deposits were encountered directly below the fill in Borings 2064SB, 2064SB, 2094SB, 2095SB, 2119SB, and 2137SB. Swamp deposits consisted of peat, organic clay (OL), and organic silt (OH). The swamp deposits extended to variable depths ranging from 6 to 48 feet below existing grade, corresponding to elevations 830 to 787 feet.

B.2.e. Alluvial Soils

Just beneath the topsoil, fill and swamp deposits, Borings 2094SB, 2118SB, 2064SB, and 2065SB encountered alluvium layers of lean clay, sandy lean clay, and fat clay (CH) extending to depths ranging from 27 to 58 feet below existing grade, corresponding to elevations 807 to 780 feet MSL.

B.2.f. Glacial Soils

Glacial soils were encountered below the fill and swamp deposits to boring termination depths. The glacial soils consisted of till and outwash with classifications including gravel, poorly graded sand (SP), poorly graded sand with silt (SP-SM), silty sand, silt (ML), silt with sand (ML), sandy silt(MLS), clayey sand, lean clay, lean clay with sand, sandy lean clay, and fat clay. Glacial soils have the potential to contain cobbles and boulders.

B.2.g. Penetration Resistance Testing

The results of our penetration resistance testing from the borings are summarized below. Comments are provided to qualify the significance of the results.

Geologic Material	Classification	Range of Penetration Resistances*	Comments
Fill	SM, SC, CL-ML, CL, PT	5 to 62 BPF	Variable compaction
Swamp Deposits	OL, OH, PT	3 to 16 BPF	Slightly to moderately consolidated
Alluvial Soils	CL and CH	WH to 12 BPF	Locally very soft to rather stiff, generally rather soft to rather stiff
Glacial Soils	GP, SP-SM, SP, SM, ML, MLS	7 to 100+ BPF	Locally loose to very dense, generally medium dense to dense
	CL, SC	7 to 74 BPF	Locally rather medium to hard, generally stiff to hard

Penetration Resistance Data

*BPF-Blows per Foot, WH –weight of hammer

Where the CPT soundings penetrated into the underlying glacial soils, we recorded tip resistances generally ranging from less than 100 to over 5,000 psi. These tip resistances also indicate soils are generally loose to very dense and appear consistent to the SPT borings performed concurrently on the project

B.3. Summary of Water Level Measurements

Groundwater elevations were noted on the boring logs between elevations of about 805 to 825 feet above Mean Sea Level (MSL). Seasonal and annual fluctuations of groundwater, however, should be anticipated.

B.4. Interpretation of Water Level

The water level measurements in the borings indicated groundwater elevations between 805 and 825 feet. Historical borings in the area indicate the normal water level in the area is near 820-825, corresponding to the water level in the Purgatory Creek wetland. Based on the anticipated bottom-of-footing/pile-cap elevations for the bridge substructures and the recorded water levels, groundwater may influence foundation construction of the pile caps. The estimated water level and anticipated design may require the placement of 1 to 2 feet of crushed rock to aid in controlling groundwater seepage with sumps and pumps. In addition, a working platform for construction of the pile caps may be required.

C. Foundation Analysis

Based on the soil conditions encountered in the borings and soundings and the loads anticipated on the bridge, we recommend the proposed bridge abutment and piers be supported on pile foundations.

C.1. Embankments and Slopes

The proposed bridge is a new structure and will require the construction of a new approach embankment at the east abutment. The west abutment will transition to a land bridge, thus no embankment construction is anticipated on the west end of the proposed bridge. The eastern approach embankment will be approximately 10 to 20 feet tall and will utilize two walls, RTW-W110 and RTW-W111, to retain embankment backfill material (design and construction of embankment and walls covered under separate reports).

> **BRAUN** INTERTEC

C.1.a. Settlement

Please refer to the RTW-W110 and RTW-W111 Report.

C.1.b. Time Rate of Settlement

Please refer to the RTW-W110 amd RTW-W111 Report.

C.2. Pile Foundations

C.2.a. Nominal Resistance at Given Tip Elevations (Compression)

For bridge support, we calculated the nominal resistance of the piles in compression. Please refer to the Nominal Resistance Graphs and Section C.3.c.1 for the calculation method.

C.2.b. Calculate and Consider Downdrag and Lateral Squeeze

Based on the proposed east abutment location and lack of anticipated raise in grade in the area of the west abutment and bridge piers, we do not anticipate downdrag forces will contribute additional load to the piles.

Lateral squeeze can occur if the unit weight of the fill multiplied by the fill height is greater than three times the undrained shear strength of the subgrade soils. Due to the general granular nature of the soil encountered at the east embankment, we do not anticipate that lateral squeeze will be an issue.

C.2.c. Lateral Pile Analyses

The following table provides the soil parameters used for the lateral pile analyses and p-y curve generation, which was performed using the computer program LPILE (2013). Based on the soils encountered in the borings, we utilized the default lateral modulus of subgrade reaction values included in LPILE. For the purposes of our preliminary evaluation, we modeled the soil conditions encountered in Borings 2093SB and 2066SB. 2093SB is not associated with an abutment or pier for the bridge, but is representative of the conditions that will be encountered near the west end of the bridge. We have included boring 2093SB in the Appendix for reference.

Layer Top Depth (feet)	Layer Bottom Depth (feet)	Effective Unit Weight (pcf)	Internal Angle of Friction (degrees)	Undrained Shear Strength (psf)	Material Type
0	4.0	125	NA	1000	Stiff Clay with Free Water
4.0	6.0	125	NA	2000	Stiff Clay with Free Water
6.0	9.0	120	31	NA	Sand (Reese)
9.0	14.0	125	NA	3500	Stiff Clay w/o Free Water
14.0	17.0	125	NA	2000	Stiff Clay w/o Free Water
17.0	24.0	120	32	NA	Sand (Reese)
24.0	29.0	125	NA	2500	Stiff Clay w/o Free Water
29.0	32.0	120	33	NA	Sand (Reese)
32.0	37.0	120	35	NA	Sand (Reese)
37.0	57.0	55	32	NA	Sand (Reese)
57.0	78.0	55	33	NA	Sand (Reese)
78.0	83.0	65	NA	4500	Stiff Clay w/o Free Water
83.0	101.0	58	38	NA	Sand (Reese)

Soil Parameters for p-y Curve Generation – Boring 2093SB

Soil Parameters for p-y Curve Generation – Boring 2066SB (Pier 15)

Layer Top Depth below Pile Top (feet)	Layer Bottom Depth below Pile Top (feet)	Effective Unit Weight (pcf)	Internal Friction Angle (degrees)	Undrained Shear Strength (psf)	Material Type
0	0.5	120	NA	1250	Stiff Clay with Free Water
0.5	13.5	125	NA	1900	Stiff Clay w/o Free Water
13.5	19.5	53	32	NA	Sand (Reese)
19.5	34.5	56	33	NA	Sand (Reese)
34.5	44.5	65	34	NA	Sand (Reese)
44.5	59.5	68	35	NA	Sand (Reese)
59.5	64.5	58	35	NA	Sand (Reese)
64.5	72.5	60	35	NA	Sand (Reese)

For our lateral analyses, we assumed a pile top located 5 feet below the ground surface. The maximum lateral load in our analyses is for a loading condition assuming one-inch of deflection at the pile top with a fixed-head condition. We assumed a pile wall thickness of 0.25 inches for both the 12.0-inch and the 16.0-inch outside diameter pipe piles. We assumed a steel yield strength of 45 ksi and concrete infill with a compressive strength of 3 ksi for our analyses. Please refer to the attachments for the shear force and bending moments within the pile, which were generated at service loads of 120 tons (240 kips) for the 12.0-inch pipe pile and 140 tons (280 kips) for the 16.0-inch closed-end pipe pile.

C.2.d. Tip Elevation

We recommend driving the proposed pipe pile sections to the elevations shown in the anticipated pile length tables and the attached resistance graphs for driven pile in the Appendix of this report. The table below shows approximate bottom-of-pile-cap elevations based on plans provided by SPO.

	Anticipated Bottom-of-Pile-Cap Elevation
Substructure	(feet)
Bottom of Grade Beam	832 – 838*
Pier 1	834
Pier 2	836
Pier 3	838
Pier 5	840
Pier 6	844
Pier 7	846
Pier 8	837
Pier 9	831
Pier 10	829
Pier 12	827
Pier 13	827
Pier 14	825
Pier 15	826
Pier 16	825
Pier 17	828
East Abutment	862

*The range given represents the approximate bottom of grade beam elevation for the screen wall located between piers 1 through 8.

C.3. Summarize Design Assumptions

C.3.a. Bridge Loading Information (Axial and Horizontal)

Please refer to Section D.1 and D.4 for anticipated pile loads and resistances.

C.3.b. Design Methodologies – Pile-Supported Structures

C.3.b.1. Pile Capacity – LRFD (Prairie Center Drive Bridge)

We used the computer program UniPile, version 5.0.0.33, to estimate the static nominal geotechnical resistance (R_n) of the 10.0-, 12.0-,- and 16.0-inch outside-diameter, 1/4-inch thick wall, closed-ended pipe piles for support of the bridge abutments and piers. UniPile software was developed by UniSoft Geotechnical Solutions Ltd. and can calculate pile resistance using a variety of methods.

For our analysis, we utilized the Beta-method, an effective stress method, to estimate the static geotechnical resistance for these piles. This method determines shaft resistance using Bjerrum-Burland beta coefficients (β), which are based on soil type and effective friction angle. We estimated the β values for each layer using Figure 9.20 from the Federal Highway Administration (FHWA) Publication No. NHI-05-042, Design and Construction of Driven Pile Foundations, April 2006. The Beta-method determines end bearing resistance using toe bearing capacity factors (N_t), which are also based on soil type and effective friction angle. We estimated the N_t values from Table 9-6 of the April 2006 FHWA publication identified previously.

C.3.b.2. Downdrag

We do not expect downdrag will act on the piling based on the anticipated east embankment construction method and lack of anticipated raise in grade in the areas of the west abutment and the proposed piers.

C.4. Construction Considerations

C.4.a. Design of Temporary and Permanent Slopes

The existing foundation/embankment soils consist of a mixture of cohesive soils and sand with angles of internal friction of 28 degrees or greater. The permanent slopes can match the existing slopes, except they must be not steeper than 1V:2H. The granular borrow is anticipated have an angle of internal friction of approximately 30 degrees. This soil could be temporarily placed at a slope of 1V:1.5H, but must be limited to 1V:2H or flatter for the permanent condition.

C.4.b. Subcut Recommendations and Backfill Requirements

C.4.b.1. Prairie Center Drive Bridge

We recommend removing the topsoil fill along the east approach embankment. The excavations to remove these soils are anticipated to be limited and are estimated to be about 1 to 2 feet below grade at the east embankment. The extent of the excavation should extend horizontally beyond the embankment limits a distance equal to the depth of the subcut, or 1 foot, whichever is greater. As the bridge piers are to be constructed within a cut, we do not anticipate a need for subcutting below the substructure since a driven-pile foundation system will support the structure.

Based on the anticipated bottom-of-pile-cap substructure elevations, groundwater will not likely be encountered within the bottom excavations. If encountered, temporary dewatering may be needed along with the placement of crushed rock to help control groundwater seepage with sumps. A stable working platform also may need to be provided during construction.

We recommend backfilling below the substructures and constructing embankment fills with Granular Borrow or Select Granular Borrow. We also recommend compacting the soils to meet the requirements from MnDOT Specifications 2451 or 2105, as appropriate for backfill and fill, respectively. The compaction should be evaluated using the Specified Density Method defined in MnDOT Specification 2105.3 F1. Soils placed as backfill may not be saturated or frozen at time of placement. Do not place new backfill material on frozen soil.

We recommend using Select Granular Modified 10 percent for Structure Backfill. Select Granular Modified 10% shall comply with Specification 3149.2B2, modified to 10 percent or less passing the 0.075 mm (#200) sieve.

C.4.c. Construction Staging Requirements

Due to the anticipated cuts at the pier substructure locations, a waiting period is not necessary at these substructure locations. Please refer to the RTW-W110 and RTW-W111 Report for recommendations regarding construction of the east embankment.

C.4.d. Demolition

All existing pavement, structures, and associated deleterious material where proposed structures and oversize areas are to be located should be fully removed and replaced with suitable engineered fill.

D. Foundation Recommendations – Deep Foundations

D.1. Bearing Resistances and Associated Resistance/Safety Factors

Please refer to the Appendix for nominal bearing resistances for driven pile for bridge abutment and pier support. For situations where subsurface exploration and static calculations have been completed, we recommend that the following ϕ_{dyn} factors be used for LRFD Design.

Recommended Pile Driving Resistance Factors (ϕ_{dyn})

Specified Construction Control	ф dyn
MnDOT Pile Formula 2012 (MPF12) for Pipe Pile Sections	0.50
Wave Equation and Pile Driving Analyzer (PDA)	0.65

D.2. Uplift Capacity/Resistance

Currently, a tension resistance line is not provided on the Nominal Bearing Resistance Graphs attached to this report. If piles will experience tension loads, we will revise our recommendations accordingly.

D.3. Recommended Design Soil Parameters (e.g., Coefficient of Friction, Lateral Earth Pressure Coefficients, etc.)

Soil Type	Angle of Internal Friction (degrees)	Effective unit Weight (pcf)	Coefficient of Sliding Friction Rough Concrete	Active Earth Pressure Coefficient	At-Rest Earth Pressure Coefficient
Select Granular Borrow	35	120	0.6	0.27	0.43
Granular Borrow	30	120	0.5	0.33	0.50
Existing Non-organic Granular Fill	30	125	0.5	0.33	0.50
Existing Clay Fill	28	130	0.4	0.36	0.53

We recommend soil parameters to be used for design are as follows:

D.4. Recommended Pile Size, Length, and Tip Elevation

D.4.a. Bridge Abutments and Piers

We have constructed two tables which summarize the anticipated pile depths based on the factored load ($\Sigma\gamma Q_n$) for 10.0-, 12.0- and 16.0-inch, outside-diameter pipe piles with a wall thickness of 1/4 inch. The tables provide a PDA length (i.e., ϕ_{dyn} of 0.65) and a MPF12 formula length (i.e., ϕ_{dyn} of 0.50) for each location. We assumed a cutoff elevation of about 1 foot above the anticipated bottom-of-pile-cap elevation. Please refer to the nominal bearing resistance graphs and the anticipated pile length tables using PDA Analysis and the MPF 12 for a detailed profile of pile resistances and anticipated pile lengths.

D.5. Waiting Periods for Embankments

Not used. Please refer to the RTW-W110 and RTW-W111 Report for the east abutment embankment construction.

D.6. Surcharge Systems Recommendations

Not used. Please refer to the RTW-W110 and RTW-W111 Report for the east abutment embankment construction.

D.7. Temporary Slopes and Shoring Limits

Temporary slopes in the Granular Borrow or Select Granular Borrow backfill are recommended to be constructed at 1V:1.5H or shallower. Temporary slopes constructed in natural material are recommended to be constructed at 1V:2H or shallower. In a temporary condition; these slopes have a Factor of Safety against global failure in excess of 1.3.

E. Material Classification and Testing

E.1. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars or bags and returned to our facility for review and storage.

E.2. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures and follow MnDOT guidelines.

E.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced. The boreholes were then backfilled or sealed with bentonite grout.

F. Qualifications

F.1. Variations in Subsurface Conditions

F.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore, strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

F.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications, and other seasonal and annual factors.

F.2. Continuity of Professional Responsibility

F.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

F.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

F.3. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

G. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If there are questions regarding these bridge foundation recommendations, please call Josh Kirk at 952.995.2222 or Ray Huber at 952.995.2260.

Sincerely,

BRAUN INTERTEC CORPORATION

Professional Certification:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Joshua L. Kirk, PE Associate Principal - Project Engineer License Number: 45005 July 21, 2014

Reviewed by:

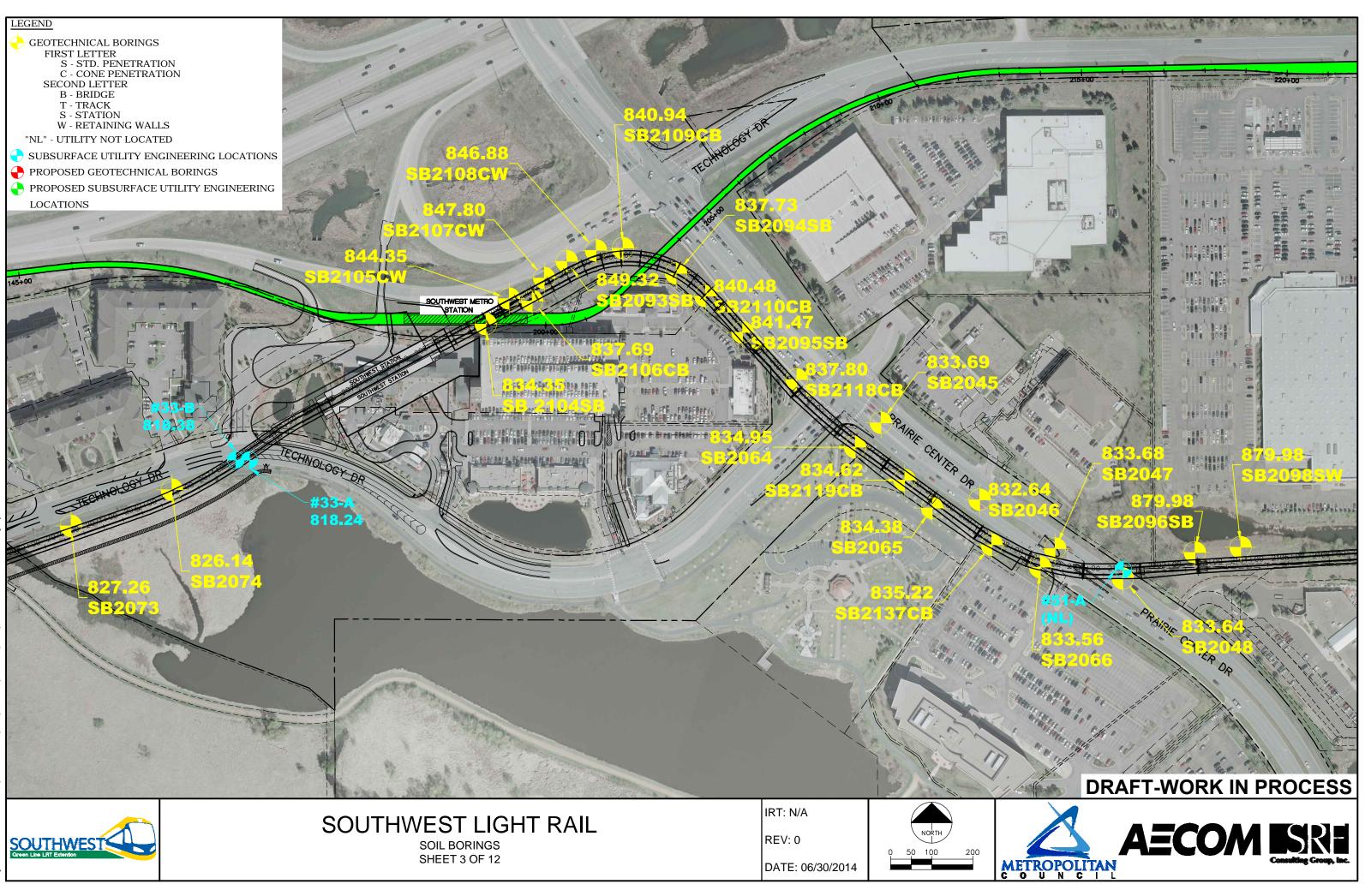
Ray A. Huber, PE Vice President-Principal Engineer

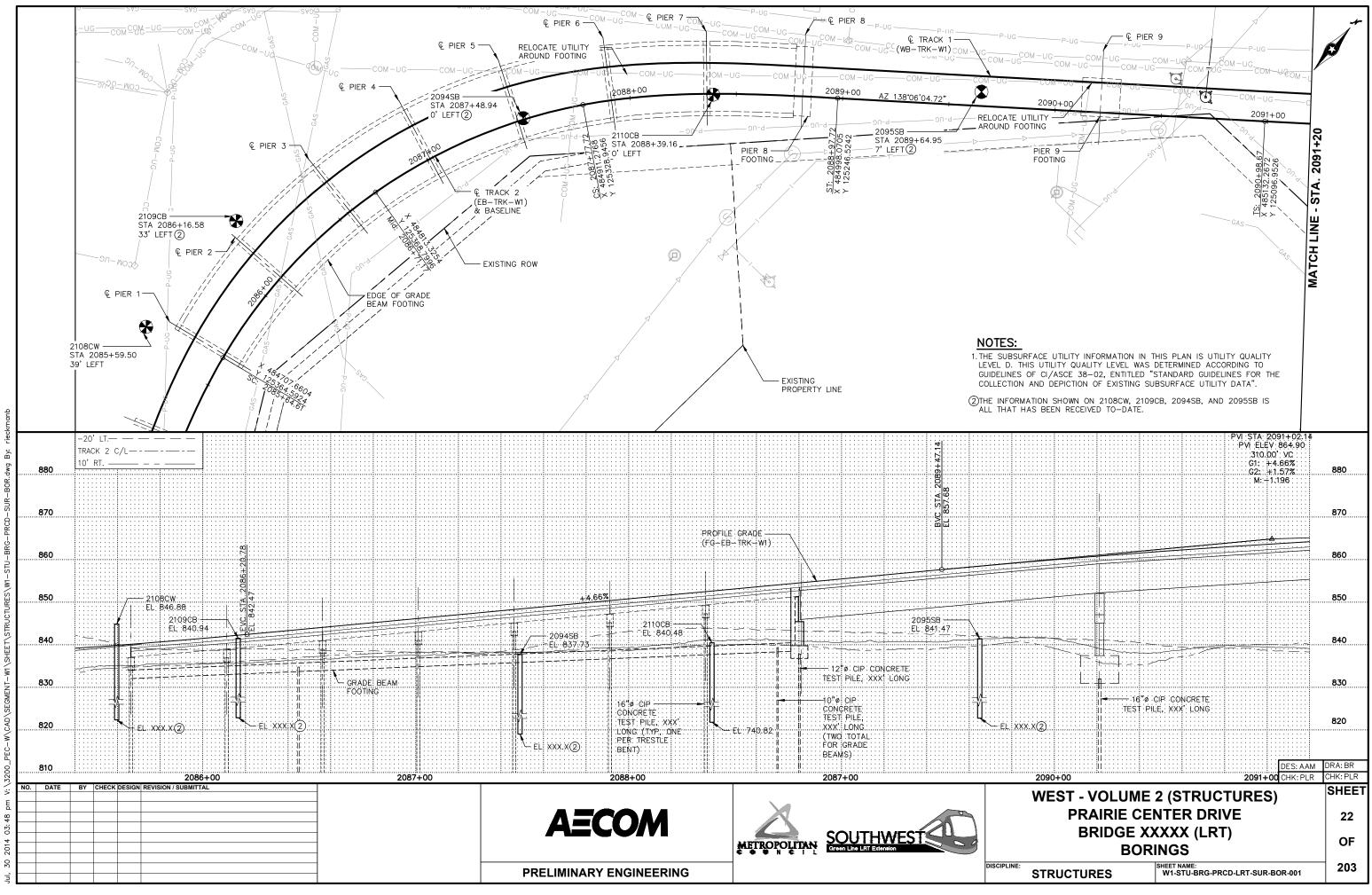
Reviewed by:

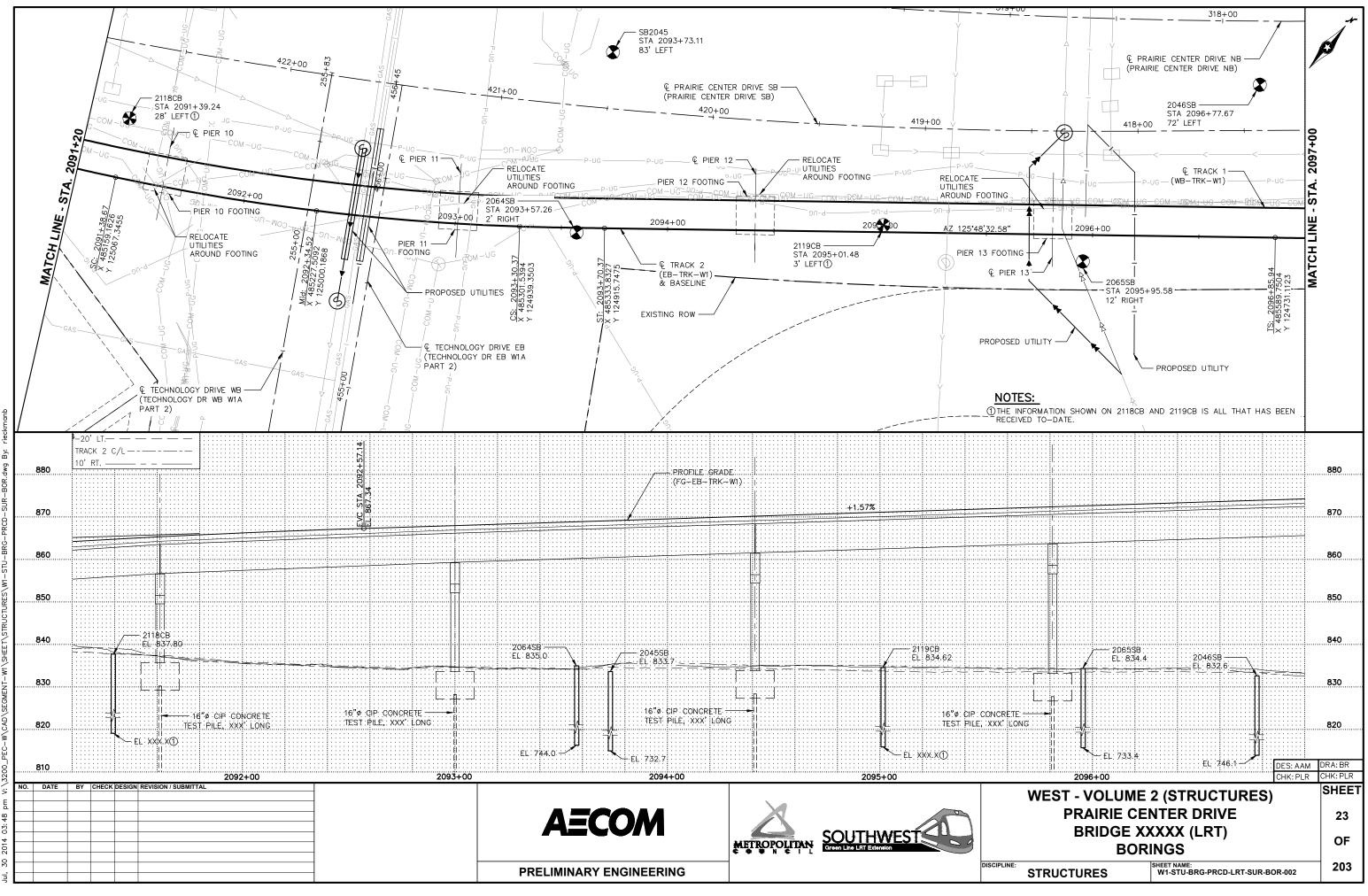
Matthew P. Ruble, PE Principal Engineer

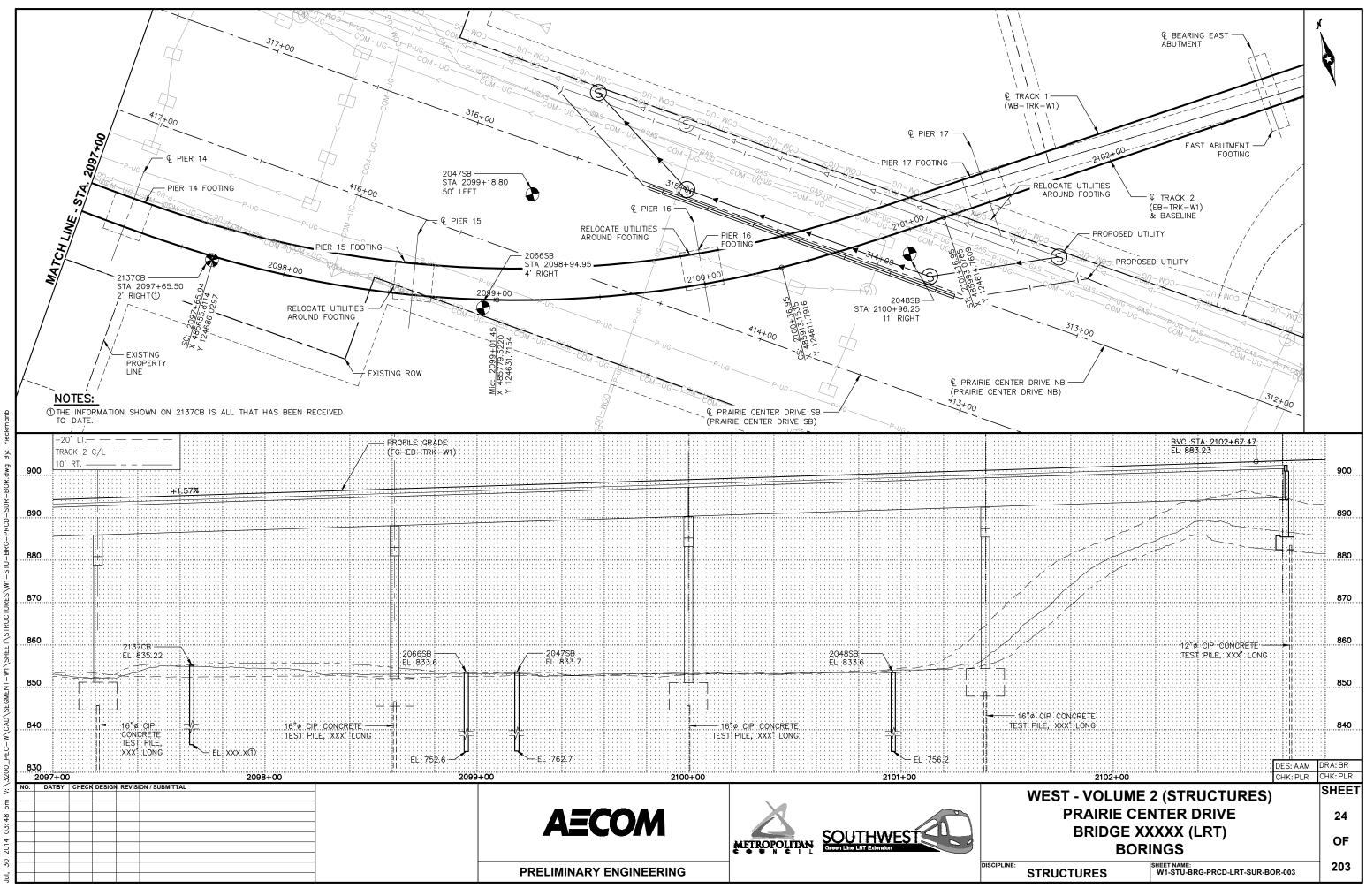
Appendix:

- Boring Location Sketch
- Preliminary Engineering Plan and Profile Sheets Prairie Center Drive Bridge
- SPT Logs: (2047SB, 2048SB, 2064SB, 2065SB, 2066SB, 2093SB, 2094SB, 2095SB, 2096SB, 2118SB, 2119SB, 2137SB)


BRAUN INTERTEC


- CPT Logs: (2108CB, 2109CB, 2110CB)
- Summary of Anticipated Pile Lengths PDA Analysis


- Summary of Anticipated Pile Lengths MPF12 Analysis
- Summary of Anticipated Pile Lengths Screenwalls
- Nominal Geotechnical Resistance Graphs
- Lateral Pile Analysis Results
- MnDOT SPT Descriptive Terminology
- MnDOT CPT Descriptive Terminology


APPENDIX

	2045SB Elevation 833.7	2046SB Elevation 832.6	204 Elev Coh N60
830	3 Inches of Bituminous: over. 2 Inches of Aggregate Base. 26 FILL: Sitty: Sand, with Gravel, trace bituminous, accasional Lean Clay 17 Ienses, brown, moist. 12 SANDY LEAN CLAY, trace: Gravel, brown, wet. 12 SANDY LEAN CLAY, trace 12	24. FILL: Sandy Lean Clay, with Sand lenses, brown and gray, wet. Silty 25. Clay layer at 7 feet. Sand layer at 8 feet.	20
	19 12. LEAN CLAY, trace Gravel, gray, wet, rather stiff to stiff. 12 15. Poorly Graded Sand and Silt lenses at 17 feet.	19 8 4. CLAYEY SAND, fine- to medium-grained, with black, Lean Clay lenses, 4. with Sand lenses, gray and black, wet:	27 25 10 ∇ 12
810	11 SANDY LEAN CLAY, trace Gravel, with occaisanat Sand lenses, gray, wet, g	2 ORGANIC SILT, brown, wet. ORGANIC CLAY, with shells and fibers, gray, wet. 3 LEAN CLAY, with fibers at 22 feet, gray, wet, soft to medium. 6	
800	10. 10. 10. 10. 10. 10. 10. 10.	7 6 {3 {3 12 12	35 31 36 29 25
	10. SANDY LEAN CLAY, trace Gravel, gray, wet, rather stiff to very stiff. 12 16 19	14. 16. 18. 17. 22.	27 30 31 39
780	23 LEAN CLAY, with accasional Silt Jenses, bluish gray, wet, very stiff to hard;	25	42. 53.
760	46 44	26 Waterbearing Sand lense at 65 feet. 31	50/5" 50/6"
750	50 47	37 79	
740	70 SILTY CLAY; with waterbearing fine Sand lenses; gray, wet, hard.	50/3": Auger :refusal: ut: 86 : 1/2: feet; Boring: Immediately backfilled with bentonite grout. Bottom of Borehole of 86,5 tt	
730	62 63 END: OF: BORING. Water: observed: at: 1.7 feet: with: 1.7 feet: of hellow-stem: auger: in: the ground. Bering: immediately backfilled with bentenite: grout:		
720			
710			
690			
	ES: MATERIAL DESCRIPTIONS ARE CLASSIFIED ACCORDING TO THE UNIFIED SOIL		
670	ASSIFICATION SYSTEM. DETAILS ON THE SYSTEM CAN BE FOUND IN THE FADR		
NO. DATE BY CHEC	CK DESIGN REVISION / SUBMITTAL		
			VEST
		PRELIMINARY ENGINEERING	

BORINGS	CD-LRT-SUR-BOR-004	OF 203
WEST - VOLUME 2 (STRUC PRAIRIE CENTER DRI BRIDGE XXXXX (LR1	VE	25
	CHK: N/A	CHK: PLR
	DES:N/A	DRA: BR
		680
		700
		700
		. 730
		740
Battom of Borehole at 71 ft		
Water observed at 20 feet with 20 feet of hollow-ste the ground. Boring immediately backfilled with bentonite grout.	m auger in	,
END: OF BORING.		760
POØRLY (GRADED (SAND, fine-grained, with loccasional (lenses, gray, waterbearing, very dense.	Silty: Sand	
medium dense. SILT, brown and gray, waterbearing, dense.	gray, waterbeating,	
SANDY LEAN CLAY, trace Gravel, gray, wet, very stiff. SILTY SAND, fine- to medium-grained, trace Gravel, ;		790
		800
CLAYEY: SAND; :fine-: ta :medium-grained, trace: Gravel, medium : dense: to: dense.	.gray, wet,	
SANDY LEAN CLAY, trace Gravel, gray, wet, rather stif POORLY GRADED SAND, tine- to medium-grained, trac waterbearing, medium dense.	<u> </u>	810
FILE: Silly Sand, fine- to medium-grained, trace.Gra feet then gray, moist.	:	820
rnoist. FILE: Sandy Lean Clay, trace Gravel, brown, moist. FILE: Silty Sand, fine- to medium-grained, with Lean		
LEAN CLAY, black, wet. FILL: Clayey Sand, fine- to medium-grained, with G	ravel brown	830
ration 833.7		840
-7\$B		

	2048SB	2064SB	2065SB
840	Elevation 833.6	Elevation 835.0	Elevation 834.4
Coh	N60	Coh N50	Coh N60
830	7 Inches of Bituminous over 1 1/2 inches of Aggregate Base.	- 13 CLATET SAND, trace roots, block and brown, trazen.	zen to moist. 21 SANDY LEAN CLAY, frace roots, black, frazen. 7111: Clayey, Sand, frace Gravel, brawn, frazen. 830
	11 Sandy Lean Clay, trace Grave, with frequent Sond secons, 11 brown, wet.	5 15 FILL: Sandy Lean Clay, trace Gravel and fibers, brown and bla	ck, molst. 1 Fill: Saddy Lean Clay, trace Grovel, brown and black, frozen to 5
	36	 15 12 12. TIL: Sandy Lean Clay, Irace Tibers, gray, brown and black, m 	16 9999
820	5 SANDY LEAN CLAY, trace Gravel, brown, moist, stiff.	- 9	11 Will Salidy Lean Glay, with request Sill layers, gray to block, moist 15 Di PEAT, Irade fibers, block, moist, 8 - OKGNIC SILT, with shells, trace fibers, gray, block, wet. 8 - OKGNIC SILT, with shells, trace fibers, gray, block, wet.
	17	3 SANDY LEAN CLAY, With shars, light gray, most	8 CRGANIC SILT, with shells, trace fibers, gray, black, wet.
	16 POORLY CRAOED SAND fine-project light brown to brown moist to	7 FAT CLAY, gray, moist to wet, rather soft to soft.	LEAN CLAY, with layers of fat Clay, groy, moist, rather stiff to
810	5 POORLY GRADED SAND, fine-grained, light brown to brown, moist to 20 27 feet then waterbearing, medium dense.	10	¥ 9 810
文	26		9 1 SANDY LEAN CLAY, trace Gravel, gray, moist, rather stiff to stiff.
	21 25	2	1 SANDY LEAN CLAY, frace Gravel, gray, moist, rather stiff to stiff.
800	²⁵	4	13 800
	23		
	22 SILTY SAND, fine-grained, brown, waterbearing, medium dense.	14*	
790	33 POORLY GRADED SAND, fine- to medium-groined brown to 65 feet		14 790
	37 then gray, waterbearing, dense to very dense.	16	18 SANDY LEAN CLAY, with Grovel, gray, moist, very stiff.
	82 55	17	20
780		CLAYEY SAND, with Gravel, gray, waterbearing, very stiff.	CLAYEY SAND, with Gravel, gray, waterbearing, medium dense. 780
	57		
		25* SANDY LEAN CLAY, with Gravel, gray, moist, very sliff to hard.	23 SANDY LEAN CLAY, frace Gravel, with frequent loyers of Fat Clay, gray,
770	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		770
	87		
	59 F	37	34 22 780
760		CLAYEY SAND, with Gravel, gray, waterbearing, hard.	CLAYEY SAND, with Gravel, with Sand layers, gray, wet, dense to very
	58 SANDY LEAN CLAY, with Gravel, with frequent coarse Sand layers, brown, wet, hord.	Heavy Gravel encountered at 78 feet. 44* POORLY GRADED GRAVEL, with medium-grained Sand, with frequ	42 dense.
	74 END OF BORING.	44* (C. POORLY GRADED GRAYEL, with medium—grained Sond, with trequ	**
750	Water observed at 27 feet with 27 feet of hollow-stem auger in the		
	ground.	2007	
	Boring immediately backfilled with bentonite grout.	END OF BORING.	52
740	Bottom pf Borehole at 81 ft	Water. observed. at 17 feet. while. driling.	
		Boring then backfillet with bentanite grout. Bottom of Borehole et 91 ft	
1.000			68 END OF BORING.
730			Water observed at 22 feet while drilling.
			Boring immediately backfilled with bentahile grout. Bottom of Borehole at 101 ft
720			
710			710
710			
700			700
700			
600			
690			
	TES:		
	E MATERIAL DESCRIPTIONS ARE CLASSIFIED ACCORDING TO THE UNIFIED SOIL		
AN	ND IN ASTM: D2488.		
670			DES: N/A DRA: BR
670	an kana mana kana ma		CHK:N/A CHK:PLF
D. DATE BY CHEC	CK DESIGN REVISION / SUBMITTAL		
			WEST - VOLOME 2 (STRUCTURES)
			PRAIRIE CENTER DRIVE 26
			JTHWEST BRIDGE XXXXX (LRT)
		METROPOLITAN SOL	BORINGS OF
		COURCIL	
+ + +		PRELIMINARY ENGINEERING	DISCIPLINE: STRUCTURES WI-STU-BRG-PRCD-LRT-SUR-BOR-005 203

850				110CB								850
840		2066SB	Pore Water Pressure (psi)	evation 840.5	ress (psi) 00 4800 6400 80	FR (%)						840
640		Elevation 833.6		CONTRACTOR ADDRESS ADDRE								040
830	Coh N60	Via Inches of Concrete. FILL: Cloyey Sand, trace Gravel, brown, frozen to molat.		5 15		100						830
000		FILL: Sondy Lean Clay, trace Gravel, brown and groy, moist.										
820	22 19	FILL Clayey Sand, with Sand secons, with Gravel, brown and gray, moist.				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						820
020		CLAYEY SAND, with loyers of Lean Clay, gray, moist, stiff to rather stiff.										020
	又 9 11-	SANDY LEAN CLAY, with Sand searss, groy, moist to 20 feet then wet, rather stiff.		25		15						
810		POORLY GRADED SAND, fine- to medium-grained, with Gravel, gray, waterbearing, medium dense to dense.		30	_							810
	24			45								
800	34					5						800
	31	- Layers of Lean Clay at 40 feet.		45								
790	32	SILTY SAND, with Gravel, with layers of Lean Clay, groy, waterbearing,		50-	-	- Š						790
	37			55 55		S. MAN						
780	44			60								780
	52		~~~~~	65		- Z						
770	62	Silty Sand layers at 65 feet.		70		3						
	28	POORLY GRADED SAND, fine- to coorse-proined, with Gravel, with lavers		75		8						
760	49	of Lean Clay, gray, waterbearing, medium dense.			2	2						760
				85		~						
750	75	END OF BORINC. Water observed at 20 feet while critiling.		90	>							750
		Boring immediately backfilled with bentonite grout. Bottom of Borghole at 81 ft		85 90 95	2	E II						
740				Bottom of T		5						740
730												730
720												720
710												710
700												700
690	NOTES:	L DESCRIPTIONS ARE CLASSIFIED ACCORDING TO THE UNIFIED SDIL										690
	CLASSIFICATIO AND IN ASTM	IN SYSTEM, DETAILS ON THE SYSTEM CAN BE FOUND IN THE FADR										
680											DES: N	
	BY CHECK DESIGN REV	VISION/ SUBMITIAL	danaa aa		T			T			CHK:	N/A CHK:
					1			WEST - VOI				
			AECO	M	N					TER DRI		2
				- 	METROPOLI	TAN SOUTH	VEST	BRID	BORIN		0	C
			PRELIMINARY ENGIN						Ise	HEET NAME	CD-LRT-SUR-BOR-006	2

-

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location					Boring I 2047			Ground Elevation 833.7 (Surveyed)
Locatio	<i>n</i> Her	nepii	n Co. Coordinate: X=48580	9 Y=124676	(ft.) <i>L</i>	Drill	Machine	;				SHEET 1 of 2
	Latit	ude (North)= Longi	tude (West)=	<i>F</i>	lam	mer CN	IE Autor	natic Ca	librated		Drilling Completed 11/18/13
			Offset Information Available				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Depth Elev.	Lithology	Clas	sification	Drillina	Operation	REC (%)	RQD (%)		Core Breaks		• •
	1.0	<u>_1 //</u>	LEAN CLAY, black, wet, (CL),	topsoil fill	{	7	-	_				
-	832.7 4.0		CLAYEY SAND, Sand, fine- to Gravel, brown, moist, (SC), fill		4	-} <	-20	-				
5-	829.7	X	SANDY LEAN CLAY, trace G	avel, brown, moist, (CL),	, fill	7		- 12				
-	7.0 826.7 9.0		SILTY SAND, fine- to medium lenses, brown, moist, (SM), fill		{	1 <	20	-				
10-	_ 824.7	\bigotimes	SILTY SAND, fine- to medium to 12 feet then gray, moist, (S		rown	1 × 7	27	7				
-	14.0 819.7			<i>vi)</i> , iii	۲ ۲		25	-				
15- - -	-		SANDY LEAN CLAY, trace Gi (CL), till	ravel, gray, wet, rather st	iff,	$\overline{1}$	10 _ -	16				=1 1/2 tsf =3 tsf
▼ 20 -	_ 19.0 _ 814.7 _		POORLY GRADED SAND, fir Gravel, gray, waterbearing, m		ace 🦯		12 - - 15 - 19 ⁻	- - - -			Sv	vitched to mud rotary illing method after 20-fo mple.
25-	27.0		Gravel, gray, waterbearing, in	eulum dense, (or), outw		ď X ď	24	-				
30-	806.7	× . × × 					28 -	14			P2	200=38%
-	-	`.`.X `x``. ``.X `x`.	CLAYEY SAND, fine- to medii gray, wet, very stiff to hard, (S	um-grained, trace Gravel C), till	,	^p V	33 - - 31 ⁻	- 14				
35-	37.0	· . · .× ·× · . · . · .× · . · .×					- 36 _	-				
40-	796.7		SANDY LEAN CLAY, trace Gi (CL), till	avel, gray, wet, very stiff		X ở X ở	29 - - 25 -	- - -				
+	44.0					ď V	27	15				D=121 pcf 6 pcf
45	 Index She	∟↓ et Co				ν		L	⊥ Soil (L Class: Ro	⊥_ cck (Class: Edit: Date: 7/28/ APOLIS\2013\00213-MNDOT.G

U.S. Customary Units

SHEET 2 of 2 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Trunk Highway/Location Boring No. Ground Elevation State Project Bridge No. or Job Desc. 833.7 (Surveyed) SWLRT 2047SB γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core Rock Formation Classification Elev. Breaks or Member (%) (%) (ft) P200=20% ́х. 30 16 SILTY SAND, fine- to medium-grained, trace Gravel, gray, 47.0 waterbearing, medium dense, (SM), till (continued) PD 786.7 31 PD 50 39 SILT, brown and gray, waterbearing, dense, (ML), till 55 P200=90% 42 24 PD 59.0 774.7 60 53 PD POORLY GRADED SAND, fine-grained, with occasional Silty Sand lenses, gray, waterbearing, very dense, (SP), 65 *50 blows per 5-inch set. outwash PD *50 blows per 5-inch set. 70 70.4 Bottom of Hole - 70.4 feet. 763.3 Water observed at 20 feet with 20 feet of hollow-stem auger in the ground. Boring Immediately backfilled with bentonite grout. Soil Class: Rock Class: Edit: Date: 7/28/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Locat	ion				Boring			Ground Ele	
				SWLRT					2048	SB			(Surveyed)
ocatio	on Hen	inepii	n Co. Coordinate: X=48597	3 Y=124602	(ft.)	Drill	Machine	9 7507					ET 1 of 2
	Latit	ude (North)= Longi	tude (West)=		Han	nmer CN	IE Autor	natic Ca	alibrated		Drilling Completed	, 11/21/1
	No Si	tation-	Offset Information Available				SPT	МС	сон	γ	_	Other	Tests
Ŧ	Depth	y,				2	Maa	(%)	(psf)	(pcf)	Soil	Or Re	
DEPTH	_ o p	Lithology				ng atio	REC	RQD	ACL	Core	×	Form	otion
DE	Elev.	Lit	Clas	sification		Drilling Operation	(%)	(%)	(ft)	Core Break:	Roc	or Me	
	0.6		7 inches of Bituminous.			Æ	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	-		
_	833.0 0.8		1 1/2 inches of Aggregate Bas	e.	/	55		Į					
-	832.8						16	15					
_	-		SANDY LEAN CLAY, trace G	avel, with frequent Sa	and	मि		t					
5-	-		seams, brown, wet, (CLS), fill			\square	11	Ī.					
-	-					रि		-					
-	9.0						36	+					
10-	824.6		SANDY LEAN CLAY, trace G	raval brown maint a		Æ							
10	-		(CLS), till	avel, brown, moist, s	un,	$\left \right>$	16	+					
-	12.0 821.6					<u>-</u> <u>ि</u>		+					
							20	Ì					
15-	_		SILT with SAND, light brown to	o brown, moist, medii	Jm.	R	_	L			P	200=78%	
-	-		dense, (ML), till		,		17	-					
-	-					ł		- 9					
	19.0	ļĮĮĮ				K	18	Į.					
20-	814.6	· · · · · ·				4		-					
-	-					A	15	+					
1	-					51		ļ					
-	-						20	-					
25 -	-					L		-				200=5%	
	-				- 4-		26	2				witched to m illing operat	
-	-		POORLY GRADED SAND, fir brown, moist to 27 fee then wa			PD	21*	-			ro	tary drilling	method aft
-	-		(SP), outwash	Ū.		PD		+				5-foot sampl lo recovery	
30	-						25	t				covery.	-
]						(PD		ļ					
+						$\mathbf{\nabla}$	22	+					
25	-					PD		+			 	200=26%	
35	-					\square	23	F			P.	200-20%	
+	37.0 796.6	x				- PD		+					
+		×					22	27					
40-	-	× . ×	SILTY SAND, fine-grained, broches, (SM), till	own, waterbearing, m	edium	PD		Į.					
		`× ` . ` . ` .×				$ \times$	26	+					
+	42.0 791.6	<u></u>	POORLY GRADED SAND, fir	e- to medium-grained	1 brown	- PD		+					
+			to 65 feet then gray, waterbea	ring, dense to very de	ense,		33	t					
45	-		(SP), outwash	-		PD		T					

th Noouthin the second se	Cla	essification		SPT REC (%) 37 42 36	MC (%) RQD (%)	COH (psf) ACL (ft)	γ ^(pcf) Breaks	Rock Soil	Other Tests Or Remarks Formation or Member
N N Image: Second	Cla	essification		(%) 37 - 42 -		ACL (ft)	Core Breaks	Rock	Formation or Member
				42	-				
				-	-				
			\times	- 36 -	-				
					Ť				
			PD	-	-				
				37	+ +-				
			PD	-	-				
	to 65 feet then gray, waterbe	fine- to medium-grained, brown earing, dense to very dense,		- 34	-				
	(SP), outwash <i>(continued)</i>			- 34	+				
			PD	-	-				
			X	47 -	-				
			PD	-	-				
			\square	69 _	-				
) · · · · · · · · · · · · · · · · · ·			PD	-	-				
δ				_ 68 _	-				
	SANDY LEAN CLAY, with G Sand layers, brown, wet, har	ravel, with frequent coarse rd, (CLS), till	PD	-	-				
5 🖉			\mathbf{X}	74 -	-				
6	in the ground.								
	6	 SANDY LEAN CLAY, with G Sand layers, brown, wet, har Bottom of Hole - 81 feet. Water observed at 27 feet w in the ground. 	 SANDY LEAN CLAY, with Gravel, with frequent coarse Sand layers, brown, wet, hard, (CLS), till Bottom of Hole - 81 feet. Water observed at 27 feet with 27 feet of hollow-stem auger 	SANDY LEAN CLAY, with Gravel, with frequent coarse Sand layers, brown, wet, hard, (CLS), till Bottom of Hole - 81 feet. Water observed at 27 feet with 27 feet of hollow-stem auger in the ground.	A7 PD 69 69 69 69 69 68 68 74 68 74 68 74 68 74 68 74	A 47 PD 69 PD 69 PD 68 PD 68 PD 68 PD 68 PD 74 68 PD 74 68 PD 74 68 PD 74 68 PD 74 68 PD 74 68 PD 74 74	A A A A A A A A A A A A A A	A A A A A A A A A A A A A A	A A A A A A A A A A A A A A

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loca SWLRT	ation				Boring 2064			Ground Elevation 835.0 (Surveyed)
ocatio	<i>n</i> Her	nepii	n Co. Coordinate: X=48532	2 Y=124922	(ft.)	Drill	Machine	€ 7507				SHEET 1 of 3
				itude (West)=		Han	nmer CN	IE Autor	matic Ca	librated		Drilling Completed 2/10/ 1
			Offset Information Available				SPT	МС	сон	γ		Other Tests
ъ	Depth	ЛĎс				ю	Nico	(%)	(psf)	(pcf)	Soil	Or Remarks
DEPTH	Elev.	Lithology		sification		Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
+	0.7 834.3		CLAYEY SAND, trace roots, I	black and brown, fro	zen, (SC),	Ħ	-	-				
+		\bigotimes	SILTY SAND, fine-grained, tra frozen to moist, (SM), fill	ace Gravel, grayish t	orown,	H H	13	+ + +				
5-	6.0	\bigotimes					5.	-				
+	829.0	\bigotimes	SANDY LEAN CLAY, trace G black, moist, (CL), fill	ravel and fibers, bro	wn and	R	15	-				
10-	9.0 826.0	\bigotimes				R		-			ח	D=76 pcf
-			SANDY LEAN CLAY, trace fit moist, (CL), fill	pers, gray, brown an	d black,	R	12	40 				5-70 pci
1	14.0	\bigotimes				$\left \right\rangle$	9	-				
15-	821.0		ORGANIC CLAY, with shells, marl/swamp deposit	light gray, moist, (O	L),	₹1 X	16	38			D	D=86 pcf; OC=2%
Z +	17.0 818.0 19.0		SANDY LEAN CLAY, trace G soft, (CL), alluvium	ravel, brown and gra	ay, wet,	R	3	+				
20	816.0					R	7	43				=1/4 tsf; LL=64, PL=2 =40
+						R	10	41			qp	=2 tsf; DD=78 pcf
25-	-					R	9.	+ + +			qp	= 3/4 tsf
+			FAT CLAY, gray, wet, rather s	stiff to soft, (CH), allu	ıvium	R	4*	-			*N	o sample recovery.
30	- -					R	2	+			qp	=1/2 tsf
+						R	4	+			qp	=1/2 tsf
35-	-					R	7	Ļ			qp	=3/4 tsf
+	37.0 798.0					R	14*	+			*N	o sample recovery.
40-	-		SANDY LEAN CLAY, trace G stiff, (CL), till	ravel, gray, wet, stiff	to very	AX PP	14* _ 15* ⁻	+ + +			dri sa	witched to mud rotary Iling method at 40-foo mple. o sample recovery.
45						PD		ł				

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2064			Ground Elevation 835.0 (Surveyed)
Ļ	Depth	Лbс			on	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-				PD	17	24			qp	p=1 3/4 tsf; DD-101 pcf
-	-		SANDY LEAN CLAY, trace	Gravel, gray, wet, stiff to very		16	-			db	o=2 1/4 tsf
50-	-		stiff, (CL), till <i>(continued)</i>		PD	17	21			qp	o=2 tsf; DD=107 pcf
-	53.0 782.0	//////////////////////////////////////			PD	-	-				
- 55-		· . · .× ·× · . · · · ×				- - 19 -	-				
-	-	× .	CLAYEY SAND, with Grave (SC), till	el, gray, waterbearing, very stiff,		-	+				
- 60-	60.0	× . × .× .			PD		_			*1	ost 3 feet of hole at 60
-	775.0					25* .	-				et. No sample recover
-	-				PD	-	-				
65 - -	-			Gravel, gray, wet, very stiff to	\square	23	-				
-	-		hard, (CL), till		PD	-	-				
70-	_					37	16			DI	D=116 pcf
-	73.0	ļ			-PD	-	-				
- 75-	762.0	· · × × · .		el, gray, waterbearing, hard,		-	-				
-	- 78.0	· · · · · · · · · · · · · · · · · · ·	(SC), till		$\left \right $	36 -	-				
- - 80-	757.0	0 , 0 , 0			PD	-	-			at	eavy Gravel encountere 78 feet.
	-	, o, ò , `				44* .	-				Jsed full tank of mud fro) to 85 feet.
-	-	o ' , 'o,	with frequent Cobbles, gray	EL, with medium-grained Sand, , waterbearing, dense to very	PD	-	+				
85 - -	-	o, , o, , ,	dense, (GP), outwash	-		65* .	+				ost 8 feet of hole after 5-foot sample.
-	+	, o, , o,			PD	-	+ +				
- 90 -	L						t	L			

tate l	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2064			Ground Elevation 835.0 (Surveyed)
г	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Litholc	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	91.0 744.0	۰ <u>٬</u>	Bottom of Hole - 91 feet.		PD						
			Boring then backfilled with I								

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Locati	ion				Boring I 2065			Ground Elev 834.4 (S	
Locatic	<i>n</i> Hen	nepii	n Co. Coordinate: X=48550	9 Y=124774	(ft.)	Drill	Machine	9 7507				SHEET	⁻ 1 of 3
	Latit	ude (North)= Longi	tude (West)=		Han	nmer CN	IE Autor	natic Ca	librated		Drilling Completed	2/12/14
	No St	tation-	Offset Information Available				SPT	МС	сон	γ		Other T	ests
т	Depth	уg				5	Maa	(%)	(psf)	(pcf)	Soil	Or Rem	
DEPTH	• • • • • • • • • • • • • • • • • • • •	Lithology				Drilling Operation	REC	RQD	ACL	Core	сk К	Forma	tion
ā	Elev.			sification		Drii	(%)	(%)	(ft)	Core Break	s Å	or Men	
+	0.5 833.9		SANDY LEAN CLAY, trace ro	ots, black, frozen, (CL	_), _/	钌		+					
+		\bigotimes	CLAYEY SAND, trace Gravel,	brown, frozen, (SC),	fill	Ł	-	-					
Į	4.0	\bigotimes				$\left \right\rangle$	21	+					
5-	830.4	\bigotimes			_	<u></u>	11 .	-					
1			SANDY LEAN CLAY, trace G to 5 feet then moist, (CL), fill	avel, brown and black	k, frozen	मि		ļ					
+	9.0	\bigotimes				\square	16	17				D=75 pcf	
10+	825.4	XX				Æ		+					
			SANDY LEAN CLAY, with free moist, (CLS), fill	quent Silt layers, gray	to black,	X	12 .	+					
1	12.5 821.9					4		-					
+	14.0	•	PEAT, trace fibers, black, moi	st, (PT), swamp depo	sit	Þ	15	+					
15-	820.4		ORGANIC SILT, with shells, the	ace fibers, gray, blac	k, wet,	<u>د ا</u>	8.	53					
ļ	17.0		(OH), swamp deposit			मि							
+	817.4					\square	10	-					
20-	-					Æ	-	-					
+			LEAN CLAY, with frequent lay	ers of Eat Clay, gray	moist	X	7.	+					
			rather stiff to medium, (CL), al	luvium	moist,	47						_=49	
+						Å	9	+			PL	_=17	
25-	-					L L	9.	26			D	D=99 pcf	
ļ	27.0					सि							
+	807.4					\square	11	-					
30-	-					R	-	Ļ					
+						X	14 .	+					
ļ						41	12	10			D	D=111 pcf	
+						Þ	13	19					
35	-		SANDY LEAN CLAY, trace G to stiff, (CL), till	avel, gray, moist, rath	ner stiff		11 .	+					
+			(oL), (oL), (iii			सि	-	l t					
ł						\mathbb{X}	12	t					
40-	-					स्	-						
+						Ķ	14 .	+					
ļ						5	16	ļ					
+	44.0 790.4						16	ł					
45	ndex She	et Co	de 3.0 (Continu			17 6	J					——————— Class: Edit: D EAPOLIS\2013\002	Date: 7/28

State	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2065			Ground Elevation 834.4 (Surveyed)
<i>DEPTH</i>	Depth Elev.	Lithology	Cl	assification	Drilling Operation	SPT N60 REC (%)	MC (%) RQD (%)	COH (psf) ACL (ft)	γ _(pcf) Core Breaks	Rock Soil	
- - - 50 -	53.0		SANDY LEAN CLAY, with (CL), till <i>(continued)</i>	Gravel, gray, moist, very stiff,		18 - 20 - 20 -	- - - - - - - - - - 15				D=117 pcf
- 55- -	781.4 - - 58.0	× · · × · · · × · × · · × · · · ×	CLAYEY SAND, with Grave	el, gray, wet, very stiff, (SC), till		- - - - - -	-				
- - 60 - - -	_ 776.4 					23	- - - -				
65	- - - -		SANDY LEAN CLAY, trace Fat Clay, gray, wet, very st	e Gravel, with frequent layers of iff, (CL), till	XXXXX XX	20	- _ 29 -			LL Pl	D=91 pcf =56 _=17 =33
70 - - - 75	73.0 761.4	× · · ×				34	-				
- - - 80 –	- - - -	· · · × · × · · ×			X	42 -	- - - -			DI	D=123 pcf
- - - 85- - -	- - - - -		CLAYEY SAND, with Grave hard, (SC), till	el, with Sand layers, gray, wet,	17 XXXX	49 -	- - - - - -				
- 90 -	- - 	· . · .× ·× · . ·×	(Cont			- - 	- - 		J. Kirk Ro		

	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2065			Ground Elevation 834.4 (Surveyed)
F	Depth	ogy			ion	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
- - 95 -	- - - - -		CLAYEY SAND, with Grave hard, (SC), till <i>(continued)</i>	el, with Sand layers, gray, wet,		52 - - - - 58 -	-				
- - - 00	- - - 101.0	· . · .× ·× · . · . · .× ·× · . · . · .×				68	+ + +				
-	733.4		Bottom of Hole - 101 feet. Water observed at 22 feet v Boring immediately backfille	while drilling. ed with bentonite grout.	•						

Latitud No Star Depth Elev. 0.3 833.3 4.0 829.6 6.0 827.6 10 12.0 821.6 15 15 17.0 816.6	ude		SWLRT									ation
Latitud No Star P L Depth Elev. 0.3 833.3 4.0 829.6 6.0 827.6 10 12.0 821.6 × 20 22.0 811.6 25 30 4.0 829.6 6.0 827.6 10 821.6 811.6 25 811.6 81	ude ation		01121(1					2066	SB		833.6 (S	urveyed)
No Star PE Depth Elev. 0.3 833.3 4.0 829.6 6.0 827.6 10 12.0 821.6 15 15 17.0 816.6 25 30 25 4.0 829.6 6.0 827.6 10 821.6 17.0 811.6 25 4.0 821.6 17.0 811.6 17.0 811.6 17.0 10	ation	n Co. Coordinate: X=48577	2 Y=124630	ft.)	Drill	Machine	₹ 7504				SHEET	
Дерти Elev. 0.3 833.3 4.0 829.6 6.0 827.6 10 12.0 821.6 15 17.0 816.6 20 22.0 811.6 30		(North)= Long	itude (West)=		Harr	mer CN	IE Autor	natic Ca	librated		Drilling Completed	2/25/14
10 10 10 10 12.0 829.6 6.0 827.6 10 12.0 821.6 15 17.0 816.6 25 22.0 811.6 25 30 - - - - - - - - - - - - -	Tithology	-Offset Information Available				SPT	МС	сон	γ	-	Other T	ests
10- 10- 10- 10- 10- 12.0 821.6 10- 12.0 821.6 15- 17.0 816.6 25- 22.0 811.6 25- 30- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1					5	N 60	(%)	(psf)	(pcf)	Soil	Or Rem	
10 10 10 10 12.0 829.6 6.0 827.6 10 12.0 821.6 15 17.0 816.6 25 22.0 811.6 25 30 - - - - - - - - - - - - -					ing eratic	REC	RQD	ACL	Core	×	Format	ion
+ 833.3 + 4.0 829.6 6.0 827.6 10 12.0 821.6 15 17.0 816.6 20 22.0 811.6 25 - 30			ssification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Ro	or Mem	
4.0 829.6 6.0 827.6 10 10 12.0 821.6 15 15 17.0 816.6 811.6 25 25 30 30		4 inches of Concrete.			₫		_					
5 829.6 6.0 827.6 10 12.0 821.6 15 17.0 816.6 20 22.0 811.6 25 17.0 811.6 25 17.0 811.6 25 17.0 811.6		CLAYEY SAND, trace Grave fill	, brown, frozen to moist, (S	SC),	Ł		-					
5 - 6.0 827.6 10 - 12.0 821.6 15 - 17.0 816.6 20 - 22.0 811.6 25 - 25 - 1 30 - 1 10 - 12.0 821.6 15 - 17.0 816.6 15 - 17.0 816.6 15 - 17.0 816.6 15 - 17.0	\bigotimes				X	47	† 					
10- 12.0 821.6 15- 15- 17.0 816.6 20- 22.0 811.6 25- 30- - - - - - - - - - - - - -		SANDY LEAN CLAY, trace G (CLS), fill	ravel, brown and gray, mo	st,	Ł	-	-					
10- 12.0 821.6 15- 17.0 816.6 20- 22.0 811.6 25- 30- - - - - - - - - - - - - -	X				A	15	23					
12.0 821.6 15 15 20 220 220 811.6 811.6 30 -	XX				5		+					
12.0 821.6 15 15 20 220 220 811.6 811.6 30	\bigotimes	CLAYEY SAND, with Sand so gray, moist, (SC), fill	eams, with Gravel, brown a	nd	$\widehat{\mathbf{F}}$	22	÷					
821.6 15- 17.0 816.6 20- 22.0 811.6 25- 30- 30- -	\bigotimes	g.c., (00),			${\searrow}$	19	10					
15- 17.0 816.6 220- 22.0 811.6 25- 30- 30- -	XX				सि	-	-					
20 22.0 22.0 811.6 25 - 30 - - - - - - - - - - - - -					\mathbf{i}	15	-					
20 22.0 22.0 811.6 25 - 30 - - - - - - - - - - - - -	× . :.:>	CLAYEY SAND, with layers of to rather stiff, (SC), till	of Lean Clay, gray, moist, s	tiff	रि	-						
20- 22.0 811.6 25- 30- 30-	′× ′ . ′ . ′ >				\times	11 .	l-					
20- 22.0 811.6 25- 30-					रि	-	+					
22.0 811.6 25 30 -		SANDY LEAN CLAY, with Sa	ind seams aray moist to 2	0	X	9	+					
25- - - - - - - - - - - - - - - - - - -		feet then wet, rather stiff, (CL		.0	ŁŢ	-	+				witched to mu	
25-						11* .	12				lling method a mple.	after 20-fo
30	· · · ·				PD	11	Į.				F -	
30	· · ·				// PD		+					
					\mathbf{X}	12	İ.			P2	:00=4%	
						-	+					
	• • •				PD	-	19					
35-						-	+					
35-	· · · ·				\ge	24	+					
35		POORLY GRADED SAND, fi Gravel, gray, waterbearing, d				-	ţ					
35	• • • •	Cravel, gray, waterbearing, u			PD	-	Ļ					
+ /					\bigtriangledown	34	+					
+ 1'	· · ·				\bigtriangleup	J . .	† L					
+ :					PD	-	Ļ					
	• • • •					-	+					
40+					\times	31 .	Į.				yers of Lean	Clay at 40
43.0						-	Ļ			fee	÷l.	
45.0	· · ·	SILTY SAND, with Gravel, wi waterbearing, dense to very c		/,	PD	-	+					

state I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2066			Ground Elevation 833.6 (Surveyed)
т	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	× . × .× .				32 .	_				
-	-	* . * .× *× * . * . * .×			PD	-	+				
50 -	-	× . × ×				37	+			P2	200=25%
-	-	× . ×			PD		12				
55-	-	· · · × ·× · · · · · ×	SILTY SAND. with Gravel.	vith layers of Lean Clay, gray,		44	+				
-	-	`× ` . ` . ` .× `× ` .		dense, (SM), till (continued)							
- 60 -	-	· . · .× ·× · . · . · .×			PD		-				
-	-	'x ' . ' . ' .× ' x '				52	+				
-	-	· · ×			PD	-	+				
65 -	-	′× ′ . `× ′ .				62	+				ayers of Silty Sand at 6 et.
-	68.0 765.6	× . · · × · · ·			PD		+				
70-	-	· · · · · ·	POORLY GRADED SAND, Gravel, with layers of Lean (medium dense, (SP), outwa	fine- to coarse-grained, with Clay, gray, waterbearing,		28 .	+				
-	73.0 760.6				-PD	-	-				
- 75-	_					49	+ +			P2	200=86%
-	-		SILT, with Sand, gray, wet,	dense to very dense, (ML), till	PD		- 12				
- 80	-					75	+				
_	81.0 752.6		Bottom of Hole - 81 feet. Water observed at 20 feet w	vhile drilling.			1	<u> </u>	1	<u> </u>	
			Boring immediately backfille	ed with bentonite grout.							

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loca	tion				Boring I			Ground Eleva	
				SWLRT					2093	SB		849.3 (St	urveyed)
ocatio	on Hen	nepir	n Co. Coordinate: X=48462	1 Y=125374	(ft.)	Drill	Machine	9 7504				SHEET	1 of 3
	Latit	ude (l	North)= Longi	tude (West)=		Han	nmer CN	IE Autor	natic Ca	librated		Drilling Completed	5/13/14
	No S	tation-	Offset Information Available				SPT	МС	сон	γ	-	Other T	ests
т	Depth	<i>y</i> e				5	N 60	(%)	(psf)	(pcf)	Soil	Or Rem	
DEPTH		Lithology				ing ratic	REC	RQD	ACL	Core	×	Format	ion
DE	Elev.	Lit	Clas	sification		Drilling Operation	(%)	(%)	(ft)	Core Break:	s S	or Mem	
_	1.0		SANDY LEAN CLAY, trace ro \moist. (CLS), topsoil fill	ots, trace Gravel, bla	ick,	Z		18					
+	848.3	\bigotimes	SANDY LEAN CLAY, trace ro	ots, black and dark b	orown,	۲Ļ							
-	4.0		moist. (CLS), fill			\square	8.	_ 27					
5-	_ 845.3	\bigotimes	SANDY LEAN CLAY, trace G	ravel, gray, moist. (C	LS), fill		19 -	- 11					
+	6.0 843.3	\bigotimes				मि		+					
1	-	\bigotimes	SILTY SAND, fine- to medium moist. (SM), fill	-grained, trace Grav	el, brown,	\square	22	12			P	200=24%	
+	9.0 840.3	×				सि		-					
10-	_ 040.5					\mathbb{X}	32 -	13					
]	-	\bigotimes				Æ		Ţ					
-	-	\bigotimes	SANDY LEAN CLAY, trace Gi with layers of black, moist. (Cl		ns, gray	X	31 .	_ 11				D=123 pcf L=25, PL=12, F	PI=13
15-	-	\bigotimes				ŁŢ							
15	-	\bigotimes				Å	18	33					
+	_ 17.0 832.3	X				5	27	9			_		
1	19.0	\bigotimes	CLAYEY SAND, with Gravel,	gray, moist. (SC), fill			21	- 9				rillers Note: Sw ud rotary drillir	
20-	830.3	\bigotimes	SILTY SAND, fine- to medium	-grained, trace Grav	el, brown,		27 -	10				fter 17 1/2-foot	
-	22.0	\bigotimes	moist. (SM), fill			PD							
-	827.3	X				\mathbf{X}	27	10			D	D=136 pcf	
-	-					PD		-					
25-	-	\bigotimes	CLAYEY SAND, with Gravel,	gray, moist. (SC), fill		\mathbb{X}	20 -	15					
-	-	\bigotimes				PD		_			-		
-	_ 28.0 821.3	XXX XX				ا لک	50/6"* .					0/6" (set). No s ecovery.	ample
30-	-	· . · .× · . · .	SILTY SAND, fine-grained, br	own wet dense (SN	/I) till	PD		1					
-		· . · .×			,	PD	37	13					
+	32.0 817.3	× .					74	10			P	200=13%	
]	-	× .	SILTY SAND, fine- to medium	-grained with Grave	l brown	PD							
35-	-	`.`.X X	wet, very dense. (SM), till	J	,,	$\mathbf{\nabla}$	63 -	12					
-	37.0	:.:×				PD		Ť					
-	812.3					\mathbb{X}	23	13			P	200=11%	
	-					PD		+					
40-	-		POORLY GRADED SAND with medium-grained, with Gravel,		t then	\mid	9	15					
+	-		waterbearing, loose to mediur					+					
+	-					PD		+					
45	- 						L'	İ	L	L			

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2093			Ground Elevation 849.3 (Surveyed)
т	Depth	gy			u u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	· · · · · ·			PD	12	14				
-	-	· · · · · ·				19	12				
50-	-				PD	7 -	17			P2	200=9%
-	-				PD	-	-				
55-	-	· · · · · · · · ·				-	-				
55	-	· · · · · ·			\mid	11 -	22				
-	-	· · · · · ·			PD	-	-				
60-	-					18 -	17				
-	-	· · · · · · · · ·	POORLY GRADED SAND	with SILT, fine- to el, brown, wet to 40 feet then um dense. (SP-SM), outwash	 PD	-	-				
65-	-		(continued)	uni dense. (SF-Sivi), outwash		- 17 ⁻	- 17				
-	-				\square	-	-				
-	-	· · · · · · · · · · · · · · · · · · ·			PD	-	+				
70-	-	· · · · · ·				21 -	20				
-	-				PD	-	-				
- 75-	-	· · · · · · · · ·	Large wood chunks encoun	tered at 75 feet.		- 16 ⁻	-				
-	- - _ 78.0	· · · · · ·				-	-				
-	771.3				-PD	-	-				
80-	-		SANDY LEAN CLAY, trace (CLS), till	Gravel, gray, wet, very stiff.	X	30 -	23			DI	D=104 pcf
-	83.0 766.3	× .			-PD	-	+				
85-	-	× . × . ·	SILTY SAND, fine-grained, (SM), till	gray, waterbearing, dense.		48 -	19				
-	88.0 761.3	× . × 		fine- to medium-grained, trace	-PD	-	+				

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2093			Ground Elevation 849.3 (Surveyed)
г	Depth	gy			и	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology		assification	Drilling Operation	REC (%)	(%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-		outwash		PD	41	14				
- 95-	-		POORLY GRADED SAND	fine- to medium-grained, trace		52 -	23				
+	-		Gravel, gray, waterbearing, outwash (continued)	dense to very dense. (SP),	PD	-	+ +				
- - 00	- 					57 ⁻	19				
_	748.3	_	Bottom of Hole - 101 feet. Water observed at 40 feet v Boring immediately backfille	while drilling. ed with bentonite grout.							
			Doning initiately backing	ed with bentonite grout.							

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loca	ation				Boring I 2094			Ground Ele 837.7 (3	
					(51.)				2094	30			. ,
ocatio			n Co. Coordinate: X=48488		(ft.)		Machine					Drilling	T 1 of 3
			· · ·	tude (West)=		Han	nmer CN	IE Autor	natic Ca	librated		Completed	5/16/1
	No S		Offset Information Available			-	SPT	MC	СОН	1	Soil	Other	
E	Depth	ogy				ion	N 60	(%)	(psf)	(pcf)	Š	Or Ren	narks
DEPTH		Lithology		- ific of i o o		Drilling Operation	REC	RQD	ACL	Core Breaks	сk	Forma	
<u>ц</u>	Elev.			sification			(%)	(%) 52	(ft)	Breaks	Ř	or Mer	nber
+	1.0 836.7	$\overset{\underline{N}}{\longrightarrow}$	SANDY LEAN CLAY, trace ro \topsoil fill	ots, dark brown, we	. (CLS), /	17	-	- 52					
İ		\bigotimes			al amay (Ł	-				q	o=1 3/4 tsf	
	-		SANDY LEAN CLAY, trace G moist. (CLS), fill	ravel, dark brown an	id gray,	K	9	21					
5-	6.0		With roots at 5 feet.			51	-	-					
1	831.7	XX					6 -	21					
+		\bigotimes	CLAYEY SAND, trace Gravel	. dark grav and brow	n. moist.		22 -	11			D	D=126 pcf	
+	-	\bigotimes	(SC), fill	3 • 9 • 9 • • • • •	,	मि		- ''					
10	11.0	\bigotimes					18	13			dt	o=3 tsf	
-	826.7	\bigotimes	SANDY LEAN CLAY, trace G	ravel, gray, moist. (0	CLS), fill	मि	-	-					
+	13.0 824.7	Ň	·				10 -	16					
15-	021.1		PEAT, decomposed with fiber	s, with shells, black,	moist.	रि	-					D=21 pcf	
15	-		(PT), swamp deposit				8 _	234				C=50%	
+		•				<u>-</u> <u></u>	-	-					
+	17.0 820.7					$\left \right>$	7 -	42					
20	-					R		_					
+						X	8 -	30					
Z			FAT CLAY, gray, wet, mediun glaciofluvium	n to rather stiff. (CH)	,	ł	-	_				D=75 pcf	
Į			giacionaviam				10	48				p=1/2 tsf witched to mι	ud rotarv
25	-					PD	-				dr	illing after 22	
t							9.	_ 40			Sa	ample.	
Į	28.0						-	_					
+	809.7					PD	- 1	-					
30	-						1 -	_ 71					
ļ						PD						D 00 <i>i</i>	
+							won -	60				D=69 pcf	
25			FAT CLAY, gray, wet, very so	ft. (CH), glaciofluviu	m	PD	-	-					
35-						\square	WOH _	67					
+						PD	-	-					
t							1 -	58					
40	40.0					PD	_						
-	797.7						7_	18					
ł			LEAN CLAY, with frequent lay		, medium	PD	-	-			LL	_=27, PL=19,	PI=8
1			to rather stiff. (CL), glaciofluvi	um		X	10	27					
45			de 3.0 (Continu			PD		L	1		\bot		

tate F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2094			Ground Elevation 837.7 (Surveyed)
I	Depth	gy			4	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC	RQD (%)	ACL	Core Breaks	Rock	Formation or Member
	46.0					9.	26				p=1 tsf, DD=101 pcf
+	791.7	× . ×		um-grained, with Gravel, gray,	PD	-	-				
ļ	49.0	× . ×	waterbearing, very stiff. (SM	A), till		22	12				
50-	788.7	`×`. `.`.×			PD	21 .	12			q	p=3 tsf
1		× . ×	CLAYEY SAND, with Grave	el, gray, wet, very stiff. (SC), till	\square	21.	- 12				D=126 pcf
+	53.0 784.7	× . /////			HPD	-	-				
55+	-					-	+			q	p=1 1/4 tsf
+						15 .	21				
1				Gravel, with Sand seams, gray,	PD		+				
~			wet, stiff. (CL), till				-				D=95 pcf
60+	-					15	29				D=95 pci
+	63.0					· ·	-				
ļ	774.7	× . ×			PD		-				
65	-	`×`. `.`.×				19	12				
+		'× ' . ' . ' .×					-				
1		`× ` . ` . ` .×			PD		Ì				
70-	-	′× ′ . ′ . ′ .×				-				P	200=18%
1		'x ' . ' . ' .X			\mid	38 .	_ 11				
+		'× ' . ' . ' .×	SILTY SAND, fine- to medi waterbearing, medium dens	um-grained, trace Gravel, gray, se (SM) till	PD	-	+				
75	-	'× ' . ' . ' .×				-	+				
		× .				36 .	20				
+		× .				-	ŧ				
+		× .			PD	.	ł				
80+	-	× .			\square	37	18				
+	83.0	× .				.	ł				
+	754.7				- PD		† +				
85 -	-		POORLY GRADED SAND	with SILT, fine- to		41	13				
+				l, gray, waterbearing, medium	\square	· · · ·	- 13				
+			uchse iu uchse. (SP-SM), (JulwaSII	PD	-	ł				
₉₀ 1						-	Ť				

BRAUN^{®®®} INTERTEC

UNIQUE NUMBER

tate I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2094			Ground Elevation 837.7 (Surveyed)
Ŧ	Depth	gy			Ę	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-					36 .	12				
-	-	· · ·			PD	-	-				
95 -	-	· · ·				38 .	15				
-	-				PD	-	-				
00-	-	· · ·			\mathbf{X}	30	12				
-	-					-	-				
- 05-			POORLY GRADED SAND	with SILT, fine- to	PD	-	-				
-	-	· · · · · ·	coarse-grained, with Gravel, dense to dense. (SP-SM), o	, gray, waterbearing, medium		-	+				
- 10-	-	· · · · · ·					-				
-	-	· · · · · ·				38 -	_ 20				
- - 15-	-	· · · · · · · · ·				-	-				
-		· · · · · · · · ·			PD	-	-				
-	-	· · · · · · · · ·				-	-				
120-	121.0 716.7		Bottom of Hole - 121 feet,			42	17				
			Water observed at a depth of Boring immediately backfille	d with betonite grout.							

State Project			Bridge No. or Job Desc. Trunk Highway/Location						Boring I			Ground Ele		
			SWLRT			- "			2095SB			841.5 (Surveyed) SHEET 1 of 3		
			n Co. Coordinate: X=485048 Y=125201 (ft.)			Drill Machine 7506 Hammer CME Auto						Drilling	4/30/1	
			, .	ude (West)=		пап			natic Ca			Completed	4/30/1	
	No Si		Offset Information Available			-	SPT	MC	СОН	γ	Soil	Other		
Ħ	Depth	logy				tion	N60	(%)	(psf)	(pcf)		Or Ren	narks	
DEPTH	- 1	Lithology				Drilling Operation	REC	RQD	ACL	Core Breaks	Rock	Formation		
-	Elev.	1					(%)	(%) 16	(ft)			or Mer	nber	
-	1.0 840.5	$\overline{\times}$	SANDY LEAN CLAY, dark brown, moist. (CLS), topsoil fill					-						
]		\bigotimes	SANDY LEAN CLAY, trace Gr moist. (CLS), fill	rk brown,	<u></u>	8	14							
+	4.0 837.5	\bigotimes				• •	14							
5		\bigotimes					12	11						
						िसि		-				2-405 met		
+		\bigotimes	CLAYEY SAND, trace Gravel, dark brown and gray, moist. (SC), fill			20 10		DD=125 pcf						
10-		\bigotimes				R	-	Ļ						
-		\bigotimes					15 .	12						
1	829.5	\bigotimes	SILTY CLAY, trace Gravel, bro	we moist (CL ML) fill	-47	· ·	<u> </u>			LL	.=21, PL=14,	PI=7	
-	14.0	\bigotimes			<i>)</i> , III	$\left \right\rangle$	5	16						
15- ▼	827.5	\bigotimes	CLAYEY SAND, trace Gravel,	, gray and brown, moist. (SC),	L	11	12		DD=123 p		D=123 pcf			
	17.0	\bigotimes	fill		<u></u>		_ 12							
+	824.5		SLIGHTLY ORGANIC SILT, w			6	36			OC=3% Drillers Note: Swite		Switched to		
20-	20.0		shells, gray and black, moist. (OH), swamp deposit					-			mud rotary drilling me after 17 1/2-foot sam			
20-	821.5	× . ×				\mathbf{X}	31	14				er 17 1/2-too 200=22%	ot sample.	
-	-	'x ' . · · ×				PD		-						
1	-	× .	SILTY SAND, fine- to medium- waterbearing, medium dense t	vel, brown,		21	14							
25-	-	× í			PD		-							
+	27.0 814.5	·× `× ` .					33 .							
-							31	19			P2	200=7%		
	-	· · · · · ·				PD		10						
30-	- - - - - - - - - - - - - - - - - - -		POORLY GRADED SAND with SILT, fine- to				18 .	22						
+		· · ·	medium-grained, trace Gravel, to medium dense. (SP-SM), or	ng, dense	PD		+							
+		· · · · · ·					18	21						
35-						PD	-	+						
+		· ·				-14	18 .	20						
1						PD					P2	200=4%		
+				ND, fine- to medium-grained, with aring, medium dense, (SP), outwas		PD	28	- 11 -						
40-			Gravel, brown, waterbearing, medium dense. (SP), outwash				16							
+	42.0	, , , , , , , , , , , , , , , , , , ,				- PD		Į						
-	799.5		POORLY GRADED SAND, fine- to coarse-grained, with Gravel, occasional Cobbles, brown, waterbearing, medium				21	8						
45			dense. (SP), outwash			PD		t						

State I	Project		Bridge No. or Job Desc.	Trunk Highway/Location				Boring I 2095			Ground Elevation 841.5 (Surveyed)
DEPTH	Depth	Lithology			Drilling Operation	SPT N60	MC (%)	COH (psf)	γ (pcf)	k Soil	
DEI	Elev.	Lith	Cla	assification	Drillir Oper	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rocl	Formation or Member
-	47.0					22 .	_ 11				
-	794.5	· · ·			PD PD	28	12			P2	200=8%
50-	-					29	8				
-	-	· · ·			PD	-	+ + +				
55-	-	· · · · · ·				24	14				
-	-	· · ·	POORLY GRADED SAND	with SILT, fine- to	PD	-	+ + +				
60-	-		coarse-grained, with Gravel waterbearing, medium dens	, occasional Cobbles, brown, e. (SP-SM), outwash		23	9				
-	-	· · · · · · · · · · · · · · · · · · ·			PD	-	+ + +				
65-	-	· · · · · · · · · · · · · · · · · · ·				27	11				
-	-	· · · · · · · · ·			PD	-	+ + +				
70-	-		Large Boulder and rock enc	ountered from 70 to 72 feet.		29 .	13				
-	73.0 768.5	· · · · · · · · · · · · · · · · · · ·				-	+				
- 75- -	-	`.`.X `x``. `.`.X ``.X				- 39 -	- _ 15			P2	200=36%
-	-	`````X `X``` ````X `X``	SILTY SAND, fine- to media of Silt, brown, waterbearing,	um-grained, with frequent layers dense. (SM), till	PD	-	+ + +				
80-	-	* * * * * * * * *				37	16				
-	83.0 758.5	· . · .× ·× · . ·× · .			PD		+ + +				
85-	-	·× · . · . · .× ·× · . · . · .×	SANDY SILT, with frequent wet, medium dense to dens	layers of Sand, reddish brown, e. (ML), till		30 .	23			D	D=110 pcf
-	-	· · · · · · · · · · · · · · · · · · ·		. *	PD	-	+				
90 –	L	L L	(Contin		_!	J	∟ Sc	⊥ oil Class:	J. Kirk Ro	⊥ ock (

U.S. Customary Units

SHEET 3 of 3 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Trunk Highway/Location Boring No. Ground Elevation State Project Bridge No. or Job Desc. SWLRT 2095SB 841.5 (Surveyed) γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core ୪ Breaks ଝ Core Formation Classification Elev. (ft) or Member (%) (%) x 46 19 SANDY SILT, with frequent layers of Sand, reddish brown, wet, medium dense to dense. (ML), till (continued) 93.0 PD 748.5 x 95 36 18 SILTY SAND, fine- to medium-grained, with frequent layers of Silt and Lean Clay, reddish brown, wet, dense. (SM), till PD 100 49 21 101.0 Bottom of Hole - 101 feet. 740.5 Water observed at a depth of 17 feet while drilling. Boring immediately backfilled with bentonite grout.

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT					Boring 2096			Ground Elev 880.0 (S	
Locatio	<i>n</i> Her	nepir	n Co. Coordinate: X= Y=		(ft.) D	rill I	Machine	9 7506 ^e					T 1 of 3
	Latit	ude (l	North)= Long	tude (West)=	H	am	mer CN	IE Auto	matic Ca	alibrated		Drilling Completed	4/25/14
	No S	tation-	Offset Information Available				SPT	МС	сон	γ	_	Other -	Tests
Ŧ	Depth	2				2	N60	(%)	(psf)	(pcf)	Soil	Or Ren	
DEPTH	_ = = = = = = = = = = = = = = = = = = =	Lithology			bu	atio	REC	RQD	ACL	Core	×	Forma	tion
DE	Elev.	Lit	Clas	sification	Drilling	Ope	(%)	(%)	(ft)	Core Breaks	Roc	or Mer	
	0.9	<u>st 1</u> , 77777	LEAN CLAY with SAND, trace	e roots, dark brown, moist,		Ž		_			-		
+	879.1		\(CLwS), topsoil LEAN CLAY with SAND, trace	Cravel brown moist rat	{	5		-					
+	-		stiff, (CLwS), till	e Gravel, brown, moist, rat		\leq	10	-					
5-	5.0				۲		17 -	Ļ					
-	875.0	× . ×			F	7	17	-					
1	-	× .			^		17	Ì					
]	-	ⁱ × ⁱ . · · ×	SILTY SAND, fine- to medium		wn, F	7		Ţ					
10	_	× .	moist, medium dense, (SM), t	111		Ž	19 -	-					
-	-	× 1			ł	Z		Ì					
+	13.0	· . · .×			\longrightarrow	$\langle $	10	_					
+	867.0				Ł	Z		-					
15-	_		POORLY GRADED SAND, fir	ne- to medium-grained, wit	h 之	\leq	7	Ī					
-	-		Gravel, light brown to brown, dense, (SP), outwash	moist, dense to medium	Ł	ł		+					
+	-		Layer of Lean Clay at 17 feet.			\leq	11 .	+					
20-	20.0				{<	Ţ	40 -	İ.					
20	860.0		POORLY GRADED SAND wir medium-grained, trace Grave		K	\mathbf{r}	12	-					
+	22.0 858.0		\dense, (SP-SM), outwash	, ,	\ل_ د	\mathbf{r}	35	+					
1	-				F	7		Ţ					
25-	-				5	2	20 -	_					
+	-				Ł	7							
]	-		SANDY LEAN CLAY, fine- to	medium-grained trace Gra	avel D	3	38*	I			*	No sample rec	covery.
-	-		brown, moist, very stiff to hard		 	2		+					
30	-				\geq	\langle	34	t					
-	-				Ł	1		ļ					
-	-					Ś	18	+					
35-	35.0				<u></u>	Ţ		Ĺ					
	845.0	× . 	CLAYEY SAND, trace Gravel	brown, moist, hard, (SC),	till 🕌	$\left \right $	39	+					
-	37.0 843.0	· <u>v</u> · `x ` .		. ,	{<	Ӈ	23	+					
		' . ' .× '× ' .	SILTY SAND, fine-grained, br (SM), till	own, moist, medium dense	*, <u> </u>	7	20	1					
40-	_ 40.0 840.0	· . · .×	(), ····			X	19 -	+					
+	040.0		POORLY GRADED SAND, fir	ne- to medium-arained liab	nt F	7		+					
-			brown to 70 feet then brown,	noist to 75 feet then wet,	- K	1	18	Į					
+			medium dense to dense, (SP)	, outwash	Ł	7		+					
45	Index She	ĿĿĹ	de 3.0 (Continu		b	\leq		⊥	⊥	 J. Kirk Ro	1_		

٦

State	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2096			Ground Elevation 880.0 (Surveyed)
Ŧ	Depth	gy			, c	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
50 - 55 - 60 - 65 - 70 - 77 -			POORLY GRADED SAND, brown to 70 feet then brown medium dense to dense, (S	fine- to medium-grained, light n, moist to 75 feet then wet, SP), outwash <i>(continued)</i>		28 25 26 34 32 32 32 32 32 32 32 32 				dr	Switched to mud rotary illing method after 75-for imple.
85-	800.0 - - - - - - -		POORLY GRADED SAND medium-grained, with Grav (SP-SM), outwash	with SILT, fine- to el, gray, waterbearing, dense,	PD PD PD	47 -					
90 -	90.0				\sim	-	-				

٦

	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2096			Ground Elevation 880.0 (Surveyed)
т	Depth	gy			5	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	CI	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	790.0		SILT with SAND, with frequ dense, (MLwS), glaciofluviu	ent layers of Fat Clay, gray, wet, m	PD	31	-				
95 -	96.0					41	-				
-	784.0		Bottom of Hole - 96 feet. Water observed at 75 feet v Boring immediately backfille	while drilling.	,						

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation	_	_		Boring 2118			Ground Ele	
Locatio	<i>n</i> Her	nepir	Co. Coordinate: X=48518	0 Y=125086	(ft.)	Drill	Machine	9 7507	<u> </u>			SHEE	T 1 of 3
				itude (West)=					matic Ca	alibrated		Drilling Completed	5/22/14
			Offset Information Available				SPT	МС	сон				T (-
							Maa	(%)	(psf)	(pcf)	Soil	Other Or Ren	
H	Depth	bolo				g ation					1		
DEPTH	Elev.	Lithology	Clas	sification		Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Break:	Rock	Forma or Mei	
	1.0		CLAYEY SAND, trace roots a	nd Gravel, dark bro	wn, moist.	권	1/0/	13	1.4	D) Ouric			
1	836.8	X	∖(SC), topsoil fill		/	甘		Ì					
+	-	\bigotimes	CLAYEY SAND, trace Gravel	, dark brown, moist.	(SC), fill	<u>s</u>	17	14					
+	5.0	\bigotimes				मि		+					
5	832.8	X	PEAT, trace shells, black, we	t (PT) fill		\square	17	34					
+	7.0 830.8	\bigotimes				सि		_					
+	030.0					\mathbf{X}	15	27					
10-	-					Æ						itched to m	
10	-		LEAN CLAY, trace Gravel, bla	ack, wet. (CL), fill		\mathbb{X}	8.	22				lling method mple.	after 10-fo
+	-					PD		÷				ampler enco	untered lar
1	14.0					\mid	62*	101				ot at 12 feet.	
15-	823.8					PD		_					
+	-		LEAN CLAY, trace Gravel, br	own and gray, wet, i	ather stiff.		10 .	24					
1	-		(CL), alluvium			PD		1					
+	19.0 818.8						11	18					
20-	_ 010.0					PD	7	44			DD)=112 pcf	
1	-					PD		- 44					
+	-						12	35			db:	=2 tsf	
+	-					PD		-					
25-	-					$\mathbf{\nabla}$	8.	46					
+	-					PD		-					
+	-					\mathbf{X}	8	- 38				=2760 psf	
30-	-					PD		Ĺ)=82 pcf =1 tsf	
	-						8.	50				=1 tsf	
+	-		FAT CLAY, gray, wet, rather s	stiff to soft. (CH), all	uvium	PD		+					
1							7	41					
35-	_					PD		Ļ					
+	-						5.	47					
ļ	-					PD	_				db:	=3/4 tsf	
+							7	42					
40-	-						6	55			DD)=66 pcf	
1	-					PD		1 33					
+	-						6	52					
+	-					PD		+					
45-	Index She	et Coo	de 3.0 (Continu	ed Next Page)				 Sc	il Class:	J. Kirk Re	ock C	Class: Edit:	 Date: 7/28/

tate I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I			Ground Elevation 837.8 (Surveyed)
H	Depth	Лbс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Ci	lassification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-				PD	4 -	60				
-	-					6	72				
50 -	-			er stiff to soft. (CH), alluvium	PD	3.	64			db	p=1/2 tsf
-	-		(continued)		PD	-	-				
55-	-					5	34				
-	58.0 779.8				-PD	-	-				
- 50 -	- 119.0					25	12			db	o=1 1/2 tsf
-	-					- 25	- 12				
65-	-		SANDY I FAN CLAY trace	e Gravel, gray, wet, very stiff.	PD	-	-				
-	-		(CL), till			28 . -	16			DI	D=124 pcf
-	-				PD	-	-				
70-	-					22	12				ı=4560 psf D=129 pcf
-	73.0 764.8	///// 			PD		-				
75-	-	· · · · · · · · ·				28 -	21			C	obbles or Boulder from
-	-	· · · · · · · · · · · · · · · · · · ·			PD	-	+				pout 76 to 79 feet.
30 -	-		POORLY GRADED SAND	, fine- to medium-grained, gray,		45*	+			*N	lo sample recovery.
-	-		waterbearing, medium den	se to very dense. (SP), outwash	PD	-	+ +				
35 -	-					54	- 19				
-	-					-	-				
90	-				PD	-	ŀ				

BRAUN[®] INTERTEC

UNIQUE NUMBER U.S. Customary Units

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I			Ground Elevation 837.8 (Surveyed)
Ĩ	Depth	Лbс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	-				\mid	32 -	_ 15				
+	-				PD	-	-				
95-	-	· · · · · · · · · · · · · · · · · · ·			\square	52	18				
	-				PD	-	-				
100	-	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND, waterbearing, medium dens (continued)	fine- to medium-grained, gray, e to very dense. (SP), outwash	\square	41	12			Gr	ravel encountered at 10
+	-	· · · · · · · · ·	(-	-				
105-	-	· · · · · · · · · · · · · · · · · · ·			PD	-	-				
+	-	· · ·				-	-				
110-	_ 109.0 _ 728.8					- 50	13				D=122 pcf
+	-					-	-				·
115-	-		SANDY LEAN CLAY, trace	Gravel, gray, wet, hard. (CL), till	PD	-	-				
+	-					-	-				
400	-					-	-				
120	121.0 716.8		Bottom of Hole - 121 feet.			67	13				
			rotary drilling operation. Boring immediately backfille	drilling fluids used during mud							
-											 Class: Edit: Date: 7/28/

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc	ation				Boring			Ground E		
				SWLRT					2119	SB		834.6	-	
ocatio	n Hen	nepir	n Co. Coordinate: X=48544	2 Y=124842	(ft.)		Machin					SHE Drilling	ET 1 o	
	Latite	ude (North)= Long	tude (West)=		Han	nmer CI	VE Auto	matic Ca	librated		Complete	d	5/5/1
	No St	ation-	Offset Information Available				SPT	МС	сон	γ	1	Othe	r Test	s
т	Depth	gy				5	N 60	(%)	(psf)	(pcf)	Soil		emark	
DEPTH	••••••	Lithology				ng ratio	REC	RQD	ACL	Core	×	Forr	nation	,
DE	Elev.	Litt	Clas	sification		Drilling Operation	(%)	(%)	(ft)	Core Breaks	Roc		embel	
	0.2 834.4		SANDY LEAN CLAY, trace G	ravel, black, moist.	(CLS),	ł		24						
-	-	\otimes			/	5		+			חח	=112 pcf		
+	-	\bigotimes	CLAYEY SAND, trace Gravel Clay, brown, wet. (SC), fill	, with frequent layer	s of Lean		6	_ 17				-112 poi		
5-	-	\bigotimes	,			<u>E</u>	16	12						
-	6.0 828.6	\mathbf{X}					10	+ 12						
+	020.0		ORGANIC CLAY, trace roots, pieces, black, moist. (OL), sw		ood		16	33			DD	=85 pcf		
]	9.0					मि		-			OC	=5%		
L ₁₀ -	825.6	·×	CLAYEY SAND, trace Gravel	, brown, wet, very st	tiff. (SC),	\square	14	14			Dril	ers Note	Switch	ned to
-	12.0	× . ×	till			PD		†			mu	d rotary d	rilling m	netho
]	822.6		SANDY LEAN CLAY, with Gra	avel, with Sand sea	ms, gray,	\mathbb{N}	24	26			afte	r 10-foot	sample	÷.
+	14.0 820.6		moist, very stiff. (CL), till			PD		+						
15-	_ 020.0					\mathbb{X}	10 -	28						
-	_					PD		Į						
+	-						12	_ 25						
20	-					PD		+			חח	=104 pcf		
20-			LEAN CLAY, with layers of Fa	at Clav. grav. wet. ra	ther stiff to		10	22				35, PL=1	2, PI=2	23
+	-		stiff. (CL), till			PD		+ 20						
1	-					PD	11	29						
25-	-						11	23						
+						PD		+ 20						
	-					\square	15	23						
+	29.0 805.6					- PD		+						
30-	0.000					\square	11 -	18						
+						PD		1						
+						\mathbb{X}	15	_ 23						
- +						PD		+						
35-	-		SANDY LEAN CLAY, trace G stiff. (CL), till	ravel, gray, wet, ratl	ner stiff to		10	17				=114 pcf 36, PL=1	2, PI=2	24
+			(,			PD		+				, .	, –	
+							14	_ 15						
40-	-					PD		1 ~						
							11	21						
+	42.0 792.6	///// × .				PD	12	12			DD	=125 pcf		
+		· . · .× ·	CLAYEY SAND, with Gravel, till	gray, wet, stiff to ha	rd. (SC),		13	± '2				- 1001		
45		×	un 			PD								

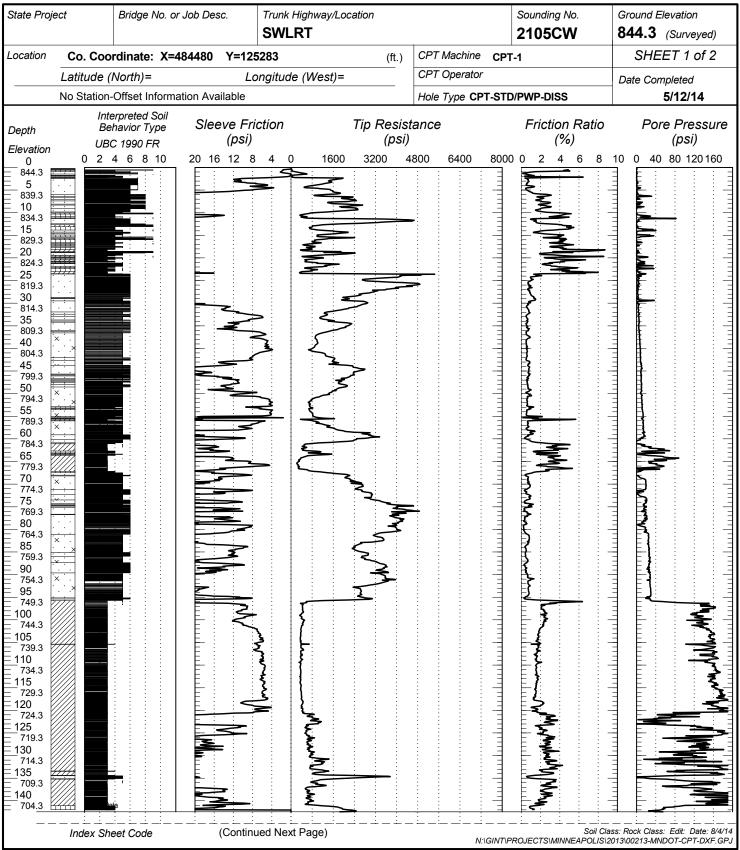
tate I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I			Ground Elevation 834.6 (Surveyed)
н	Depth	ду			5	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	47.0	·× · . · . · .× · . · .×	CLAYEY SAND, with Grave	el, gray, wet, stiff to hard. (SC),	PD	40	10				
-	787.6					18 .	_ 15 _				
50-	-				\mid	19 -	16				
-	-		FAT CLAY, trace Gravel, g	ray, moist, very stiff. (CH), till	PD		+				
55-	-					22	24			DI LL	D=102 pcf .=55, PL=18, PI=37
-	58.0 776.6	× . 			-PD	-	+				
60 -	-	`× ` . ` . ` .× `× ` .				12 -	13			DI	D=121 pcf
-	-	· · · × ·× · . · · · ×	CLAYEY SAND, trace Grav (SC), till	vel, gray, wet, rather stiff to stiff.	PD	-	-				
65 -	-	× . × .× .				14* -	+			*N	lo sample recovery.
-	68.0 766.6	× . × .			-PD	-	+				
70 -	-	·× · . · . · .× ·× · .				100* -	-				lo sample recovery. Ro tip.
-	-	(* . * .× (* * . (* . * .×			PD		+ + +				
75-	-	× · . · . · .× ·× · .			\mid	59 -	12				
-	-	· · · × · × · · · · · · × · × · ·	SILTY SAND, fine- to medi	um-grained, with Gravel, gray,	PD	- -	+ +				
80-	-	× · · · · × ·× · . · · · ×	wet, very dense. (SM), till			67	9			P2	200=14%
-	-	·× · . · . · .× ·× · .			PD	- -	+ +				
85 -	-	* . * .× *× * . * . * .×				58	18				
-	-	`× ` . ` . ` .× `× ` .			PD	- -	+				

	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2119			Ground Elevation 834.6 (Surveyed)
Г	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	lassification	Drilling Operation	REC (%) 80	RQD (%) 14	ACL (ft)	Core Breaks	Rock	Formation or Member
	- - -	·× · . ·× ·× · . ·× ·	SILTY SAND, fine- to medi wet, very dense. (SM), till (um-grained, with Gravel, gray, <i>continued)</i>	PD		- - -				
95	96.0 738.6	'× ' . ' . ' .×	Bottom of Hole - 96 feet.			55	10				

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Locatio	on				Boring I			Ground Ele	
					(51.)	- "			2137	30			(Surveyed)
ocatio	-		n Co. Coordinate: X=48565		(ft.)		Machine					Drilling	ET 1 of 3
			,	ude (West)=		Han	nmer CN	IE Autor	natic Ca	librated	1	Completed	, 5/7/1
	No S	tation-	Offset Information Available			-	SPT	MC	СОН	γ	Soil	Other	
н	Depth	Лbc				uo uo	N 60	(%)	(psf)	(pcf)	Š	Or Re	marks
DEPTH		Lithology		··· ··		Drilling Operation	REC	RQD	ACL	Core Breaks	Ś	Form	
۹	Elev.	L		sification		<u>5</u> 0	(%)	(%)	(ft)	Breaks	В К К	or Me	mber
+	0.2 835.0	\bigotimes	SANDY LEAN CLAY, trace roo moist. (CLS), topsoil fill	ots, trace Gravel, dark	brown,	5		19					
+	-	\bigotimes	SANDY LEAN CLAY, trace Gr	avel, trace roots, dark	brown	R	9	22					
1	4.0		and black, moist. (CLS), fill			ि							
5-	831.2	\bigotimes				\mathbb{N}	19 -	23					
+	-	\bigotimes				मि							
1	-	\bigotimes				\square	29	9					
_ +	-	\bigotimes	CLAYEY SAND, with Gravel, we brown and gray, moist to 10 fe		ay,	रि		+					
L ₁₀	-	\bigotimes	brown and gray, moist to to le			\square	16 -	+			Dr	illers Note:	Switched to
1	-	\bigotimes				PD		Ť.			m	ud rotary dri	illing metho
+	-	\bigotimes				\mathbb{X}	22 .	13			an	ter 10-foot s	ample.
+	14.0 821.2	\bigotimes				PD		-					
15		\bigotimes	SANDY LEAN CLAY, with Gra brown and gray, wet. (CLS), fil		es,	\mid	37* -	3					
+	17.0	\bigotimes				PD		+					
+	818.2 19.0	\bigotimes	CLAYEY SAND, with Gravel, v and brown, wet. (SC), fill	with lenses of Lean Cla	ay, gray		16 .	13					
20-	816.2					PD		<u> </u>			0	C=3%	
20	-						3 -	54				5-570	
+	-	•				PD	5	80					
1	-					PD	<u> </u>	00					
25-	-						4 -	-					
+	-					PD		-					
1	-		SLIGHTLY ORGANIC to ORG		, tracc	$\mathbf{\nabla}$	3	144					
+	-		fibers, trace roots, gray with la			PD		÷					
30-	-		swamp deposit			\square	3 -	104			00	C=10%	
1	-					PD	.	ţ					
+	-						3.	116					
-+	-					PD	-	+					
35	-					$\mid \times$	3	99					
+	-					PD		+			*	look in tin -	Compler
+	39.0						4.	84			L.K	lock in tip of	sampler.
40	796.2					PD		1					
			SLIGHTLY ORGANIC SILT, tr	ace roots, with shells.	with		4	63					
+		•	wood pieces, dark gray and bl			PD		47			0	C=3%	
ţ			deposit				5.	47					
45		• • •				PD	l	\bot	$ _{}$	L	\perp		

tate F	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2137			Ground Elevation 835.2 (Surveyed)
F	Depth	ЛĎс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Break	B Rock	Formation or Member
-	48.0 787.2		wood pieces, dark gray and \deposit <i>(continued)</i>	, trace roots, with shells, with black, wet. (OL), swamp el, gray, wet, rather stiff. (SC), till		3 9	30				
50-	_ 50.0 _ 785.2		CLATET SAND, WIT Glave		PD	10	44			LL	_=61; PL=24; PI=37
55-	-		FAT CLAY, trace Gravel, gr (CH), till	ay, wet, rather stiff to very stiff.	X PD X PD	15	- - - -				
60-	-					17 -	23				
65-	63.0 772.2		SANDY LEAN CLAY, with (Gravel, gray, wet, very stiff. (CL),	- PD	21	- - - - - - - -				
70 -	- - - - - 73.0		till		PD	26	- -				
75-	_ 762.2 _ - -	× · . · . · .× · × · . · × · . · . · .×				30	- - - -				
80-	- - -	× · · × · · · × · · · × · · · × · · · × · · · × · · · ×	CLAYEY SAND, with Grave Clay, gray, wet, medium de	el, with frequent lenses of Lean nse to very dense. (SC), till	PD	36 ⁻	+ - - -				
- 85 -	- - -				PD	35	+ - - - - -				
90	-	· . · .× ·× · . · . · .×				-	-				

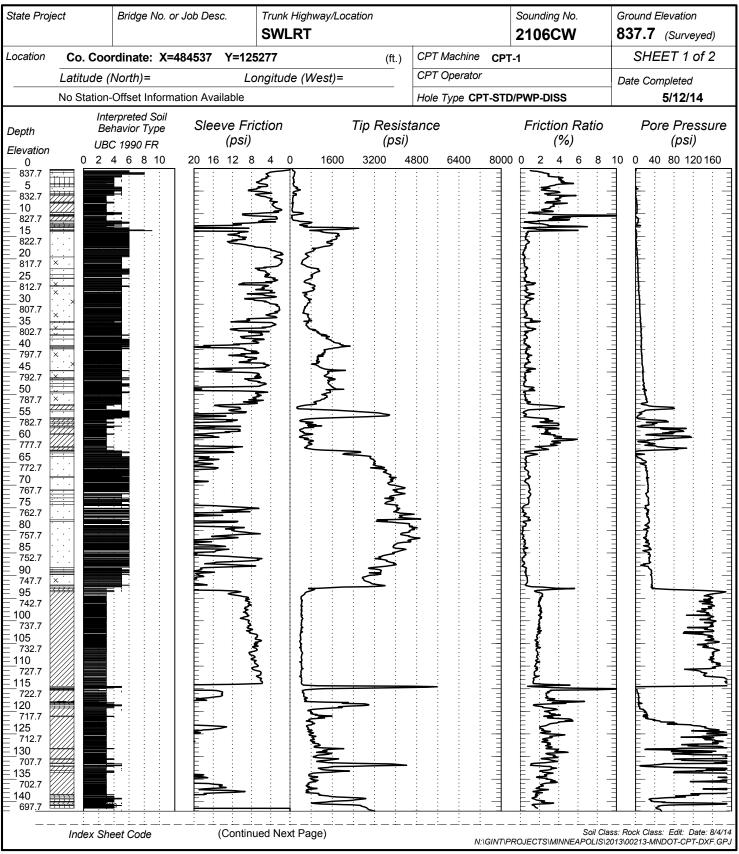
N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ


U.S. Customary Units

SHEET 3 of 3 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Trunk Highway/Location Boring No. Ground Elevation State Project Bridge No. or Job Desc. SWLRT 2137SB 835.2 (Surveyed) γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core ୪ Breaks ଜ Core Formation Classification Elev. (ft) or Member (%) (%) Sand layer encountered at 90 feet. 54 13 x \succ CLAYEY SAND, with Gravel, with frequent lenses of Lean Clay, gray, wet, medium dense to very dense. (SC), till 93.0 PD (continued) 742.2 x 95 53 SANDY SILT, gray, wet, very dense. (ML), glaciofluvium 98.0 PD 737.2 x 100 77 23 SILTY SAND, fine- to medium-grained, with Gravel, brown 105 and gray, waterbearing, very dense to dense. (SM), till PD 110 48 19 111.0 Bottom of Hole - 111 feet. 724.2 Water not observed while drilling. Boring immediately backfilled with bentonite grout. Soil Class: J. Kirk Rock Class: Edit: Date: 7/28/14

UNIQUE NUMBER

UNIQUE NUMBER



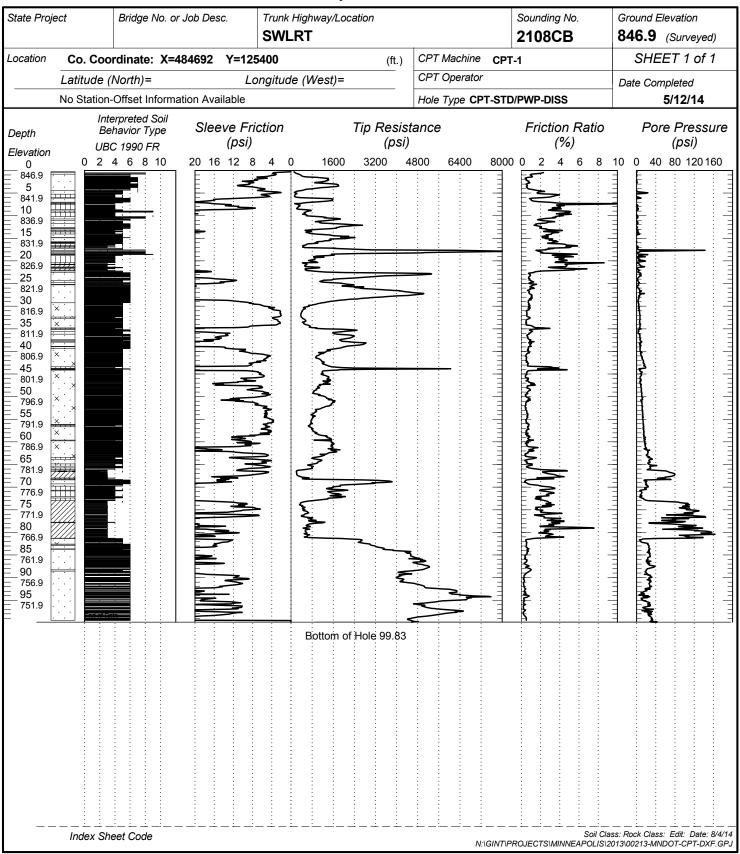
ate Project			Bric	dge	No. oi	r Job	Des	SC.		Trunk I SWL		way/Lo	cation						Soun 210					ound E 14.3		ion veyed)
		Mn	/D	ОТ	GE	OTE	CH	INIC	CAL	SEC	TIC	DN - C	ONE	PEN	IETR	4 <i>TIC</i>	ON TE	EST F	RES	SUL	TS			SHEE	ET 2	of 2
epth		Inter Beha JBC			Soil ype	S	lee	eve (p.		tion Tip Resistance (psi)					Friction Ratio (%)			1	Pore Pressure (psi)							
levation	0 2					20	16	5 12		4 0)	1600	320		, 4800	64	00 8	8000	0 2		4 é	8	10	0 40		, 120160
	: :		:	÷	:	:	:	:		: :		ottom o				:						:		: :		: :
			÷	÷			:	-						142.5					-							
			÷	÷	-		÷	÷	÷			: :	: :	-	:	:	-		:		: :	÷		: :	-	: :
	: :		-	:	-		-	÷					-			:			-		: :	:		-		
	: :		÷	÷	-	÷	÷	÷	:	: :			: :		:	: :			:		: :	÷		: :	÷	: :
			÷	÷			÷	÷	÷				÷ ÷	-					:			÷		: :	-	: :
			÷	÷	-		÷	÷	÷				: :	÷	:	:	-		-		: :	÷		: :	-	: :
			÷	:	:		÷	÷				: :	÷ ÷			: :			:	÷	: :	÷		: :		
	: :		÷	÷	÷	÷	÷	÷	:	: :			÷ ÷	÷	:	: :			:		: :	÷		: :	-	: :
			÷	:	-		:		-				÷ ÷	:	:	:			-			:		-		1
			÷	÷	-		÷	÷	÷				÷ ÷	-		:	-		:		: :	÷		: :	-	
	-		÷	÷	-	-	÷	÷	÷					÷	:	: :	-		-	-	: :	÷		-		
			÷	÷	:		÷						÷ ÷			: :			:		: :	:		: :		
			÷	÷	-		÷	÷				· · ·	÷ ÷	-	•	: :			÷			÷				
	: :	: :	÷	÷	÷	÷	÷	:	÷	: :		: :	÷ ÷	÷	:	: :	÷		÷	:	: :	÷		: :	÷	÷ :
			÷	÷	-		÷	÷	÷				÷ ÷		•	: :			÷		:	÷			-	
	-		÷	÷	-	-	÷	-					-		-	:			-	-	: :	:		-	-	
			÷	:			÷	÷					÷ ÷			: :			:		: :	÷				: :
			÷	÷	÷	-	÷	÷	-				-			: :			÷		: :	÷		-	-	
	-		-	:	-	÷	÷	÷	÷	1			: :	-		: :	-		÷		: :	÷		: :	÷	
	: :		÷	:	÷	÷	÷	÷		: :		: :	÷ ÷	:	:	: :			:		: :	:		÷ :		: :
			÷	÷	-		÷	÷				· · ·	÷ ÷		•	:	-		-			÷				
	-		-	÷	-	-	÷	-					-		-	: :			-	-	: :	÷		-	-	
			÷	:			÷	÷					÷ ÷			: :			:		: :	:				: :
			÷	÷	-	-	÷	÷	-				-	÷	-	: :			÷	-	: :	÷		-	-	
	: :	: :	÷	÷	÷	÷	÷	÷	÷	: :		: :	÷ ÷	÷	:	: :	÷		:	:	: :	÷		: :	÷	÷ ÷
			÷	÷	-		÷	÷	÷					-		:	-		÷			÷				
			÷	÷	-		÷	÷		-		: :		-	:	-	-		:		: :	÷		-	-	
			÷	:	-		:			: :		: :	÷ ÷			: :			:	:	: :	:		: :		: :
	: :		÷	÷	÷	÷	÷	÷					÷ ÷	-	:	: :			-		: :	÷		-	-	
			÷	÷	-		÷	÷	-	-				-	:	: :	-		:		: :	÷		: :	-	: :
			÷	÷	÷	:	:	:	:				1	:	÷	: :			;			:		-	-	
			÷	÷	-	÷	÷	÷	÷				÷ ÷	÷	:	: :	÷		÷		: :	÷		÷ ÷	÷	: :
	-		÷	:	-	-	÷	÷	-				÷ ÷	-	÷	:	-		:	-		÷		-	-	: :
			÷	÷	-		÷	÷	÷			: :	÷ :			:			:			÷		: :	-	
	: :		÷	÷	÷	÷	÷	÷					÷ ÷	-		: :	-		-		: :	÷		-	-	: :
			÷	÷	-		÷	÷	-	-			: :	-	:	: :	-		:		: :	÷		: :	-	: :
			÷	÷			÷	÷	÷				÷ ÷	-					-			÷				
			÷	÷	-		÷	÷	÷				: :	÷		:	-		:		: :	÷		: :	-	: :
			:	÷	-		:	:	:				÷		÷	: :			-	-		:		÷ :		
	: :		÷	÷	-	÷	÷	÷	÷				÷ ÷	÷	:	: :	÷		:		: :	÷		: :	-	: :
			÷	÷	-		:	÷	÷	-		: :	÷ ÷	:	:	: :	:		-			:		-	÷	
			÷	÷	-	-	÷	÷					÷ ÷	-	:	: :			:			÷			-	
			:	÷	÷	÷	÷	÷	÷				÷ ÷	÷	÷	:	÷		-			÷		-	÷	
			÷	÷	÷	-	÷	÷	÷				÷ ÷	÷		: :	÷		:		: :	÷		: :	÷	÷ ÷
			÷	÷	-		÷	÷		-		: :		-	÷	:	-		:		: ;	÷		: :	-	: :
			_ :							. <u> i</u>		<u> </u>	<u></u>						<u> </u>	:	<u> </u>					
																						Sail		ack Clas	c Edit	Date: 8/

UNIQUE NUMBER

UNIQUE NUMBER

ate Project			Bri	idge	No. c	or Job	De	SC.		Trunk SWI		hway/Loc Г	ation						Soun 210							evatio (Surv	on reyed)
		Мn	n/D	от	GE	OTE	Cŀ	INICA	4 <i>L</i> -	SEC	TIC	DN - CC	NE F	PENE	TRA	A <i>TIO</i>	DN 7	TEST	RES	SUL	тs			Sŀ	IEE	T 2 0	of 2
epth		Intei Beh UBC				S	Slee	eve F (psi		tion			Tip R	esist (psi)	ance	e			Fri	ictic (on F %)	Ratio	0		Pore	e Pro (ps	essur i)
levation		24				20	16	5 12		4	0	1600	3200		800	640	00	8000	0 2			6 8	3 10	0	40		, 20160
	:	: :			:		:	:	:	:	•	Bottom of				: :			:						:	:	: :
	-							-	-					42.00					-					-	:	-	
	-	-																						-			
	-	: :				÷			-							: :			-							÷	: :
	÷	: :	-		:	-	÷	-	÷	-	-	: :	: :	-	-	: :	-		-					÷	÷	-	-
	-	: :	-		÷	-	÷	-	-	:	:	: :	: :	÷	-	: :	-		÷					÷	:	÷	: :
			-			÷	:	÷							-									÷	÷		
	-	: :	-		-	÷	÷	÷	÷	:				÷	÷	: :	-		:					÷	÷	÷	: :
	÷	: :	-		÷	÷	:	÷	÷	:	:	: :	: :	÷	÷	: :	-		:					÷	÷	÷	: :
	÷	: :	-			-	÷	-	÷	-	:		: :	-	:	: :	-		-	:				÷	÷	-	-
	:	: :	-				÷	:		:			: :		:	: :			:					-	:	÷	: :
		-	-			-	÷		÷		÷				:	: :			÷					÷	÷	÷	÷ ÷
	-	-				-	÷	-	÷	:	÷	: :		-	÷	: :	-		:					÷	÷		: :
		: :	-		-	-	÷	-	÷	-	-		: :	-	-	: :	-		-					÷	:	÷	: :
			-			-	÷		÷		-			-		÷ ÷	-		÷					÷	÷		÷ ÷
	÷	-	-		-	-	÷	÷	÷	:	÷			÷	÷	: :			÷					÷	÷	÷	÷ ÷
	÷	: :	-		÷	-	÷		÷	:	-			÷	÷	: :	-		-					÷	÷	÷	: :
	÷	: :	-		-	-	÷	-	÷	-	÷	: :		-	-	: :	-		-	: :				÷	÷	-	-
	÷	: :	-		÷	÷	:	÷	÷	÷		: :	: :	÷	÷	: :			:					÷	÷	÷	: :
	:	: :	-				÷		-	:			: :		:	: :			:	:				-	:		: :
	÷	: :	-		-	-	÷		÷	:	÷	: :		-	÷	: :			÷					÷	÷	-	÷ ÷
		-	-			-	÷	÷	÷		÷			-	÷	: :			÷					÷	÷	-	÷ ÷
	-	-	-			-	÷	-	÷	-	-	: :	: :	-	:	: :	-		÷					÷	÷	÷	: :
	÷	: :	-		÷	÷	÷		-	:		: :	: :	÷	:	: :	-		:					-	÷	-	: :
	:	: :	-				÷	:	-	:			: :		:	: :			:	:				-	:	÷	: :
	÷	: :	-			-	÷		÷	:	÷	: :		-	÷	: :			÷					÷	÷	÷	÷ ÷
	÷	: :	-		÷	:	÷	÷	÷	:	÷	: :	: :	÷	÷	: :	-		÷					÷	÷	÷	: :
		: :	-		-	÷	-	-	÷	:	:	: :	: :	-	:	: :	-		:					÷	÷	÷	: :
	÷	-			÷	÷		:	-	÷	÷	: :	: :	÷	÷	-			:					-	÷	÷	-
		: :				÷	:		÷	:	÷				:	: :			:					÷	:	-	
	÷	: :	-			÷	÷	÷	÷	:	:	: :	: :		:	: :			:					÷	÷	÷	: :
	÷	: :	-		÷	÷	:	÷	:	:	÷	: :	: :	÷	÷	: :	-		:					÷	÷	÷	: :
	-	: :			÷	÷	:	-	÷	:		: :	:	-	:	: :			-					÷	÷	÷	-
	÷	-			÷	÷	:	:	-	÷	÷	: :		÷	÷	-			:					-	÷	÷	-
	÷				÷	÷	:	÷			:			÷	-				:					÷	÷	÷	
	÷	: :	-		-	÷	÷	÷	÷	:				÷	:	: :	-		:					÷	÷	÷	: :
	÷	: :	-		÷	÷	÷	-	÷	:	:	: :	: :	÷	:	: :	-		÷					÷	÷	÷	: :
	÷	: :			-			÷	-	:	:	: :		÷	:	:			:					-	÷	÷	-
						÷	:	-	÷	÷					:	: :			:					÷	:		: :
	÷	: :	-		÷	÷	÷	÷	÷	÷	:	: :	: :	÷	÷	: :	-		:	: :				÷	÷	÷	: :
	÷	-			-	÷	:	:	:	÷	÷	: :	: :	÷	÷	: :			:					÷	÷	÷	: :
	-	: :	-		-	÷	÷		÷	:				÷	÷	: :	-		:					÷	÷	÷	: :
	÷	: :	-		÷	÷	÷	-	÷	-		: :	: :	÷		: :	-		÷					÷	÷	÷	: :
	÷	-			-	÷			÷	÷	÷			-	:	; ;	-		-					-	:	÷	÷
	÷	: :	-			-	÷	-			:	: :	: :	-		: :	-		:	:				÷	÷		-
							_																~~~~		~		Date: 8

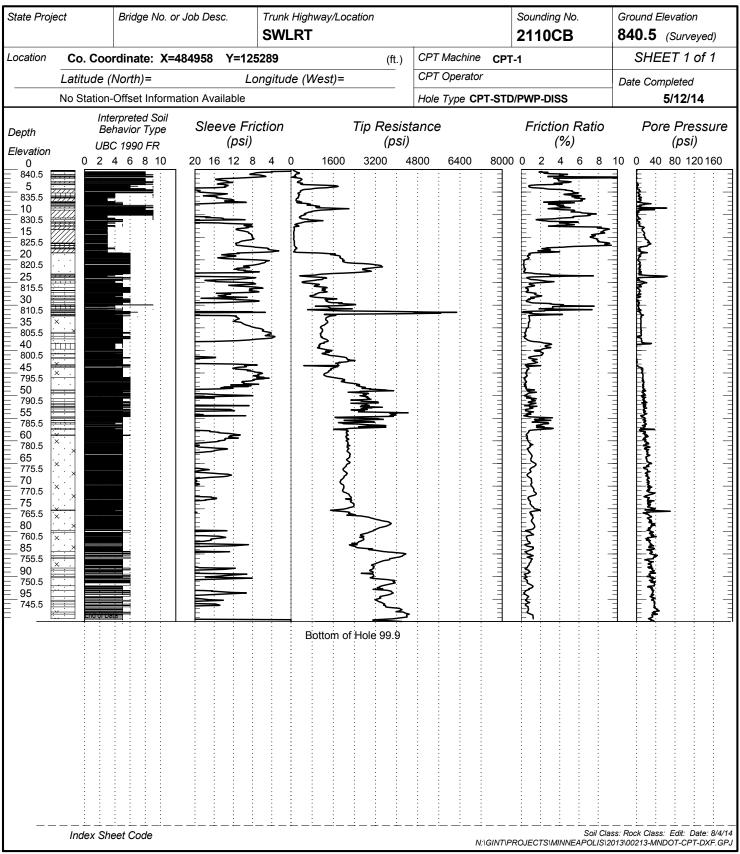
UNIQUE NUMBER



State Project	Bridge No. or		lighway/Location		Sounding No.	Ground Elevation
		SWL			2107CB	847.8 (Surveyed)
		184566 Y=125333		t.) CPT Machine CPT Operato		SHEET 1 of 1
	tude (North)=		e (West)=	_		Date Completed
NO S	Interpreted Soil	ation Available		Hole Type C	PT-STD/PWP-DISS	5/12/14
Depth Eleviation	Behavior Type UBC 1990 FR	Sleeve Friction (psi)		sistance osi)	Friction Ratio (%)	p Pore Pressure (psi)
	0 2 4 6 8 10	20 16 12 8 4 0	1600 3200	4800 6400	8000 0 2 4 6 8	10 0 40 80 120 160
0 847.8 5 842.8 10 837.8 15 832.8 20 225 822.8 20 30 817.8 30 817.8 407.8 827.8 807.8 8 407.8 8 55 792.8 792.8 8 70 777.8 787.8 8 70 777.8 775 772.8 85 762.8 767.8 90 757.8 90 757.8 95 752.8 95			Bottom of Hole 97			
Inc	dex Sheet Code				Soil (N:\GINT\PROJECTS\MINNEAPOLIS	Class: Rock Class: Edit: Date: 8/4

UNIQUE NUMBER

UNIQUE NUMBER



State Project	Bridge No. of		Highway/Location		Sounding No.	Ground Elevation
		SWI		007.1	2109CB	840.9 (Surveyed)
	b. Coordinate: X=4		(ft.)	CPT Machine CPT Operator	CPT-1	SHEET 1 of 1
	itude (North)=		de (West)=	-		Date Completed
NOS	Station-Offset Informa	ation Available		Hole Type CPT	-STD/PWP-DISS	5/12/14
Depth Elevation	Interpreted Soil Behavior Type UBC 1990 FR	Sleeve Friction (psi)	Tip Resist (psi)	ance	Friction Ratio (%)	Pore Pressure (psi)
•	0 2 4 6 8 10	20 16 12 8 4	0 1600 3200 4	800 6400	8000 0 2 4 6 8	10 0 40 80 120 160
840.9 5 835.9 10 10 830.9 15 825.9 20 20 820.9 25 30 815.9 30 800.9 40 × 800.9 × 40 × 800.9 × 55 785.9 790.9 × 75 × 765.9 × 760.9 × 80 × 75 × 765.9 × 80 × 90 × 755.9 × 90 × 750.9 × 95 × 750.9 × 95 × 80 × 80 × 90 × 750.9 × 95 × 95 × 750.9 × 80 × 80 <td></td> <td></td> <td>Bottom of Hole 100.02</td> <td></td> <td></td> <td></td>			Bottom of Hole 100.02			
-			Bottom of Hole 100.02			
	: : : : : :	: : : : :	: : : : : :	: : : :	: : : : :	: : : : :

UNIQUE NUMBER

Boring/Substructure	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons)	Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
2109CD (Diam 1)	0.25	120	185 [370 kips]	16.0	791	45
2108CB (Pier 1)	835	140	215 [430 kips]	16.0	776	60
2109CB (Pier 2)	837	120	185 [370 kips]	16.0	772	65
2109CB (PIEL 2)	637	140	215 [430 kips]	16.0	767	70
2109CB (Pier 3)	839	120	185 [370 kips]	16.0	772	70
	855	140	215 [430 kips]	16.0	767	75
2094SB (Pier 4 and	841	120	185 [370 kips]	16.0	785	55
Pier 5	041	140	215 [430 kips]	16.0	780	60
2094SB (Pier 6)	845	120	185 [370 kips]	16.0	785	60
209430 (FIELO)	843	140	215 [430 kips]	16.0	780	65
2110CB (Pier 7)	847	120	185 [370 kips]	16.0	807	40
211000 (Fiel 7)	847	140	215 [430 kips]	16.0	797	50
2110CP (Dior 9)	838	120	185 [370 kips]	12.0	793	45
2110CB (Pier 8)	030	140	215 [430 kips]	12.0	788	50
2095SB (Pier 9)	832	120	185 [370 kips]	16.0	802	30
205556 (FIEL 5)	032	140	215 [430 kips]	16.0	792	40
211050 (0:0= 10)	820	120	185 [370 kips]	16.0	775	55
2118SB (Pier 10)	830	140	215 [430 kips]	16.0	770	60

Summary of Anticipated Pile Lengths – Abutment and Piers - PDA Analysis

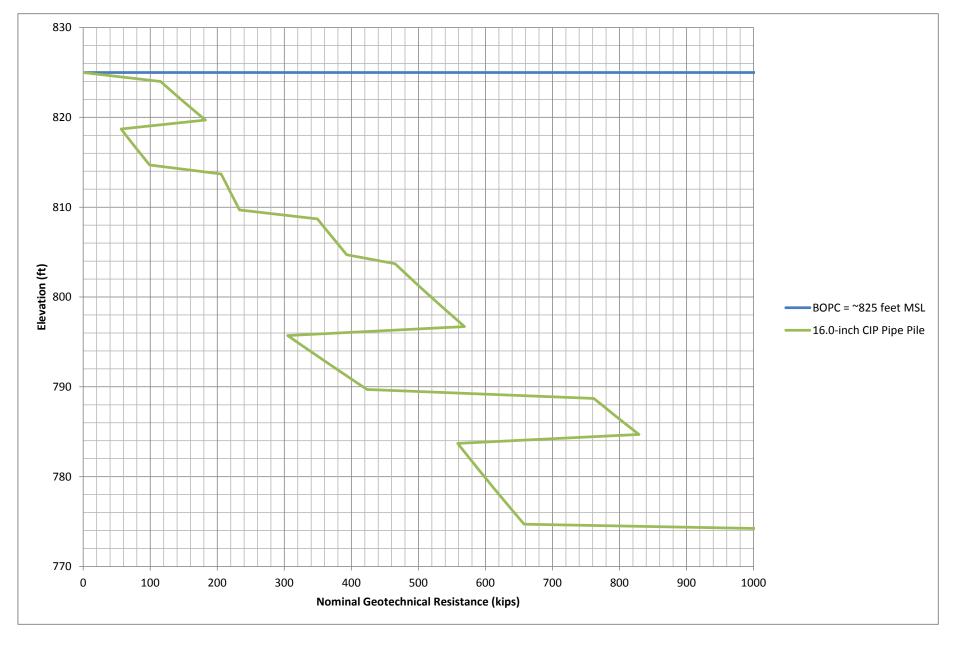
Summary of Anticipated Pile Lengths – Abutment and Piers - PDA Analysis Continued

Π						
Boring/Substructure	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons)	N Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
2064SB (Pier 11)	828	120	185 [370 kips]	16.0	783	45
200436 (Piel 11)	020	140	215 [430 kips]	16.0	778	50
244055 (5: 42)		120	185 [370 kips]	16.0	780	40
2119SB (Pier 12)	828	140	215 [430 kips]	16.0	783	45
20(550 (0:	020	120	185 [370 kips]	16.0	788	40
2065SB (Pier 13)	828	140	215 [430 kips]	16.0	783	45
212700 (0:0=14)	826	120	185 [370 kips]	16.0	766	60
2137SB (Pier 14)	826	140	215 [430 kips]	16.0	761	65
200000 (0:	0.27	120	185 [370 kips]	16.0	797	30
2066SB (Pier 15)	827	140	215 [430 kips]	16.0	792	35
2047SB (Pier 16)	829	120	185 [370 kips]	16.0	794	35
	023	140	215 [430 kips]	16.0	784	45
2048SB (Pier 17)	829	120	185 [370 kips]	16.0	799	30
		140	215 [430 kips]	16.0	794	35
2096SB (East	863	120	185 [370 kips]	12.0	833	30
Abutment)	000	140	215 [430 kips]	12.0	828	35

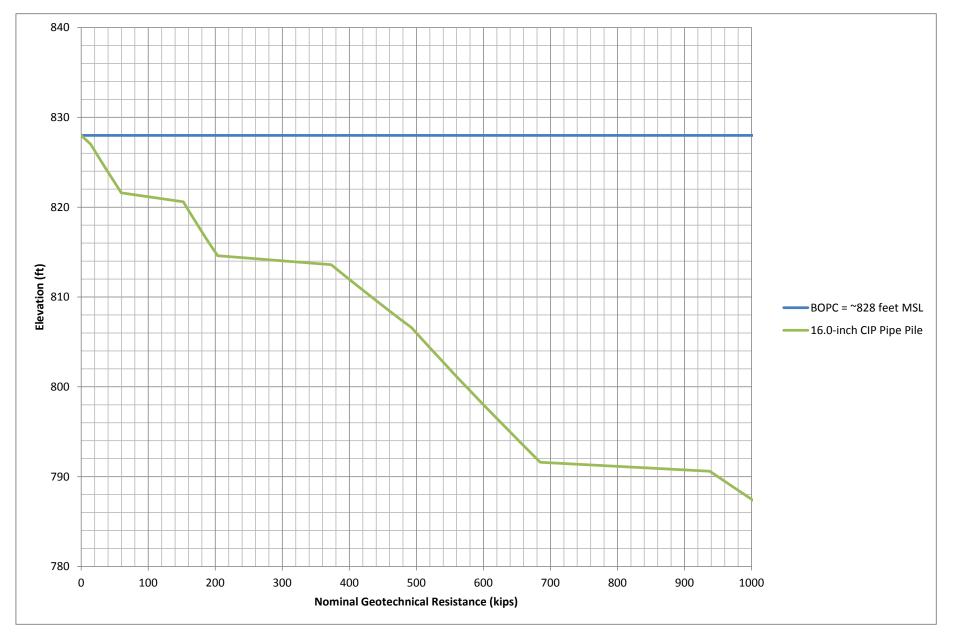
Boring/Substructure	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons)	Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
2108CB (Pier 1)	835	120	240 [480 kips]	16.0	766	70
	655	140	280 [560 kips]	16.0	761	75
2109CB (Pier 2)	027	120	240 [480 kips]	16.0	767	70
2109CB (PIEL 2)	837	140	280 [560 kips]	16.0	762	75
	020	120	240 [480 kips]	16.0	767	75
2109CB (Pier 3)	839	140	280 [560 kips]	16.0	762	80
2094SB (Pier 4 and		120	240 [480 kips]	16.0	775	65
Pier 5)	841	140	280 [560 kips]	16.0	770	70
		120	240 [480 kips]	16.0	775	70
2094SB (Pier 6)	845	140	280 [560 kips]	16.0	770	75
		120	240 [480 kips]	16.0	797	50
2110CB (Pier 7)	847	140	280 [560 kips]	16.0	792	55
2110CB (Pier 8)	838	120	240 [480 kips]	12.0	788	50
	030	140	280 [560 kips]	12.0	763	75
2095SB (Pier 9)	832	120	240 [480 kips]	16.0	792	40
205550 (1161-5)	052	140	280 [560 kips]	16.0	787	45
2118SB (Pier 10)	830	120	240 [480 kips]	16.0	775	55
211035 (FIEL 10)	0.50	140	280 [560 kips]	16.0	770	60
2064SB (Pier 11)	828	120	240 [480 kips]	16.0	778	50
	020	140	280 [560 kips]	16.0	773	55

Summary of Anticipated Pile Lengths – Abutment and Piers – MPF12 Analysis

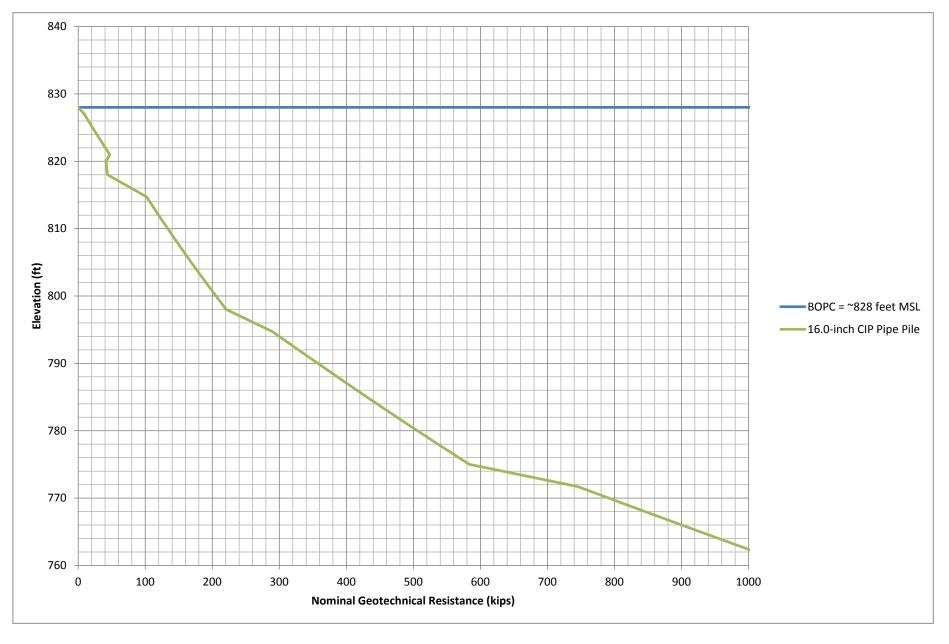
Summary of Anticipated Pile Lengths – Abutment and Piers – MPF12 Analysis Continued

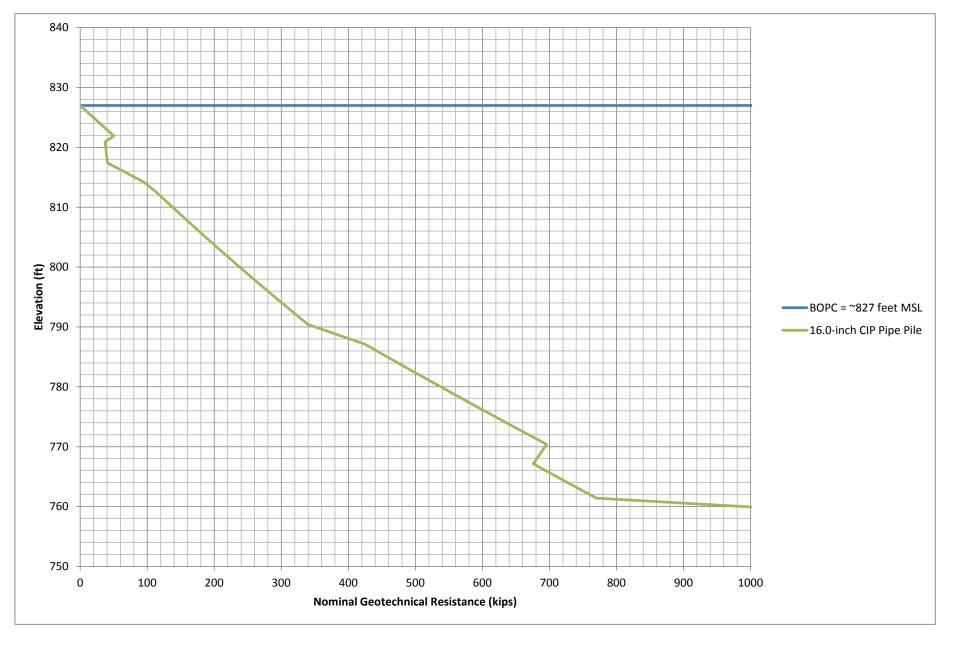

Boring/Substructure	Anticipated Cutoff Elevation (feet)	Factored Load ΣγQ _n (tons)	Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
2119SB (Pier 12)	828	120	240 [480 kips]	16.0	783	45
211930 (FIEL 12)	828	140	280 [560 kips]	16.0	778	50
2065SB (Pier 13)	828	120	240 [480 kips]	16.0	783	45
200336 (FIEL 13)	828	140	280 [560 kips]	16.0	778	50
2137SB (Pier 14)	826	120	240 [480 kips]	16.0	761	65
	820	140	280 [560 kips]	16.0	756	70
2066SB (Pier 15)	827	120	240 [480 kips]	16.0	797	30
200035 (FICT 15)	027	140	280 [560 kips]	16.0	792	35
2047SB (Pier 16)	829	120	240 [480 kips]	16.0	784	45
204735 (FIEL 10)	823	140	280 [560 kips]	16.0	779	50
2048SB (Pier 17)	829	120	240 [480 kips]	16.0	799	30
	025	140	280 [560 kips]	16.0	794	35
2096SB (East	863	120	280 [560 kips]	12.0	833	30
Abutment)		140	280 [560 kips]	12.0	823	40

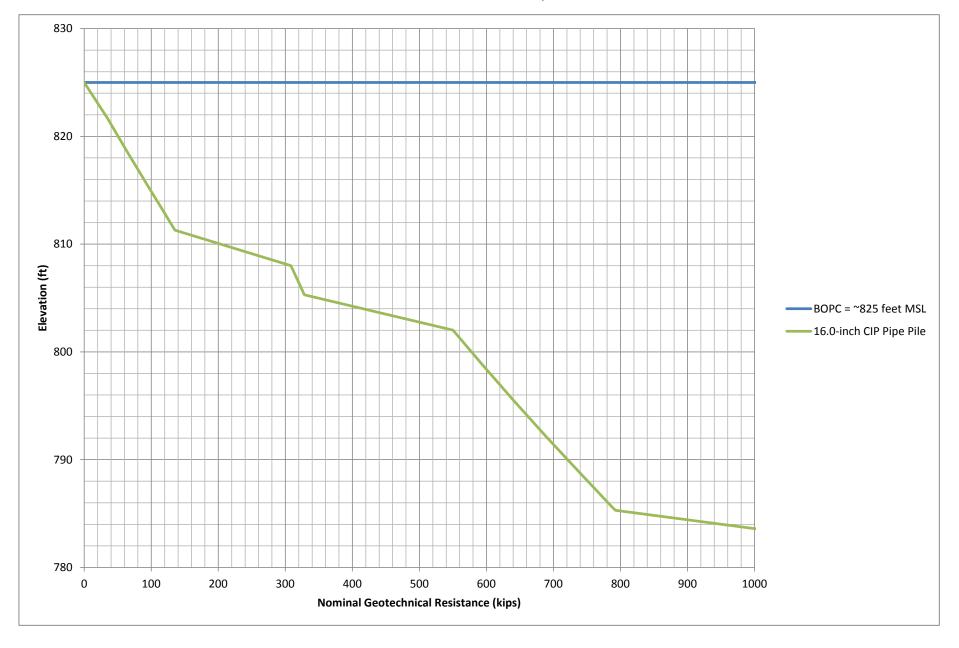
Boring/Sounding	Anticipated Bottom of Grade Beam Elevation (feet)	Factored Load ΣγQ _n (tons)	Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
2108CB	832	100	154 [307 kips]	10.0	762	70
2109CB	834	100	154 [307 kips]	10.0	769	65
2094SB	836	100	154 [307 kips]	10.0	776	60
2110CB	838	100	154 [307 kips]	10.0	793	45

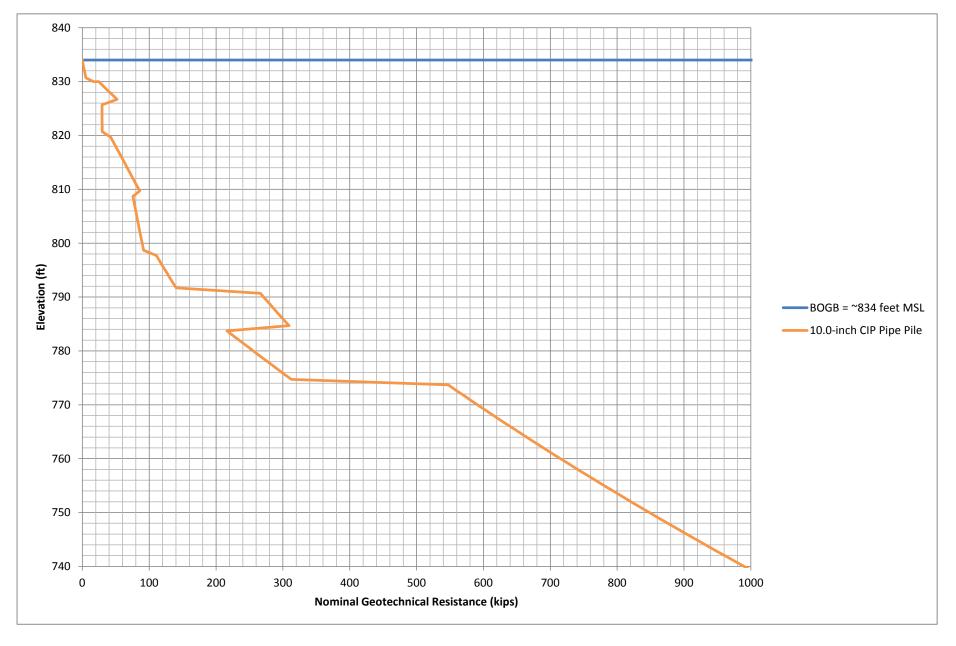

Summary of Anticipated Pile Lengths – Screen Wall – MPF12 Analysis

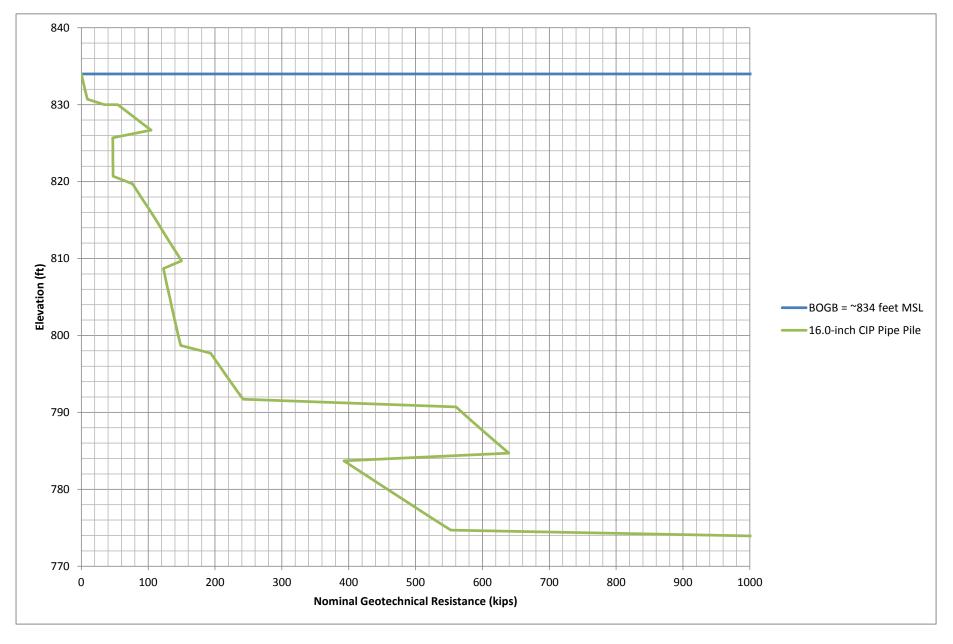
Boring/Sounding	Anticipated Bottom of Grade Beam Elevation (feet)	Factored Load ΣγQ _n (tons)	Nominal Resistance R _n (tons)	O.D. of Pipe Pile (inches)	Approximate Tip Elevation (feet)	Approximate Pile Length (feet)
2108CB	832	100	200 [400 kips]	10.0	757	75
2109CB	834	100	200 [400 kips]	10.0	764	70
2094SB	836	100	200 [400 kips]	10.0	771	65
2110CB	838	100	200 [400 kips]	10.0	768	70

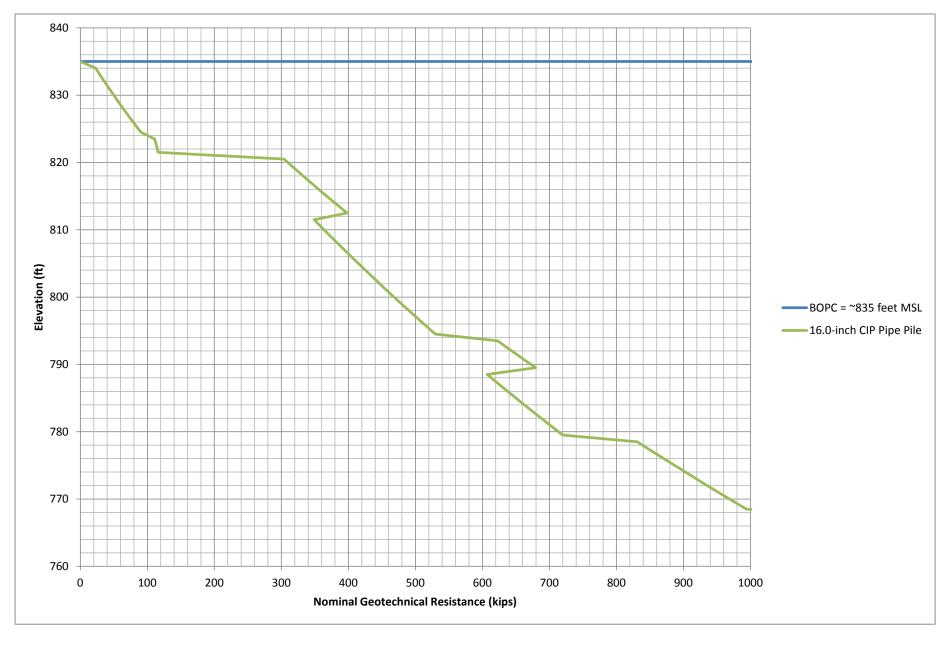

Prairie Center Drive Bridge - Pier 17 North Boring: 2047SB 16.0-inch Closed Ended Pipe Pile

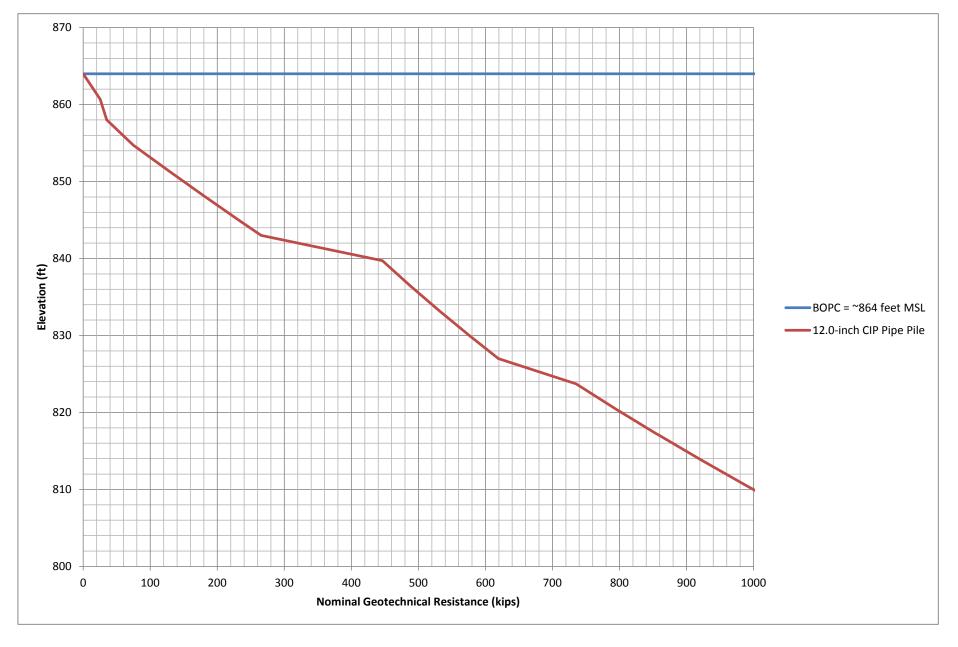

Prairie Center Drive Bridge - Pier 19 Boring: 2048SB 16.0-inch Closed Ended Pipe Pile

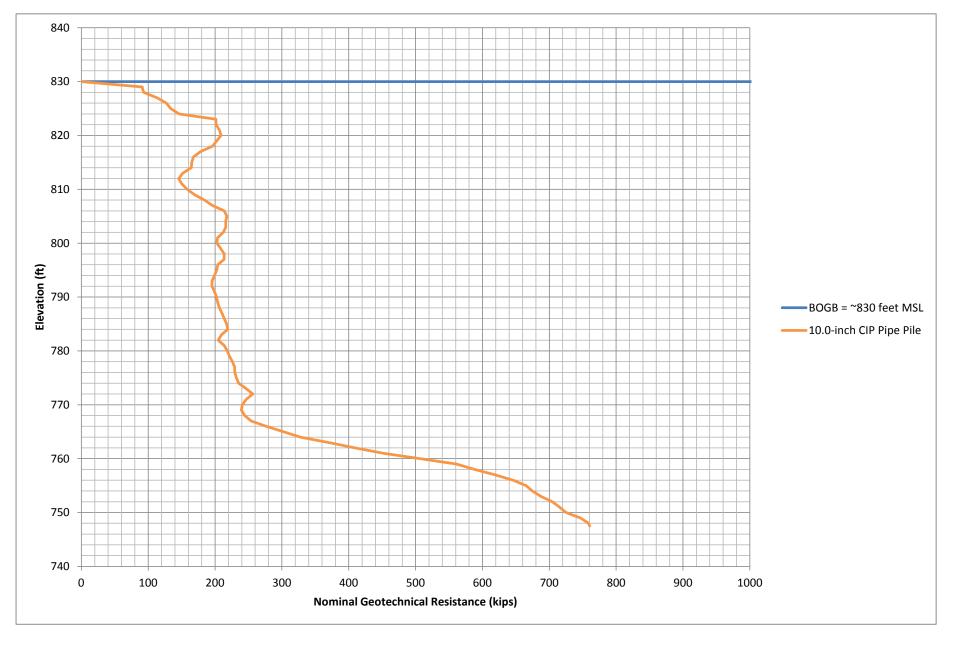

Prairie Center Drive Bridge - Pier 12 Boring: 2064SB 16.0-inch Closed Ended Pipe Pile

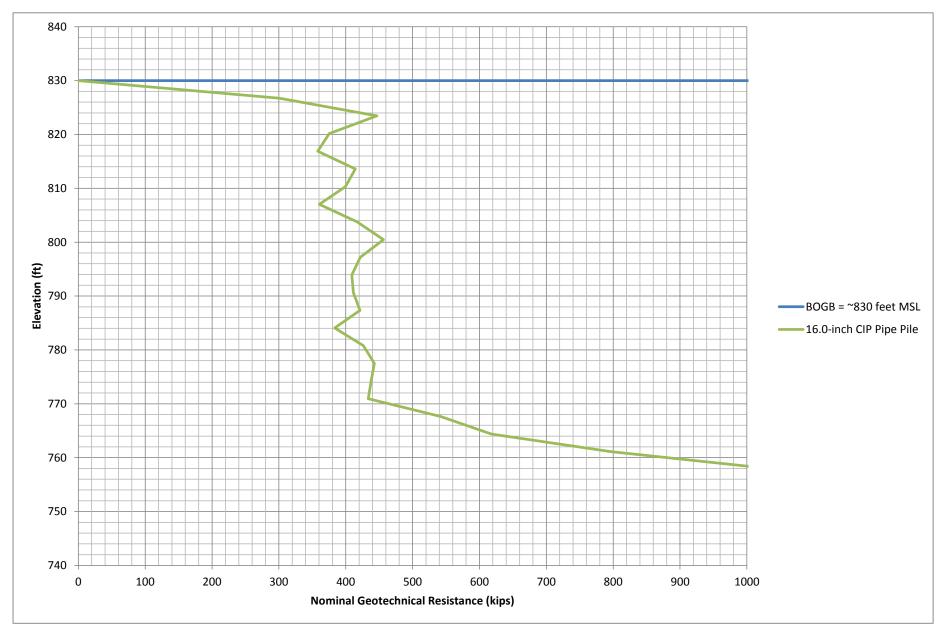

Prairie Center Drive Bridge - Pier 14 Boring: 2065SB 16.0-inch Closed Ended Pipe Pile

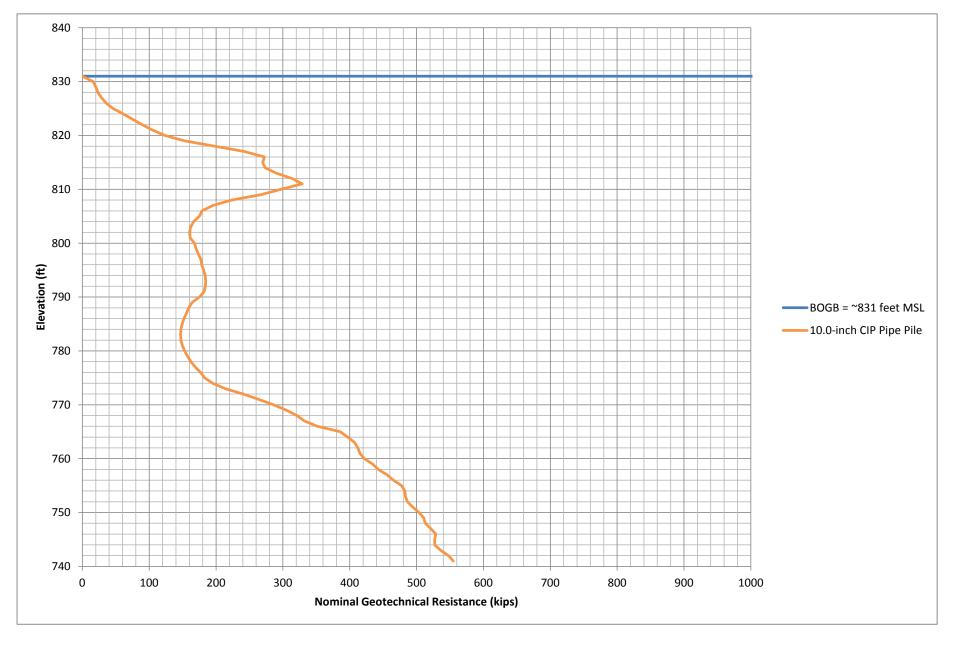

Prairie Center Drive Bridge - Pier 17 South Boring: 2066SB 16.0-inch Closed Ended Pipe Pile

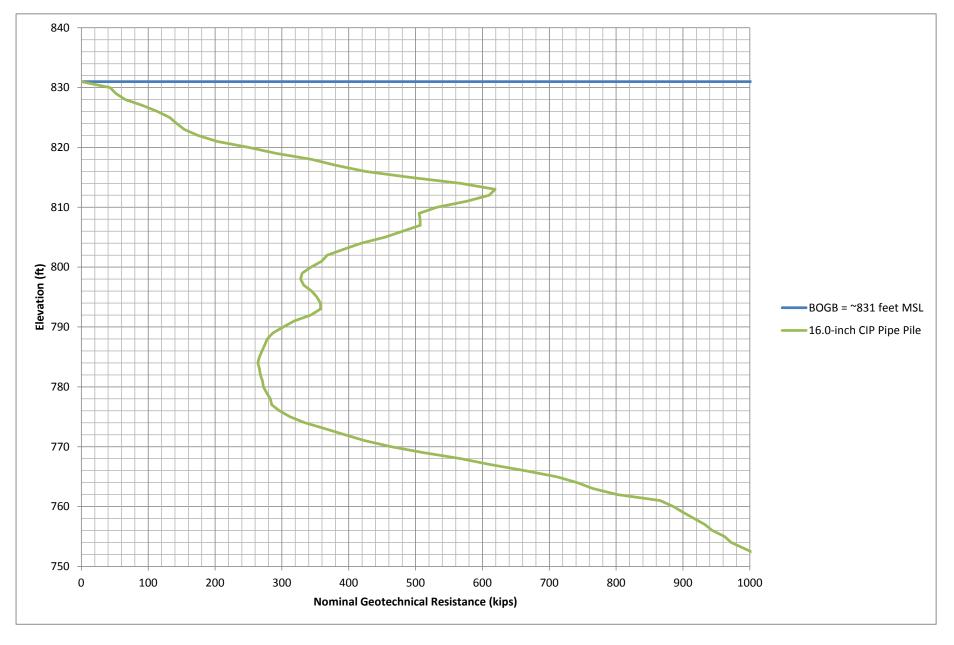

Prairie Center Drive Bridge - Grade Beam Boring: 2094SB 10.0-inch Closed Ended Pipe Pile

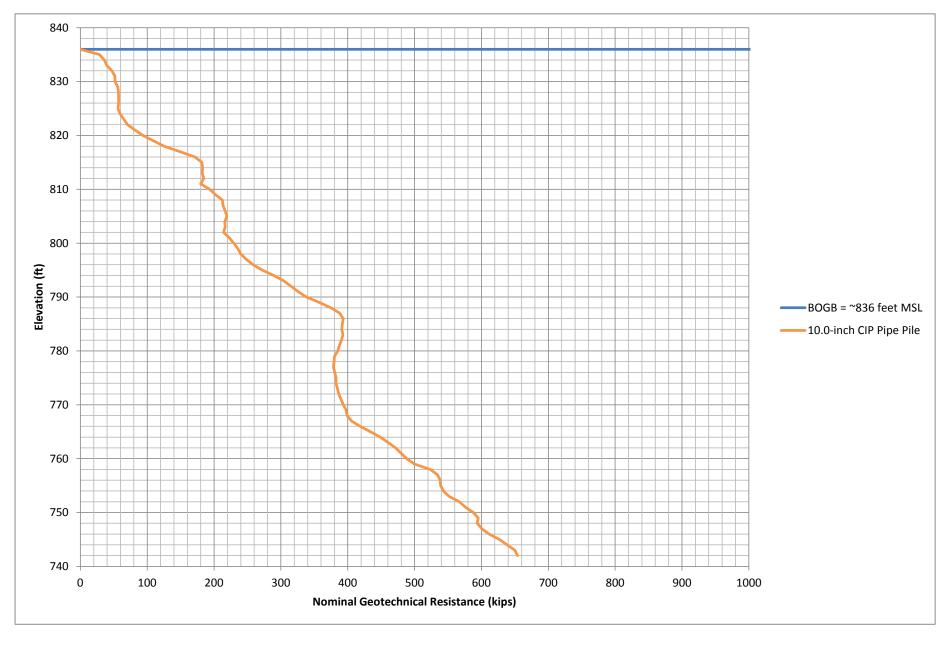

Prairie Center Drive Bridge - Pier 5 and 6 Boring: 2094SB 16.0-inch Closed Ended Pipe Pile


Prairie Center Drive Bridge - Pier 9 Boring: 2095SB 16.0-inch Closed Ended Pipe Pile

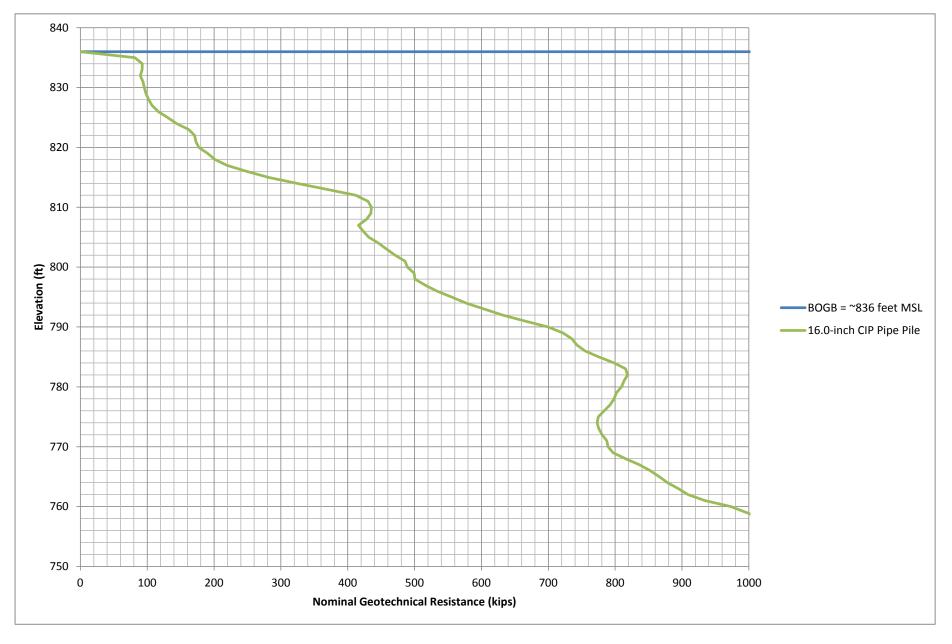

Prairie Center Drive Bridge - East Abutment Boring: 2096SB 12.0-inch Closed Ended Pipe Pile

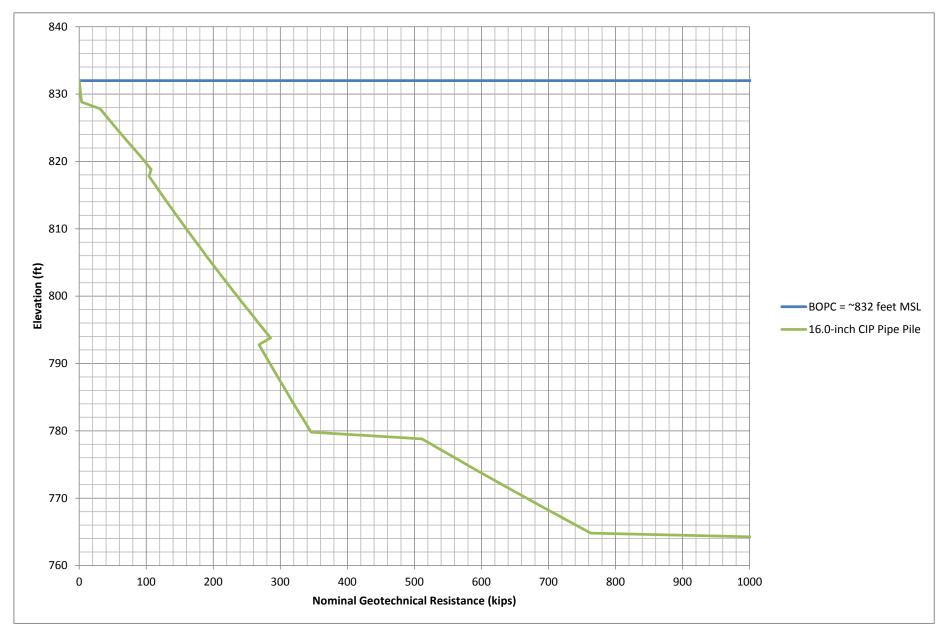

Prairie Center Drive Bridge - Grade Beam Sounding 2108CW 10.0-inch Closed Ended Pipe Pile

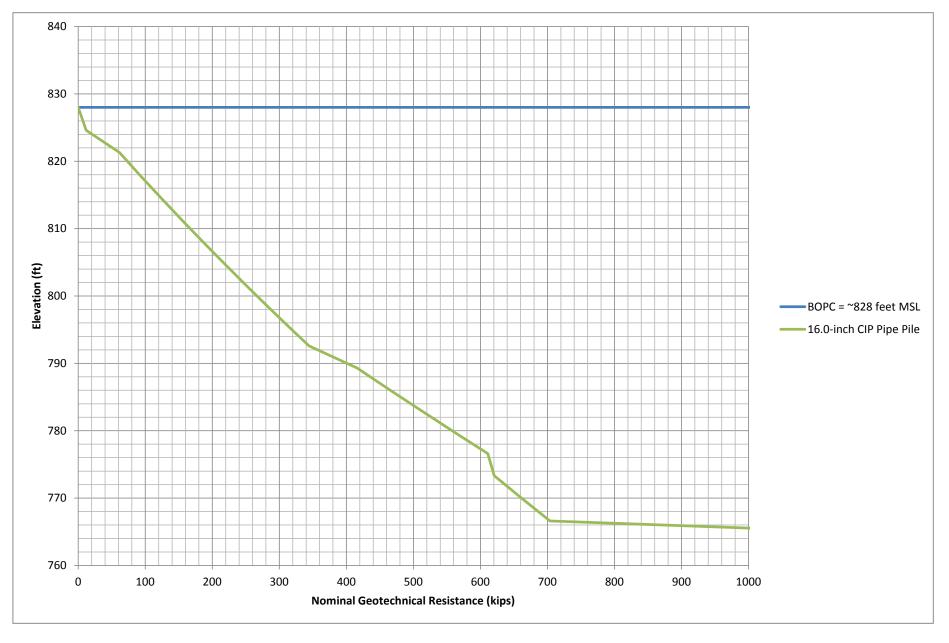

Prairie Center Drive Bridge - Pier 1 Sounding 2108CB 16.0-inch Closed Ended Pipe Pile

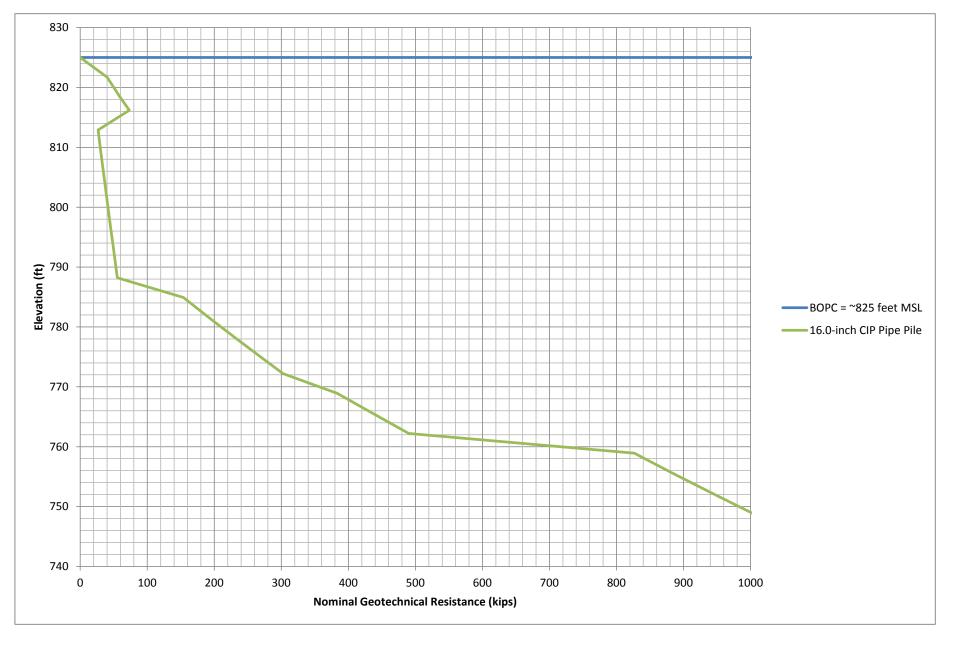

Prairie Center Drive Bridge - Grade Beam Sounding: 2109CB 10.0-inch Closed Ended Pipe Pile


Prairie Center Drive Bridge - Pier 2 and 3 Sounding: 2109CB 16.0-inch Closed Ended Pipe Pile

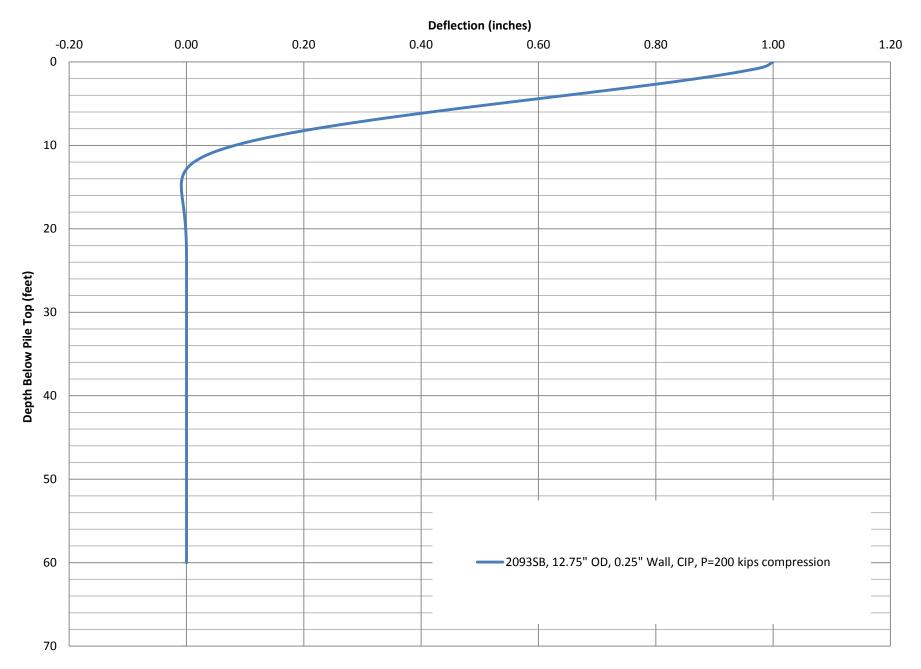

Prairie Center Drive Bridge - Grade Beam Sounding: 2110CB 10.0-inch Closed Ended Pipe Pile


Prairie Center Drive Bridge - Pier 8 Sounding: 2110CB 12.0-inch Closed Ended Pipe Pile

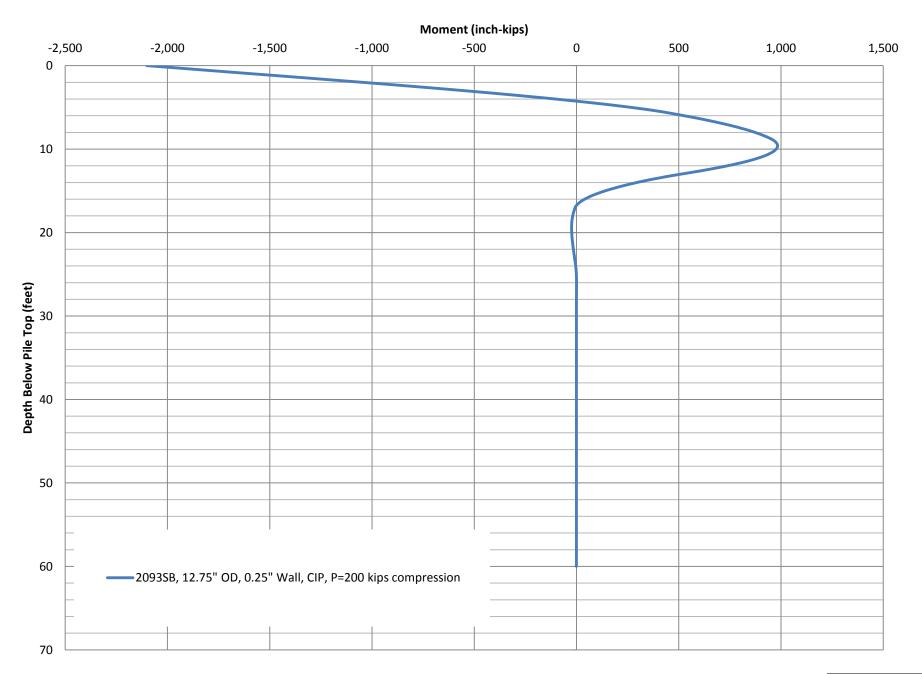

Prairie Center Drive Bridge - Pier 7 Sounding: 2110CB 16.0-inch Closed Ended Pipe Pile


Prairie Center Drive Bridge - Pier 10 Boring: 2118SB 16.0-inch Closed Ended Pipe Pile

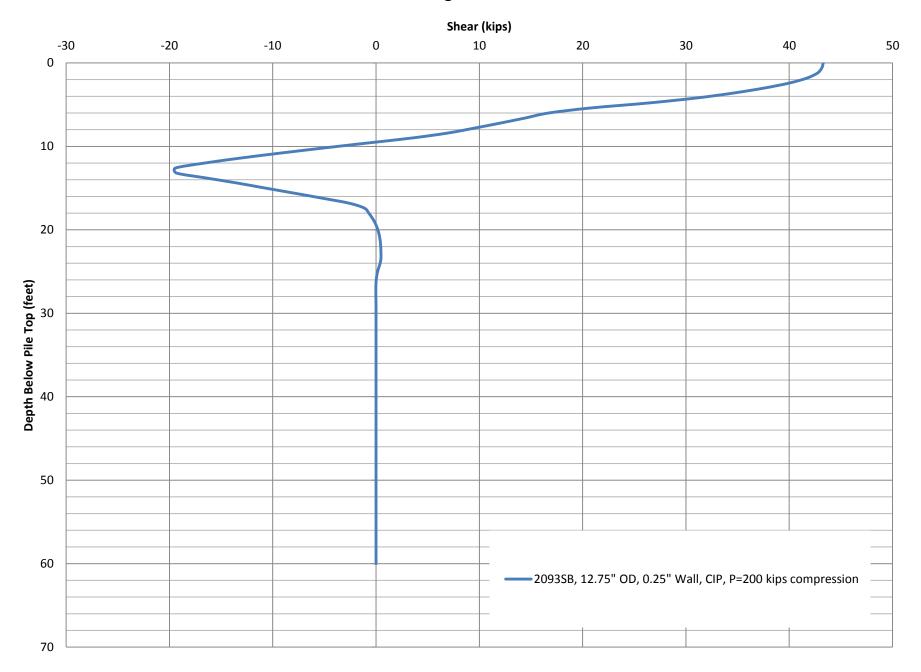
Prairie Center Drive Bridge - Pier 13 Boring: 2119SB 16.0-inch Closed Ended Pipe Pile



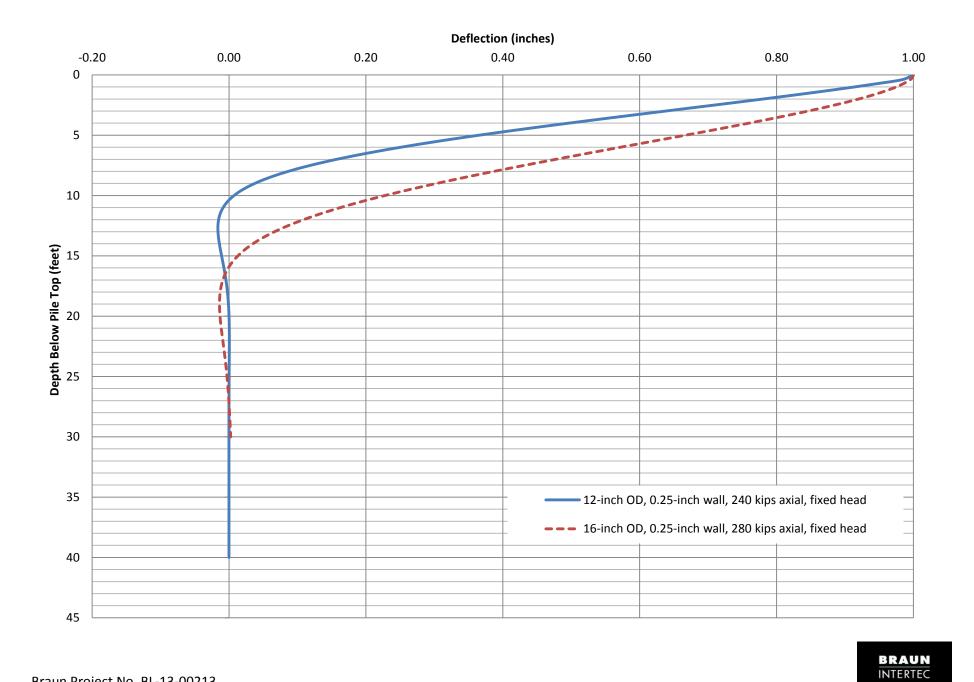
Prairie Center Drive Bridge - Pier 15 and 16 Boring: 2137SB 16.0-inch Closed Ended Pipe Pile


Lateral Analysis Results - Deflection

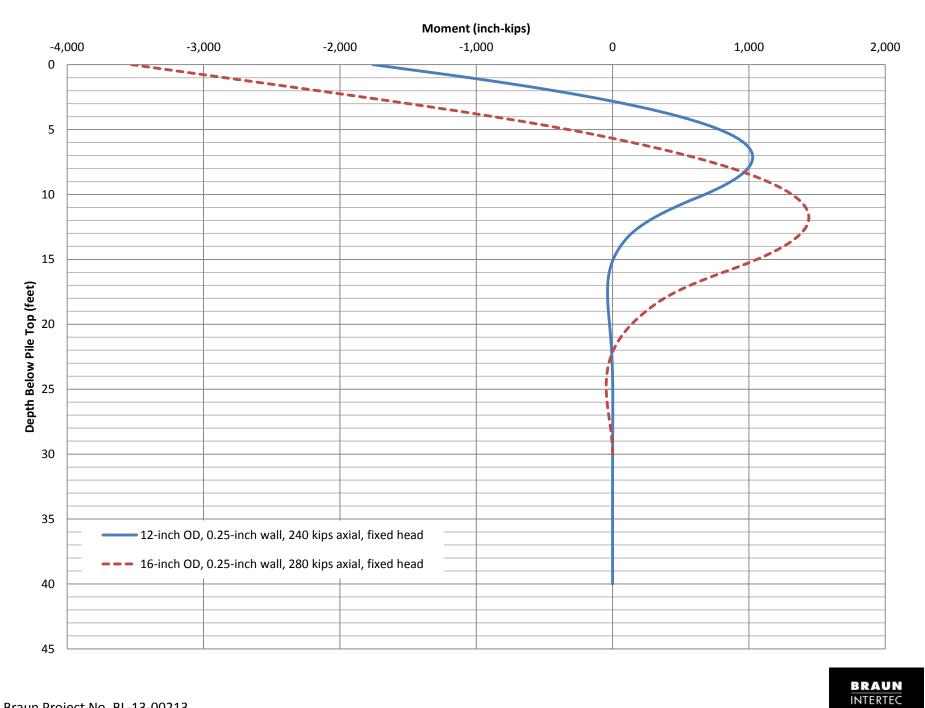
Boring: 2093SB


Lateral Analysis Results - Moment

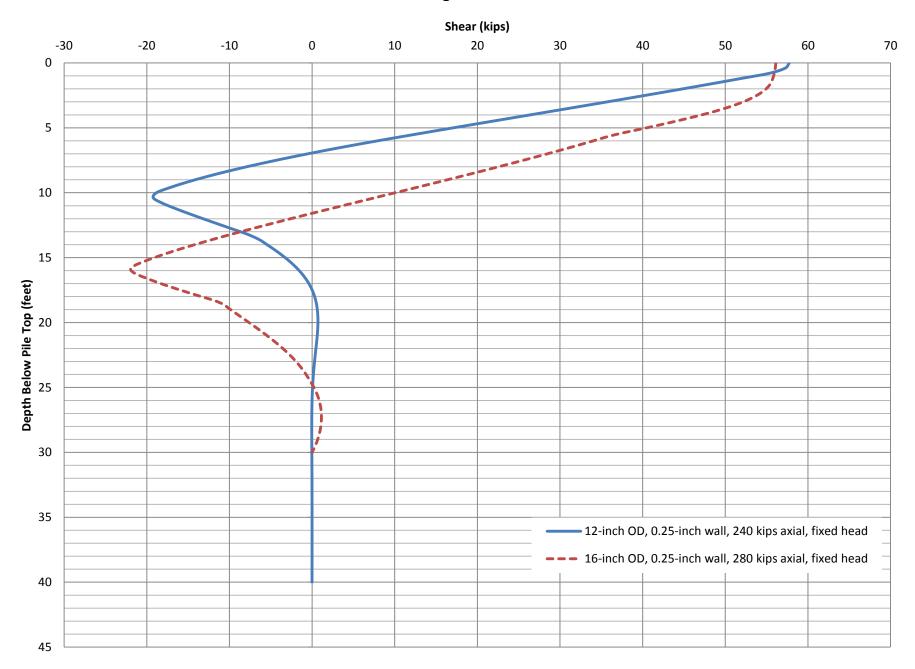
Boring: 2093SB


Lateral Analysis Results - Shear

Boring: 2093SB


Lateral Analysis Results - Deflection

Boring: 2066SB


Lateral Analysis Results - Moment

Boring: 2066SB

Lateral Analysis Results - Shear

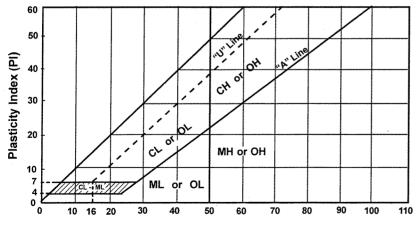
Boring: 2066SB

BRAUN

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Critor	ia for Accient	ing Group	Symbols and	So	ils Classification	Particle Size Identification
		up Names Us			Group Symbol		Boulders over 12" Cobbles 3" to 12"
" E	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^c$	GW	Well-graded gravel ^d	Gravel Coarse
grained Soils 50% retained c 200 sieve	More than 50% of coarse fraction	5% or less fines ^e		$C_u < 4$ and/or $1 > C_c > 3^{\circ}$	GP	Poorly graded gravel d	Fine
	retained on	Gravels wit	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand
aine % re 0 si	No. 4 sieve	More than 12	2% fines *	Fines classify as CL or CH	GC	Clayey gravel dtg	Coarse No. 4 to No. 10 Medium No. 10 to No. 4
20.50	Sands	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3^{c}$	SW	Well-graded sand h	Fine
Coarse- more than No.	50% or more of coarse fraction	5% or less	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^{c}$	SP	Poorly graded sand h	Silt
Coa Dre t	passes	Sands with	h Fines	Fines classify as ML or MH	SM	Silty sand ^{fg h}	below "A" line Clay< No. 200, Pl≥
	No. 4 sieve	More than	12% ⁱ	Fines classify as CL or CH	SC	Clayey sand ^{fg h}	on or above "A"
led Soils passed the sieve	Silts and Clave	Inorganic	PI > 7 ai	nd plots on or above "A" line ^j	CL	Lean clay ^{kim}	
ed t	Silts and Clays Liquid limit		PI < 4 oi	plots below "A" line ^j	ML	Silt ^{k m}	Relative Density of
d S ass ievi	less than 50	Organic		nit - oven dried < 0.75	OL	Organic clay ^{k m n}	Cohesionless Soils
raine Iore p 200 s			+	nit - not dried	OL	Organic silt k 1 m o	Very loose 0 to 4 BPF Loose
	Silts and clays	Inorganic		on or above "A" line	СН	Fat clay k I m	Medium dense 11 to 30 BPF
jé b Ž	Liquid limit			elow "A" line	MH	Elastic silt k I m	Dense
Fine 50% or N	50 or more	Organic		nit - oven dried < 0.75	ОН	Organic clay k 1 m p	Very dense over 50 BPF
		<u> </u>		nit - not dried	OH	Organic silt k 1 m q	4
Highly	Organic Soils	Primarily orga	anic matte	r, dark in color and organic odor	PT	Peat	Consistency of Cohesive Soils


Based on the material passing the 3-in (75mm) sieve.

If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name. h

 $C_u = D_{60} / D_{10} C_c = (D_{30})^2$

C.

- If soil contains≥15% sand, add "with sand" to group name d е
 - Gravels with 5 to 12% fines require dual symbols
 - GW-GM well-graded gravel with silt
 - GW-GC well-graded gravel with clay
 - GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- f If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains ≥ 15% gravel, add "with gravel" to group name. h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC
- SP-SC poorly graded sand with clay If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.
- If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant.
- If soil contains > 30% plus No. 200, predominantly sand, add "sandy" to group name 1
- If soil contains≥ 30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- PI ≥ 4 and plots on or above "A" line. n.
- PI < 4 or plots below "A" line 0
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

Dry density, pcf	oc
Wet density, pcf	S
Natural moisture content, %	SG
Liqiuid limit, %	Ċ
Plastic limit, %	Ø
Plasticity index, %	qu
% passing 200 sieve	qp
	Wet density, pcf Natural moisture content, % Liqiuid limit, % Plastic limit, % Plasticity index, %

- Percent of saturation, %
- Specific gravity
- Cohesion, psf
- Angle of internal friction

Organic content, %

- Unconfined compressive strength, psf
 - Pocket penetrometer strength, tsf

..... over 12" No. 4 to 3/4" No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200 < No. 200, PI < 4 or below "A" line< No. 200, PI≥4 and on or above "A" line

elative Density of hesionless Soils

Very loose	
Medium dense	11 to 30 BPF
Dense	31 to 50 BPF
Very dense	over 50 BPF

tency of Cohesive Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "Н.

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards.

Descriptive Terminology Cone Penetration Test

This document accompanies Cone Penetration Test Data. Please refer to the Boring Log Descriptive Terminology Sheet for information relevant to conventional v. Cone Penetration Test (CPT) boring logs.

Cone Penetration Test (CPT) sounding was performed in general accordance with ASTM D 5778 and consistent with the ordinary degree of care and skill used by reputable practitioners of the same discipline currently practicing under similar circumstances and in the same locality. No warranty, express or implied, is made.

Since subsurface conditions outside each CPT sounding are unknown, and soil, rock and pore water conditions cannot be relied upon to be consistent or uniform, no warranty is made that conditions adjacent to each sounding will necessarily be the same as or similar to those shown on this log. Braun Intertec is not responsible for any interpretations, assumptions, projections or interpolations of the data made by others.

pressure Pore water measurements and subsequently interpreted water levels shown on CPT logs should be used with discretion as they represent dynamic conditions. Dynamic pore water pressure measurements may deviate substantially from hydrostatic conditions, especially in cohesive soils. from In cohesive soils, pore water pressures often take an extended time to reach equilibrium and thus reflect their true field level. Groundwater levels can be expected to vary both seasonally and yearly. The absence of notations on this log regarding water does not necessarily mean that groundwater is not present to the depth explored, or that a contractor will not encounter groundwater during excavation or construction.

CPT Terminology

CPT Cone F	Penetration Te	st		
CPTU Cone	Penetration	Test	with	Pore
Pressure measurem	nents			
SCPTU Cone	Penetration	Test	with	Pore
Pressure and Seism	nic measureme	ents		
PiezoconeCommo	on name for Cl	PTU te	st	
Q _T r	normalized cor	ne resis	tance	
Bqp	ore pressure	ratio		
F _r r	normalized fric	tion rat	io	
σ _{vo} c	verburden pre	essure		
σ' _{vo} ε	effective overb	urden p	pressur	е

q_T TIP RESISTANCE

The resistance at the cone corrected for water pressure. Data is from cone with a 60 degree apex angle and a 15 cm^2 end area.

fs SLEEVE FRICTION RESISTANCE

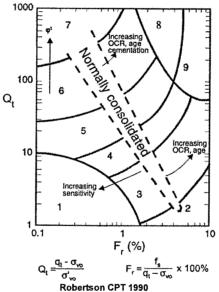
The resistance along the sleeve of the penetrometer.

F_r Friction Ratio

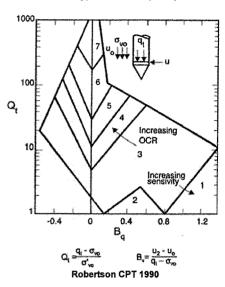
Ratio of sleeve friction over corrected tip resistance. $\mathsf{F}_r = \mathsf{f}_s/\mathsf{q}_t$

V_s Shear Wave Velocity

A measure of the speed at which a seismic wave travels through soil/rock.


SBT SOIL BEHAVIOR TYPE

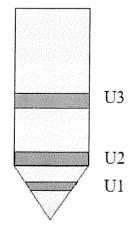
Soil Identification methods for the Cone Penetration Test are based on correlation charts developed from observations of CPT data and conventional borings. Please note that these identification charts are provided as a guide to Soil Behavior Type and should not be used to infer a soil classification based on grain size distribution.


Engineering judgment and comparison with augered borings is especially important in the proper interpretation of CPT data in certain geo-materials.

The following charts provide a Soil Behavior Type for the CPT Data. The numbers corresponding to different regions on the charts represent the following soil behavior types:

Soil Behavior Type based on friction ratio

Soil Behavior Type based on pore pressure



1 Sensitive, Fine Grained

- 2 Organic Soils Peat
- 3 Clays Clay to Silty Clay
- 4 Silt Mixtures Clayey Silt to Silty Clay
- 5 Sand Mixtures Silty Sand to Sandy Silt
- 6 Sands Clean Sand to Silty Sand
- 7 Gravelly Sand to Sand
- 8 Very Stiff Sand to Clayey Sand
- 9 Very Stiff, Fine Grained

U2 PORE WATER MEASUREMENTS

Pore water measurements reported on CPT logs are representative of pore water pressures measured at the U2 location, just behind the cone tip, prior to the sleeve, as shown in the figure below. These measurements are considered to represent dynamic pore water pressures due to the local disturbance caused by the cone tip. Dynamic pore water pressure decay and static pore water pressure measurements are reported on a Pore Water Pressure Dissipation Graph.

Appendix C

Retaining Walls W110 and W111

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6545 Wayzata Boulevard, Suite 500 Wayzata, MN 55426

Re: Summary of Boring Information and Preliminary Retaining Wall Recommendations Proposed Retaining Walls 110 and 111 - 30% Design STA 2102+80 to STA 2109+00 Eden Prairie, Minnesota

Dear Mr. Demers:

This purpose of this letter is to provide you and the design team with a summary of our preliminary soil boring information in the area of retaining walls RTW-W110 and RTW-W111, referred to as the Costco Hill retaining walls, to provide preliminary retaining wall design information. A final geotechnical report should be prepared after final geotechnical design borings are completed.

A. Subsurface Investigation Summary

A.1. Summary of Historical Boring Information

Due to site terrain and vegetation, final design soil borings have not been completed. Due to the steep slope in the area, we were only able to complete three (3) soil borings at this time. The table below provides information on the borings including numbering, track stationing, and the ground surface elevation at the boring location:

Boring	Approximate Track Station	Surface Elevation at Boring Location (ft)
2096SB	2102+75	880.0
2098SW	2303+80	880.0
2102SW	2309+25	884.8

A.2. Description of Foundation Soil Conditions

A.2.a. General Soil Profile

As mentioned previously, a limited number of borings were performed at the proposed wall locations. The following paragraphs describe the soils encountered at the drilled boring locations.

A.2.b. Topsoil

Lean clay and sandy lean clay topsoil was encountered at Borings 2096SB and 2102SW and ranged in thickness from approximately 3 to 12 inches thick.

A.2.c. Fill

Fill soil was encountered at the surface of Boring 2098SW and extended to a depth of 12 feet beneath the surface. The fill consisted of sandy lean clay. Of the 12 feet of fill, the lower 5 feet (from 7 to 12 feet) were slightly organic.

The penetration resistances in the fill ranged from 6 to 15 Blows per Foot (BPF).

A.2.d. Glacial Deposits

Beneath the fill and topsoil, the borings encountered glacially deposited soils to the termination depth of the borings. The soils encountered included poorly graded sand, poorly graded sand with silt, silty sand, silt, clayey sand, lean clay with sand, and sandy lean clay.

Penetration resistances within the clayey soils ranged from 7 to 45 BPF, indicated medium to hard consistencies. Penetration resistances with the sandy and silt soils ranged from 6 to 51 BPF, indicating loose to very dense relative densities.

A.2.e. Groundwater

Groundwater was encountered at a depth of 75 feet while drilling Boring 2096SB. Groundwater was not observed in the shallower borings. We anticipate groundwater will generally be deep and will not influence construction of the retaining walls; however, perched groundwater within sandy layers could be encountered during periods of high precipitation or during spring thaw.

B. Design and Construction Considerations

We were provided with cross sections of the design configuration of the two retaining walls. The general track elevation ranges from approximately 880 to 885, resulting in wall heights of up to 28 feet. In addition, an existing MSE (mechanically stabilized earth) wall is present near the bottom of footing elevation of wall RTW-W111. The wall retains soil for the driveway of a commercial property to the south of the track alignment. Based on the information provided to us, it appears the location of the footings for retaining wall RTW-W111 will be as close as 10 to 15 feet from the back of the MSE wall.

The following design and construction criteria were considered and will be addressed in our preliminary evaluation. We recommend a final geotechnical program be established and performed upon final design of the retaining walls:

- Based on the cross sections we were provided, we anticipate wall heights will range from 13 to 28 feet in height.
- This report will discuss wall construction using cast-in-place walls with spread footing foundations with an allowable bearing capacity, as well as construction utilizing soldier piling and lagging with tieback between STA 2103+00 and STA 2106+00.
- For the preliminary solider pile wall design of the retaining wall, we assumed a uniform sandy soil with slightly increasing density below the excavation. We assume a surcharge from the AW4 weight light-rail train of 34 kips per axle spreading 5 feet 7 inches along the length of rail and across the width of the tie.
- Should a soldier pile retaining system with tiebacks be utilized, stray electrical currents from grounding rods may affect the corrosion potential of buried metal materials.
- As the south wall (RTW-W111) approaches the MSE wall on Bachmann's property, we may encounter fill soils and a reinforcement system behind the MSE Wall. To avoid placing additional stresses on the MSE wall, we recommend removing the MSE wall and the fill soil behind it. The MSE wall should be re-constructed. A temporary retention system may be needed to create a stable slope when removing the fill soils. Alternatively an intermediate or deep foundation system could be used to support the track and avoid temporary retention system problems. However any additional stresses or vibration may cause damage to the MSE wall. We recommend planning to reconstruct the MSE wall at this time to avoid problems during construction.
- Care should be taken during construction to prevent surficial and deep stability problems of the hill. The contractor may need to use temporary retention systems to protect the stability of the

hill during construction. Multiple retention systems may be needed in parallel on the hill.

- Our analysis shows that, as currently designed near the Bachmann's wall, new wall RTW-W111
 will settle about three inches with lateral displacement near the top of the wall of about six
 inches. Thus we recommend against using a spread footing to support wall RTW-W111.
- Piles could be used to support wall RTW-W111 but will be subjected to significant downdrag loads unless the embankment is pre-loaded. It will be difficult to construct a pre-load condition due to the geometry of the hills.
- Even with a pile supported wall RTW-W111 the embankment near the wall could exhibit postconstruction settlement around 8 inches. A construction delay would be needed to reduce post-construction settlement. Lightweight fill could be used to reduce embankment settlement.
- The design team and owner may want to consider extending the Prairie Center Drive (PCD) Bridge further along the Costco Hill to avoid the embankment and wall settlement concerns, stability concerns, reduce the risk of working around the Bachmann's wall, and for ease of construction.

A preliminary global stability analysis was performed during this preliminary evaluation in the area of the Bachmann's wall. We recommend another stability analysis of the final wall design be performed upon completion of the soil boring program and final design to re-evaluate the temporary and permanent stability conditions.

B.1.a. Precautions Regarding Changed Information

We have attempted to describe our understanding of the proposed construction to the extent it was reported to us by others. Depending on the extent of available information, assumptions may have been made based on our experience. If we have not correctly recorded or interpreted the project details, we should be notified. New or changed information could require additional evaluation, analyses and/or recommendations.

C. Preliminary Recommendations

The following preliminary recommendations are based our preliminary soil boring program in the vicinity of the proposed walls.

C.1. Cast-In-Place Concrete Retaining Walls

As mentioned in the discussion section of this report, we recommend against using a spread footing to

support RTW-W111 due to settlement concerns around the Bachmann's wall. This section provides suggestions for construction of wall RTW-W111 away from the Bachmann's wall and for wall RTW-W110.

For retaining wall design, we recommend using the MnDOT CIP Retaining Wall Standards wall loading case: 2-foot live load surcharge for design.

Based on our preliminary analysis, it appears a tie-rod or beam connecting the two walls may be required to reduce the size of the walls. Consideration should also be given to designing a large enough foundation system to counteract the active pressure of the retained soils behind the walls.

C.1.a. Excavations

In general, we recommend removing the topsoil and fill from beneath the base of the new retaining walls. Based on our borings, the fill soils range from 1 to 12 feet below the ground surface. From there, the footings can either be placed on the native soils, or engineered fill can be placed and compacted to achieve design elevations. However, since the borings were offset along the proposed alignment and in the area of the proposed walls, it is possible the fill soils do not extend to the same depth under the current alignment. As the south wall approaches the MSE Wall on Bachman's property we may encounter fill soils and a reinforcement system behind the MSE Wall. To avoid placing additional stresses on the MSE wall, we recommend removing the MSE wall and the fill soil behind it. The MSE wall should be re-constructed. A temporary retention system may be needed to create a stable slope when removing the fill soils. Alternatively, an intermediate or deep foundation system could be used to support the track and avoid temporary retention system problems. However, any additional stresses or vibration may cause damage to the MSE wall. We recommend planning to reconstruct the MSE wall at this time to avoid problems during construction. Even if the PCD Bridge is extended past the Bachmann's wall, we recommend budgeting to replace the wall. The wall could be very susceptible to any vibrations, construction loads, and precipitation. Based on the presumed age of the wall (estimated to be about 20 years) and the more limited design methodology and experience of contractors of walls at that time, we do not know what the life expectancy of the wall is or if the wall currently has an adequate factor of safety for bearing and slope stability.

To provide lateral support to replacement backfill placed beneath the foundations, additional required fill, and the structural loads they will support, we recommend oversizing (widening) the excavations 1 foot horizontally beyond the outer edges of the retaining wall foundations for each foot the excavations extend below bottom-of-footing subgrade elevations.

Excavation depths will vary between the borings and the actual wall location. Portions of the excavations may also be deeper than indicated by the borings. Contractors should also be prepared to extend excavations in wet or fine-grained soils to remove disturbed bottom soils.

Excavations on slopes should also be benched, or keyed into the slope to provide a flat surface for the placement of fill to reduce the potential for fill instability.

C.1.b. Selection, Placement and Compaction of Backfill.

We recommend referencing the following specification sections in Table 2 below from the 2014 MnDOT Standard Specifications for Construction when considering the material and compaction specifications for the embankment material beneath the wall, level pad material, and retaining wall backfill material.

Material	Material Specification	Compaction Specification				
Embankment Fill	2105.2B2	2105.3F				
Leveling Pad Beneath Footings	2211.2A	2211.3C				
Retaining Wall Backfill	3149.2D2	2105.3F				

Table 2. Material and Compaction Specifications for Retaining Walls.

C.1.c. Net Allowable Bearing Pressure

Based on MnDOT's cast-in place concrete retaining wall criteria, the above recommendations, and the soils encountered at the wall locations, we anticipate the soils will be suitable for support of the walls. Because several feet of the stem wall height is buried for frost protection, the maximum exposed wall height is near 23 feet. We recommend further analysis and borings at the proposed wall locations to confirm soil conditions.

C.2. Pile Supported Wall RTW-W111

A spread footing cannot be used to support RTW-W111 near the existing Bachmann's wall due to excess settlement. We recommend considering using piles to support RTW-W111. The piles should be extended to near STA 2105+00. Spread footings could be used to support RTW-W111 to the east of this station.

C.3. Light Weight Fill

Even with using piles to support wall RTW-W111, the proposed track embankment near the wall near

the Bachmann's wall location could settle around eight inches. Lightweight fill could be used to reduce settlement to tolerable levels.

C.4. Extended Prairie Center Bridge

We recommend the design team and owner consider extending the PCD Bridge to STA 2105+00. There are multiple benefits and reasons to consider extending the PCD Bridge including:

- A spread footing cannot be used to support wall RTW-W111 near the Bachmann's wall due to settlement.
- Even with a pile supported RTW-W111, there is a significant risk of damage to the existing Bachmann's wall during construction. While extending the PCD Bridge will not eliminate the risk of damage to the Bachmann's wall, it would significantly reduce the risk.
- It is possible the existing Bachman's wall could remain in place if the bridge is extended. Additional surveying may be needed to more accurately determine if this is possible.
- Temporary shoring may be eliminated. Temporary shoring may be needed to replace the Bachmann's wall. Additional shoring may be needed to construct wall RTW-W111 (and protect the slope above. Shoring may also be needed to protect the existing pond at the top of the hill.
- There is less risk of the existing pond on top of the hill affecting construction and the performance of the track and structures after construction.
- An extended bridge could be easier to construct than retaining walls and an embankment.

C.5. Preliminary Soldier Pile Wall Design

We performed a preliminary soldier pile and lagging design analysis as an alternative wall design based on preliminary boring information provided and assumed soil conditions provided in Table 3 below.

Geologic Material	Saturated Unit Weight (pcf)	Friction Angle (degrees)
Fill Soils and/or Retained Soils	125	33
Below Grade Soils	115	30

Table 3. Assumed Soil Conditions

Our preliminary analysis used the assumed soil conditions noted above to evaluate piles at various track stationing, for various wall heights, and various grades and slopes that were provided to us on preliminary track cross sections. Table 4 below provides preliminary sizing for use in preliminary cost estimation.

Retaining Wall Stationing	Retaining Wall	Exposure Height (ft)	Pile Spacing (ft)	Pile Length (ft)	Number of Tiebacks rows	Horizontal Tieback Spacing (ft)
0+00 to 6+63	RTW-W110	12	8	25	1	8
0+00 to 3+20	RTW-W111	23	8	40	2	8
3+20 to 4+00	RTW-W111	18	8	40	2	8
4+00 to 6+65	RTW-W111	9	8	25	1	8

Table 4. Preliminary Soldier Pile Design Information

C.6. Existing MSE Wall

Based on the plans provided to us, the existing MSE wall will be influenced by the proposed construction. The walls and rail embankment will impart additional loads on the existing wall, which we anticipate was not accounted for during the design of the wall.

Design drawings of the retaining wall were not available at the time of this report, however, we anticipate the wall contains geogrid reinforcement within the retained area of the wall, extending behind the wall a length equal to approximately 80 percent of the wall height. It is possible the reinforced zone behind the wall will extend beneath the footings of RTW-W111.

We recommend provisions be made to analyze the existing design of the wall. Based on discussion with the design team, provisions are being made to reconstruct this wall. Further analysis can be completed when a more detailed design of the wall has been completed.

C.7. Corrosion Potential

The construction of the proposed retaining walls may include the use of tiebacks or driven soldier piles. While the soils in the areas are not considered corrosive, a grounding system for the overhead contact system, used to power the light rail trains, may introduce electrical currents into the soil, and may interact with metal structures installed into the ground. We recommend accounting for this potential in the design of any retaining system.

D. General

This report should be considered preliminary in nature and will be revised upon final design parameters and the completion of the full geotechnical program. In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

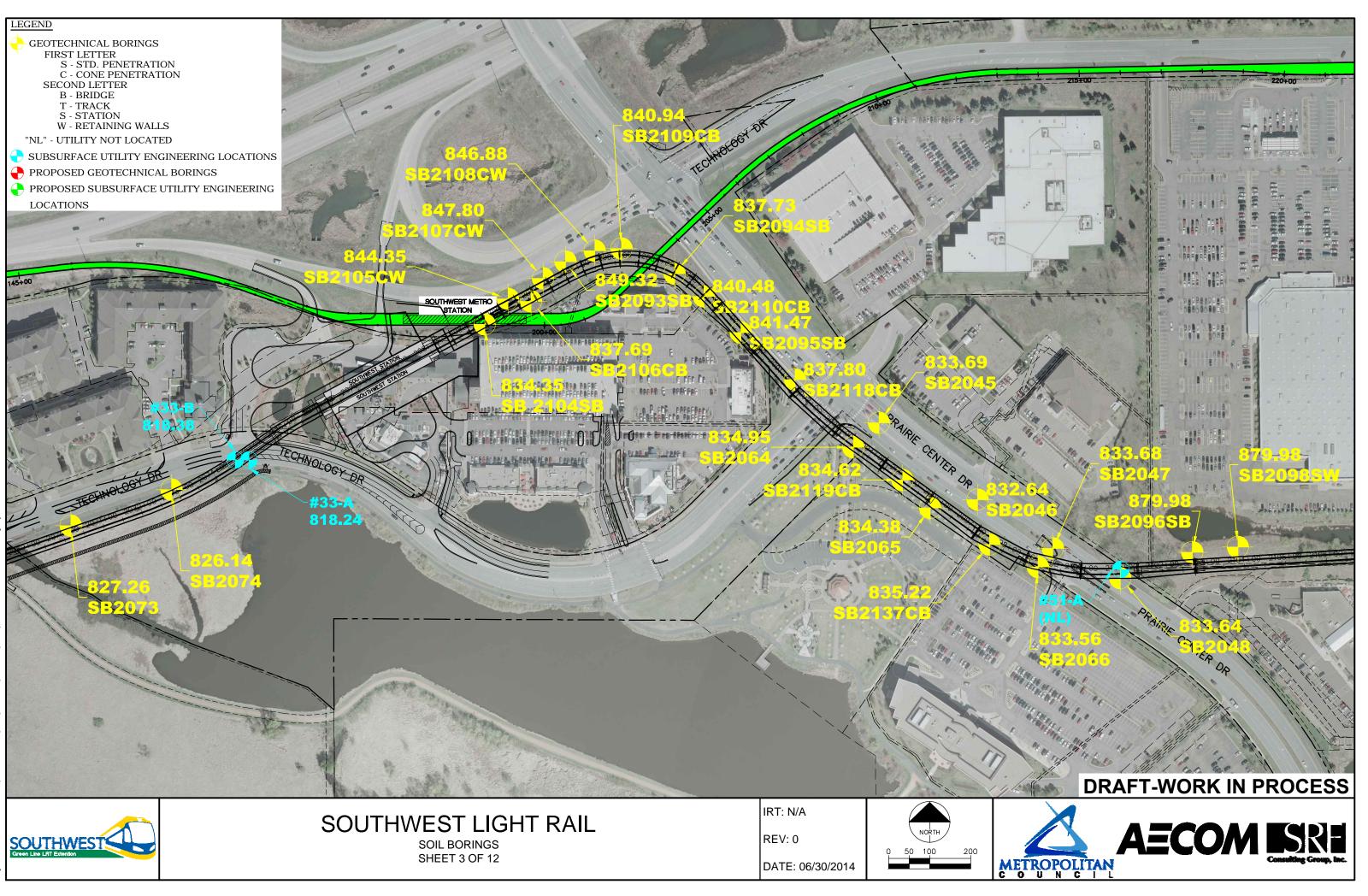
If you have any questions about this report, please contact Matt Ruble at 952.995.2224.

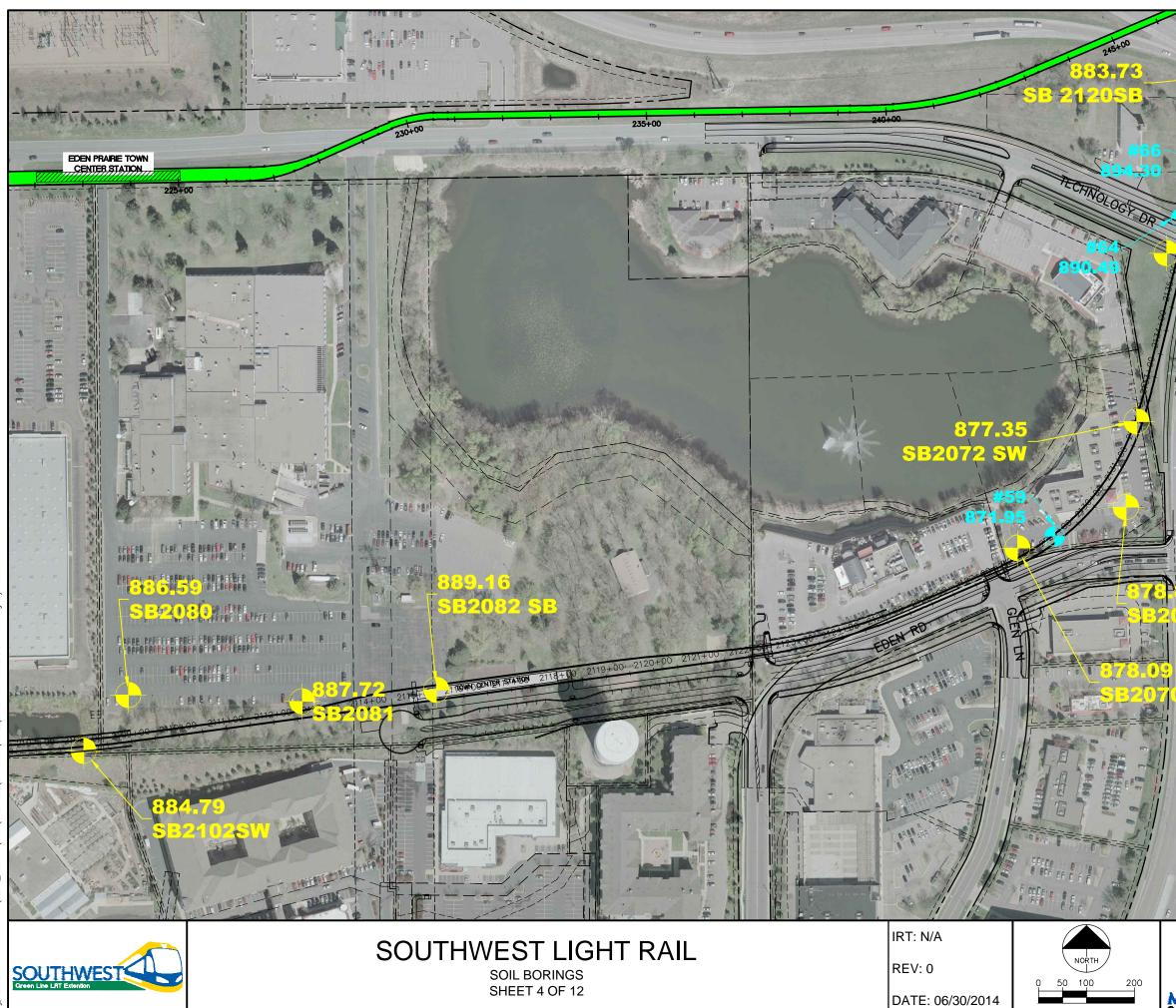
Sincerely,

BRAUN INTERTEC CORPORATION

Professional Certification:

I hereby certify that this plan, specification or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.


Matthew P. Ruble, PE Principal Engineer License Number: 40935


Ray A. Huber, PE Vice President – Principal Engineer

Appendix: Soil Boring Location Sketch Preliminary Engineering Plan and Profile Sheets for Retaining Walls RTW-W110 and RTW-W111 Soil Borings 2096SB, 2098SW, and 2102SW Analytical Graphics: RTW-W111 Stability at Sta. 2013+50

c: Mr. Jeff Stewart, SPO Ms. Laura Amundson, Parsons Brinkerhoff

APPENDIX

DRAFT-WORK IN PROCESS

LOCATIONS

PROPOSED SUBSURFACE UTILITY ENGINEERING

PROPOSED GEOTECHNICAL BORINGS

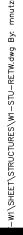
SUBSURFACE UTILITY ENGINEERING LOCATIONS

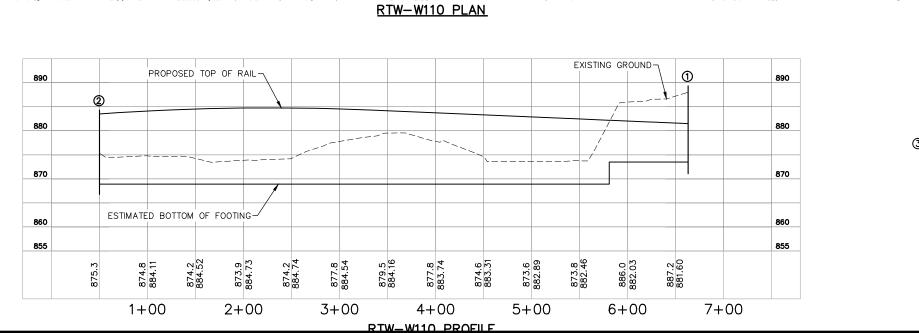
- T TRACK S STATION W RETAINING WALLS "NL" - UTILITY NOT LOCATED

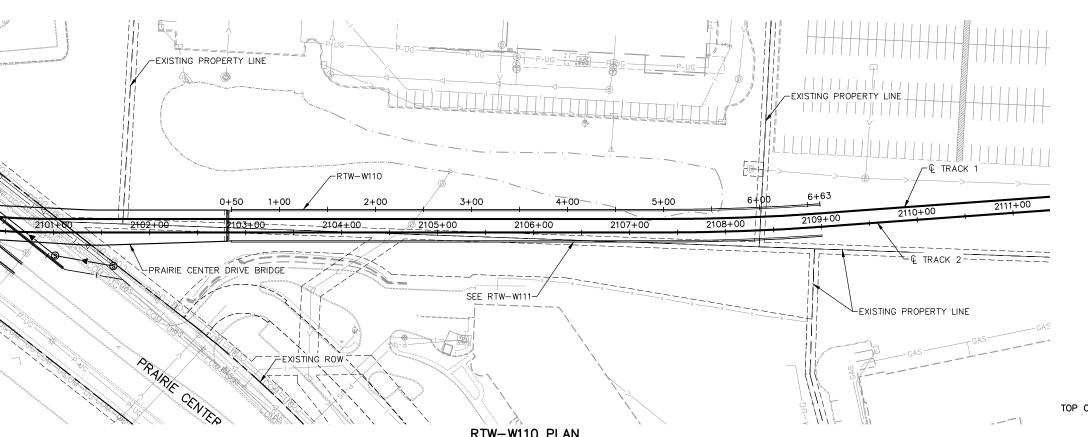
- GEOTECHNICAL BORINGS FIRST LETTER S STD. PENETRATION C CONE PENETRATION SECOND LETTER B BRIDGE T TPACK

LEGEND

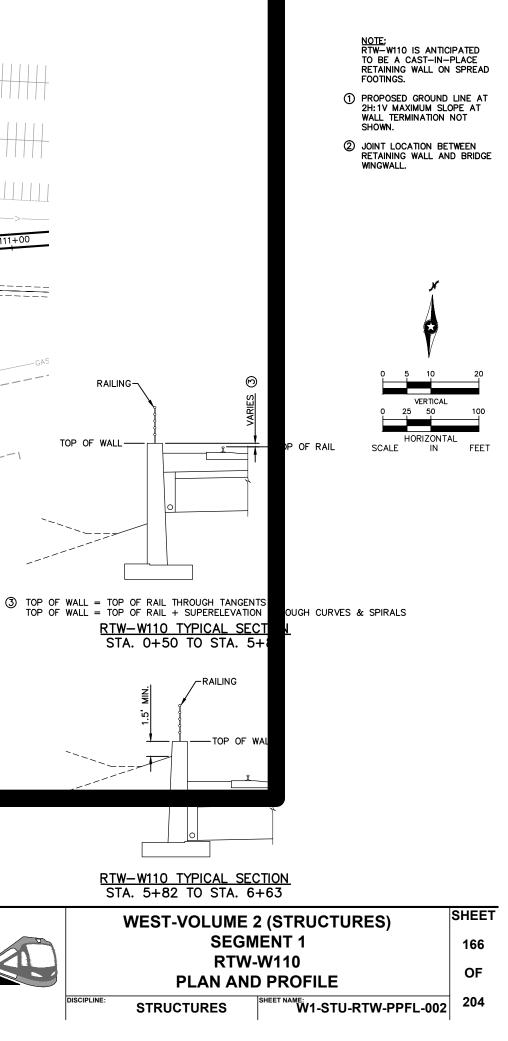
В


CLOUD


FLAING



NO.	DATE	BY	CHECK	DESIGN	REVISION / SUBMITTAL	
·		· ·	•	•		
·	•	•	•	•		
·	•	•	•	•		
·	•	•	•	•		
·	•	•	•	•		
·	•			•		
·	•	•	•	•		
·	•	•	•	•		
·	•		•	•		





PRELIMINARY ENGINEERING

	EXISTING	PROPERTY LINE	SEE	E RTW-W1	UG 	P-UG				P-U						ACK 1	
2103-200	<u>2102+00</u>	0+50) 2+00	<u>@ 2105+00</u>	3+00	2106+00	0	2107+00		2108+00		2109+00		2110+00	2111-	+00
	PRAIRIE C	ENTER DRIVE BRI							RTW-W1			-xx		EXISTIN	GAS		GAS TOP O
	890											(890	_		
	880											PRO	POSED TOP	OF RAIL	-		-
	870 EXISTING	GROUND												870	_		(3) TOP OF W TOP OF W
	860	<u>_</u>												860	-		
	850 845	8862.0 11.1 884.11	886.2 884.52 884.73 861.9 884.73	863.6 884.74 201000 884.74	.54	870.4 884.16	.74	878.0 883.31	.89	883.8 882.46	5.0 .04	888.0 881.62		850			
	862.1	88 1+00	884.52 884.52 984.73 884.73	86.	887.5 884.54		4+00 883.74 M111 DE		880.5 882.89 887.90 40	88.	886.0 885.04	881	7+00				
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	REVISION / SUBMITTAL								EC				METROP	DĮITAN		WEST	DISCIF
· · · · · ·	·						F	PRELIM	INARY E	NGINE	ERING						

Aug, 14 2014 03:54 pm V:\3200_PEC-W\CAD\SEGMENT-W1\SHEET\STRUCTURES\W1-STU-RETW.dwg By: mnutzman

LOG OF BORING

Braun Project BL-13-00213							BORING: 2096SB				
SWLRT	CHNICA T tonka,		LOCATION: N: 124666.2; E: 486148.2; Offset 43' N of stake. See attached sketch.								
DRILLE	R: B. Kammerme		ermeie	er METHOD: 3 1/4" HSA, Autohammer		DATE:	4/2	1/25/14		SCALE: 1" = 4'	
Elev. feet 880.0	Depth feet 0.0	feet		Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM	1110-	1-2908)	BPF	WL	MC %	Tests or Notes	
879.1	0.9	CL		LEAN CLAY with SAND, trace roots, dark b moist.	l,			17			
875.0	5.0	CL		(Topsoil) LEAN CLAY with SAND, trace Gravel, brow rather stiff. (Glacial Till)			10		15		
		SM		SILTY SAND, fine- to medium-grained, with brown, moist, medium dense. (Glacial Outwash)	h Gra	vel,	17		10 7		
							19		9		
867.0	13.0	SP		POORLY GRADED SAND, fine- to medium with Gravel, light brown to brown, moist, loo medium dense. (Glacial Outwash)	n-grai ose to	ned,	10 7		8		
				Layer of Lean Clay at 17 feet.		 	11		13		
860.0	20.0	SP- SM		POORLY GRADED SAND with SILT, fine- medium-grained, trace Gravel, brown, mois	to st, me	dium _	12		9		
858.0	22.0	CL		dense. (Glacial Outwash) SANDY LEAN CLAY, trace Gravel, brown, stiff to hard. (Glacial Till)	wet, v	very	35		14		
_							20		14		
							38* 38*		14	*No sample recovery. DD=111 pcf	
848.0	<u>32.0</u>			Braun Intertec Corporati						2096SB page 1	

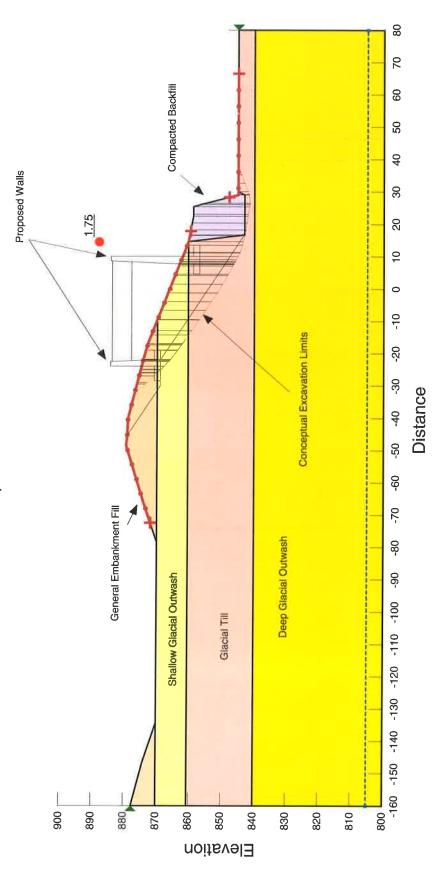
LOG OF BORING

Braun Project BL-13-00213 GEOTECHNICAL EVALUATION								209	96S	B (cont	.)
SWLR				LOCATION: N: 124666.2; E: 486148.2; Offset 43' N of stake. See attached sketch.							
DRILLER: B. Kammermeier METHOD: 3 1/4" HSA, Autoha						DATE:	4/25/14			SCALE:	1" = 4'
Elev. feet	Depth feet			Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908)			BPF	WL	MC %	Tests or Notes	
848.0	32.0 Symbol										
				SILT, with layers of Sand, brown, moist, mediu dense. (Glacial Till)			18		19		
845.0	35.0				- Crevel brown moint	hand					
		SC		CLAYEY SAND, I'ac	e Gravel, brown, moist, (Glacial Till)	naro.	39		11		
843.0	37.0	SM		SILTY SAND. fine-ar	ained, brown, moist, me	edium					
				dense.	lacial Outwash)	-	23		5		
840.0	40.0	0.5									
		SP		light brown to 70 feet waterbearing, mediur	SAND, fine- to medium- then brown, moist to 7 n dense to dense. lacial Outwash)		19		2		
				()		-	18		2		
						-					
-							28		1		
						_					
						_	25		1		
						-					
							26		1		
						-	Μ				
						-					
						-					
_							34		1		
						-	М				
						-					
						-					
							32		2		
						-	∦ 3∠				
						-					
						_					

	aun Project BL-13-00213 OTECHNICAL EVALUATION					BORING: 2096SB (cont.) LOCATION: N: 124666.2; E: 486148.2;				
SWLRT	Г	Minneso							e attached sketch.	
DRILLE	R: B. I	Kammerme	ier METHOD	: 3 1/4" HSA, Autohammer	DATE:	4/2	5/14		SCALE: 1" = 4	
Elev. feet 816.0	Depth feet 64.0	Symbol		Description of Materials 38 or D2487, Rock-USACE EM	1110-1-2908)	BPF	WL	MC %	Tests or Notes	
_			light brown to 70 waterbearing, m	DED SAND, fine- to mediun 0 feet then brown, moist to 1edium dense to dense. lacial Outwash) <i>(continued)</i>		32		1		
						27		1	An open triangle in water level (WL) co indicates the depth which groundwater observed while drill	
_					- - -	30	Į	18	Switched to mud ro drilling method afte 75-foot sample.	
800.0	80.0	SP- SM		DED SAND with SILT, fine- d, with Gravel, gray, waterbo (Glacial Outwash)		47		23		
_					- - - -	47		31		
790.0	90.0	ML	SILT with SAND wet, dense.	D, with frequent layers of Fa	- - t Clay, gray, -	31		29	DD=95 pcf	
				(Glaciofluvium)	-	-			*Water observed at feet while drilling. Boring immediately backfilled with bent grout.	
_						41		25		

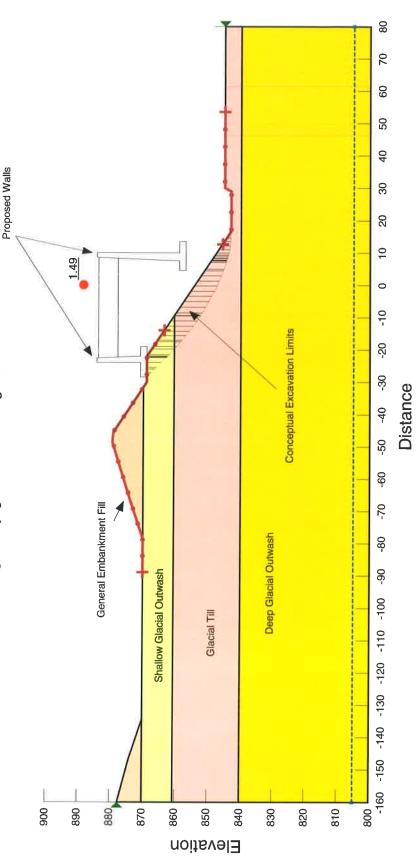
GEOTECHNIC SWLRT Minnetonka,	ΔΙ Ενδιυ			BORING: 2098SW				
	_	-	LOCATIC See attac				9;; E:	486259.2
DRILLER: M.	Barber	METHOD: 3 1/4" HSA, Autohammer	DATE:	4/3	0/14		SCALE:	1" = 4'
Elev. Depth feet feet 880.0 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11 ²	10-1-2908)	BPF	WL	MC %	Tests	or Notes
	FILL	FILL: Sandy Lean Clay, dark brown and brow	n, moist. 	6		23		
873.0 7.0				15				
	FILL	FILL: Sandy Lean Clay, slightly organic, trace dark gray and black, moist.	e Gravel, 	19		20	OC=3%	
868.0 12.0	SM	SILTY SAND, fine- to medium-grained, trace brown, moist, medium dense. (Glacial Outwash)	Gravel, –	26		10		
863.0 17.0	SC	CLAYEY SAND, trace Gravel, brown, moist, v (Glacial Till)	ery stiff.	22				
<u>861.0 19.0</u> 	SM	SILTY SAND, fine- to medium-grained, trace brown, moist, medium dense. (Glacial Outwash)	Gravel, 	25				
856.0 24.0	SP-	POORLY GRADED SAND with SILT, fine- to		26				
853.0 27.0	SM	medium-grained, with Gravel, with lenses of L brown, moist, medium dense. (Glacial Outwash)	_	17				
851.0 29.0	SM SC	SILTY SAND, fine- to medium-grained, trace of brown, moist, medium dense. (Glacial Outwash) CLAYEY SAND, trace Gravel, brown, moist, v	_	29				
		(Glacial Till)		29				

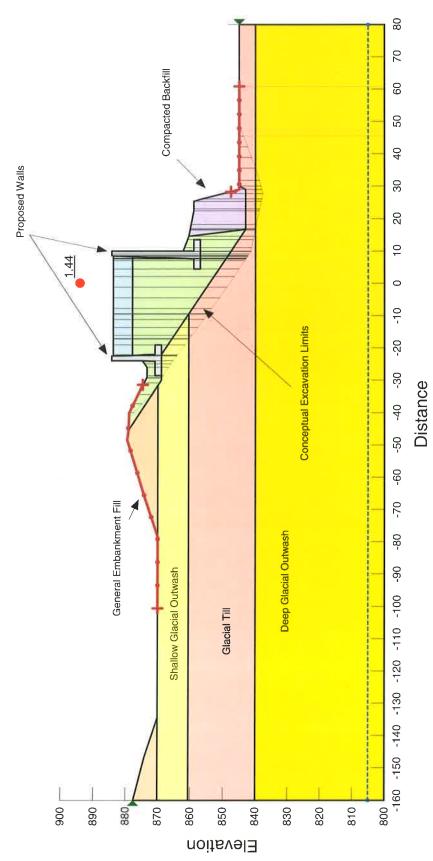
	BORING: 2098SW EOTECHNICAL EVALUATION LOCATION: N: 124678.000			w (con	/ (cont.)							
SWLR	Г	LUCAT				TION: N: 124678.9;; E: 486259. tached sketch.						
DRILLE	:R: м.	Barber		METHOD: 31	/4" HSA, Autohammer	DATE:	DATE: 4/30/14 SCALE:			1" = 4'		
Elev. feet 848.0	feet Description of Materials					Description of Materials B						
846.0	34.0			CLAYEY SAND, trace			24					
_		SM		SILTY SAND, fine- to r brown, moist, medium (Gla		e Gravel, 	24					
						_	28					
							27					
838.0	42.0	SM		SILTY SAND, fine-grai medium dense. (Gla	ned, light brown, moi acial Outwash)	st, dense to –	38					
<u>834.0</u>	46.0			END OF BORING.			27					
				Water not observed wi auger in the ground. Water not observed to		_						
				Boring immediately ba	lrawal of auger.							
						-						
_												
						_						
						-						
						-						



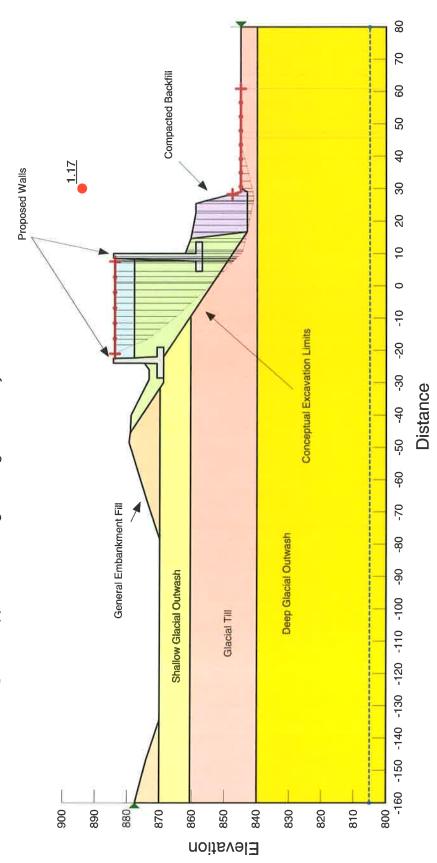
				8-00213	BORING			21	02SW	
SWLR	ECHNICA T etonka, I				LOCATION: N: 124650.1; E: 48667 See attached sketch.			186674.2.		
DRILLE	:R: В. I	Kamme	emeie	r METHOD: 3 1/4" HSA, Autohammer	DATE:	4/24	4/14		SCALE:	CALE: 1" = 4'
Elev. feet 884.8	Depth feet 0.0	Sym	bol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1110		BPF	WL	MC %	Tests	or Notes
884.6	0.2	CL		SANDY LEAN CLAY, trace roots, dark brown,	moist. _/					
· · ·		CL		(Topsoil) SANDY LEAN CLAY, trace Gravel, brown, moi medium to stiff. (Glacial Till)		7 7 13		11	DD=114 pc	f
874.8	10.0	SP		POORLY GRADED SAND, fine- to medium-gra light brown, moist, loose to medium dense. (Glacial Outwash) Gravel at 12 feet.	ained,	6		11		
						11 14 22				
862.8	22.0	SM		SILTY SAND, fine- to medium-grained, trace G brown, moist, dense. (Glacial Outwash)	bravel, 	43				
857.8	27.0					45		7		
	21.0	SM		SILTY SAND, fine- to medium-grained, with Gr with lenses of lean Clay, brown, moist, medium to dense. (Glacial Till)	ravel, 1 dense	36		10		
						24		11		

				3-00213	BORING	B:	210	2S	W (con	t.)
SWLR	ECHNICA F etonka, I				LOCATI See atta				.1; E:	486674.2
DRILLE	:R: В.	Kamm	emeie	r METHOD: 3 1/4" HSA, Autohamme	"HSA, Autohammer DATE: 4/24/14					1" = 4'
Elev. feet 852.8	Depth feet 32.0	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EI		BPF	WL	MC %	Tests	or Notes		
849.8	35.0			SILTY SAND, fine- to medium-grained, wi with lenses of lean Clay, brown, moist, me to dense. (Glacial Till) <i>(continued)</i>	dium dense	47		11		
		SP		POORLY GRADED SAND, fine-grained, t brown, moist, dense to very dense. (Glacial Outwash)	rown to light - -	45 51		9 5		
844.8	40.0	SC		CLAYEY SAND, with Gravel, brown, mois	- -	51 45		12		
842.8	42.0			(Glacial Till)	-	45		12		
		SP		POORLY GRADED SAND, fine- to mediu with Gravel, light brown, moist, dense. (Glacial Outwash)	n-grained, - -	40		4		
838.8	46.0			END OF BORING.		35		5		
				Water not observed while drilling.						
				Water not observed with 44 1/2 feet of hol auger in the ground. Water not observed to cave-in depth at 19	-	-				
				immediately after withdrawal of auger. Boring immediately backfilled with bentoni	te grout.	-				
_										
					-					

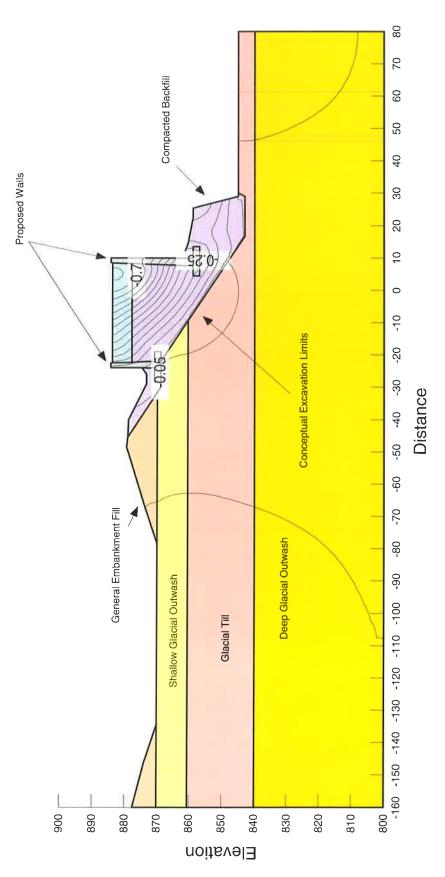

LE Stability of Existing Condition Effective Stress Analysis The purpose of this analysis being to calibrate to the extent possible the parameters assigned to the materials - mainly overconsolidated glacial soils - of which the cross section is comprised.



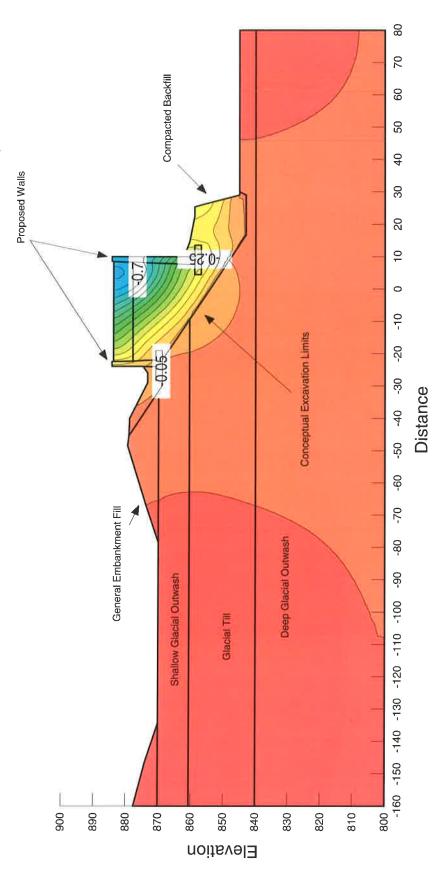
LE Excavation Stability Effective Stress Analysis


Excavation assumed cut up and back from bottom rear of existing MSE wall's reinforced zone at a 1 1/2:1 (horizontal:vertical) gradient to near an elevation consistent with the bottom of the upslope or WB wall footing, then benched below that footing before continuing to daylight in the existing bank.

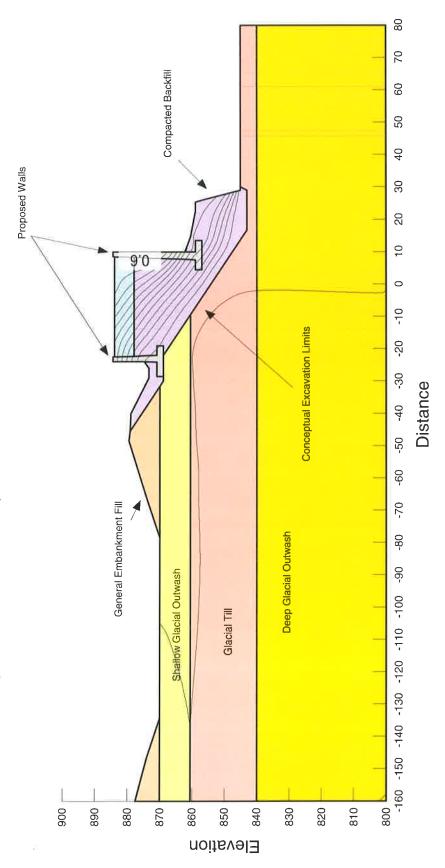
Global LE Stability - Spread Footing Construction Effective Stress Analysis From a global perspective, the composite wall/backfill section could be shown to meet FOS requirements, the strength parameters for the materials identified in the section being reasonably conservative).



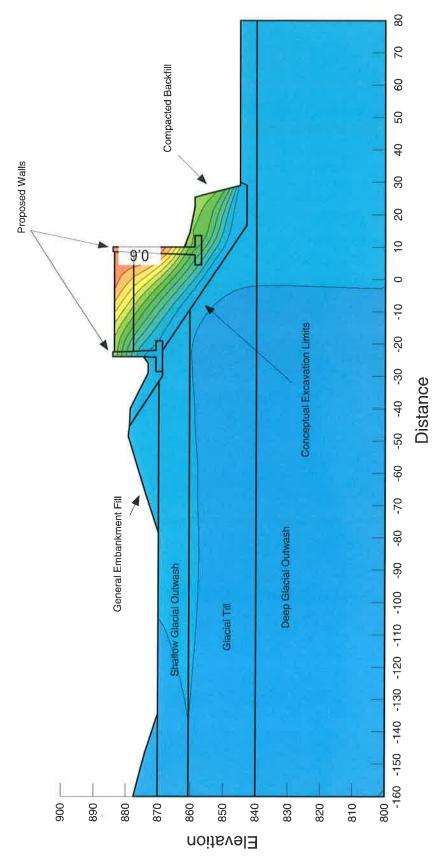
Local LE Stability - Spread Footing Construction Effective Stress Analysis From a local perspective, however, if one looks at the walls as separate structural components, the downslope or EB wall and existing MSE wall below are challenged to support the driving forces generated by the backfill.


Settlement Associated with Spread Footing Construction

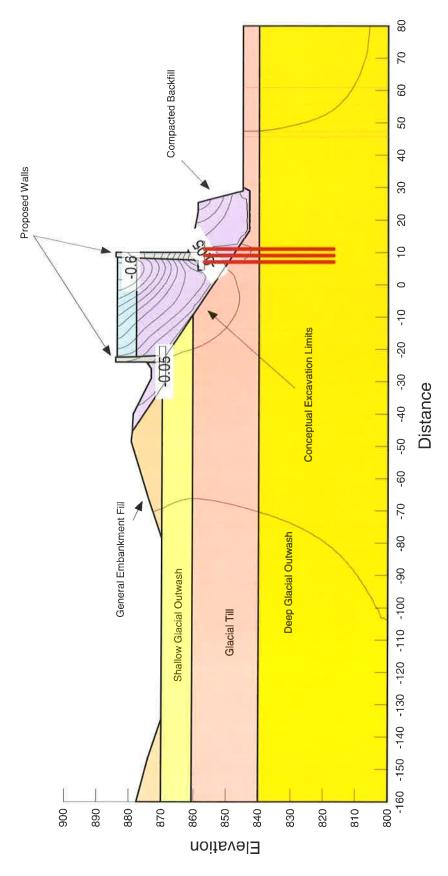
footing. In this example, the footings and backfill are placed as one, which also then predicts even more Settlement of the downslope or EB wall could approach 0.25 feet, or 3 inches, if supported on a spread settlement within the backfill. Still, this example shows how settlement, in addition to stability, impacts spread footing construction. (Note that settlement of the upslope or WB wall is limited in contrast.)


Settlement Associated with Spread Footing Construction

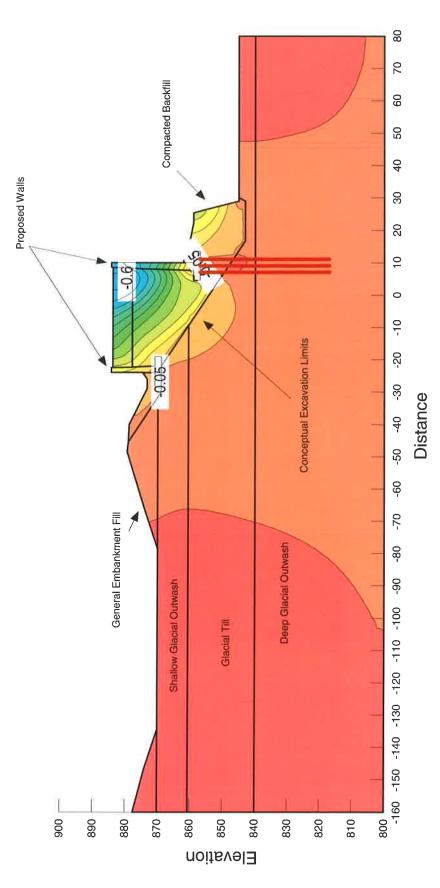
footing. In this example, the footings and backfill are placed as one, which also then predicts even more Settlement of the downslope or EB wall could approach 0.25 feet, or 3 inches, if supported on a spread settlement within the backfill. Still, this example shows how settlement, in addition to stability, impacts spread footing construction. (Note that settlement of the upslope or WB wall is limited in contrast.)


Lateral Displacement Associated with Spread Footing Construction

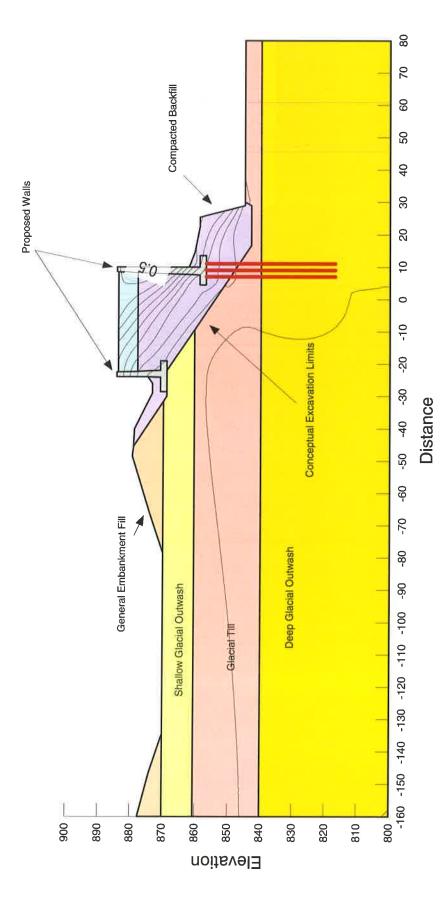
approaching 0.6 feet or 7 inches. Regardless of foundation design, this result suggests that the walls EB wall allowed to rotate about its footing, lateral displacement could exceed settlement, in this case Perhaps more importantly, if the two walls are built as independent structures and the downslope or need to be tied together, or that the downslope wall at least needs to be tied back.

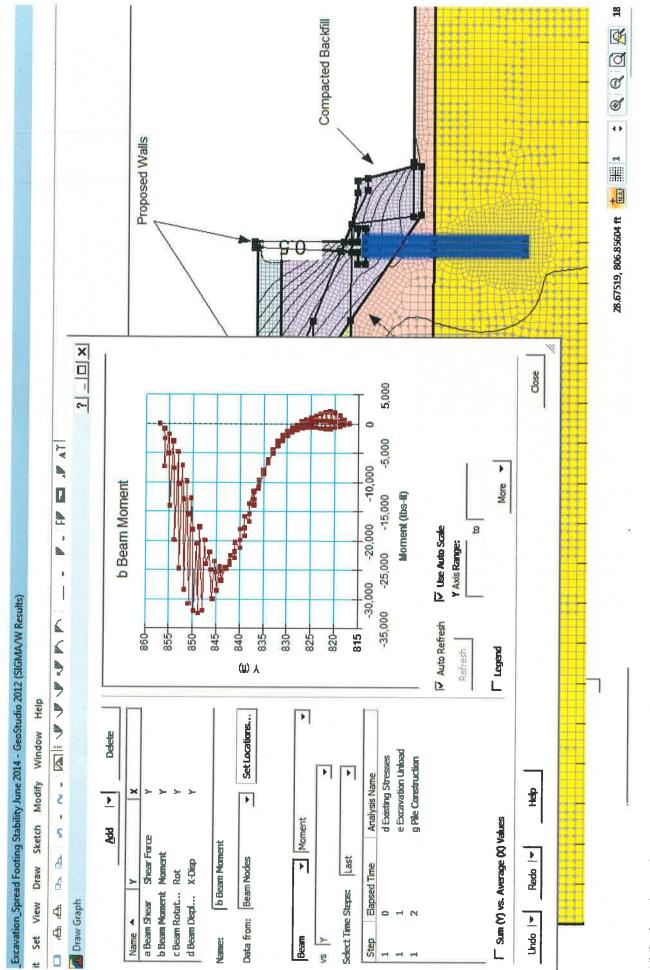

Lateral Displacement Associated with Spread Footing Construction

EB wall allowed to rotate about its footing, lateral displacement could exceed settlement, in this case approaching 0.6 feet or 7 inches. Regardless of foundation design, this result suggests that the walls Perhaps more importantly, if the two walls are built as independent structures and the downslope or need to be tied together, or that the downslope wall at least needs to be tied back.


Settlement Associated with Deep Foundation Construction

Settlement of the downslope or EB wall could be reduced to less than 1 inch (0.05 feet) if the wall is glacial soils below the wall). Settlement of the downslope and upslope walls is also comparable in supported on deep foundations (in this case 40-foot long pile elements shown extending into the this case, suggesting that the upslope or WB wall need not be similarly supported.


Settlement Associated with Deep Foundation Construction


Settlement of the downslope or EB wall could be reduced to less than 1 inch (0.05 feet) if the wall is glacial soils below the wall). Settlement of the downslope and upslope walls is also comparable in supported on deep foundations (in this case 40-foot long pile elements shown extending into the this case, suggesting that the upslope or WB wall need not be similarly supported.

Lateral Displacement Associated with Deep Foundation Construction

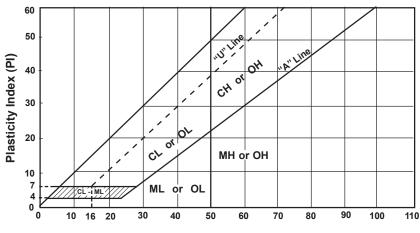
downslope or EB wall could approach 6 inches (0.5 feet) if the two walls are not This graphic shows again how, regardless of foundation design, rotation of the tied together or the downslope wall tied back.

While the piles in this example do not constitute a probable design, the graph shows the relative magnitude of bending moment in the structural members.

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Criter	ia for Assigni	ing Group	Symbols and	Soi	ils Classification	Particle S	Size Identificati
	Group Names Using Laboratory				Group Symbol	Group Name ^b	Boulders Cobbles	
" uo	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^{c}$	GW	Well-graded gravel ^d	Gravel Coarse	3/4" to 3"
Soils ined o e	More than 50% of coarse fraction	5% or less fines °		$C_u < 4$ and/or $1 > C_c > 3^c$	GP	Poorly graded gravel d	Fine	
d S eve	retained on	Gravels wi	th Fines	Fines Fines classify as ML or MH		Silty gravel dfg	Sand	
i ine % re) sid	No. 4 sieve	More than 12	2% fines ^e	Fines classify as CL or CH	GC	Clayey gravel dfg	Coarse	
grained Soils 50% retained o 200 sieve	Sands	r more of 5% or less		$C_{u} \ge 6$ and $1 \le C_{c} \le 3^{c}$	SW	Well-graded sand h	Medium Fine	
arse- than No.	50% or more of			$C_u < 6$ and/or $1 > C_c > 3^c$	SP	Poorly graded sand h	Silt	
Coa more t	coarse fraction passes	Sands with	h Fines	Fines classify as ML or MH	SM	Silty sand fgh	Clay	below "A"
0 g	No. 4 sieve	More than	12% ⁱ	Fines classify as CL or CH	SC	Clayey sand fgh	Clay	on or abov
he		Inorganic	PI > 7 ar	> 7 and plots on or above "A" line ^j		Lean clay kim		
ed Soils passed the sieve	Silts and Clays Liquid limit	ys morganic	PI < 4 or	plots below "A" line ^j	ML	Silt ^{k m}		Density of
asse eve	less than 50	Organic	Liquid lin	nit - oven dried < 0.75	OL	Organic clay k I m n	Cohesior	less Soils
grained more pas		organic	Liquid lin	nit - not dried	OL	Organic silt k I m o	Very loose	
-grain more o. 200	Cilto and alays	Inorganic	PI plots of	on or above "A" line	CH	Fat clay ^{k m}	Loose	
	Silts and clays Liquid limit	morganic	PI plots b	elow "A" line	MH	Elastic silt k I m	Medium dense	
	50 or more		Liquid lin	nit - oven dried	ОН	Organic clay k I m p	Dense Very dense	
Fir 50%		Organic	Liquid lin	quid limit - not dried < 0.75		Organic silt k I m q		
Highly	Organic Soils	Primarily org	anic matte	r, dark in color and organic odor	PT	Peat	Consistency	of Cohesive So


Based on the material passing the 3-in (75mm) sieve a.

b. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name $C_u = D_{6i}$

$$D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$$

C.

- d. If soil contains>15% sand, add "with sand" to group name
- Gravels with 5 to 12% fines require dual symbols: e
- GW-GM well-graded gravel with silt
- GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains \geq 15% gravel, add "with gravel" to group name.
- h. Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant. k.
- If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- If soil contains≥30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- $PI \ge 4$ and plots on or above "A" line. n.
- PI <4 or plots below "A" line. о.
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

DD	Dry density, pcf	oc	Organic content, %
WD	Wet density, pcf	S	Percent of saturation, %
MC	Natural moisture content, %	SG	Specific gravity
LL	Liqiuid limit, %	С	Cohesion, psf
PL	Plastic limit, %	Ø	Angle of internal friction
PI	Plasticity index, %	qu	Unconfined compressive strength, psf
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf

Rev. 7/07

ation

Boulders	. over 12"				
Cobbles	. 3" to 12"				
Gravel					
Coarse	. 3/4" to 3"				
Fine	. No. 4 to 3/4"				
Sand					
Coarse					
Medium					
Fine	. No. 40 to No. 200				
Silt	. <no. 200,="" or<="" pi<4="" td=""></no.>				
	below "A" line				
Clay	$<$ No. 200, PI \ge 4 and				
	on or above "A" line				
Relative Density of Cohesionless Soils					

50	0 to 4 BPF
	5 to 10 BPF
danaa	11 to 20 DDF
dense	11 10 30 BPF
	31 to 50 BPF
nse	over 50 BPF
	se I dense

Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.'

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards

Appendix D

General Track STA 2019+00 to STA 2139+00

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Preliminary Geotechnical Evaluation General Track, Station Platform and Retaining Wall Construction STA 2109+00 to STA 2139+00 – 75% Design Southwest LRT, West Segment 1 Eden Prairie, Minnesota

Dear Mr. Demers:

Braun Intertec has completed the preliminary geotechnical evaluation for the proposed track construction between STA 2109+00 and STA 2139+00 as well as the Town Center station platform located between STA 2115+00 to STA 2118+00. The following sections provide information regarding our opinions, methods and recommendations for general track, station platform and retaining wall construction in this area.

This report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for pole foundations for the Overhead Contact System (OCS) will be addressed in a separate report.

A. **Project Description**

This Geotechnical Evaluation Report addresses the proposed light rail transit line track construction between STA 2109+00 and STA 2139+00 in Eden Prairie, Minnesota. This area includes the Town Center station platform as well as retaining walls RTW-W120, RTW-W122, RTW-W125, and RTW-W126.

To facilitate our evaluation, we were provided with or reviewed the following information or documents:

- Aerial images from Google Earth[™]
- Preliminary Engineering Plans provided by AECOM, dated 6/30/2014.

Based on images from Google Earth[™], the site appears to be located in parking lots and grassy areas along Eden Road in Eden Prairie, Minnesota. The area described in this report is bounded by retaining walls RTW-W110 and RTW-W111 associated with the east abutment of the Bridge over Prairie Center and Technology Drive and the south abutment of the Bridge of I-494.

B. Subsurface Investigation Summary

B.1. Geologic Profile

Braun Intertec performed seven (7) soil borings within the boundaries noted above (2067ST, 2070ST, 2071ST, 2072ST, 2080ST, 2081ST, and 2082ST). Logs of the borings are included in the Appendix, along with a boring location sketch showing their locations.

A description of the soils encountered is described below, starting at the surface.

B.1.a. Pavements and Topsoil Fill

Borings 2071ST, 2072ST, 2080ST, 2081ST, and 2082ST encountered parking lot pavement sections consisting of 4 to 7 inches of bituminous over 4 to 11 inches of aggregate base fill. Borings 2067ST encountered 12 inches of topsoil fill at the surface, consisting of sandy lean clay.

B.1.b. Fill

Fill was encountered beneath the pavements and topsoil fill at Borings 2067ST, 2071ST, 2072ST and 2082ST. Fill was encountered at the surface of Boring 2070ST. The fill consisted of sandy lean clay (CL), silty sand (SM), clayey sand (SC), poorly graded sand (SP), and poorly graded sand with silt (SP-SM). Table 1 below illustrates the depth and elevations of fill materials encountered.

Boring	Boring Elevation (ft)	Approximate Depth of Fill (ft)	Elevation at Bottom of Fill (ft)
2067ST	898.4	14	884 ½
2070SW	878.1	20	858
2071SW	878.9	4	875

Table 1.	Fill De	oths at	Boring	Locatio	ons
TUDIC I.		puis at	DUTING	Locatic	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Boring Elevation Boring (ft)		Approximate Depth of Fill (ft)	Elevation at Bottom of Fill (ft)	
2072SW	877.4	17	860 ½	
2082SW	889.2	3	886 ½	

Of note, Boring 2070ST encountered buried concrete and bituminous debris to depths of 12 to 17 feet beneath the surface.

Penetration resistances varied from 8 to over 50 blows per foot (BPF), although some of the higher penetration resistances were likely influenced by frost.

B.1.c. Glacial Deposits

Glacially deposited soils were encountered beneath the pavement section, topsoil, and fill at all of the boring locations, extending to the termination depth of the borings. The glacial deposits consisted of lean clay with sand, sandy lean clay, clayey sand, silty sand, and poorly graded sand. The till soils contained traces of gravel, while the sands generally contained gravel. Penetration resistances varied from 10 to over 50 BPF, indicating the cohesive soils were rather stiff to hard, while the sandy soils were medium dense to very dense.

B.2. Summary of Water Level Measurements

The boring logs noted water levels during drilling ranging from 838 1/2 to 847 feet above mean sea level (MSL). Seasonal and annual fluctuations of groundwater, however, should be anticipated.

C. Basis for Recommendations

C.1. Design Details

C.1.a. Anticipated Grade Changes

Based on the plan and profile drawings, existing ground surface elevations are within approximately 14 feet of the proposed top of rail elevations. Cuts on the order of 14 feet and fills of less than 5 feet are anticipated to construct the tracks.

C.1.b. Station Platform Construction

The Town Center Station is proposed to be constructed between STA 2115+00 to STA 2118+00, in an area where approximately 4 to 10 feet of soil is to be removed to achieve top of rail elevation. While soils borings were not performed specifically for the station, we anticipate native soils will be encountered at platform subgrade elevations.

C.1.c. Retaining Wall Construction

The proposed retaining walls in the area generally range in height from 5 to 13 feet. It appears the majority of the walls will be cut to grade walls supporting existing slopes. While soil borings were not performed specifically for the walls at this time, we anticipate fill soils will be encountered near the surface with native soils near footing elevations.

C.1.d. Precautions Regarding Changed Information

We have attempted to describe our understanding of the proposed construction to the extent it was reported to us by others. Depending on the extent of available information, assumptions may have been made based on our experience with similar projects. If we have not correctly recorded or interpreted the project details, we should be notified. New or changed information could require additional evaluation, analyses and/or recommendations.

C.2. Design and Construction Considerations

It appears the track and the Town Center Station will be cut into native soils between STA 2109+00 to STA 2128+00. Fill soils were encountered at several boring locations, mainly between STA 2128+00 and STA 2139+00 and ranged in depth from 3 to 20 feet beneath the surface. While the majority of the fill soils appear to have been previously compacted based on the blow counts, the fill encountered near STA 2128+00 encountered concrete, bituminous, and traces of wood debris to depths of 17 feet. There is an inherent risk of potential instability in fill containing debris, as it may shift or consolidate under new loads. However, it appears there will be minimal grade changes through this area.

D. Recommendations

In accordance with our findings, we prepared the following preliminary recommendations for the design and construction of the proposed track, station platform and retaining walls. Supplementary borings will be required for final design.

D.1. Subgrade Preparation

Throughout the track profile and beneath the station platform, a five-foot subcut is anticipated for construction of the Guideway. The following subsections provide preliminary recommendations to prepare the subgrades for the track, station platform and retaining walls. Additional borings will be required for final design recommendations.

D.1.a. Excavations

D.1.a.1. Track Construction

We recommend excavating the soils down to the proposed bottom of subgrade elevation. We expect native soils will be encountered between STA 2109+00 to approximately STA 2122+00. Between STA 2122+00 to STA 2126+00 we expect shallow fills, with the fill soils extending deeper as you approach STA 2128+00 through STA 2139+00.

We recommend removing all vegetation, topsoil, and any soft or wet soils encountered at the surface. If soft or otherwise unsuitable soils are encountered at subgrade elevations, additional excavations may be necessary. This should be evaluated in the field on a case by case basis.

We expect to encounter fill soils at proposed subgrade elevations between STA 2122+00 to STA 2139+00. Due to the expected minimal (less than 2 feet) raises in overall grade, we do not anticipate settlement in excess of one inch from the existing fill soils, however, the condition of the fill soils will vary between the soil borings. We recommend excavating the soil to bottom of subgrade elevation, and evaluating the condition of the fill during construction. Additional subcuts may be necessary.

D.1.a.2. Station Platform

Cuts on the order of 5 to 10 feet are expected at the station platform. We expect to encounter native glacial soils at anticipated subgrade elevations. Should soft or otherwise unsuitable soils be encountered, additional subcuts may be necessary, and should be determined in the field at the time of construction.

D.1.a.3. General Retaining Wall Construction (Preliminary)

As mentioned previously, it appears the proposed retaining walls will largely be cut into existing slopes. Based on this condition and the expected wall heights ranging from 5 to 13 feet, we anticipate the soils

encountered at proposed footing subgrades will likely be suitable to support the proposed walls. Limited subcuts may be required in areas where fill or otherwise unsuitable soils are present.

Excavation depths will vary. Portions of the excavations may also be deeper than indicated by the boring logs. Contractors should be prepared to extend excavations in wet or fine-grained soils, or where unsuitable fill soils may be encountered to remove disturbed or otherwise unsuitable soils.

To provide lateral support to replacement backfill, additional required fill, and the structural loads they will support, we recommend oversizing (widening) the excavations 1 foot horizontally beyond the outer edges of the retaining wall footings for each foot the excavations extend below bottom-of-footing.

D.1.b. Excavation Dewatering

We recommend removing groundwater from the excavations. Sumps and pumps can be considered for excavations in low-permeability silt- and clay-rich soils, or where groundwater can be drawn down 2 feet below the bottoms of excavations in more permeable sands. In large excavations, or where groundwater must be drawn down more than 2 feet, a well contractor should review our logs to determine if wells are required, how many will be required, and to what depths they will need to be installed.

We expect any groundwater encountered will be perched within sandy layers of soils encountered during the excavation process. Seasonal and annual precipitation will influence the amount and extent of groundwater that will be encountered.

D.1.c. Selecting Excavation Backfill and Additional Required Fill

D.1.c.1. General Subgrade Fill

We initially recommend backfilling over wet or submerged excavation bottoms with at least 2 feet of coarse sand having less than 50 percent of the particles by weight passing a #40 sieve, and less than 5 percent of the particles passing a #200 sieve. We anticipate that this material will need to be imported.

On-site soils free of organic soil and debris can be considered for reuse as subgrade backfill and fill. The clays, however, being fine-grained, will be more difficult to compact if wet or allowed to become wet, or if spread and compacted over wet surfaces.

Imported material needed to replace excavation spoils or balance cut and fill quantities, may consist of sand, silty sand, clayey sand, sandy lean clay or lean clay. We recommend, however, that the plastic index of these materials not exceed 20.

D.1.c.2. Guideway and Station Platform Fill

Based on the proposed design sections, the Guideway will be composed of 40-inch thick layer of granular material, over a minimum of 12-inches of subballast material. We recommend specifying Guideway fill to meet the requirements of the Minnesota Department of Transportation (MnDOT) 3149.2B2 (Select Granular Borrow) for the granular material, and 3138 (Aggregate Base) for the subballast.

D.1.c.3. Retaining Wall Fill

Fill placed beneath the retaining walls may consist of onsite soils free of debris and organic material. The clays, however, being fine-grained, will be more difficult to compact if wet or allowed to become wet, or if spread and compacted over wet surfaces.

If a leveling pad is used beneath the retaining wall footings, we recommend specifying material meeting the guidelines of MnDOT 3138 for aggregate base.

Retained soil (retaining wall backfill) should meet the specifications of MnDOT 3149.2B2, modified to 10 percent or less passing the 0.075 mm (#200) sieve.

D.1.d. Placement and Compaction of Backfill and Fill

We recommend spreading backfill and fill in loose lifts of approximately 6 to 12 inches. We recommend compacting backfill and fill in accordance with the criteria presented below in Table 2. The relative compaction of utility backfill should be evaluated based on the structure below which it is installed, and vertical proximity to that structure.

Material	Material Specification	Compaction Specification	
Subgrade Fill	Onsite Material Free of Debris and Organic Material	100% of standard Proctor Density (ASTM D698)	
Leveling Pad Beneath Footings	MnDOT 3138	MnDOT 2211.3C	
Retaining Wall Backfill	MnDOT 3149.2D2	MnDOT 2105.3F	
Guideway Select Granular Layer	MnDOT 3149.2B2	100% of standard Proctor Density (ASTM D698)	
Guideway Subballast	MnDOT 3138	MnDOT 2211.3C	

Table 2. Mate	erial and Com	paction Sp	ecification f	or Backfill and Fill

D.1.e. Drainage Control

We recommend installing subdrains behind the retaining walls, adjacent to the wall footings, and at low points of the Guideway. Preferably the subdrains should consist of perforated pipes embedded in washed gravel, which in turn is wrapped in filter fabric. Perforated pipes encased in a filter "sock" and embedded in washed gravel, however, may also be considered.

We recommend routing the subdrains to a storm sewer or sump and pump capable of routing any accumulated groundwater to a storm sewer or other suitable disposal site, if available.

D.1.f. Recommended Design Parameters (e.g., Coefficient of Friction, Lateral Earth Pressure Coefficients, etc.)

The recommended soil parameters to be used for design are as follows:

Soil Type	Angle of Internal Friction (degrees)	Effective Unit Weight (pcf)	Coefficient of Sliding Friction Rough Concrete	Active Earth Pressure Coefficient	At-Rest Earth Pressure Coefficient
Select Granular Borrow Modified 10%	35	120	0.6	0.27	0.43
Granular Borrow	30	120	0.5	0.33	0.50

Table 3. Recommended Soil Design Parameters

D.2. Exterior Slabs

Though not necessarily designed to accommodate dead and live load surcharges or vehicles, exterior slabs can be subjected to both. Settlement of exterior slabs on poorly compacted foundation backfill, utility backfill and other compressible naturally deposits, soils or fills can also contribute to unfavorable surface drainage conditions and frost-related damage to the slabs and adjacent structures and pavements. Subgrades supporting exterior slabs should therefore consist of non-organic compacted fill or native soils. To accommodate the potential for exterior slabs bearing unanticipated traffic loads, we recommend using the compaction criteria provided in Section D.1.d. We anticipate that a majority of

exterior slabs associated with station construction will be placed on the Guideway fill section. For exterior slabs not supported by the Guideway fill such as sidewalks, we recommend a transition zone of at least 5:1 (H:V) to reduce the effects of differential frost heave away from the station.

D.2.a. General

Some of the exterior slabs will be underlain with lean clay, which are considered to be moderately to highly frost susceptible. Soils of the type can retain moisture and heave upon freeing. In general, this characteristic is not an issue unless these soils become saturated due to surface runoff or infiltration or are excessively wet in-situ. Once frozen, unfavorable amounts of general and isolated heaving of the soils and the surface structures supported on them could develop. This type of heaving could impact design drainage patterns and the performance of exterior slabs, isolated footings and piers, and pavements. To address most of the heave related issues, we recommend the general site grades and grades for surface features be set to direct surface drainage away from buildings, across large paved areas and away from walkways to limit the potential for saturation of the subgrade and any subsequent heaving. General grades should also have enough "slope" shown to tolerate potential larger areas of heave which may not fully settle when thawed.

D.2.b. Exterior Slabs

Even small amounts of frost-related differential movement at walkway joints or cracks can create tripping hazards. Several subgrade improvement options can be explored to address this condition. The most conservative and potentially most costly subgrade improvement option to help limit the potential for heaving, but not eliminate it, would be to remove any frost-susceptible soils present below the exterior slabs' "footprint" down to the bottom-of-footing grades or to a maximum depth of 5 feet below subgrade elevations, whichever is less. We recommend the resulting excavation then be refilled with sand or sandy gravel having less than 50 percent of the particles by weight passing the #40 sieve and less than 5 percent of the particles by weight passing a #200 sieve.

Another subgrade improvement option would be to build in a transition zone between those soils considered to be frost-susceptible and those that are not to somewhat control where any differential movement may occur. Such transitions could exist between exterior slabs and pavements, between entry way slabs and sidewalks, and along the sidewalks themselves. For this option, the frost-susceptible soils in critical areas would be removed to a depth of at least 4 feet below grade as discussed above. The excavation below the footprint of the sidewalks or other slabs would then be sloped upward at a gradient no steeper than 3:1 (horizontal : vertical) toward the less critical areas. The bottom of the excavation should then be sloped toward the center so that any water entering the excavation could be quickly drained to the deepest area for removal. In the deepest areas of the

excavation, a series of perforated drainpipes will need to be installed to collect and dispose of surface water infiltration and/or groundwater that could accumulate within the backfill. The piping would need to be connected to a storm sewer or a sump to remove any accumulated water. If the water is not removed, it is our opinion this option will not be effective in controlling heave.

Regardless of what is done to the walkway or pavement area subgrade, it will be critical the end-user develop a detailed maintenance program to seal and/or fill any cracks and joints that may develop during the useful life of the various surface features. Concrete and bituminous will experience episodes of normal thermo-expansion and thermo-contraction during its useful life. During this time, cracks may develop and joints may open up, which will expose the subgrade and allow any water flowing overland to enter the subgrade and either saturate the subgrade soils or to become perched atop it. This occurrence increases the potential for heave due to freezing conditions in the general vicinity of the crack or joint. This type of heave has the potential to become excessive if not addressed as part of a maintenance program. Special attention should be paid to areas where dissimilar materials abut one another, where construction joints occur and where shrinkage cracks develop.

D.2.c. Isolated Footing and Piers

Soils classified as being "clayey" or "silty" have the potential for adhering to poured concrete or masonry block features built through the normal frost zone. In freezing conditions, this soil adhesion could result in the concrete or masonry construction being lifted out of the ground. This lifting action is also known as heave due to adfreezing. The potential for experiencing the impacts of adfreezing increases with poor surface drainage in the area of below grade elements, in areas of poorly compacted clayey or silty soils and in areas of saturated soils. To limit the impacts of adfreeze, we recommend placing a low friction separation barrier, such as high density insulation board, between the backfill and the element. Extending isolated piers deeper into the frost-free zone, enlarging the bottom of the piers and then providing tension reinforcement can also be considered. Recommendations for specific foundation conditions can be provided as needed.

D.3. Construction Quality Control

D.3.a. Excavation Observations

We recommend having a geotechnical engineer observe all excavations related to subgrade preparation for spread footing, Guideway and retaining wall construction. The purpose of the observations is to evaluate the competence of the geologic materials exposed in the excavations, and the adequacy of required excavation oversizing.

D.3.b. Materials Testing

We recommend density tests be taken in excavation backfill and additional required fill placed below retaining walls footings, behind retaining walls, and for Guideway and Station Platform construction.

We also recommend slump, air content, and strength tests of Portland cement concrete.

D.3.c. Cold Weather Precautions

If site grading and construction is anticipated during cold weather, all snow and ice should be removed from cut and fill areas prior to additional grading. No fill should be placed on frozen subgrades. No frozen soils should be used as fill.

Concrete delivered to the site should meet the temperature requirements of ASTM C 94. Concrete should not be placed on frozen subgrades. Concrete should be protected from freezing until the necessary strength is attained. Frost should not be permitted to penetrate below footings.

E. Procedures

E.1. Penetration Test Borings

The penetration test borings were drilled with core and auger drill equipped with hollow-stem auger mounted on an off-road carrier. The borings were performed in accordance with ASTM D 1586. Penetration test samples were taken at 2 1/2- or 5-foot intervals. Actual sample intervals and corresponding depths are shown on the boring logs.

Penetration test boreholes that met the Minnesota Department of Health (MDH) Environmental Borehole criteria were sealed with an MDH-approved grout. A sealing record (or Sealing records) for those boreholes will be forwarded to the Minnesota Department of Health Well Management Section. A copy of the sealing record follows (or Copies of the sealing records follow) the Log of Boring sheets in the Appendix.

E.2. Material Classification and Testing

E.2.a. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars or bags and returned to our facility for review and storage.

E.2.b. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures.

E.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced, and again after auger withdrawal. The boreholes were then backfilled or allowed to remain open for an extended period of observation as noted on the boring logs.

F. Qualifications

F.1. Variations in Subsurface Conditions

F.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

F.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

F.2. Continuity of Professional Responsibility

F.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

F.3. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

F.4. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

> BRAUN INTERTEC

If there are questions regarding these recommendations, please call Josh Kirk at 952.995.2222 (<u>jkirk@braunintertec.com</u>) or Ray Huber at 952.995.2260 (<u>rhuber@braunintertec.com</u>) at your convenience.

Sincerely,

BRAUN INTERTEC CORPORATION

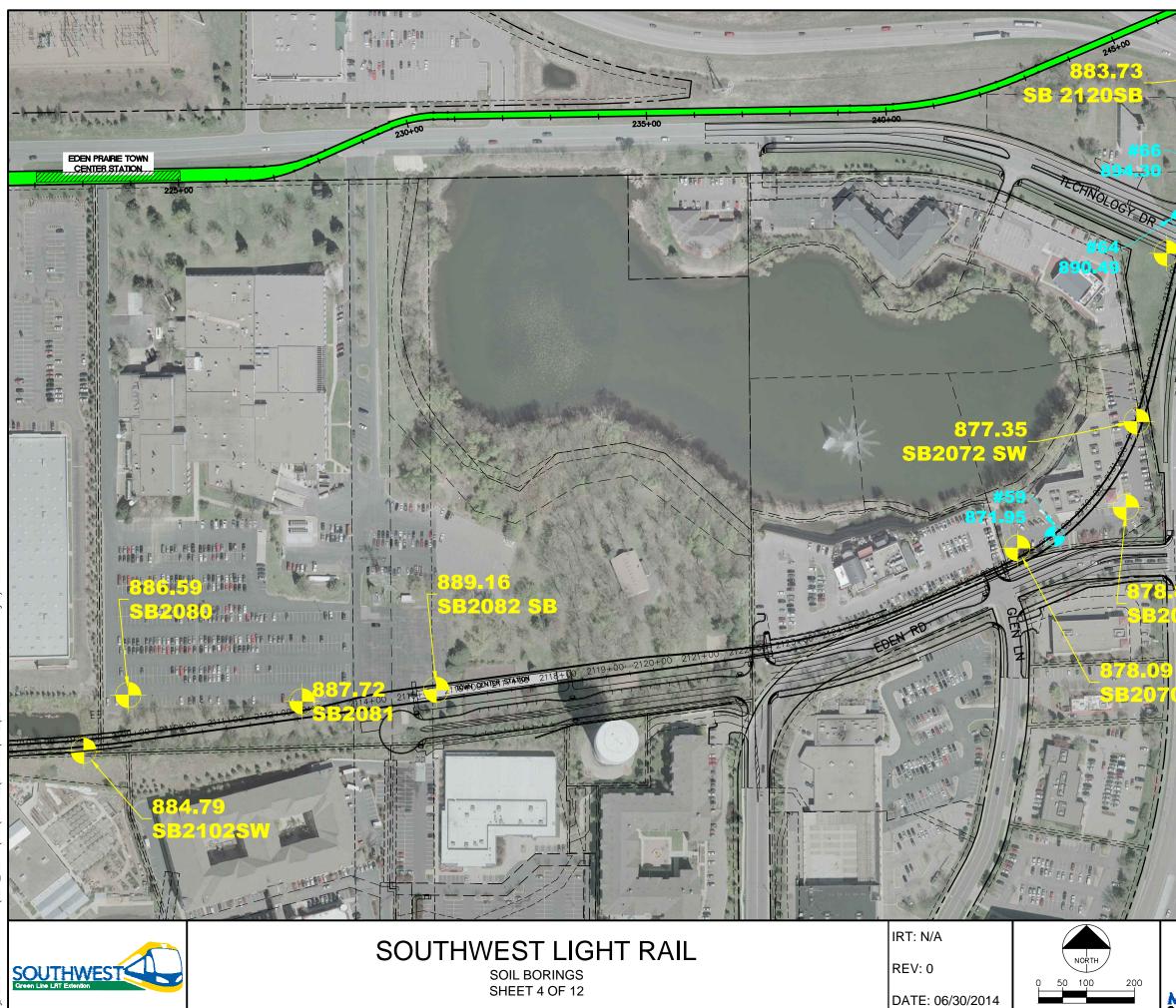
Professional Certification:

I hereby certify that this plan, specification or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Joshua L. Kirk, PE Associate-Project Engineer License Number: 45005

Reviewed by:

Ray A. Huber, PE Vice President-Principal Engineer


Reviewed by:

Matthew P. Ruble, PE Principal Engineer

Appendix:

Soil Boring Location Sketch Preliminary Engineering Plan and Profile Sheets - W1-TRK-PPFL-003 through 006 Soil Boring Logs 2067ST, 2070ST, 2071ST, 2072ST, 2080ST, 2081ST, 2082ST Descriptive Terminology of Soil

APPENDIX

DRAFT-WORK IN PROCESS

LOCATIONS

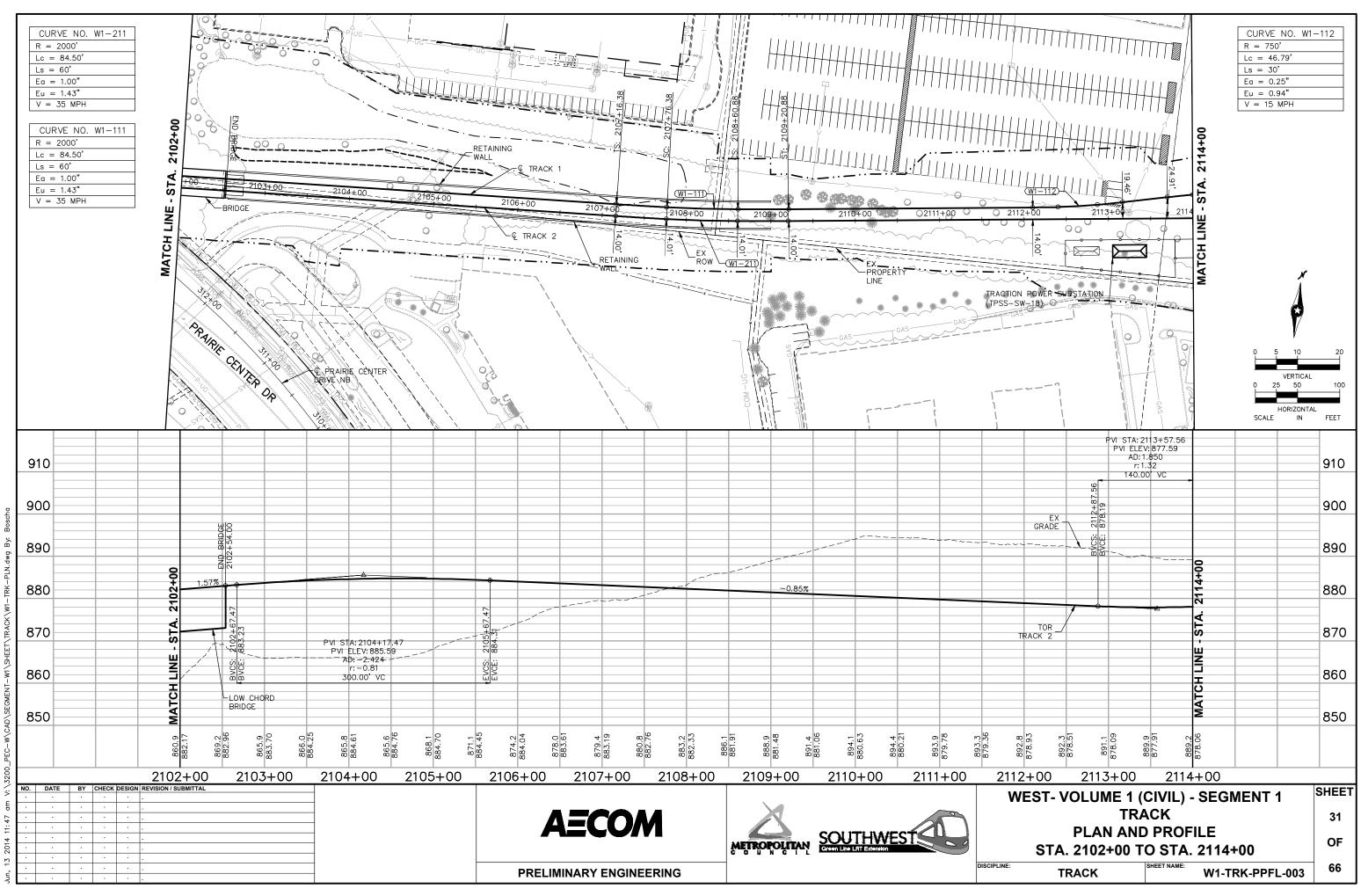
PROPOSED SUBSURFACE UTILITY ENGINEERING

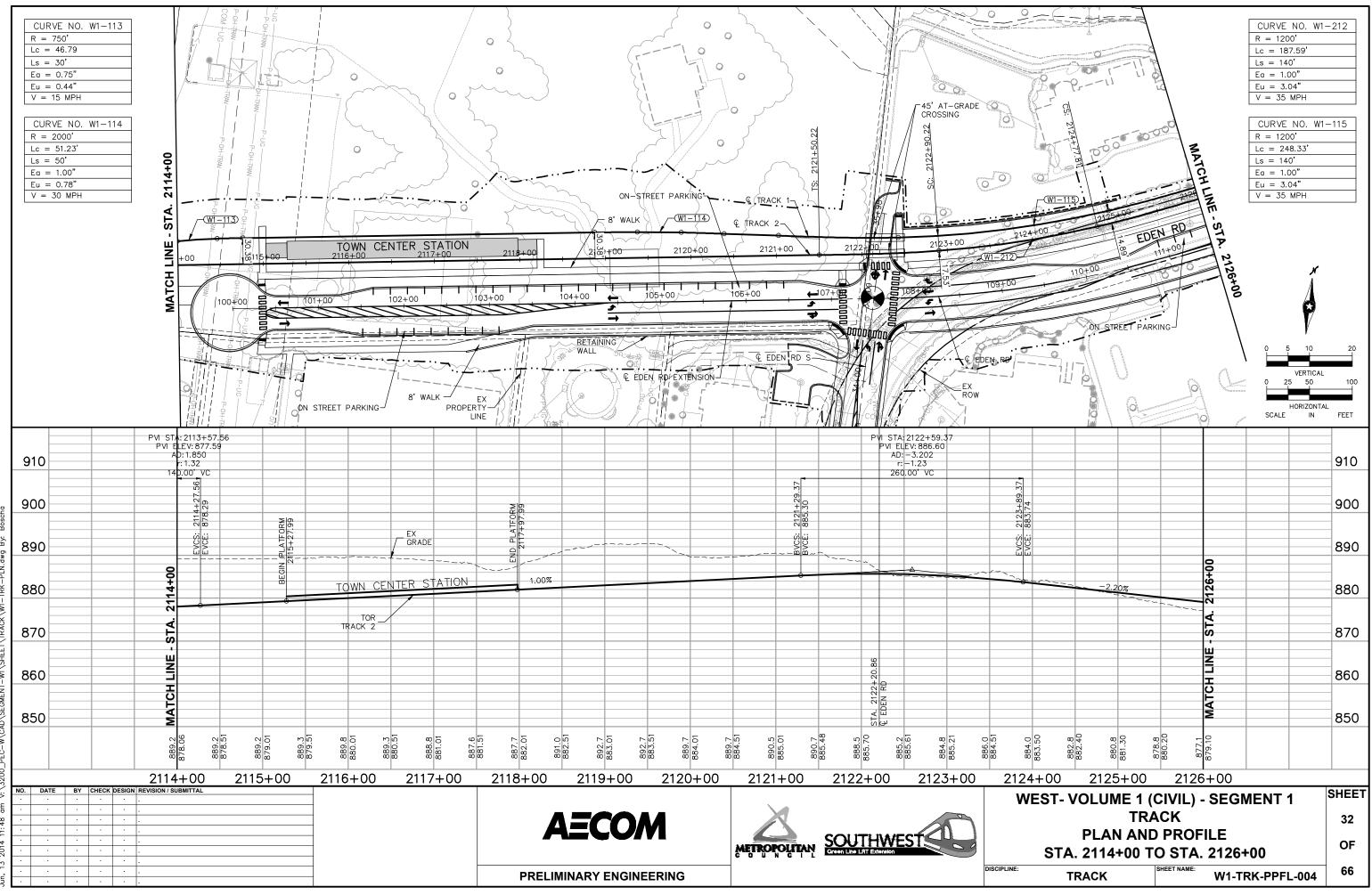
PROPOSED GEOTECHNICAL BORINGS

SUBSURFACE UTILITY ENGINEERING LOCATIONS

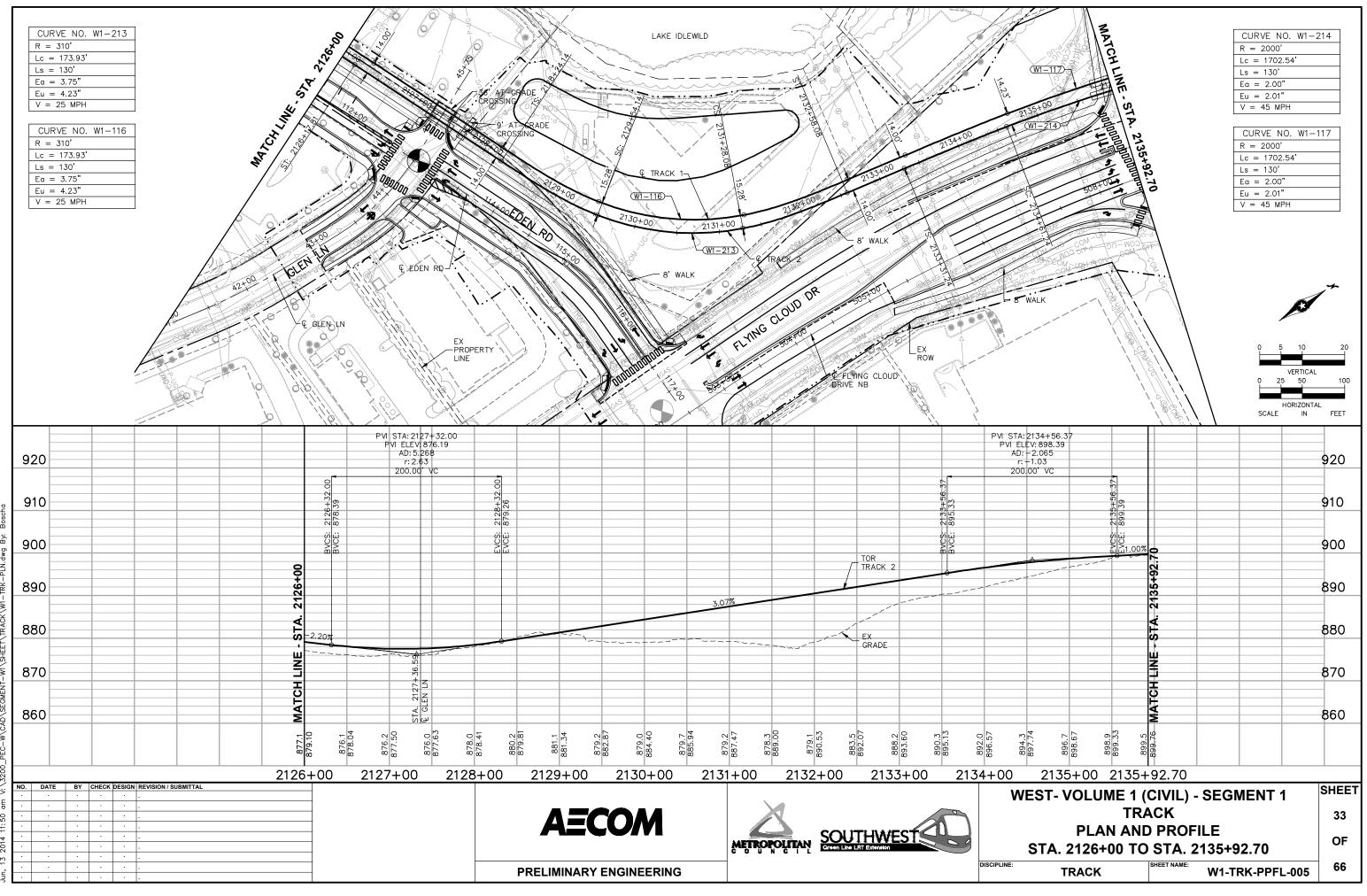
- T TRACK S STATION W RETAINING WALLS "NL" - UTILITY NOT LOCATED

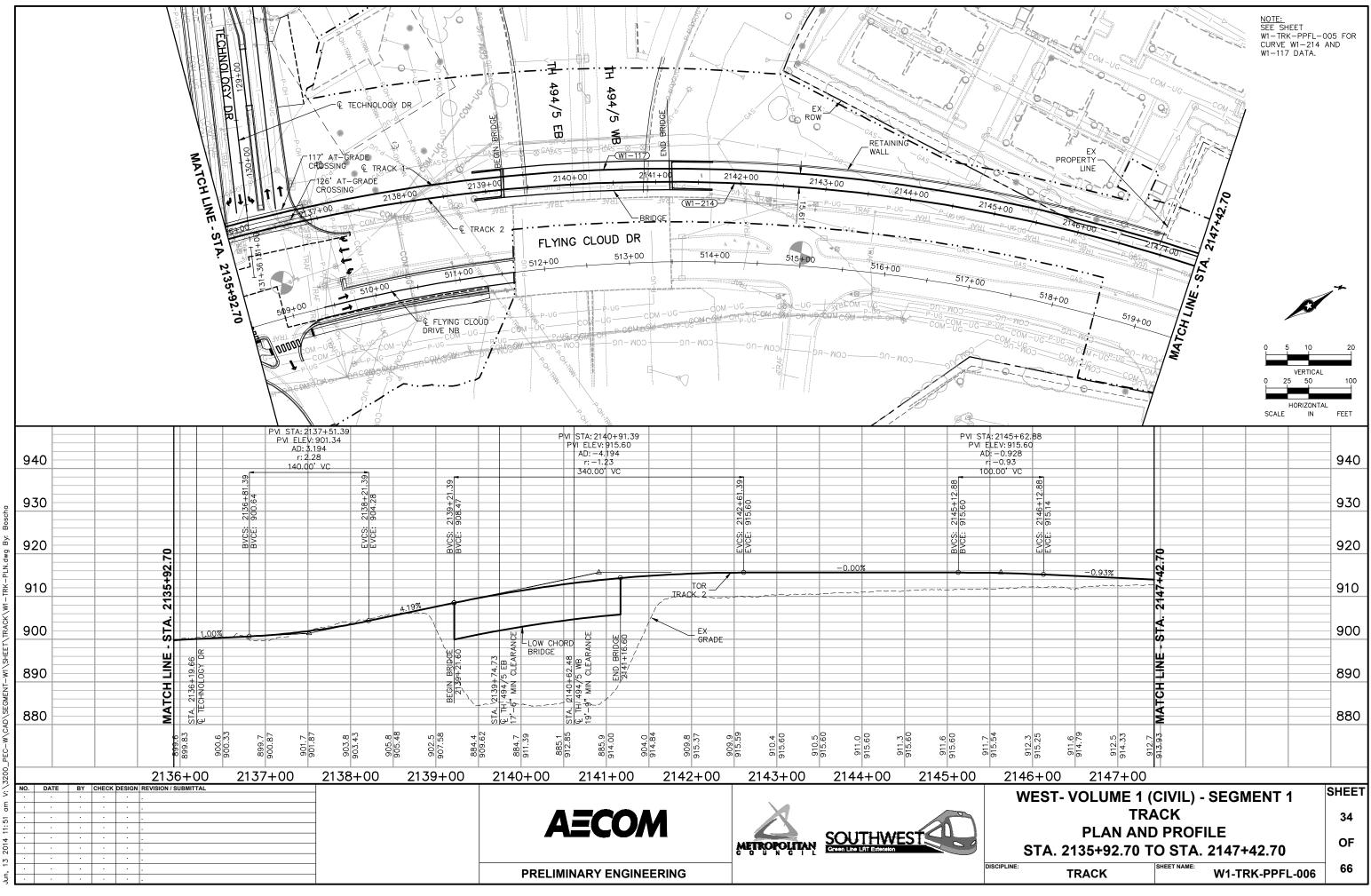
- GEOTECHNICAL BORINGS FIRST LETTER S STD. PENETRATION C CONE PENETRATION SECOND LETTER B BRIDGE T TPACK


LEGEND


В

CLOUD


FLAING



3 2014 11:48 am V:\3200_PEC-W\CAD\SEGMENT-W1\SHEET\TRACK\W1-TRK-PLN

BRAUN [®]	
INTERTEC	

				-00213	BORING: 2067ST								
SWLRT	CHNICA tonka,				LOCATION: N: 125688.7; E: 488934.2; Lat.: 445141.60987; Long.: -932533.62235. See attached sketch.								
DRILLE	R: К.	Keck		METHOD: 3 1/4" HSA, Autohammer	DATE:	2/2	6/14		SCALE: 1"	= 4'			
Elev. feet 898.4	Depth feet 0.0	Symt	pol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1110	-1-2908)	BPF	WL	MC %	Tests or No	tes			
897.4	1.0	CL		SANDY LEAN CLAY, trace Gravel, dark brown, (Topsoil/Fill)	, frozen.								
-		FILL		FILL: Silty Sand, fine- to medium-grained, with with occasional Cobbles and Clay lenses, brow frozen to moist.	Gravel,	65		10	P200=33%				
891.4	7.0												
		FILL		FILL: Clayey Sand, trace Gravel, brown and gr moist.	ay, 	24		11					
889.4	9.0	FILL		FILL: Poorly Graded Sand, fine- to medium-gra trace Gravel, brown, moist.	ained,	42							
886.4	12.0				_								
		FILL		FILL: Sandy Lean Clay, with Gravel, gray and b moist.	orown,	34		10					
884.4	14.0	SM		SILTY SAND, fine- to medium-grained, with Gra brown, moist, very dense to dense. (Glacial Till)	avel,	45							
					_	50/2"*	t		*50/2" (set). No recovery.	samp			
						38							
876.4	22.0	SC		CLAYEY SAND, fine- to medium-grained, with o brown, moist, dense to medium dense. (Glacial Till)	Gravel, 	33							
						30			*Water not obse with 29 1/2 feet hollow-stem aug ground.	of			
870.4	28.0	SP		POORLY GRADED SAND, fine- to medium-gra light brown, moist, medium dense. (Glacial Outwash)	iined,				Water not obser cave-in depth of immediately after withdrawal of au	25 fe er			
867.4	31.0			END OF BORING.*		21			Boring immediat backfilled with b grout. 2067ST	enton			

	-	ect BL-13		BORING	:		20	70S	W
SWLR	Г	AL EVALU Minnesot		LOCATION: N: 125073.1; E: 488 Lat.: 445135.52981; Long.: -932 See attached sketch.					E: 488623.2; -932537.93479.
DRILLE	R: M.	Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	3/6	6/14		SCA	LE: 1" = 4'
Elev. feet 878.1	Depth feet 0.0	Description of Materials BPF Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908)						qp tsf	Tests or Notes
877.1 - - - - - - - - - - - - - - - - - - -	1.0	FILL	 (SolFASTM D2488 of D2487, Rock-OSACE EMTT FILL: Clayey Sand, fine- to medium-grained, brown, frozen. FILL: Sandy Lean Clay, trace Gravel, gray at frozen to 3 feet then wet. Trace wood debris at 5 feet. 	dark 	22 17 8 43		21	1 1/2	Frozen to 3 feet, no sample recovered.
	<u> </u>	FILL	FILL: Poorly Graded Sand with Silt, fine- to medium-grained, with concrete debris, brown	, moist	38				
856.1 	22.0	CL SC	SANDY LEAN CLAY, trace Gravel, brown an wet, rather stiff. (Glacial Till) CLAYEY SAND, fine- to medium-grained, tra gray, wet, rather stiff to stiff. (Glacial Till)	-	10 11 12		13	3 1/2	
-			With waterbearing Sand seam at 30 feet.		13	Į			An open triangle the water level (WL) column indicates the de at which groundwater was observed while

			3-00213	BORING: 2070SW (cont.)							
		L EVALU		Lat.: 44	ATION: N: 125073.1; E: 488623.2 445135.52981; Long.: -932537.93 attached sketch.						
DRILLE	R: М.	Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	3/6	6/14		SCALE: 1" = 4'			
Elev. feet 846.1	Depth feet 32.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM111	0-1-2908)	BPF	WL	MC %	qp tsf	Tests or Notes		
		CL	•	e Gravel, 	BPF 15				Tests or Notes drilling. Groundwater levels fluctuate.		
_				-	-						
_											
				-							
_				-							

BRAUN ^{ss}	
INTERTEC	

	n Proje						BORING	:		20	71SW	
SWLRT	ECHNIC/ F etonka,			ON			LOCATIC Lat.: 448 See attac	5136.37	7450	; L	5; E: 488 .ong.: -932	8850; 534.78791
DRILLE	R: M.	Takada		METHOD:	3 1/4" HSA, Autoham	nmer	DATE:	3/6	/14		SCALE:	1" = 4'
Elev. feet 878.9	Depth feet 0.0	Symbo	ol (S		scription of Materials or D2487, Rock-USACI	BPF	WL	MC %				
878.1	0.8	PAV		nous over 4 inches o	f aggreg	ate						
876.9	2.0	FILL FILL	FI FI	ozen.	fine- to medium-grain							
874.9	4.0			LL: Silty Sand, f own, frozen.	ine- to medium-grair	ned, with	Gravel,	⊠50/3"				
_		CL		ANDY LEAN CLA et then wet, very	AY, trace Gravel, bro stiff. (Glacial Till)	own, froz	en to 5	42		12	Frozen soi	l to 5 feet.
000 0	0.0						_	25		13		
869.9	9.0	SM		LTY SAND, fine own, moist, med	- to medium-grained ium dense. (Glacial Till)	, trace G	ravel,	23				
866.9	12.0											
		SC	🥢 br	LAYEY SAND, fi own to 25 feet th iff.	ne- to medium-grain en gray, moist, rathe (Glacial Till)	ed, trace er stiff to	e Gravel, very _ _	22		32	P200=9%	
								24				
							-	23				
								24				
							-	26				
_								15				
							_					
								35				
			1									

ſ		Braun Project BL-13-00213 GEOTECHNICAL EVALUATION								BORING: 2071SW (cont.)							
viations)	SWLR					N				LOCATIO Lat.: 44 See attao	5136.3	7450	; L	.5; E: 488 _ong.: -932	3850; 534.78791.		
abbre	DRILLE	R: M.	Takad	а		METHOD:	3 1/4" HS	SA, Autohamm	er	DATE:	3/6	6/14		SCALE:	1" = 4'		
anation of a	Elev. feet 846.9	Depth feet 32.0	Sym	bol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM111)-1-2908)	BPF	WL	MC %	Tests	or Notes		
LOG OF BORING N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213.GPJ BRAUN_V8_CURRENT.GDT 3/28/14 15:26 (See Descriptive Terminology sheet for explanation of abbreviations)	846.9 844.9 844.9 837.9 837.9 - - - - - - - - - - - - -	32.0 34.0 41.0	SP	bol	POC with END Wate	DRLY GRADE Gravel, brown	ED SAND, n, moist, m (Glacial C dlacial C	fine- to medi nedium dens Dutwash) 1/2 feet of h	um-gra e to de ollow-s	ained, nse - - 	38		%				
BORING N:\GINI\PROJECIS\MINNEAPOL	-									-							
500																	

BL-13-00213

BRAUN	1
INTERTEC	

			3-00213	BORING: 2072SW								
SWLR	Г	AL EVALU Minnesot		Lat.: 4	LOCATION: N: 125337.6; E: 4 Lat.: 445138.14247; Long.: -93 See attached sketch.							
DRILLE	R: M.	Takada	METHOD: 3 1/4" HSA, Autohamme	r DATE:	3/7	/14		SCA	LE: 1" = 4 '			
Elev. feet 877.4	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EI	M1110-1-2908)	BPF	WL	MC %	qp tsf	Tests or Note			
		PAV	5 inches of bituminous over 7 inches of ag	,								
876.4	1.0	FILL	base. FILL: Clayey Sand, fine- to medium-grain Gravel, gray and dark brown, frozen to 5 f moist. With Gravel at 10 feet.	ed, with eet then			13		Frozen soil to 5 feet, no sample recovered.			
860.4	17.0	CL	LEAN CLAY with SAND, gray, moist, rath (Glacial Till)	er stiff.	15 		22	2 1/4				
855.4	22.0	CL	SANDY LEAN CLAY, trace Gravel, brown (Glacial Till)	, wet, stiff.	16							
848.4	29.0	SC	CLAYEY SAND, fine- to medium-grained, brown to 35 feet then gray, moist, very stil	trace Gravel,	14 							
			(Glacial Till)		18							

	Braun Project BL-13-00213 GEOTECHNICAL EVALUATION							BORING		207	'2S	W (cont.)					
_ທ ່ SWLR					N			LOCATION: N: 125337.6; Lat.: 445138.14247; Long See attached sketch.					E: 488872; g.: -932534.48368.					
	ER: M.	Takada	à		METHOD:	3 1/4" HSA, Au	tohammer	DATE:	3/7	7/14		SCA	LE: 1" = 4'					
Elev. feet 845.4 	Depth feet 32.0	Sym	bol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908)						ymbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908)						WL	MC %	qp tsf	Tests or Notes
838.4 39.0 838.4 41.0					n to 35 feet th (G DRLY GRADE Gravel, dark l	ine- to medium hen gray, moist Blacial Till) <i>(con</i> D SAND, fine- brown, waterbe (Glacial Outwa	, very stiff. <i>tinued)</i> to medium-gra aring, dense.		19	Ā			An open triangle in the water level (WL) column indicates the depth					
				Wate auge	er in the groun	t 39 feet with 3		_					Indicates the depth at which groundwater was observed while drilling. Groundwater levels fluctuate.					

				3-00213	BORING: 2080SW LOCATION: N: 124766.7; E: 486767.4; Lat.: 445132.49433; Long.: -932603.69484. See attached sketch.						
SWLR	ECHNICA F etonka, I										
DRILLE	R: S.	McLea	n	METHOD: 3 1/4" HSA, Autohammer	DATE:	2/1	4/14		SCALE: 1" = 4		
Elev. feet	Depth feet			Description of Materials		BPF	WL		Tests or Notes		
886.6	0.0	Sym PAV		(Soil-ASTM D2488 or D2487, Rock-USACE EM 5 inches of Bituminous over 9 inches of Age				%			
885.5	1.1	CL		Base. SANDY LEAN CLAY, trace Gravel, brown, moist, hard to very stiff. (Glacial Till)	frozen to	40*			*Frozen soils to 3 fe		
_						21					
877.6	9.0					25					
		SP		POORLY GRADED SAND, fine- to medium brown, moist, medium dense. (Glacial Outwash)	-grained, 	12			P200=		
						12					
872.6	14.0	SP		POORLY GRADED SAND, fine- to medium with Gravel, brown, moist, medium dense. (Glacial Outwash)	-grained, 	16					
867.6	19.0	~ ~ ~				_A					
		SM		SILTY SAND, fine- to medium-grained, trac brown, moist, medium dense. (Glacial Till)	e Gravel, —	24					
						21					
_					_	22					
858.6	28.0	SC		CLAYEY SAND, trace Gravel, brown, moist	, dense.						
				(Glacial Till)		_					

	Braun Project BL-13-00213 GEOTECHNICAL EVALUATION							BORING: 2080SW (cont.)							
SW/I DT				N			LOCATION: N: 124766.7; E: 486767.4; Lat.: 445132.49433; Long.: -932603.69484 See attached sketch.								
DRILLER:	: S.N	<i>l</i> icLean		METHOD:	3 1/4" HSA, Au	Itohammer	DATE:	2/1	4/14		SCALE:	1'' = 4'			
b Elev. D G feet 854.6	Depth feet 32.0	Symbol	(Soi		scription of Ma or D2487, Rock-I		0-1-2908)	BPF	WL	MC %	Tests	or Notes			
		Symbol SM	SILT brow END Wate auge Wate imme	OF BORING or not observe er not observe er not observe	- to medium-gr - to medium-gr se. (Glacial Till d while drilling ed while drilling ed with 39 1/2 fo d. ed to cave-in de withdrawal of a	JSACE EM1110 ained, trace G)) eet of hollow-s	Sravel,	46							
							-								

BL-13-00213

BRAUN ^{5M}
INTERTEC
Duarus Dualant DI

				3-00213	BORING	:		20	81SW
GEOTECHNICAL EVALUATION SWLRT Minnetonka, Minnesota					LOCATIO Lat.: 44 See attao	5132.30	6455	; L	4; E: 487130.7; ₋ong.: -932558.65223.
DRILLE	R: S.	McLea	n	METHOD: 3 1/4" HSA, Autohammer	DATE:	2/1	4/14		SCALE: 1" = 4'
Elev. Depth feet feet 887.8 0.0 Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM11			Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	10-1-2908)	BPF	WL	MC %	Tests or Notes	
886.9	1.0	PAV		7 inches of Bituminous over 11 inches of Agg	,				
- - -	1.0	CL		Base. SANDY LEAN CLAY, trace Gravel, brown, fro moist, very stiff. (Glacial Till)		48*			*Frozen soils to 3 feet
881.8	6.0					18			
		SP		POORLY GRADED SAND, fine- to medium-g trace Gravel, brown, moist, medium dense. (Glacial Outwash)	rained, - - - 	13			P200=
075 0	10.0				-	f1			
875.8 873.8	12.0	SP		POORLY GRADED SAND, fine- to medium-g with Gravel, brown, moist, medium dense. (Glacial Outwash)	rained, -	16			
		SP		POORLY GRADED SAND, fine- to medium-g brown, moist, medium dense. (Glacial Outwash)	rained, 	14			
				Layer of Silty Sand encountered at 25 feet.		14			*No sample recovery.
- L-13-0021					-	19			2081SW page 1

		3-00213	BORING:		208	31S	W (con	t.)
GEOTECHNIC SWLRT Minnetonka,		LOCATION: N: 124753.4; E: 48713 Lat.: 445132.36455; Long.: -932558 See attached sketch.						
DRILLER: S.	McLean	METHOD: 3 1/4" HSA, Autohammer	DATE:	2/1	4/14		SCALE:	1" = 4'
Elev. Depth feet feet 855.8 32.0	Symbol	Description of Materials	0-1-2908)	BPF	WL	MC %	Tests	or Notes
855.8 32.0 - - - - 849.8 38.0 - - 846.8 41.0 - -	Symbol	(Soil-ASTM D2488 or D2487, Rock-USACE EM1116 POORLY GRADED SAND, fine- to medium-gr. brown, moist, medium dense. (Glacial Outwash) (continued) SILTY SAND, fine- to medium-grained, brown, medium dense. (Glacial Till) END OF BORING. Water not observed while drilling. Water not observed with 39 1/2 feet of hollow-s auger in the ground. Water not observed to cave-in depth of 32 1/2 hollow-stem auger in the ground. Boring immediately backfilled.	ained,	22		%		
-								

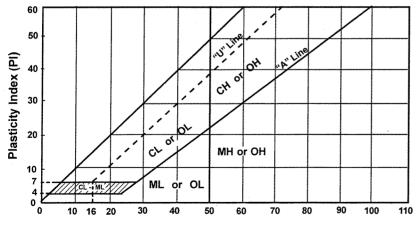
		ect BL-1		BORING	:		20	82SW	
SWLR	ECHNIC/ T etonka,	LOCATION: N: 124777.6; E Lat.: 445132.60526; Long.: See attached sketch.					: 487410.7; -932554.76534.		
DRILLE	R: S.	McLean	METHOD: 3 1/4" HSA, Autohammer	DATE:	2/1	4/14		SCALE:	1'' = 4'
Elev. feet 889.2	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	110-1-2908)	BPF	WL	MC %	Tests	or Notes
- 887.9	1.3	PAV	4 inches of Bituminous over 12 inches of Age Base.	gregate	_				
- 886.2	3.0	FILL	FILL: Sandy Lean Clay, trace Gravel, dark b frozen to moist.	rown, _	₫ 32*				
	0.0	CL	LEAN CLAY with SAND, trace Gravel, brown very stiff to hard. (Glacial Till)	n, moist, 	19			*Frozen so	ils to 3 feet
880.2	9.0			_					
		SC	CLAYEY SAND, trace Gravel, brown, moist, dense. (Glacial Till)	medium 	16			P200=	
	14.0		Sand layer encountered at 12 feet.	-	12				
 	14.0	SP	POORLY GRADED SAND, fine- to medium- trace Gravel, brown, moist, medium dense. (Glacial Outwash)	grained, 	17				
_				-	20				
_				-	14				
_				-	14				
_				-	19				
			Lenses of Lean Clay encountered at 30 feet.		21				
BL-13-0021	3		Braun Intertec Corporation					208	2SW page 1

					00213			BORING		208	32 S	W (cont	.)
viations)		CHNICA F tonka, I			ΓΙΟΝ			LOCATIC Lat.: 445 See attac)N: N: 5132.60	124 0526	4777. ; L	•	410.7;
abbre	DRILLE	R: S.	McLean		METHOD:	3 1/4" HSA, A	utohammer	DATE:	2/14	4/14		SCALE:	1'' = 4'
anation of a	Elev. feet 857.2	Depth feet 32.0	Symb	ol	De (Soil-ASTM D2488)	scription of Ma or D2487, Rock-)-1-2908)	BPF	WL	MC %	Tests	or Notes
LOG OF BORING N:\GINT\PROJECTS\MINNEAPOUS\2013\00213.GPJ BRAUN_V8_CURRENT.GDT 3/28/14 15:31 (See Descriptive Terminology sheet for explanation of abbreviations)	857.2 856.2 	32.0 33.0 41.0	Symbol		(Soil-ASTM D2488 / CLAYEY SAND, w dense. END OF BORING Water not observe auger in the groun Water not observe immediately after v Boring immediatel	vith Gravel, bro (Glacial Til ed while drilling ed with 39 1/2 f id. ed to cave-in d withdrawal of a	own, moist, me ll) g. feet of hollow-s epth of 31 feet	dium	26		<u>%</u>		
DG OF BORING N:\GINT\PR													

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Critor	ia for Accient	ing Group	Symbole and	So	ils Classification	Particle Size Identification	
	Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^a				Group Symbol		Boulders over 12" Cobbles 3" to 12"	
" E	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^c$	GW	Well-graded gravel ^d	Gravel Coarse	
grained Soils 50% retained c 200 sieve	More than 50% of coarse fraction	5% or less	s fines ^e	$C_u < 4$ and/or $1 > C_c > 3^{\circ}$	GP	Poorly graded gravel d	Fine	
etair eve	retained on	Gravels wit	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand	
aine % re 0 si	No. 4 sieve	More than 12	2% fines *	Fines classify as CL or CH	GC	Clayey gravel dtg	Coarse No. 4 to No. 10 Medium No. 10 to No. 4	
20.50	Sands	nds Clean S		$C_u \ge 6$ and $1 \le C_c \le 3^{c}$	SW	Well-graded sand h	Fine	
arse- than No.	coarse fraction	5% or less	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^{c}$	SP	Poorly graded sand h	Silt	
Coarse- more than No.			passes	Sands with	h Fines	Fines classify as ML or MH	SM	Silty sand ^{fg h}
	No. 4 sieve	More than	12% ⁱ	Fines classify as CL or CH	SC	Clayey sand ^{fg h}	on or above "A"	
led Soils passed the sieve	Silts and Clave	Inorganic	PI > 7 ai	nd plots on or above "A" line ^j	CL	Lean clay ^{kim}		
ed t	Silts and Clays Liquid limit		PI < 4 oi	plots below "A" line ^j	ML	Silt ^{k m}	Relative Density of	
d S ass ievi	less than 50	Organic		nit - oven dried < 0.75	OL	Organic clay ^{k m n}	Cohesionless Soils	
raine Iore p 200 s			+	nit - not dried	OL	Organic silt k 1 m o	Very loose 0 to 4 BPF Loose	
	Silts and clays	Inorganic		on or above "A" line	СН	Fat clay k I m	Medium dense 11 to 30 BPF	
jé b Ž	Liquid limit			elow "A" line	MH	Elastic silt k I m	Dense	
Fine 50% or N	50 or more	Organic		nit - oven dried < 0.75	ОН	Organic clay k 1 m p	Very dense over 50 BPF	
		<u> </u>		nit - not dried	OH	Organic silt k 1 m q	4	
Highly	Organic Soils	Primarily orga	anic matte	r, dark in color and organic odor	PT	Peat	Consistency of Cohesive Soils	


Based on the material passing the 3-in (75mm) sieve.

If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name. h

 $C_u = D_{60} / D_{10} C_c = (D_{30})^2$

C.

- If soil contains≥15% sand, add "with sand" to group name d е
 - Gravels with 5 to 12% fines require dual symbols
 - GW-GM well-graded gravel with silt
 - GW-GC well-graded gravel with clay
 - GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- f If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains ≥ 15% gravel, add "with gravel" to group name. h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC
- SP-SC poorly graded sand with clay If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.
- If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant.
- If soil contains > 30% plus No. 200, predominantly sand, add "sandy" to group name 1
- If soil contains≥ 30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- PI ≥ 4 and plots on or above "A" line. n.
- PI < 4 or plots below "A" line 0
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

Dry density, pcf	oc
Wet density, pcf	S
Natural moisture content, %	SG
Liqiuid limit, %	Ċ
Plastic limit, %	Ø
Plasticity index, %	qu
% passing 200 sieve	qp
	Wet density, pcf Natural moisture content, % Liqiuid limit, % Plastic limit, % Plasticity index, %

- Percent of saturation, %
- Specific gravity
- Cohesion, psf
- Angle of internal friction

Organic content, %

- Unconfined compressive strength, psf
 - Pocket penetrometer strength, tsf

..... over 12" No. 4 to 3/4" No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200 < No. 200, PI < 4 or below "A" line< No. 200, PI≥4 and on or above "A" line

elative Density of hesionless Soils

Very loose	
Medium dense	11 to 30 BPF
Dense	31 to 50 BPF
Very dense	over 50 BPF

tency of Cohesive Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "Н.

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards.

Appendix E

Retaining Walls W113, W115 and W116

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Foundation Analysis Design Recommendation Report Retaining Walls 113, 115, 116 and General Track Construction – 90% Design STA 2141+52 to STA 2155+62 Southwest LRT, West Segment Eden Prairie, Minnesota

Dear Mr. Demers:

Braun Intertec Corporation has completed the geotechnical evaluation for the retaining walls RTW-W113, RTW-W115, and RTW-W116 for the west segment of the Southwest Light Rail Transit (SWLRT) alignment passing through Eden Prairie, Minnesota. The following sections provide information regarding our opinions, methods, and recommendations for general track construction retaining wall foundation, associated embankments and general track construction in this area.

A. Project information

The west segment of the SWLRT project is proposing to construct a light rail transit line through the cities of Hopkins, Minnetonka, and Eden Prairie, Minnesota. This design report addresses general track construction, as well as the design and construction of three retaining walls that will support the track embankment along Flying Cloud Drive in Eden Prairie.

A.1. Type of Structure

Cast-in-place (CIP) concrete and modular block retaining walls will be utilized for wall design. The proposed CIP concrete walls will be supported by spread footing foundations founded at least 4 ½ feet below the lowest finished grade along the toe of the wall. The walls will be designed and constructed by others.

A.2. Location of Walls

We were provided with drawings showing the plan and profile for each of the three walls. The locations and additional information for the walls are provided below.

A.2.a. Wall RTW-W113

Wall RTW-W113 is proposed to be a modular block retaining wall located along the north side of the proposed SWLRT alignment, extending from about STA 2141+52 to STA 2146+79, for a length of about 534 feet and connects to the north abutment of the 494 Bridge. The wall height (from bottom of footing to top of rail) will be about 17 feet except for the east-most 140 feet where the footing will step up resulting in a wall height of about 12 feet.

A.2.b. Wall RTW-W115

Wall RTW-W115 is located along the north side of the proposed SWLRT alignment, extending from about STA 2152+92 to STA 2155+62, for a length of about 272 feet. The wall height (from bottom of footing to top of rail) will vary from about 7 feet at the west edge to about 24 feet at the east edge, with the greater height due to the approach for the Valley View Bridge.

A.2.c. Wall RTW-W116

Wall RTW-W116 is located along the south side of the proposed SWLRT alignment, extending from about STA 2152+77 to STA 2155+62, for a length of about 284 feet. The wall will be parallel to and across the tracks from Wall RTW-W115. The wall height (from bottom of footing to top of rail) will vary from about 8 feet at the west edge to about 22 feet at the east edge, with the greater height due an increase in top elevation for the abutment of the Valley View Bridge.

A.3. Embankment Construction

To construct the walls along the proposed alignment, embankment grade increases of up to 20 feet will be necessary. Grade raises of this magnitude will influence the design and construction of the proposed wall foundation types. However, the effects of the embankment stresses are accounted for in our foundation design recommendations.

B. Subsurface Investigation Summary

B.1. Summary of Borings Taken

Braun Intertec performed 10 SPT (standard penetration test) borings (2049SW, 2050SW, 2051ST 2052SW, 2053SW, 2054SB, 2123SW, 2124SW, 2127SW, and 2128SW) and two CPT (cone penetration test) soundings (2125CW and 2126CW) in the vicinity of the proposed wall alignments. Logs of the wall borings and soundings are included in the Appendix. A Boring & Sounding Location Sketch is also included, showing the locations of such wall borings and soundings.

B.2. Description of Foundation Soil and Conditions

The proposed retaining walls are generally underlain with sandy lean clay fill, followed by glacially deposited sands and clays to the termination depth of the borings. A more detailed description is provided below.

B.2.a. Topsoil

The borings initially encountered about 4 to 30 inches of topsoil. The topsoil consisted of sandy lean clay that was dark brown to black and moist.

B.2.b. Fill

Fill was encountered at the majority of the boring locations and consisted of sandy lean clay (CL), sandy silt (ML), and poorly graded sand (SP). Table 1 below illustrates the depth and type of fill material encountered.

Boring No.	Boring Elevation (ft)	Approximate Depth of Fill (ft)	Elevation at Bottom of Fill (ft)	Fill Composition
2123SW	901.5	27	874 ½	Sandy Lean Clay, Sandy Silt
2049SW	902.8	14	889	Sandy Lean Clay
2050SW	903.1	9	894	Sandy Lean Clay
2124SW	903.9	9	895	Sandy Lean Clay
2127SW	914.6	6	908 ½	Sandy Lean Clay
2128SW	914.8	5	910	Sandy Lean Clay
2151ST	912.4	4	908	Poorly Graded Sand with Silt
2052SW	909.2	7	902	Poorly Graded Sand
2053SW	914.1	1/2	913 ½	Topsoil
2054SW	899.1	1/2	989 ½	Topsoil

Table 1. Fill Depths Beneath Retaining Walls 113, 115, and 116

Note: No fill was encountered at Borings 2053SW and 2054SW

Penetration resistances varied from 3 to 27 blows per foot (BPF), although some of the higher penetration resistances were likely influenced by encountering a rock in the sampler.

B.2.c. Glacial Till

Glacial till soils were encountered throughout the soil profile across the lengths of the walls. The till consisted of lean clay with sand, sandy lean clay, clayey sand, silty sand, and silt. The till soils contained a trace to some gravel, were moist to wet or waterbearing, and were brown. Penetration resistances varied from 9 to 42 BPF indicating the cohesive soils were rather stiff to hard.

B.2.d. Glacial Outwash

Glacial outwash soils were also frequently encountered throughout the soil profile. The glacial outwash soils consisted of poorly graded sand and poorly graded sand with silt. The sands generally contained some gravel. Penetration resistances varied from 8 BPF to 50 blows per 4 inches of penetration, indicating the soil was loose to very dense.

B.3. Summary of Water Level Measurements

SPT boring logs note water levels during drilling ranging from approximate 844 to 895 feet above mean sea level (MSL). This large range in elevation indicates the groundwater encountered was in a perched condition. Temporary water level indicators installed several hundred feet down-track have been periodically monitored and noted groundwater near an elevation of 841. We expect static groundwater levels to be near 841. Seasonal and annual fluctuations of groundwater, however, should be anticipated.

C. Foundation Analysis

Based on the soil conditions encountered in the borings and loads anticipated on the wall, we recommend the use of spread footing foundations for support of the CIP walls and a leveling pad consisting of coarse filter aggregate wrapped in geotextile fabric to support the facing of the modular block wall. An optional concrete leveling pad could also be placed. Based on the depth of fill, portions of the footings for RTW-W113 will bear in the fill. Based on the borings and soundings, and our calculations, the fill appears to be competent for wall and embankment support, however, there is inherent uncertainty in fill soils.

To reduce the potential for settlement exceeding the service limit, we recommend undercutting foundations a minimum of five feet, or extending through the fill, whichever is less. We also recommend preloading the areas of the walls where new embankment heights will exceed 10 feet from existing grades to reduce the potential of settlement exceeding one-inch due to the embankment loads. A second option for reducing settlement at RTW-W113 is to support the wall and embankment with rammed aggregate piers.

The wall suitability will be controlled by the service limit state (settlement). A maximum total settlement of one-inch is specified for the CIP retaining wall structures. Total settlement is defined as the sum of primary consolidation and secondary consolidation.

C.1. Embankment and Slopes

The track embankments associated with the walls will consist of retaining wall backfill. The MSE wall backfill will also contain geogrid reinforcement. Preparation will include topsoil removal, limited removal of fill beneath the footings, and backfilling and filling with the proposed track section.

C.1.a. Settlement

There are two known existing utilities currently beneath RTW-W113 which include a gas main and a water force main. Existing large utilities remaining below the walls and associated embankments have not been considered for settlement since details of such utilities are unknown at this stage, and it is assumed utilities will be re-routed from beneath the proposed track area. We assume that small utilities will be rerouted from beneath the walls and embankments.

The settlement ranges noted below are a combination of both settlements from the retaining walls loads as well as settlement from the raise in grade for the embankment.

C.1.a.1. Wall RTW-W113

Based on the Plan and Profile Drawings provided to us, about 3 to 11 feet of new fill will be required to construct the embankments. Based on this, we estimate total settlement to range from about ¾ inches to approximately 1 ¾ inches. With the recommended soil correction, preloading, or aggregate pier support, overall settlement will be less than one-inch.

C.1.a.2. Walls RTW-W115 and RTW-W116

Based on the Plan and Profile Drawings provided to us, about 3 to 18 feet of fill will be required to construct the embankments. Based on this, we estimate total settlement will be less than one-inch.

C.1.b. Bearing Capacity

Based on our calculations and assumptions for the CIP Walls, the soil conditions identified in the borings and soundings are anticipated to provide a bearing resistance in excess of the required capacity shown on the attached Minnesota Department of Transportation (MnDOT) Retaining Wall Standard Plant Sheet for a 2-foot live load surcharge. However, a limited subcut will be required for several hundred feet along the western portion of RTW-W113.

C.1.c. Global Stability

Based on the proposed wall heights, slope angles, and the competent native soils encountered in the borings and soundings, the factor of safety is anticipated to exceed the required minimum value of 1.5. Local stability of the walls and associated reinforced embankments, which is separate from the global stability, will be determined by the retaining wall engineer.

C.2. Spread Footing Foundations

C.2.a. Cast-in-Place Concrete Walls

Settlements were calculated based on three methods. The first is the Hough method with Boussinesq and Westergaard stress distributions, which utilizes the standard penetration test (SPT) values from the soil borings. The second is the CPT method or Constrained Modulus method, which utilizes the in place elastic modulus of the soil that is calculated from cone readings that were taken in the field. The third is the Menard method, which is based on pressuremeter determinations of soil parameters that were collected in the field or modified from the SPT values from the soil borings. For the Menard Method, where pressuremeter testing was not performed, conservative correlations were used to estimate pressuremeter values based on N₆₀ factors provided in Federal Highway Administration (FHWA) Publication No. FHWA-IP-89-008. Tables 5 and 6 from this publication are in the Appendix for reference. After these three methods were evaluated, the results were averaged.

Terzhagi's strength limit state is also included on the nominal bearing graphs in the Appendix, for reference. The strength limit state (bearing) will not control design.

The service limit state (settlement) will control the design and the average service limit state should be used for design of Bridge substructures. A maximum settlement of one-inch is specified for this project.

C.2.b. Modular Block Walls

The spread footings (concrete leveling pads) are not true footings in that the vertical and horizontal loads are not carried only by the footings but also by the reinforced earth behind the wall. Assuming a minimum "footing" width of 0.7H (wall height), it is our opinion the backfill and native granular soils will have adequate bearing capacity for support of the wall. The global stability assumption in these soils confirms the adequacy of the bearing capacity of the "footing." The typical leveling pad, detailed on the attached MSEW-1 sheet in the Appendix, will be adequate for the intended purposes of the pad.

C.3. Track Construction

Throughout the track profile, cuts of approximately 2 to 12 feet and fills of 2 to 17 feet are anticipated for construction of the Guideway Section below the track. Based on the proposed design sections, the Guideway will be composed of a minimum of 12-inches of subballast material, over a 40-inch thick layer of granular material.

C.4. Summary of Design Assumptions

C.4.a. Embankment Heights, Unit Weights, Side Slopes, and End slopes

The wet unit weight of the anticipated compacted fill soils has been assumed as 120 pounds per cubic foot (pcf). The top surface behind all walls will be the associated tracks for the SWLRT and will be relatively flat. The slope in front of all walls will be 1:4 (V:H) or flatter. Information regarding the walls is provided in Table 2.

Retaining Wall Location	Existing Grade Elevations (ft)	Corresponding Proposed Wall Heights (ft)	Approximate Footing Elevation (ft)
RTW-W113	904-912	9 to 16	898-904
RTW-W115	900-915	7 to 22	895-905
RTW-W116	901-909	6 to 20	897-904

Table 2: Design Information for Walls

C.4.b. Retaining Wall Loading Information

A 2-foot live load surcharge will be used for the design of all CIP walls supporting track embankments. For the CIP concrete walls we recommend the design loads and anticipated footing widths be based on anticipated wall heights and the MnDOT standard plans included in the *Cast-in-Place Retaining Wall Details* section of the Appendix.

C.4.c. Design Methodologies

The LRFD (Load and Resistance Factor Design Method) was used for design of the retaining wall foundations supported on shallow foundations. Resistance factors were obtained from the Sixth Edition of the AASHTO (American Association of State Highway and Transportation Officials) LRFD Bridge Design Specifications (6th edition with 2013 interim revisions).

The ASD (Allowable Strength Design Method) was referenced for design of the retaining wall footings supported on shallow foundations. Strength design and safety factors were taken from the MnDOT design criteria for retaining walls with a 2-foot live load surcharge.

C.4.d. Modular Block Wall Loading Information

It is assumed a level fill will be used for the design of the MSE abutment walls.

C.5. Construction Considerations

C.5.a. Design of Temporary Slopes and Shoring Limits

We recommend that permanent slopes match the existing slopes, except they should not be steeper than 1V:2H. Select Granular Borrow is anticipated have an angle of internal friction greater than 30 degrees. This soil could be temporarily placed at a slope of 1V:1 ½ H, but if not retained by a CIP embankment, must be limited to 1V:2H or flatter for the permanent condition.

C.5.b. Subcut Recommendations and Backfill Requirements

To reduce the potential for settlement exceeding the service limit, we recommend subcutting fill soils present beneath the foundations a minimum five feet, or until native soils are encountered, whichever is less. Based on proposed elevations, the natural glacial soils will not be encountered until STA 4+00 on RTW-W113. We anticipate native soils will be encountered at footing elevations which will not require a subcut throughout RTW-W115 and RTW-W116.

The extent of the excavation required for the walls should extend horizontally beyond the embankment limits/footing dimensions a distance equal to the depth of the subcut. Exposed excavation bottoms,

deemed suitable by a Geotechnical Engineer, should be surface compacted by a large vibratory sheepsfoot compactor prior to fill or footing placement.

We recommend the use of engineered fill to establish slope subgrade or backfill for any subcuts of marginal soils under the proposed CIP spread foundation foundations, oversize areas, or reinforced zones. Please refer to Table 3 below for material and compaction specifications based on the 2014 MnDOT Standard Specification for Construction.

Material	Material Specification	Compaction Specification		
Subgrada Fill	Onsite Material Free of Debris	100% of standard Proctor Density (ASTM		
Subgrade Fill	and Organic Material	D698)		
Leveling Pad Beneath	MnDOT 3138	MnDOT 2211.3C		
Footings/Block Facing	WIIDOT 3138			
Modular Block Wall Leveling	MnDOT 3149.2H	MnDOT 2211.3C		
Pad	WIIDOT 3149.211			
Retaining Wall Backfill	MnDOT 3149.2D2	MnDOT 2105.3F		
Guideway Select Granular	MnDOT 3149.2B2	100% of standard Proctor Density (ASTM		
Layer		D698)		
Guideway Subballast	MnDOT 3138	MnDOT 2211.3C		

Table 3. Material and Compaction Specification for Backfill and Fill

We recommend backfill material be placed in uniform layers approximately parallel to the profile, extending the full width of the retaining structures. We recommend backfill material be placed in lift thicknesses not exceeding 12 inches.

C.5.c. Construction Staging Requirements

Based on the borings and soundings, and the estimated settlements, which are estimated to exceed one-inch at RTW-W113, we recommend a short waiting period for the portions of the embankment that extend higher than 10 feet at RTW-W113. Please refer to Section D.4 of this report for details related to the recommended waiting period and staging requirements and the Appendix for a typical preload embankment sketch at each retaining wall location.

C.5.d. Rammed Aggregate Pier for Wall and Embankment Construction

An alternative method to support the walls and embankment at RTW-W113 is the use of aggregate piers (i.e. stone columns). Aggregate piers are composed of densely compacted, well-graded aggregates such as highway/roadway base course. They are constructed by drilling a shaft or advancing a mandrel through the looser or softer soil, densifying and pre-stressing the soil at the base of the

hole with a proprietary high-energy impact compactor, and backfilling the hole with thin lifts of aggregate compacted to about 100 percent of its maximum modified Proctor dry density, ASTM D 1557.

High capacity side friction is developed in aggregate pier foundation elements, caused by build-up of lateral soil stresses during compaction of the aggregate. In addition to the side friction provided by the undulating sides of the aggregate piers and the increased lateral soil stresses, the bottoms of the aggregate piers are supported by a combination of pre-stressing and densification of the subsoils at the bottom of aggregate pier cavities during compaction. This develops aggregate "bulbs" at the bottom of the aggregate piers.

This process creates a series of very stiff, very dense foundation elements that reduce settlement from structural or embankment loads. Conventional footing foundations and embankments constructed over the aggregate pier-reinforced soil accomplish the load transfer.

In our opinion, the clayey fill soils beneath the RTW-W113 from STA 0+00 to STA 4+00 (approximately) can be improved with rammed aggregate piers. If the adjacent 494 Bridge abutment or neighboring structures are sensitive to vibrations, we would recommend vibrations be further evaluated and the licensed design/build contractor be consulted to provide further information in regards to vibration. Since rammed aggregate piers are a proprietary system, the design should be customized for this project by a licensed design/build contractor.

Backfill placed for the embankment and walls should follow the recommendations from Table 2 above.

If rammed aggregate piers are used to support the wall and embankment, we recommend extending the piers past the end of the embankment for RTW-W113 to include the north abutment for the 494 Bridge. Please refer to the report for the Bridge over I-494 for soils conditions and recommendations associated with the bridge construction.

C.5.e. Track Construction

Existing ground surface elevations vary between STA 2142+00 to STA 2155+50 with respect to the proposed top of rail elevation. Cuts on the order of 12 feet and fills of up to 17 feet will be required to construct the track embankment.

We recommend excavating down to the proposed bottom of subgrade for the Guideway section. We expect a combination of native soils and fill will be encountered. We recommend removing all vegetation, topsoil, and any soft or wet soils encountered at subgrade elevations. We do not

recommend removing the entire depth of the fill soils if they appear suitable to support the proposed track construction. Additional excavations may be necessary beyond what is noted in the boring logs. This should be evaluated in the field on a case by case basis.

After the fill has been evaluated, and any additional corrections made, the subgrade soils should be surface compacted with a large, vibratory sheepsfoot compactor prior to the placement of fill or before construction of the Guideway begins. Please refer to Table 2 in Section C.5.b for the compaction specifications and guidelines.

D. Retaining Wall Foundation Recommendations

D.1. Bearing Capacities and Associated Resistance Factors/Factors of Safety

Based on the soil conditions, recommended soil corrections, or aggregate pier construction, the service limit bearing pressure exceeds the anticipated soil loading based on the MnDOT Standard Plan for CIP and Modular Block Retaining Walls Associated factors of safety are also provided on the attached plan.

D.2. Recommended Lateral Design Soil Parameters

The recommended lateral soil parameters to be used for design are provided in Table 4.

Soil Type	Angle of Internal Friction (degrees)	Effective unit Weight (pcf)	Coefficient of Sliding Friction Rough Concrete	Active Earth Pressure Coefficient	At-Rest Earth Pressure Coefficient
Select Granular Borrow	35	120	0.6	0.27	0.43
Granular Borrow	30	120	0.5	0.33	0.50
Onsite Sandy Lean Clay	28	125	0.4	0.36	0.53

Table 4: Lateral Soil Parameters

D.3. Recommended Foundation Types, Sizes and Embedment Depths

We recommend that the walls be supported on spread footings, following the MnDOT standard plans included in the *Cast-in-Place Retaining Wall Details and Modular Block Retaining Wall* sections of the Appendix. The size of these footings shall be determined based upon the stem wall or wall height by the wall designer. If stem wall heights/footing sizes change during retaining wall design, we should be notified to confirm that bearing capacity and settlement criteria are within the recommended tolerances. We recommend that the footings be embedded at least 4-1/2 feet below grade (bottom of footing) for frost protection.

D.4. Waiting Periods for Embankments

In areas of RTW-W113 where the fill height will exceed 10 feet, we recommend an estimated embankment waiting period of one to two months once the embankment preload has been constructed or until settlement has essentially ceased. To control the settlement of the underlying soil, we recommend the preload be constructed near final grade of the track alignment. The waiting period should reduce the majority of the settlement of the foundation soils due to the embankment raise in grade as discussed in Section C.1. The embankment preload should be constructed with, at a minimum, a top trapezoidal width and length that is the vertical projection of the retaining wall footing dimension (width) with side slopes that extend at a 1V:1 ½ H slope or flatter. A typical preload embankment cross section sketch along each wall is included in the Appendix of this report.

Settlement plates are recommended be installed every 100 feet along the retaining wall preload embankment and monitored to evaluate the rate and amount of settlement. The geotechnical engineer will review the monitoring data and make the determination of when the end of the waiting period will be. The settlement plates should be surveyed daily for one week after construction, and every other day for two additional weeks. Beyond the initial three weeks, we recommend surveying the plates biweekly. Settlement plates should be surveyed until settlement has leveled off to an acceptable limit to where the contractor can proceed with removal of the preload embankment and construction of the footings.

The waiting period can likely be reduced with the use of rammed aggregate piers. The extent of the waiting period will be determined upon design of the aggregate pier system.

D.5. Subexcavations

To reduce the potential for settlement exceeding the service limit, we recommend subcutting the soils beneath the foundations a minimum of five feet or extending through the fill, whichever is less. Based on proposed elevations, the natural till soils will not be encountered above the proposed subcut elevation until approximately STA 4+00 of RTW-W113. Native soils are expected to be encountered at bottom of footing elevations for the remaining areas of RTW-W113, and throughout RTW-W115 and RTW-W116. Subexcavations will not be required in these areas. According to the cross sections, it appears that topsoil and fill will be excavated beneath the track during construction of the retaining walls.

The extent of the excavation required for the track or walls should extend horizontally beyond the embankment limits/footing dimensions a distance equal to the depth of the subcut. Exposed excavation bottoms, deemed suitable by a Geotechnical Engineer, should be surface-compacted by a large vibratory sheepsfoot compactor prior to fill or footing placement.

The Geotechnical Engineer should observe and evaluate the bottoms of the excavations for the track, embankments and foundations to confirm the soils are similar to those encountered in the soil borings and CPT soundings. The Geotechnical Engineer should determine the need for excavation of poor soils and replacement with compacted fill. The evaluation may include test pits, hand-auger borings, dynamic cone penetrometer soundings, and possibly other tests.

To provide lateral support to replacement backfill, additional required fill and the structural loads they will support in areas of native mineral soils, we recommend oversizing (widening) the excavation 1 foot horizontally beyond the outer edges of the footing for each foot the excavations extend below bottom-of-footing subgrade elevations. The excavation shall be backfilled with Select Granular Borrow in accordance with the Specified Density Method (2105.1A7).

D.6. Temporary Slopes and Shoring Limits

Temporary slopes in Select Granular Borrow can be constructed at 1V:1 ½ H or shallower. Temporary slopes constructed in granular borrow or natural granular material encountered at the site are recommended to be constructed at 1V:1.5H or shallower. In a temporary condition; these slopes have a Factor of Safety against global failure in excess of 1.3.

E. Material Classification and Testing

E.1. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM International Standard Practice D 2488. A chart explaining the classification system is attached. Samples were sealed in jars or bags and returned to our facility for review and storage

E.2. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures.

E.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced, and again after auger withdrawal. The boreholes were then backfilled or sealed with bentonite grout.

F. Qualifications

F.1. Variations in Subsurface Conditions

F.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore, strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

F.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

F.2. Continuity of Professional Responsibility

F.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

F.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

F.3. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

G. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If there are questions regarding these bridge foundation recommendations, please call Josh Kirk at 952.995.2222 or Ray Huber at 952.995.2260.

Sincerely,

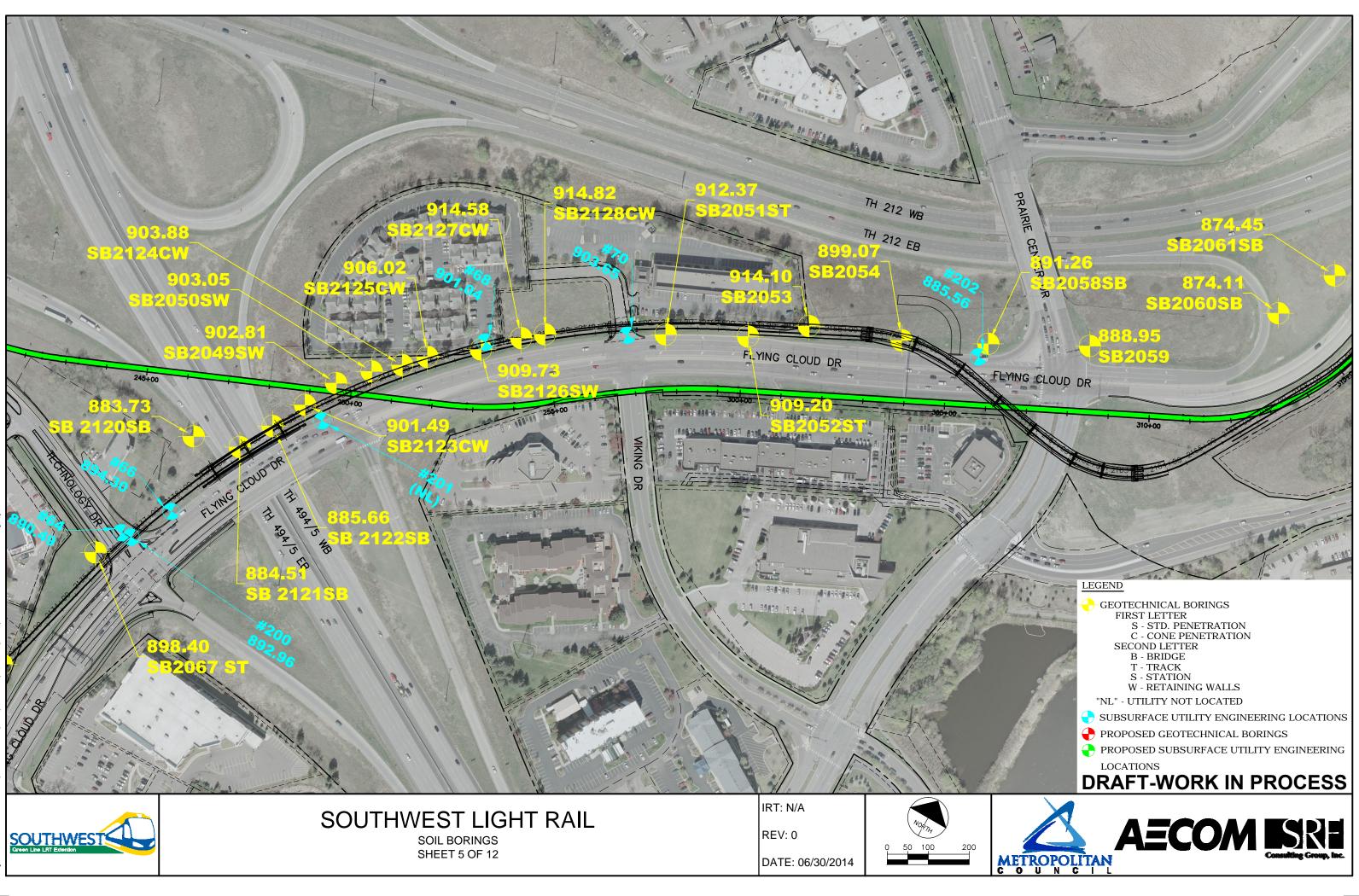
BRAUN INTERTEC CORPORATION

Professional Certification:

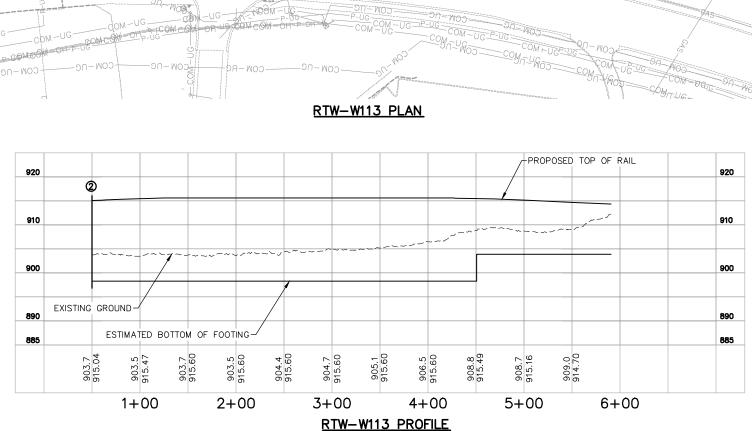
I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

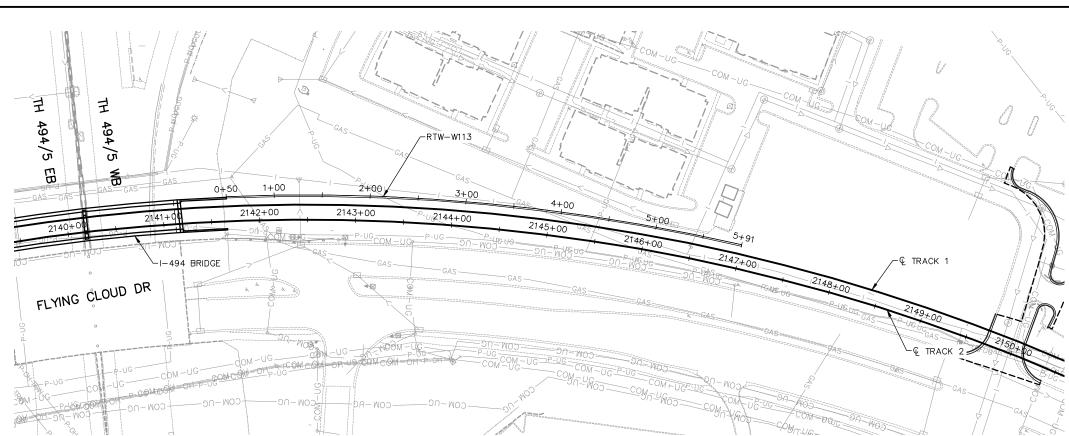
Joshua L. Kirk, PE Associate Principal-Project Engineer License Number: 45005

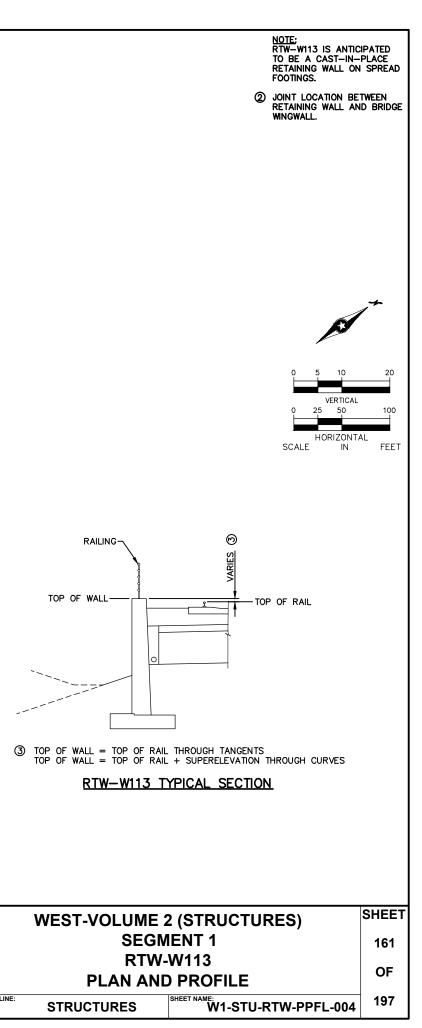
Reviewed by:

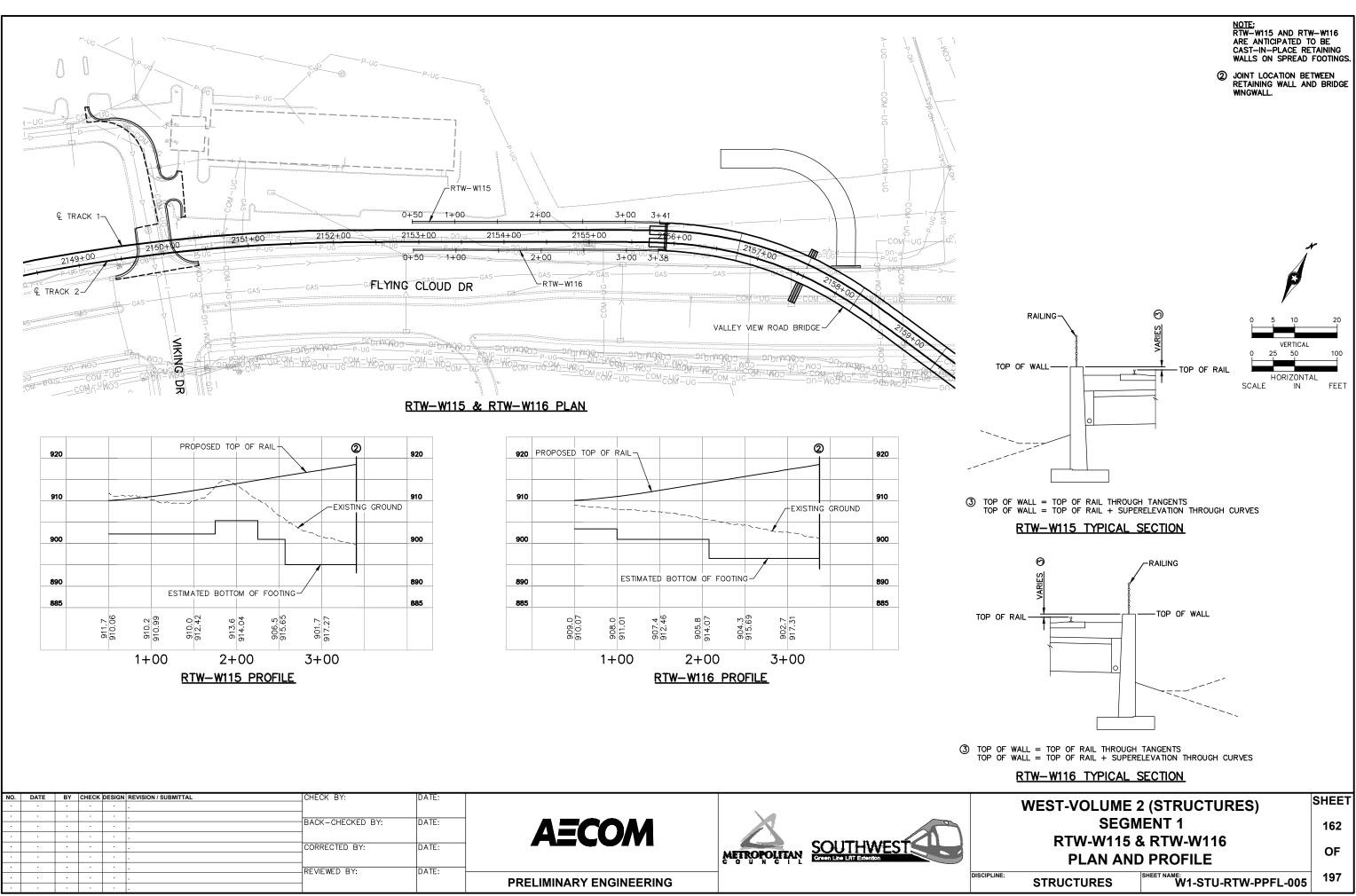

Ray A. Huber, PE Vice President-Principal Engineer

Appendix:


Boring Location Sketch Retaining Wall RTW-W113, RTW-W115, RTW-W116 Plan and Profile Sheet Standard Penetration Boring Logs 2049SW, 2050SW, 2051ST, 2052SW, 2053SW, 2054SW, 2123SW, 2124SW, 2127SW, and 2128SW CPT Sounding Logs 2125CW and 2126CW Limit State Graphs for Walls RTW-W113 and RTW-W115/116 MnDOT Standard Sheet No. 5-297.632, 1 of 4 (2' LL Surcharge, Spread Footing Supported Retaining Walls) MnDOT Standard Sheet No. 5-297-641 (Modular Block Retaining Wall, Soil Reinforcement for level fill, Case 1) Publication No. FHWA-IP-89-008 N60 Correlation Tables MnDOT Standard Preload Plan Sheet 297.233 SPT Descriptive Terminology CPT Descriptive Terminology




APPENIDX



Ē	NO. DAT	TE BY	CHEC	K DESIGN	REVISION / SUBMITTAL	CHECK BY:	DATE:			
		•		•						
	· ·	• •	•	•						
			· ·	· ·		BACK-CHECKED BY:	DATE:	AECOM		
		•	•	•				AELUM		
		•	•	· ·		CORRECTED BY:	DATE:		SOUTHWEST	4
		•	•	•					METROPOLITAN Green Line LATE Attention	1
		•	•	•		REVIEWED BY:	DATE:			
ΞĒ				•				PRELIMINARY ENGINEERING		DISCI
			•							

		ct BL-13		BORING	:		204	49S	W
SWLR	т	ALEVALU Minnesot		LOCATIO	DN: Se	e atta	ache	d sketo	ch.
DRILLE	R: M.	Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	11/2	2/13		SCA	_E: 1" = 4 '
Elev. feet 902.8	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1 ²	110-1-2908)	BPF	WL	MC %	qp tsf	Tests or Note
902.2	0.6	FILL	Sandy Lean Clay, with roots, dark brown, mo (Topsoil) FILL: Sandy Lean Clay, brown, moist.	,	23 27 9		9 9		Pushed rock.
888.8	14.0	CL	Trace of fibers at 12 feet. LEAN CLAY with SAND, trace Gravel, brown rather stiff to very stiff. (Glacial Till)	- - , wet, - -	10		24	3	
			Waterbearing sand lense at 25 feet.		25		17	3 1/4	DD=116 pcf
873.8	29.0	SM	SILTY SAND, fine- to medium-grained, with s Gravel, brown, wet to 30 feet then waterbear to very dense. (Glacial Outwash)	some ing, dense	62	Ţ			

		AL EVALU	3-00213	BORING					cont	.)
SWLRT				LOCATIO	DN: Se	e att	ache	d ske	tch.	
winne	ionka,	Minneso	.a							
DRILLE	R: M.	Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	11/2	2/13		SCA	LE:	1'' = 4'
Elev. feet 870.8	Depth feet 32.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487 Rock-USACE EM111	0-1-2908)	BPF	WL		qp tsf	Test	s or Note
feet 870.8	feet 32.0	Symbol	END OF BORING. Water observed at 30 feet with 30 feet of hollo auger in the ground. Water not observed to cave-in depth of 24 feet immediately after withdrawal of auger. Boring immediately backfilled with bentonite gr	w-stem	BPF 34 38			qp tsf	P200=	

		ect BL-1		BORING	:		20	50S	N
SWLR ⁻	Т	AL EVALU		LOCATIO	DN: Se	e att	ache	d sketo	ch.
	-	Minnesot							
DRILLE		Takada	METHOD: 3 1/4" HSA, Autohammer	DATE:	11/2	2/13		SCAI	_E: 1" = 4'
Elev. feet 903.1	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1 ²	110-1-2008)	BPF	WL	MC %	qp tsf	Tests or Notes
		CL	SANDY LEAN CLAY, with roots, black, mois				70		
902.2	1.0	FILL	(Topsoil) FILL: Sandy Lean Clay, trace Gravel, brown feet then wet.	F	17		8		
_					11		11		
894.1	9.0	CL	SANDY LEAN CLAY, trace Gravel, brown, w very stiff. (Glacial Till)	et, stiff to 	17		26	3	
<u>889.1</u> _	14.0	SC	CLAYEY SAND, fine- to medium-grained, tra brown, moist, medium dense. (Glacial Till)		15				
884.1	19.0	SM	SILTY SAND, fine- to medium-grained, trace brown, moist to 30 feet then waterbearing, m dense. (Glacial Till)	Gravel, edium	20		13		P200=40%
					26				
					20	Ţ			

			ct BL-1					BORING:		205	50S	W (c	ont.)	
	GEOTE SWLR1		AL EVALU	ΙΑΤΙΟΙ	Ν			LOCATIC	N: Se	e att	ache	d sketc	h.	
tions			Minneso	ta										
bbrevia	DRILLE	R: M.	Takada		METHOD:	3 1/4" HSA, /	Autohammer	DATE:	11/2	22/13		SCAL	E:	1" = 4'
nation of a	Elev. feet 871.1	Depth feet 32.0	Symbol	(Soi		escription of N or D2487, Rocl	laterials k-USACE EM1110	0-1-2908)	BPF	WL	MC %	qp tsf	Tests	or Notes
LOG OF BORING N:\GINT\PROJECTS\MINNEAPOUS\2013\00213.GPJ BRAUN_V8_CURRENT.GDT 2/5/14 16:46 (See Descriptive Terminology sheet for explanation of abbreviations)			CL	SILT brow dens SAN brow END Wat auge	I-ASTM D2488 TY SAND, fine vn, moist to 30 se. (C IDY LEAN CL vn, wet, very s O OF BORING er observed a er in the grour	or D2487, Rock e- to medium-(0 feet then wa Glacial Till) (cc Glacial Till) (cc (Glacial T G. at 30 feet with nd.	k-USACE EM1110 grained, trace G iterbearing, mec ontinued) avel, with Sand I	enses,	21					
BORING N:\GINT\PR														
LOG OF	_												00500	

BL-13-00213

	n Proje ECHNICA			3-00213	BORING			2052ST
SWLR ⁻					LOCATIO Lat.: 44 See attao	5153.9	7917	6940.9; E: 490049.5; ; Long.: -932518.1467;
DRILLE	R: M.	Takad	a	METHOD: 3 1/4" HSA, Autohammer	DATE:	11/2	27/13	SCALE: 1" = 4'
Elev. feet 909.2	Depth feet 0.0	Sym	ıbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM111	0-1-2908)	BPF	WL	Tests or Notes
908.5	0.8	CL FILL		LEAN CLAY, black, moist. (Topsoil) FILL: Poorly Graded Sand, fine- to medium-gr with Gravel, dark brown, moist.	/- ained, 	11		
902.2	7.0	CL		Occasional Lean Clay lenses at 5 feet. SANDY LEAN CLAY, with Gravel, brown, wet, hard. (Glacial Till)	stiff to	42		
					-	24 50/6"		No recovery. Rock encountered. Offset & redrilled from 12 1/2 feet.
-					-	16		
						16		No recovery at 20 feet.
					-	39		
_				Occasional Clayey Sand lenses at 25 feet.	-	47		
880.2	29.0	SC		CLAYEY SAND, fine- to medium-grained, trace brown, moist, medium dense. (Glacial Till)	e Gravel,	30		

ſ		n Proje							BORING		2052	ST (cont	.)
/iations)	SWLR	ECHNICA F etonka,				N			LOCATIC Lat.: 445 See attac)N: N: 5153.9	12694 7917;		
abbrev	DRILLE	:R: M.	Takad	а		METHOD:	3 1/4" HSA, Au	tohammer	DATE:	11/2	7/13	SCALE:	1" = 4'
anation of a	Elev. feet 877.2	Depth feet 32.0	Sym	ıbol	-	-ASTM D2488	scription of Mat or D2487, Rock-U	JSACE EM1110		BPF	WL	Tests or	Notes
(See Descriptive Terminology sheet for explanation of abbreviations)		39.0			CLA brow	n, moist, med	ine- to medium lium dense. lacial Till) <i>(con</i> i	-	e Gravel, 	19			
Desc			CL		SAN stiff.	DY LEAN CL	AY, trace Grave	el, brown, wet	, very				
N:\GIN1\PROJECTS\MINNEAPOLIS\Z013\U0213.GPJ BKAUN_V8_CUKREN1.GD1 3/28/14 15:18	868.2	41.0			Wate auge	OF BORING er not observe r in the groun ng immediatel	ed with 39 1/2 fe d.		stem	21			
LUG UF BURING	_								_				

BL-13-00213

		BORING:			20	53S	W	
		Lat.: 445	5154.93	3526;	L			
Barber	METHOD: 3 1/4" HSA, Autohammer	DATE:	11/2	7/13		SCA	LE: 1	" = 4'
			BPF	WL	MC %	qp tsf	Tests o	Notes
CL CL SM ML	(Soil-ASTM D2488 or D2487, Rock-USACE EM111 SANDY LEAN CLAY, trace roots, dark brown, (Topsoil) SANDY LEAN CLAY, trace Gravel, brown, mo (Glacial Till) SILTY SAND, fine- to medium-grained, trace O brown, moist, medium dense. (Glacial Outwash) Sandy Lean Clay layer at 10 feet. SANDY SILT, with occasional Silt lenses, brow dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace O	wet. ist, stiff. 	BPF 13 26 25 27 33 31 24 33	WL	%		Tests of P200=329	
			29 28 28					
	AL EVALUA Minnesota	Symbol Description of Materials Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM111 CL SANDY LEAN CLAY, trace roots, dark brown, (Topsoil) SANDY LEAN CLAY, trace Gravel, brown, mo (Glacial Till) SM SILTY SAND, fine- to medium-grained, trace O brown, moist, medium dense. (Glacial Outwash) ML SANDY SILT, with occasional Silt lenses, brow dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace O brown, moist, medium dense.	AL EVALUATION LOCATIC Minnesota LOCATIC Barber METHOD: 3 1/4" HSA, Autohammer DATE: Symbol Coll-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) OATE: CL SANDY LEAN CLAY, trace roots, dark brown, wet. (Topsoil) ////////////////////////////////////	AL EVALUATION Minnesota Barber METHOD: 3 1/4" HSA, Autohammer DATE: 11/2 Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) CL SANDY LEAN CLAY, trace roots, dark brown, wet. (Topsoil) SANDY LEAN CLAY, trace Gravel, brown, moist, stiff. SANDY LEAN CLAY, trace Gravel, brown, moist, moist, moist, medium dense. (Glacial Outwash) ML SANDY SILT, with occasional Silt lenses, brown, moist, dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Slacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Slacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Slacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, SILTY SAND, fine- to medium dense. SILTY SAND, fin	AL EVALUATION Minnesota Barber METHOD: 3 1/4" HSA, Autohammer DATE: 11/27/13 Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) CL SANDY LEAN CLAY, trace Gravel, brown, met. CL SANDY LEAN CLAY, trace Gravel, brown, moist, stiff. CL SANDY LEAN CLAY, trace Gravel, brown, moist, stiff. (Glacial Outwash) ML SANDY SLT, with occasional Silt lenses, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, SM SILTY SAND, fine- t	AL EVALUATION Minnesota Barber METHOD: 3 1/4" HSA, Autohammer DATE: 11/27/13 Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) CL SANDY LEAN CLAY, trace Gravel, brown, wet. (Grapsoil) SANDY LEAN CLAY, trace Gravel, brown, moist, stiff. (Glacial Till) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) ML SANDY SILT, with occasional Silt lenses, brown, moist, dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) 31 12 SM SILTY SAND, fine- to medium-grained, trace Gravel, January Lean Clay layer at 10 feet. 33 4 24 5 25 7 26 7 27 27 28 28 28 29 28 28	AL EVALUATION Minnesota IDENTIFY SANDY LEAN CLAY, trace Gravel, CIacial Outwash) SILTY SANDY SILT, with occasional Silt lenses, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash) SM SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, dense. (Glacial Outwash)	AL EVALUATION Minnesota Lat:::::::::::::::::::::::::::::::::

GEOTECHNICAL EVALUATION LOCATION: N: 127037.7; E: 490165.8; SWLRT Lat.: 445154.93526; Long.: -932516.53314 Minnetonka, Minnesota See attached sketch.	Braun P				BORING	:	205	53S	W (cont.)
Elev. feet Depth feet Description of Materials BPF WL MC qp Tests or Note 882.1 32.0 Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) BPF WL MC qp tsf Tests or Note 882.1 32.0 Symbol SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) (continued)	SWLRT				Lat.: 44	DN: N: 5154.9	12 [.] 3526	7037. ; L	7; E	: 490165.8;
feet feet Description of Materials BPF WL MC qp Tests or Note 882.1 32.0 Symbol (Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908) % tsf % tsf 882.1 32.0 Symbol SILTY SAND, fine- to medium-grained, trace Gravel, brown, moist, medium dense. (Glacial Outwash) (continued)	DRILLER:	M. I	Barber	METHOD: 3 1/4" HSA, Autohammer	DATE:	11/2	27/13		SCAI	LE: 1" = 4'
875.1 39.0 CL SANDY LEAN CLAY, trace Gravel, gray, wet, stiff. (Glacial Till) 873.1 41.0 END OF BORING. Water not observed with 39 1/2 feet of hollow-stem auger in the ground. 15	feet fe	et	Symbol	-	10-1-2908)	BPF	WL			Tests or Note
CL SANDY LEAN CLAY, trace Gravel, gray, wet, stiff. (Glacial Till) 15 873.1 41.0 END OF BORING. Water not observed with 39 1/2 feet of hollow-stem auger in the ground. 15				SILTY SAND, fine- to medium-grained, trace (brown, moist, medium dense. (Glacial Outwash) <i>(continued)</i>		25				
873.1 41.0 15 END OF BORING.	875.1	39.0	CL	SANDY LEAN CLAY, trace Gravel, gray, wet,	stiff.					
END OF BORING.	873.1	41.0				15				
auger in the ground.				END OF BORING.						
Boring immediately backfilled with bentonite grout.	-				-stem	-				
				Boring immediately backfilled with bentonite g	rout. –	-				
	_									
Image: Solution of the second sec	-				-	-				
	-				-	-				
	-				-	-				
	-									
· ·	-				-	-				
	-				_					
	-				-					
	-					-				
	-				-	-				
	-				-					
	-									
	-				-	-				
-	-				-					
	-				-					

GEOTECHNICAL EVALUATION SWURT LOCATION: N: 1271204. E 400379: LOCATION: N: 1271204. E 4004444444444444444444444444444444					8-00213		BORING:			2054SB	
B78.1 21.0 SP POORLY GRADED SAND, fine- to coarse-grained, with Gravel, brown, moist, medium dense to dense. (Glacial Outwash) 13 TW 31	SWLR	Г					Lat.: 445	155.7	5238	; Long.: -932	2513.57316
feet Description of Materials BPF WL Tests or Notes 899.1 0.0 Symbol SULTY SAND, fine- to medium-grained, drak brown, moist. 33	DRILLE	:R: M.	Belch		METHOD: 3 1/4" HSA, Autoham	mer	DATE:	11/2	7/13	SCALE:	1'' = 4'
SM Inoist. (Topsoli) SILTY SAND, fine- to medium-grained, with Gravel, with occasional Lean Clay lenses, brown, moist, medium dense. (Glacial Outwash) 38 892.1 7.0 SM SILTY SAND, fine- to medium-grained, trace Gravel, brown to 20 feet then gray, moist, medium dense. (Glacial Outwash) 16 16 Direct Shear: @30 degrees. 16 17 16 17 878.1 21.0 13 878.1 21.0 SP POORLY GRADED SAND, fine- to coarse-grained, (Glacial Outwash) 13 878.1 21.0 13 878.1 21.0 13 878.1 21.0 TW 38 TW 31	feet	feet	Sym	bol	-)-1-2908)	BPF	WL	Tests or	Notes
	899.0	7.0	SM	bol	SILTY SAND, fine- to medium-grained, moist. (Topsoil) SILTY SAND, fine- to medium-grained, with occasional Lean Clay lenses, brow medium dense. (Glacial Outwash) SILTY SAND, fine- to medium-grained, brown to 20 feet then gray, moist, medi (Glacial Outwash)	drak bro with Gra n, moist	own,	15 16 15 16 15 16 14 17 13			

BL-13-00213

BRAUN^{ss}

				3-00213	BORING	i:	205	54SB (cont.)
SWLR	ECHNICA T etonka,				Lat.: 44	5155.7	5238	7120.4; E: 490379; ; Long.: -932513.57316 ake. See attached sketch.
DRILLE	:R: М.	Belch		METHOD: 3 1/4" HSA, Autohammer	DATE:	11/2	27/13	SCALE: 1" = 4'
Elev. feet 867.1	Depth feet 32.0	Sym	nbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	10-1-2908)	BPF	WL	Tests or Notes
				POORLY GRADED SAND, fine- to coarse-gr with Gravel, brown, moist, medium dense to (Glacial Outwash) <i>(continued)</i>	ained, dense -	32		
_					-	24		
862.1	37.0	SP		POORLY GRADED SAND, fine-grained, brow medium dense. (Glacial Outwash)	wn, moist, _	26		
860.1	39.0	SP		POORLY GRADED SAND, fine- to medium- brown, moist to 56 feet then waterbearing, loo dense. (Glacial Outwash)	grained, ose to	27		
					-	8		
_					-	30		
					-	29		Switched to mud rotary drilling at 48 feet.
				Coarse-grained at 50 feet.		40		
					-	-		
-						32	\ ∑	
					-	-		
						11		
					-			

GEOTI SWLR	ECHNICA T	AL EVALU		BORING LOCATIO Lat.: 44 Offset 10	DN: N: 5155.7	127 5238;	4SB (cont 120.4; E: 490 Long.: -932 ake. See attache)379; 513.57316
DRILLE	:R: М.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	11/2	7/13	SCALE:	1" = 4'
Elev. feet 835.1	Depth feet 64.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11		BPF	WL	Tests or	Notes
			POORLY GRADED SAND, fine- to medium- brown, moist to 56 feet then waterbearing, lo dense. (Glacial Outwash) (continued)	grained, ose to 	23		No recovery.	
· · ·				-	44			
810.1 	89.0	ML	SILT, with fine Sand layers, gray, waterbearin to very dense. (Glacial Outwash)	ng, dense 	39 ∑ 52			

			3-00213	BORING	:	2054	SB (cont	.)
SWLR	Г	AL EVALU Minnesot		LOCATIO Lat.: 44 Offset 10	5155.7	5238:	20.4; E: 490 Long.: -932 e. See attache	513.57316
DRILLE	R: M.	Belch	METHOD: 3 1/4" HSA, Autohammer	DATE:	11/2	27/13	SCALE:	1'' = 4'
Elev. feet 803.1	Depth feet 96.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1	110-1-2908)	BPF	WL	Tests or	Notes
-			SILT, with fine Sand layers, gray, waterbeari to very dense. (Glacial Outwash) <i>(continued)</i>		-			
798.1	101.0		END OF BORING. Water observed at 55 feet with 50 feet of hol	low-stem	54			
			auger in the ground. Boring immediately backfilled with bentonite	-				
_								
				-				
				-	-			
				-				
				_				
				_				
				-				
				-				
				_				
-								
				_				
-13-0021	2		Braun Intertec Corporation				00	54SB page 4

Braur		ect BL-13	B-00213	BORING	:		21	23SW			
GEOTE	CHNIC/	AL EVALU Minnesot	ATION	LOCATIC See attac		l: N: 126256; E: 489196.7; ed sketch.					
	R: К.	Keck	METHOD: 3 1/4" HSA, Autohammer	DATE:	5/8	8/14		SCALE: 1" = 4'			
to Elev. feet 901.5	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11	Soil-ASTM D2488 or D2487, Rock-USACE EM1110-1-2908)				Tests or Notes			
t for expanding	1.0	FILL K	FILL: Lean Clay with Sand, trace roots, dark moist. (Topsoil Fill)	Γ			34				
to Elev. feet 901.5 900.5 - - - - - - - - - - - - - - - - - - -			FILL: Sandy Lean Clay, brown and dark brow	vn, wet. – –	7		17				
	7.0				10		18				
		FILL	FILL: Sandy Lean Clay, trace Gravel, brown wet.	and gray, –	15		18				
					10		22				
_				_	12		15	DD=115 pcf			
CE:II PI/S/9 884.5	17.0				23		26				
	19.0	FILL	FILL: Sandy Lean Clay, brown and white with black, moist.	n layers of	7		19				
		FILL	FILL: Sandy Lean Clay, brown and dark brow	vn, moist. 	6		19				
879.5	22.0	FILL	FILL: Sandy Lean Clay, slightly organic, dark and black, moist.	k brown 	6		27	OC=3%			
	24.0	FILL	FILL: Sandy Silt, with frequent layers of Silt, brown, moist to 25 feet then waterbearing.	dark	13	Ā	18	An open triangle in the water level (WL) column indicates the depth at which groundwater was observed while drilling. Groundwater levels			
874.5 - 872.5	27.0	CL- ML	SILTY CLAY, brown, waterbearing, rather stif (Glaciofluvium)	f	12		22	fluctuate. LL=20, PL=16, PI=4			
		CL	SANDY LEAN CLAY, trace Gravel, brown, we very stiff. (Glacial Till)	et, stiff to 	13		15				
BL-13-0021	3		Braun Intertec Corporation					2123SW page 1 of			

	n Proje	ect BL	-13	-00213	BORING		212	35	W (con	t.)
	ECHNICA F etonka, I				LOCATIC See attac			2625	•	489196.7;
DRILLE	R: K.	Keck		METHOD: 3 1/4" HSA, Autohammer	DATE:	5/8	/14		SCALE:	1'' = 4'
Elev. feet 869.5	Depth feet 32.0	Symb	pol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM111)		BPF	WL	MC %	Tests	or Notes
Minne DRILLE Elev. feet 869.5 -	34.0	CL		SANDY LEAN CLAY, trace Gravel, brown, wet very stiff. (Glacial Till) <i>(continued)</i> SANDY LEAN CLAY, trace Gravel, with Sand s gray, wet, very stiff to hard. (Glacial Till)		22		14 16		
_ _ 	39.0	ML		SANDY SILT, gray brown, moist, very dense.		35		17		
860.5	41.0			(Glaciofluvium)		52		16		
				Water observed at a depth of 26 feet while drill Water not observed with 39 1/2 feet of hollow-s auger in the ground. Water not observed to cave-in depth of 39 1/2 hollow-stem auger in the ground. Boring immediately backfilled with bentonite gr	stem feet of					
— — — BL-13-0021	_			Braun Intertec Corporation	-					23SW page 2

			3-00213	BORING	:		21	24SW
SWLR	Г	AL EVALU Minnesot		LOCATIO See attac				8.7; E: 489354;
DRILLE	:R: к.	Keck	METHOD: 3 1/4" HSA, Autohammer	DATE:	5/9	/14		SCALE: 1" = 4'
Elev. feet 903.9	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1)	110-1-2908)	BPF	WL	MC %	Tests or Notes
902.9	1.0	FILL	FILL: Sandy Lean Clay, dark brown, moist. (Topsoil Fill)					
-		FILL	FILL: Sandy Lean Clay, trace Gravel, brown brown, moist.	and dark - -	10		13	An open triangle in the
- - 894.9	9.0	SP-	POORLY GRADED SAND with SILT, fine- to	- - -)	4	Ţ	16	water level (WL) colur indicates the depth at which groundwater wa observed while drilling Groundwater levels fluctuate.
-		SM	medium-grained, brown, wet, medium dense (Glacial Outwash)	·	14		13	P200=12%
<u>891.9</u>	12.0	SM	SILTY SAND, fine- to medium-grained, with layers of Lean Clay, brown, moist, medium d very dense. (Glacial Outwash)	frequent ense to	28		15	
				-	31			
-				-	35 52		9	P200=20%
881.9	22.0			-				
-		SM	SILTY SAND, fine-grained, brown, moist, de (Glacial Outwash)	nse.	37			
<u>879.9</u>	24.0	SM	SILTY SAND, fine- to medium-grained, trace brown, moist to 39 feet then waterbearing, m dense. (Glacial Outwash)	Gravel, edium	20			
-					26			

ſ			ect BL-13				BORING: 2124SW (cont.)						
	GEOTE SWLR1		AL EVALU	ΑΤΙΟΙ	N			LOCATIC See attac	DN: N	l: 1	2645		489354;
See Descriptive Terminology sheet for explanation of abbreviations)			Minnesot	а					neu sk	CUL			
reviat			Keck	METHOD: 3 1/4" HSA, Autohammer DATE: 5/9/14						SCALE:	4" - 4		
ot abb	DRILLE Elev.	Depth	Neck		METHOD:	3 1/4" HSA, Auto	nammer	DATE:	5/5	/14		SCALE.	1" = 4'
tion	feet	feet				scription of Mate			BPF	WL		Tests	or Notes
lana	871.9	32.0	Symbol	-		or D2487, Rock-US - to medium-grai					%		
or exp	_			brow	n, moist to 39	feet then waterb	earing, med	lium _	22				
eet to	_		신신다. 신신다 신신다	uena		ial Outwash) (co	ntinued)	_					
jv sh			임이는 이상의						22				
	_							_	А				
em	_							_					
otive	_							_	28				
SCUL	_							_		Ľ			
ee De									22				
ภั	862.9	41.0		FNI	OF BORING				Щ ~~				
	_						t while drillin	_					
	_					t a depth of 9 fee		ig. —					
	_					t 39 feet with 39 in the ground.	1/2 feet of	_					
				Wat hollo	er not observe ow-stem auger	ed to cave-in dep in the ground.	th of 30 1/2	feet of —					
	_			Bori	ng immediatel	y backfilled with	bentonite ar	out.					
47:TT +	_				5	,	- -						
4T /c/a	_							_					
109.1N	_							_					
CURREN													
								_					
B								_					
VUUZI3.													
STU2	_							_					
	_							_					
	_							_					
	_							_					
IUNA/													
	_							_					
	_							_					
UF BURING	_							_					
3	DI 42.000						- 0						
	BL-13-00213	5				Braun Interte	c Corporation					212	24SW page 2 of 2

				-00213	BORING	:		21	27SW
SWLR	ECHNICA F etonka,				LOCATIO See attao				.8; E: 489572.1;
DRILLE	:R: к.	Keck		METHOD: 3 1/4" HSA, Autohammer	DATE:	5/8	/14		SCALE: 1" = 4'
Elev. feet 914.6	Depth feet 0.0	Symb	ol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM11 ²	10-1-2908)	BPF	WL	MC %	Tests or Notes
-		FILL	_	FILL: Sandy Lean Clay, trace roots, dark brov (Topsoil Fill)		-			
<u>912.1</u>	2.5	FILL		FILL: Sandy Lean Clay, trace Gravel, dark br moist.	 own,	5		17	
 908.6	6.0					16		14	
-		SP		POORLY GRADED SAND, fine- to medium-g with frequent Silt layers, brown, moist, mediur (Glacial Outwash)		15			
904.6	10.0	SM		SILTY SAND, fine- to medium-grained, with G light brown, moist, dense. (Glacial Till)	Gravel,	22		5	P200=14%
- 900.6	14.0				-	31			
-		SP		POORLY GRADED SAND, fine- to medium-g with Gravel, with frequent Silt layers, light brow brown, moist, medium dense. (Glacial Outwash)	rained, wn to	23			
					-	28		6	
894.6	20.0	SM		SILTY SAND, fine- to medium-grained, trace brown, moist, medium dense. (Glacial Till)	Gravel, 	28			
					-	28		8	P200=31%
-						26			
-					-	25			
						24			
L-13-0021	3			Braun Intertec Corporation					2127SW page 7

		ect BL-13		BORING	:	212	27S	W (con	t.)	
SWLRT	Г	AL EVALU Minnesot				N: N: 126660.8; E: 48957 hed sketch.				
DRILLE	R: к.	Keck	METHOD: 3 1/4" HSA, Autohammer	DATE:	5/8	8/14		SCALE:	1'' = 4'	
Elev. feet 882.6	Depth feet 32.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EM1 SILTY SAND, fine- to medium-grained, trace	Tests	or Notes					
- 878.6 - -	36.0	SC	brown, moist, medium dense. (Glacial Till) <i>(continued)</i> CLAYEY SAND, with Gravel, brown and gray stiff to very stiff. (Glacial Till)	- - /, moist, - -	25					
- 873.6	41.0		Sand layer encountered at 40 feet. END OF BORING.		22					
-			Water not observed while drilling. Water not observed with 39 1/2 feet of hollow auger in the ground. Water not observed to cave-in depth of 31 1/ hollow-stem auger in the ground. Boring immediately backfilled with bentonite	- 2 feet of	•					
-					•					
-				- 	•					
-										
- 3L-13-00213	2		Braun Intertec Corporation	_				010	27SW page 2	

	-		3-00213	BORING	:		2128SW
SWLRT	Г	AL EVALU Minneso		LOCATIO			697.6; E: 489617.6. See
DRILLE	R: К.	Keck	METHOD: 3 1/4" HSA, Autohammer	DATE:	5/7	/14	SCALE: 1" = 4'
Elev. feet 914.8	Depth feet 0.0	Symbol	Description of Materials (Soil-ASTM D2488 or D2487, Rock-USACE EN	11110-1-2908)	BPF	WL	Tests or Notes
912.8	2.0	FILL FILL	FILL: Sandy Lean Clay, trace roots, dark t (Topsoil Fill) FILL: Sandy Lean Clay, trace roots, dark t brown, moist.	prown, moist.	- - 		
909.8	5.0	CL	SANDY LEAN CLAY, trace Gravel, with Sa brown, moist, very stiff to rather stiff. (Glacial Till)	and seams,	19		
			Layer of Sand encountered at 8 feet.	-	11		
902.8	12.0	CL	LEAN CLAY with SAND, with Silt lenses, b very stiff. (Glacial Till)	- prown, moist, -	20		
900.8	14.0	SM	SILTY SAND, fine- to medium-grained, wit layers of Lean Clay, brown, moist, medium (Glacial Till)	h frequent dense	17		
895.8	19.0	SP		-	30		
			POORLY GRADED SAND, fine- to coarse with Gravel, occasional Cobbles, light brow moist, very dense to medium dense. (Glacial Outwash)		×50/4"		
_				-	50/0" [,] 54		*50/0" (set). No sample recovery. Auger met refusal at the 22 1/2-foot depth. Boring the offset 5 feet North of staked location and redrilled to 24 1/2 feet.
			Layer of Lean Clay encountered at 27 feet	 - -	46		
882.8	32.0		Braun Intertec Corpora	-			2128SW page 1

GEOTECHNICAL EVALUATI SWLRT	ION			8SW (cont.)					
Minnetonka, Minnesota	attached sketch.								
DRILLER: K. Keck	METHOD: 3 1/4" HSA, Autohammer	DATE: 5	5/7/14	SCALE: 1" = 4'					
Elev. Depth feet feet 882.8 32.0 Symbol (S	Description of Materials Soil-ASTM D2488 or D2487, Rock-USACE EM1110	-1-2908)	FWL	Tests or Notes					
SM SI SI 880.8 34.0 ML SI - ML SI - SC CL 875.8 39.0 SI - CL S/ 873.8 41.0 EI - Where Where - Where Where	ILTY SAND, fine- to medium-grained, trace Gr ith Silt lenses, brown, moist, dense. (Glacial Till) ILT with SAND, gray to brown, moist, medium (Glaciofluvium) LAYEY SAND, trace Gravel, brown, moist, ratt (Glacial Till) ANDY LEAN CLAY, trace Gravel, brown, wet, tiff. (Glacial Till) ND OF BORING. /ater observed at 38 feet with 36 1/2 feet of ollow-stem auger in the ground. /ater not observed to cave-in depth of 32 feet nmediately after withdrawal of auger. oring immediately backfilled with bentonite gro	ravel, 42 dense 30 her stiff 12 rather 9) 2 ⊻	An open triangle in the water level (WL) column indicates the depth at which groundwater was observed while drilling. Groundwater levels fluctuate.					

Project: SWLRT

Location: Hopkins, MN

Braun Intertec Corporation 11001 Hampshire Ave S Minneapolis, MN 55438 952-995-2000

Project Number: BL-13-00213

CPT: 2125CW

Total depth: 39.99 ft, Date: 5/8/2014 Surface Elevation: 906.02 ft Coords: X:489397.16, Y:126506.72 Cone Type: SCPTu Cone Operator: Reich/Holmbo

Cone resistance **Sleeve friction** Friction ratio Pore pressure u Norm. Soil Behaviour Type 0 Ο 0 0-0 Silty sand & sandy silt 2. 2 2 2. 2-Silty sand & sandy silt Clay & silty clay Clay & silty clay Sand & silty sand 4 4 4 4 4 6. < 6 6 6 6-Silty sand & sandy silt Clay & silty clay 8-8 8 8 8-Clay & silty clay Silty sand & sandy silt 10 10 10. 10. 10-Clay & silty clay Clay & silty clay 12 12 12. 12 12 Silty sand & sandy silt 14 14 14. 14 14 Sand & silty sand Silty sand & sandy silt 16 16 16 16 16. Sand & silty sand 18. 18 18 18 18-Silty sand & sandy silt Silty sand & sandy silt 20 20 20. 20 20-22 22 22 22 22. Depth (ft) Sand & silty sand (ft) (ft) (ft) Depth (ft) 24 24 24 24-Depth Depth Depth Depth Depth Silty sand & sandy silt 26 26-26 Silty sand & sandy silt 28 28 28 28 28-Silty sand & sandy silt 30. Clay & silty clay 30 30 30 30. Silty sand & sandy silt 32 32 32 32 32 Clay 34 34 34. 34 34-Sand & silty sand 36. 36. 36-36 36-Silty sand & sandy silt 38. 38-38 38 38. Sand & silty sand Silty sand & sandy silt 40 40-40-40 40. 42. 42. 42 42-42 44 44 44 44 44 46 46 46 46 46 48 48 48 48 48 50 50 50-50. 50 200 300 400 8 10 0 50 100 0 100 0 2 4 6 0 2 4 6 8 10 0 2 4 6 8 10 12 14 16 18 Friction (tsf) Rf (%) Pressure (psi) SBTn (Robertson 1990) Tip resistance (tsf)

CPeT-IT v.1.7.6.42 - CPTU data presentation & interpretation software - Report created on: 6/5/2014, 9:32:49 AM Project file: W:\DRAFTS\BL\2013\00213\CPT\SWLRT_CPETIT.cpt

BRAUN INTERTEC

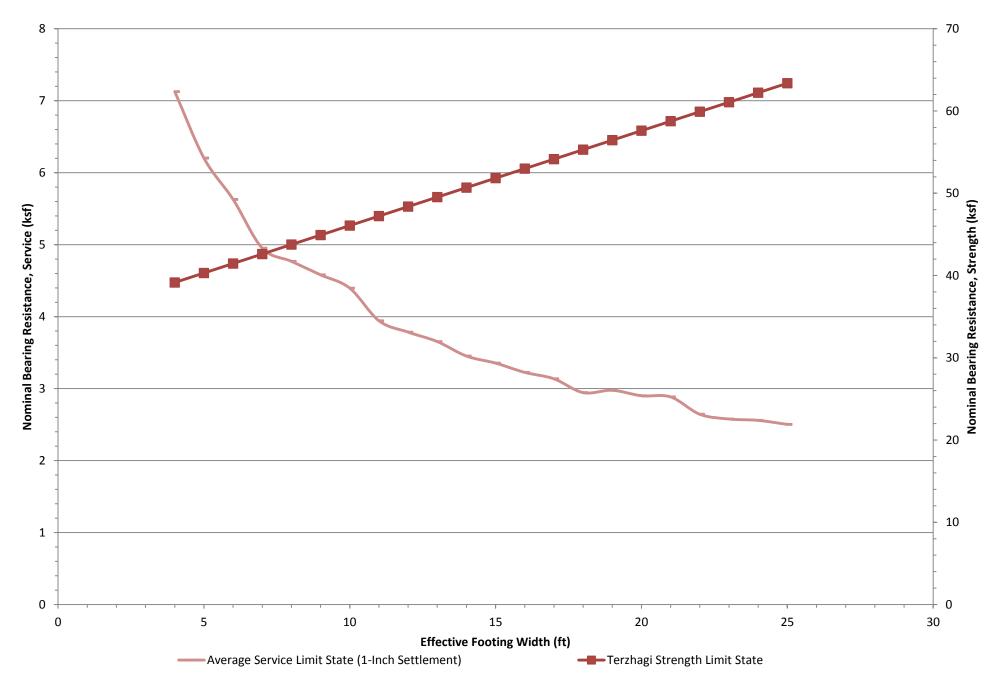
Project: SWLRT

Location: Hopkins, MN

Braun Intertec Corporation 11001 Hampshire Ave S Minneapolis, MN 55438 952-995-2000

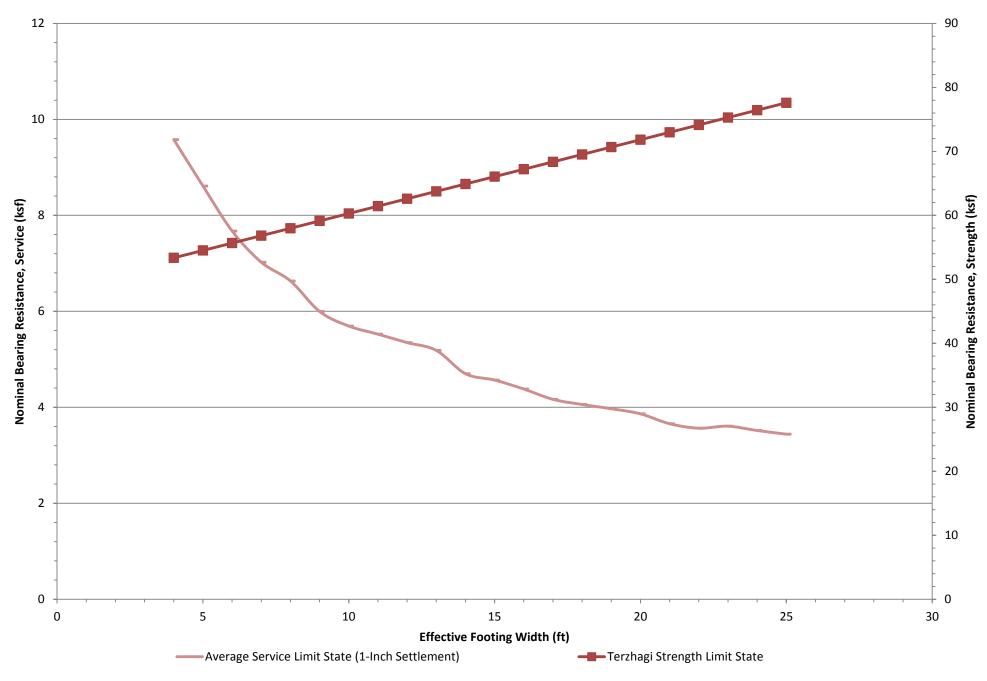
Project Number: BL-13-00213

CPT: 2126CW


Total depth: 39.96 ft, Date: 5/8/2014 Surface Elevation: 909.73 ft Coords: X:489500.76, Y:126587.68 Cone Type: SCPTu Cone Operator: Reich/Holmbo

Cone resistance **Sleeve friction** Friction ratio Pore pressure u Norm. Soil Behaviour Type Ο 0-Ο 0. 0-Silty sand & sandy silt 2. 2-2 2. 2-Silty sand & sandy silt Clay & silty clay 4 -4 4 4 4. Silty sand & sandy silt Clay & silty clay 6 6 6. 6 6-Clay & silty clay Silty sand & sandy silt 8 8 8. 8 8. 10 10 10. 10 10 -Silty sand & sandy silt Clay & silty clay Sand & silty sand Ş 12 12 12 12-12-Silty sand & sandy silt 14. 14 14. 14 14-Clay & silty clay 16. 16 16 16 16. Silty sand & sandy silt 18. 18 18 18 18-Sand & silty sand 20 20 20. 20 20-22 22 22 22 22-Silty sand & sandy silt Sand & silty sand (ft) (ff) (ft) (ft) Depth (ft) 24 24 24 24 24 Depth (Depth 55 Depth Depth Silty sand & sandy silt 26 26. 26 Clay & silty clay Clay & silty clay 28 28 28 28. 28 Clay & silty clay 30 30 30. 30 30. Clay & silty clay Clay & silty clay 32 32 32 32. 32-Clay Silty sand & sandy silt 3 34 34 34 34 34-36 36. 36-36 36 Sand & silty sand 38 38. 38-38 38 Silty sand & sandy silt 40 40-40. 40 40. 42. 42. 42 42-42 44 44 44 44 44 46 46 46 46 46 48 48 48 48 48 50 50 50-50. 50 200 300 400 8 10 0 50 100 0 100 0 2 4 6 0 2 4 6 8 10 0 2 4 6 8 10 12 14 16 18 Friction (tsf) Rf (%) Pressure (psi) SBTn (Robertson 1990) Tip resistance (tsf)

CPeT-IT v.1.7.6.42 - CPTU data presentation & interpretation software - Report created on: 6/5/2014, 9:32:50 AM Project file: W:\DRAFTS\BL\2013\00213\CPT\SWLRT_CPETIT.cpt

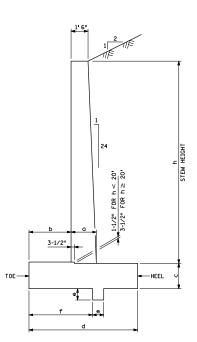


Limit State Shallow Foundation Analysis Wall RTW-113 - 1-inch Settlement

Limit State Shallow Foundation Analysis Wall RTW-115 & 116 - 1-inch Settlement

WALL LOADING CASE:

1:2 SLOPED FILL


	WALL	GEOMETRIC	S AND DATA	- SPREAD	FOOTING		QUANTITIES PER FOOT - SPREAD FOOTING						RESSURE
STEM	STEM	TOE	FOOTING	FOOTING	SHEAR	SHEAR KEY	STRUCTURAL	L CONCRETE	REINFOR	CEMENT	WALL DETAILING	KIPS/S	5Q. FT.
HEIGHT	WIDTH	WIDTH	THICKNESS	WIDTH	KEY SIZE		1A43 CU, YD,	3Y43 CU. YD.	PLAIN	EPOXY	SCHEME (1)	TOE	HEEL
h	a	ь	c	d	e	f	FOOTING	STEM	POUND	POUND	JOINE (I)	TUE	HEEL
5	1'-8!/2"	0'-9"	1'-5"	3'-0"	N/A	N/A	0.163	0.296	12.07	30.56	SHORT	1.471	0.319
6	1'-9"	0'-10"	1'-5"	3'-9"	N/A	N/A	0.198	0.360	15.90	34.13	SHORT	1.672	0.415
7	1'-91/2"	1'-0"	1'-5"	4'-6"	N/A	N/A	0.233	0.425	19.70	37.74	SHORT	1.800	0.550
8	1'-10"	1'-2"	1'-5"	5'-3"	N/A	N/A	0.269	0.492	23.61	41.28	SHORT	1.931	0.679
9	1'-10 ¹ /2"	1'-4"	1'-5"	6'-0"	N/A	N/A	0.304	0.561	25.18	45.80	SHORT	2.073	0.806
10	1'-11"	1'-6"	1'-5"	6'-9"	N/A	N/A	0.340	0.631	29.02	49.28	SHORT	2.210	0.936
11	1'-11/ ₂ "	1'-10"	1'-5"	7'-0"	1'-0"	3'-51/8"	0.390	0.703	29.54	53.21	SHORT	2.376	0.960
12	2'-0"	2'-2"	1'-5"	7'-3"	1'-0"	3'-95%"	0.403	0.776	35.44	62.52	MEDIUM	2.536	0.937
13	2'-01/2"	2'-4"	1'-5"	7'-6"	1'-0"	4'-01/8"	0.415	0.851	39.38	67.15	MEDIUM	2.835	0.855
14	2'-1"	2'-8"	1'-5"	8'-0"	1'-0"	4'-45%"	0.440	0.928	45.02	71.80	MEDIUM	2.924	0.916
15	2'-1/2"	2'-10"	1'-5"	8'-6"	1'-0"	4'-7 /8"	0.464	1.006	49.08	76.62	MEDIUM	3.139	0.941
16	2'-2"	3'-2"	1'-5"	9'-0"	1'-0"	4'-115%"	0.489	1.085	56.33	81.25	MEDIUM	3.232	0.997
17	2'-21/2"	3'-4"	1'-5"	9'-6"	1'-0"	5'-21/8"	0.513	1.166	54.95	110.81	TALL	3.446	1.022
18	2'-3"	3'-8"	1'-6"	10'-0"	1'-0"	5'-6¾"	0.611	1.249	56.75	106.46	TALL	3.712	1.004
19	2'-31/2"	4'-0"	1'-6"	10 -6"	1'-0"	5'-11'/4"	0.640	1.333	60.82	123.67	TALL	3.809	1.053
20	2'-4"	4'-2"	1'-6"	11'-0"	1'-0"	6'-1¾"	0.696	1.417	75.05	130.82	TALL	4.051	1.069
21	2'-41/2"	4'-6"	1'-9"	11'-6"	1'-0"	6'-63/8"	0.834	1.504	66.66	161.18	TALL	4.325	1.041
22	2'-5"	4'-10"	1'-9"	12'-0"	1'-0"	6 -10 %"	0.870	1.593	82.13	170.00	TALL	4.427	1.085
23	2'-51/2"	5'-2"	2'-0"	12'-6"	1'-2"	7'-31/2"	1.035	1.683	80.16	209.34	TALL	4.707	1.059
24	2'-6"	5'-6"	2'-3"	13'-0"	1'-4"	7'-8 <mark>//</mark> 8"	1.212	1.775	95.80	221.64	TALL	4.991	1.029
25	2'-6 ¹ /2"	5'-10"	2'-3"	13'-6"	1'-6"	8'-05/8"	1.274	1.868	101.18	277.08	TALL	5.097	1.078
26	2'-7"	6'-2"	2'-6"	14'-0"	1'-9"	8'-5 /4"	1.479	1.963	103.31	289.67	TALL	5.383	1.052
27	2'-71/2"	6'-6"	2'-9"	14'-6"	2'-0"	8'-97/8"	1.698	2.059	116.46	304.69	TALL	5.672	1.026
28	2'-8"	6'-10"	3'-0"	15'-3"	2'-0"	9'-2 /2"	1.920	2.157	126.16	388.20	TALL	5.843	1.139
29	2'-8 ^l /2"	7'-2"	3'-0"	16'-0"	2'-3"	9'-7"	2.046	2.257	129.90	400.20	TALL	5.835	1.351
30													

NOTE: EPOXY REINFORCEMENT QUANTITY ASSUMES AN EXPANSION JOINT IS USED ON BOTH PANEL ENDS. THE QUANTITY MUST BE ADJUSTED WHEN CONSTRUCTION JOINTS ARE USED.

(1) SEE STANDARD PLANS 5-297.621 TO .623 FOR REINFORCING DETAILS.

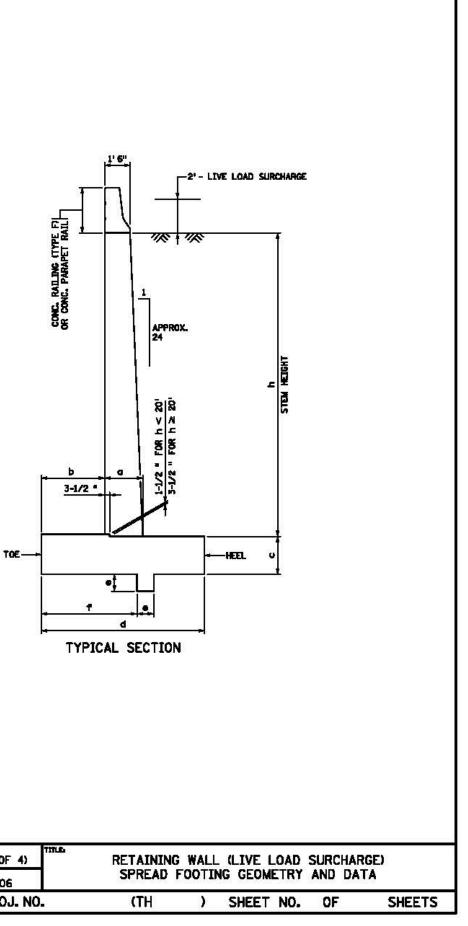
DESIGN CRITERIA
1992 A.A.S.H.T.O. DESIGN SPECIFICATIONS DESIGN METHOD: WORKING STRESS - STABILITY, FOUNDATIONS LOAD FACTOR DESIGN - REINFORCED CONCRETE f'c = 4.000 PSI fy = 60.000 PSI
FACTOR OF SAFETY OVERTURNING: 2.0 MINIMUM FACTOR OF SAFETY SLIDING: 1.5 MINIMUM LOCATION OF RESULTANT: MIDDLE 1/3 OF FOOTING NEGLECTING SOIL IN FRONT OF WALL.
SEE FOUNDATION REPORT FOR ALLOWABLE BEARING PRESSURE AND COEFFICIENT OF FRICTION.
BACKFILL CHARACTERISTICS: INTERNAL ANGLE OF FRICTION: 35° = 44 PCF EQUIVALENT FLUID PRESSURE ACTIVE STATE

= 44 PCF EQUIVALENT FLUID PRESSURE ACTIVE STATE = 71 PCF EQUIVALENT FLUID PRESSURE AT REST STATE Be 1 PCF EQUIVALENT FLUID PRESSURE AT REST STATE COEFFICIENT OF FRICTION: 0.55 UNIT WEIGHT: 125 PCF

TYPICAL SECTION

	STANDARD SHEET NO.	TITLE:		
REVISED:	5-297.631 (1 OF 4)	RETAINING WALL	1:2 SLOPED F	
APPROVED: MAY 31, 2006	STADARD APPROVED MAY 31, 2006	SPREAD FOOTING G	OMETRY AND	DATA
STATE BRIDGE ENVINEER	STATE PROJ. N	10. (TH) SHE	ET NO. OF	SHEETS

WALL LOADING CASE: 2' - LIVE LOAD SURCHARGE


	WALL	GEOMETRI	CS AND DATA	- SPREAD	FOOTING			TES PER FOOT					RESSURE
STEM	STEM	TOE	FOOTING	FOOTING	SHEAR	SHEAR KEY	STRUCTURAL		REINFOR	CEMENT	WALL DETAILING		
EIGHT	WIDTH	WIDTH b	THICKNESS	HTQIW d	KEY SIZE	LOCATION	1A43 (CILYDJ FOOTING	3Y43 (CULYD.) Sten	PLAIN (POUND)	(POUND)	SCHEME ()	TOE	HEEL
5	1'-81/-	1'-0"	1'-5"	3'-6"	N/A	N/A	0.187	0.296	15.38	38.16	SHORT	1.670	0.070
6	1'-9"	1'-2"	1'-5"	4'-0"	N/A	N/A	0.211	0.360	16.43	41.74	SHORT	1.820	0.090
7	1'-9%	11-40	1'-5"	4'-6"	N/A	N/A	0.235	0.425	19.70	45.34	SHORT	1.970	0.120
8	1'-10"	1'-6"	1'-5"	5'-0"	N/A	N/A	0.259	0.492	20.75	46.69	SHORT	2.110	0.150
9	1'-10%	1'-8"	1'-5"	5'-6"	N/A	N/A	0.285	0.561	24.13	52.69	SHORT	2.250	0.180
10	1'-11"	1-90	1'-5"	6'-0"	N/A	N/A	0.306	0.631	25.18	62.49	MEDIUM	2.446	0.199
11	1-11/2	2'-0"	1'-5"	6'-6"	N/A	N/A	0.331	0.703	31.28	66.85	MEDJUM	2.536	0.239
12	2'-0"	2'-3"	1'-5"	6'-9"	1'-0"	3'-10%"	0.380	0.776	35.38	72.23	MEDIUM	2.758	0.156
13	2'-0/2'	2'-6"	1'-5"	7'-0*	1'-0"	4 -2//	0.393	0.851	40.30	76.82	MEDJUM	2.966	0.013
14	2"-1"	2'-9"	1'-6"	7'-8"	1'-0"	4-5%	0.477	0.928	40.49	81.74	MEDIUM	3.147	0.078
15	2'-11/2"	3'-0"	1'-6"	8'-2"	1'-0"	4-9/2	0.506	1.006	40.10	99.57	TALL	3.239	0.111
16	2'-2"	3'-3"	1'-9"	8'-8"	1'-0"	5-0%	0.615	1085	41.38	105.97	TALL	3.494	0.056
17	2'-2/2"	3'-6"	1'-9"	9'-2"	1'-0"	5'-4%	0.649	1.166	49.02	111.90	TALL	3.566	0.089
18	2'-3*	31-911	1'-9"	9'-8"	1'-O"	5'-7%	0.682	1_249	50.52	129.74	TALL	3.679	0.121
19	2'-3/2	4'-0"	2'-0"	10'-2"	1'-0"	5'-11/2	0.810	1.333	54.26	137.41	TALL	3.935	0.068
20	2'-4"	41_30	2'-0"	10'-8"	1'-0"	61-30	0.875	1.417	61.38	165.51	TALL	4.056	0.090
21	2'-41/2	4'-6"	2'-0"	11'-2"	1'-0"	6'-61/2"	0.916	1.504	71.34	174.30	TALL	4.151	0.122
22	2'-5"	41-90	21-30	11'- B "	1'-0"	6'-10%	1.064	1.593	65.93	183.51	TALL	4.407	0.067
23	2'-5/2	5'-0"	2'-6"	12'-2"	1'-0"	7'-1%	1.221	1.683	84.82	224.49	TALL	4.663	0.012
24	2'-6"	5'-3"	2'9"	12'-9'	1'-0"	7'-5%	1.396	1.775	94.03	234.03	TALL	4.872	0.020
25	2'-6/2"	5'-6"	2'-9"	13'-30	1'-0 ^o	7'-8%	1.449	1.868	100.13	288.16	TALL	4.967	0.052
26	2'-7"	5'-10"	3'-0"	13'-9"	1'-0"	8'-11/2	1.631	1.963	102.26	299.67	TALL	5.189	0.000
27	2'-71/2"	6'-2"	31-30	14'-4"	1'-0"	8'-6//	1.832	2.059	127.34	315.84	TALL	5.364	0.000
28	2'-8"	6'-6"	3'-3"	15'-0"	1' -0 "	8'-10%	1.916	2.157	140.92	394.98	TALL	5.334	0.140
29	2'-8//	6'-10"	3'-6"	15'-6"	1'-0"	9-3/4	2.123	2.257	148.00	407.90	TALL	5.558	0.077
30													

NOTE: EPOXY REINFORCEMENT QUANTITY ASSUMES AN EXPANSION JOINT IS USED ON BOTH PANEL ENDS. THE QUANTITY MUST BE ADJUSTED WHEN CONSTRUCTION JOINTS ARE USED. QUANTITIES ON THIS SHEET DO NOT INCLUDE RAILING. SEE RAILING SHEETS FOR RAIL REINFORCEMENT (EPOXY) AND RAIL CONCRETE (3Y46).

() SEE STANDARD PLANS 5-297.621 TO .623 FOR REINFORCING DETAILS.

DESIGN CRITERIA

1992 A.A.S.H.T.O. DESIGN SPECIFICATIONS DESIGN METHOD: WORKING STRESS - STABILITY, FOUNDATIONS LOAD FACTOR DESIGN - REINFORCED CONCRETE f'c = 4,000 PSI fy = 60,000 PSI FACTOR OF SAFETY OVERTURNING: 2.0 MINIMUM FACTOR OF SAFETY SLIDING: 1.5 MINIMUM LOCATION OF RESULTANT: MIDDLE 1/3 OF FOOTING NEGLECTING SOIL IN FRONT OF WALL. SEE FOUNDATION REPORT FOR ALLOWABLE BEARING PRESSURE AND COEFFICIENT OF FRICTION. BACKFILL CHARACTERISTICS: INTERNAL ANGLE OF FRICTION: 35" = 33 PCF EQUIVALENT FLUID PRESSURE ACTIVE STATE = 53 PCF EQUIVALENT FLUID PRESSURE AT REST STATE Be = 1.0 COEFFICIENT OF FRICTION: 0.55 UNIT WEIGHT: 125 PCF

REVISED	5-23	97.632 (1 OF 4)	TITLE	RETAIN
APPROVEDI MAY 31, 2006		MAY 31, 2006		SPREA
STATE BREAK BARREN	ST	TATE PROJ. NO.	p	(TH

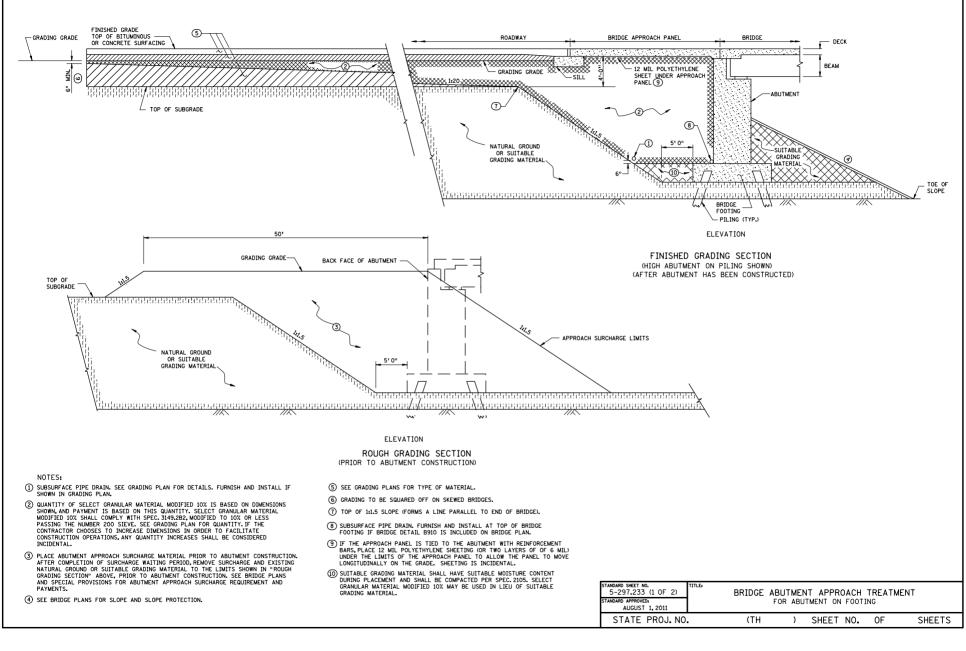

MAY 31, 2006 5-297.632 (1 OF 4)

Table 5. Correlation results for sand. (Column A = Number in Table x Row B.)

В	Eo	ER	p*L	۹c	fs	N
A	tsf	tsf	tsf	tsf	tsf	bl/ft
E tsf	1	0.125	8	1.15	57.5	4
E tsf R	8	1	64	6.25	312.5	22.7
p* tsf	0.125	0.0156	1	0.11	5.5	0.5
q tsf	0.87	0.16	9	1	50	5
f tsf	0.0174	0.0032	0.182	0.02	1	0.1
N b1/ft	0.25	0.044	2	0.2	10	1

Table 6. Correlation results for clay. (Column A = Number in Table x Row B.)

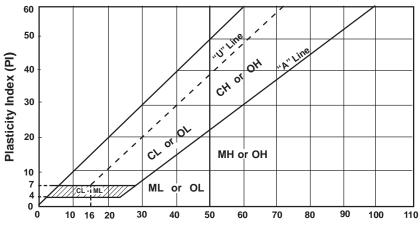
	-						
/	В	Eo	ER	P*L	qc	fs	Su
A	/	tsf	tsf	tsf	tsf	tsf	tsf
Eo	tsf	1	0.278	14	2.5	56	100
ER	tsf	3.6	1	50	13	260	300
₽* L	tsf	0.071	0.02	1	0.2	4	7.5
9 _c	tsf	0.40	0.077	5	1	20	27 ·
fs	tsf	0.079	0.0038	0.25	0.05	1	1.6
su	tsf	0.010	0.0033	0.133	0.037	0.625	1

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Criter	ia for Assigni	ing Group	Symbols and	So	Is Classification	Particle S	ize Identification
	Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^a				Group Symbol	Group Name ^b	Boulders Cobbles	
" uo	Gravels	Clean G	ravels	$C_u \ge 4$ and $1 \le C_c \le 3^{c}$	GW	Well-graded gravel ^d	Gravel Coarse	2/4" + 2"
grained Soils 50% retained c 200 sieve	More than 50% of coarse fraction	5% or less fines e		$C_u < 4$ and/or $1 > C_c > 3^c$	GP	Poorly graded gravel d	Fine	
eve	retained on		th Fines Fines classify as ML or MH		GM	Silty gravel ^{d f g}	Sand	
aine % re 0 si	No. 4 sieve	More than 12	2% fines ^e	Fines classify as CL or CH	GC	Clayey gravel dfg		No. 4 to No. 10 No. 10 to No. 40
	Sands 50% or more of coarse fraction passes	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3$ ^c	SW	Well-graded sand ^h		
arse- than No.		J/0 01 103	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^c$	SP	Poorly graded sand h	Silt	
Coa more 1		Sands wit	h Fines	Fines classify as ML or MH	SM	Silty sand ^{fgh}	Clav	below "A" line < No. 200, PI≥4 and
ŬĔ	No. 4 sieve	More than	n 12% ⁱ	Fines classify as CL or CH	SC	Clayey sand ^{fgh}		on or above "A" line
the	Silta and Clave		PI > 7 ar	nd plots on or above "A" line ^j	CL	Lean clay ^{k I m}	Relative Density of	
ed Soils passed the sieve	Liquid limit		PI < 4 or	r plots below "A" line ^j	ML	Silt ^{k m}		
ed So Dasse sieve	less than 50			iquid limit - oven dried < 0.75		Organic clay k I m n	Cohesionless Soils	
ned e pa 0 sic			Liquid limit - not dried		OL	Organic silt ^{k m o}	Very loose	
graine more p	Silts and clays	Inorganic	organic PI plots on or above "A" line PI plots below "A" line		СН	Fat clay k I m	Loose	5 to 10 BPF
	Liquid limit				MH	Elastic silt k I m		
Fine 50% or N	50 or more	Organic	Organic Liquid limit - oven dried < 0.75		ОН	Organic clay k I m p		over 50 BPF
50		e.guno	Liquid lin	nit - not dried	он	Organic silt ^{k m q}		
Highly	Organic Soils	Primarily org	anic matte	r, dark in color and organic odor	PT	Peat	Consistency o	f Cohesive Soils

Based on the material passing the 3-in (75mm) sieve a.


b. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name $C_u = D_{6i}$

$$D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$$

- d. If soil contains>15% sand, add "with sand" to group name.
- Gravels with 5 to 12% fines require dual symbols: e.
- GW-GM well-graded gravel with silt

c.

- GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with silt
- GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains \geq 15% gravel, add "with gravel" to group name.
- h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt SW-SC
- well-graded sand with clay SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant. k.
- If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- If soil contains≥30% plus No. 200 predominantly gravel, add "gravelly" to group name m.
- $PI \ge 4$ and plots on or above "A" line. n.
- PI <4 or plots below "A" line. о.
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

DD	Dry density, pcf	oc	Organic content, %
WD	Wet density, pcf	S	Percent of saturation, %
MC	Natural moisture content, %	SG	Specific gravity
LL	Liqiuid limit, %	С	Cohesion, psf
PL	Plastic limit, %	Ø	Angle of internal friction
PI	Plasticity index, %	qu	Unconfined compressive strength, psf
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf

Cohesionless Soils					
Very loose Loose	5 to 10 BPF				
Medium dense Dense					
Very dense	over 50 BPF				

Soils

Very soft Soft Rather soft Medium Rather stiff Stiff	2 to 3 BPF 4 to 5 BPF 6 to 8 BPF 9 to 12 BPF 13 to 16 BPF
Very stiff Hard	17 to 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.'

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards

Rev. 7/07

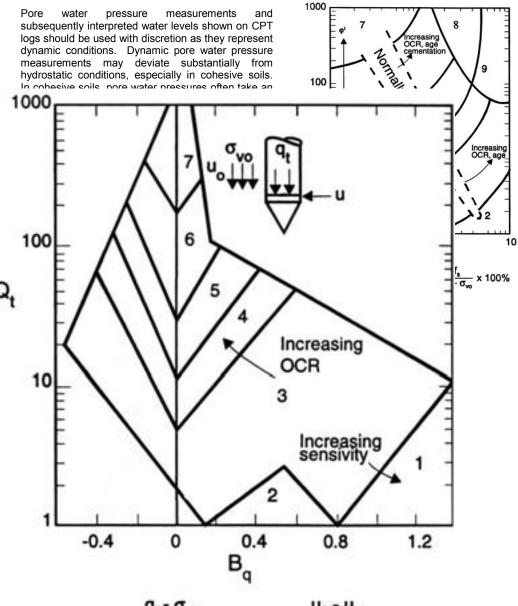
This document accompanies Cone Penetration Test Data. Please refer to the Boring Log Descriptive Terminology Sheet for information relevant to conventional v. Cone Penetration Test (CPT) boring logs.

Cone Penetration Test (CPT) sounding was performed in general accordance with ASTM D 5778 and consistent with the ordinary degree of care and skill used by reputable practitioners of the same discipline currently practicing under similar circumstances and in the same locality. No warranty, express or implied, is made.

Since subsurface conditions outside each CPT sounding are unknown, and soil, rock and pore water conditions cannot be relied upon to be consistent or uniform, no warranty is made that conditions adjacent to each sounding will necessarily be the same as or similar to those shown on this log. Braun Intertec is not responsible for any interpretations, assumptions, projections or interpolations of the data made by others.

Pore water pressure measurements and subsequently interpreted water levels shown on CPT

SBT SOIL BEHAVIOR TYPE

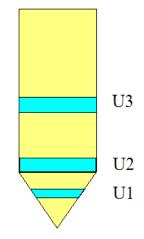

Soil Identification methods for the Cone Penetration Test are based on correlation charts developed from observations of CPT data and conventional borings. Please note that these identification charts are provided as a guide to Soil Behavior Type and should not be used to infer a soil classification based on grain size distribution.

Engineering judgment and comparison with augered borings is especially important in the proper interpretation of CPT data in certain geo-materials.

The following charts provide a Soil Behavior Type for the CPT Data. The numbers corresponding to different regions on the charts represent the following soil behavior types:

Soil Behavior Type based on friction ratio

Soil Behavior Type based on pore pressure


Robertson CPT 1990

1 Sensitive, Fine Grained

- 2 Organic Soils Peat
- 3 Clays - Clay to Silty Clay
- Silt Mixtures Clayey Silt to Silty Clay 4
- Sand Mixtures Silty Sand to Sandy Silt
- 6 Sands Clean Sand to Silty Sand
- Gravelly Sand to Sand 7
- 8 Very Stiff Sand to Clayey Sand
- 9 Very Stiff, Fine Grained

U2 PORE WATER MEASUREMENTS

Pore water measurements reported on CPT logs are representative of pore water pressures measured at the U2 location, just behind the cone tip, prior to the sleeve, as shown in the figure below. These measurements are considered to represent dynamic pore water pressures due to the local disturbance caused by the cone tip. Dynamic pore water pressure decay and static pore water pressure measurements are reported on a Pore Water Pressure Dissipation Graph.

Appendix F

Bridge over I-494

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Foundation Analysis Design Recommendation Report Bridge over I-494 – 90% Design STA 2139+21 to STA 2141+14 Southwest LRT, West Segment 1 Eden Prairie, Minnesota

Dear Mr. Demers:

Braun Intertec has completed the requested drilling and geotechnical evaluation for the proposed light rail bridge over I-494 parallel to existing Bridge 27762 on Flying Cloud Drive in Eden Prairie, Minnesota. The following sections include bridge foundation and approach embankment support, discussions, and recommendations.

This report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for retaining wall (RTW-113), general track construction, and pole foundations for the Overhead Contact System (OCS) will be addressed in separate reports.

A. Project information

The proposed bridge over I-494 consists of a multi-span bridge for use by light rail trains over I-494 and parallel to existing Bridge 27762 on Flying Cloud Drive in Eden Prairie, Minnesota.

The light rail bridge will consist of two abutments with one center pier. Prestressed concrete beams are proposed to support a cast-in-place concrete deck. The bridge is planned to be approximately 34 feet wide. The existing bridge is approximately 186 feet long, and the preliminary engineering plans show the light rail bridge to be approximately 195 feet long.

Southwest Light Rail Transit Project BL-13-00213 August 29, 2014 Page 2

A.1. Type of Structures

This design report includes recommendations for bridge foundation and approach embankment support for the bridge carrying light rail trains over I-494. The abutments and center pier are anticipated to be supported on cast-in-place concrete filled pipe piles.

A.2. Location of Bridge

The bridge is proposed to span I-494 approximately 0.2 miles east of the Junction of I-494 and Trunk Highway (TH) 212 in Eden Prairie, Minnesota.

A.3. Other Information

We understand the light rail bridge will not be structurally connected to the existing bridge, but will be within approximately 10 feet of the existing bridge.

Temporary shoring of embankments adjacent to the existing bridge structure will be required to facilitate construction.

The design team discussed the use of spread footing foundations to support the new structure. While the soils appear suitable to support the anticipated loads, the proximity and design of the abutment will result in a loading condition that will negatively influence the existing battered piles of the adjacent bridge. Therefore, alternative foundation support methods are being explored.

To construct the bridge, embankment grade increases of 15 to 20 feet for the abutments will be necessary. Grade raises of this magnitude will influence the design and construction of the proposed bridge foundation types. The effects of the embankment stresses are accounted for in our foundation design recommendations.

B. Subsurface Investigation Summary

B.1. Summary of Borings Taken

Three foundation borings (2120SB, 2121SB, and 2122SB) were completed in the vicinity of the proposed bridge abutments and center pier by Braun Intertec. The number, function, and approximate track station of the soils borings are provided in the table below. Copies of the Log of Borings are included in the Appendix of this report.

Southwest Light Rail Transit Project BL-13-00213 August 29, 2014 Page 3

Boring	Soil Boring Function	Approximate Track Stationing
2120SB	South Abutment	2139+40
2121SB	Center Pier	2140+10
2122SB	North Abutment	2141+00

Table 1. Soil Boring Location and Function

B.2. Description of Foundation Soil and Rock Conditions

South Abutment Boring:

Boring 2120SB was performed at the south abutment at elevation 883.7 and was offset approximately 50 feet west of the existing bridge due to overhead and underground utility conflicts. The boring encountered approximately 1/2-foot of topsoil over glacial clays to a depth of 29 feet below the ground surface. Beneath the clay, glacially deposited sands and silts were encountered to the termination depth of the boring at 66 feet. The glacial soils consisted of poorly graded sand, poorly graded sand with silt, silty sand, sandy silt, lean clay with sand, and sandy lean clay.

Center Pier:

Boring 2121SB was performed at the center pier at elevation 884.5. The boring encountered 5 inches of bituminous over a mix of sand fill to a depth of 12 feet below the ground surface. Beneath the fill, glacially deposited sands and silts with occasional layers of clay were encountered to the termination depth of the boring at 76 feet. The fill consisted of poorly graded sand with silt and silty sand. The glacial soils consisted of poorly graded sand, poorly graded sand with silt, silty sand, sandy silt, lean clay and sandy lean clay.

North Abutment Boring:

Boring 2122SB was performed at the north abutment at elevation 885.7. The boring encountered approximately 2 feet of topsoil over fill to a depth of 19 feet below the ground surface. This may be a result of deep utilities in the area. A layer of organic clay was encountered from 12 to 17 feet. Beneath the fill, glacial clays were encountered to a depth of 37 feet. Below the clays, glacially deposited sands and silts with an occasional layer of clay were encountered to the termination depth of the boring at 76 feet. The fill consisted of poorly graded sand, poorly graded sand with silt, clayey sand, sandy lean clay, and organic clay. The glacial soils consisted of poorly graded sand, poorly graded sand with silt, clayey sand, sandy with silt, clayey sand, lean clay, and sandy lean clay.

Penetration Resistance Values:

Penetration resistance values recorded in the fill ranged from 3 to 16 blows per foot (BPF), indicating the fill soils were variably compacted. Penetration resistance values recorded in the glacial clays ranged from 3 to 70 BPF, indicating the soils were soft to hard (generally rather stiff to hard). Penetration resistance values recorded in the glacial sands and silts ranged from 28 to 103 BPF, indicating the soils were to very dense.

B.3. Summary of Water Level Measurements

Groundwater was only measured at Boring 2120SB and was observed at a depth of 42 feet, or elevation 842 feet above Mean Sea Level (MSL). Seasonal and annual fluctuations of groundwater, however, should be anticipated.

Waterbearing sands were encountered 38 feet below grade at Boring 2121SB corresponding to an elevation of 846 1/2. Pockets of water are likely trapped on top and between dense, low permeability soils.

B.4. Interpretation of Water Level

Groundwater was only encountered in one boring during drilling operations. The boreholes were only open for a short period of time and groundwater was likely not able to reach its static elevation prior to the conclusion of drilling activities.

However, based on the assumed pile cap elevations and the encountered groundwater from the soil borings, we do not anticipate that groundwater will affect construction activities.

C. Foundation Analysis

Poor soils were encountered to a depth of 22 to 26 feet below the surface at Boring 2122SB corresponding to an elevation of 864 to 859 1/2. This elevation is appreciably below the bottom of the north abutment and wing walls which have bottom of pile cap elevations varying from 881 to 888.

A new embankment, resulting in a grade increase of 15 to 20 feet is anticipated near the north and south abutments of the proposed bridge. Based on the fill heights, a soil load of this magnitude will produce settlements within the existing soils, causing a downdrag condition on the existing battered piles beneath the roadway bridge. MnDOT discourages the placement of additional loads next to existing battered piles. Therefore, an embankment constructed of soil will not be possible. Alternative

methods of supporting the abutments were evaluated including lightweight fill, a structurally supported bridge deck creating a "hollow box" for the abutments, or reconfiguring the locations of piers and abutments to redistribute the bridge loads.

Based on the soil conditions encountered in the borings and the proximity of the existing bridge to the proposed light rail bridge, the current preferred foundation option for the proposed bridge abutments, piers and wing walls is pile foundations.

C.1. Embankment and Slopes – Bridge and Abutments

The proposed light rail bridge will require the construction of approach embankments and wing walls. These walls are proposed to be Cast-In-Place (CIP) concrete walls used to retain embankment backfill material placed at or near the north and south sides of the proposed bridge.

C.1.a. Embankment Settlement

Based on the anticipated fill heights of up to 15 to 20 feet for the north and south embankments, total settlement magnitudes will exceed 1/2-inch using imported granular fill, which will result in adding downdrag forces on the existing piles. Therefore, to reduce settlement from new loads on the underlying soils, alternative methods to construct the embankment will be required. Please refer to Section C.6.b of this report.

C.2. Embankment and Slopes – Walls (RTW-W113)

The retaining wall (RTW-W113) associated with the roadway embankments will be addressed in a separate report.

C.3. Pile Foundations – Bridge Abutment, Piers and Wing Walls

C.3.a. Nominal Resistance at Given Tip Elevations (Compression)

For bridge and wing wall support, we calculated the nominal resistance of the piles in compression. Currently, a tension resistance line is not provided on the Nominal Bearing Graphs attached to this report. If piles will experience tension loads, please let us know and we'll revise our recommendations accordingly. Please refer to the Nominal Resistance Graphs and Section C.4.b.1 for the calculation method.

C.3.b. Calculate and Consider Downdrag and Lateral Squeeze

Based on the alternative embankment recommendations in Section C.6.b for the abutments and no raise in grade anticipated in the area of the proposed piers, we do not anticipate downdrag forces will contribute additional load to the piles.

Lateral squeeze can occur if the unit weight of the fill multiplied by the fill height is greater than three times the undrained shear strength of the subgrade soils. Due to the general granular and dense nature of the soil encountered at the north and south embankments, we do not anticipate that lateral squeeze will be an issue.

C.3.c. Lateral Earth Pressure Calculations for P-Y Curves and Lateral Earth Forces

The following tables provide earth pressure soil parameters for lateral pile analysis and p-y curve generation using the current version of the computer program LPILE. Based on the soils encountered in Boring 2122SB, we recommend using the default lateral modulus of subgrade reaction values included in LPILE. We assumed a bottom-of-pile-cap (BOPC) elevation of 881 feet, as shown in the table.

Layer Top	Layer Bottom	Effective Unit	Internal	Undrained		
Depth Below	Depth Below BOPC	Weight	Angle of	Shear Strength		
BOPC Elevation	Elevation	(pounds per	Friction	(pounds per		
(feet)	(feet)	cubic foot)	(degrees)	square foot)	Material Type	
0	2	120	30	NA	Sand (Reese)	
2	7	126	NA	750	Soft Clay	
7	12	110	NA	500	Soft Clay	
12	22	120	NA	500	Soft Clay	
22	32	135	NA	1500-3300	Stiff Clay w/o free	
22	52	155		1900 9900	water	
32	42	70	40	NA	Sand (Reese)	
42	59	58	38	NA	Sand (Reese)	
59	63	65	40	NA	Sand (Reese)	
63	68	60	NA	8300	Stiff Clay with free	
05	00	00	INA	8300	water	
68	71	65	40	NA	Sand (Reese)	

C.3.d. Tip Elevation, Casing Requirement, Estimates of Overdrive

We recommend driving the proposed pipe pile sections to elevations shown in Section D.4 and the attached resistance graphs for driven pile. The table below shows approximate bottom-of pile-cap elevations based on plans provided by SPO.

Table 3. Estima	ated Bottom of P	ile Cap Elevations
-----------------	------------------	--------------------

	Approximate Bottom-of-Pile-Cap Elevation
Substructure	(feet)
South Abutment	882
South Abutment Wing Wall	887
Center Pier	878
North Abutment	881
North Abutment Wing Wall	886

C.4. Summarize Design Assumptions – Driven Piles

C.4.a. Bridge Loading Information (Axial and Horizontal)

Please refer to Section D.1 and D.4 for anticipated pile loads and resistances.

C.4.b. Design Methodologies – Pile-Supported Structures

C.4.a.1. Pile Capacity – LRFD (I-494 Bridge)

We used the computer program UniPile, version 5.0.0.33, to estimate the static nominal geotechnical resistance (R_n) of the 12.0-inch outside-diameter, 1/4-inch thick wall, closed-ended pipe piles for support of the bridge abutments and pier. UniPile software was developed by UniSoft Geotechnical Solutions Ltd. and can calculate pile resistance using a variety of methods.

For our analysis, we utilized the Beta-method, an effective stress method, to estimate the static geotechnical resistance for these pile. This method determines shaft resistance using Bjerrum-Burland beta coefficients (β), which are based on soil type and effective friction angle. We estimated the β values for each layer using Figure 9.20 from the Federal Highway Administration (FHWA) Publication No. NHI-05-042, Design and Construction of Driven Pile Foundations, April 2006. The Beta-method determines end bearing resistance using toe bearing capacity factors (N_t), which are also based on soil type and effective friction angle. We estimated the N_t values from Table 9-6 of the April 2006 FHWA publication identified previously.

C.4.a.2. Downdrag

We do not expect down drag will act on the existing or new piles for the abutments and piers as no raise in grade or embankment construction is anticipated in the areas of the proposed structures.

C.5. Summarize Design Assumptions – Abutment Construction

C.5.a. Embankment Heights, Unit Weights, Side Slopes, and End Slopes

Based on the preliminary design information, finished grade at the north and south bridge abutments will be 15 to 20 feet above existing grades. Soil loads of this magnitude will produce settlements in excess of 1/2-inch, which will produce downdrag forces on the existing battered piles. To reduce settlement and down drag potential, alternative foundation methods are being explored and will be discussed further in Section C.6 of this report.

C.5.b. Wall Loading Information

Bridge abutments and wing walls are assumed to be pile supported.

C.6. Construction Considerations

C.6.a. Design of Temporary and Permanent Slopes

The existing foundation/embankment soils are generally sandy with angles of internal friction of 28 degrees or greater. The permanent slopes can match the existing slopes, except they must be not steeper than 1V:2H. The granular borrow is anticipated to have an angle of internal friction of approximately 30 degrees. This soil could be temporarily placed at a slope of 1V:1.5H, but must be limited to 1V:2H or flatter for the permanent condition.

C.6.b. Embankment Construction Recommendations

Based on settlement limitations due to the existing piles, the light rail bridge abutments must provide a negligible stress increase in the underlying soils. To achieve this condition, the following embankment construction options are discussed.

C.6.b.1. Lightweight Fill

By replacing conventional granular fill material weighing 120 pcf with blocks of Expanded Polystyrene, know as EPS, or more commonly known as Geofoam, weighing 1.5 pcf, the approach embankment can be constructed according to plan without producing significant settlement causing downdrag on the existing battered piles. The EPS should be wrapped in poly to protect it from fuel and chemicals which may break down the polystyrene. Additionally, a layer of sand and aggregate should be placed on top of the EPS to provide a working platform for the placement of concrete. Typical thicknesses of this layer are approximately two feet, but can vary. The placement of EPS should extend the full length of the embankment.

C.6.c. Structurally Supported Bridge Deck

An alternative to using lightweight fill would be to span the abutments with a concrete deck to carry the bridge loads and transfer them to the wing walls, leaving a void space beneath the deck (where soil or lightweight fill would commonly be placed). This approach would create a zero increase in the underlying soils and eliminate the potential downdrag on the existing piles. The top span of the bridge should be designed to sufficiently support the design loads and may require a structural connection to the wing walls. Consideration should also be given to sealing all joints associated with this construction so soil, debris, or animals cannot enter the interior of the structure over time.

C.6.d. Construction Staging Requirements

Based on the close proximity of the north bridge abutment and retaining wall RTW-113, final staging is to be determined once final design and foundation designs for both the abutments and walls are concluded.

C.6.e. Demolition

All existing pavement and structures, associated fill subgrades, and associated deleterious material where proposed structures and oversize areas are to be located must be fully removed and replaced with suitable engineered fill.

D. Foundation Recommendations – Deep Foundations

D.1. Bearing Resistances and Associated Resistance/Safety Factors

Please refer to Appendix B for nominal bearing resistances for driven pile for bridge abutment and pier support. For situations where subsurface exploration and static calculations have been completed, we recommend that the following ϕ_{dyn} factors be used for LRFD Design.

	117
Specified Construction Control	φ _{dyn}
MnDOT Pile Formula 2012 (MPF12) for Pipe Pile Sections	0.50
Wave Equation and Pile Driving Analyzer (PDA)	0.65

Table 4. Recommended Pile Driving Resistance Factors (ϕ_{dyn})

D.2. Uplift Capacity/Resistance

Currently, a tension resistance line is not provided on the Nominal Bearing Graphs attached to this report. If piles will experience tension loads, please let us know and we'll revise our recommendations accordingly.

D.3. Recommended Design Soil Parameters (e.g., Coefficient of Friction, Lateral Earth Pressure Coefficients, etc.)

The recommended soil parameters to be used for design are as follows:

Soil Type	Angle of Internal Friction (degrees)	Effective unit Weight (pcf)	Coefficient of Sliding Friction Rough Concrete	Active Earth Pressure Coefficient	At-Rest Earth Pressure Coefficient
Select Granular Borrow	35	120	0.6	0.27	0.43
Granular Borrow	30	120	0.5	0.33	0.50
Existing Non-organic granular Fill	30	125	0.5	0.33	0.50
Existing Clay Fill	28	130	0.5	0.36	0.53

Table 5. Recommended Design Soil Parameters

D.4. Recommended Pile Size, Length, and Tip Elevation

D.4.a. Bridge Abutments, Pier and Wing Walls

The following tables summarize the anticipated pile depths based on the factored load ($\Sigma\gamma Q_n$) for 12.0inch, outside-diameter pipe pile with a wall thickness of 1/4-inch. The tables provide a PDA length (i.e., ϕ_{dyn} of 0.65) and a MPF12 formula length (i.e., ϕ_{dyn} of 0.50) for each location. We assumed a cutoff elevation of about 1 foot above the anticipated bottom-of-pile-cap elevation. Please refer to the attached nominal bearing resistance graphs for a detailed profile of pile resistances as a function of depth.

		Anticipated Cutoff Elevation		Approximate Tip Elevation	Approximate Pile Length	
Substructure	Boring	(feet)	R _n (tons)	(feet)	(feet)	
South Abutment	2120SB	883	215 [430 kips]	853	30	
South Abutment Wing Walls	2120SB 887		215 [430 kips]	853	35	
Center Pier	2121SB	879	215 [430 kips]	844	35	
North Abutment	2122SB	882	215 [430 kips]	847	35	
North Abutment Wing Walls	2122SB 886		215 [430 kips]	847	40	

Table 6. Summary of Anticipated Pile Lengths, CIP 12.0" x 1/4", $\Sigma\gamma Q_n$ =140 tons, PDA

Table 7. Summary of Anticipated Pile Lengths CIP 12.0" x 1/4", $\Sigma\gamma Q_n = 140$ tons, MPF12

		Anticipated Cutoff Elevation	Approximate Tip Elevation	Approximate Pile Length	
Substructure	Boring	(feet)	R _n (tons)	(feet)	(feet)
South Abutment	2120SB	883	280 [560 kips]	853	30
South Abutment Wing Walls	2120SB	887	280 [560 kips]	853	35
Center Pier	2121SB	879	280 [560 kips]	839	40
North Abutment	2122SB	882	280 [560 kips]	847	35
North Abutment 2122SB 886 Wing Walls		886	280 [560 kips]	847	40

We evaluated the lateral resistance of the pile under the strength limit state using a factored axial load of 140 tons (280 kips) and a factored lateral load resistance (ϕR_{nh}) of 12 tons (24 kips) for a 12.0-inch closed ended pile section with a 1/4-inch wall thickness. Please refer to the Appendix for the resulting moments within the pile at the factored loads. Under the reported factored loads, the anticipated lateral deflection of the pile top is less than 1 inch. Therefore, we expect the lateral pile top deflection under service loads will also be less than 1 inch.

D.5. Recommended Slope Angles

We recommend designing permanent side and end slopes of approximately 1:3 or 1:2 (V:H), respectively. With the proposed slope protection, these slopes have a Factor of Safety against global failure in excess of 1.5.

D.6. Temporary Slopes and Shoring Limits

Temporary shoring is noted on the plans at the north and south abutment on the south side of the proposed bridge. Temporary slopes are recommended to be constructed at 1V:1.5H or shallower. Temporary slopes constructed in natural material are recommended to be constructed at 1V:2H or shallower. In a temporary condition; these slopes have a Factor of Safety against global failure in excess of 1.3. Please refer to our soil parameters in Section D.3.

D.7. Topsoil, Fill, and Poor Soil Excavations

In accordance with MnDOT Standard Specification 2105, we recommend stripping existing vegetation, organic topsoil, and non-mineral debris prior to placement of the abutments and wing walls. The slopes must be benched where they are steeper than 1:4 to a bottom that is flatter than 1:4.

D.8. Trench Excavation Slopes

Please refer to Section D.6 Temporary Slopes and Shoring Limits.

D.9. Temporary Slopes and Shoring Limits

Please refer to Section D.6 Temporary Slopes and Shoring Limits.

E. Material Classification and Testing

E.1. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM Standard Practice D 2488. A chart explaining the classification system is attached. Samples were placed in jars or bags and returned to our facility for review and storage.

E.2. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM or AASHTO procedures.

E.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced. The boreholes were then backfilled or sealed with bentonite grout as noted on the boring logs.

F. Qualifications

F.1. Variations in Subsurface Conditions

F.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore, strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

F.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

F.2. Continuity of Professional Responsibility

F.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

F.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

F.3. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

G. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If there are questions regarding these bridge foundation recommendations, please call Joshua Kirk at 952.995.2222 or <u>jkirk@braunintertec.com</u> or Ray Huber at 952.995.2260 or <u>rhuber@braunintertec.com</u>.

Sincerely,

BRAUN INTERTEC CORPORATION

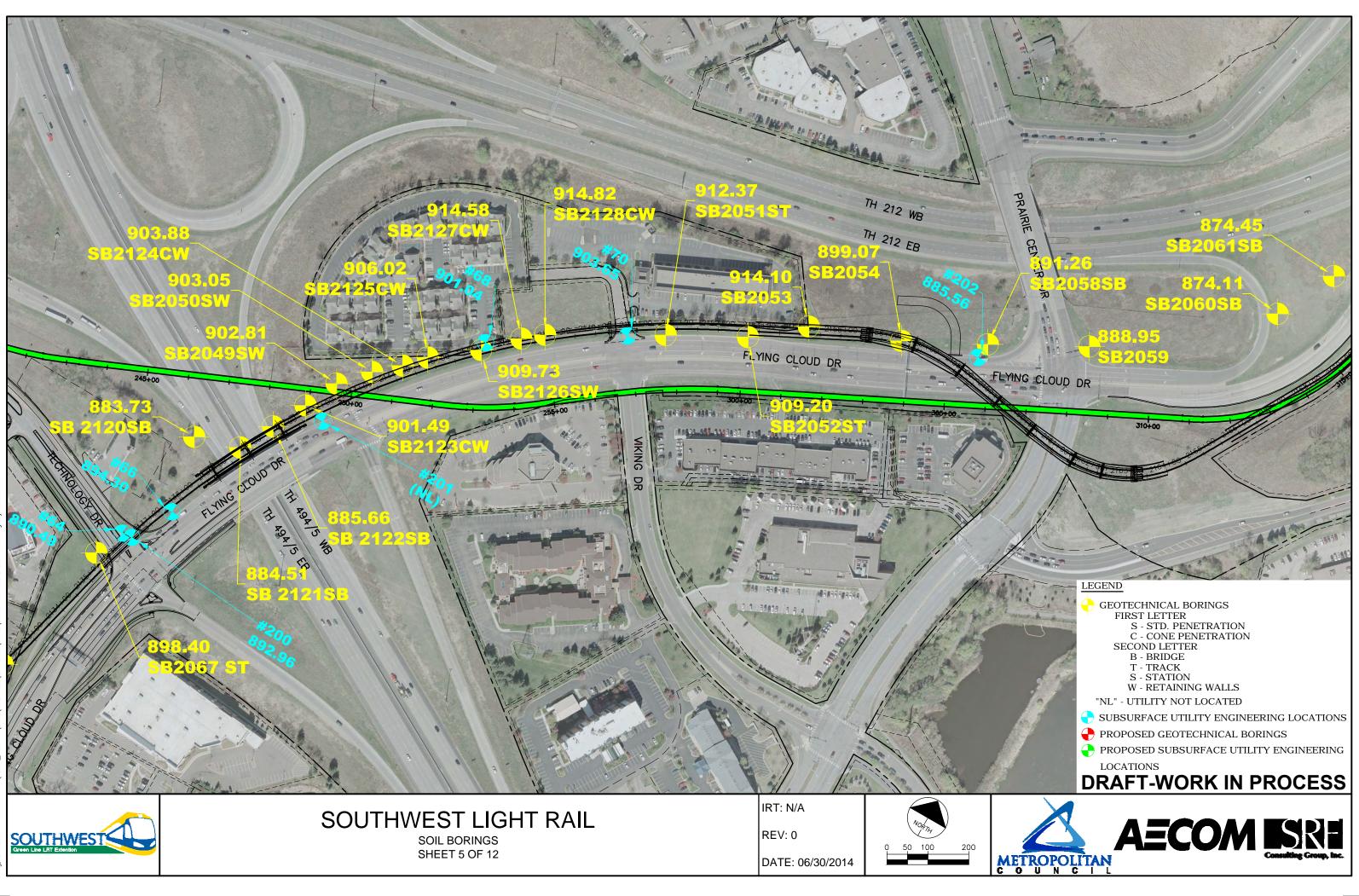
Professional Certification:

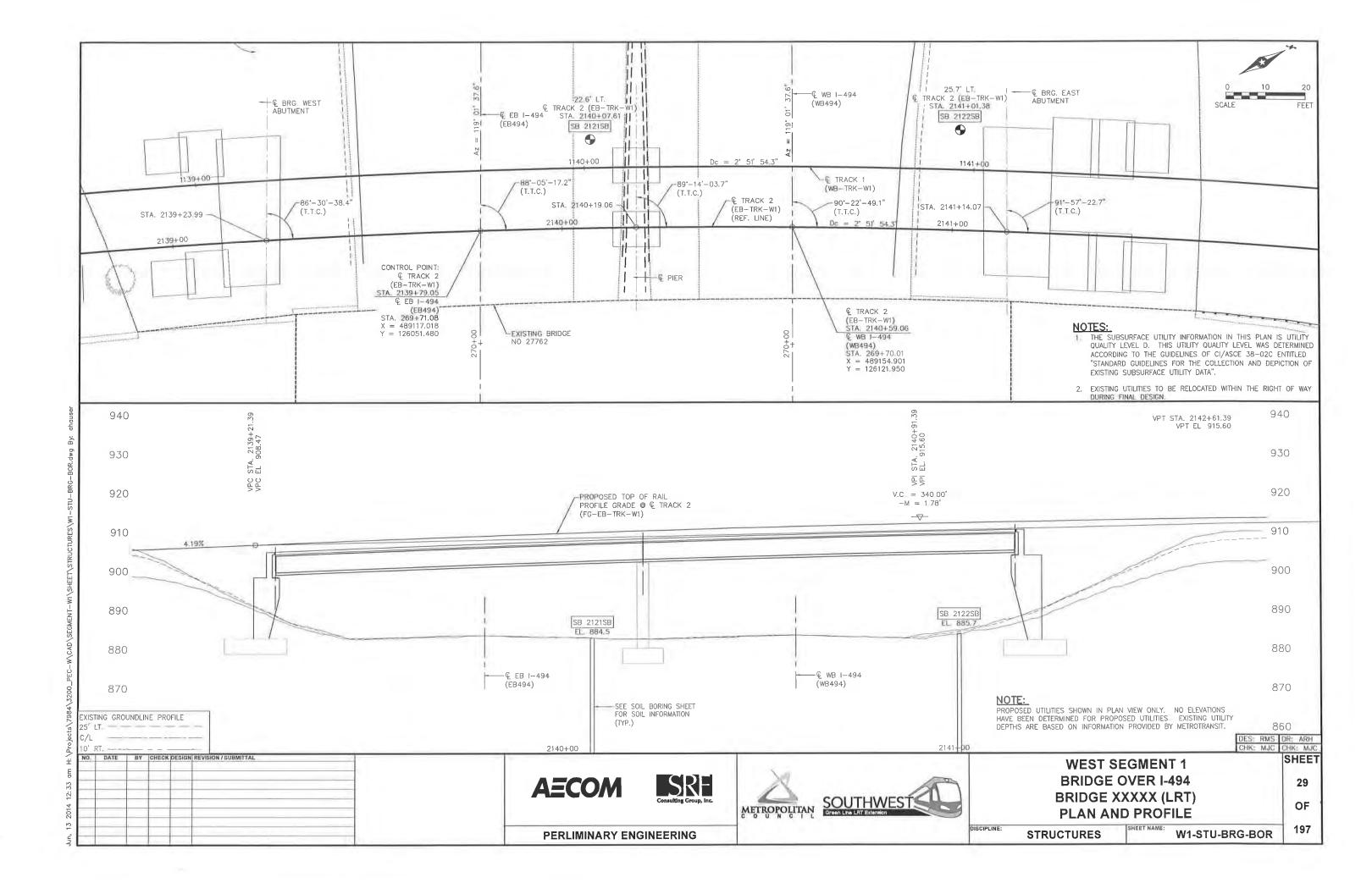
I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Joshua L. Kirk, PE Associate Principal - Project Engineer License Number: 45005

Reviewed by:

Ray A. Huber, PE Vice President - Principal Engineer


Reviewed by:


Matthew P. Ruble, PE Principal Engineer

Appendix:

Boring Location Sketch Preliminary Engineering Plan and Profile Sheets - Bridge over I-494 Standard Penetration Test Borings (2120SB, 2121SB, 2122SB) Nominal Resistance Graphs Lateral Pile Analysis Results Publication No. FHWA-IP-89-008 N₆₀ Correlation Tables SPT Descriptive Terminology

APPENDIX

920	
915	
910	
905	
900	
895	
890	
885	
880	
875	BORINGS IN PROGRESS
870	
865	
860	
855	
850	
845	
840	NOTES: THE MATERIAL DESCRIPTIONS ARE CLASSIFIED ACCORDING TO THE UNIFIED SOIL CLASSIFICATION SYSTEM. DETAILS ON THE SYSTEM CAN BE FOUND IN THE FADR AND IN ASTURDATES THE SOUL CREDITY OF THE ASTURDATION OF THE ASTURDATION OF THE ASTURDATES OF THE ASTURDATES OF
835	AND IN ASTM:D2488. THE SOIL GROUP CATEGORY PER THE AASHTO SOIL CLASSIFICATION SYSTEM IS ALSO SHOWN.
NO. DATE	
0 1	

	920
	915
	910
	905
	900
	895
	890
	885
	880
	875
	870
	865
	860
	855
	850
	845
	840
DES: RMS CHK: MJC	CHK: MJC
WEST SEGMENT 1	SHEET
BRIDGE OVER I-494	30
BRIDGE XXXXX (LRT) SOIL BORINGS	OF
STRUCTURES SHEET NAME: W1-STU-BRG-BOR	197
U	

State F	Project		Bridge No. or Job Desc. Trunk Highway/Location						Boring I			Ground Elevation		
			SWLRT						2120	5B		883.7 (Surveyed)		
ocatio			n Co. Coordinate: X=489000 Y=126054 (ft.)			Drill Machine 7506						Drilling	T 1 of 2	
			, .	tude (West)=		Han	nmer CN	IE Autor	matic Ca	librated		Completed	5/29/1	
	No Si	tation-	Offset Information Available			_	SPT	MC	СОН	γ	Soil	Other		
F	Depth	ogy				ion	N 60	(%)	(psf)	(pcf)	Ň	Or Rer	narks	
DEPTH		Lithology		sification		Drilling Operation	REC	RQD	ACL	Core Breaks	ock	Forma		
<u> </u>	<i>Elev.</i>					δŐ	(%)	(%) 19	(ft)	Breaks	Ř	or Me	mber	
+	883.3		SANDY LEAN CLAY, trace ro	ols, dark brown, mo	DIST, (CL),	17		- 19						
1							21	13						
+						रि		+						
5-	-					\mathbf{X}	29 -	15						
Į			LEAN CLAY with SAND, trace of Sand and Silt, brown and g			Æ		1						
+			12 feet then wet, very stiff to h		moist to	X	17.	20			LL	.=23; PL=15	; PI=8	
10	1					ł	-	t						
10-							19	19				vitched to m		
ł			Layer of Silt encountered at 12		PD	33	24				mple.			
1	14.0							24						
15-	869.7				- PD	23 -	17							
ł						PD		Ŧ						
ļ						\mathbf{X}	37	14			qu	i=2 1/4 tsf		
ł						PD		-						
20	-		SANDY LEAN CLAY, trace G	raval brownish grav to 17 foot		32	14				ter 20-foot s			
+			then gray, moist to wet, very s			Ł		+			SW	itched back	to auger.	
+						Å	33 .	12			D	D=127 pcf		
25-	-					51	57	15						
							57	15			qu	=3 1/2 tsf		
İ							40	12						
-	29.0	Į <u>//</u>				सि		Į						
30-	854.7					\square	53 -	16						
ļ		× . ×	SILTY SAND, fine- to medium-grained, trace Gravel, with frequent layers of Lean Clay and Silt, brown, moist, very					ļ						
+		× . ×	dense, (SM), till	,,	, .		60 .	9			P2	200=29%		
35-	35.0	íx í . <u>· . · .</u> x				KŢ,		<u> </u>						
35	848.7					Å	57	6						
ł						L	46	6						
1			POORLY GRADED SAND, fir Gravel, brown, moist, very der			मि								
40-	-		, , , , , , , , , , , , , , , , , , ,	, (0.),			39 -	12						
	42.0					F		t						
+	841.7		SANDY SILT, with frequent la waterbearing, dense, (ML), till	yers of Silty Sand, I	prown,	X F1	33	+						
45	ndex She					\bowtie	1	\bot	$\perp _ _ _$	I	1_		 Date: 8/21	

U.S. Customary Units

SHEET 2 of 2 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS State Project Ground Elevation Bridge No. or Job Desc. Trunk Highway/Location Boring No. SWLRT 2120SB 883.7 (Surveyed) γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core ୪ Breaks ଜ Core Formation Classification Elev. or Member (%) (%) (ft) 38 26 SANDY SILT, with frequent layers of Silty Sand, brown, मि waterbearing, dense, (ML), till (continued) 47.0 POORLY GRADED SAND, fine- to medium-grained, 836.7 22 53 P200=4% brownish gray, moist, very dense, (SP), outwash 49.0 ₽ 834.7 50 57 20 SANDY SILT, with frequent layers of Silty Sand, brownish gray, wet, very dense, (ML), till 55 51 21 DD=111 pcf 58.0 825.7 ĺΧ. 60 SILTY SAND, fine- to medium-grained, brown, wet, very 51 23 dense, (SM), till 63.0 820.7 SANDY SILT, with frequent layers of Silty Sand, brownish DD=115 pcf; LL=17; PL=14; gray, wet, dense, (ML), till 65 46 21 PI=3 66.0 Bottom of Hole - 66 feet. 817.7

Water observed at a depth of 42 feet while drilling. Boring immediately backfilled with bentonite grout.

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Location					Boring			Ground Elev	
				SWLRT					2121	SB		884.5 (S	
Locatio	on Her	nepi	n Co. Coordinate: X=48911) Y=126087 (fi			Machine	-				SHEE	T 1 of 2
	Latit	ude (North)= Longi	tude (West)=	<i>H</i> a	amı	mer CN	IE Autor	matic Ca	alibrated		Completed	5/21/14
	No S	tation	Offset Information Available				SPT	МС	сон	γ	il	Other 7	ests
I	Depth	Depth				5	N 60	(%)	(psf)	(pcf)	Soil	Or Rem	narks
DEPTH		Lithology		· · · · · ·	Drilling	erati	REC	RQD	ACL	Core Break	ş	Forma	tion
٩	Elev.			sification	Dri	ð	(%)	(%)	(ft)	Break	<u>.</u>	or Men	
-	0.4 884.1		√5 inches of bituminous. SILTY SAND, fine- to medium	-grained, with Gravel, dark	-ڠ	Ţ	-	- '				I flight samp ized due to r	
	- 2.0 - 882.5		\brown, moist, (SM), fill POORLY GRADED SAND wit	-	_/{{	ţ	-					rk zone hour	
-	4.0				{	ξ	-	F					
5-	_ 880.5				Ď		16 -	11			P2	00=19%	
	-				F	Ţ	-	+					
-	-		SILTY SAND, fine- to medium brown and gray, moist, (SM),	-grained, trace Gravel, dark	Į	ł	-	-					
10-			brown and gray, molet, (ow),		Ł	Ţ	-	-					
10	-				- R	\mathbf{S}	8 -	12					
-	_ 12.0 872.5	XX X			—Į	ł	-	-					
	-	· . · .× ·× · .			1	Ţ	-	-					
15-	_	· . · .×			ľ		16 -	12					
-	-				F	7	=	-					
	-	× . ×			ł	Ţ	-	-					
-	-	× . ×			ł	ł	-	-					
20-	-	× .				\leq	28 -	13				itched to mu	
_	-	× .	SILTY SAND, fine- to medium	n-grained, brown, moist to 25	5		Ţ	-				drilling method after 2 sample.	
-	-	× .	feet then wet, medium dense, (SM), till			D	-	-					
25-	-	·×				\exists	- 19 ⁻	- 47			P2	00=20%	
	-	1× 1 ×			Ŕ	\geq	19 -	17					
	-	· . · .×			P		-						
-	-						-	F					
30-	-					$\langle $	16 -	17					
	-	× . ×					-	ļ.					
+	_ 33.0 851.5	'× '.			—P	D	-	ŀ					
35-			SANDY LEAN CLAY, trace G	avel with Sand sooms		\rightarrow	-	-			חח	=109 pcf	
55	-		brown, wet, rather stiff, (CL), t		\mid	\leq	12 -	22					
+	- 38.0				Р		-	ł					
	846.5					4	-	Ļ					
40-	_		POORLY GRADED SAND with SILT, fine- to	h SII T fina ta	\square	1	53 -	13					
+	-		medium-grained, brown, wate	bearing, very dense to	K	\rightarrow	-	t					
]	-		medium dense, (SP-SM), out	vash	P	D	-	F					
-	-						-	+					
45⊥	Index She	⊥⊥⊥⊥ et Co	 de 3.0(Continu		l2	<u> </u>		⊥ Sc	⊥ nil Class:	I Kirk R	rack C	lass: Edit: L	

METROPOLITAN

BRAUN INTERTEC

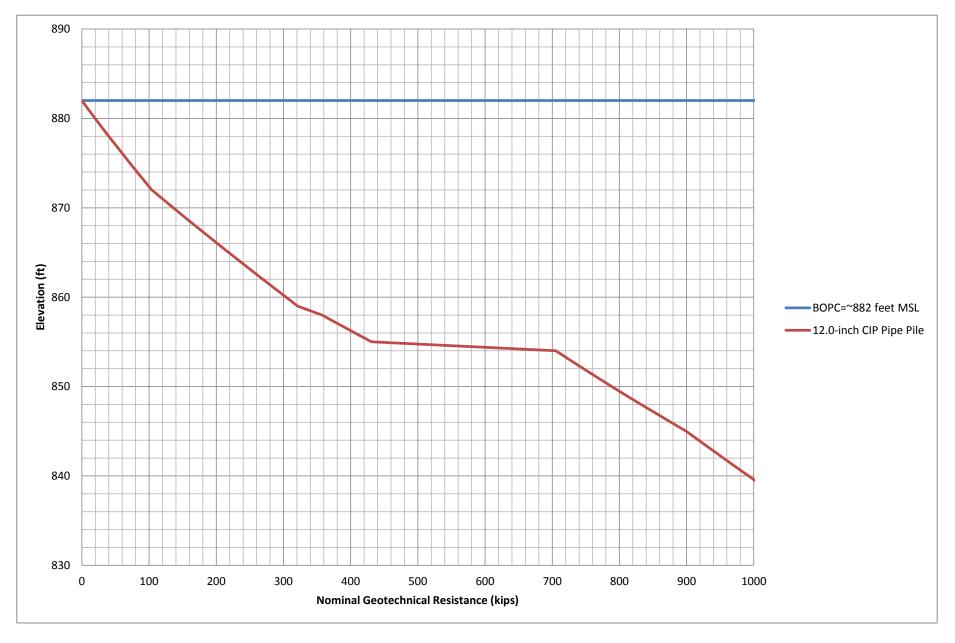
UNIQUE NUMBER

State Project			Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring No. 2121SB			Ground Elevation 884.5 (Surveyed)	
I	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks	
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member	
-	_	· · · · · ·				23	17					
-	-	· · · · · ·	POORLY GRADED SAND	with SILT, fine- to	PD	-	-					
- 50 -	-	· · · · · ·	medium-grained, brown, wa medium dense, (SP-SM), o			48 -	20					
-	_	· · · · · ·			\square	40						
-	53.0 831.5	· · · · · ·			—PD	-	_					
- 55-	-	· · · · · · · · · · · · · · · · · · ·				50	- 17			P2	200=8%	
-	-	· · ·		to POORLY GRADED SAND		-	-					
-	_	· · · · · ·		grained, gray, waterbearing,	PD	-	-					
60-	_	· · · · · ·			\mathbf{X}	79 -	21					
-	-	· · · · · · · · · · · · · · · · · · ·				-	-					
-	63.0 821.5	Ť			-PD	-	_					
65-	_		SANDY SILT, brown and g (ML), till	ray, waterbearing, very dense,		79 -	21			DI	D=112 pcf; P200=12%	
-	68.0		(WE), un		—PD	-	_					
-	816.5	, I I J I I · · · · · ·				-	-					
70-	_	· · · · · · · · · · · · · · · · · · ·	POORLY GRADED SAND,	fine-grained, gray, waterbearing	ng, 🔀	68	23					
-	_	· · · · · ·	very dense, (SP), outwash		PD	-	_					
-	74.0 810.5		I FAN CLAY with frequent	Fat Clay layers, gray and brow		-	-					
75-	76.0		wet, hard, (CL) till Bottom of Hole - 76 feet.		, X	70	32					
	808.5		Boring immediately backfill	ed with bentonite grout.								

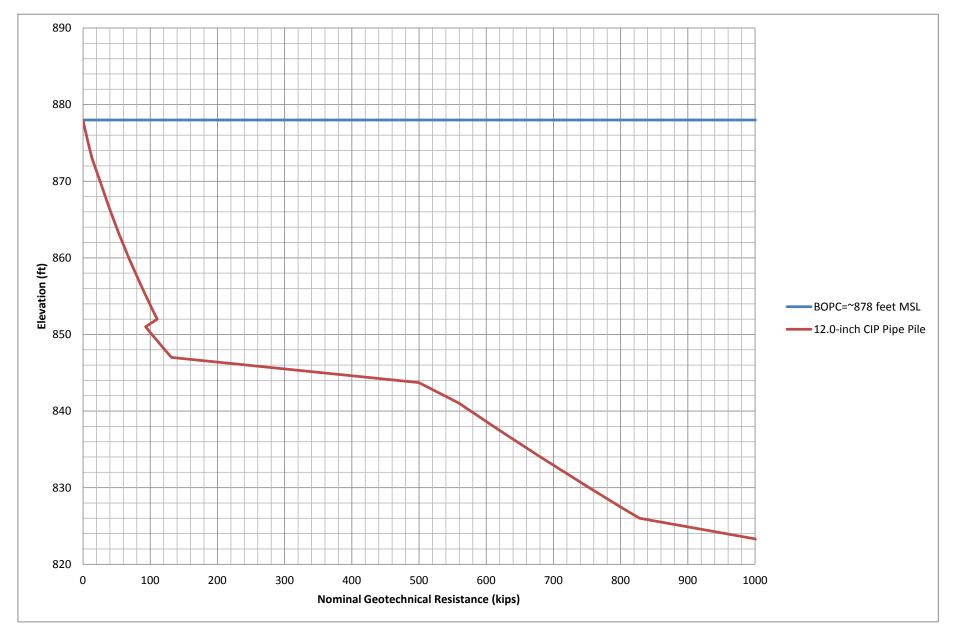
State Project			Bridge No. or Job Desc.			Boring 2122			Ground Elevation 885.6 (Surveyed)			
SWLRT				(51.)					30			
Location Hennepin Co. Coordinate: X=489154 Y=126172 (ft.)				Drill Machine 7514						SHEET 1 of 2		
	-		, ,	itude (West)=		Han	nmer CN	IE Auto	matic Ca	alibrated		Completed 5/15/1
	No Si		Offset Information Available			_	SPT	MC	СОН		Soil	Other Tests
F	Depth	лбо,				ion	N60	(%)	(psf)	(pcf)	Ň	Or Remarks
DEPTH	_,	Lithology	Clas	ssification		Drilling Operation	REC	RQD	ACL	Core Breaks	ock	Formation
	Elev.	–				δŏ	(%)	(%) 16	(ft)	Breaks	ŝ	or Member
+	2.0	1 ₁ · <u>v</u> · 1,	CLAYEY SAND, trace roots, topsoil fill	dark drown, moist. (50),	ł		+				
1	883.6		POORLY GRADED SAND wi			\mathbf{X}	6	6				
+	4.0 881.6	\bigotimes	medium-grained, brown, mois	st. (SP-SM), fill		- [7]		+				
5-		\bigotimes	POORLY GRADED SAND, fi moist. (SP), fill	ne- to medium-grain	ed, brown,		6	4				
+	7.0 878.6	\bigotimes				47	, .	+				D=106 pcf
+	0/0.0	\bigotimes					6	20				
10-	-		SANDY LEAN CLAY, trace G (CL), fill	iravel, brown and gra	ay, wet.	E	6	- 				
+	12.0	\bigotimes				ि		+ 19				
İ	873.6	X					5	32				
+		\bigotimes				सि		+				
15-	-		ORGANIC CLAY, black, wet.	(OL), IIII			13 -	23			D	D=101 pcf; OC=14%
-	17.0					R		ļ				
+	868.6 19.0	\bigotimes	CLAYEY SAND, trace Gravel fill	, brown and gray, m	oist. (SC),	X	3	15				
20-	866.6		LEAN CLAY, with frequent Si	It lovers arev wet	off (CL)	-47		<u>+</u>				D=95 pcf; LL=32; PL=1
20			till	it layers, gray, wet, s	son. (CL),		3	30				I=13
+	22.0 863.6		SANDY LEAN CLAY, trace G	ravel, brown and gra	ay, moist,		6	18				
1	24.0		medium. (CL), till			- 77		-				
25-	861.6	× . ×					7	13			D	D=120 pcf
1		× . ×	CLAYEY SAND, fine- to med brown, wet, medium to very s		Gravel,	Æ		_				
+		'× ' . ' . ' .×		uni (00), un			17	17				
~	29.0 856.6					-{}}		t				
30-	-		SANDY LEAN CLAY, trace G (CLS), till	ravel, gray, wet, rati	her stiff.	K	9	15				
+	32.0 853.6	× .				51	22	12				
1		' . ' .× '× ' .	CLAYEY SAND, fine- to med	ium-grained trace G	ravel		22	_ 12				
35-	-	· . · .× ×	gray, moist to wet, very stiff.		πανει,		22 -	+				
+	37.0	, , , ×				सि	s .	+				
ļ	848.6					\mathbf{X}	51	13			D	D=132 pcf
+			POORLY GRADED SAND wi		.	Æ		+			_	
40	-		medium-grained, brown, wet,	very dense. (SP-SM	1), outwash		101	16			P:	200=7%
+	42.0	· · ·				ł		+				
+	843.6		POORLY GRADED SAND, fi wet, very dense to dense. (SF		ed, brown,	Image: A start with the start with th	103	_ 13 _				
45			de 3.0	, ouwaan 		<u>P</u>		\perp	\perp	<u> </u>	\bot	

METROPOLITAN

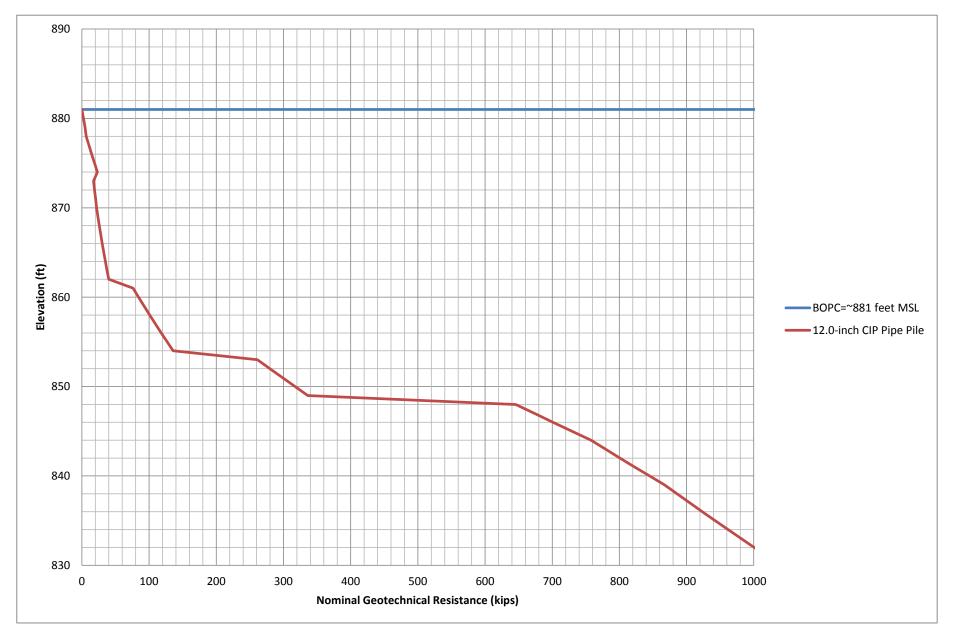
BRAUN INTERTEC

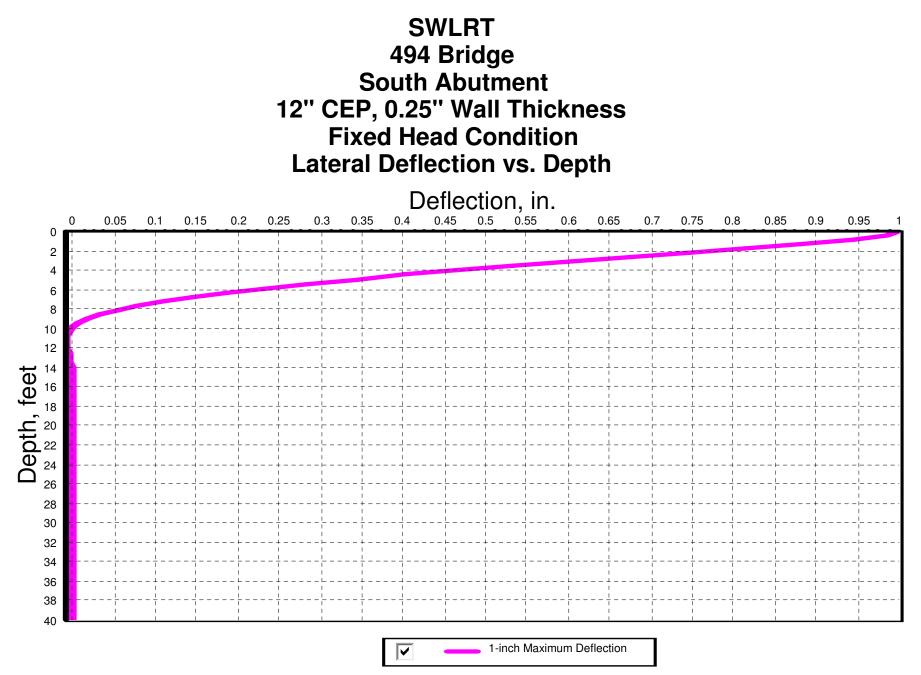

UNIQUE NUMBER

U.S. Customary Units

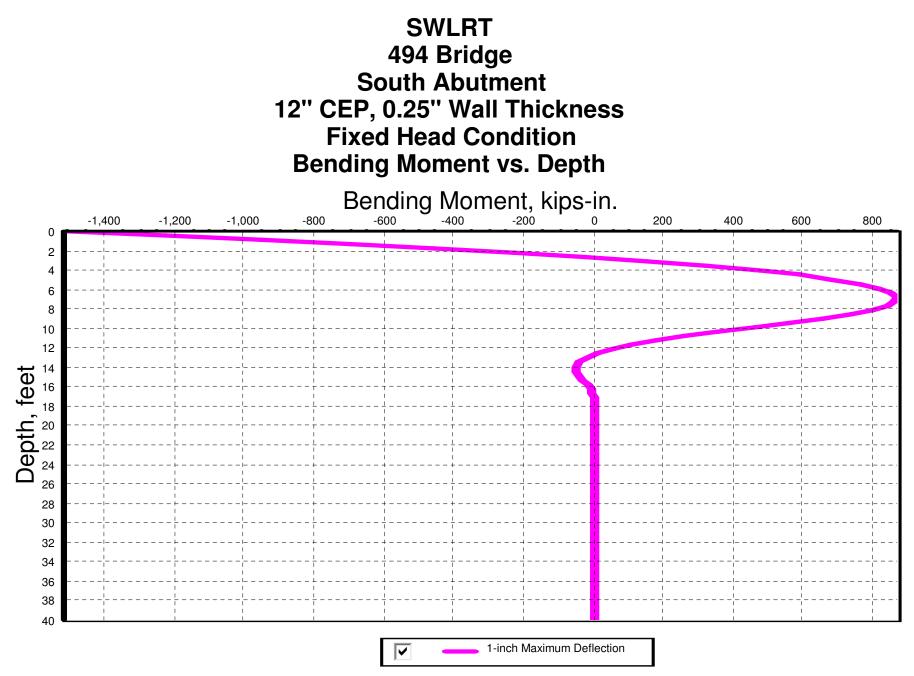

State Project Bridge No. or Job Desc. Trunk Highway/Location SWLRT SWLRT				Bon 21				Vo. SB		Ground Elevation 885.6 (Surveyed)	
т	Depth	gy			u	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	POORLY GRADED SAND, fine- to medium-grained, brown, wet, very dense to dense. (SP), outwash <i>(continued)</i>					11 - - - - - - - - - - - - - - - - - -				
50-	- 53.0	· · · · · · · · · · · · · · · · · · ·			× F	36	17				
- 55- -	832.6 - - - 58.0		POORLY GRADED SAND, medium dense. (SP), outwa			40	20				
- 60 - - -	_ 827.6 		POORLY GRADED SAND, fine- to medium-grained, trace Gravel, brown to gray, wet, medium dense to dense. (SP),			28	- - 12 -			P2	200=4%
65 - - -	- - - - 68.0		outwash			76	16				
- 70 -	817.6 - - 73.0		LEAN CLAY, gray, moist, h	ard. (CL), till		66	- - - - -			D	D=93 pcf
- - 75-	_ 73.0 812.6 _ _ 76.0	<u>, , ,</u> , , , , , , , , ,	POORLY GRADED SAND, Gravel, brown, wet, very de	fine- to medium-grained, with nse. (SP), outwash		76	- - - 18				

Water not observed while drilling. Boring immediately backfilled with bentonite grout.

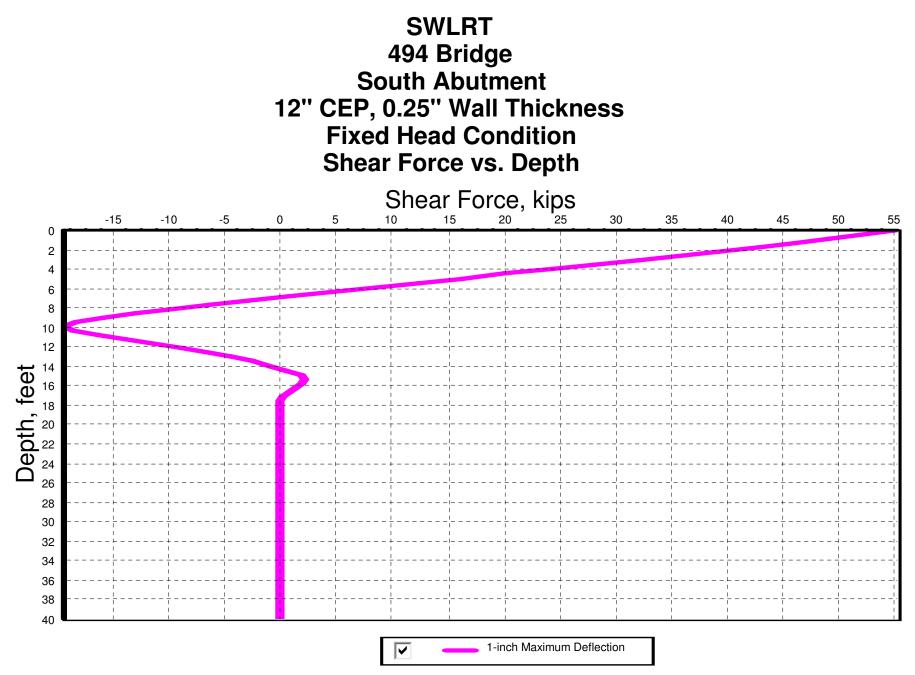

Bridge over I-494 - South Abutment Boring: 2120SB 12.0-inch Closed Ended Pipe Pile

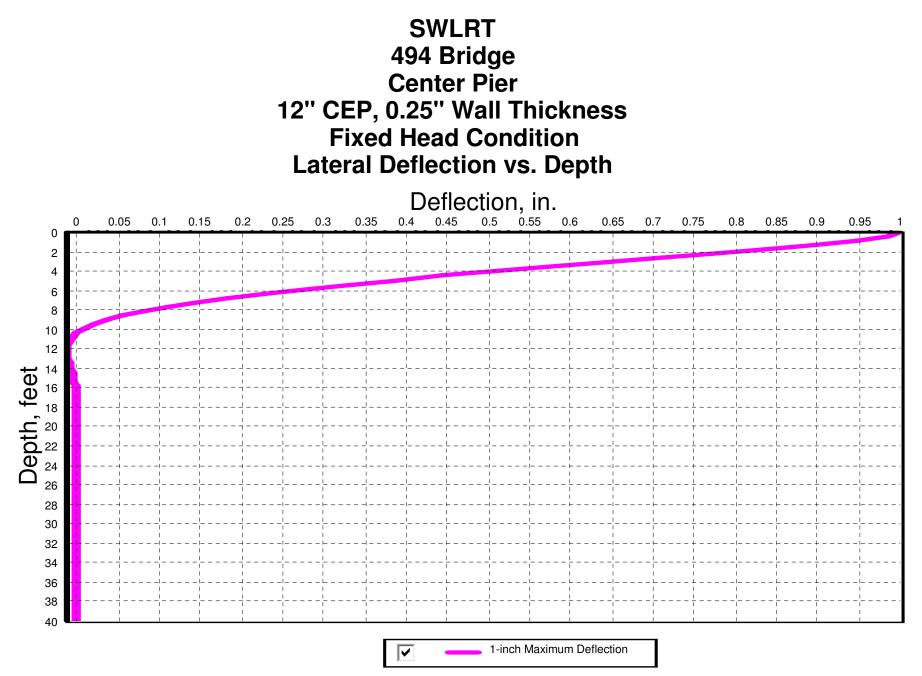


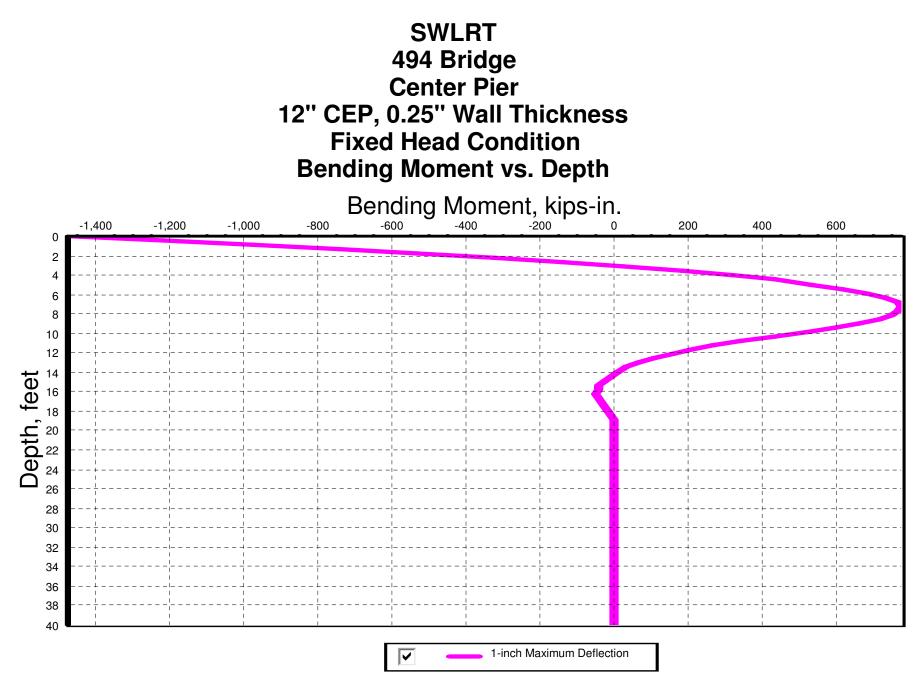
Bridge over I-494 - Center Pier Boring: 2121SB 12.0-inch Closed Ended Pipe Pile

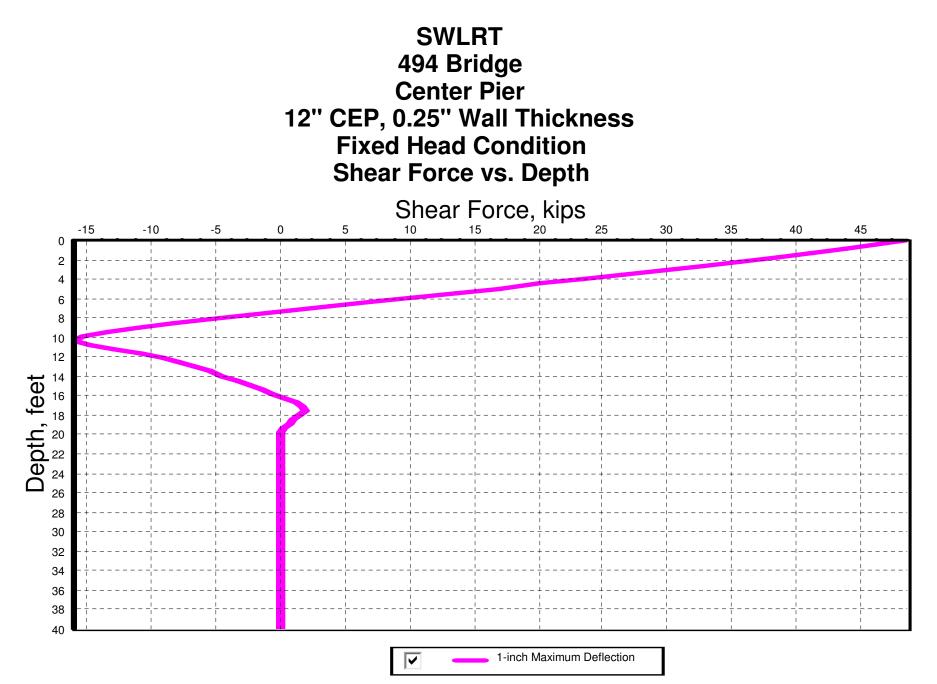


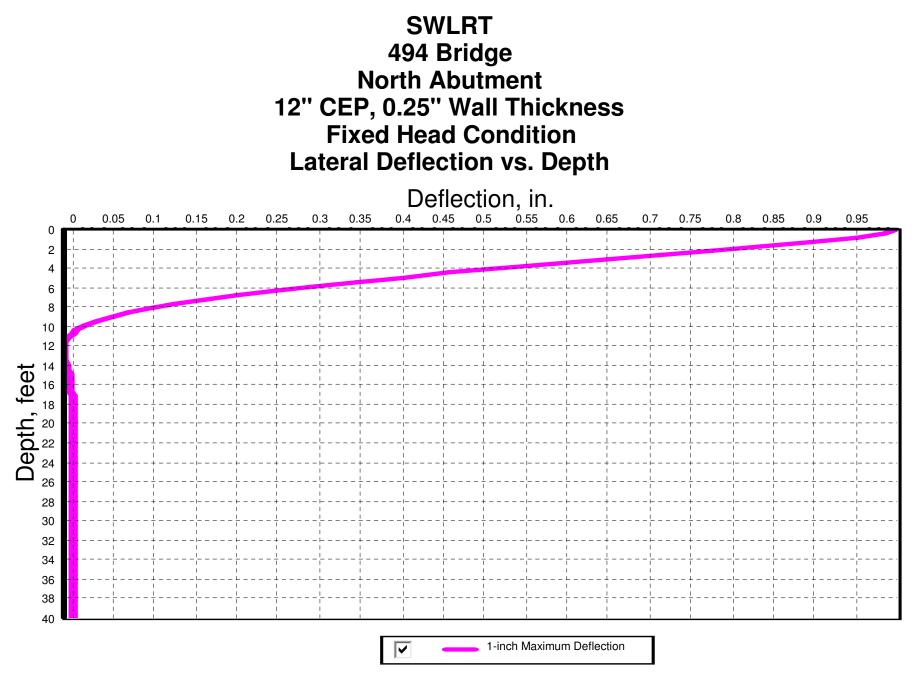
Bridge over I-494 - North Abutment Boring: 2122SB 12.0-inch Closed Ended Pipe Pile

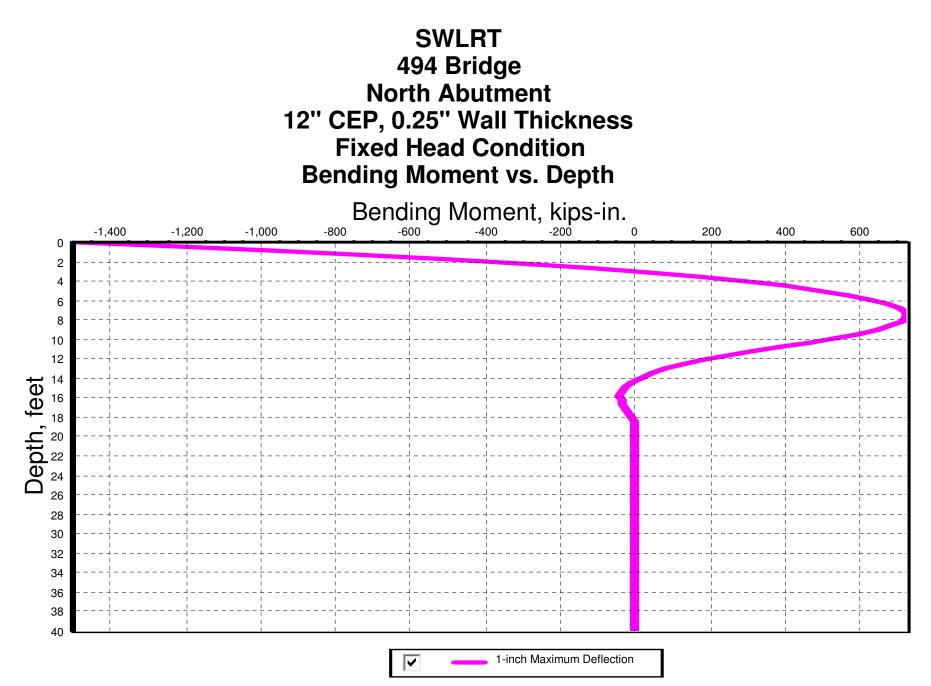



LPile 6, (c) 2010 by Ensoft, Inc.


LPile 6, (c) 2010 by Ensoft, Inc.


LPile 6, (c) 2010 by Ensoft, Inc.


LPile 6, (c) 2010 by Ensoft, Inc.


LPile 6, (c) 2010 by Ensoft, Inc.

LPile 6, (c) 2010 by Ensoft, Inc.

LPile 6, (c) 2010 by Ensoft, Inc.

LPile 6, (c) 2010 by Ensoft, Inc.

LPile 6, (c) 2010 by Ensoft, Inc.

В	Eo	ER	P*L	۹c	fs	N
A	tsf	tsf	tsf	tsf	tsf	bl/ft
E tsf	1	0.125	8	1.15	57.5	4
E tsf R	8	1	64	6.25	312.5	22.7
p* tsf	0.125	0.0156	1	0.11	5.5	0.5
q tsf	0.87	0.16	9	1	50	5
f tsf	0.0174	0.0032	0.182	0.02	1	0.1
N b1/ft	0.25	0.044	2	0.2	10	1

Table 5. Correlation results for sand. (Column A = Number in Table x Row B.)

Table 6. Correlation results for clay. (Column A = Number in Table x Row B.)

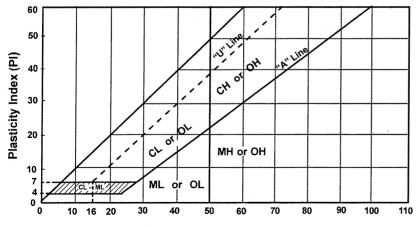
A	в	E _o tsf	E _R tsf	P*L tsf	q _c tsf	f _s tsf	S _u tsf
Eo	tsf	1	0.278	14	2.5	56	100
ER	tsf	3.6	1	50	13	260	300
P*L	tsf	0.071	0.02	1	0.2	4	7.5
q _c	tsf	0.40	0.077	5	1	20	27
fs	tsf	0.079	0.0038	0.25	0.05	1	1.6
su	tsf	0.010	0.0033	0.133	0.037	0.625	1

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

	Critor	in for Accient	ing Group	Sumbole and	So	ils Classification	Particle Size Identification
	Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^a				Group Symbol		Boulders over 12" Cobbles 3" to 12"
<i>"</i> Б	Gravels	Clean G		$C_u \ge 4$ and $1 \le C_c \le 3^c$	GW	Well-graded gravel ^d	Gravel - Coarse
grained Soils 50% retained o 200 sieve	More than 50% of coarse fraction	5% or less fines °		$C_u < 4$ and/or $1 > C_c > 3^{c}$	GP	Poorly graded gravel d	Fine
eve	retained on	Gravels wit	th Fines	Fines classify as ML or MH	GM	Silty gravel dfg	Sand
aine % re 0 si	No. 4 sieve	More than 12	2% fines °	Fines classify as CL or CH	GC	Clayey gravel d tg	CoarseNo. 4 to No. 10 MediumNo. 10 to No. 4
20.50	Sands	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3^{c}$	SW	Well-graded sand h	Fine
arse- than No.	50% or more of coarse fraction	5% or less	fines ⁱ	$C_u < 6$ and/or 1 > $C_c > 3^c$	SP	Poorly graded sand h	Silt
Coarse- more than No.	passes	Sands wit	h Fines	Fines classify as ML or MH	SM	Silty sand fgh	below "A" line Clay< No. 200, Pl≥
	No. 4 sieve	More than	12% ⁱ	Fines classify as CL or CH	SC	Clayey sand ^{fg h}	on or above "A"
, et	Silts and Clays	Inorganic	Pl > 7 ar	nd plots on or above "A" line ^j	CL	Lean clay ^{k I m}	
ed ei	Liquid limit		PI < 4 or plots below "A" line ^j		ML	Silt ^{k m}	Relative Density of Cohesionless Soils
led Soils passed the sieve	less than 50	Organic		nit - oven dried < 0.75		Organic clay ^{k m n} Organic silt ^{k m o}	
grained more pa 0. 200 si		{	+	nit - not dried on or above "A" line	СН	Fat clay k I m	Very loose 0 to 4 BPF Loose
	Silts and clays	Inorganic		pelow "A" line	MH	Elastic silt ^{k I m}	Medium dense 11 to 30 BPI
	Liquid limit 50 or more	Organic	Liquid lin	nit - oven dried	ОН	Organic clay k 1 m p	Dense
Fir 50%		Organic	Liquid lin	nit - not dried < 0.75	ОН	Organic silt k 1 m q	
Highly	Organic Soils	Primarily orga	anic matte	r, dark in color and organic odor	PT	Peat	Consistency of Cohesive Soils

Based on the material passing the 3-in (75mm) sieve.


h If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name.

 $C_u = D_{60} / D_{10} C_c = (D_{30})^2$

C.

- If soil contains≥15% sand, add "with sand" to group name Gravels with 5 to 12% fines require dual symbols: d е

 - GW-GM well-graded gravel with silt
 - GW-GC well-graded gravel with clay
 - GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains ≥ 15% gravel, add "with gravel" to group name. h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt
- SW-SC well-graded sand with clay
- SP-SM poorly graded sand with silt
- SP-SC
- SP-SC poorly graded sand with clay If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.
- If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant.
- If soil contains > 30% plus No. 200, predominantly sand, add "sandy" to group name 1
- If soil contains≥ 30% plus No. 200 predominantly gravel, add "gravelly" to group name m
- PI ≥ 4 and plots on or above "A" line. n.
- PI <4 or plots below "A" line. 0
- PI plots on or above "A" line. p
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

qp

Dry density, pcf	OC	Organic content, %
Wet density, pcf	S	Percent of saturation, %
Natural moisture content, %	SG	Specific gravity
Liqiuid limit, %	c	Cohesion, psf
Plastic limit, %	Ø	Angle of internal friction

- Plastic limit. %
- PI Plasticity index, % P200 % passing 200 sieve

DD

WD

MC

LL

PL

- Specific gravity Cohesion, psf Angle of internal friction
- qu Unconfined compressive strength, psf
 - Pocket penetrometer strength, tsf

..... over 12" No. 4 to 3/4" No. 4 to No. 10 No, 10 to No. 40 No. 40 to No. 200 < No. 200, PI < 4 or below "A" line< No. 200, Pl≥4 and on or above "A" line

elative Density of hesionless Soils

Very loose	
Loose	5 to 10 BPF
Medium dense	11 to 30 BPF
Dense	31 to 50 BPF
Very dense	over 50 BPF

tency of Cohesive Soils

Very soft	
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards.

Appendix G

Retaining Walls, W117, W118A, W118B, W118D, W119, W201 and W202

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

August 29, 2014

Project BL-13-00213

Mr. Don Demers Southwest Light Rail Transit Project Office 6465 Wayzata Boulevard, Suite 500 St. Louis Park, MN 55426

Re: Preliminary Foundation Analysis Design Recommendation Report – 50% Design Retaining Walls RTW-W117, RTW-118A, RTW-W118B, RTW-W118D, RTW-W119, RTW-W201, RTW-W202, RTW-W202C and Track Embankment STA 2163+25 to STA 2217+00 Southwest LRT, West Segment 1 and 2 Eden Prairie, Minnesota

Dear Mr. Demers:

Braun Intertec Corporation has completed this preliminary geotechnical evaluation for the retaining walls and the track embankment for the west segment of the Southwest Light Rail Transit (SWLRT) alignment in Eden Prairie, Minnesota between the Valley View Bridge and the 9-Mile Creek Bridge. The following sections provide information regarding our opinions, methods, and recommendations for the retaining wall foundations and associated embankments.

This report is part of a larger series of reports for the west segment of the Southwest Light Rail Transit (SWLRT) project. Recommendations for pole foundations for the Overhead Contact System (OCS) will be address in a separate report.

A. Project Information

SWLRT is proposing to construct a light rail transit line through the cities of Hopkins, Minnetonka, and Eden Prairie, Minnesota. This design report addresses the design and construction of the embankment and retaining walls RTW-W117, RTW-W118A, RTW-W118B, RTW-W118D, RTW-1119, RTW-W201, RTW-W202, and RTW-W202C between STA 2163+25 and STA 2217+00 from the Valley View Bridge to the Nine Mile Creek Bridge.

A.1. Type of Structures

Cast-in-place (CIP) concrete will be used to construct the retaining walls (with the exception to walls RTW-W119, a portion of RTW-W201, and RTW-202C). The proposed CIP concrete walls will be supported by spread footing foundations founded at least 4 ½ feet below the lowest finished grade along the toe of the wall. However, RTW-W119 is planned to be a Mechanically Stabilized Earth (MSE) wall and a portion of RTW-W201 and RTW-W202C will be supported on driven pile foundations.

A.2. Location of Walls

We used the preliminary engineering plans and available cross sections to perform our analysis. The locations and additional information for the walls are provided below.

A.2.a. Wall RTW-W117

Wall RTW-W117 will be constructed off the northwest corner of the north abutment of the Valley View Bridge, extending from STA 2163+27 to STA 2163+99. The wall height (top of footing to top of rail) varies from 15 to 19 feet approximately with an overall length of approximately 66 feet.

A.2.b. Wall RTW-W118A

Wall RTW-W118A will be constructed off the northwest corner of the north abutment of the Valley View Bridge, extending from STA 2163+25 to STA 2163+98. The wall height (top of footing to top of rail) varies from 15 to 19 feet approximately with an overall length of approximately 76 feet.

A.2.c. Wall RTW-W118B

Wall RTW-W118B is located along the east side of the proposed SWLRT alignment, extending from about STA 2165+73 to STA 2166+73 for a length of about 100 feet. The wall height (bottom of footing to top of rail) varies from 9 to 15 feet with a total stem height of 7 to 14 feet, approximately.

A.2.d. Wall RTW-W118D

Wall RTW-W118D is located along the east side of the proposed SWLRT alignment, extending from about STA 2178+23 to STA 2181+00, for a length of about 277 feet. The wall height (bottom of footing to top of rail) varies from 8 to 12 feet with a total stem height of 6 to 11 feet, approximately.

A.2.e. Wall RTW-W119 and RTW-W201

Wall RTW-W119 is located along the west side of the proposed SWLRT alignment, extending from about STA 2165+73 to STA 2181+00 where it becomes retaining wall RTW-W201, and extends from STA 2210+00 to STA 2216+90. The combined walls have a length of 2235 feet. The wall height (bottom of footing to top of rail) varies from about 15 feet to almost 34 feet. The wall is tallest near STA 2172+00.

Walls RTW-W119 is planned to be a MSE wall and RTW-201 is planned to be founded on spread footings foundations from STA 2165+73 to STA 2211+80, and on pile-supported foundations from Stations STA 2211+80 to STA 2216+90.

A.2.f. Wall RTW-W202

Retaining wall RTW-W202 is located on the south or east side of the alignment extending from STA 2210+00 to STA 2210+50. The total length of the wall is approximately 50 feet. The wall height (bottom of footing to top of rail) varies from 7 to 8 feet, approximately.

A.2.g. Wall RTW-W202C

Retaining wall RTW-W202C is located on the east side of the alignment from STA 2215+00 to STA 2216+90. The length of the wall is 185 feet, with wall heights (top of footing to top of wall) ranging from 8 to 19 feet. The wall is proposed to be supported on driven pile foundations.

A.3. Embankment Construction

To construct the walls along the proposed alignment, embankment grade increases of up to 20 feet will be necessary. Grade raises of this magnitude will influence the design and construction of the proposed wall foundation types. However, the effects of the embankment stresses are accounted for in our foundation design recommendations.

B. Subsurface Investigation Summary

B.1. Summary of Borings Taken

Braun Intertec performed five SPT (standard penetration test) borings (2055SW, 2056SW, 2057SW, 2012SB, and 2027SB) as part of our preliminary investigation. Logs of the wall borings are included in the Appendix. A Boring Location Sketch is also included in the Appendix.

B.2. Description of Foundation Soil and Conditions

The general soil profile in the area consists of surficial topsoil and shallow fill deposits, underlain by glacially deposited soils. The exception to this is Boring 2027SB, where swamp deposits were encountered beneath a layer of fill. A more detailed description is provided below.

B.2.a. Topsoil

The borings initially encountered about 3 to 18 inches of topsoil. The topsoil consisted of sandy lean clay and clayey sand that was dark brown and moist to wet.

B.2.b. Fill

Fill was encountered at four of the five boring locations and consisted of Poorly Graded Sand (SP), Poorly Graded Sand with Silt (SP-SM), Silty Sand (SM), and Clayey Sand (SC). Table 1 below illustrates the depth and type of fill material encountered.

Boring No.	Boring Elevation (ft)	Approximate Depth of Fill (ft)	Elevation at Bottom of Fill (ft)	Fill Composition
2055SW	868.4	Not Encountered	868	Not Encountered
2056SW	869.2	7		Clayey Sand
2057SW	869.0	12		Poorly Graded Sand
2012SB	856.7	12	844 1/2	Silty Sand and Clayey Sand
2027SB	859.3	20	839	Clayey Sand, Poorly Graded Sand with Silt

Table 1. Fill Depths at Boring Locations

Penetration resistances varied from 2 to 23 blows per foot (BPF).

B.2.c. Swamp Deposits

Swamp deposit soils consisting of peat, organic lean clay, silt, and silty sand were encountered in Boring 2027SB beneath the fill to a depth of 54 feet, or elevation 805. The swamp deposits are associated with the 9 Mile Creek floodplain. Penetration resistance values in the peat and organic lean clay ranged from 3 to 6 BPF, while penetration resistances in the silt and silty sand ranged from 7 to 13 BPF.

B.2.d. Glacial Till

Glacial till soils were encountered throughout the soil profile across the lengths of the walls beneath the fill and topsoil. The till consisted of sandy lean clay, clayey sand, silty sand, and silt. The till soils contained gravel, were gray, and were wet to waterbearing. Penetration resistances varied from 3 to 71 BPF indicating the clayey soils were soft to hard while the sand and silt soils were loose to very dense.

B.2.e. Glacial Outwash

Glacial outwash soils were also encountered throughout the profile beneath the fill and topsoil. The glacial outwash soils consisted of poorly graded sand. The sands generally contained some gravel. Penetration resistances varied from 4 BPF to 82 BPF, indicating the soil was very loose to very dense. The lower penetration resistances were likely due to hydrostatic pressures impacting the samples and the higher penetration resistances may indicate cobbles or boulders are located within the soil.

B.3. Summary of Water Level Measurements

SPT boring logs note water levels during drilling ranging from approximate 823 to 847 feet above mean sea level (MSL). Temporary water level indicators installed closer to TH 212 near Valley View Road noted groundwater near an elevation of 841. The last recorded normal water level from the Minnesota DNR for nearby Bryant Lake was near 851 ½. The water level of 9 Mile Creek near Flying Cloud Drive is expected to be near 840 and 845.

Perched water conditions are prevalent along many other sections of the alignment away from the currently completed boring locations. Seasonal and annual fluctuations of groundwater, however, should be anticipated.

C. Foundation Analysis

Based on the soil conditions encountered in the borings and loads anticipated on the wall, we recommend the use of spread footing foundations for support of the CIP walls after the removal of any existing fill soils for the majority of the wall locations. After the soil corrections and embankment construction procedures provided below, we anticipate the service limit state for settlement of one-inch can be achieved.

The exception to this is near Boring 2027SB, affecting RTW-W201 and RTW-W202C from track STA 2214+00 to STA 2217+00. In this area, deep fills over organic soils were noted to depths of 54 feet. When the proposed embankment consisting of more than 20 feet of new soil is placed in this area, the service limit state for settlement will be exceeded. While measures such as the use of lightweight fill and preloading the embankments may reduce the magnitude of the settlement, long term consolidation of the underlying organic deposits will make a soil supported embankment extremely difficult with regard to maintaining the service limit state of one-inch of total settlement. Extending the length of the 9-Mile Creek Bridge and the use of a driven pile foundation system appears to be the most economical solution.

C.1. Embankment and Slopes

The track embankments associated with the walls are proposed to be constructed with vertical CIP concrete and or MSE walls. Portions of the embankment will also be constructed on the existing soil embankments associated with Highway 212. Preparation will include topsoil removal, removal of fill beneath the footings, and backfilling and filling with the proposed track section.

C.1.a. Settlement

The settlement ranges noted below are a combination of both settlements from the retaining walls loads as well as settlement from the raise in grade for the embankment.

C.1.a.1. Walls RTW-117 and RTW-W118A

Borings were not performed in the area of these walls, and final borings will be needed to more accurately estimate settlement. However, based on historical boring information and nearby borings, we anticipate settlement from the walls and embankments will be less than one-inch, provided soils corrections are performed to remove any fill or soft soils that may be encountered.

C.1.a.2. Wall RTW-W119

Final borings will be needed to more accurately estimate settlement. However, based on our preliminary borings along RTW-W119 (2055SW, 2056SW, and 2057SW) it appears settlement from the walls and embankments will be less than one-inch with the removal of the fill soil and soft and/or loose native soils encountered just below the fill.

C.1.a.3. Wall RTW-118B

Soil borings were not performed in the area of RTW-W118B. It is our best estimate that spread footings can be used to support this wall. Based on the proposed embankment heights, we expect settlement will remain within the service limit and preloading will not be necessary.

C.1.a.4. Wall RTW-118D

Based on the preliminary engineering plans, preliminary cross sections, and Borings 2057SW and 2012SB, we anticipate spread footings can be used to support the walls and the service limit state for settlement can be achieved upon removal of the topsoil and fill.

C.1.a.5. Wall RTW-W201

Based on our preliminary borings, we anticipate RTW-201 could be constructed on spread footings and stay within the service limit state after soil corrections are performed to remove the existing fill, and a preload of the embankment is placed to allow for consolidation of the underlying soils from the new embankment load. We anticipate this type of construction can be performed between STA 2210+00 and STA 2214+00.

The poor soil conditions, accompanied by the large raise in grade will not allow the current design to stay within the service limit state if spread footings are used to support RTW-W201 between STA 2214+00 and STA 2217+00. We recommend extending the 9-Mile Creek Bridge to span the poor soils, eliminating the need for the large embankment and retaining wall at this location.

The final design of the 9-Mile Creek Bridge is under discussion at the time of this report and there is a possibility the bridge will be extended to near STA 2214+00. Any changes to the bridge length and placement of the west abutment with regard to RTW-W201 should be addressed during final design.

C.1.a.6. Wall RTW-W202

We do not have adequate boring information to verify if subexcavation is needed to support retaining wall RTW-W202. We anticipate similar conditions to RTW-W201 between STA 2210+00 and STA 2214+00 will be encountered, and similar construction techniques should be used.

C.1.a.7. Wall RTW-W202C

Based on the poor soils encountered near STA 2217+00 at the current abutment location for the Nine Mile Creek Bridge, we recommend extending the bridge, eliminating the need for this wall. Please refer to the discussion in section C.1.a.5 with regard to foundation support and settlement between STA 2214+00 and STA 2217+00.

C.2. Spread Footing Foundations

Settlements were calculated based on two methods. The first is the Hough method with Boussinesq and Westergaard stress distributions, which utilizes the standard penetration test (SPT) values from the soil borings. The second is the Menard method, which is based on pressuremeter determinations of soil parameters that were collected in the field or modified from the SPT values from the soil borings. For the Menard Method, where pressuremeter testing was not performed, conservative correlations were used to estimate pressuremeter values based on N₆₀ factors provided in Federal Highway Administration (FHWA) Publication No. FHWA-IP-89-008. Tables 5 and 6 from this publication are in the Appendix for reference. After these two methods were evaluated, the results were averaged.

C.3. Summary of Design Assumptions

C.3.a. Embankment Heights, Unit Weights, Side Slopes, and End slopes

The wet unit weight of the anticipated compacted fill soils has been assumed as 120 pounds per cubic foot (pcf). The top surface behind all walls will be the associated tracks for the SWLRT and will be relatively flat. Information regarding the walls is provided in Table 2.

Retaining Wall Location	Existing Grade Elevations (ft)	Corresponding Proposed Wall Heights (ft)	Approximate Footing Elevation (ft)
RTW-W117	891	15 to 19	886
RTW-W118A	891	15 to 19	887
RTW-W118B	895-905	7 to 14	890
RTW-W118D	877-880	6 to 11	868-873
RTW-W119	865-893	13 to 32	862 to 880
RTW-W201	850-868	13 to 26	844 to 860
RTW-202	877	7 to 8	869
RTW-W202C	858-868	8 to 19	854-863

C.3.b. Retaining Wall Loading Information

We assume a 2-foot live load surcharge will be used for the design of all walls supporting track embankments. For the CIP concrete walls we recommend the design loads and anticipated footing widths be based on anticipated wall heights and the MnDOT standard plans included in the *Cast-in-Place Retaining Wall Details* section of the Appendix.

C.3.c. Soil Design Parameters

The soil parameters below are recommended to be used for design:

Soil Type	Angle of Internal Friction (degrees)	Effective unit Weight (pcf)	Coefficient of Sliding Friction Rough Concrete	Active Earth Pressure Coefficient	At-Rest Earth Pressure Coefficient
Select Granular Borrow	35	120	0.6	0.27	0.43
Granular Borrow	30	120	0.5	0.33	0.50
Fill: Sands	30	120	0.5	0.33	0.50
Fill: Lean Clay	22	115	0.4	0.45	0.63
Fill: Clayey Sand	28	130	0.4	0.36	0.53
Native Sands	32	130	0.5	0.31	0.47
Native Lean Clay	27	130	0.35	0.38	0.55
Native Clayey Sand	28	135	0.4	0.36	0.53

Table 3. Recommend Soil Design Parameters

C.3.d. Design Methodologies

The Allowable Stress Design (ASD) methodology was used for design of the CIP retaining walls supported on shallow foundations. Safety Factors were obtained from the MnDOT Standard Plan for CIP Retaining Walls included in the Appendix.

C.4. Construction Considerations

C.4.a. Design of Temporary Slopes and Shoring Limits

We recommend that permanent slopes match the existing slopes, except they should not be steeper than 1V:2H. Select Granular Borrow is anticipated to have an angle of internal friction of 35 degrees. This soil could be temporarily placed at a slope of 1V:1 ½ H, but if not retained by a CIP embankment, must be limited to 1V:2H or flatter for the permanent condition.

C.4.b. Subcut Recommendations and Backfill Requirements

To reduce the potential for settlement exceeding the service limit, we recommend subcutting all existing fill soils present beneath the foundations and embankments. We also recommend removing the very loose native soils encountered at Boring 2056SW. Excavation depths beneath footing elevations are expected to be near 5 feet, but may vary away from our borings and will be revised upon completion of the final boring program.

The extent of the excavation required for the walls should extend horizontally beyond the embankment limits/footing dimensions a distance equal to the depth of the subcut. Exposed excavation bottoms, deemed suitable by a Geotechnical Engineer, should be surface compacted by a large vibratory sheepsfoot compactor prior to fill or footing placement.

We recommend the use of engineered fill to establish slope subgrade or backfill for any subcuts of marginal soils under the proposed CIP spread or leveling pad foundations, oversize areas, or reinforced zones. Please refer to Table 4 below for material and compaction specifications based on the 2014 MnDOT Standard Specification for Construction.

Material	Material Specification	Compaction Specification
Fill Placed Beneath Footings	2105.1A7	2105.3F
Leveling Pad Beneath Footings	3138.2B	2211.3C
Retaining Wall Backfill	3149.2D2	2105.3F

Table 4. Recommended Fill and Compaction Specifications.

Backfill placed for all wall embankments should consist of Select Granular Modified 10% and compacted to meet the requirements of 2105.3F1. Select Granular Modified 10% shall comply with Specification 3149.2B2, modified to having 10 percent or less passing the 0.075 mm (#200) sieve. We recommend backfill material be placed in uniform layers approximately parallel to the profile, extending the full width of the retaining structures. We recommend backfill material be placed in lift thicknesses not exceeding 12 inches.

C.4.c. Construction Staging Requirements

Based on the results of the borings and the estimated settlements, which are estimated to exceed oneinch for portions of RTW-W201 between STA 2212+00 and STA 2214+00, we recommend a short waiting period (anticipated to be up to 8 weeks) prior to construction. Please refer the Appendix for a typical preload embankment sketch at each retaining wall location.

C.5. Track Construction

C.5.a. Subgrade Preparation

We anticipate the track subgrade soils will consist of a mixture of native soils and engineered fill associated with the construction of the embankment. Should previously placed fill be encountered at track subgrade elevations, we recommend evaluating the fill to determine its suitability to support the proposed track construction. Fill soils judged to be unsuitable for track support should be removed and replaced with engineered fill.

After the subgrade has been evaluated, and any additional corrections made, the subgrade soils should be surface compacted with vibratory sheepsfoot compactor, taking into consideration the integrity of the retaining walls, prior to the placement of fill or before construction of the Guideway begins. Please refer to Table 5 below for the compaction specifications and guidelines for the Guideway.

C.5.b. Guideway and Platform Station Fill

Based on the proposed design sections, the Guideway will be composed of 40-inch thick layer of granular material, over a minimum of 12-inches of subballast material. We recommend specifying Guideway fill to meet the requirements of the Minnesota Department of Transportation (MnDOT) 3149.2B2 (Select Granular Borrow) for the granular material, and 3138 (Aggregate Base) for the subballast. Table 5 below provides material and compaction specifications for the Guideway.

Table 5. Material and Compaction Specification for Backfill and Fill

Material	Material Specification	Compaction Specification
Subgrada Fill	Onsite Material Free of Debris and	100% of standard Proctor Density
Subgrade Fill	Organic Material	(ASTM D698)
Cuideway Select Creatular Layor		100% of standard Proctor Density
Guideway Select Granular Layer	MnDOT 3149.2B2	(ASTM D698)
Guideway Subballast	MnDOT 3138	MnDOT 2211.3C

C.6. Drainage Control

We recommend installing subdrains behind the retaining walls, adjacent to the wall footings, and at low points of the Guideway. Preferably the subdrains should consist of perforated pipes embedded in washed gravel, which in turn is wrapped in filter fabric. Perforated pipes encased in a filter "sock" and embedded in washed gravel, however, may also be considered.

We recommend routing the subdrains to a storm sewer or sump and pump capable of routing any accumulated groundwater to a storm sewer or other suitable disposal site, if available.

D. Material Classification and Testing

D.1. Visual and Manual Classification

The geologic materials encountered were visually and manually classified in accordance with ASTM International Standard Practice D 2488. A chart explaining the classification system is attached. Samples were sealed in jars or bags and returned to our facility for review and storage

D.2. Laboratory Testing

The results of the laboratory tests performed on geologic material samples are noted on or follow the appropriate attached exploration logs. The tests were performed in accordance with ASTM procedures.

D.3. Groundwater Measurements

The drillers checked for groundwater as the penetration test borings were advanced, and again after auger withdrawal. The boreholes were then backfilled or sealed with bentonite grout.

E. Qualifications

E.1. Variations in Subsurface Conditions

E.1.a. Material Strata

Our evaluation, analyses and recommendations were developed from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth, and therefore, strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

E.1.b. Groundwater Levels

Groundwater measurements were made under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. It should be noted that the observation periods were relatively short, and groundwater can be expected to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

E.2. Continuity of Professional Responsibility

E.2.a. Plan Review

This report is based on a limited amount of information, and a number of assumptions were necessary to help us develop our recommendations. It is recommended that our firm review the geotechnical aspects of the designs and specifications, and evaluate whether the design is as expected, if any design changes have affected the validity of our recommendations, and if our recommendations have been correctly interpreted and implemented in the designs and specifications.

E.2.b. Construction Observations and Testing

It is recommended that we be retained to perform observations and tests during construction. This will allow correlation of the subsurface conditions encountered during construction with those encountered by the borings, and provide continuity of professional responsibility.

E.3. Use of Report

This report is for the exclusive use of Southwest Light Rail Transit. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.

F. General

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

If there are questions regarding these bridge foundation recommendations, please call Josh Kirk at 952.995.2222 or <u>jkirk@braunintertec.com</u> or Matt Ruble at 952.995.2224 or <u>mruble@braunintertec.com</u>.

Sincerely,

BRAUN INTERTEC CORPORATION

Professional Certification:

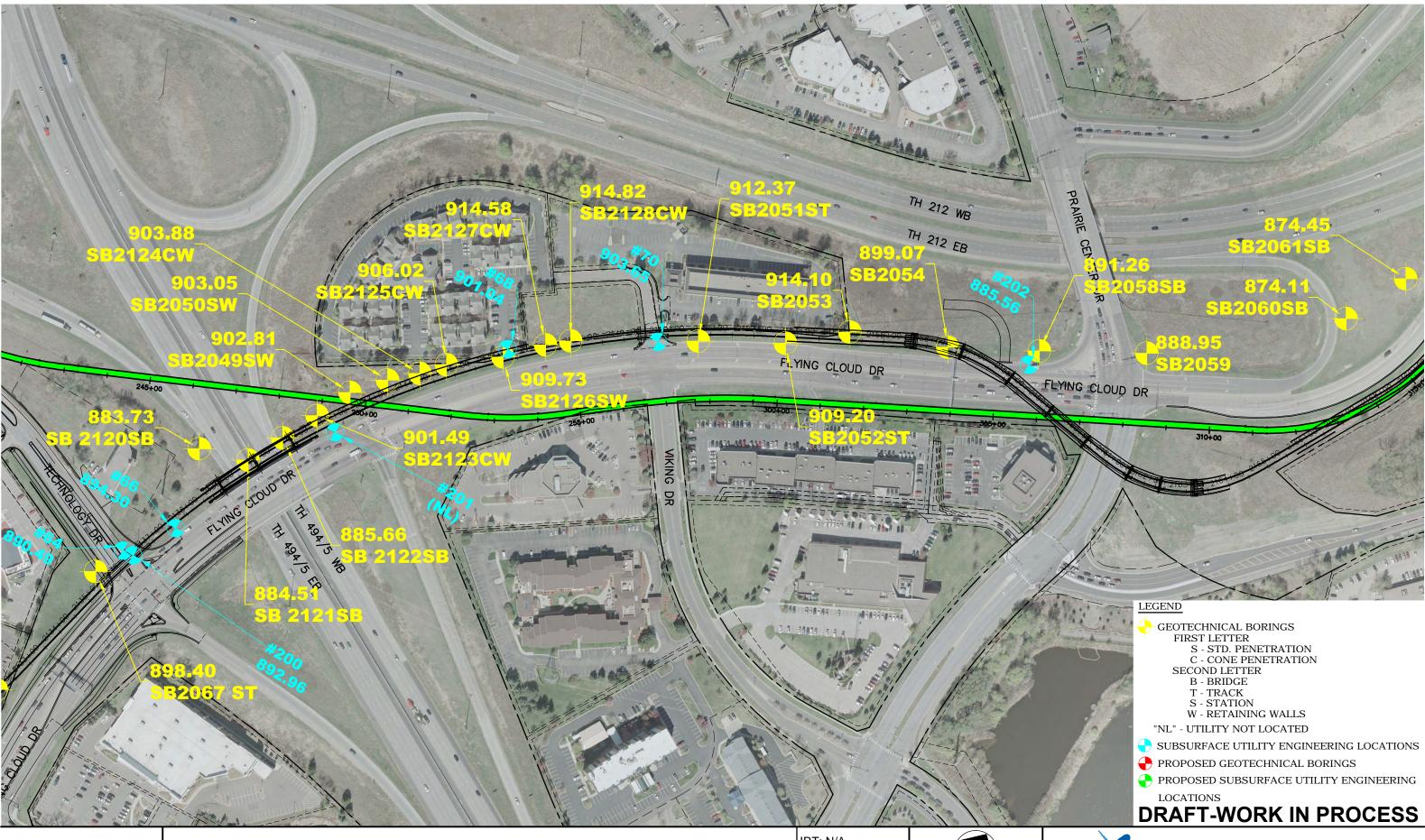
I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Joshua L. Kirk, PE Associate-Project Engineer License Number: 45005

Reviewed by:

Ray A. Huber, PE Vice President-Principal Engineer

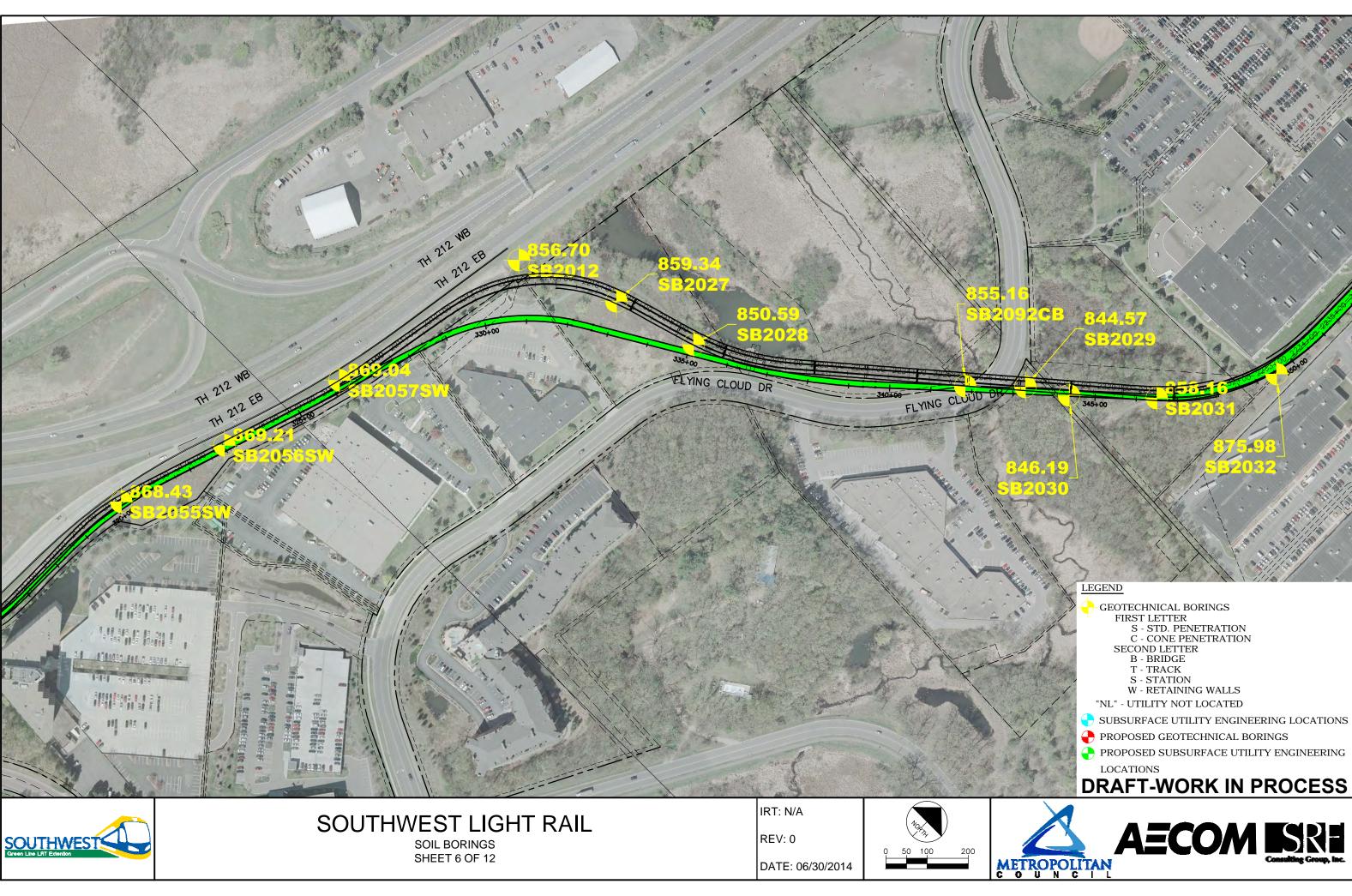
Reviewed by:


Matthew P. Ruble, PE Principal Engineer

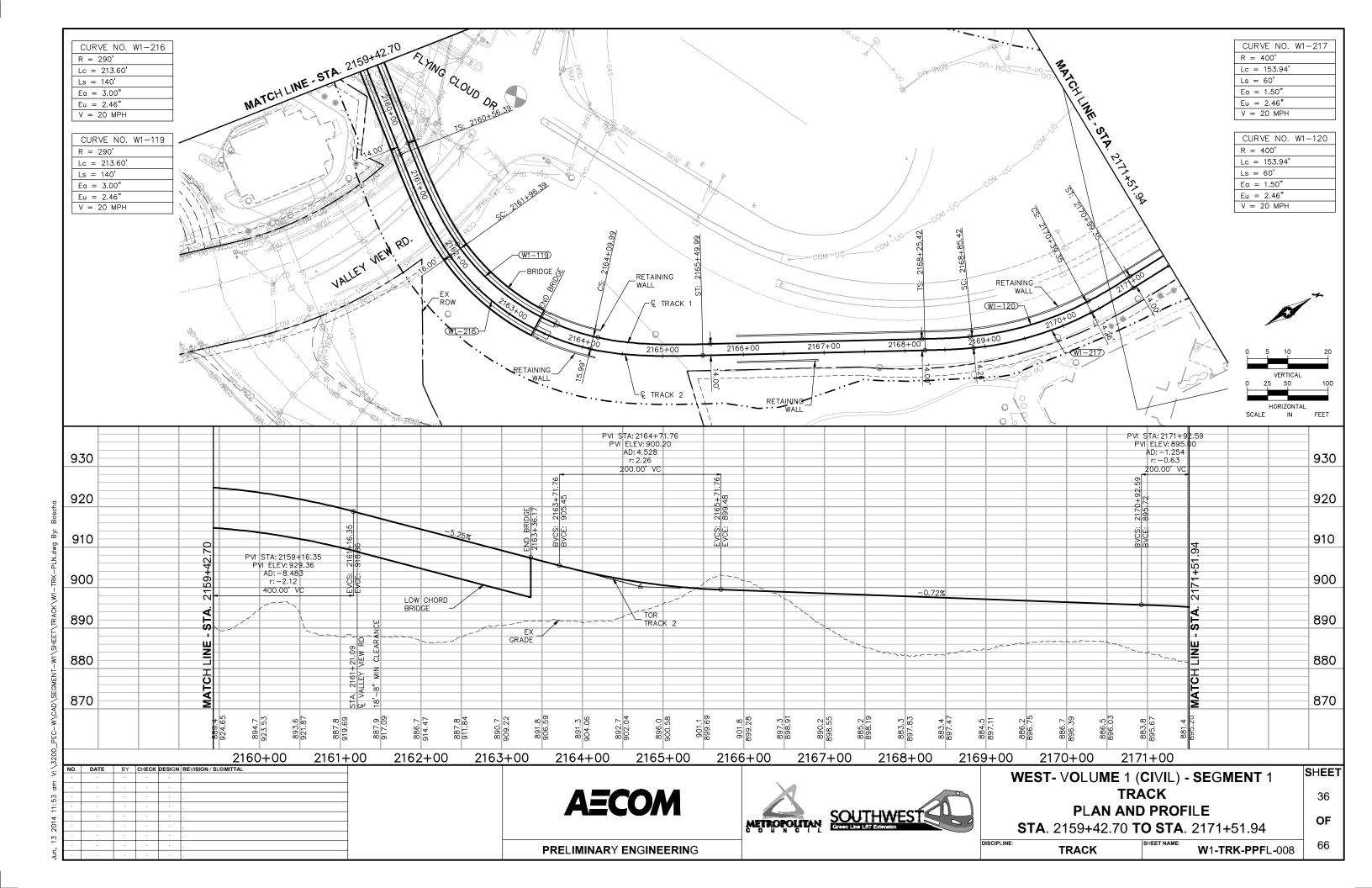
Appendix:

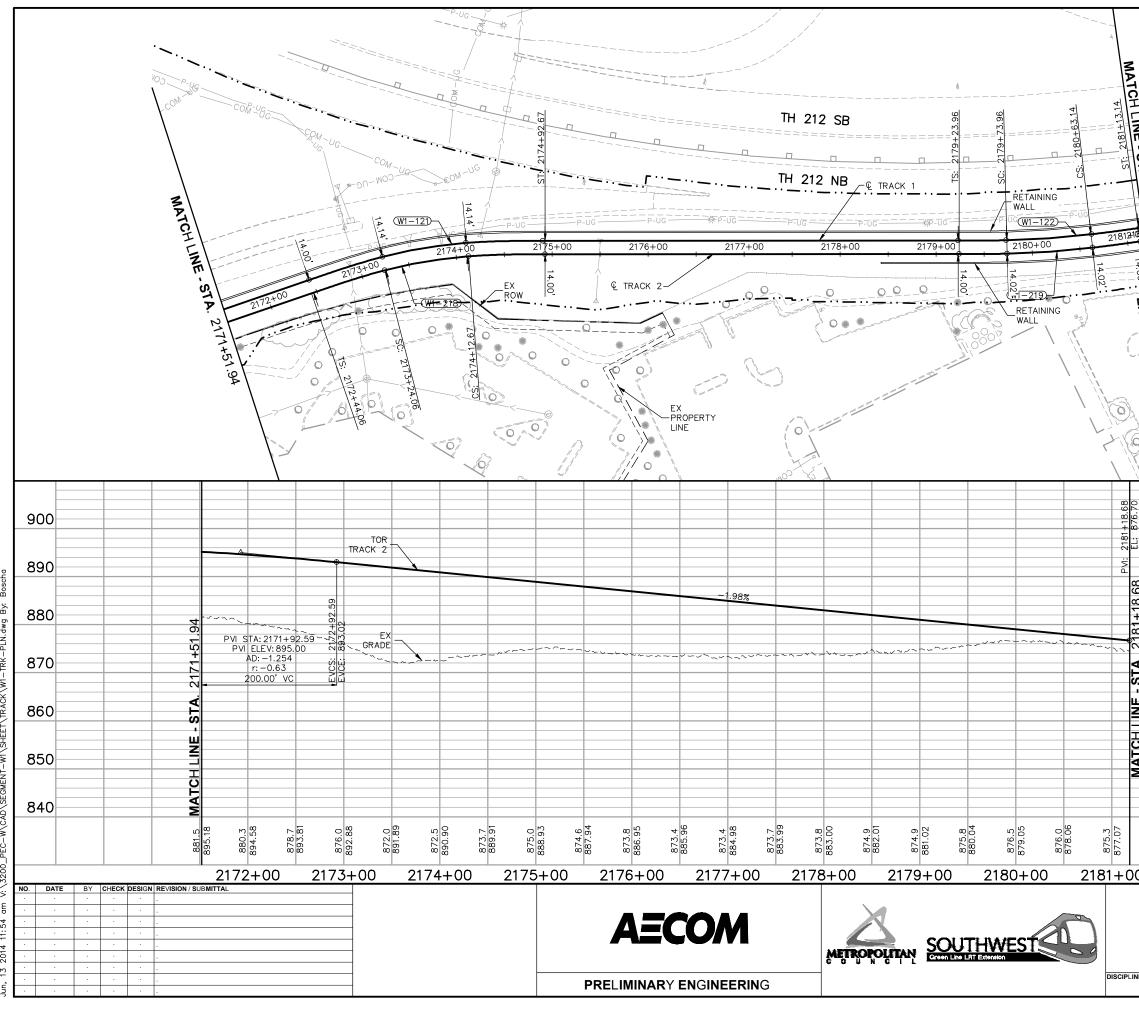
Boring Location Sketch Preliminary Engineering Plan and Profile Sheets Standard Penetration Boring Logs (2055SW, 2056SW, 2057SW, 2012SW, and 2027SW) Nominal Geotechnical Resistance Graphs MnDOT Standard Sheet No. 5-297.632, 1 of 4 (2' LL Surcharge, Spread Footing Supported Retaining Walls) Publication No. FHWA-IP-89-008 N60 Correlation Tables MnDOT Standard Sheet No. 297.233 - Preload SPT Descriptive Terminology

APPENDIX

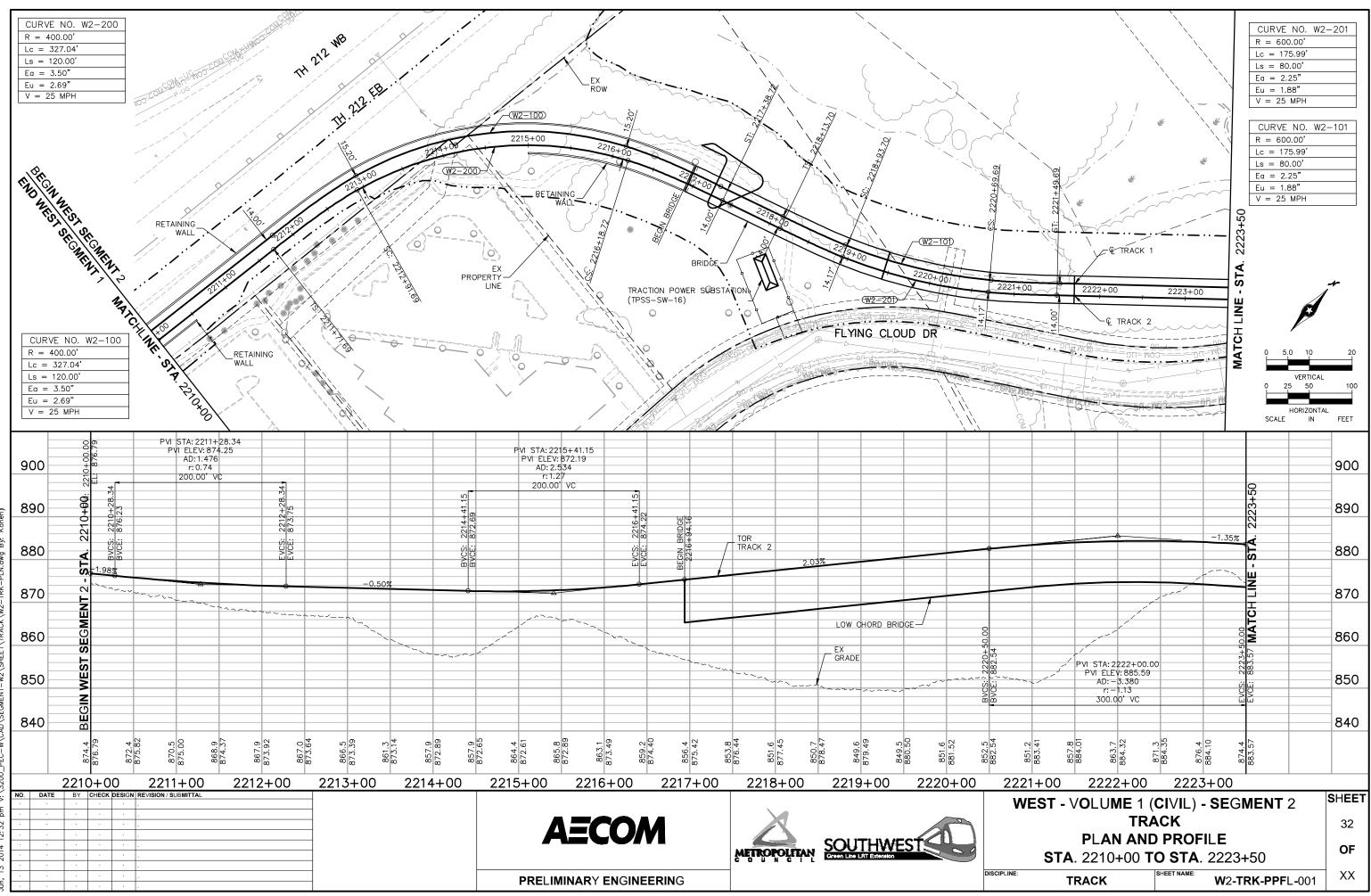

SOUTHWEST LIGHT RAIL SOIL BORINGS SHEET 5 OF 12

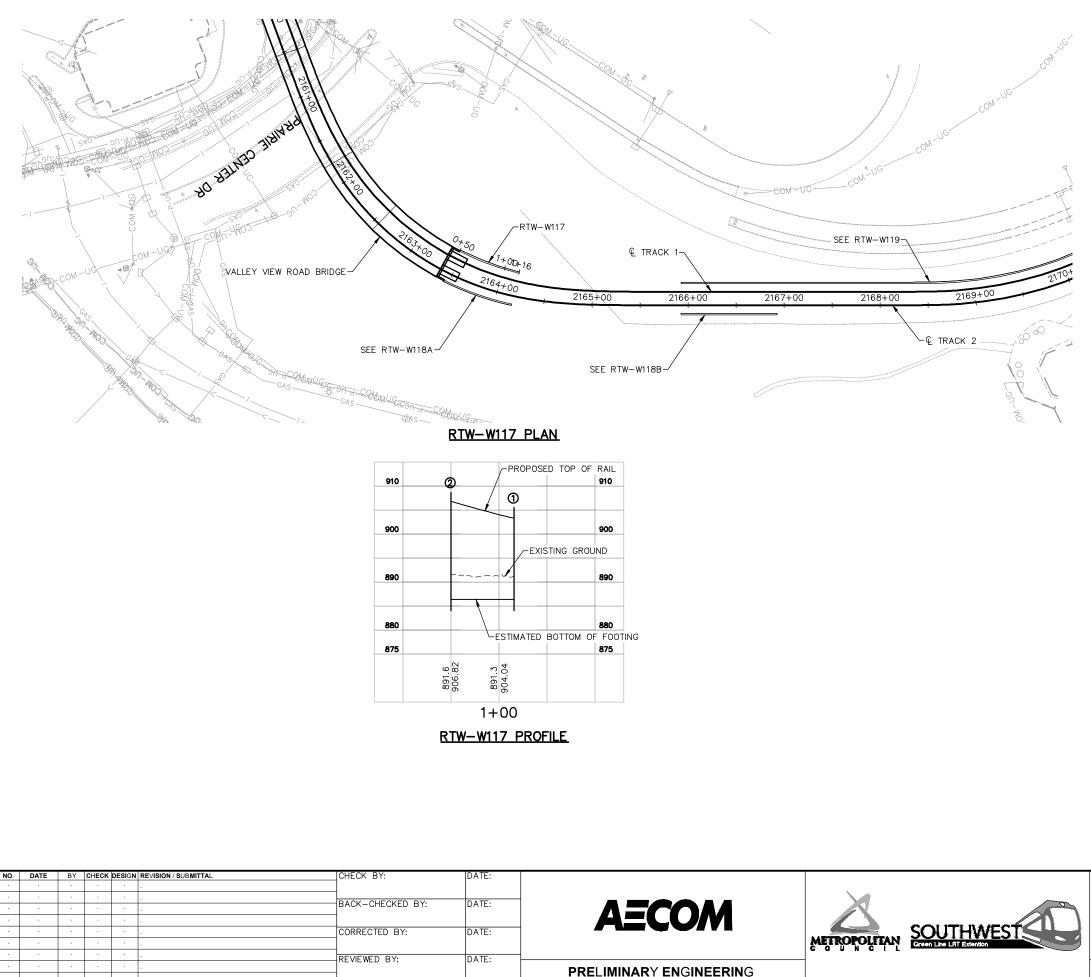
IRT: N/A	
REV: 0	
DATE: 06/30/2014	

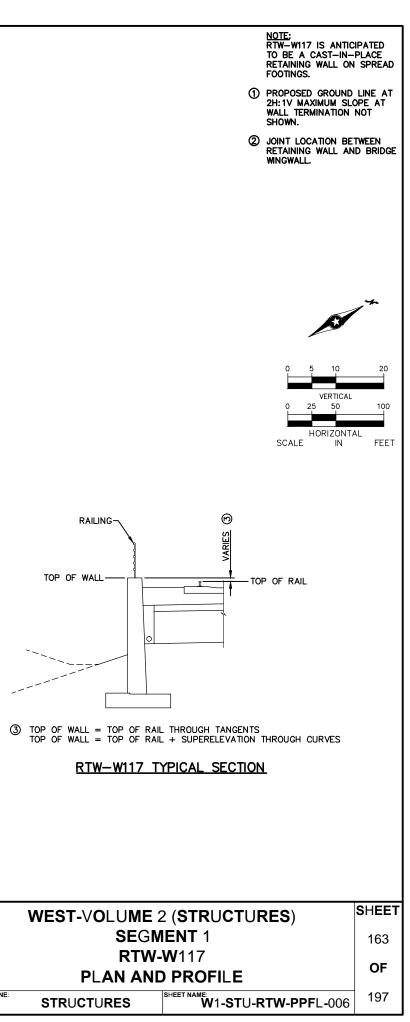


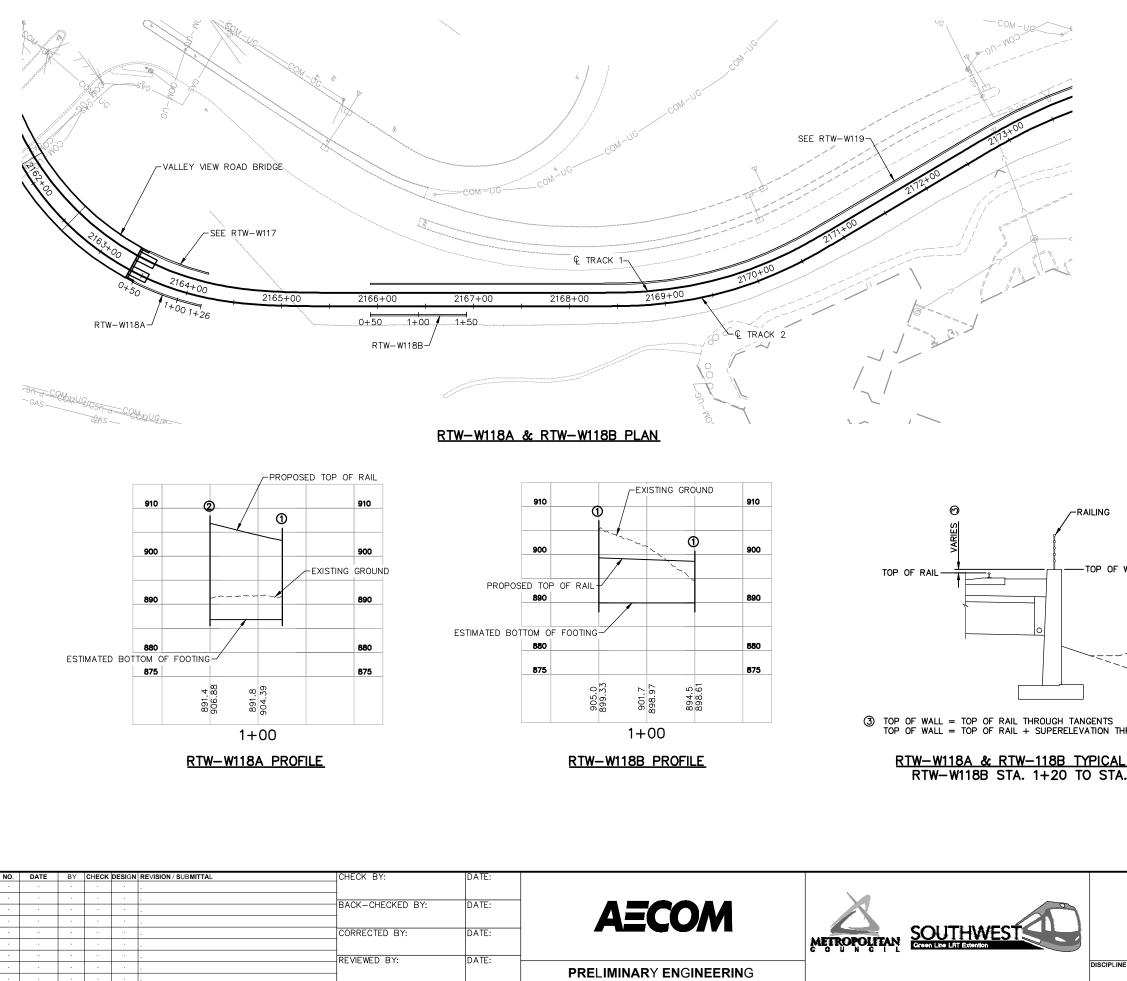


- PROPOSED SUBSURFACE UTILITY ENGINEERING
- SUBSURFACE UTILITY ENGINEERING LOCATIONS



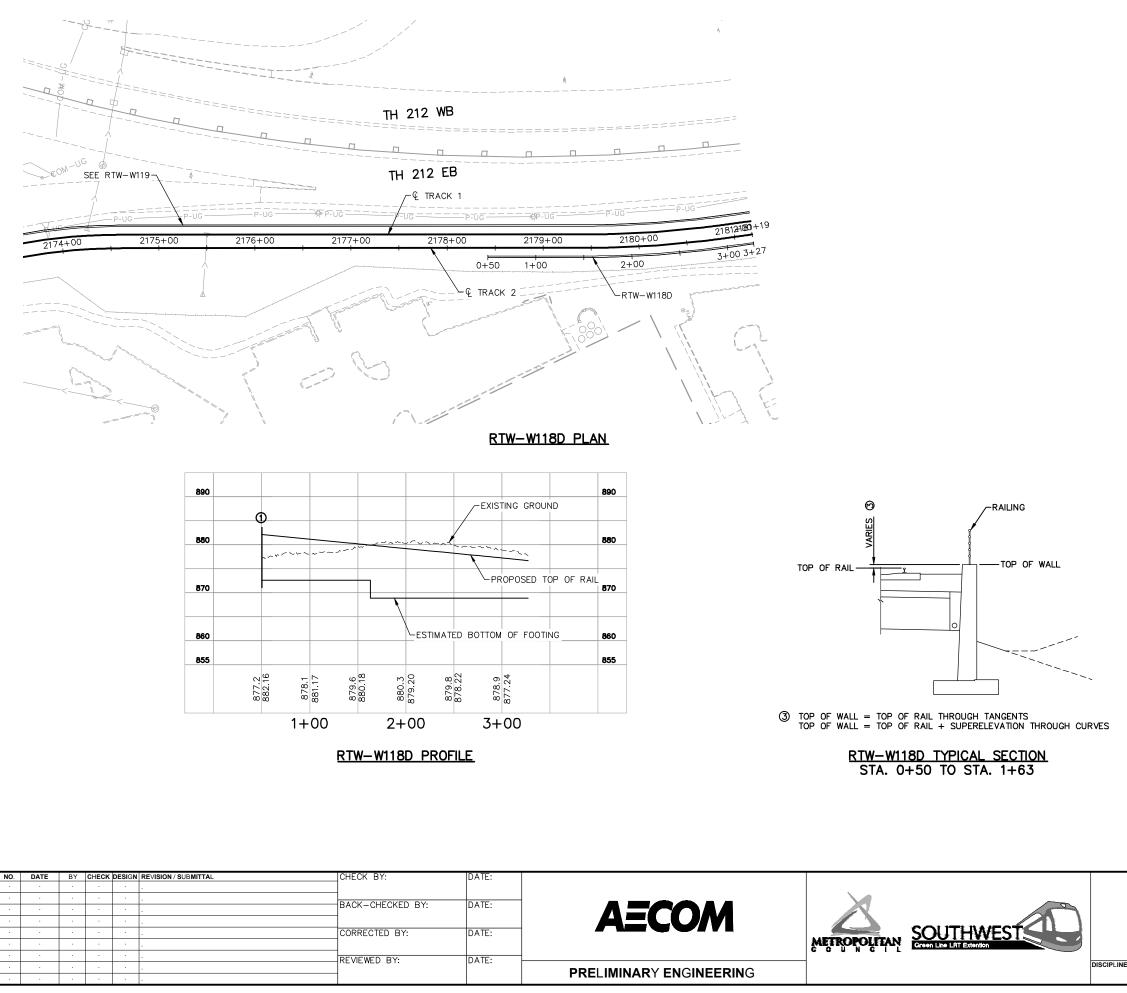


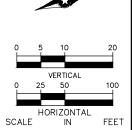

	CURVE NO. W1-218	CURVE NO. W1-219	1 I
	R = 510'	R = 1000'	
	Lc = 88.61'	Lc = 89.18'	
	Ls = 80'	Ls = 50'	
Å	Ea = 2.25"	Ea = 1.00"	
	Eu = 2.60"	Eu = 1.48"	
	V = 25 MPH	V = 25 MPH	
TCHLINE - STA. 2181+18.68 BEGIN WEST SEGMENT	CURVE NO. W1-121	CURVE NO. W1-122	ן ר
	R = 510'	R = 1000'	┥┃
ST	Lc = 88.61'	Lc = 89.18'	1
P	Ls = 80'	Ls = 50'	1
12	Ea = 2.25"	Ea = 1.00"	
18	Eu = 2.60"	Eu = 1.48"	
	V = 25 MPH	V = 25 MPH	
8 1 1			
188			
4-0			
· · ·			
H			
SZ		1+	
		R	
STIS			
BEGIN WEST SEGMENT 2			
		0 5 10 20	,
M G			
		VERTICAL	
		0 25 50 10	0
9) - N			
5		HORIZONTAL SCALE IN FEET	
			_
		900)
		890)
Σ Σ			
, 		880	
ά			
N			
á – – –		870	
ν -)
		860	
		860)
)
MALCH		860)
		860)
		860)
	Image: Constraint of the sector of	860)
		860)
	Image: Section of the sectio	860)
		860)
0		860)))
0	E 1 (CIVIL) - SEG	860)))
0 WEST-VOLUMI	TRACK	860))) ET
0 WEST-VOLUMI	TRACK	BMENT 1 SHEE 37)) ET
0 WEST- VOLUMI PLAN	TRACK AND PROFILE	BMENT 1 SHEI 37)) ET
0 WEST- VOLUMI PLAN STA. 2171+51.	TRACK AND PROFILE 94 TO STA. 218	BMENT 1 37 1+18.68 860 860 840 840 97 840 97 97 97 97 97 97 97 97 97 97)) ET
0 WEST- VOLUMI PLAN	TRACK AND PROFILE 94 TO STA. 218	BMENT 1 SHEI 37)) ET

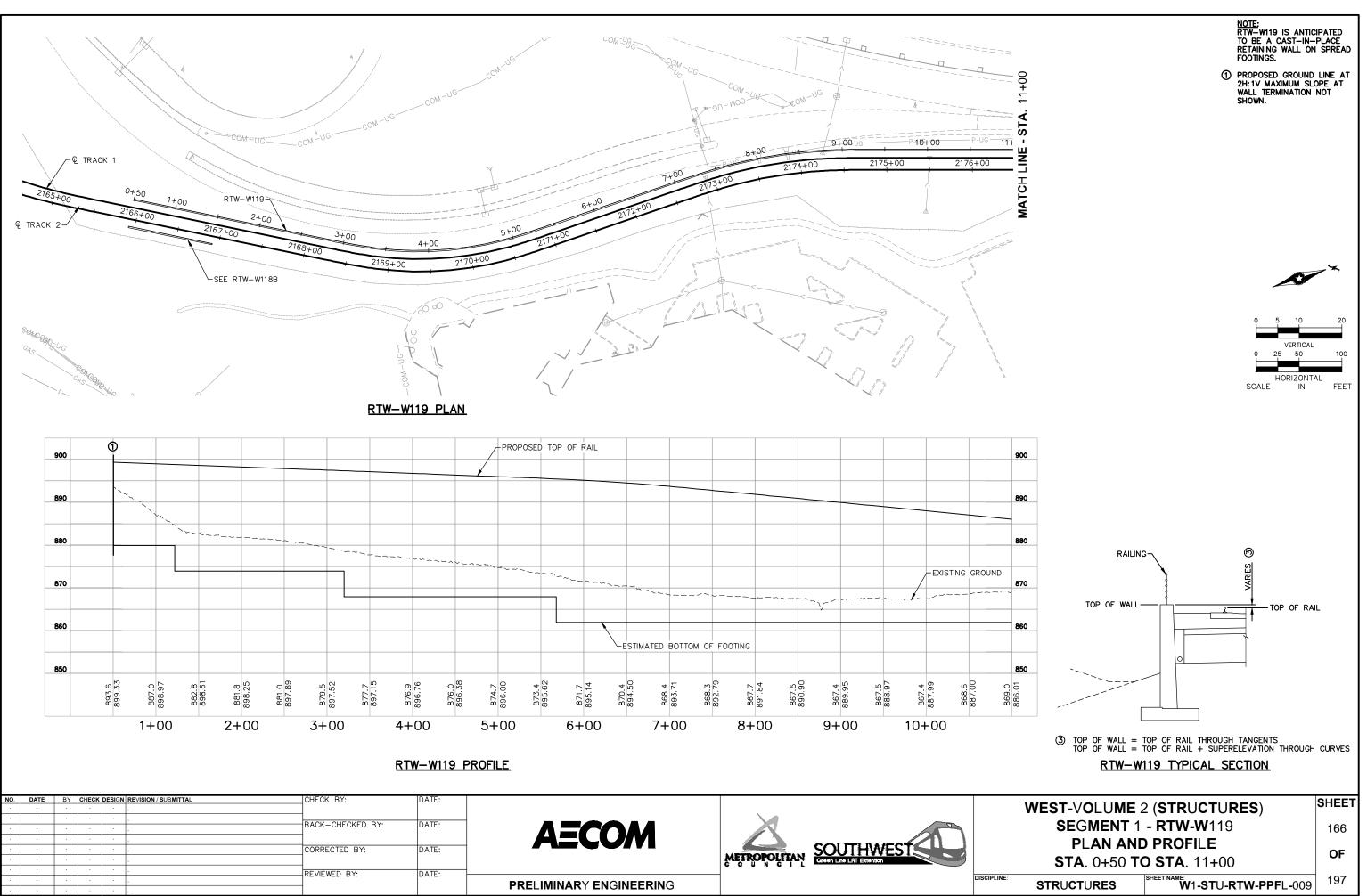


1, 13 2014 12:32 pm V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\TRACK\W2-TRK-PLN.dwg By: K

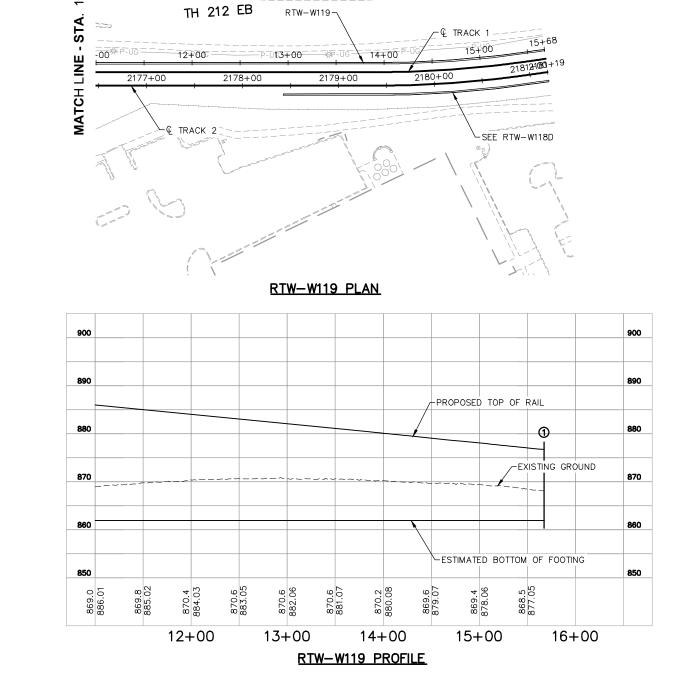
DISCIPLINE



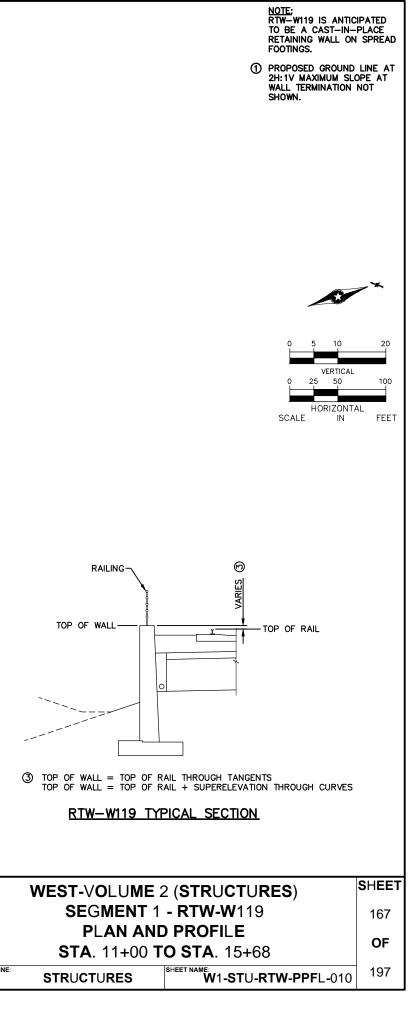

	C.	~
	0 5 10 VERTICAL 0 25 50 HORIZONTA SCALE IN	20 100 AL FEET
WALL		-
HROUGH CURVES		
L <u>SECTION</u> A. 1+50	RTW-W118B TYPICAL SECTION STA. 0+50 TO STA. 1+20	4
WEST VOLUME		SHEET
SEGN	IENT 1	164
	& RTW-W118B D PROFILE	OF
	SHEET NAME: W1-STU-RTW-PPFL-007	197

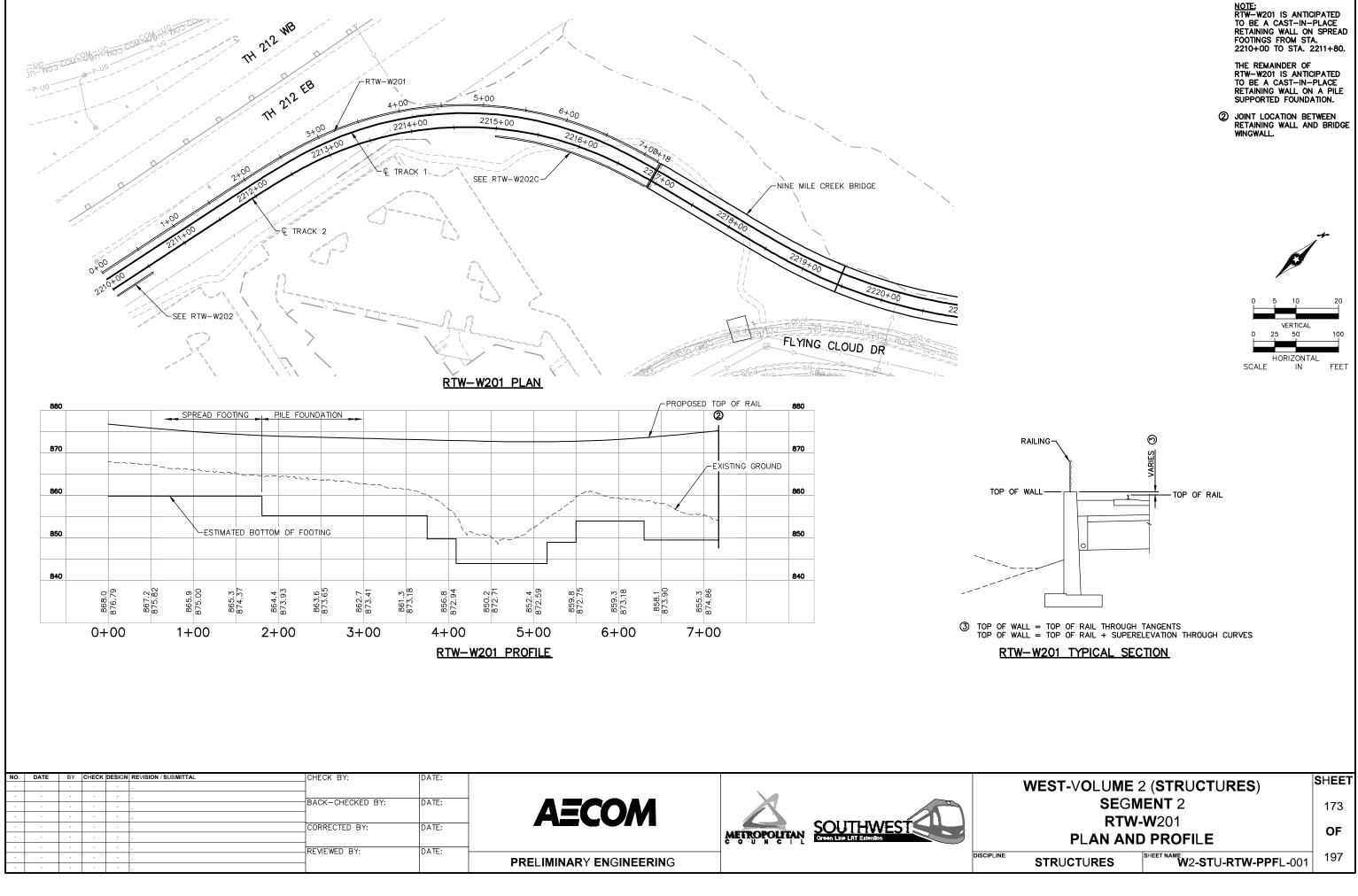

NOTE: RTW-W118A AND RTW-W118B ARE ANTICIPATED TO BE CAST-IN-PLACE RETAINING WALLS ON SPREAD FOOTINGS. PROPOSED GROUND LINE AT 2H:1V MAXIMUM SLOPE AT WALL TERMINATION NOT SHOWN.

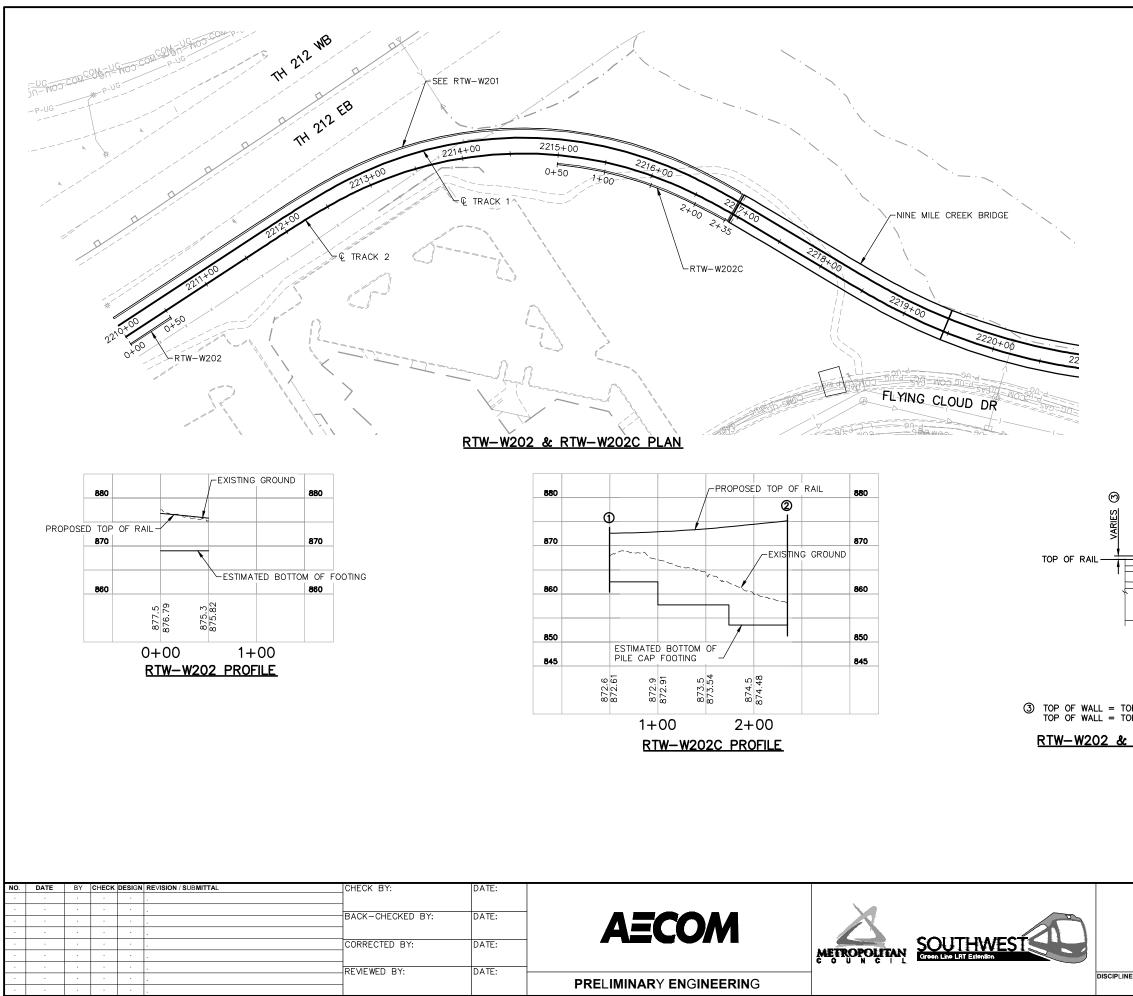
② JOINT LOCATION BETWEEN RETAINING WALL AND BRIDGE WINGWALL.



RILING ig TOP OF WALL ig Image: sector of the sector of	
WEST-VOLUME 2 (STRUCTURES) SEGMENT 1	SHEET 165
RTW-W118D PLAN AND PROFILE	OF
STRUCTURES STRUCTURES W1-STU-RTW-PPFL-008	197


3200											
<u>.</u>	NO.	DATE	BY	CHECK	DESIGN	REVISION / SUBMITTAL	CHECK BY:	DATE:			Τ
2	•	•									
b											
56							BACK-CHECKED BY:	DATE:			
10		•	•		•				AECOM		
4			•				CORRECTED BY:	DATE:		SOUTHWEST	
201		•	•							METROPOLITAN Green Line Litt Extension	
м	•	•	•	•			REVIEWED BY:	DATE:			
5									PRELIMINARY ENGINEERING		DISCIPLINE
ηη									FRELIMINARTENGINEERING		




\$

TH 212 WB

11+00 _____

Jun, 13 2014 11:05 am V:\3200_PEC-W\CAD\SEGMENT-W2\SHEET\STRUCTURES\W2-STU-RETW.dwg By: Nutz

STRUCTURES STRUCTURES W2-STU-RTW-PPFL-002	197
PLAN AND PROFILE	OF
SEGMENT 2 RTW-W202 & RTW-W202C	174
	SHEET
& RTW-W202C TYPICAL SECTION	
TOP OF RAIL THROUGH TANGENTS TOP OF RAIL + SUPERELEVATION THROUGH CURVES	
TOP OF WALL	
RAILING	
SCALE IN	FEET
0 25 50	
VERTICAL	
0 5 10	20
	/
	+
② JOINT LOCATION BE RETAINING WALL AN WINGWALL.	
2H: 1V MAXIMUM SL WALL TERMINATION SHOWN.	NOT
RETAINING WALL WI SUPPORTED FOUND. ① PROPOSED GROUND	ATION. LINE AT
RTW-W202C IS AN TO BE A CAST-IN- DETAINING WALL W	PLACE

NOTE: RTW-W202 IS ANTICIPATED TO BE A CAST-IN-PLACE RETAINING WALL ON SPREAD FOOTINGS.

METROPOLITAN

BRAUN INTERTEC

UNIQUE NUMBER

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loci	ation				Boring .			Ground Elevation
NT 47873			2 and 1986 on the second of the	SWLRT	2003	-	CH100- 19502		2055	SW		868.4 (Surveyed)
Locatio	n Her	nepii	n Co. Coordinate: X=491380		(ft.)	SV8525228	Machine	X				SHEET 1 of 2
	1 to			ude (West)=		Han	nmer CN	IE Autor	matic Ca	librated		Drilling Completed 11/26/13
3	No S	tation-	Offset Information Available			-	SPT	MC	СОН	γ	11	Other Tests
Ξ	Depth	<i>Abc</i>				uo	Neo	(%)	(psf)	(pcf)	Solt	Or Remarks
DEPTH		Lithology				Dritting Operation	REC	RQD	ACL	Core Breaks	CK	Formation
0	<i>Elev.</i> 0.5			sification	((0) 2)	^{II} O	(%)	(%) 11	(ft)	Breaks	Ro	or Member
-	- 867.9	×	∖SANDY LEAN CLAY, with Gra	vel, dark brown, we	a, (ULS), /		;	1.1				
	-	x										
-	×.	x					14	11				
5-	.	x				S.	21	10			P2	200=39%
	SILTY SAND, fine- to medium-grained, with Gravel, gra wet, medium dense, (SM) till wet, medium dense, (SM) till					F						
-						X	19	11				
10-						Æ						
-						X	21 .	11				
-						41						
	855.4		9 6			K	65	12			G fe	ravel encountered at 13
15-	-	: · · ·				5	39	2			Ie	er.
1	-					4						
-	ī.					X	24	3			P	200=3%
20	<u>8</u>											
20-	-					82 3						
-	R.					12		-3				
_	×.					X	43	2				
25-	<u>2</u>					41	-					
	2						39 .	2				
-	5		POORLY GRADED SAND, fin	e- to medium-oraine	ed. with	łł		10				
-	70		Gravel, brown, moist to 40 fee	t then waterbearing	(SP),	5		4				
30-	<u>7</u>		outwash			\mathbf{X}	30	2				
-	2					सि	· .	32				
-	-					\$.	3				
35-	w 7					43	-	and server				
-	2					A	25 .	4				
	-					17						
_	2				5		3					
V 40	-					\mathbf{r}	14	20				
-	11 2					F	100					
						封						
45		Ŀ				Ŀ		t		<u> </u>	<u> </u>	
45	Index She	et Co	de 3.0 (Continue	ed Next Page)				Sc	il Class:	J. Kirk Ro	ock	Class: Edit: Date: 7/15/ APOLISI2013100213-MNDOT.G

tate I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 2055		_	Ground Elevation 868.4 (Surveyed)
Н	Depth	лду			uc	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
	46.0				\mathbb{X}	9	22	0000000000000000			
	822.4		in the ground.								

State I	Project	_	Bridge No. or Job Desc.	Trunk Highway/Locatio	on				Boring I			Ground Elevation
				SWLRT		1			2056	SW		869.2 (Surveyed)
Locatio	on Her	nnepii	n Co. Coordinate: X=49154	9 Y=128380	(ft.)		Machine					SHEET 1 of 1
	Latit	tude (North)= Longi	tude (West)=		Han	nmer CN	IE Autor	matic Ca	librated	1	Completed 11/26/1
	No S Depth		Offset Information Available			-	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Clas	sification		Drilling Operation	REC (%)	RQD (%)		Core Breaks	Rock	•
	0.5 868.7		SANDY LEAN CLAY, with Gra	avel, dark brown, wet,	(CLS),		-	16				
5-	-		FILL: Clayey Sand, fine- to m dark brown to brown, wet, (SC		oots,	R	16	13				
-	7.0 862.2					R	-	-			an	∋=1 tsf
- 10-	-	× . •× •×	CLAYEY SAND, trace Gravel soft, (SC), till	brown, moist, rather s	soft to	R	4	14 				200=29%
-	12.0 857.2	· . · .×				सि	-	-				
- 15- -	-		POORLY GRADED SAND, fir Gravel, brown, moist, very loc		R	4	4 				9=4 tsf 200=3%	
-	19.0					<u></u>	36	7			P2	200=3%
20-	850.2 22.0		SILT, with occasional Poorly (wet, medium dense, (ML), till	Graded Sand lenses, b	prown,		21 .	24				
-	847.2						15	25				
25-	-		LEAN CLAY, with Silt and Por brown, wet, stiff to hard, (CL),		es,		31 -	22				
30-	29.0 840.2		POORLY GRADED SAND, fir	e- to medium-grained	, brown,		- 36	- 3				
	31.0 838.2		moist, dense, (SP), outwash Bottom of Hole - 31 feet. Water not observed with 29 1, the ground. Water not observed to cave-ir after withdrawal of auger. Boring immediately backfilled	depth of 22 feet imme	-			3				
	838.2		Water not observed with 29 1, the ground. Water not observed to cave-ir after withdrawal of auger.	depth of 22 feet imme	-							

Latitud No Stat epth ev.	de (l	Offset Information Available	ude (West)=		I Machine mmer CN SPT N60 REC (%)	NE Autor MC (%) RQD	COH (psf)	librated γ (pcf)	k Soil	869.0 (Surveyed) SHEET 1 of 1 Drilling Completed Other Tests Or Remarks
Latitud No Stat epth ev.	de (l tion-(North)= Longit Offset Information Available Class	ude (West)=	Ha	^{mmer} CN	NE Autor MC (%) RQD	COH (psf)	γ (pcf)		Drilling Completed 11/27/13 Other Tests
No Stat	tion-(Offset Information Available Class	sification	_	SPT	MC (%) RQD	COH (psf)	γ (pcf)		Other Tests
epth lev.		Clas: ∖CLAYEY SAND, with Gravel, c		Drilling	Maa	(%) RQD	(psf)	(pcf)		
0.2 ☆	Tithol	CLAYEY SAND, with Gravel, d		Drilling	REC		ACL	Core	×	
			ark brown, moist, (SC),	712		(%)	(ft)	Core Breaks	Roc	Formation or Member
				ו צן י	12	12				
20					11 3 4	- - - - - - - - -				200=4% ace of Clay at 10 feet.
57.0		POORLY GRADED SAND, find Gravel, with occasional Silt len dense, (SP), outwash	e- to medium-grained, trace ses, brown, moist, medium		3 2 26 12				Sil	200=3% It layer at 17 feet. ravel encountered at 20 et.
4.0		POORLY GRADED SAND, find dense, (SP), outwash	e-grained, light brown, moist,		2	+ +				
				171×17	20	- - -				
		wet, medium dense, till, (SM),			8 -					
88.0		Water not observed with 29 1/2 the ground. Water not observed to cave-in withdrawal of auger.	depth of 16 feet after							
0.2 0.2 0.2 CLAYEY SAND, with Gravel, dark brown, moist, (SC 368.8 Vopsoil fill POORLY GRADED SAND, fine- to medium-grained, Gravel, with occasional Lean Clay lenses, brown, mo (SP), fill 12.0 900RLY GRADED SAND, fine- to medium-grained, Gravel, with occasional Silt lenses, brown, moist, me dense, (SP), outwash 12.0 900RLY GRADED SAND, fine- to medium-grained, Gravel, with occasional Silt lenses, brown, moist, me dense, (SP), outwash 12.0 900RLY GRADED SAND, fine-grained, light brown, dense, (SP), outwash 12.0 SILT, with Sand and Clay lenses, brown and dark bromoist, medium dense, (ML), till 29.0 SILTY SAND, fine- to medium-grained, trace Gravel, wet, medium dense, till, (SM), till 388.0 Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem a the ground. Water not observed to cave-in depth of 16 feet after					 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash POORLY GRADED SAND, fine-grained, light brown, moist, dense, (SP), outwash POORLY GRADED SAND, fine-grained, light brown, moist, dense, (SP), outwash SILT, with Sand and Clay lenses, brown and dark brown, moist, medium dense, (ML), till SILTY SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense, till, (SM), till Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem auger in the ground. Water not observed to cave-in depth of 16 feet after withdrawal of auger. 	.0 .0 <td< td=""><td>.0 <td< td=""><td>.0 <td< td=""><td>0 3 7.0 3 2 2 Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 26 12 26 12 2 20 20 0 SILT, with Sand and Clay lenses, brown and dark brown, moist, medium dense, (ML), till 0 SILTY SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense, till, (SM), till 30 Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem auger in the ground. Water not observed to cave-in depth of 16 feet after withdrawal of auger.</td><td>0 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 2 P2 0 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 26 12 51 0 POORLY GRADED SAND, fine-grained, light brown, moist, dense, (SP), outwash 20 20 51 0 SILT, with Sand and Clay lenses, brown and dark brown, moist, medium dense, (ML), till 20 20 20 0 SILTY SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense, till, (SM), till 8 8 8 3.0 Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem auger in the ground. Water not observed to cave-in depth of 16 feet after withdrawal of auger. Water not observed to cave-in depth of 16 feet after withdrawal of auger.</td></td<></td></td<></td></td<>	.0 .0 <td< td=""><td>.0 <td< td=""><td>0 3 7.0 3 2 2 Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 26 12 26 12 2 20 20 0 SILT, with Sand and Clay lenses, brown and dark brown, moist, medium dense, (ML), till 0 SILTY SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense, till, (SM), till 30 Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem auger in the ground. Water not observed to cave-in depth of 16 feet after withdrawal of auger.</td><td>0 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 2 P2 0 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 26 12 51 0 POORLY GRADED SAND, fine-grained, light brown, moist, dense, (SP), outwash 20 20 51 0 SILT, with Sand and Clay lenses, brown and dark brown, moist, medium dense, (ML), till 20 20 20 0 SILTY SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense, till, (SM), till 8 8 8 3.0 Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem auger in the ground. Water not observed to cave-in depth of 16 feet after withdrawal of auger. Water not observed to cave-in depth of 16 feet after withdrawal of auger.</td></td<></td></td<>	.0 .0 <td< td=""><td>0 3 7.0 3 2 2 Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 26 12 26 12 2 20 20 0 SILT, with Sand and Clay lenses, brown and dark brown, moist, medium dense, (ML), till 0 SILTY SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense, till, (SM), till 30 Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem auger in the ground. Water not observed to cave-in depth of 16 feet after withdrawal of auger.</td><td>0 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 2 P2 0 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 26 12 51 0 POORLY GRADED SAND, fine-grained, light brown, moist, dense, (SP), outwash 20 20 51 0 SILT, with Sand and Clay lenses, brown and dark brown, moist, medium dense, (ML), till 20 20 20 0 SILTY SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense, till, (SM), till 8 8 8 3.0 Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem auger in the ground. Water not observed to cave-in depth of 16 feet after withdrawal of auger. Water not observed to cave-in depth of 16 feet after withdrawal of auger.</td></td<>	0 3 7.0 3 2 2 Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 26 12 26 12 2 20 20 0 SILT, with Sand and Clay lenses, brown and dark brown, moist, medium dense, (ML), till 0 SILTY SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense, till, (SM), till 30 Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem auger in the ground. Water not observed to cave-in depth of 16 feet after withdrawal of auger.	0 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 2 P2 0 POORLY GRADED SAND, fine- to medium-grained, trace Gravel, with occasional Silt lenses, brown, moist, medium dense, (SP), outwash 26 12 51 0 POORLY GRADED SAND, fine-grained, light brown, moist, dense, (SP), outwash 20 20 51 0 SILT, with Sand and Clay lenses, brown and dark brown, moist, medium dense, (ML), till 20 20 20 0 SILTY SAND, fine- to medium-grained, trace Gravel, gray, wet, medium dense, till, (SM), till 8 8 8 3.0 Bottom of Hole - 31 feet. Water not observed with 29 1/2 feet of hollow stem auger in the ground. Water not observed to cave-in depth of 16 feet after withdrawal of auger. Water not observed to cave-in depth of 16 feet after withdrawal of auger.

METROPOLITAN

UNIQUE NUMBER

BRAUN INTERTEC

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation				Boring 1 2012			Ground Eleva 856.7 (Su	
ocatio	<i>n</i> Her	nepi	n Co. Coordinate: X=491648	8 Y=12904	(ft.)	Drill	Machine	9 7507				SHEET	1 of 3
				ude (West)=		Han	nmer CN	IE Autor	natic Ca	alibrated		Drilling Completed	7/19/1:
	No S	tation	Offset Information Available			_	SPT N60	MC (%)	COH		Soil	Other Te	
DEPTH	Depth Elev.	Lithology	Clas	sification		Drilling Operation	REC (%)	(%)	(psf) ACL (ft)	^(pcf) Core Breaks		Or Rema Formati or Mem	ion
	1.5	<u></u>	CLAYEY SAND, trace roots, d	ark brown, moist, (SC),	Ħ	-	12					
+	855.2 4.0		SILTY SAND, fine- to medium Clay inclusions, dark gray and			X	12	+ † 11					
5-	852.7 7.0		CLAYEY SAND, trace Gravel, (SC), fill	dark brown and gra	ay, wet,	R	8 .	- - - 14					
-10-	849.7	SILTY SAND, fine- to medium brown, moist to 10 feet then w		- <u></u> {1 	4	- - 18 -							
-10	12.0 844.7				10	16							
15-	-	· · · × ·× · · · · · × ·× · · · · · ×	SILTY SAND, fine- to coarse-c Clay lenses and seams, brown medium dense, (SM) till	el, with se to	TA TA	10 - 16	20 						
20-	19.0 837.7	 . × .				R	16 	- 11 - 11 - 10			qp	∋=2 tsf	
-							13	16			qp	=2 tsf	
25-	-		SANDY LEAN CLAY, trace Gr (CL), till	avel, gray, wet, stif	f to hard,	R	20 -	12				9=1 1/2 tsf 9=2 1/2 tsf	
30-	-					R	32 - - 15 -	16 			dh)=2 1/2 (SI	
+	34.0					R	20	18			qp	o=1 1/2 tsf	
35-	822.7	822.7 POORLY GRADED SAND, fine- to coarse-grained, trace Gravel, gray, waterbearing, medium dense, (SP), outwash					15	15					
40-	-						15* -	15				lo sample reco vitched to mud	
-	42.0 814.7 SANDY LEAN CLAY, trace Gravel, gray, wet, very stiff,					PD	20 - - 21 ⁻	12 - 16			dri sa	illing method a imple. p=1 1/2 tsf	
45			(CL), till	- (CL), till									

UNIQUE NUMBER U.S. Customary Units

SHEET 2 of 3 Mn/DOT GEOTECHNICAL SECTION - LOG & TEST RESULTS Boring No. Ground Elevation State Project Bridge No. or Job Desc. Trunk Highway/Location SWLRT 2012SB 856.7 (Surveyed) γ SPT COH MC Other Tests Soil N60 (%) (psf) (pcf) Or Remarks Depth Lithology Drilling Operation DEPTH REC RQD ACL Core Rock Formation Classification Elev. Breaks or Member (%) (%) (ft) qp=2 tsf 23 14 SANDY LEAN CLAY, trace Gravel, gray, wet, very stiff, (CL), till (continued) PD 20 17 49.0 807.7 PD 50 32 12 POORLY GRADED SAND, fine- to medium-grained, trace PD Gravel, gray, waterbearing, medium dense to dense, (SP), outwash 55 38 12 PD 59.0 797.7 x 60 48 13 SILTY SAND, fine- to medium-grained, trace Gravel, gray, waterbearing, dense, (SM), till PD 64.0 ĺΧ, 792.7 65 qp=4 tsf 47 9 CLAYEY SAND, trace Gravel, gray, wet, hard, (SC), till PD 69.0 787.7 70 54 11 SILTY SAND, fine- to medium-grained, trace Gravel, gray, waterbearing, dense, (SM), till PD 74.0 782.7 75 12 41 PD CLAYEY SAND, trace Gravel, gray, wet, hard, (SC), till 80 46 14 PD 84.0 772.7 85 45 17 SANDY LEAN CLAY, trace Gravel, gray, wet hard, (CL), till PD 90 (Continued Next Page) Soil Class: J. kirk Rock Class: Edit: Date: 7/15/14 N:\GINT\PROJECTS\MINNEAPOLIS\2013\00213-MNDOT.GPJ

٢

UNIQUE NUMBER

٦

tate	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2012			Ground Elevation 856.7 (Surveyed)
I	Depth	gy			и	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cl	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
- - - 95 -	<u>96.0</u> 760.7		SANDY LEAN CLAY, trace (continued) Bottom of Hole - 96 feet.	Gravel, gray, wet hard, (CL), till	PD	44 _ - - -	- 17 - - -				
	100.1			with 9 1/2 feet of hollow-stem							

State F	Project		Bridge No. or Job Desc.	Trunk Highway/Loc SWLRT	ation				Boring 2027			Ground Ele 859.3 (
Locatio	on Hen	inepir	Co. Coordinate: X=49188	6 Y=129301	(ft.)	Drill	Machine	9 7504					ET 1 of 3
				itude (West)=		Han	nmer CN	IE Autor	natic Ca	alibrated		Drilling Completed	9/10/13
	No St	tation-	Offset Information Available				SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Or Rei	Tests
DEPTH	Depth Elev.	Lithology		sification		Drilling Operation	REC (%)	(%)		Core Breaks			ation
	0.5 858.8		LEAN CLAY, brown, moist, (C	CL), topsoil fill		7		_					
-	- - - 5.0		LEAN CLAY, brown, moist, (C	CL), fill			23	+					
5-	854.3 CLAYEY SAND, fine- to medium-grained, with Gravel, 7.0 brown, moist to wet, (SC), fill 852.3 Image: state st					F	11	+					
-							6	13					
10-	CLAYEY SAND, trace Gravel, brown, wet, (SC), fill					R	10	12				00=31%	
_	14.0 845.3						2	-			Sa	nd lenses a	t 12 feet.
▼15- - -	 - -		POORLY GRADED SAND wi medium-grained, with Lean C waterbearing, (SP-SM), fill		, gray,		4	+					
20	20.0 839.3 - - - - 27.0	0.0					3 TW 5				Oc		t 25 feet. and lenses a
30	832.3 - - - - - - -		LEAN CLAY, with fibers and s deposit.	shells, black, wet, (C	L), swamp		6	68			-	feet.)=7%	
40-						R R R	TW 6	- - - - 94				C=14%; LL=	WD=79 pcf 91; PL=82,
-						3	+				casional lay	ers of Peat	

METROPOLITAN

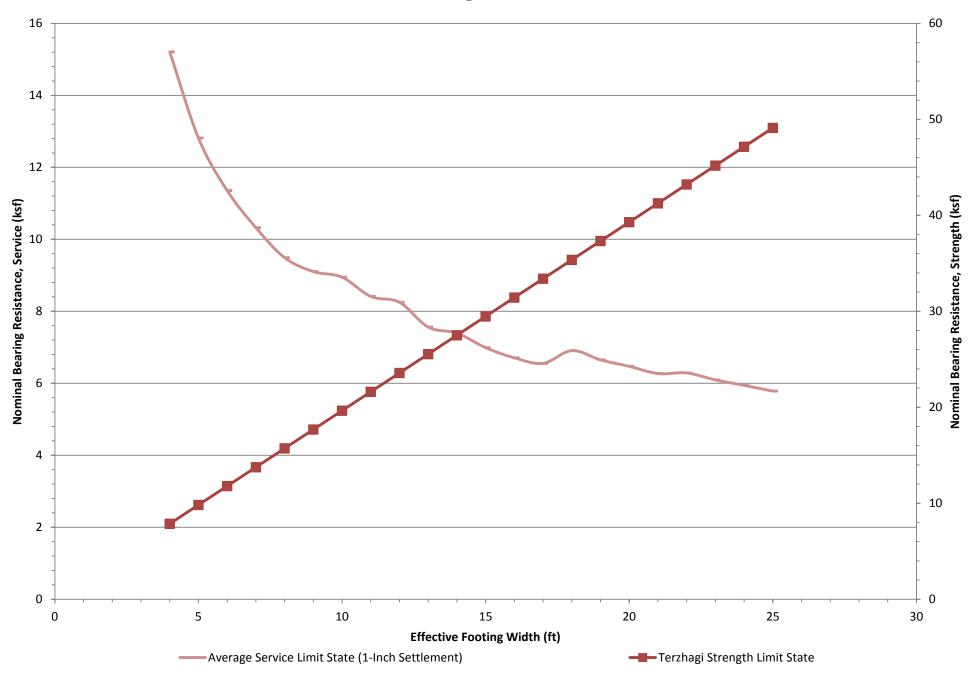
BRAUN INTERTEC

UNIQUE NUMBER

State	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring 1 2027		-	round Elevation 59.3 (Surveyed)
DEPTH	Depth	Lithology			Drilling Operation	SPT N60 REC	MC (%) RQD	COH (psf) ACL	γ (pcf)	S	Other Tests Or Remarks Formation
DE	Elev.	Lit	Cl	assification	Drilli Opel	(%)	(%)	(ft)	Core Breaks	Roc	or Member
-			LEAN CLAY, with fibers and deposit. (continued)	d shells, black, wet, (CL), swamp	X	5.	_				
-	47.0 812.3	× . × .		um-grained, trace Gravel, gray,	-27	13	+				
50-	49.0 810.3	Ť	waterbearing, (Sw), swarnp		R		+			Switz	and to mud roton.
-	-		SILT, trace roots and organ swamp deposit	ics, gray, waterbearing, (ML),	PD	7.	+ +				ned to mud rotary g method after 50-fo le.
- 55	54.0 805.3	× . × .					-				
-	-	× .				22	-				
-	-	`× ` . ` . ` .× `× ` .	60 feet then brown, waterbe	um-grained, with Gravel, gray to earing, medium dense to very	PD	-	-				
60 -	-	× . × .	dense, (SM), till			71	12			P200=	=13%
-	64.0	·× · . · . · .× ·× · .			PD	-	-				
65 - -	795.3		SILTY CLAY, with Silt layer	s, gray, wet, hard, (CL-ML), till		47	23			LL=26	8; PL=20; PI=6
-	69.0				PD	-	-				
70-	790.3	· · · · · · · · · · · ·	POORLY GRADED SAND, Gravel, gray, waterbearing,	fine- to coarse-grained, with		79 .	-				
-	74.0	· · · · · ·	e.a.e., g.a,,		PD	-					
75-	785.3					19	- -			qp=2	tsf
-	-		SANDY LEAN CLAY, trace (CLS), till	Gravel, gray, wet, very stiff,	PD	-	-				
80-	-		. /			24	+			qp=1	1/2 tsf
-	84.0				PD	-	+ + +				
85-	775.3	^ · · × ·× · .	CLAYEY SAND. with Sand	lenses from 85 to 95 feet, gray,		27	12			P200:	=36%
-	+ - -	· · · · · · · · · · · · · · · · · · ·	wet, very stiff to hard, (SC),		PD	-	+				

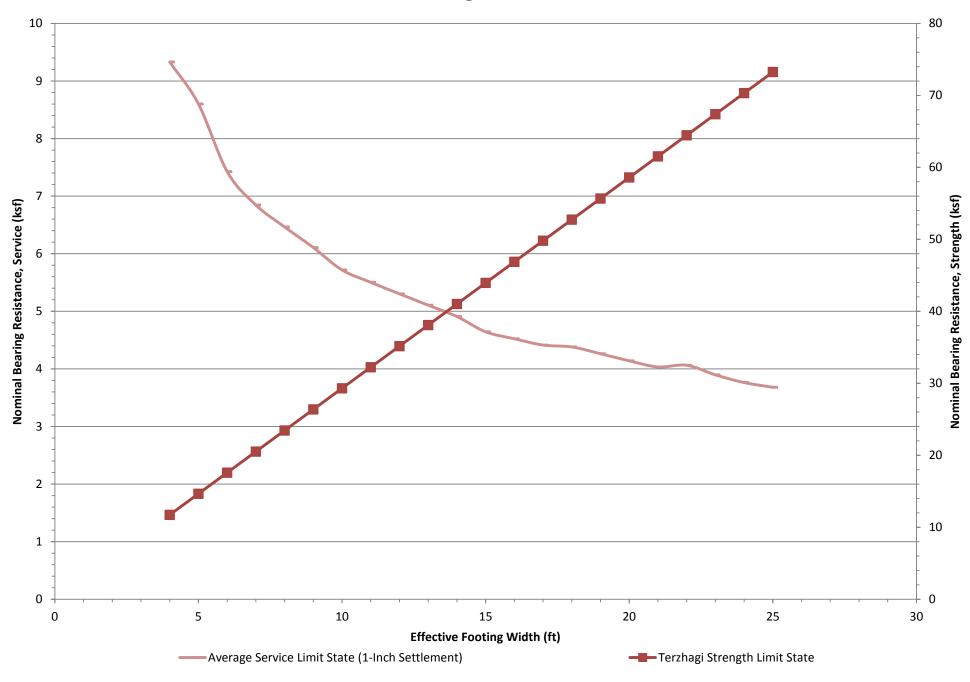
٦

METROPOLITAN

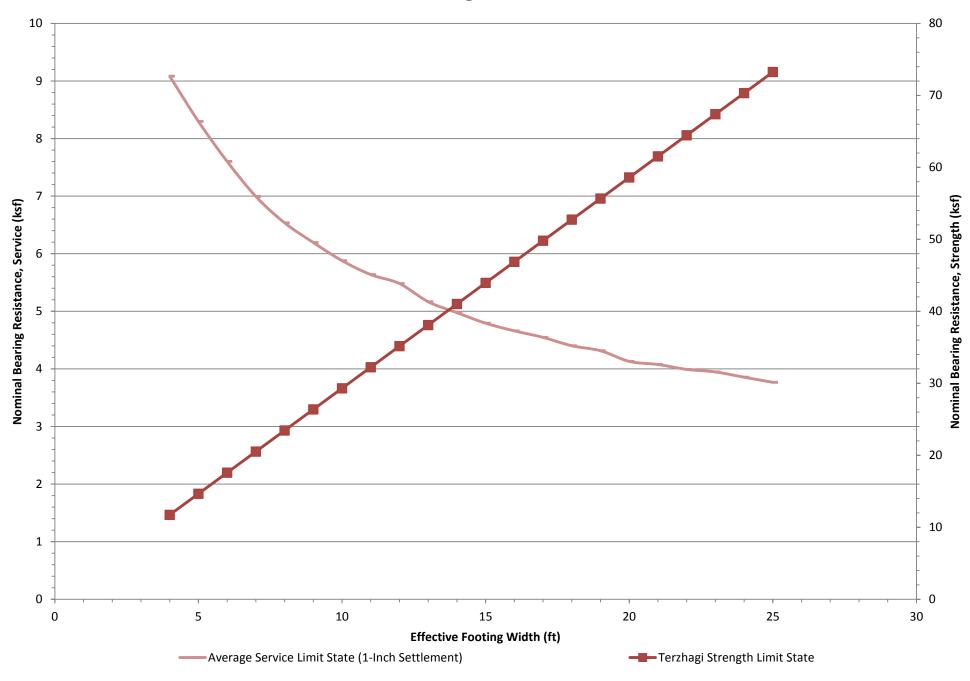

ſ

UNIQUE NUMBER

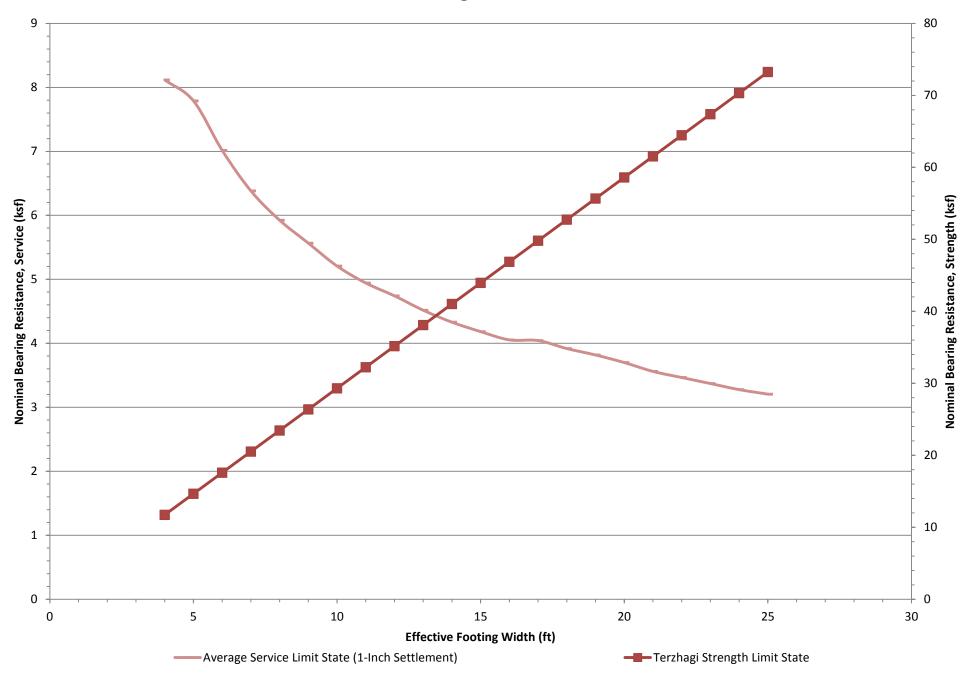
ate I	Project		Bridge No. or Job Desc.	Trunk Highway/Location SWLRT				Boring I 2027			Ground Elevation 859.3 (Surveyed)
I	Depth	ЛĎс			uo	SPT N60	MC (%)	COH (psf)	γ (pcf)	Soil	Other Tests Or Remarks
DEPTH	Elev.	Lithology	Cla	assification	Drilling Operation	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Formation or Member
-	-	× . × .× .				51.	-				
-	-	· · · × ·× · · · · · ×			PD	-	+				
95 -	-	× . 			\square	20 .	-				
-	-	CLAYEY SAND, with Sand lenses from 85 to 95 feet, g wet, very stiff to hard, (SC), till <i>(continued)</i>					-				
00-	-						-				
-		· · · × ·× · .				- -	+				
)5 -	-	× * . * . * .			PD	-	-				
-	-	× . 				+					
- 10	109.0 750.3	· · · · · · · · · · · · · · · · · · ·					-				
-	-	'× ' . ' . ' .× '× ' .				36 .	-				
- - 15-	-	`.`.× `×``. `.`.×	SILTY SAND, fine- to mediu waterbearing, medium dens	um-grained, with Gravel, brown, te to dense. (SM), till	PD	-	+ + +				
-	-	· · · ×					-				
20-	-	× . × .				-	-				
	121.0 738.3	× . 	Bottom of Hole - 121 feet.	vith 15 feet of hollow-stem auge							
			in the ground. Boring immediately backfille								



Limit State Shallow Foundation Analysis RTW-W119, Boring 2055SW, Sta. 2174+50

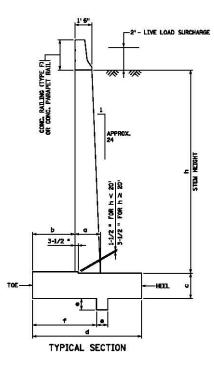


Limit State Shallow Foundation Analysis RTW-W119, Boring 2056SW, Sta. 2177+00



Limit State Shallow Foundation Analysis RTW-W119, Boring 2057SW, Sta. 2180+50

Limit State Shallow Foundation Analysis RTW-W119, Boring 2056SW, Sta. 2177+00


WALL LOADING CASE: 2'- LIVE LOAD SURCHARGE

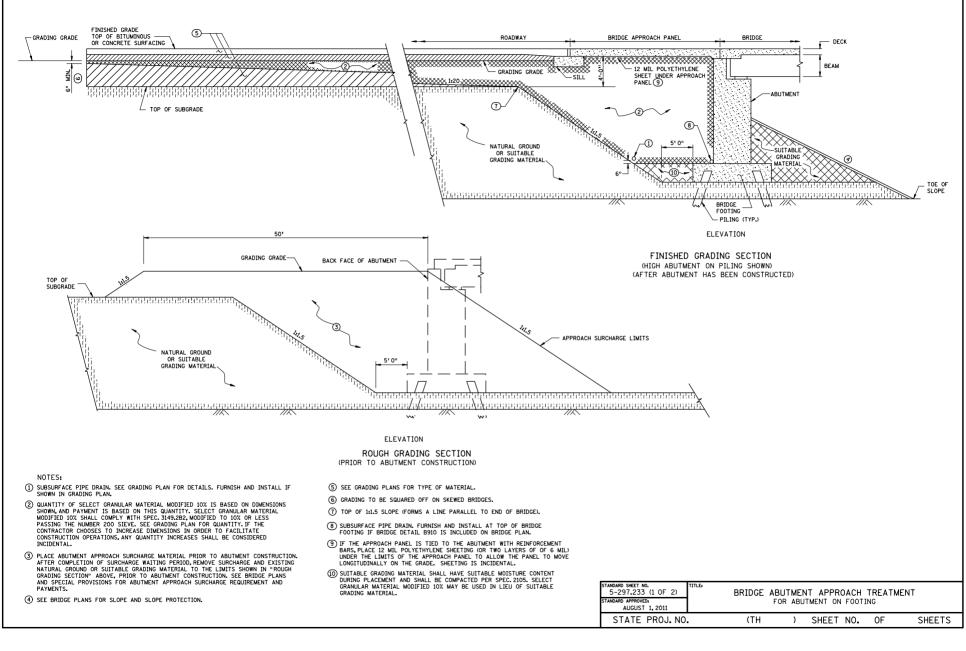
_			CS AND DATA					TES PER FOO					RESSLIRE
STEM Eight	WIDTH	WIDTH	FOOTING THICKNESS C	FOOTING WIDTH	SHEAR KEY SIZE	SHEAR KEY		. CONCRETE 3Y43 (CULYD.) STEN	PLAIN (POUND)	EPOXY (POUND)	WALL DETAILING SCHEME	TOE	HEEL
5	1'-0%"	1'-0"	1'-5"	3'-6"	N/A	N/A	0.187	0.296	15.38	38.16	SHORT	1.670	0.070
6	1'-9"	1'-2"	1'-5"	4'-0"	N/A	N/A	0.211	0.360	16.43	41.74	SHORT	1.620	0.090
7	1-9%	1-40	1-5	4'-6"	N/A	N/A	0.235	0.425	19.70	45.34	SHORT	1.970	0.120
8	1'-10"	1'-6"	1.5	5'-0"	N/A	N/A	0.259	0.492	20.75	46.69	SHORT	2.110	0.150
9	1'-10%	1'-8"	1-5	5'-6'	N/A	N/A	0.283	0.561	24.13	52.69	SHORT	2,250	0.180
10	1'-11"	1-90	1'-5"	6'-0"	N/A	N/A	0.306	0.631	25.18	62.49	MEDIUM	2.446	0.199
11	1-11/6	2'-0"	1.5	6'-6"	N/A	N/A	0.331	0.703	31.28	66.85	MEDIUM	2.536	0.239
12	2'-0"	21-30	1'-5"	6-9"	1'-0"	3 -10%	0.360	0.776	35.38	72.23	MEDIUM	2,758	0.15
13	2-0/4	2'-6"	1-5"	7'-0"	1'-0"	4 2//	0.393	0.851	40.30	76.82	MEDIUM	2.966	0.013
14	2'-1"	2'-9"	1'-6"	7-8"	1'-0"	4 -5%	0.417	0,928	40,49	61.74	MEDIUM	3.147	0.07
15	2'-11/2"	3'-0"	1'-6"	8'-2"	1'-0"	4-9%	0.506	1.005	40.10	99.57	TALL	3.239	0.111
16	2'-2"	3'-3"	1'-9"	8'-8"	1'-0"	5-0%	0.615	1.085	41.38	105.97	TALL	3.494	0.05
17	2'-2/2"	3'-6"	1'-9"	9-2"	1'-0"	5-4%	0.649	1.166	49.02	111.90	TALL	3.586	0.08
18	2'-3*	3'-9"	1'-9"	9'-8"	1'-0"	5 -77	0.682	1.249	50.52	129.74	TALL	3.679	0.12
19	2-3/2	4'-0"	2'-0"	10'-2"	1'-0"	5 -11/	0.810	1.333	54.26	137.41	TALL	3.935	0.06
20	2'-4"	4'-3'	2'-0"	10'-8"	1'-0"	61-30	0.875	1.417	61.38	165.51	TALL	4.056	0.09
21	2-4/2	4'-6"	2'-0"	11'-2"	1'- 0 "	6 -6//	0.916	1.504	71.34	174.30	TALL	4,151	0.12
22	21-5"	41-90	2'-3"	11'-8"	1'-0"	6'-10%	1.064	1.593	65.93	183.51	TALL	4.407	0.06
23	2'-5/2	5'-0"	2'-6"	12'-2"	1'-0"	7 -1%	1.221	1.683	84.82	224.49	TALL	4.663	0.012
24	2'-6"	5'-3"	2'-9"	12'-9"	1'-0"	7'-5%	1.396	1.775	94.03	234.03	TALL	4.872	0.020
25	2'-6/2"	5'-6"	2'-9"	13'-30	1'-0 ⁿ	7 -87	1.449	1.868	100.13	288.16	TALL	4.967	0.05
26	2'-7"	5'-10"	3'-0"	13'-9"	1'-0"	8-1/2	1.631	1,963	102.26	299.67	TALL	5,189	0.00
27	2'-7/2"	6'-2"	3'-3 ⁿ	141-40	1'-0"	8 -6//	1.832	2.059	127.34	315.84	TALL	5.364	0.000
28	2'-8*	6'-6"	3'-3"	15'-0"	1'-0"	8 -10 /	1.916	2,157	140.92	394.98	TALL	5.334	0.140
29	2 -8/2	6'-10"	3'-6"	15'-6"	1'-0"	9-3/4	2.123	2.257	148.00	407.90	TALL	5.558	0.07
30													

NOTE: EPOXY REINFORCEMENT QUANTITY ASSUMES AN EXPANSION JOINT EPOXY REINFORCEMENT QUANTITY MUST BE ADJUSTED IS USED ON BOTH PANEL ENDS. THE QUANTITY MUST BE ADJUSTED WHON CONSTRUCTION JOINTS ARE USED. QUANTITY MUST BE ADJUSTED DO NOT INCLUE RAILING. SEE RAILING SKEETS FOR RAIL REINFORCEMENT (EPOXY) AND RAIL CONCRETE (3746).

() SEE STANDARD PLANS 5-297.621 TO .623 FOR REINFORCING DETAILS.

	DESIGN CRITERIA
DESIGN WORKIN LOAD F	A.S.H.T.O. DESIGN SPECIFICATIONS METHOD: G STRESS - STABILITY, FOLNDATIONS ACTOR DESIGN - REDAFORCED CONCRETE = 4,000 PSI 60,000 PSI
FACTOR	OF SAFETY OVERTURNING: 2.0 MINIMUM OF SAFETY SLIDING: 1.5 MINIMUM ON OF RESULTANT: MIDDLE 1/3 OF FOOTING ECTING SOIL IN FRONT OF WALL.
	UNDATION REPORT FOR ALLOWABLE BEARING PRESSURE COEFFICIENT OF FRICTION.
INTE Be COEF	LL CHARACTERISTICS INALL ANGLE OF FRICTION 35' 35 PCF COLUVALENT FLUID PRESSURE ACTIVE STATE 53 PCF COLUVALENT FLUID PRESSURE AT REST STATE 1.0 FICIENT OF FRICTION 0.55 WEIGHT. 125 PCF

5-297.632 (1 OF 4)	RETAINING						
MAY 31, 2006	SPREAD I	FOOTIN	IG GEOME	TRY	AND DATA	<u>}</u>	
STATE PROJ. NO.	СТН)	SHEET	NO.	OF	SHEETS	


MAY 31, 2006 5-297.632 (1 OF 4

В	Eo	ER	P*L	۹c	fs	N
A	tsf	tsf	tsf	tsf	tsf	bl/ft
E tsf	1	0.125	8	1.15	57.5	4
E tsf R	8	1	64	6.25	312.5	22.7
p* tsf	0.125	0.0156	1	0.11	5.5	0.5
q tsf	0.87	0.16	9	1	50	5
f tsf	0.0174	0.0032	0.182	0.02	1	0.1
N b1/ft	0.25	0.044	2	0.2	10	1

Table 5. Correlation results for sand. (Column A = Number in Table x Row B.)

Table 6. Correlation results for clay. (Column A = Number in Table x Row B.)

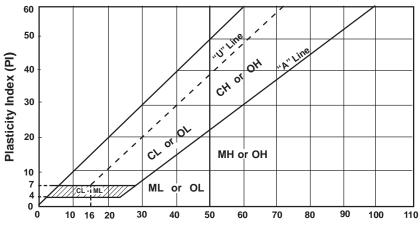
		and the second second second second second second second second second second second second second second second					A state of the sta
A	В	E _o tsf	E _R tsf	P*L tsf	q _c tsf	f _s tsf	S _u tsf
Eo	tsf	1	0.278	14	2.5	56	100
ER	tsf	3.6	1	50	13	260	300
P*L	tsf	0.071	0.02	1	0.2	4	7.5
q _c	tsf	0.40	0.077	nta 5 i seori	1	20	27
fs	tsf	0.079	0.0038	0.25	0.05	1	1.6
su	tsf	0.010	0.0033	0.133	0.037	0.625	1

Descriptive Terminology of Soil

Standard D 2487 - 00 **Classification of Soils for Engineering Purposes** (Unified Soil Classification System)

Criteria for Assigning Group Symbols and			Soils Classification		Particle Size Identification			
	Group Names Using Laboratory Tests ^a			Group Symbol	Group Name ^b	Boulders Cobbles		
grained Soils 50% retained on 200 sieve	Gravels	Clean Gravels 5% or less fines ^e		$C_u \ge 4$ and $1 \le C_c \le 3^{c}$	GW	Well-graded gravel ^d	Gravel Coarse	2/4" + 2"
	More than 50% of coarse fraction			$C_u < 4$ and/or $1 > C_c > 3^c$	GP	Poorly graded gravel d		
eve	retained on	Gravels wit	h Fines Fines classify as ML or MH		GM	Silty gravel ^{d f g}		
aine % re 0 si	No. 4 sieve	More than 12	2% fines ^e	Fines classify as CL or CH	GC	Clayey gravel dfg	CoarseNo. MediumNo.	
	Sands	Clean S	ands	$C_u \ge 6$ and $1 \le C_c \le 3$ ^c	SW	Well-graded sand ^h		
arse- than No.	50% or more of coarse fraction passes	5% or less	s fines ⁱ	$C_u < 6$ and/or $1 > C_c > 3^c$	SP	Poorly graded sand h	Silt	
Coa more 1		O and a suit	h Fines	Fines classify as ML or MH	SM	Silty sand ^{fgh}	Clav	below "A" line
ŬĔ	No. 4 sieve	More than 12% ⁱ		Fines classify as CL or CH	SC	Clayey sand ^{fgh}		on or above "A" line
the	Silta and Clave	Inorganic	PI > 7 and plots on or above "A" line j PI < 4 or plots below "A" line j		CL	Lean clay ^{k I m}		
ed Soils passed the sieve	Silts and Clays Liquid limit less than 50				ML	Silt ^{k m}	Relative [
ed So Dasse sieve		Organic		d limit - oven dried < 0.75		Organic clay k I m n	Cohesionless Soils	
ned e pa 0 sic				nit - not dried	OL	Organic silt ^{k m o}	Very loose 0 to 4	
ie-graine or more p No. 200	Silts and clays Liquid limit 50 or more	uid limit	PI plots on or above "A" line PI plots below "A" line Liquid limit - oven dried Liquid limit - not dried < 0.75		СН	Fat clay k I m	Loose 5 to 10 BP Medium dense 11 to 30 BF Dense 31 to 50 BI Very dense over 50 BF	
					MH	Elastic silt k I m		
Fine 50% or N					ОН	Organic clay k I m p		
50		e.guno			он	Organic silt ^{k m q}		
Highly	Highly Organic Soils Primarily organic matter, dark in color and organic odor		anic matte	r, dark in color and organic odor	PT	Peat	Consistency o	f Cohesive Soils

Based on the material passing the 3-in (75mm) sieve a.


b. If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name $C_u = D_{6i}$

$$D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$$

- d. If soil contains>15% sand, add "with sand" to group name.
- Gravels with 5 to 12% fines require dual symbols: e.
- GW-GM well-graded gravel with silt

c.

- GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with silt
- GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM.
- If fines are organic, add "with organic fines" to group name. If soil contains \geq 15% gravel, add "with gravel" to group name.
- h.
- Sands with 5 to 12% fines require dual symbols:
- SW-SM well-graded sand with silt SW-SC
- well-graded sand with clay SP-SM poorly graded sand with silt
- SP-SC poorly graded sand with clay
- If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay. If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant. k.
- If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- If soil contains≥30% plus No. 200 predominantly gravel, add "gravelly" to group name m.
- $PI \ge 4$ and plots on or above "A" line. n.
- PI <4 or plots below "A" line. о.
- PI plots on or above "A" line. p.
- q. PI plots below "A" line.

Liquid Limit (LL)

Laboratory Tests

DD	Dry density, pcf	oc	Organic content, %
WD	Wet density, pcf	S	Percent of saturation, %
MC	Natural moisture content, %	SG	Specific gravity
LL	Liqiuid limit, %	С	Cohesion, psf
PL	Plastic limit, %	Ø	Angle of internal friction
PI	Plasticity index, %	qu	Unconfined compressive strength, psf
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf

Cohesionless Soils				
Very loose Loose	5 to 10 BPF			
Medium dense Dense				
Very dense	over 50 BPF			

Soils

Very soft Soft Rather soft Medium Rather stiff Stiff	2 to 3 BPF 4 to 5 BPF 6 to 8 BPF 9 to 12 BPF 13 to 16 BPF
Very stiff Hard	17 to 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" ID hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST" (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the prefix "B."

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix "H.'

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards

Rev. 7/07